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Abstract: Matrix remodeling could be an important mode of action of multipotent mesenchymal
stromal cells (MSC) in extracellular matrix (ECM) disease, but knowledge is limited in this respect.
As MSC are well-known to adapt their behavior to their environment, we aimed to investigate
if their mode of action would change in response to healthy versus pathologically altered ECM.
Human MSC-derived ECM was produced under different culture conditions, including standard
culture, culture on Matrigel-coated dishes, and stimulation with the pro-fibrotic transforming growth
factor-β1 (TGFβ1). The MSC-ECM was decellularized, characterized by histochemistry, and used
as MSC culture substrate reflecting different ECM conditions. MSC were cultured on the different
ECM substrates or in control conditions for 2 days. Culture on ECM increased the presence of surface
molecules with ECM receptor function in the MSC, demonstrating an interaction between MSC
and ECM. In MSC cultured on Matrigel-ECM and TGFβ1-ECM, which displayed a fibrosis-like
morphology, gene expression of collagens and decorin, as well as total matrix metalloproteinase
(MMP) activity in the supernatant were decreased as compared with control conditions. These
results demonstrated that MSC adapt to their ECM environment, which may include pathological
adaptations that could compromise therapeutic efficacy.

Keywords: mesenchymal stromal cells (MSC); mode of action; extracellular matrix (ECM); MSC-
derived ECM; matrisome; collagen; matrix remodeling; matrix metalloproteinases (MMP); tissue-
inhibitors-of-matrix-metalloproteinases (TIMP)

1. Introduction

Multipotent mesenchymal stromal cells (MSC) have been attributed a variety of
regenerative mechanisms, which are influenced and triggered by external stimuli. Their
mode of action in inflammatory or immune-mediated disease is in the focus of many
research activities, which have already led to successful therapeutic approaches [1,2]. In
contrast, very little is known regarding the possible mechanisms of MSC in extracellular
matrix diseases, such as fibrosis.

The extracellular matrix (ECM) is crucial for tissue and organ function. It represents
an essential component of the cellular microenvironment, providing not only structure
but also and physical and biochemical cues [3,4]. Furthermore, particularly in connective
tissues, the ECM is the major contributor to tissue biomechanical properties, with the
ECM composition and architecture determining strength and elasticity [5]. The ECM is
continuously remodeled by the resident cells, which includes the synthesis of new ECM

Int. J. Mol. Sci. 2022, 23, 1758. https://doi.org/10.3390/ijms23031758 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23031758
https://doi.org/10.3390/ijms23031758
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-7868-0355
https://orcid.org/0000-0003-2607-4326
https://orcid.org/0000-0003-2299-1311
https://doi.org/10.3390/ijms23031758
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23031758?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 1758 2 of 12

components and the breakdown of existing ECM components. The ECM turnover relies
on the coordinated expression of specific ECM components as well as matrix-degrading
enzymes by resident cells, such as matrix metalloproteinases (MMP) and their tissue
inhibitors (TIMP) [6,7]. Physiologically, this enables a constant adaptation of the ECM to
changing demands, e.g., during development or training and exercise.

However, if the balance between ECM synthesis and breakdown is disrupted, the
ECM becomes a key player in pathological processes. In chronic or recurring disease, the
persisting attempts of tissue repair are accompanied by the concerted actions of inflam-
matory mediators and transforming growth factor-β1 (TGFβ1). These recruit and activate
collagen-producing (myo)fibroblasts and alter the expression and activation profile of the
different MMP and TIMP, eventually leading to fibrosis [8–10]. A therapeutic intervention
targeting specific pro-fibrotic mediators, for example TGFβ1, is not without difficulty due
to their multifaceted actions in diverse other processes [8]. Therefore, multimodal and
adaptive therapeutic tools are necessary to treat ECM pathologies; thus, MSC, with their
context-sensitive properties, offer promising prospects.

With regard to using MSC to treat ECM pathologies, preclinical studies and phase I/II
clinical trials suggested that MSC transplantation could prevent fibrosis in inner organs such
as heart, liver, kidney, or lung [11–15]. Yet on the other hand, MSC, or at least their in vivo
counterparts, are suspected to drive the development of fibrosis [16]. This discrepancy
suggests that both anti- and pro-fibrotic MSC effects may occur and highlights the need to
understand the underlying mechanisms in order to prevent misrouted therapeutic attempts.

