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Summary 

Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease affecting 

the pulmonary arteries. The hallmark of IPAH is excessive vascular remodelling of the 

pulmonary arteries, a well coordinated process, where all cell types of the vessel wall 

participate. The discovery that mutations in the gene coding for the bone morphogenetic 

protein receptor type 2 (bmpr2) as well as for the activin receptor-like kinase 1 (alk1), 

both members of the transforming growth factor (TGF)-� receptor superfamily, in 

familial (IPAH) and secondary (SPAH) pulmonary arterial hypertension, respectively, 

suggest that the TGF-� signalling cascade is important for the maintenance of the 

pulmonary vascular homeostasis and disease development. Hence, the aim of this study 

was to elucidate the role of the TGF-� signalling cascade in the development of IPAH 

focusing on two aspects. First, the proliferation, migration and adhesion of pulmonary 

arterial smooth muscle cells and second the extracellular matrix deposition. 

Differential expression analysis between donor and IPAH lung homogenates revealed 

that the plasminogen activator inhibitor type I (PAI-1), a TGF-�1 target gene, is 

significantly downregulated in IPAH lung homogenates, both on the mRNA and protein 

levels. Further in vitro experiments revealed that PAI-1 regulates PASMC proliferation, 

migration and adhesion and, therefore, could be a potential regulator of vascular 

remodelling in IPAH. Furthermore, the deposition of hyaluronic acid (HA), which is an 

important component of the lung extracellular matrix, is greatly increased in IPAH lungs 

compared to donors, due to increased levels of hyaluronan synthase 1 (HAS1), which is 

responsible for HA synthesis, and decreased levels of hyaluronoglucosamininidase 1 

(HYAL1), which degrades HA. In vitro experiments in PASMC revealed that TGF-�1 

controls the levels of HA by regulating HAS1 expression levels.  

In summary, TGF-�1 is a potent regulator of vascular remodelling contributing to IPAH, 

by controlling the levels of PAI-1 and HA.
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Zusammenfassung 

Die idiopatische pulmonale arterielle Hypertonie (IPAH) ist eine seltene, aber tödlich 

verlaufende Erkrakung der kleinen pulmonalen Arterien. Kennzeichnend f�r diese 

Erkrankung ist der verstärkte vaskuläre Umbau der Pulmonalarterien, an dem alle 

Zelltypen der Gefä�wand beteiligt sind. Die Entdeckung von Mutationen in den Genen 

des “bone morphogenetic protein” Rezeptors Typ 2 (bmpr2)” sowie des “activin 

receptor-like kinase 1 (alk1)” Rezeptors, beides Mitglieder der TGF-�1 Superfamilie, 

deutet darauf hin das die Signalkaskade von TGF-�1 eine wichtige Rolle in der 

Aufrechterhaltung der Gefä�-Homöostase und in der Entstehung der Erkrankung spielt. 

Das Ziel dieser Studie war es die exakte Rolle des TGF-�1 Signalweges in der 

Entwicklung von IPAH mit dem besonderen Fokus auf der Adhäsion, Proliferation und 

Migration von pulmonalen arteriellen glatten Muskelzellen (PASMC) sowie dem 

Prozess der Ablagerung von extrazellulärer Matrix zu untersuchen. 

Differentielle Expressionsanalyse von Homogenaten von Spender- und IPAH-Lungen 

zeigte, dass der Plasminogen Aktivator Inhibitor Type I (PAI-1), ein TGF-�1 Zielgen, 

in IPAH-Lungen auf der m-RNA-Ebene sowie der Proteinebene signifikant 

herunterreguliert ist. 

Weitere in vitro Experimente demonstrierten das PAI-1 die Adhäsion, Proliferation und 

Migration von PASMC reguliert und daher eine potentieller Regulator der 

Gefä�veränderungen in IPAH sein könnte. 

Weiterhin war die Ablagerung von Hyaluronsäure (HA), einem wichtigen Bestandteil 

der extrazellulären Matrix der Lunge, in Lungen von IPAH Patienten im Vergleich zu 

Spenderlungen beträchtlich Erhöht, und zwar durch erhöhte Level an Hyaluronsäure 

Synthetase 1 (HAS1), welche HA synthetisiert, und die gleichzeitige, reduzierte 

Expression der Hyaluronoglucosaminidase 1 (HYAL1), die für den Abbau von HA 

verantworltlich ist. In in vitro Experimenten mit PASMC konnte gezeigt werden, das 

TGF-�1 die Synthese und den Abbau von HA durch die Regulation von HAS1 und 

HYAL1 kontrolliert. 

Zusammengefasst zeit die vorliegende Studie, dass TGF-�1�ber die Kontrolle der 

Level von PAI-1 und HA einen wichtigen Regulator, der Gefä�wandumwandlung im 

Rahmen der Entstehung einer IPAH darstellt.  
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1. Introduction 

1.1 The pulmonary vascular system 

The lung is the vital organ where blood oxygenation and release of carbon dioxide 

occurs. The blood supply in the lung divides into the pulmonary and bronchial 

circulation. The pulmonary circulation carries deoxygenated blood from the right 

ventricle and is responsible for gas exchange at the alveolo-capillary level. The 

bronchial circulation, in contrast, is responsible for the maintenance of the gas 

exchanging units and the conducting airways of the lung, by providing oxygenated 

blood pumped from the left ventricle.  

The pulmonary circulation is a high flow, low pressure system, with properties distinct 

from that of the systemic circulation. The pulmonary vasculature of adults consists of 

large arteries, which branch out to smaller diameter vessels, with capillaries being the 

smallest vessel unit (Stevens, Phan et al. 2008).  

 

 

 

Figure 1: The pulmonary circulation. This is a schematic representation of the pulmonary 
circulation, demonstrating how the pulmonary arteries and veins run in parallel with the bronchiole, and 
then branch out to the capillary beds (virtualmedicalcentre 2006). 
 
The pulmonary circulation starts with the pulmonary artery dividing and entering each 

lung at the hilum, adjacent to the bronchus. The axial arteries travel adjacent to the 
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bronchus, although there is greater number of arteries in comparison to bronchi. The 

distinct feature of the pulmonary circulation, compared to the systemic circulation, is 

the branching into precapillary arteries, which form a diffuse network of capillaries, 

where gas exchange takes place, and which later drain into postcapillary veins. The 

pulmonary vein will finally carry the oxygenated blood to the left atrium and ventricle 

of the heart and then to the rest of the body via the aorta. In the pulmonary circulation, 

it is the pulmonary artery that carries deoxygenated blood and the vein the oxygenated 

blood, in opposition to the systemic circulation. A further vital and distinct feature of 

the pulmonary vasculature is the ability to detect the less ventilated and oxygenated 

areas in the lung, which orientates blood flow to the better ventilated areas. 

1.2 Structure of pulmonary arteries 

The size and cell types of the pulmonary arteries depend on their location in the 

vascular tree. As the blood flows from the right ventricle and back to the left atrium it 

runs through different sizes of pulmonary arteries, such as large elastic pulmonary 

arteries, smaller muscular pulmonary arteries, precapillary vessels and finally 

capillaries. Each of these vessel types has a different structure, and serves a different 

goal.  The large pulmonary arteries are composed of several layers of elastic lamina 

separated by endothelial and smooth muscle cells, fibroblasts and extracellular matrix. 

Elastic laminae are present in vessels of 1000 �m in diameter. Muscular arteries 

appear next in the vessel tree, which are composed of three different cell types, each 

with its own distinct function and characteristics. The endothelial cells line the inner 

surface of the vessel and are in contact with the blood.  

 

Figure 2: Cross section of a pulmonary artery. This is a schematic representation of a 
pulmonary muscularised artery, consisting of three cell layers. EC: endothelial cells, PASMC: 
pulmonary arterial smooth muscle cells, FIB: adventitial fibroblasts, EL: elastic lamina, CT: connective 
tissue. 
 

PASMC 

FIB CT 

EC 

EL 
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The smooth muscle cells, which are localised in the medial layer of the vessel and the 

adventitial fibroblasts, which are found in the outer layer of the vessel. 

The precapillary vessels are composed of an endothelial cell layer surrounded by a 

basement membrane and pericytes, which serve multiple functions, such as the 

maintenance of the vessel wall. For example, upon injury of the vessel wall, pericytes 

transdifferentiate, aiding the repair process. In the precapillary vessels, there is still a 

discontinuous smooth muscle cell layer, which is absent in the capillary vessels. The 

capillary vessel, the smallest unit in the pulmonary vascular tree, is composed of a thin 

endothelial cell layer (0.2-0.5 �m) surrounded by a basolateral membrane. It is at the 

capillary level that the blood oxygenation takes place. The capillaries are adjacent to 

the alveoli, from which they are separated by a thin basement layer. The maintenance 

of the blood-airway barrier is essential, and a disturbance  to this barrier leads to 

serious pathological conditions, such as acute lung injury (ALI). 

Elucidating the physiology and function of the cellular types of the vessel wall enables 

a better understanding of the maintenance of pulmonary vascular homeostasis.  

The vascular wall is a dynamic environment. Moving from the inner side of the vessel 

to the outside, the first cell type encountered are the endothelial cells, which are 

essential for angiogenic processes, regulation of the blood pressure and leukocyte 

trafficking (Augustin, Kozian et al. 1994). It is of particular interest that macrovascular 

endothelial cells differ from the microvascular endothelial cells. The former derive 

from the mesenchyme, during vasculogenesis, whereas the microvascular endothelial 

cells derive from hemangioblasts, which are known endothelial and haematopoietic 

precursor cells (Risau 1995). Macrovascular endothelial cells are very versatile, and 

are known to regulate blood pressure, by controlling the levels of vasoconstrictors and 

vasodilators in the circulation. The microvascular endothelial cells, in contrast, 

participate only in the blood-alveoli interaction, and the exchange of nutrients and 

oxygen (Eichmann, Corbel et al. 1997).  

Genes that are known to regulate endothelial cell function, and in particular 

vasculogenesis and angiogenesis, are for example, the vascular endothelial growth 

factor (VEGF) and the vascular endothelial growth factor receptor 2 (VEGF-R2) 

(Ferrara and Henzel 1989; Leung, Cachianes et al. 1989; Carmeliet, Ferreira et al. 

1996). In addition, the angiopoietin1,2/Tie-2 system is known to regulate vessel 

maturation (Fong, Rossant et al. 1995; Hanahan and Folkman 1996). It is note worthy 

that endothelial cells belong to the category of slow replicating cells, and therefore are 
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generally found in a quiescent state. Below the endothelial cell layer lies the basement 

membrane, which plays an important role in separating the endothelium from the 

medial layer of the vessel, regulating the presence of different growth factors in close 

proximity to the endothelium, as well as maintaining the differentiation state of the 

endothelium.  

The medial layer is composed of smooth muscle cells, which have mesenchymal origin 

and constitute not only the vessel wall, but also the wall of trachea, bronchioles and 

intestines (Owens 1995). Their ability to contract, due to intracellular cytoskeletal 

structures, makes them a specialised cell type, responsible for the regulation of the 

vascular tone. It has been observed that smooth muscle cells in culture loose their 

ability to contract, but they are still capable of proliferating and synthesising 

components of the extracellular matrix (ECM) (Owens, Kumar et al. 2004). In humans, 

the medial layer of large pulmonary as well as systemic arteries contains different 

populations of smooth muscle cells, each with a different function, as is evident from 

studies on ion channels, proliferation and ECM deposition under differential stress 

conditions (Archer 1996; Durmowicz, Frid et al. 1996; Frid, Aldashev et al. 1997; 

Platoshyn, Remillard et al. 2004; Archer 2005). During the development of vascular 

disease, the smooth muscle cells which are less differentiated are those that undergo 

enhanced proliferation (Frid, Dempsey et al. 1997). The name “smooth” comes from 

the inability to distinguish any contractile structure under a light microscope. Several 

specific markers exist for smooth muscle cells, such as � smooth muscle actin 

(�SMA), transgelin (or SM22�), calponin, and smooth muscle-myosin heavy chain 

(SM-MHC). Pulmonary arterial smooth muscle cells (PASMC), apart from being 

contractile are also able to synthesise prostaglandins and a variety of cytokines and 

growth factors. Furthermore, PASMC regulate the formation of the arterial elastic 

lamina and components of the ECM, surrounding the cells in the vascular wall.  

