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1 Introduction

Due to several applications and implementations of transducers in theoretical
and practical areas of computer science their descriptional complexity is a nat-
ural question of crucial importance. The applications are widely spread. For
example, to compiler constructions [1], language and speech processing [8], and
even to the design of controllability systems in aircraft design [10]. Much of
the underlying theory has originated from linguistics. In natural language and
speech processing transducers with more than one hundred million states may
be used.

Whereas the state complexity of finite automata has been investigated by sev-
eral authors in detail [15] only little is known for transducers. From an al-
gorithmic point of view minimization of sequential transducers is considered
in [9]. Papers dealing explicitly with state complexity are [12, 13] where cer-
tain types of transducers are transformed to others. Here we are investigating
the state complexity of basic constructions on rational transductions. This is,
given rational transductions (or relations) described by rational transducers
and an operation thereon, we consider the number of states that is sufficient
and necessary in the worst case to describe the resulting transduction. Cer-
tainly, this requires the closure of transductions under the operations. Rational
transducers are nondeterministic devices whose transductions are closed under
inversion [14], union, intersection on the first or second component, concatena-
tion, reversal, homomorphism, and composition [5]. The deterministic variant
is solely closed under composition. From these facts it follows that there exist
essentially nondeterministic transductions.

Comparing rational transductions with nondeterministic finite automata [6] one
observes that the transducers accept and transform simultaneously. The unde-
cidability of the equivalence problem for rational transducers has been shown
in [7] while the problem becomes decidable again for single-valued rational
transducers [4, 11]. Therefore the constructions are expected to be more ex-
pensive. Nevertheless, it turns out that for some operations defined on both
devices the bounds are similar.

The technical depth of our results varies from immediate to more subtle ex-
tensions to previous work. Indeed the technique to prove minimality for de-
terministic finite automata is not directly applicable to the case of rational
transducers. Therefore, we mostly have to use counting arguments to prove our
results on rational transducer minimality with respect to the number of states.

The paper is organized as follows. In the next section we define the basic
notions. In Section 3 we prove tight bounds for the mentioned operations. For
example, the composition of an n-state and an m-state transducer needs m - n
states in the worst case. From the state complexity point of view it has a
favourable effect to handle the (m + n)-state decomposition of the (m - n)-state
transducer instead of the transducer itself. At the end of the section a table is
given that summarizes the presented results.



2 Preliminaries

We denote the set of positive integers {1,2,...} by N, the set N U {0} by No,
and the powerset of a set S by 2°. The empty word is denoted by A and the
reversal of a word w by wft. For the length of w we write |w|. The number of
occurrences of a symbol a in the word w is denoted by #,(w). We use C for
inclusions and C if the inclusions are strict.

A rational transducer is a finite-state transformation device possessing an input
tape and an output tape. At each time step the transducer reads a symbol or
the empty word from the input tape in some internal state, goes nondeterminis-
tically into another state, and writes a symbol or the empty word to the output
tape. More formally:

Definition 1 A rational transducer (RTD) is a system (S, A, B, §, s, F') where
1. S is the finite nonempty set of internal states,

A is the finite set of input symbols,

B is the finite set of output symbols,

so € S is the initial state,

F C S is the set of accepting states, and

0 is the partial transition function mapping from S x (A U {\}) into the

subsets of S x (BU{\}).

S kR W

The set of rejecting states is implicitly given by the partitioning, i.e., S\ F.

In some sense the transition function is complete. Without loss of generality
we may require J to be a total function, since whenever the operation of an
RTD is supposed not to be defined, then § can map to the empty set which,
trivially, belongs to 25%(BYM) " Thus, in some sense the RTD need not be
complete. The mode of operation can be generalized such that an RTD reads a
whole input word and emits a whole output word. This model yields the same
rational transductions. Since for state complexity issues there is a difference
(cf. Section 3.6) here we use the single symbol mode which is called standard
form in [14].

A configuration of an RTD A is a description of its global state which is a
triple (s,u,v) where s € S is the current state, u € A* is the still unread
portion of the input, and v € B* is the output word produced so far. We write
(s,au,v) k- (8',u,vb) iff (s',b) € §(s,a). The reflexive and transitive closure of -
is denoted by +*, the transitive closure by -, and thus (s,u,v) +* (s',u',v")
indicates that it is possible for A to go from the configuration (s,u,v) to the
configuration (s’,u’,v") in a sequence of zero or more moves.