Part of the anti-fibrotic effects of MSC is the result of modulating inflammatory cas-
cades, but MSC may also directly contribute to matrix remodeling by releasing and activat-
ing remodeling enzymes. Yet, so far, there are only few studies specifically addressing this
direct matrix-modulatory potential of MSC [17–19]. A first study revealed a mutual inter-
play between MMP activity and MSC behavior, and demonstrated the gene and protein
expression of several MMP and TIMP2 by the MSC [19]. Two further studies revealed that
MSC inhibit soluble-compartment MMP via secreted TIMP [17] and bind active MMP at
their surfaces [18]. This suggests that MSC could actively contribute to selective matrix pro-
tection and degradation. Furthermore, mechanical stimulation led to an overall increased
gelatinolytic activity [19]. The latter shows that, similar as with other MSC mechanisms,
their matrix modulatory activity is altered by external stimuli. Hence, with respect to
the question whether MSC will act in an anti- or pro-fibrotic manner, their extracellular
environment may be deciding.

The aim of this study was to investigate if MSC function is affected by ECM produced
under fibrotic conditions. Specifically, we aimed to explore how MSC adapt their matrix
synthesis and remodeling activities to MSC-derived ECM-based cell culture substrates that
mimic physiological and pathological extracellular environments. For this purpose, we
used a novel human cell culture model based on MSC-derived ECM, as well as control con-
ditions including a commercially available and frequently used extracellular environment
(Matrigel coating). We hypothesized that firstly, the ECM deposited by MSC would reflect
different culture conditions and display fibrosis-like characteristics after stimulation with
TGFβ1 and that secondly, MSC cultured on these ECM substrates would show different
matrix modulatory activities depending on their respective ECM environment.

2. Results
2.1. MSC-Derived ECM Culture Substrates

After 2 days of culture, the MSC had deposited ECM which could be decellularized
and used as culture substrate for the subsequent experiments. Depending on the culture
conditions during the time period used to generate the MSC-derived ECM, the structure
of the ECM deposited by the MSC was qualitatively different. The ECM obtained after
seeding on standard tissue culture plastic (TCP) plates showed a homogeneous structure.
In contrast, the TGFβ1-induced ECM, which was obtained after seeding the MSC on
TCP plates but with addition of TGFβ1 to the culture medium, had an inhomogeneous
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morphology with fiber structures. The Matrigel-ECM, obtained after seeding the MSC on
Matrigel-coated plates, was distributed less homogeneously than the normal ECM, but
lacked the fiber structures of the TGFβ1-induced ECM. Picrosirius staining was positive
in all ECM substrates, while Alcian blue staining was rather weak, indicating that the
MSC-derived ECM substrates contained more collagens (Figure 1).

Figure 1. Decellularized MSC-derived ECM obtained after culturing the MSC for 2 days on standard
tissue culture plates (ECM), on Matrigel-coated tissue culture plates (Matrigel-ECM), or on standard
tissue culture plates with TGFβ1-supplemented medium (TGFβ1-induced ECM). Alcian blue staining
was weak, suggesting low glycosaminoglycan content of the MSC-derived ECM, while picrosirius
red staining was more distinct, demonstrating the presence of collagens. Note the fibrous structure of
the TGFβ1-induced ECM.

2.2. Cell Viability, Presence of ECM Receptors and Cytoskeleton Formation

When culturing fresh MSC on the different substrates but without differences in
growth factor supplementation, MSC metabolic activity, measured as an indicator for
cellular viability, was highest on the Matrigel control substrate. However, it was similar in
the TCP control and on all MSC-derived ECM substrates, and differences between groups
were overall not significant (Figure 2A).