The cells of the vessel interact in an autocrine-paracrine manner. PASMC are able to 

communicate with both endothelial cells and adventitial fibroblasts (Armulik, 

Abramsson et al. 2005). This communication is essential for vascular homeostasis 

(Stevens, Phan et al. 2008). The pulmonary endothelium, as being the major sensor 

and regulator of shear stress, generated by the blood flow, transmits any sensed 

changes to the underlying smooth muscle cell layer, leading to phenotypic and 

functional alterations. For example, under physiological conditions, endothelial cells 

synthesise and secrete nitric oxide (NO) leading to PASMC relaxation and subsequent 
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vessel dilation. In case of injury and endothelial cell damage, a series of events take 

place, which aim to repair the injury. In particular, the endothelium secretes tissue 

factor (TF) in order to initiate clot formation, and repair by activating platelets and 

induce fibrin deposition. When the injury has been repaired, fibrin plug resolution 

follows, which is effected by plasmin. Plasmin activity depends on the balance 

between plasminogen activator and plasminogen activator inhibitor type 1 (PAI-1) 

(Fay, Garg et al. 2007). 

Endothelial cells can secrete factors, such as endothelin-1 (ET-1), a potent 

vasoconstrictor causing PASMC contraction. There is also a series of growth factors 

that are known to regulate PASMC function and response to injury, such as 

transforming growth factor-�1 (TGF-�1) and platelet derived growth factor (PDGF).  

The outer layer of the vessel wall, the adventitial layer, is composed of a 

heterogeneous population of fibroblasts. In a similar manner to PASMC, adventitial 

fibroblasts regulate ECM synthesis and synthesise growth factors that regulate 

PASMC function. Although less attention has been paid to the adventitial fibroblasts 

compared to the endothelial cells and PASMC, the adventitial layer is more important 

than was originally believed. The adventitial layer takes part in sensing of tissue injury 

and environmental stresses, and responds by fibroblast activation, increase in cell 

proliferation, ECM synthesis and secretion of factors that directly regulate the vascular 

tone (Hu, Zhang et al. 2004; Short, Nemenoff et al. 2004). Evidence suggests that 

during disease development, active fibroblasts or myofibroblasts migrate to the medial 

and intimal layers, contributing to vessel thickening (Stenmark, Davie et al. 2006). 

Furthermore, it is well accepted that during vascular remodelling, the cells of the 

vessel wall obtain a more myofibroblast-like phenotype, highlighting the potential 

importance of this cell type in tissue maintenance, as well as disease development 

(Jones, Jacobson et al. 1999).  

1.3 Pulmonary arterial hypertension 

Pulmonary arterial hypertension (PAH), which was first described over 100 years ago, 

is a rare but devastating disease, with an annual incidence of one to two individuals per 

one million of population. The main pathological feature of PAH is increased 

pulmonary vascular resistance and pressure (>25 mmHg at rest or >30 mmHg during 

exercise). It usually affects young women (female to male ratio 2:1) and if untreated, it 

leads to death due to right ventricular hypertrophy, dilation and failure (Humbert and 
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Trembath 2002; Humbert, Morrell et al. 2004; Eickelberg and Seeger 2005). Current 

available therapies are inadequate for complete disease treatment. PAH can be 

classified as idiopathic (IPAH), of unknown aetiology, familial (FPAH), which is 

inherited within families; and secondary (SPAH), due to an underlying disease, such as 

connective tissue diseases, cardiac defects, viral infections, portal hypertension, use of 

anorexigens, persistent pulmonary hypertension of the newborn and thromboembolic 

pulmonary hypertension (Humbert 2008). It is well appreciated that PAH is a complex 

disorder, requiring both environmental and genetic factors for its development (Morse, 

Deng et al. 2001; Elliott 2005). 

1.4 Histopathologic features of PAH 

1.4.1 Cellular remodelling 

The pathological hallmark of PAH is excessive vascular remodelling in the small 

pulmonary arteries, which is common among the different types of PAH. The process 

of vascular remodelling is well orchestrated and results in the occlusion of small 

vessels, due to changes in the intima, medial and adventitial layers, as well as 

excessive ECM deposition. In severe PAH, formation of plexiform lesions occur, 

which is a unique feature of the pulmonary vascular tree (Olschewski, Rose et al. 

2001). 

The process of vascular remodelling is complex, and its nature is dependent upon the 

size of pulmonary vessel. A large pulmonary vessel, for example, undergoes different 

changes than does a smaller muscular artery or a capillary.  

In more detail, the elastic and muscular arteries undergo medial hypertrophy and 

hyperplasia, which results in an increase in both the size and number of the PASMC, 

respectively. 
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Figure 3: Alterations in the vessel wall in PAH. The process of vascular remodelling 
occurring during PAH development is complex. Major features are the increased pulmonary vascular 
smooth muscle (PASMC) and endothelial cell (EC) proliferation, migration as well as ECM deposition. 
 

Furthermore, these cells undergo phenotypic changes that allow them to extend to the 

precapillary arteries, which are normally semi- or non-muscular. Medial thickening is 

usually followed by intimal thickening. Different patterns of intimal thickening have 

been observed. Concentric laminar fibrosis has characteristic “onion skin-like” layers 

of fibroblasts, myofibroblasts, and smooth muscle cells as well as acellular connective 

tissue. Other forms include the eccentric and concentric intimal thickening, where 

fibroblasts and connective tissue, which can, either localise to one part of the vessel or 

obliterate the entire lumen. Adventitial thickening due to uncontrolled fibroblast 

proliferation, is also observed, usually in pulmonary hypertension of the newborn 

(Olschewski, Rose et al. 2001).  

Focusing on the pre-capillary arteries, apart from the migrating smooth muscle cells 

there is evidence that their muscularisation occurs after differentiation of the 

surrounding pericytes (Yamagishi and Imaizumi 2005), deposition of circulating 

fibrocytes (Metz 2003) or even differentiation of endothelial cells to mesenchymal 

cells (EMT) (Arciniegas, Neves et al. 2005). Fibrocytes are a subpopulation of 

circulating leukocytes (CD45+, CD11b+) that are recruited to the injured area and take 

on a mesenchymal phenotype (expressing �SMA and collagen) and function as 

myofibroblasts (Frid, Brunetti et al. 2006). Hypoxia is a known stress factor inducing 
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fibrocyte recruitment in the pulmonary vessels (Davie, Crossno et al. 2004). It is 

thought that fibrocytes also contribute in other fibroproliferative diseases of the lung, 

such as idiopathic pulmonary fibrosis (Phillips, Burdick et al. 2004).  

 

Figure 4: Pulmonary vascular remodelling. Photomicrographs illustrating lung sections 
derived from (A) a control subject and (B) a patient with IPAH stained for �SMA, a marker of 
pulmonary arterial smooth muscle cells. 
 
Plexiform lesions, composed of proliferating endothelial cells and PASMC as well as 

myofibroblasts and ECM, are observed in severe PAH. The plexiform lesion usually 

arises at a vessel branch. The lumen of the lesion is replaced by vascular channels. The 

lesion can extend to the adventitial layer after destruction of the medial layer. It is now 

clear that some of the plexiform lesions arise from clonal expansion of endothelial 

cells that escape apoptosis.  

Thus, it is clear than disturbances in the regulation of cellular processes, such as 

proliferation, and migration are important for the development of pulmonary vascular 

remodelling. 

1.4.2 Extracellular remodelling 

The activation of PASMC and fibroblasts leading to the deposition of ECM, which 

increases pulmonary vessel wall striffness (Rabinovitch 2001; Hassoun 2005), is an 

important process taking place during vessel remodelling. In general, the ECM is 

composed of collagens, fibronectin, vitronectin, proteoglycans and 

glucosaminoglycans (Bosman and Stamenkovic 2003). In the lung, the ECM is subject 

to 10% daily turnover, thus, any alterations in the turnover time could induce great 

changes (McAnulty and Laurent 1987). Important ECM components as well are the 

glucosaminoglycans or GAGs, which are long, linear and negatively-charged 

polysaccharide molecules composed of disaccharide repeating units. The repeating unit 

is made of uronic acid (D-glucoronic acid, L-iduronic acid) and an amino sugar (D-

(A) (B) 
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galactosamine, D-glucosamine). They can be classified as sulfated, such as chondroitin 

sulfate, dermatan sulfate, keratan sulfate, heparin and heparan sulfate, or non-sulfated, 

such as hyaluronic acid (HA). With the only exception of HA, the rest of GAGs are 

covalently bound to proteins, giving rise to proteoglycans. The GAGs are known to 

participate and regulate several processes, such as vascular smooth muscle cell 

differentiation (Papakonstantinou, Karakiulakis et al. 2000; Papakonstantinou, Roth et 

al. 2001; Jiang, Liang et al. 2005), as well as cell proliferation, migration and plasticity 

(Papakonstantinou, Roth et al. 1998; Lee and Spicer 2000; Toole 2004). One member 

of the GAG family is the HA, which is a component of basement membranes and 

constitutes approximately 10% of all proteoglycans (Hance and Crystal 1975). The HA 

is synthesised by three hyaluonan synthases (HAS1-3), which have distinct properties, 

and which synthesise HA of different molecular mass (Itano, Sawai et al. 1999). After 

synthesis at the inner side of the cellular plasma membrane, HA is released into the 

extracellular space through pore-like structures. Furthermore, HA is degraded by four 

hyaluronoglucosaminidases (HYAL1-4), with HYAL1 having the highest activity 

(Csoka, Frost et al. 1997) 

Hence it is evident that an uncontrolled regulation of ECM synthesis is another key 

mechanism in the process of pulmonary vascular remodelling. 

1.5 Pathomechanisms of IPAH 

The pathogenesis of PAH remains unknown, however, many advances have occurred 

the past years regarding its better understanding and treatment. Pulmonary arterial 

hypertension, as a multifactorial disease, requires more than one genetic and 

environmental factor to lead to the observed pulmonary vascular wall changes, such as 

vasoconstriction and increased cell proliferation. It is considered that an initial 

endothelial cell dysfunction triggers an imbalance between vasoconstrictors and 

vasodilators, which further leads to an imbalance between growth inhibitors and 

mitogenic growth factors, causing unrestricted proliferation and ECM deposition by 

the underlying PASMC and adventitial fibroblasts (Farber and Loscalzo 2004).  

1.5.1 Vasodilators: nitric oxide and prostacyclins 

Vasodilators, such as NO and prostacyclins, lead to vessel dilation. Nitric oxide is a 

potent vasodilator. It is synthesised by endothelial cells of the vessel wall, by 

endothelial NO synthase (eNOS). Nitric oxide exerts its vasodilating effects on the 
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underlying vascular smooth muscle cells by increasing the levels of cyclic guanosine 

monophosphate (cGMP). Apart from its vasodilating effects, NO acts as an 

anticoagulant agent as well, it inhibits the adhesion of platelets on the vessel wall and 

thrombi formation. Furthermore, NO has been shown to regulate the proliferation of 

PASMC. Overexpression of NO in transgenic mice inhibits hypoxia-induced 

pulmonary hypertension (PH) (Chatterjee and Catravas 2008). In addition, 

prostacyclins are metabolites of arachidonic acid and are synthesised by pulmonary 

endothelial cells. Prostacyclin acts on adenylate cyclase that induces the synthesis of 

cyclic adenosine monophosphate (cAMP) and thus PASMC relaxation. Prostacyclin, 

like NO, has anticoagulant properties and inhibits smooth muscle cell proliferation. 

Administration of prostacyclin has also been used as a therapeutic option in patients 

with PAH (Aguilar and Farber 2000; Olschewski, Ghofrani et al. 2000; Wensel, Opitz 

et al. 2000).  

1.5.2 Vasoconstrictors: endothelin-1, thromboxane and serotonin  

Endothelin-1 (ET-1) is a potent vasoconstrictor. Endothelin-1 is highly expressed in 

the lung, and is synthesised by endothelial, smooth muscle and airway epithelial cells. 