A rational transducer A transforms input words u € A* into sets of output
words. For a successful transformation A has to be in an accepting state after
having read the whole input, otherwise the output is not recorded:

A(u) = {v | (s0,u,A) F (s5,A,0), 87 € F}

The transduction realized by A, denoted by T'(A), is the set of pairs (u,v) €
(A* x B*) such that v € A(u).



If we build the projection on the first components of T'(.A), denoted by L(T'(A)),
then the rational transducer degenerates to a nondeterministic finite state ac-
ceptor (NFA). The observation that the number of states which is necessary
for an NFA to accept L(T(A)) gives a lower bound for the number of states
necessary to realize the transduction T'(A) bridges both worlds. In the sequel
we utilize this bridge in order to simplify proofs and cross it some times.

An RTD is said to be minimal if its number of states is minimal with respect
to the realized transduction. If not otherwise stated throughout the paper we
assume that the RTDs are always minimal. In particular, this implies that there
are no unreachable states and that from any state a final state can be reached.

3 Basic Constructions

We start our investigations in the next subsection with the inversion since the
operation and its state complexity can serve as helpful tool in the sequel.

3.1 Inversion

Let T be a transduction realized by some RTD. The inverse transduction T !
of T is defined to be
T7" = {(u,v) | (v,u) € T}

The closure of rational transductions under inversion and the corresponding
constructions are mentioned without proof in [14].

Theorem 2 For any integer n € N let A be an n-state RTD. Then n states
are sufficient and necessary in the worst case for an RTD C to realize the
transduction T(A)~*.

Proof. The construction is done by interchanging the input and output of the
transducer A = (S, A, B,d4, s, F'). To this end define C = (S, B, A, 6, sg, F')
such that for all s € S and b€ BU {\}:
3(s,0) ={(s",a) | (s,0) € da(s,a)}
In order to show the correctness of the construction let
(80,1 ap, A)  (S1,u1,v1) b -+ b= (Smy A, by -+ - by)
with m € Ng and s,,, € F' be a computation of 4. We obtain

(a1---ap,br---by) € T(A)

Now let (sg,b1---bg,A) F (51, w1,21) F -+ F (8m, Wm,Zm) be a computation
of C under input by ---b;. We are going to show that s; = 5;, z;u; = a1+ ap
and vjw; = by - - - by holds at any time 0 <4 < m.



In this case we obtain immediately 5,, € F, wy, = A, T, = a1 ---ap, and thus
(bl . -bq,al ---ap) € T(C)

The claim is trivially true for i = 0. Concluding inductively, assume it is true
for some 0 <3 < m.

The (i + 1)st transition of A may be a A-transition or it may consume the first
symbol a; of u;. The transition may emit A or the last symbol by of v;;1.
So we are concerned with four cases for the (i 4+ 1)st configuration of A:
(Si41,5 Gy b1+ b_1), (i1, Q541+ py by -+ bp_1), (Si41, 05+~ Gp, by -+ by,)
resp. (S8i+1,@j41--ap,b1---b;). By construction it follows that (s;y1,A) €
(5(8i,)\), (3,—+1,a]~) S (5(82',/\), (8i+1,)\) S 5(8i,bk) resp. (8i+1,aj) S (S(Si,bk).
Therefore by induction hypothesis we obtain s;41 = s;y1, and x;41 = x4,
Tipl = Tiaj, Tiy1 = T; reSp. Tip1 = xiaj, and wp = wip1, w; = Wiy,
w; = bpwit1 resp. w; = brw;11. Hence, the claim and therefore T'(A) C T'(C)
follows.

Since (s',a) € 6(s,b) < (s',b) € d4(s,a) the converse T(C) C T(.A) follows
analogously.

Trivially the construction of C preserves the number n of states of A. On the
other hand, n states are necessary if A4 is minimal. Otherwise the construction
(T(A)71)~! would lead to less than n states. Then (T(A)~1)~! = T(A) is a
contradiction to the minimality of A.