Staining of CD29 and CD44, both surface molecules interacting with ECM components
(integrin-β1 and homing cell adhesion molecule, respectively), demonstrated interaction of
MSC and the MSC-derived ECM substrates. Both molecules were more distinctly stained in
MSC cultured on any MSC-ECM-based substrate as compared with TCP or Matrigel, and
the staining was most abundant on the normal MSC-derived ECM. The same was observed
regarding the actin cytoskeleton fiber formation, possibly as a result of activation of the
integrin (CD29)/rho/ROCK axis (Figure 2B).
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Figure 2. Metabolic activity and microscopy. (A) Metabolic activity of MSC after culture on the differ-
ent MSC-derived ECM substrates (ECM, Matrigel-ECM, TGFβ1-ECM) or in the respective control
conditions without MSC-derived ECM (tissue culture plastic (TCP), Matrigel), as determined by MTS-
assay (n = 5 independent experiments). (B) Representative images of surface molecule (CD44, CD29)
and actin cytoskeleton (phalloidin) staining of MSC cultured on the different substrates. Note the
higher intensity of the stainings in MSC cultured on ECM, indicating that the surface molecules
interacting with the ECM are more present and the cytoskeleton formation is more pronounced.
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2.3. ECM, MMP and TIMP Gene Expression

The expression of genes encoding for selected ECM components was similar in MSC
cultured on TCP and in MSC cultured on normal MSC-derived ECM. However, in MSC
cultured on Matrigel-ECM, collagen 1A2 (COL1A2), collagen 3A1 (COL3A1), tenascin-C
(TNC) and decorin (DCN) expression levels were decreased (p = 0.007 as compared with
TCP and ECM for both COL1A2 and COL3A1). In MSC cultured on TGFβ1-induced ECM,
COL3A1 and DCN expression levels were decreased (p = 0.002 compared with TCP for
decorin) (Figure 3).

Figure 3. Relative gene expression of the extracellular matrix components collagen 1A2 (COL1A2),
collagen 3A1 (COL3A1), tenascin-C (TNC), and decorin (DCN), the matrix metalloproteinases MMP1,
MMP3, and MMP14, and their tissue inhibitors TIMP1 and TIMP2 in MSC after culture on the differ-
ent MSC-derived ECM substrates (ECM, Matrigel-ECM, TGFβ1-ECM) or in the respective control
conditions without MSC-derived ECM (tissue culture plastic (TCP), Matrigel). Gene expression
differed significantly between groups designated with the same letter (p ≤ 0.007 in the post hoc tests).
Data were obtained in n = 4 independent experiments.
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MMP1, MMP3, and MMP14 were only expressed at relatively low levels in all groups;
particularly, MMP3 expression was very low. The expression of all MMP investigated
tended to be at the lowest levels in MSC cultured on Matrigel, but this did not reach
significance. Similarly, TIMP1 and TIMP2 expression was decreased in MSC cultured on
Matrigel-ECM as well as in MSC cultured on TGFβ1-induced ECM, but again this was not
significant (Figure 3).

Overall, the relative expression of the most analyzed genes was more consistent
between experiments in MSC cultured on Matrigel-ECM and TGFβ1-induced ECM.

2.4. MMP Gene Expression and Activity

Although no major differences were found in MMP gene expression, the enzymatic
activity of total MMP released into the supernatants was significantly reduced on the
TGFβ1-induced ECM substrate (p = 0.004 for TGFβ1-induced ECM vs. TCP) (Figure 4A).
Zymography revealed that the active MMP found in the supernatants had molecular
weights of approximately 80–85 and 60–65 kDa (Figure 4B).

Figure 4. Matrix metalloproteinases (MMP) in cell culture supernatants. (A): Total matrix metal-
loproteinase (MMP) activity, measured in the supernatants of MSC after culture on the different
MSC-derived ECM substrates (ECM, Matrigel-ECM, TGFβ1-ECM) or in the respective control con-
ditions without MSC-derived ECM (tissue culture plastic (TCP), Matrigel). MMP activity differed
significantly between groups designated with the same letter (p ≤ 0.007 in the post hoc tests).
(B): Representative image of gelatin zymography of the supernatants; bands within the same kDa
range were detected in all samples, but with different intensity (arrows); ladder: Precision Plus Pro-
tein Dual Color Standards (Bio-Rad, Hercules, CA, USA); standard 1: 0.5 µg collagenase V; standard 2:
1 µg collagenase V.

3. Discussion

In this study, we showed that MSC are capable of synthesizing ECM that reflects
different culture conditions, and that MSC, when cultured on such different ECM sub-
strates, adapt to their environment. This included a reduction of their matrix remodeling
activity in the fibrosis-like environment of the TGFβ1-induced ECM, which suggests that
maladaptations to pathological environments may occur. While very little is known on
the mode of action of MSC in the context of ECM disease so far, this study performed in a
human in vitro model contributes to understanding the role of MSC in ECM physiology
and pathophysiology.