It induces effects by binding to two types of receptors (ETA, ETB) on PASMC 

(Hassoun, Thappa et al. 1992). Thromboxane A2 is another arachidonic acid 

metabolite, synthesised by pulmonary endothelial cells and platelets, and apart from 

vasoconstriction, it induces platelet aggregation as well as PASMC proliferation 

(Fischer, Honemann et al. 2000). In addition, serotonin (5-HT), another 

vasoconstrictor, (Marcos, Fadel et al. 2004) exhibits elevated levels in the serum of 

patients with PAH, which remain high even after heart-lung transplant, suggesting that 

the increased levels of serotonin are a primary rather than a secondary effect. 

Interestingly, in the 1960s, it was documented that cases of PAH, which developed in 

France after aminorex use, which is an anorexigen, was due to increased serotonin 

levels. Furthermore, mutations in the serotonin transporter (5HHT) and the serotonin 

receptor were identified in patients with idiopathic and secondary PAH (Launay, 

Herve et al. 2002). Furthermore, 5HHT inhibition reversed monocrotaline-induced PH 

in rats (Guignabert, Raffestin et al. 2005) 
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1.6 Genetics of PAH 

The discovery of mutations in the bone morphogenetic protein receptor type 2 (bmpr2) 

gene in 60-70% of patients with FPAH, which account for about 6-7% of total PAH 

cases, and in a significant number (20%) of the sporadic cases, by linkage analysis, 

was pivotal for the further understanding of the disease pathogenesis (Deng, Morse et 

al. 2000; Lane, Machado et al. 2000; Thomson, Machado et al. 2000; Machado, 

Pauciulo et al. 2001). It is now known that more than 100 different mutations have 

been identified in patients, causing a reduction in the bmpr2 gene expression levels as 

well as alterations in BMPR2 function (Morrell 2006). Even in the absence of 

mutations in the bmpr2 gene, there are decreased expression levels in PAH patients. 

The bmpr2 gene is a member of the TGF-� receptor superfamily and it regulates 

several different cellular processes, including cellular proliferation, differentiation and 

apoptosis (Zhang, Fantozzi et al. 2003; Tada, Majka et al. 2007). It was early 

recognised that the penetrance of these mutations was relatively low (about 20%), 

explaining why only a few of the carriers of the bmpr2 mutations will indeed develop 

PAH. The low penetrance of the mutations in the bmpr2 gene implies that other 

modifier genes are also involved in this process. In addition, there is genetic 

anticipation, meaning that each successive generation inheriting the mutations, will 

develop the disease at a younger age and in more severe form.   

Apart from the bmpr2 gene, mutations in the activin receptor-like kinase 1 (alk1) gene 

also member of the TGF-� receptor superfamily, were also found in patients with 

SPAH (due to haemorrhagic telangiectasia) (Trembath, Thomson et al. 2001). This 

provides further evidence that the TGF-�/BMP signalling cascade is involved in the 

process of pulmonary vascular homeostasis and disease development.  

1.7 Bone morphogenetic protein receptor type II 

The bone morphogenetic protein receptor type II is a member TGF-� receptor 

superfamily. The bmpr2 gene is composed of 13 exons, where exon 12 is the largest. 

The BMPR2 protein contains an extracellular domain, which is responsible for the 

ligand binding, a small transmembrane part, and a cytoplasmatic kinase domain. 

Unlike the rest of the type II receptors of the TGF-� superfamily, the BMPR2 protein 

has a long cytoplasmatic extension, which is responsible for intracellular signalling. 
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Figure 5: The bmpr2 gene. Schematic representation of the different domains of the BMPR2 
protein as well as the location of the described mutations (Bobik 2006). 
 

Mutations in the whole length of the bmpr2 gene have been identified in familial and 

idiopathic cases of PAH leading to perturbations to the BMP signalling cascade, which 

is initiated by bone morphogenetic proteins (BMP) such as, BMP2,4 and 7 (Bobik 

2006). Seventy percent of these mutations are frame-shift and nonsense mutations 

leading to nonsense mediated mRNA decay, and thus BMPR II haploinsufficiency. 

The remaining 30% of the mutations are missense mutations in conserved amino acids 

in the kinase domain or the extracellular ligand binding domain, affecting the receptor 

function (Machado, Aldred et al. 2006). 

1.8 Experimental models of PAH 

The existence of experimental animal models for PH is essential since they provide 

further insight into the disease pathogenesis and allow the development of novel 

strategies for the treatment. The best described and more frequently used are the 

hypoxia-induced PH in rodents (mouse and rat), as well as the monocrotaline-induced 

PH in the rat. These models have different origins of PH development and different 

manifestations of the disease. 

1.8.1 Hypoxia-induced PH 

In this model, the mice or rats are placed in hypoxic chambers, with the oxygen levels 

varying from 1-8% for up to four weeks. During this time, they develop pulmonary 

hypertension as evident from haemodynamic data. Vascular remodelling is observed as 
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thickning of the vessel wall, mainly due to uncontrolled proliferation of the PASMC, 

as well as muscularisation of non-muscular small arteries. The vascular remodelling is 

reversible and is mainly due to medial thickness in the mouse and moderate intimal 

thickness in the rat, and there is absence of plexiform lesion formation, which is 

usually found in severe cases of human PAH (Stenmark, Fagan et al. 2006).  

1.8.2 Monocrotaline-induced PH 

This model differs from the hypoxia-induced PH model in that healthy rats are 

subcutaneously or intraperitoneily injected with the alkaloid monocrotaline, which is 

derived from plants that belong to the Crotalaria genus (Lame, Jones et al. 2000). 

Monocrotaline, after activation in the liver to monocrotaline pyrrole, causes PH in four 

weeks, and the mechanism of action has been suggested to be an initial damage to the 

pulmonary endothelial cells, leading to remodelling in the pulmonary arterioles. It is 

clear that rats, four weeks post-monocrotaline administration, are unable to recover 

and die. It is thought that the remodelling observed after monocrotaline treatment is 

stronger than that observed after hypoxia treatment.  

1.8.3 Transgenic mice 

 Since the discovery of bmpr2 mutations in familial and sporadic cases of PAH, efforts 

were made focusing on the induction of PAH after deletion of the bmpr2 gene using 

transgenic mice. The bmpr2 -/- mice die very early, before gastrulation. The bmpr2 +/- 

mice are viable, and develop normally, without any pulmonary pathological features.  

Further research lead to the creation of a conditional, tissue specific bmpr2 transgenic 

mouse, the SM22-tet-BMPR2delx+4, which would conditionally express a dominant-

negative form of the bmpr2 gene in the vasculature. The dominant-negative form of 

the bmpr2 gene arises from a mutation found in the kinase domain of the receptor, 

which was originally identified in patients with the familial form of PAH. These 

conditional transgenic mice demonstrated features of PH, such as increased pulmonary 

arterial pressure, and arterial muscularisation. There was absence of plexiform lesions, 

as in the monocrotaline and hypoxia models described above (West, Fagan et al. 2004; 

West, Tada et al. 2005). 
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1.9 The TGF-�/BMP signalling pathway 

Upon binding of the TGF-�/BMP ligand to the type II or type I receptor (depending on 

the ligand), there is formation of a heterotetrameric complex, consisting of type I and 

type II receptor homodimers. The type II receptor activates the type I receptor by 

phosphorylation at specific serine residues at the glycine-serine rich domain, which is 

located upstream of the kinase domain. The activated type I receptor is essential for the 

initiation of the intracellular signaling cascade, since it will activate, by 

phosphorylation, the effector molecules called Smads. There are three different classes 

of Smad molecules. The receptor Smad or R-Smad, such as Smad 1, 2, 3, 5, 8, the 

common mediator Smad, such as Smad 4 and the inhibitory Smads, Smad 6 and 7. It is 

of particular interest the role of the TGF-� in the development of PAH (Eickelberg and 

Morty 2007). Although two members of the TGF-� receptor superfamily have been 

involved in the PAH pathogenesis the actual contribution of the TGF-�/Smad 

signalling is not fully elucidated. 

Figure 6: The TGF-�/BMP signalling cascade. Upon binding of the TGF-�/BMP ligand to 
the type II and type I receptors there is initiation of the intracellular signalling cascade. The type I 
receptor activates the receptor mediated Smads (1,2,3,5,8) by phosphorylation, which together with 
Smad4 translocate to the nucleus to regulate gene expression. Apart from the Smad canonical signalling 
other pathways can be activated by TGF-�/BMP, such as the p38 mitogen-activated protein kinase 
(MAPK), the extracellular signal-regulated kinase (ERK) and the C-Jun-N-terminal kinase (JNK). 
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1.9.1 TGF-� ligands 

There are three TGF-� isoforms, TGF-�1, 2 and 3, which are abundantly expressed in 

the vascular cells, such as endothelial and smooth muscle cells, but also in 

macrophages and lymphocytes. The TGF-� ligands are synthesised as inactive 

homodimers, which are covalently linked to the latency associated protein (LAP). 

Inactive TGF-� can be cleaved to its active form, by several different molecules, such 

as plasmin, plasminogen activator receptor, thrombospondin and furin-like proprotein 

convertases. After its activation, TGF-� remains non-covalently bound to the LAP, 

forming the small latent complex (SLC). In most cases, however, TGF-� is found in 

the large latent complex (LLC). This is formed by the creation of a disulfide bond 

between the SLC and a member of the latent TGF-�-binding proteins (LTBP) within 

secretory vessels. In this form, TGF-� cannot be recognised by the TGF-� receptors on 

the plasma membrane, therefore TGF-� must dissociate from the SLC or the LLC. 

There are different mechanisms regulating this process, such as proteolytic cleavage by 

MMPs, plasmin, thrombin, elastase, and recently integrins were reported to activate 

latent TGF-� (Koli, Saharinen et al. 2001).      

1.9.2 TGF-� receptors  

After TGF-� activation, ligand binding to the TGF-� receptors, on the plasma 

membrane, induces TGF-� signals.  The TGF-� ligands bind the type II receptor 

leading to the initiation of the intracellular pathway. Essential for triggering the 

intracellular signalling is the type I receptor, which is activated by the type II receptor. 

There are two types of type I receptors, ALK1 and ALK5, activated by the TGF-� 

ligands. The ALK5 receptor is abundantly expressed, whereas ALK1 is reported to be 

present only on endothelial cells. In endothelial cells, TGF-� can exert different effects 

depending on which type 1 receptor is activated. For example, ALK1-dependent 

signalling in endothelial cells induces cell proliferation and angiogenesis, while ALK5 

signalling in the same cell type promotes quiescence. Apart from the type I and type II 

receptors there is a class of type III accessory receptors tha facilitate the TGF-� 

signalling, such as betaglycan and endoglin (Goumans, Liu et al. 2009). 



Introduction 

16 

1.10 TGF-� in PAH 

The role of TGF-� in vascular development and remodelling is controversial, due to 

the diversity of growth factors and receptors triggering opposite effects on different 

cell types. The TGF-� superfamily is composed of more than thirty growth factors, 

among these, the prototype TGF-�s, bone morphogenetic proteins, activins, growth 

differentiation factors (GDF) and inhibins have critical roles in development and 

homeostasis. The existence of two classes of transmembrane serine/threonine kinase 

receptors, each comprising several different types, contributes to this diversity of effect.  

The fact that mice lacking TGF-�1 have vascular defects reveals the importance of this 

signalling pathway for normal vascular development and homeostasis. Deletion of the 

TGF-�1 isoform causes 50% embryonic lethality due to defects in yolk sac 

vasculogenesis. Transgenic mice without the TGF-� type I and type II receptors are 

also embryonic lethal due to defects in the yolk sac. Knock out of endoglin, an 

accessory TGF-� receptor, in transgenic mice is also embryonic lethal due to 

cardiovascular and angiogenic effects. Mice deficient in Smad 1, 2 and 4 are lethal due 

to vascular problems, and Smad 3-deficient mice are viable, but eventually die due to 

colon cancer and immune system impairment. Mice lacking any of the inhibitory 

Smads develop cardiac defects, although they are viable. For example, Smad 6 

knockout mice develop heart abnormalities, and Smad 7 knockout mice die shortly 

after birth due to abnormal heart development (Goumans, Liu et al. 2009).  