3.2 Union

Now we turn to the sole Boolean operation under which rational transductions
are closed.

Theorem 3 For any integers m,n > 1 let A be an m-state and B be an n-state
RTD. Then m + n + 1 states are sufficient and necessary in the worst case for
an RTD C to realize the transduction T(A) UT(B).

Proof. In order to construct an appropriate (m +n+ 1)-state RTD we simply
use a new Initial state and connect it to the initial states of A and B via A-
transitions that emit the empty word .
Let A = <SA,AA,BA,(5A,80’A,FA) and B = (SB,AB,BB,(SB,SO’B,FB) with
SanNSg =0, then C = (S,As U Ag,Ba U Bpg,d,80,Fa U Fg) is defined as
follows:
S =S4USpU{sg} where sp ¢ S4USp
{(80,A7)‘)7 (80,37 )‘)} if s = S0 and a = A
0(s,a) =< da(s,a) ifseSa
0B(s,a) if s € Sg
for s€ Sand a € AgUAgU{A}.

During the first transition C nondeterministically guesses whether the input
must be transformed by A or by B. Subsequently, A or B is simulated. Obvi-
ously, T(C) = T(A) UT(B) and |S| = |Sa|+ |SB|+1=m+n+1.



In order to show that m + n + 1 states are necessary in the worst case let A be
an m-state RTD which realizes the transduction {(a*™,$?) | i € No} and B an
n-state RTD which realizes {(b"",$?) | i € Ng}. In [6] it has been shown that an
NFA needs at least m + n + 1 states to accept the language L = {a™}* U {b"}*.
Since L equals L(T'(A) UT(B)) the assertion follows.

3.3 Weak Intersection
The intersection of the rational transductions
{(a",b'd) | 4,5 €N} and {(a',b'c") | i,j € N}

is {(a%,b'c’) | i € N} which cannot be realized by an RTD. From the non-
closure under intersection and the closure under union the non-closure under
complementation, i.e., all pairs over the given alphabets not belonging to the
transduction, follows. On the other hand, rational transductions are closed
under in some sense weak intersection operations.

Let 17 and T5 be two transductions realized by some RTDs. The intersection
for the first components of T1 and T3 is defined to be

Ty Ny To = {(u,v) | v, 0" : (u,v") € Ty, (u,v") € Ta,v € {v',v"}}

Theorem 4 For any integers m,n € N let A be an n-state and B be an m-state
RTD. Then 2-m-n+ 1 states are sufficient and necessary in the worst case for
an RTD C to realize the transduction T'(A) Ny T'(B).

PI‘OOf. Let A = <SA,A,BA,5A,SO,A,FA> and B = <SBaA,BB75B,30,BaFB>,
then C = (S,A,B4 U Bpg,d, 350, F) is defined as follows. Let S’y resp. S%; be
copies of S4 resp. Sp, and F/j resp. Fj be copies of F4 resp. Fg. Set

S =(SaxSp)U(S xS%)U{so} where sg ¢ S4USpUS’, US%,
FZ(FAXFB)U(FA XF'B),

6(s0,A) = {((SO,A’SO,B)’ A), ((SB,A’ 36,B)v A}

5((31a32)aa) = {((t17t2)ab) | (tlab) € 5A(Slaa) and 3b' : (t2abl) € 63(3250’)}
for (s1,s2) € Sa x Sp and a € AU{A},

0((s1, 52), @) = {((#1,2), V) | (2, V) € 6p(s2,a) and 3b: (t1,b) € 6a(s1,0)}
for (s7,s5) € Sy x Sz and a € AU{A}.

So we did the cross-product construction twice and used a new initial state
which is connected to the pairs of old initial states via A-transitions that emit
the empty word.