The synthesis and deposition of ECM by MSC in cell culture has been described
and characterized in several previous studies. The core matrisome consists of collagens,
glycoproteins, and proteogylcans, while associated molecules such as protease regulators
are also present [20,21]. The MSC-derived ECM was relatively consistent across different
MSC donors, and also more similar in bone marrow-derived and adipose-derived MSC as
compared with the ECM from neonatal dermal fibroblasts [20]. However, it was described
that adipose MSC produce more ECM than Wharton’s jelly-derived MSC [22]. It has also
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been shown that culture conditions impact MSC-derived ECM synthesis, e.g., chemically
induced hypoxia increased collagens, TGFβ1, vascular endothelial growth factor, and
basic fibroblast growth factor in MSC sheets, which was partly maintained after decellu-
larization [23]. However, the same study showed that particularly TGFβ1 was lost during
decellularization [23]. MSC-derived ECM also have been used successfully to improve
MSC growth, differentiation, and angiogenic properties [20,24–26] or to modulate immune
responses [27,28]. In contrast to the current study, however, MSC-derived ECM had not
been used to mimic health and disease so far. Yet we considered it as a promising approach
to trigger the MSC in a way that would lead to different types of MSC-derived matrices,
which could then be used as in vitro model for physiological versus pathologically altered
ECM environments.

Aiming to investigate potential alterations of MSC mechanisms while adapting to
a diseased extracellular environment, we included TGFβ1-induced MSC-derived ECM
in our experimental groups. We hypothesized that the pro-fibrotic factor TGFβ1, added
during the culture period used to produce the ECM, would alter the deposited ECM
to reflect a fibrosis-like structure, which was confirmed based on the fiber structures
observed in the ECM of this group. Furthermore, we assumed that based on the results of a
previous study [23], the TGFβ1 added during culture would be removed from the ECM
after decellularization, which we could also confirm by negative TGFβ1 immunostaining
of the matrices (data not shown). Therefore, we considered the TGBβ1-induced ECM as
a suitable cell culture substrate to investigate the influence of fibrotic ECM on MSC. On
the other hand, we included MSC-derived ECM synthesized during culture on Matrigel-
coated plates in our experimental groups. This was intended to mimic physiological
conditions already during MSC-derived ECM synthesis. Yet interestingly and possibly due
to the TGFβ contained in the Matrigel, while the structure of the Matrigel-ECM appeared
like an intermediate of the normal and the TGFβ1-induced ECM, the results obtained
during subsequent cell culture showed several similarities between Matrigel-ECM and
TGFβ1-induced ECM. Therefore, the normal ECM, synthesized during standard culture, is
to be considered as the most physiological extracellular environment.

MSC culture on the different MSC-derived ECM was feasible and resulted in some
distinct differences observed between groups, while MSC viability was similar in the TCP
control and the MSC-derived ECM groups. First, we could show that the MSC interacted
with the ECM substrates by increasing the presence of the ECM-binding surface molecules
CD29 (integrin-β1) and CD44 (homing cell adhesion molecule). This was most evident
in the MSC cultures on normal ECM and entailed a distinctly shaped actin cytoskeleton,
which is a typical downstream result following integrin activation [29]. Next, we observed
differences in the regulation of ECM genes. This involved a downregulation of collagens
and decorin in MSC cultured on Matrigel-ECM and TGFβ1-induced ECM. A downregula-
tion of ECM genes in response to the MSC-derived ECM would correspond to previous
observations [20]. Yet in the current study, it was not observed in MSC cultured on physi-
ological MSC-derived ECM; thus, this mechanism could be part of the early adaptations
of MSC subjected to a pathologically altered ECM environment. Supporting this hypoth-
esis, we observed a similar response with collagen 3A1 downregulation when culturing
equine MSC on diseased tendon ECM as compared with healthy tendon ECM in another
recent study [30].