Aberrations in TGF-� signalling have been associated with vascular smooth muscle 

cell properties, which might be responsible for cardiovascular defects. Furthermore, in

vitro studies demonstrated that TGF-� has different effects depending on the cell type 

of the vessel wall and the concentration. Low concentrations of TGF-�1 can induce 

both endothelial and smooth muscle cell proliferation and migration. High levels of 

TGF-� though can have the opposite effects on the same cell type. Less mechanistic 

insight is available concerning these effects on PASMC compared with endothelial 

cells. In PASMC, TGF-�1 induces its effects via the ALK5/TGF-� receptor type II 

induced pathway. It has been shown that the downstream signalling pathway does not 

only involve the Smad canonical signalling, but also the activation of other signalling 

cascades, including the p38 MAPK, p42/44 and JNK. Transforming growth factor-�1 

is a potent regulator of vascular smooth muscle cell differentiation, by regulating the 
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expression levels of �SMA, transgelin, calponin, smooth muscle-myosin heavy chain 

and other specific smooth muscle markers. It furthermore stimulates the proliferation 

of these cells, by inducing PDGF-AA as well as the synthesis of ECM components, 

such as fibronectin, type IV collagen and VEGF. The latter will further induce the 

endothelial cell migration and initiation of angiogenesis. The exact mechanism of how 

TGF-� can also inhibit these processes at vascular smooth muscle cells it is not well 

understood. Transforming growth factor-� expression is also known to be regulated by 

hypoxia. The inhibition of TGF-� signalling by a dominant-negative mutant of TGF-� 

RII blocked hypoxia-induced pulmonary vascular remodelling, indicating the 

importance of the TGF-� signaling cascade for hypoxia-induced PH (Chen, Feng et al. 

2006).    

Over the last two years, a number of studies have been published illustrating that the 

inhibition of ALK5 in the monocrotaline model reversed PH. These are important 

studies and it is the first time shown that inhibition of the TGF-� signalling pathway 

leads to reversal of PH (Long, Crosby et al. 2009; Thomas, Docx et al. 2009). These 

studies further support our hypothesis that that the TGF-� signalling cascade is 

important for the maintenance of tissue homeostasis and development of PAH. 
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Hypothesis and aims of the study 

We hypothesised that aberrations in the TGF-� signalling pathway can lead to PAH by 

regulating the function of PASMC, the cell type which is primarily involved in the 

process of vascular remodelling. 

Thus our aims were to  

� to identify members of the TGF-� signalling cascade or TGF-� gene targets that are 

differentially regulated in PAH as compared to healthy control subjects  

� to identify their role in the process of vascular remodelling focusing on the 

regulation of PASMC function  
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2. Materials 

2.1 Reagents  

Acrylamide solution, Rotiphorese Gel 30 (Merck, Germany) 

Agarose (Invitrogen, UK) 

Ammonium persulfate (Promega, Germany) 

�-mercaptoethanol (Sigma-Aldrich, Germany) 

Bromophenol blue (Sigma-Aldrich, Germany) 

Chondroitin ABC lyase (EC 4.2.2.4, Sigma-Aldrich, Germany) 

Chondroitin B lyase (Sigma-Aldrich, Germany) 

Chondroitin sulphate A (Sigma-Aldrich, Germany) 

Chondroitin sulphate B (Sigma-Aldrich, Germany) 

Chondroitin sulphate C (Sigma-Aldrich, Germany) 

Complement Mix (C-39267, PromoCell, UK)  

Dimethyl sulfoxide (Sigma-Aldrich, Germany) 

Dnase I (EC 3.1.21.1, Calbiochem, EMD Chemicals Inc., San Diego, CA, USA)  

Dulbecco’s phosphate-buffered saline (Laboratories, Austria) 

ELISA HABP plates (Corgenix, Westminster, UK) 

Ethanol absolute (Riedel-de Haen, Germany) 

Glycine (Roth, Germany) 

Heparan sulphate (Sigma-Aldrich, Germany) 

Heparin (Sigma-Aldrich, Germany) 

Heparin lyase I (EC 4.2.2.7, Seikagaku, Tokyo) 

Histostain-SP kit (Zymed, USA) 

Hyaluronate lyase (EC 4.2.2.1, Sigma-Aldrich, Germany) 
3H-glucosamine (Amersham Corp., Buckinhamshire, UK) 
3H-Thymidine (Amersham Corp., Buckinhamshire, UK) 

Keratan sulphate (Sigma-Aldrich, Germany) 

Keratan sulphate endo-�-D-galactosidase (EC 3.2.10.3, Sigma-Aldrich, Germany) 

Lipofectamine (Invitrogen, UK) 

Magnesium chloride (Promega, Germany) 

Methanol (Fluka, Germany) 
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Taq DNA polymerase (Promega, Germany) 

Precision Plus ProteinTM Standards (Bio-Rad, USA) 

Pronase (Calbiochem, EMD Chemicals Inc., San Diego, CA, USA) 

2-Propanol (Merck, Germany) 

Rnase inhibitor (Promega, Germany) 

RNA extraction kit (Roth, Germany) 

RNeasy mini kit (Qiagen, Germany) 

RNase H- reverse transcriptase (Promega, Germany)  

Smooth Muscle Cell Growth Medium 2 (PromoCell, UK) 

Sodium dodecyl sulfate (Promega, Germany) 

Tween 20 (Sigma-Aldrich, Germany) 

Tris (Roth, Germany) 

Triton X-100 (Promega, USA) 

Trypsin/EDTA (Gibco BRL, Germany) 

2.2 Equipment  

CASY Cell Counter System (Model DT, Schaerfe Systems, Reutlingen, Germany) 

Cell culture incubator, Cytoperm2 (Heraeus, Germany) 

Developing machine, X Omat 2000 (Kodak, USA) 

Electrophoresis chambers (Bio-rad, USA) 

Fluorescence microscope, Leica DMR (Leica Microsystems, Bensheim, Germany) 

Freezer -20 oC (Bosch, Germany) 

Freezer -40 oC (Kryotec, Germany) 

Freezer -80 oC (Heraeus, Germany) 

Fridge +4 oC (Bosch, Germany) 

Mini spin centrifuge (Eppendorf, Germany) 

Multifuge centrifuge, 3 s-R (Heraeus, Germany) 

Light microscope, Leica DMIL (Leica Microsystems, Bensheim, Germany) 

PCR thermocycler (MJ Research, USA) 

Pipetboy (Eppendorf, Germany) 

Pipetmans (Gilson, France) 

Power PAC 300 (Bio-Rad, USA) 
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Mini trans-blot chamber (Bio-Rad, USA) 

Vortex machine (Eppendorf, Germany) 

Film cassette (Sigma-Aldrich, Germany) 

Filter tips (Greiner Bio-One, Germany) 

Filter units 0.22 �m syringe-driven (Millipore, USA) 

Gel blotting paper (Bioscience, Germany) 

Pipette tips (Sarstedt, Germany) 

Falcon tubes 15 and 50 ml (Greiner Bio-One, Germany) 

Tissue culture chamber slides (BD Falcon, USA) 

Tissue culture T75 flask (Greiner Bio-One, Germany) 

Tissue culture plates: 6 and 48 well (Greiner Bio-One, Germany) 

 

2.3 Methods 

2.3.1 Patient Population 

Human lung tissue was obtained from twelve IPAH subjects (mean�SD age 32�10 yrs, 

seven females, five males) who carried no BMPR2 mutations and no current treatment 

was effective, and nine control subjects (mean�SD age 38�14 yrs, five females, for 

males), which were rejected for transplantation, due to recipient incompatibility, with 

no systemic disorders or use of any medication. All control and IPAH derived tissue 

samples used in this study, were provided from the University of Vienna, as part of a 

collaboration with Dr Walter Klepetko (Department of Cardiothoracic Surgery, 

University of Vienna). Concerning the recipient incompatibility, there are several 

reasons this can occur. For example, there can be size incompatibility of the available 

lung to be transplanted, with the recipient. In addition, injured lungs or lungs derived 

from polytraumatised patients can rarely be used for transplantation. Therefore the 

lungs, which are not suitable for transplantation, are available for research purposes. 

The diagnosis of IPAH was made in accordance with the American Thoracic Society-

European Respiratory Society congress criteria and the Ethics Committee of the 

University of Giessen School of Medicine approved the study protocol. Informed 

consent was obtained from each subject for the study protocol. 
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2.3.2 RNA isolation and Polymerase Chain Reaction  

RNA from human lung homogenates was extracted using the Roth kit and from 

PASMC using the Qiagen Mini kit according to manufacturer's instructions. The RNA 

concentration was quantified using spectrophotometric analysis and reverse transcribed 

to cDNA using the Promega ImPro II reverse transcriptase, which uses RNA as 

template to generate cDNA. To perform the RT reaction, the RNA (100 – 500 ng/ml) 

was mixed with 1�l of random hexamers in PCR tubes, heated at 70 oC for 10 min and 

then the reaction mix was added. 

Components Volume Final concentration 
5x RT buffer 

10 mM dNTP mix 

RNAsin inhibitor 

Reverse transcriptase 

(1 U/�l) 

Rnase free water 

5 �l 

0.5 �l 

0.5 �l 

0.5 �l 

 

8.5 �l 

1x 

0.2 mM 

0.5 U 

0.5 U 

 

 

   

The reverse transcription was performed as follows: 25 oC for 5 min, 42 oC for 1 h. 

The cDNA was further used for polymerase chain reaction (PCR) or stored at -20 oC. 

The PCR analysis is a method that allows the exponential amplification of specific 

DNA segments. The PCR is an enzymatic reaction, catalysed by a DNA polymerase. 

Polymerase chain reaction can be divided to three steps: denaturation (generation of 

single stranded DNA), annealing (primers bind to target sequence) and extension 

(amplification of DNA segment). Semi-quantitative PCR analysis was performed for 

human pai-1 gene (primer sequences for pai-1 (i) are found in table 1).  

 

Components Volume Final concentration 
5x RT buffer (MgCl2 free) 

10 mM dNTP mix 

25 mM MgCl2 

10 �M forward primer 

10 �M reverse primer 

DNA 

Taq polymerase  

(5 U/�l) 

10 �l 

1 �l 

2 �l 

1 �l 

1 �l 

1 �l 

0.25 �l  

1x 

0.2 mM 

1 mM 

0.2 mM 

0.2 mM 

 

1.25 U 
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The PCR band intensities were normalised to the loading control heat shock protein 70 

(hsc70). The densitometric analysis was performed with a GS-800TM Calibrated 

Densitometer using the Quantity One software (Bio-Rad Laboratories, Munich, 

Germany). Real-time PCR analysis was performed using the Sequence Detection 

System 7500 (Applied Biosystems, Wellesley, MA) for human pai-1, has1-3, hyal1-4, 

cd44 and rhamm, where human hypoxanthine phosphoribosyltransferase (hprt)-1, and 

hydroxymethylbilane synthase (hmbs), equally expressed genes without pseudogenes, 

were used as an internal control (Morty, Nejman et al. 2007). All the reagents were 

combined as indicated below and the final volume was adusted to 25�l with 

autoclaved, distilled water. 
Components Volume Final concentration 
qPCR Supermix 

50 mM MgCl2 

10 �M forward primer 

10 �M reverse primer 

DNA 

13 �l 

1 �l 

0.5 �l 

0.5 �l 

1 �l 

1x 

2 mM 

0.2 mM 

0.2 mM 

For each amplification, a threshold cycle (Ct) was recorded in the exponential phase of 

the amplification. The quantification of the relative gene expression levels was 

achieved using standard curves for both the target and internal control genes. The 

relative mRNA expression of a gene is expressed in �Ct values (�Ct = CtReference – 

Cttarget). Relative changes compared to controls are expressed as ��Ct values (��Ct = 

�Cttreated - �Ctuntreated). The amplification of the specific PCR product was confirmed by 

melting curve analysis and gel electrohoresis. The primer sets work under identical 

real-time PCR cycling conditions to obtain simultaneous amplification.  