Now we are going to show that 2mn + 1 states are necessary in the worst case.
Let A be an m-state RTD which realizes the transduction

{(u,v) | u € {a,b}*, #4(u) = 0 (mod m), v = b#*e(¥)}



and B be an n-state RTD which realizes
{(u,v) | u € {a,b}*, #p(u) = 0 (mod n),v = a#>™)}

Let C be a rational transducer for the transduction T'(A) Ny T'(B). Since the
input (ab)iam—(imedm)pn—(imodn) ; ¢ N must be transformed C has to pro-
cess them appropriately. Since the integer ¢ is not bounded, to this end C runs
through cycles. But C cannot remember how often a cycle has been passed
through. Therefore we observe that there exists a j € N such that every trans-
formation has emitted some output after consuming (ab)’. In particular, this
output must contain symbols a or symbols b but not at the same time.

Now consider inputs (ab)/™"a?b? and (ab)i™"a? b7 where 0 < p,p’ < m—1 and
0 < ¢q,¢d < n—1. There exist m - n such words which may have caused the
emittance of symbols a or b. So we are concerned with 2 - m - n possibilities.
Assume that transformations are in the same state for two of the possibilities.
If p # p' or ¢ # ¢ a contradiction follows since (ab)/™"aPb%a™ P b"~ must not
be transformed but would be since (ab)/™"aPbla™ Pb" 4 is. If p = p' and q = ¢/,
we have (ab)/™aPb? = (ab)i™"a? b7 . But there must exist two computations
for this input which emit different symbols. So we obtain a contradiction since
outputs with different symbols would be recorded.

So far C has at least 2 - m - n states. In addition, the transformation for the
2 - m - n possibilities cannot reach the initial state for j > 1. The initial state
must be accepting and so the input could always be extended such that the
transformation continues with emitting the wrong output symbols. Altogether
it follows that C needs at least 2-m - n + 1 states.

Once we have found the tight bound of the intersection for the first components
a natural question is to do the same for the second components:

The intersection for the second components of Ty and Ts is
Ty Mo To = {(u,v) | Ju',u" 2 (v, v) € Ty, (u",v) € To,u € {u/,u"}}
At a first glance the operation seems to be more expensive than Ny, but actually

1t makes no difference.

Theorem 5 For any integers m,n € N let A be an n-state and B be an m-state
RTD. Then 2-m-n+ 1 states are sufficient and necessary in the worst case for
an RTD to realize the transduction T'(A) Ny T'(B).

Proof. For two arbitrary transductions T} and T, the theorem follows from
Theorem 4, which gives the tight bound for N;, and Theorem 2, which gives an
upper bound of n for the inversion, by 71 Ny To = (T{1 M1 T{l)*l.

3.4 Concatenation

Let T1 and T3 be two transductions realized by some RTDs. The concatenation
of T1 and Ty is defined on element position as follows:

TiT = {(’U,1UQ,1)1’1)2) ‘ (ul,vl) c Tl, (UQ,’UQ) c TQ}



Theorem 6 For any integers m,n € N let A be an m-state RTD and B be an
n-state RTD. Then m + n states are sufficient and necessary in the worst case
for an RTD C to realize the transduction T'(A)T(B).

Proof. The upper bound is due to the observation that in C one may connect
the final states of A with the initial state of B via A-transitions which emit the
empty word.

Let A = <SA,AA,BA,5A,S(),A,FA> and B = <SB,AB,BB,5B,30,B,FB> with
SaNSg = @, then C = <SA USp,AsUAg, B4 U BB,5,S(),A,FB> realizes the
transduction T'(A)T(B), where

d4(s,a) ifseSa\Fa
5(s.a) = 04(s,a) ifse€ Fyand a # A
54= 0p(s,a) ifse Sp

da(s,a) U{(s0,B,A)} if s€ Fqanda=A\
forse SyUSpanda € AqgUAgU{A}
The upper bound is reached for the concatenation of the transductions T'(A) =
{(a®™,$") | i € No} and T(B) = {(°™,$") | i € No}. In [6] it has been shown

that any NFA needs at least m +n states to accept the language {a™ }*{b"}* =
L(T(A)T(B))-

3.5 Reversal

Let T be a transduction realized by some RTD. The reversal of T is denoted
by T and defined to be

TP = {(u,v) | (u?,0) € T}

Theorem 7 For any integer n > 3 let A be an n-state RTD. Then n + 1

states are sufficient and necessary in the worst case for an RTD C to realize the
transduction T(A)®.