Finally, and with the most importance regarding matrix remodeling as a possible MSC
mode of action in ECM disease, the activity of MMP in the cell culture supernatant was
reduced in the fibrosis-like ECM environment of TGFβ1-induced MSC-derived ECM. To
account for possible MMP already present in the MSC-derived matrisome [20], we used
supernatants from non-seeded substrates for background correction, so this difference
must be due to the MMP released by the MSC during the cell culture experiments. While
gene expression and protein activity do not necessarily correspond for various reasons,
this still appears surprising against the current MMP and TIMP gene expression findings.
Here, there was almost no regulation of the collagenase MMP1 and the stromelysin MMP3,
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and only an insignificant regulation of the membrane-type MMP14. Furthermore, the
TIMP were expressed at lower levels in MSC cultured on Matrigel-ECM and TGFβ1-
induced ECM. Yet providing a possible explanation, zymography suggested that the MMP
mainly present in the supernatants were neither collagenases nor stromelysins. Rather,
the MMP found in the supernatants were in the molecular weight range of gelatinases
(such as MMP2 and MMP9) and membrane-type MMP (such as MMP14 and others), with
differences between groups observed mainly in the weight range of the membrane-type
MMP. This was interesting as recently, it was demonstrated that secreted MMP14 is a
suitable predictor for MSC potency to reduce liver fibrosis [31]. Considering this, reduced
MMP14 secretion and activation would represent a maladaptation of MSC in fibrotic
environment, which may have to be addressed when attempting MSC-based therapies of
ECM disease.

It is possible that the observed (mal)adaptation effects only occur during the first days
of exposure to pathologically altered ECM. This is even likely as in our recent study on
matrix remodeling by MSC in the specific context of tendon disease, we observed the same
effect but only during the first week [30]. In this line, it represents a limitation of the current
study that only a short period of time (2 days) could be investigated, which was owed to
the fact that long-term culture of the MSC on their decellularized, MSC-derived ECM was
not feasible with sufficient repeatability. However, even if this adaptation mechanism is
transient, it needs to be acknowledged and care must be taken that MSC are not triggered
into a pro-fibrotic mode of action.

4. Materials and Methods
4.1. MSC and Study Design

An immortalized cell line of human adipose-derived MSC (K5 iMSC) [32] was used
for all procedures. The cells were cultured in Alpha Minimum Essential Medium Eagle
(Life Technologies, Thermo Fisher Scientific, Waltham, MA, USA), supplemented with
2.5% human platelet lysate and 1 U/mL heparin (PL BioScience GmbH, Aachen, Germany),
and 0.1% gentamycin (Lonza, Basel, Switzerland), in a humidified atmosphere with 5% CO2
and at 37 ◦C.

Five different culture surfaces were used in the cell culture model to assess matrix
modulatory MSC mechanisms: decellularized MSC-derived ECM grown on tissue culture
plastic (TCP) (ECM), decellularized MSC-derived ECM grown on Matrigel-coated TCP
(Matrigel-ECM), decellularized MSC-derived ECM grown on TCP with TGFβ1 stimulation
(TGFβ1-ECM), and Matrigel-coated TCP (Matrigel) and TCP only (TCP) as controls. First,
the MSC were used to produce the respective MSC-derived decellularized ECM culture
substrates. In the second step, the MSC were seeded and cultured on these different ECM
and control surfaces, after which the MSC and their supernatants and ECM were analyzed
for possible differences in matrix modulatory activity and ECM composition, respectively.

4.2. Preparation and Evaluation of Cell Culture Substrates

First, part of the TCP dishes were coated with Matrigel (BD Matrigel™ Basement
Membrane Matrix; BD BioSciences, Bedford, MA, USA) diluted 1:50 in standard culture
medium and working on ice, according to the manufacturer’s instructions. Next, to prepare
the MSC-derived ECM, MSC were seeded in standard culture medium at a density of
3000 cells/cm2 either on the Matrigel-coated dishes or on TCP dishes. TGFβ1 stimulation
was performed by adding 10 ng/mL recombinant human TGFβ1 (catalogue number 240-B;
R&D Systems, Minneapolis, MN, USA) to the culture medium. After 3 days, all MSC
cultures were decellularized by rinsing the dishes with 0.1 M NH4OH and 0.5% Triton
X-100 (Sigma Aldrich, St. Louis, MO, USA) in phosphate-buffered saline (PBS) for 3 s. The
dishes with the resulting MSC-derived ECM were then left open to dry for 1 h at room
temperature, rinsed with PBS, dried again for 1 h, and covered and stored overnight at
4 ◦C until being used in the cell culture experiments.
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Additional dishes equally prepared with ECM substrates were fixed with 4% paraformalde-
hyde and analyzed by histochemical staining and light microscopy. Alcian blue staining was
used to evaluate glycosaminoglycans and picrosirius red staining to evaluate collagen deposition.