2.3.3 Protein Isolation and Western Blotting 

Protein extracts (100 �g) from human lung tissues (donor=5, IPAH=5) and human 

primary PASMC were subjected to SDS-PAGE and western blotting with the 

following antibodies: anti-PAI-1 (Santa Cruz, 1:200 dilution), anti-GAPDH (Santa 

Cruz, 1:10000 dilution), anti-phosphorylated Smad2 (Cell Signaling, 1:1000 dilution), 

anti-Smad2 (cell signalling, 1:1000 dilution) and �anti-�-actin (cell signalling, 1:1000 

dilution). The protein concentration was estimated with a Bio-Rad DC Protein Assay 

following manufacturer’s instructions (Bio-Rad, Hercules, USA). Briefly, human lung 
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tissue samples were homogenised in liquid nitrogen and suspended in lysis buffer  

(50 mM HEPES, pH 7.0, 250 mM NaCl, 5 mM EDTA, 1 mM DTT and 0.1 % triton-x 

100). One hundred �g of protein were resuspended in Laemmli sample buffer (10 % 

(w/v) SDS, 10 mM �-mercaptoethanol, 20 % (v/v) glycerol, 200 mM Tris-HCl, pH 6.8, 

and 0.05 % (w/v) bromophenol blue), resolved on a 10 % SDS-PAGE gel for 1.5 h at 

100 V, and blotted on a nitrocellulose membrane in a tank blotting system containing 

transfer buffer (24 mM Tris base, 193 mM glycine and 10 % (v/v) methanol) for 1 h at 

100 V at room temperature. Next, the membrane was blocked in blocking solution 

(5 % milk powder (w/v), 1x TBS, 0.01 % tween-20 (v/v)) for 1 h at room temperature. 

The membrane was incubated with the primary antibody overnight at 4 oC. Next, the 

membrane was washed with 1x TBST for 3 x 15 min and then a HRP-conjugated 

secondary antibody was applied in blocking solution for 1 h at room temperature. 

Washing with 1x TBST for 3 x 15 min followed and finally the membrane was 

incubated with the ECL-detection reagent to detect the primary antibody. The 

membrane would be stripped from the antibodies using a stripping buffer (0.1 M 

glycine, pH 2.9), in order other antibodies to be applied.      

2.3.4 Immunofluorescence 

The PASMC (104) were plated on an 8-well chamber slide, fixed with cold methanol at 

–20 �C for 5 min and further stained for �SMA (Sigma, 1:400 dilution), transgelin 

(SM22�) (R&D, 1:1000 dilution) and Platelet Endothelial Cell Adhesion Molecule 

(PECAM)-1 (Dianova, 1:500 dilution). Furthermore, cells were stimulated with TGF-

�1 (2 ng/ml) for 24 h and stained for PAI-1, (Santa Cruz, 1:250 dilution). Briefly, after 

fixation, and washing with 1x PBS, blocking solution (5% (v/v) FCS in 1x PBS) was 

added for 1 h at room temperature. Next, the primary antibody, diluted in 2.5 % (v/v) 

FCS, was added for overnight incubation. After washing with 1x PBS, the FITC-

labelled secondary antibody was added for 1 h at room temperature. The cells were 

washed with 1x PBS, covered with mounting mediun, containing DAPI nuclei 

visualisation. The slides where then analysed by fluorescent microscopy.  

2.3.5 Cytokine stimulation 

PASMC were cultured in the presence or absence of recombinant PAI-1 (rPAI-1) 

(R&D Systems, 200 ng/ml), TGF-�1 (R	D Systems, 2 ng/ml) and Platelet Derived 
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Growth Factor (PDGF-BB, R&D Systems, 10 ng/ml)  

 Table 1: Primer sequences. The gene primers used for PCR analysis. for: forward, re: reverse 
Gene  sequences (5´ � 3´)  length 

has1 
for gcgatactgggtagccttca  20bp 

rev ggttgtaccaggcctcaaga  20bp 

has2 
for acagacaggctgaggacgac  20bp 

rev ctgtgattccaaggaggag  20bp 

has3 
for gtcatgtacacggccttcaa  20bp 

rev cctacttggggatcctcctc  20bp 

hyal1 
for gtgctgccctatgtccagat  20bp 

rev attttcccagctcacccaga  20bp 

hyal2 
for tctaccattggcgagagtg  19bp 

rev gcagccgtgtcaggtaat  19bp 

hyal3 
for gatctgggaggttcctgtcc  20bp 

rev agagctggagaggctcaggt  20bp 

hyal4 
for tgaggatctccaccatgaca  20bp 

rev ggcagcactttctcctatgg  20bp 

pai-1 (i) 
for atgcagatgtctccagccctc  21bp 

rev gatgaaggcgtctttccccag  21bp 

pai-1 (ii) 
for gagaaacccagcagcagatt  20bp 

rev tggtgctgatctcatccttg  20bp 

hsc70 
for tgtgtctgcttggtaggaatggtggta  27bp 

rev ttacccgtccccgatttgaagaac  24bp 

fibronectin 
for ccgaccagaagtttgggttct  22bp 

rev caatgcggtacatgacccct  20bp 

vitronectin 
for aacactttgccatgatgcag  20bp 

rev gctaatgaactggggctgtc  20bp 

collagen I 
for aatggtgctcctggtattgc  20bp 

rev ggaaacctctctcgcctctt  20bp 

hprt1 
for aaggaccccacgaagtgttg  20bp 

rev gctttgtattttgcttttcca  21bp 

cd44 
for cccagatggagaaagctctg  20bp 

rev gttgtttgctgcacagatgg  20bp 

rhamm 
for gttgtgcaccatctccaggt  20bp 

rev agctgaagcaggcaaggtag  20bp 

hmbs 
for gcacccacacacagcctac  19bp 

rev gtacccacgcgaatcactct  20bp 
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2.3.6 Immunohistochemistry  

Human paraffin-embedded lung sections (3 �m) were stained with an �SMA antibody 

(1:600, Sigma-Aldrich, Germany), a PAI-1 antibody (1:45, American Diagnostica), a 

HAS1 (1:100, Santa Cruz, CA, USA) and a HYAL1 antibody (1:100, Novus 

Biologicals, CO, USA) using the Histostain Plus Kit (Zymed, San Fransisco, USA), 

which is based on the great affinity of avidin for streptavidin. For removing the 

endogenous peroxidase activity, human lung sections were incubated in 1% (v/v) H2O2. 

Furthermore, after blocking, the sections were incubated overnight with primary 

antibody further washed and incubated with a biotinylated secondary antibody. Slides 

were developed for 5 min with diaminobenzidine (DAB) and counterstained with 

Mayer’s haematoxylin.  

For HA staining, specific biotinylated Hyaluronan Binding Protein (HABP) 

(Seigakaku Corporations, Japan) was used. In brief, formalin-fixed paraffin-embedded 

tissue sections were incubated at 48 �C overnight. Then the sections were washed in 

fresh xylene, rehydrated in ethanol (100%-75%) and washed in 1x PBS twice. After 

cooking in citrate buffer for 20 min the sections were incubated in H2O2 to reduce the 

peroxidase activity. The slides were next washed with 1x PBS and the tissue blocked 

with 1% BSA in PBS for 30 min. Biotinylated HABP (1:25 dilution) was added next 

for overnight incubation at 4 �C. The next day the sections were washed with 1x PBS 

and incubated with streptavidin conjugated to peroxidase enzyme for 1 hr. The 

peroxidase enzyme was localized using the Substrate chromogen mixture. The sections 

were finally counter stained with haematoxylin and images were captured. As controls, 

sections were incubated prior to stainig with 50U/ml of Streptomyces hyaluronidase 

for 3 h at 37 �C, or without the biotinylated HABP.  

2.3.7 Isolation and Culture of human primary PASMC  

Human primary PASMC were explanted from arteries of donor and IPAH patient 

lungs as previously described (Rose, Grimminger et al. 2002). Briefly, pieces of a  

pulmonary artery were placed on a 3 mm plate and after removal of the intimal and 

adventitial layers (endothelial cells and fibroblasts), the medial layer containing only 

PASMC was cut to small pieces, plated on a 3 mm plate and cultured in culture 

medium containing 20% FCS and 1% antibiotics (penicillin, streptomycin). The 

PASMC were grown, and further cultured. Identification of PASMC was based on the 
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presence of �SMA and SM22� and absence of PECAM-1. PASMC were cultured in 

smooth muscle cell growth medium enriched with complement mix at 37 °C in a 5% 

CO2, 95 % O2 atmosphere. Passages three to seven were used for experiments.  

2.3.8 Small interference RNA (siRNA) 

Small interference RNA technology (Alnylam Europe AG) was used to knock down 

PAI-1. Different siRNA duplexes were tested, and the sequence leading to more 

efficient knock down (5’-aaacaagucacccuacacuctst-3’) was used to transiently transfect 

PASMC. Cells of approximately 50-60% confluency were transfected with the PAI-1 

siRNA (200 nM) using LipofectamineTM  2000 Reagent (Invitrogen) at a ratio of 1 �g 

siRNA to 2 �l Lipofectamine following manufacturer’s instructions. The non-specific 

control siRNA was purchased from Ambion. 

2.3.9 Proliferation assay  

Freshly isolated human primary PASMC were plated onto a 48 well plate. After 24 h 

starvation in smooth muscle cell medium containing 0.5% supplement, cells were 

subjected to different conditions. After 24 h, [3H]-Thymidine was added to each well 

for 6 h. After washing for three times with 1x PBS, cells were lysed with 0.5 M NaOH. 

The incorporated [3H]-Thymidine content was determined by scintillation counting. 

Furthermore, PASMC were plated onto 6-well plates and after 24 h of starvation, 

transfected with scrambled or PAI-1 specific siRNA and then subjected to different 

conditions. The effects on cell growth were measured by cell counting using the CASY 

Cell Counter System. 

2.3.10 Migration/chemotaxis assay  

The ability of human primary PASMC to migrate to the chemotactic stimulus of 

PBGD-BB and rPAI-1 or after PAI-1 knock down with PAI-1 specific siRNA was 

assessed using a Boyden chamber (Neuro Probe, Gaithersburg, MD) as has been 

previously described (Chavakis, Cines et al. 2004). Briefly, 1 x 104 PASMC were 

placed on the upper compartment of the Boyden chamber, in serum free medium, and 

allowed to migrate to the undersurface of the membrane, which is coated with 

fibronectin (2 �g/ml), and where the chemotactic factors are found. The extent of 

migration was assessed by the Quantity One software (Bio-Rad Laboratories) and 
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relative migration was expressed as optical density/mm2.  

2.3.11 Adhesion assay 

The adhesion of PASMC to collagen (2 �g/ml), fibronectin (2 �g/ml) and vitronectin 

(2 �g/ml) in the presence or absence of rPAI-1 was assessed as it has already been 

described (Chavakis, Kanse et al. 2000). Briefly, 96-well plates were coated with 

collagen, fibronectin, vitronectin or BSA dissolved in bicarbonate buffer (pH 9.6) and 

blocked with 3% (w/v) BSA. PASMC were plated on the precoated wells in the 

presence or absence of rPAI-1 for 24 h.  After 30 min of incubation in serum-free 

medium, the cells were washed with 1x PBS and the adherent cells were fixed with 

methanol/acetone (1:1) and stained with crystal violet blue and the relative adhesion 

was quantified by measuring the absorbance at 590nm.  

2.3.12 GAG isolation and purification  

Lung tissue was homogenised by a Polytron homogenizer (5 x 10 s bursts with 1 min 

intervals in ice) in 10 ml of 25 mM Tris–HCl, pH 7.6, per g of tissue. Homogenised 

tissues were delipidated with chloroform/methanol (1:2 v/v). Organic solvents were 

removed by centrifugation (3,200 x g, 20 min, 4 �C) and the pellet was washed with 10 

ml of ethanol, centrifuged and dried at 40 �C for 4 h. The pellet was resuspended in 1 

ml of 0.1 M Tris-HCl buffer, pH 8.0, containing 1 mM CaCl2 and subjected to protein 

digestion with 0.1 KU of pronase (Streptomyces griseus). The pronase solution was 

preincubated for 30 min, at 60 �C, in order to eliminate any glycosidase activity. 