Proof. Basically, the idea is to reverse the directions of the transitions and to
interchange the meaning of the initial and accepting states. This works fine for
RTDs whose set of final states is a singleton. In general we are concerned with
more than one accepting state and have to add a new initial state as shown
below. So we obtain an (n + 1)-state RTD.

Let A= (S4a,A,B,04,50,4, Fa) be an n-state RTD. Define C = (S, A, B, §, s9, F')
according to S = S4 U {so} where so ¢ Sa, F' = {so,.4}, and for a € AU {A}:

_ {(s',b) € Sa x (BU{A}) | (s,b) € 64(s',a)} ifs€ Sy
D= | F e By s = -
s, s Wt ifs=spanda=\

Clearly, the (n + 1)-state RTD C realizes the reversal of T'(A).



The transduction
Ty = {(alFVHFFipT §747) | 4,5 € No} U {(aFDH il §747) | 4,5 € No}

for £ > 1 may serve as an example for the fact that the bound is reached. The
(k+3)-state RTD which realizes T and the (k+4)-state RTD which realizes T}%
are depicted in Figure 1.

Figure 1: A (k + 3)-state resp. a (k + 4)-state RTD realizing T}, resp. T\ of
Theorem 7.

The necessity of k + 4 states follows once more from NFA acceptance. In [6] it
has been shown that k + 4 states are necessary to accept the language L(T}{).

3.6 Homomorphism

Let T C A* x B* be a transduction realized by some RTD, C' and D be two
alphabets, and g : A* — C*, h : B* — D* be two homomorphisms. The
homomorphic image of T under g and h is defined on element position as follows:

Tyn = {(9(u),h(v)) | (u,v) € T}

Obviously, the number of states of an RTD realizing T} ;, depends on T' as well
as on the homomorphisms g and h. In particular, we need to consider the
structure of some minimal RTD A = (S, A, B, d, 89, F') which realizes T'.

For easier writing let R4 C S x (AU{A}) x S x (BU{A}) be the set of possible
transitions of A, i.e., for s,s' € S, a € AU{A}, and b € BU {A}:

(s,a,s',b) € R4y < (s',b) € 6(s,a)

For any r = (s, a,s’,b) € R4 define z, = max{|g(a)|, |h(b)|,1}.



Theorem 8 For any integer n € N let A = (S, A, B, 4, s, F) be an n-state
RTD, and g : A* — C* and h : B* — D* be two homomorphisms. Then

n+ Z(xr—l)

rER A

states are sufficient for an RTD C to realize the transduction T, ;(A).

Proof. The underlying idea of construction is to replace each transition of A by
a sequence of transitions during which the images of the input resp. output sym-
bols are consumed resp. emitted. To this end define C = (SUS’,C, D, ¢, sg, F)
where S’ and ¢ are constructed as follows.

Initially let S’ be empty and ¢’ be undefined for any arguments. The next step
is performed for each r = (s,a,s’,b) € R4.

If z, = 1, then define (s,g(a),s’,h(b)) to be a possible transition in C, i.e.,
let (s',h(b)) € §(s,g(a)). Otherwise we have z, > 1. In this case proceed as
follows: Join " with z, — 1 new states s},...,s), ;. Buildawordc=c;-- ¢
over C' such that ¢ ---cgq) = g(a) and cjga)41,---5 ¢z, = A if [g(a)| < z;.
Correspondingly, build a word dj ---d,, over D with respect to h(b). Now

define the transition (s}, d;) € 6'(s,¢1) and set

5,(3,1762) = {(5,27d2)}7 5,(3,2703) = {(ngd3)}7 s 75,(3;%—176%) = {(Slvdwr)}

”

The construction of C is complete when this procedure has been performed for
any r € R4. Since for any r exactly z, — 1 new states are used we conclude
1S'l = 32 er, (@ — 1) and, thus, the assertion of the theorem. The correctness
of the construction can easily be shown by induction.

Now we turn to the question whether the number of states given in the pre-
vious theorem is necessary in the worst case. But what does this mean? It
is easy to see that there exist transducers and homomorphisms such that the
bound is matched. So the question could be whether it is possible to find such
homomorphisms for any given (minimal) transducer. But even this answer is
trivial since in fact there exists one pair of homomorphisms that is suitable for
all (minimal) transducers. We simply may take the identity mappings.