4.3. MSC Culture Experiments

MSC were seeded on the different surfaces (TCP, Matrigel, ECM, Matrigel-ECM,
TGFβ1-ECM) at a density of 6000 cells/cm2 and incubated at standard culture condi-
tions as described above. Non-seeded cell culture substrates were incubated accordingly.
After 2 days, MSC were analyzed regarding cell viability, fixed for (immuno)fluorescent
stainings, and harvested for qRT-PCR gene expression analysis. Furthermore, the super-
natants were collected for MMP activity analysis and zymography. Independent experi-
ments were reproduced on different days (at least n = 4).

4.4. Cell Viability Assay

The viability of the cells cultured on the different substrates was measured using
the colorimetric CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega,
Mannheim, Germany). The assay procedure was performed as recommended by the manu-
facturer, and absorption was measured at 490 nm using an Infinite M1000 plate reader (Tecan,
Maennedorf, Switzerland). Background correction was performed based on the absorbance
values from corresponding non-seeded substrates that had been incubated accordingly.

4.5. (Immuno-)Fluorescence Staining

The cell surface molecules CD29 (integrin-β1) and CD44 (homing cell adhesion
molecule) as well as the actin cytoskeleton were stained for fluorescence microscopy. For
CD44 and phalloidin staining of the actin fibers, samples were fixed in 4% paraformalde-
hyde; for CD29 staining, they were fixed in methanol. Unspecific binding sites were
blocked with 10% fetal bovine serum for 30 min and primary antibodies (mouse anti-human
integrin-β1 antibody (clone P5D2, diluted 1:100; Abcam, Cambridge, UK) and rat anti-
mouse/human CD44 antibody (clone IM7, diluted 1:100; Biolegend, San Diego, CA, USA)
were then added for 1 h at room temperature. Samples were washed with PBS three
times and blocked with 5% rabbit serum for 30 min before incubation with the secondary
antibodies (Alexa Fluor™ 488 F(ab’)2 fragment of rabbit anti-mouse IgG (H + L) or Alexa
Fluor™ 488 rabbit anti-rat IgG (H + L) (diluted 1:100; Invitrogen, ThermoFisher Scientific,
Waltham, MA, USA) for 30 min at room temperature. Tetramethylrhodamine (TRITC)
phalloidin (Invitrogen, ThermoFisher Scientific) staining was performed at a concentration
of 200 units/mL for 30 min. All samples were counterstained with DAPI (4′,6-Diamidine-
2′-phenylindole dihydrochloride (Sigma-Aldrich), diluted 1:1000, for 10 min. Microscopy
was performed using a Leica DM IL LED microscope and the imaging software LAS X V4.6
(Leica Microsystems, Wetzlar, Germany).

4.6. Real Time RT-PCR

The relative expression of genes encoding for matrix-modulating enzymes, MMP1,
MMP3, MMP14, TIMP1 and TIMP2, and for matrix components (collagen 1A2 (COL1A2),
collagen 3A1 (COL3A1), decorin (DCN), and tenascin-C (TNC) were analyzed by real time
RT-PCR. Briefly, mRNA was isolated using the RNeasy® Mini Kit with on-column DNase
digestion (Qiagen, Hilden, Germany). RNA was converted to first strand cDNA using
Reverse Transcriptase RevertAid H Minus (ThermoFisher Scientific). Next, cDNA was
mixed with the respective primers (Table 1) and iQ™ SYBR Green Supermix (Bio-Rad
Laboratories, Hercules, CA, USA). Relative quantification of cDNA was performed using
an Applied Biosystems™ 7500 Real Time PCR System, and gene expression ratios were
calculated according to the Pfaffl method.
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Table 1. Primers used for real time RT-PCR.