Digestion was carried out for 72 h, at 60 �C, by adding equal amounts of pronase at 24 

h intervals. The sample concentration was then adjusted to 150 mM NaCl and 10 mM 

MgCl2 and DNA digestion was accomplished by adding 400 KU DNase I and 

incubating for 16 h, at 37 �C. At the end of the incubation period, the CaCl2 

concentration of the solution was adjusted to 1 mM and the reaction was stopped by 

adding 0.1 KU of pronase and incubating the mixture at 60 �C, for 24 h. The pH was 

adjusted to 10-11 by addition of 10 mM NaOH and samples were subjected to �-

elimination in the presence of 1 M NaBH4 for 16 h, at 45 �C. Samples were then 

neutralized with 50% (v/v) acetic acid. Total GAGs were precipitated with the addition 

of four volumes of ethanol in the presence of 0.1 volume of 3 M CH3COONa and 

overnight maintenance at -4 °C, recovered with centrifugation (20 min, 2,000 x g), 
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redissolved in double distilled H2O and stored at 4 °C. Colorimetric determination of 

uronic acids was performed according to Bitter and Muir (Bitter and Muir 1962).  

2.3.13 Cellulose acetate electrophoresis 

Two �l of the GAG solution, containing about 4 �g of uronic acids, were placed at the 

origin (10 mm from the cathode side) of a cellulose acetate strip. Electrophoresis was 

carried out in 100 mM pyridine / 470 mM formic acid, pH 3.0, using 7 mA constant 

current, at room temperature, for 70 min. After electrophoresis, the cellulose acetate 

strip was stained with 0.2% Alcian blue (w/v), in 0.1% acetic acid (v/v), for 10 min 

and washed with 0.1% acetic acid (v/v) for 20 min (Papakonstantinou, Roth et al. 

1998). The intensity of the staining was quantified by the computer-assisted image 

analysis programme of Kodak. 

2.3.14 GAG characterisation 

Speed-dried GAGs (5 �g of uronic acids) were incubated in a final volume of 15 �l as 

follows: (a) Heparinase: samples dissolved in 100 mM Tris-HCl buffer, pH 7.0, 

containing 3 mM CaCl2 and incubated with 4 x 10-4 U of heparin lyase I (EC 4.2.2.7, 

Flavobacterium heparinum, Seikagaku, Tokyo), for 15 h, at 30 �C. (b) Heparitinase: 

samples dissolved as above were incubated with 4 x 10-4 U of heparan sulphate lyase 

(Flavobacterium heparinum), for 16 h, at 43 �C. (c) Chondroitinase ABC: samples 

dissolved in 100 mM Tris-HCl buffer, pH 8.0, containing 50 mM sodium acetate were 

incubated with 2 x 10-4 U of chondroitin ABC lyase (Proteus vulgaris) for 16 h, at 37 
�C. (d) Chondroitinase B: samples dissolved in 100 mM Tris-HCl buffer, pH 7.4, were 

incubated with 0.1 U of chondroitin B lyase (Flavobacterium heparinum), for 16 h, at 

37 �C. (e) Keratanase: samples dissolved in 50 mM Tris-HCl buffer, pH 7.4, were 

incubated with 0.05 U of keratan sulphate endo-�-D-galactosidase (Pseudomonas 

species) for 16 h, at 37 �C. (f) Hyaluronidase: samples dissolved in 20 mM sodium 

acetate, buffered with acetic acid to pH 5.0, were incubated with 4 U of hyaluronate 

lyase (Streptomyces hyalurolyticus), for 14 h, at 60 �C. 

Incubation times and enzyme concentrations used were those required for the complete 

degradation of their respective standard substrates, as estimated by a preliminary 

investigation. In this preliminary study, the standard GAGs (10 �g) chondroitin 

sulphate A (bovine trachea), chondroitin sulphate B (porcine skin), chondroitin 
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sulphate C (shark cartilage), hyaluronic acid (bovine trachea), keratan sulphate (bovine 

cornea), heparan sulphate (bovine intestinal mucosa) and heparin, were treated 

individually with each of the above mentioned GAG-degrading enzymes following 

appropriate incubation procedures. Substrates incubated separately with their 

respective buffers served as controls. Digestion was evaluated by electrophoresis on 

cellulose acetate membranes and quantified by the computer-assisted image analysis 

programme of Kodak (Papakonstantinou, Karakiulakis et al. 1995).  

2.3.15 HA measurements  

Secretion of HA by primary PASMC: Cells were grown to high density in 24-well 

plates. Before the experiments, cells were washed two times with culture medium to 

completely remove HA that accumulated during cell growth. Subsequently, cells were 

cultured with or without TGF-�1 (0.2, 2, 10 ng/ml) for 6, 12 and 24 h. At the end of 

incubation time, aliquots of medium were removed and tested for the presence of HA. 

Briefly, ELISA plates coated with HABP were incubated with supernatants and 

standards, respectively, for 1 h at room temperature in duplicates, washed five times 

with washing buffer, incubated with a solution containing horseradish peroxidase-

conjugated HA-binding protein for 1 h at room temperature, washed again five times, 

and incubated with 100 �l of the provided substrate solution. After 20 min, the reaction 

was stopped by adding an equal amount of sulfuric acid (0.36 N), and after that the OD 

was measured at 450 nm (630-nm reference). 

Amount of HA in total GAGs: Total GAGs were isolated and purified from lung 

tissue specimens, as described above. The relative amount of HA was measured in 

aliquots of total GAGs containing 0.15 �g of uronic acids by ELISA, following the 

same procedure, as described above. 

2.3.16 Measurement of total GAG synthesis 

Subconfluent primary PASMC were incubated for 24 h, in the presence or in the 

absence of TGF-�1 (0.2 to 2 ng/ml), BMP2 (10 to 20 ng/ml), SB431542 (10 �M), 

SB203580 (10 �M) and PDGF-BB (10 ng/ml). In all cases, 3H-glucosamine (0.5 

�Ci/ml) was added in the culture media. Culture medium and the cell layer (cells 

together with the ECM) were collected separately and digested with 0.1 KU of Pronase 

(Streptomyces griseus). Total GAGs were precipitated by adding a mixture of ethanol 
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(80% final concentration) containing 1.3% (w/v) sodium acetate. The samples were 

stored at –20 �C overnight and then centrifuged at 10,000 x g. The pellets were 

dissolved in 0.5 M NaOH and total GAG synthesis was assessed by measuring the 

amount of 3H-glucosamine incorporated into GAGs (Papakonstantinou, Karakiulakis 

et al. 2000).  

2.3.17 Statistical Analysis 

All data are expressed as mean � SEM (n 
 3). The different experimental conditions 

were compared using the student’s t-test for single measurements. The differences 

were regarded as significant when p< 0.05. All experiments were performed for at 

least three times.  
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3. Results 

3.1 PAI-1 expression in IPAH and donor lungs 

The PAI-1 expression levels both at the mRNA and protein level were investigated in 

human lung homogenates from donor and IPAH subjects. It was found that PAI-1 

expression was significantly downregulated in the IPAH patient samples at both the 

mRNA and protein level, as demonstrated by semi- and quantitative PCR, compared to 

donor samples (Fig. 7A-C). Since the levels of PAI-1 were measured in human 

samples, there is an expected variability among the different donor and IPAH patient 

lung samples.  

 

Figure 7: The mRNA and protein expression of PAI-1 in lung homogenates of 
IPAH patient and donors. (A) The pai-1 mRNA levels were investigated in donor (n = 7) and 
IPAH patient (n = 7) lung homogenates by semi-quantitative RT-PCR. The hsc70 gene served as a 
loading control. (B) The graphical representation of densitometric analysis of the results from three 
independent semi-quantitative RT-PCR experiments. * indicates p < 0.01. (C) PAI-1 protein levels were 
investigated in donor (n = 5) and IPAH patient (n = 5) lung homogenates by western blotting. GAPDH 
served as a loading control. Data are representative for at least three independent experiments. 
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3.2 PAI-1 localisation in the human lung 

The next step was to localise PAI-1 in the human lung. Human donor and IPAH 

patient lung sections were stained for PAI-1 and �SMA, a marker of smooth muscle 

cells. Plasminogen activator inhibitor-1 was abundantly present and well distributed in 

the human lung. The PAI-1 localised to the bronchial and alveolar epithelial cells as 

well as to the PASMC and endothelial cells (Fig. 8).  

 

Figure 8: Localisation of PAI-1 in IPAH patient and donor lung tissue. (A) Adjacent 
donor and IPAH human lung sections were stained for �SMA or PAI-1, as indicated. Magnification ×10 
      
Since PAI-1 is well distributed in the lung, it would be of major importance to show 

that PAI-1 levels are reduced in the arterial vessel wall and specifically in PASMC that 

play major role in IPAH development.  

 

Figure 9: Reduced levels of PAI-1 in IPAH-derived PASMC. PAI-1 mRNA levels were 
further assessed in primary PASMC isolated from donors (n = 3) and IPAH (n = 5) patient lungs by 
quantitative real-time PCR (qRT-PCR). Results are presented as mean±S.E.M.* indicates p < 0.05. 
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Therefore, to support the original observation that PAI-1 expression levels are 

decreased in patients with IPAH, and to demonstrate that this was due to lower 

expression in the vessel wall, PASMC from patients with IPAH were isolated, and the 

pai-1 levels were measured. Quantitative PCR analysis revealed that pai-1 is indeed 

downregulated in PASMC from IPAH patients (Fig. 9), suggesting that the reduced 

PAI-1 expression could influence the function of PASMC in the pulmonary vessel 

wall.  

3.3 TGF-�1-dependent PAI-1 upregulation in PASMC 

It is known that PAI-1 levels is regulated by several cytokines, including TGF-�1. It 

was interesting to elucidate whether TGF-�1 regulates PAI-1 expression in PASMC as 

well. Therefore, PASMC derived from the pulmonary arteries of healthy controls were 

stimulated at different time-points with TGF-�1, and the PAI-1 levels were measured 

at the mRNA and protein level by quantitative PCR and western blotting, respectively 

(Fig. 10 A, B).  

 

 

Figure 10: TGF-�1-dependent PAI-1 regulation in PASMC. Human primary PASMC 
were stimulated for up to 48 h with TGF-�1 (2 ng/ml), as indicated. The cells were harvested for RNA 
(A) and protein (B) extraction. The pai-1 mRNA levels were assessed by quantitative PCR (A), while 
PAI-1 protein levels were assessed by western blotting (B). Phospho-Smad2 was used as a positive 
control for TGF-�1 stimulation, while �-actin and total Smad2 served as loading controls. Results are 
presented as mean±S.E.M., * indicates p < 0.05 compared with unstimulated cells. Data are 
representative for at least three independent experiments. 
 
Indeed, TGF-�1 elevated PAI-1 mRNA and protein levels in PASMC. Smad2 

phosphorylation is used as a positive control for the TGF-�1 stimulation, since active 

TGF-� signalling is indicated by Smad phoshorylation.  
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3.4 PAI-1 localisation in PASMC 

Next, PAI-1 was localised in PASMC before and after TGF-�1 stimulation. As 

visualised by immunofluoresence staining, PAI-1 localised mainly in the perinuclear 

(since it is a secreted factor) as well as cytoplasmatic (suggesting an intracellular 

function too) areas of PASMC (Fig. 11B). The purity of the isolated PASMC culture 

was tested with staining for �SMA, SM22� (both are smooth muscle markers) and 

PECAM (an endothelial marker) (Fig. 11A). 

 

Figure 11: Localisation of PAI-1 in cultured PASMC. Human primary PASMCwere 
isolated from donor pulmonary arteries for in vitro experiments. (A) The purity of primary PASMC was 
assessed by positive staining for �SMA and SM22� (transgelin), which are specific smooth muscle cell 
markers. In contrast, staining for the endothelial cell marker PECAM-1 was routinely negative. (B) 
Human primary PASMC were stimulated with TGF-�1 (2 ng/ml) for 24 h, fixed in ice-cold methanol 
and stained for PAI-1. Magnification ×63 and 40× in (A) and (B), respectively. 