The following example shows that there exist non-trivial homomorphisms for
non-trivial RTDs.

Example 9 For any integer n € N there exist an n-state RTD A = (S, A, B, 6,
50, F) and homomorphisms g : A* — {a,b}*, h : B* — {a,b}* such that
any RTD C needs at least |S|+ Y ,cn (@; — 1) states to realize the transduc-
tion Tg,h(.A).

In order to show the assertion consider the transduction

T= {(U’U) ‘ u € {a'a b}*’#a(u) =0 (mOd n),v = $#b(u)}

10



b|$ alA

Figure 2: An n-state RTD realizing 7' of Example 9.

The n-state transducer A depicted in Figure 2 realizes T'. For any m > 1 and
k > m consider the homomorphisms g : {a,b}* — {a,b}* where g(a) = a™ b,
g(b) = a™, and h: {$}* — {a,b}* where h($) = b*.

Let C = (S,{a,b},{a,b},d,s0,F) be an RTD that realizes T, ;. We have to
show that C has at least n+n-(m—1)4+n-(k—1)=n-(m+k — 1) states.
To this end we analyze C for inputs of the form g(ab’)g(ab’?)--- g(ab») where
0 <41,...,is. For convenience we refer to the n subwords g(a) by w1,...,ws,.
So we have inputs wia ™ws . .. wya' ™ where w; = a™ b 1< j<n.

A transformation of such input runs through a sequence of configurations. We
concentrate on configurations which are reached immediately by consuming an
input symbol from the subwords w;. Together with the initial configuration we
obtain

(50, w1a™ ™ - wpa» ™ N\) B (s1,a™ 2ba’t ™ - - wpatt ™, vy)
[ (Sm—la bait™ . .. wyain™, Um—l)

+ i1-m in-m
F* (Sm, @™ - wpa™ ™, vy)

m—2bai2-m ..

Ft (smi1,0 “Wr @™ ™, V1)

e b (Smm, @™, Un)

Obviously, all states s1, ..., Sm.n—1 must be non-accepting. But, moreover, they
must be distinct.

Contrarily, assume they are not, say s, = s4. Since C consumes at least one
input symbol from the substrings w; while getting from s, to s, we conclude
that there exists a cycle which consumes more than one and not more than
m -n — 1 such input symbols. Therefore, there exist transformations which
do not run resp. which run arbitrary times through the cycle . If the cycle
consumes an input symbol b, a contradiction follows immediately since less
than n symbols b are consumed. Otherwise the number of consumed symbols a
must be a multiple of m where less than m — 1 and more than one are from

11



the subwords w;. In this case a contradiction follows when the transformation
does not run through the cycle.

Consequently, the non-accepting states si, ..., Sm.n—1 must be distinct for any
input of the required form. Together with the accepting initial state these are
at least m - n states.

Next we consider the inputs wia™ ™wows - - - wy, 0 < 4. Since i1 may be ar-
bitrary, C must have a cycle to process these inputs. If the cycle consumes at
least one input symbol b, then the cycle length becomes arbitrarily long since
all 41 - m symbols ¢ must have been consumed before. Therefore, we may as-
sume that the cycle consumes only symbols a. Since a transformation may run
through the cycle arbitrarily often when given the corresponding input, and C
cannot remember how often, it follows that the i; - k output symbols b must
be emitted in the cycle. This implies that the cycle length is at least &k which
is by definition not less than m. On the other hand, provided the correspond-
ing input, a transformation may not run through the cycle at all. Thus, the
sequence of states sg, ..., Sm.n, mentioned above must be passed through apart
from the cycle. By this observation it follows that the cycle may only start at
one of the states s,, (reached by consuming the first b), s;,41,...,S2m—1, and
afterwards the transformation must enter the successor state when consuming
the next input symbol from the subword ws. Due to the fact that a transition
consuming an input symbol a may not nondeterministically emit b or A at the
same time, the cycle takes at least £ — 1 new states.

Now we consider the inputs wia™ ™wya® ™ws - - - w, and argue identically that
another cycle starts at one of the states sop,...,S3m_1 and afterwards the
transformation must enter the successor state when consuming the next input
symbol from the subword ws.