Gene Primer Sequences Accession
Number

PCR
Product

GAPDH CCACTCCTCCACCTTTGACG
CCCTGTTGCTGTAGCCAAATTC NM_002046.7 101 bp

COL1A2 CAAGGACAAGAAACACGTCTGG
CAAGGACAAGAAACACGTCTGG NM_000089.4 101 bp

COL3A1 TGAATATCGAACACGCAAGGC
AAAGCAAACAGGGCCAACG NM_000090.4 109 bp

DCN GGAGATACAGCCATCCACCTTC
CCAGGTTATAAAAATGAGGGCTTTC NM_001920.5 102 bp

TNC CTCTGGAAGACACCGTTGGC
GAAGTGGTGTTTCTTGGAAGCTG NM_002160.4 101 bp

MMP1 CACAGCTTCCCAGCGACTCT
TTCAGCATCTGGTTTCCCAGT NM_002421.4 195 bp

MMP3 CCCGAGGTTGGACCTACAAG
ATAGGCTGAGCAAACTGCCA NM_002422.4 132 bp

MMP14 GGCGGGTGAGGAATAACCAA
ACGCCTCATCAAACACCCAA NM_004995.4 156 bp

TIMP1 GCTGGAAAACTGCAGGATGG
TCCGTCCACAAGCAATGAGT NM_003254.3 191 bp

TIMP2 TCCAAAGCCACCTTAGCCTG
GTACAGCATGAAAACGCCCG NM_003255.5 196 bp

4.7. MMP Activity Assay and Zymography

The supernatants were analyzed using a fluorometric total MMP activity assay (cat-
alogue number ab112146; Abcam, Cambridge, UK). The procedures were performed as
recommended by the manufacturer, with 3 h incubation time for MMP activation, thereby
focusing on the collagenase MMP1. Fluorescence was measured at Ex/Em 490/525 nm
on the Tecan Infinite M1000 plate reader, and data from corresponding samples incubated
without MSC were used for background correction.

To further analyze the MMP, supernatant samples from 4 independent replicates
were lyophilized and subjected to zymography. The running gel was prepared with
375 mM Tris–Cl (pH 8.8), 10% acrylamide/bis-acrylamide, 0.1% gelatin, 0.1% SDS, 0.1% am-
monium persulphate, and 0.05% TEMED. The stacking gel was composed of 125 mM Tris–Cl
(pH 6.8), 3% acrylamide/bis-acrylamide, 0.1% SDS, 0.1% ammonium persulphate, and
0.05% TEMED. Samples were dissolved in Laemmli buffer under non-reducing conditions
and electrophoresis was performed in a Tris–glycine buffer (25 mM Tris, 192 mM glycine,
0.1% SDS) at 150 V for 75 min. The gels were washed in washing buffer (2.5% Triton-X,
50 mM Tris-HCl (pH 7.5), 5 mM CaCl2, 1 µM ZnCl2) twice for 30 min, then they were incu-
bated in digestion buffer (1% Triton-X, 50 mM Tris-HCl (pH 7.5), 5 mM CaCl2, 1 µM ZnCl2)
for an initial 10 min and after repeated buffer feed for 24 h at room temperature, at slow
movement on a rocker. Staining was performed for at least 30 min with a staining solu-
tion composed of 0.02% coomassie brilliant blue (CBB-G250), 5% Al2(SO4)3, 10% Ethanol,
and 2% H3PO4 (85%). Reagents were purchased from Sigma Aldrich at the highest
available purities.

4.8. Statistical Analysis

Mean values from technical replicates were calculated for each independent ex-
periment. Statistical analysis was performed with SPSS Statistics 28 software (IBM,
New York, NY, USA). First, differences between all groups were analyzed using Fried-
man tests. In case of significance (p ≤ 0.05), pairwise post hoc tests were included and
the p value considered as significant was Bonferroni-corrected based on the number of
relevant comparisons (TCP vs. all groups, Matrigel vs. Matrigel-ECM, ECM vs. Matrigel-
ECM and TGFβ1-ECM) (p ≤ 0.007).
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5. Conclusions

We here present the first study on matrix remodeling as potential MSC mode of action
in ECM disease, using a novel human in vitro model for physiological and pathologically
altered ECM. Our data showed that as hypothesized, the matrix modulatory behavior of
MSC depends on the condition of their respective ECM environment, and that the activity
of MMP released by the MSC is reduced in fibrosis-like conditions. Our data therefore
suggested that maladaptations of the MSC have to be expected when MSC are directly
transplanted into fibrotic tissues or organs, which could decrease the therapeutic efficacy
or even reverse the anticipated beneficial effects of MSC.
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