3.5 PAI-1 regulates PASMC proliferation 

In order to investigate further how the downregulation of PAI-1, observed in IPAH 

lung homogenates as well as in IPAH patient lung-derived PASMC, affects cellular 

processes, in vitro experiments were performed in primary human PASMC. The 

PASMC were stimulated with active recombinant PAI-1 (rPAI-1) (200 ng/ml) for 24 h 

and their proliferation was measured by [3H]-Thymidine incorporation (Fig. 12A). 

Addition of exogenous rPAI-1 induced a significant decrease in cell proliferation 

compared to control serum and PDGF-BB stimulation, a known PASMC proliferation 

inducer. However, PAI-1 could not reverse the proliferative effect of PDGF-BB on 
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PASMC. The opposite experiment was performed as well, to further confirm the above  

described results. 

 

Figure 12: PAI-1 inhibits PASMC proliferation. (A) Human primary PASMC were 
cultured in serum-free medium for 24 h and then stimulated with recombinant (r)PAI-1 (200 ng/ml), 
PDGF-BB (10 ng/ml), or both for another 24 h. [3H]-thymidine incorporation was determined 24 h after 
stimulation. Primary human PASMC were transfected with PAI-1-specific or scrambled siRNA in 
serum-free medium for 4 h, supplemented with normal, serum-containing medium for another 24 h, and 
the knock-down efficiency was evaluated by quantitative PCR (B) and western blotting (C). After a 
further 24 h, the cells were further stimulated with rPAI-1 (200 ng/ml), and cell number was measured 
by cell counting using the CASY Cell Counter System (D). Data are representative of at least three 
independent experiments. * indicates p < 0.05 compared with unstimulated (control) cells.  
 

In more detail, PASMC were transfected with a specific PAI-1 small interfering RNA 

(siRNA), which caused significant PAI-1 knock down at both the mRNA and protein 

level (Fig. 12B, C). PASMC proliferation was assessed by cell counting after siRNA 

transfection. PAI-1 knock down increased PASMC proliferation (Fig. 12D) compared 

to PASMC transfected with scrambled siRNA. Furthermore, treatment of the 

transfected PASMC with PAI-1 siRNA with rPAI-1 reversed the effect of PAI-1 knock 

down (Fig. 12D). 
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3.6 PAI-1 Regulates PASMC Migration and Adhesion  

Next, the effects of PAI-1 on PASMC migration, a function which also contributes to a 

certain extent to vascular remodelling as well, was investigated. Plasminogen activator 

inhibitor 1 regulated the migration of PASMC on fibronectin-coated membranes (Fig. 

13A), as indicated by the Boyden chamber chemotactic assay. More specifically, 

incubation of PASMC with active rPAI-1 significantly increased PASMC migration 

compared to control medium and PDGF-BB stimulation, a known inducer of PASMC 

migration. Furthermore, transfection with PAI-1 siRNA decreased the migration levels 

of PASMC compared to scrambled siRNA- transfected cells (Fig. 13B).  

 
 
Figure 13: PAI-1 induces PASMC migration. Human primary PASMC were stimulated 
with rPAI-1 (200 ng/ml) or PDGF-BB (10 ng/ml) (A), or transfected with PAI-1-specific or scrambled 
siRNA (B), and cell migration was measured in a Boyden chamber migration assay. PDGF-BB was 
used as a positive control for PASMC migration. * indicates p < 0.05 compared with unstimulated 
(control) cells. Data are representative of at least three independent experiments. 
 

The final step was to assess PAI-1 influence on PASMC adhesion, on differently 

coated surfaces. The PASMC were cultured on fibronectin-, vitronectin-, and collagen 

type I-coated plates, in the presence or absence of active rPAI-1. Incubation of 

PASMC with rPAI-1 resulted in decreased cell adhesion to vitronectin, whereas no 

significant effects were observed on PASMC adhesion to fibronectin or collagen type I 

(Fig. 14A). The above results agree with already published data on PAI-1 being a co-

factor for vitronectin and thus compete with the cell’s integrins for binding to 

vitronectin. Thus the cell looses its ability to adhere to the surrounding matrix.  
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Figure 14: PAI-1 reduces PASMC adhesion on vitronectin. (A) The adhesion of human 
primary PASMC to fibronectin-, vitronectin-, and collagen I-coated plates was evaluated in the presence 
or absence of rPAI-1 (200 ng/ml). The rPAI-1 significantly decreased the adhesion of PASMC to 
vitronectin-coated plates. BSA was used as a control. * indicates p < 0.02 compared with unstimulated 
cells. (B) The expression levels of the three coating substrates used in the adhesion assay (fbronectin, 
vitronectin, or collagen I) was investigated in donor and IPAH samples (n = 7 each) using  quantitative 
PCR. Fibronectin and vitronectin were significantly upregulated in IPAH human lung homogenates. * 
indicates p < 0.05. 
 
To interpret the effects of PAI-1 on cell adhesion to vitronectin and to correlate these 

effects with disease, the mRNA levels of fibronectin, vitronectin and collagen I were 

investigated in donor and IPAH lung homogenates by quantitative PCR (Fig. 14B). 

Both fibronectin and vitronectin were upregulated in the IPAH samples, whereas 

collagen type I levels did not exhibit any differential expression between the two 

groups.      

3.7 Differential expression of GAGs in IPAH  

Total GAGs were isolated and purified from lung tissue samples obtained from IPAH 

patients and healthy donors. The fractionation of total GAGs (4 �g of uronic acids) by 
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electrophoresis on cellulose acetate membranes revealed that both in the donor and 

IPAH lung homogenates, four distinct GAG populations, G1, G2, G3 and G4 (Fig. 

15A) were present. These GAGs migrated with the same mobility as hyaluronic acid 

(HA), heparan sulphate (HS), dermatan sulphate (DS) and chondroitin sulphate (CS), 

respectively. Enzymatic treatment with specific GAG-degrading enzymes (Table 2) 

confirmed that: G1 was HA, since it was completely degraded only by hyaluronidase; 

G2 was HS, as it was completely degraded only by heparitinase; G3 was DS, since it 

was completely susceptible only to chondroitinase ABC, and chondroitinase B; and G4 

was CS, as it was degraded only by chondroitinase.  

 

Table 2: GAG identification. Total glucosaminoglycans isolated and purified from human lung  
tissue samples were treated with GAG-degrading enzymes. 

 
 
Alcian blue staining of cellulose acetate membranes and quantitation of the intensity of 

the staining by a computer-assisted image analysis programme revealed quantitative 

differences in the relative amount of the above-described GAGs between IPAH patient 

and donor lungs (Fig. 15B). In particular, a significant increase (p<0.01) in the relative 

content of HA in parallel with a significant decrease in the relative content of HS 

(p<0.02), DS (p<0.01) and CS (p<0.01) was observed in IPAH tissue specimens, 
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compared to donors (Fig. 15B).  

 
 
Figure 15: GAG expression in IPAH. (A) Representative cellulose acetate membranes 
demonstrating the electrophoretic separation of total GAG in donor and IPAH lung specimens. G1–G4: 
four detectable GAG peaks in lung tissues. Commercially available GAG standards were as follows. 
HA: hyaluronic acid; HS: heparan sulphate; DS: dermatan sulphate; CS: chondroitin sulphate. (B) 
Densitometric quantitation of mean±SEM values of alcian blue staining of the electrophoretic separation 
of GAGs. (C) Measurement by ELISA of the relative content of HA in aliquots of total GAG containing 
0.15 mg of uronic acids. Data are presented as mean�SEM. For all investigations, samples from four 
donor and five IPAH lung tissue specimens were used. * indicates p<0.01. 

 
To quantify this increase in the HA levels, the amount of HA in total GAGs (0.15 �g 

of uronic acids) isolated from IPAH and donors was measured by ELISA. The relative 

amount of HA in IPAH lung homogenates is significantly higher (p<0.01) as compared 

to tissue samples from donors.  

3.8 Changes in exrpression of has1, cd44 and hyal1 in IPAH 

The next question to be addressed was whether the observed increase of HA in IPAH 

is a result of increased synthesis or decreased degradation of HA. For this reason, the 

expression of has and hyal isoforms in IPAH patient and donor lungs were 

investigated by quantitative PCR. has1 expression levels were significantly higher (Fig. 

16A) and hyal1 expression levels were significantly lower (Fig. 16A) (p<0.05) in 

IPAH patient lung tissues compared to tissue from donors as demonstrated by 
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quantitative PCR.  

 

 
 

Figure 16: Differential expression of has1, hyal1, cd44 in lungs of IPAH patients. 
(A) mRNA was extracted from lung specimens obtained from IPAH patients and donors and the relative 
expression levels of has1–3, hyal1–4, cd44 and rhamm were measured by quantitative PCR. Data are 
presented as mean�SEM relative expression level, as change in threshold cycle (�Ct) values. * indicates 
p<0.05. (B) HAS1 protein levels (66 kDa) were investigated in lung homogenate samples from donors 
or IPAH patients by western blotting. GAPDH (38 kDa) served as a loading control. Data are 
representative of at least three independent experiments. 
 
No significant differences were observed for has2, has3, hyal2, hyal3 or hyal4 

isoforms between IPAH and controls (Fig. 16A) on the mRNA level. 

Moreover, the expression of the HA receptors cd44 and rhamm was investigated. As 

depicted in Fig. 15A, IPAH is associated with significantly increased expression of 

cd44 levels compared to controls (p<0.05). There were no significant differences in the 

expression of rhamm between IPAH and donors (Fig. 16A). The increase in has1 

mRNA level was further confirmed on the protein level as well (Fig. 16B). 

3.9 IPAH is associated with increased distribution of HA in the lung 

In order to investigate whether the increased amounts of HA measured in lungs from 

IPAH was associated with differential distribution of HA, immunohistochemical 

analysis was performed in IPAH patient and donor lung sections, using HABP. A 
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considerably higher distribution of HA in IPAH lungs as compared to controls (Fig. 

17) was demonstrated. 

 

Figure 17: Localisation of HA in IPAH patient and donor lung tissue. The 
localisation of �SMA, HABP, HAS1 and HYAL1 in pulmonary arteries of control donors and IPAH 
patients was investigated. HA was visualised by staining with HABP. Sections are representative for at 
least four different donors or IPAH patients. Scale bar 50 mm. 

3.10 TGF-�1 Stimulates GAG Secretion and Deposition by PASMC  

Since TGF-�1 is a key modulator of ECM components, the effect of TGF-�1 on total 

GAG secretion and deposition in primary cultures of PASMC was investigated by 

measuring the incorporation of [3H]-glucosamine into GAGs. Transforming growth 

factor-�1 significantly enhanced both the secretion (p<0.01) and deposition (p<0.05) 

of total GAGs by PASMC (Fig. 18A) at concentrations above 0.2 ng/ml. This effect 

was comparable with the effect of PDGF-BB (10 ng/ml), which has been previously 

shown to be a potent stimulator of GAG synthesis by vascular smooth muscle cells. 

Bone morphogenetic protein 2 (20 ng/ml) did not influence the secretion and 

deposition of total GAGs (Fig. 18A). In order to elucidate whether the TGF-�1 

stimulatory effect on GAG synthesis by PASMC occurred in a TGF-�RI-dependent 

manner, a specific inhibitor of TGF-�RI, SB431542, was utilised and its effect on 

[3H]-glucosamine incorporation into GAGs was evaluated. SB431542 (10 �M) 

significantly inhibited the basal secretion (p<0.01) and deposition (p<0.01) of total 

GAGs by PASMC (Fig. 18B). Furthermore, SB431542 inhibited the stimulatory effect 

of TGF-�1 (2 ng/ml) on GAG secretion (p<0.01) and deposition (p<0.01) (Fig. 18B).  

Since TGF-�1 can induce a Smad-independent signaling cascade, the effect of 

inhibiting the p38 MAPK pathway on TGF-�1-induced GAG secretion and deposition 
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was investigated.  