By this properties it follows immediately that the cycles do not have common
states. Repeating the argumentation we derive the necessity of n cycles in order
to transform the inputs wia™™ - - wpa™™, 0 < i1,...,i,. So the total number
of necessary states is n-m +mn-(k —1) = n(m + k — 1) what completes the
analysis.

3.7 Composition

Let T3 C A} x B} and T5 C A3 x B3 be two transductions realized by some
RTDs such that Bs C A;. Then

Ty oTy = {(u,v) | Jw: (u,w) € To A (w,v) € T1}
is the composition of T1 and T.

Theorem 10 For any integers m,n € N let A be an m-state RTD and B be an
n-state RTD such that the set of output symbols of B is included in the set of
input symbols of A. Then m - n states are sufficient and necessary in the worst
case for an RTD C to realize the transduction T(A) o T'(B).
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Proof. The upper bound of m-n states is given by the cross-product construc-
tion of C. Let A = <SA,AA,BA,(5A,30,A,FA> and B = <SB,AB,BB,(5B,80,B,FB>
with BB g AA. Then C = <SA X SB,AB,BA,(S, (50,A730,B),FA X FB> realizes
the transduction T'(A) o T'(B) where

3((s1,82),a) = {((s1,52),b) [ e (s3,¢) € d(s2,a),(s1,b) € da(s1,0)}

for (s1,82) € Sa x Sp and a € Agp U {\}.

As witnesses for the fact that the bound is reached in the worst case define for
r € N alphabets A, = {a1,...,a,}, for 1 <p <7 homomorphisms h, : Ay — A
where hp(a) = X if a = ap and hy(a) = a otherwise, and transductions

Ty = {(,0) | u € AZ #a, (u) = 0 (mod k), v = hy(u)}

for all k € N.
An RTD which realizes T7 ;, with k states is depicted in Figure 3.

a; | ai

a; | a; a; | A ay | A a; | a;

a1|/\
a; | a;

al\)\

a1|)\

a; | a;

Figure 3: A k-state RTD realizing T} j, of Theorem 10 (i € {2,...,7}).

It remains to show that an RTD C for T, ,, o Ty 5, p 7é q and m,n € N needs at

least m-n states. Consider the inputs a aéaf and a7 aq ae with 0 <i,i <m-—1,
0 < 7,5/ <n—1, an arbitrary but ﬁxedﬁe N, ando;ép, o0F#q. Lethem
configurations c¢;; = (sij, A, vij) resp. cpjr = (s”:,)\ vy 1) after processing the
corresponding inputs. Since (apaqaza;,” ign= al) and (a ay aﬁa;n " ay 7 ,ab)
belong to Ty, o Ty, there must exist such configurations from which final

configurations are reachable when the input is extended appropriately:
L o
(sijr ap'tay 7, 0i) F* (s, M, a0)  and  (swjrap " ay 7 vpg) (s, A, af)

for some final states sy, s.

Assume C has less than m - n states. There exist m - n different inputs of
the form in question. Therefore at least for two different inputs we have
Sij = Sirjr- This implies (so,apaq Z A) F* (Siljl,)\,/l]z'ljl) = (szj,)\,vi/j/) and

further (sij,ag%iag_],v”) F* (sg, A\, vy jrw). Thus (af;,af] aeagl tag vy jrw)
must belong to T, o Ty,. But contrarily, either ¢ # i’ or j # j', and thus

i'+m —1i %0 (modm)or j/+n—j %0 (mod n), a contradiction.

13



The transductions T}, are realizable by deterministic rational transducers.
Therefore the tight bound for composition holds also in the deterministic case.
This is of particular interest since the sole positive closure (under the opera-
tions in question) of deterministic transducers is under composition, and even
for this operation there is no difference in the state complexities.

Finally, Table 1 summarizes the shown state complexity bounds for RTDs.

RTD
U m+n+1
My 2-m-n+1
No 2-m-n+1
m-+n
R n+1
71 n
o] m-n
n+Yer(@r —1)

Table 1: State complexities of basic operations on rational transductions. For
r, R and x, see Section 3.6.
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