 
Figure 18: Effect of TGF-�1 on GAG secretion and deposition in PASMC. (A) 
Subconfluent PASMC were incubated with PDGF-BB, TGF-�1 or BMP-2 for 24 h, in the presence of 
[3H]-glucosamine at 0.5 mCi/ml. Incorporation of [3H]-glucosamine was then assessed in supernatants 
(representing secreted GAG, shaded bars) and cell layers (representing deposited GAG, white bars). (B) 
Subconfluent PASMC were stimulated with TGF-�1 in the presence or absence of the p38 MAPK 
inhibitor SB203580 or the type I TGF-�1 receptor kinase inhibitor SB431542, and the incorporation of 
[3H]-glucosamine was assessed. Data are presented as mean�SEM, n=4 for each treatment. #: p<0.005 
compared with control values; **: p<0.01 compared with TGF-�1-stimulated values. 
 

Therefore, a specific p38 MAPK inhibitor, SB203580, was used and the effects on 

[3H]-glucosamine incorporation into GAGs by PASMC were measured. The 

SB203580 (10 �M) significantly inhibited the basal secretion (p<0.02) of total GAGs 

by PASMC (Fig. 18B). However, SB203580 did not affect the basal [3H]-glucosamine 

incorporation into GAGs associated with the cell layer. However, SB203580 

significantly inhibited the stimulatory effect of TGF-�1 (2 ng/ml) on GAG secretion 

(p<0.01) and deposition (p< 0.01), indicating that this effect is also mediated by the 
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p38 MAPK pathway.  

3.11 TGF-�1 stimulates HA secretion by PASMC 

In order to investigate whether the TGF-�1-induced [3H]-glucosamine incorporation is, 

in part, a result of increased HA secretion a time course (6-24 h) stimulation of 

PASMC with various concentrations of TGF-�1 (0.2-10 ng/ml) was performed and 

then measured the secretion of HA in the supernatant by ELISA. Transforming growth 

factor-�1 exhibited a time- and dose-dependant stimulatory effect on HA secretion by 

PASMC. The time-dependent effect of TGF-�1 was significant after 12 h of incubation 

(p<0.02) at the higher dose of TGF-�1 (10 ng/ml) and after 24 h at lower dose 

(p<0.01). Compared to the lower dose of TGF-�1, the dose-dependent effect was 

significant at 10 ng/ml after 12 h of incubation, (p<0.05), and at 2 ng/ml after 24 h of 

incubation (p<0.05), reaching a plateau effect (Fig. 19). 

 

Figure 19: Effect of TGF-�1 on HA secretion by PASMC. Subconfluent PASMC were 
incubated without TGF-�1 or with 0.2 ng/ml, 2 ng/ml or 10 ng/ml for 6, 12 or 24 h. HA was measured 
in cell culture supernatants by ELISA. Data are presented as mean�SEM of four independent 
experiments. * indicates p<0.05. 

3.12 TGF-�1 Regulates has1 Expression in PASMC 

To elucidate whether the TGF-�1-induced secretion of HA is a result of increased 

synthesis or decreased degradation of HA, the expression levels of has and hyal

isoforms were investigated by quantitative PCR. Interestingly, has1 expression was 

significantly upregulated by TGF-�1 (2 ng/ml) (p<0.01). Transforming growth factor-

�1 had no significant effect on the expression of has2, has3, hyal1, hyal2 and hyal3. 
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In addition, TGF-�1 did not alter the expression of the receptors of HA, cd44 and 

rhamm (Fig. 20). 

 

Figure 20: Induction of has1 gene expression in TGF-�1-stimulated PASMC. 
mRNA was extracted from primary human PASMC (n=3) without TGF-�1 or from PASMC stimulated 
for 2 h or 6 h with 2 ng/ml of TGF-�1. The relative expression levels of has1–3, hyal1–3, cd44 and 
rhamm were determined by quantitative PCR. Data are presented as mean�SEM relative expression 
level, as change in threshold cycle (�Ct) values. * indicates p<0.05. 
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4. Discussion 

This study focused on the role of the TGF-� signalling pathway in the development of 

PAH. In particular, the canonical TGF-� signalling cascade and its targets was 

screened in lung homogenates from IPAH patients and control groups, in order to 

identify differentially regulated genes that might regulate the function of PASMC, and 

thus, the process of pulmonary vascular remodelling. Particular interest was also paid 

to the role of TGF-� on glucosaminoglycans and hyaluronic acid synthesis and 

deposition in the pulmonary arteries of IPAH patients. 

4.1 Differential expression of PAI-1 in IPAH 

The screening of the canonical TGF-� signalling pathway revealed that PAI-1 was 

differentially expressed in lung homogenates from patients with IPAH in comparison 

to healthy donors. It was demonstrated that PAI-1 levels are significantly 

downregulated in IPAH human lung homogenates at both the mRNA and protein level 

as well as in IPAH derived PASMC. Immunohistochemical analysis of donor and 

IPAH lung sections revealed that PAI-1 was abundantly expressed in the lung, and in 

particular, found in the bronchial and alveolar epithelial cells as well as in PASMC, 

but clearly less expressed in IPAH lung sections.  

Furthermore, PAI-1, which was upregulated by TGF-�1 in PASMC, controlled the 

proliferation, migration and adhesion of PASMC. Recombinant PAI-1 inhibited the 

proliferation of PASMC, as well as PASMC adhesion to vitronectin-coated plates, 

whereas PAI-1 induced migration of PASMC on fibronectin. These results were 

further confirmed by PAI-1 knock down with specific siRNA. Therefore, the current 

report indicates a possible relation between PAI-1 and the dysregulated PASMC 

behaviour observed in IPAH. 

4.2 Plasminogen activator inhibitor 1  

Plasminogen activator inhibitor 1 belongs to the serpin superfamily of protease 

inhbitors, it is secreted by a variety of different cells and is the main inhibitor of 

plasmin activation (Ryan and Higgins 1994). The PAI-1 is the physiological inhibitor 

of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator 

(tPA). uPA and tPA activate plasminogen to give plasmin by preoteolytic cleavage 

(Fay, Garg et al. 2007). It is interesting that uPA, apart from its proteolytic effects, can 
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also initiate an intracellular signalling cascade, by binding to urokinase-type 

plasminogen activator receptor (uPAR) on the cell surface. Therefore, PAI-1 can 

regulate the uPA activity, by interacting directly with uPA and thus induce its 

internalization and lysosomal degradation, or by interacting with the uPA-uPAR, and 

inducing their internalization and degradation (Olson, Pollanen et al. 1992).  

Plasminogen activator inhibitor 1 is found in an inactive form, unless bound to the 

ECM protein vitronectin. To date, studies have demonstrated that PAI-1 is a 

multipotent factor, regulating different biological processes, apart from its well-

characterised role in the coagulation cascade.  

Plasminogen activator inhibitor 1 has been described to be a causative factor in fibrotic 

and cardiovascular diseases (Kohler and Grant 2000), (Sobel, Taatjes et al. 2003). 

Transgenic animals overexpressing PAI-1 develop vascular thrombosis (Eren, Painter 

et al. 2002) with increasing age. Furthermore, PAI-1 has also been involved in 

neointima formation. There is a significant decrease in vascular smooth muscle cell 

(VSMC) neontima formation in PAI-1 -/- mice, in response to oxidative stress-induced 

vascular injury (DeYoung, Tom et al. 2001). 

4.3 PAI-1 and the vessel wall 

The actual mechanisms how PAI-1 regulates the function of the cells in the vessel wall 

is rather complex and not fully elucidated yet.  It has been reported that PAI-1 can 

compete with cellular integrins for vitronectin binding (Stefansson and Lawrence 

1996; Stefansson, Lawrence et al. 1996), thus smooth muscle cells (SMC) are less 

adherent to the substrate (Kanse, Chavakis et al. 2004). These data are in agreement 

with the observations in the present study, where recombinant PAI-1 reduced the 

PASMC adherence only in the presence of vitronectin. The PAI-1 did not affect 

cellular adherence on fibronectin or collagen type I-coated surfaces. To correlate this 

PAI-1 effect on cell adhesion with the development and progression of IPAH, the 

mRNA levels of fibronectin, vitronectin, and collagen type I were investigated in 

donor and IPAH patient lung homogenates. It was observed that fibronectin and 

vitronectin levels were significantly upregulated in IPAH samples, whereas collagen 

levels remained unchanged. Although a recent study presented that vitronectin is 

downregulated in serum of IPAH patients (Yu et al., 2007), this finding, in 

combination with the decreased PAI-1 levels, suggest that in the final stages of IPAH, 

PASMC adhere more to the surrounding environment and thus proliferate more. 
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The effects of PAI-1 on vascular remodeling, in different cell types and experimental 

models, have not been clarified (Stefansson and Lawrence 2003; Stefansson, 

McMahon et al. 2003). High levels of PAI-1 have been reported in angiogenesis 

(Bajou, Maillard et al. 2004) and tumour formation, cancer metastasis (Bajou, Noel et 

al. 1998), radiation therapy (Milliat, Francois et al. 2006) and atherosclerosis 

(Schneider, Hayes et al. 2004). Several factors, such as NO (Baylis, Mitruka et al. 

1992), hypoxia, urotensin II, angiotensin II and TGF-�1 that are implicated in the 

development of vascular diseases, regulate PAI-1 levels (Preissner, May et al. 1997; 

Shen 1998). 

The controversy surrounding the effects of PAI-1 continues at the cellular level, since 

it is not clear whether PAI-1 acts as an antiapoptotic or proapoptotic factor (Al-Fakhri, 

Chavakis et al. 2003; Chen, Budd et al. 2006) In addition, the effects of PAI-1 on 

smooth muscle cell migration remain to be defined, since under different conditions, 

PAI-1 can have a biphasic effect (Carmeliet, Moons et al. 1997; Samarakoon, Higgins 

et al. 2005). It is accepted, however, that PAI-1 is an important controller of vascular 

homeostasis.  

4.4 Plasminogen inhibitor type 1 in IPAH 

The role of PAI-1 in the pulmonary vascular remodelling and in the development of 

PAH has not been extensively investigated. IPAH is a rare and fatal disease, 

characterised by excessive pulmonary vascular remodelling, with fibrosis of the 

intimal layer, as well as hypertrophy and hyperplasia of the medial and adventitial 

layers, leading finally to occlusion of the vessels.  

It has been shown that high levels of PAI-1 are present in the blood of patients with 

PAH, leading to impaired fibrinolysis; however, PAI-1 levels are normal in 

bronchoalveolar lavage fluids of PAH patients (Christ, Graf et al. 2001). Furthermore, 

elevated levels of PAI-1 are responsible for the stabilisation of the thrombi observed in 

patients with chronic pulmonary thromboembolism (Lang, Marsh et al. 1994). It has 

been suggested, however, that such a fibrinolytic imbalance cannot be considered a 

generalised phenomenon in these patients (Lang, Marsh et al. 1994). 

According to the results obtained in the present study, PAI-1 levels were 

downregulated in lung homogenates from late phase IPAH patients as compared to 

healthy donors. Several reasons might explain this discrepancy. First, the increased 

levels of PAI-1 in the blood of patients with IPAH could have originated from the liver 
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or the adipose tissue, and thus may not accurately represent the actual levels in the 

pulmonary vasculature. Secondly, in the present study, the levels of PAI-1 were 

measured in tissues derived from explanted diseased lungs, thus the patient population 

was at the final stage of IPAH, whereas in the published literature, the disease stage of 

the patient population is unclear, thus it is difficult to compare the two studies.  

Taken together, the above results suggest that PAI-1 is a potent regulator of PASMC 

function and disturbance in the expression of PAI-1 could regulate the process of 

vascular remodelling during PAH development. In particular, at an early stage PAI-1 is 

upregulated, inducing PASMC migration, whereas at a later stage, decreased PAI-1 

levels allow the proliferation of PASMC, leading to the thickening of the medial layer 

of the pulmonary arteries.  

4.5 The role of HA in IPAH 

The second point of this study concentrated on the ECM, a critical factor for cellular 

viability and growth. It has already been shown that TGF-�1 is not only important for 

regulating cellular processes such as cell proliferation, migration and adhesion, but 

also for ECM deposition (Roberts and Sporn 1989). Transforming growth factor-�1 

regulates fibronectin and collagen, which are primary components of the ECM. In 

addition, glucosaminoglycans and hyaluronic acid, which are also components of the 

ECM, are important for lung homeostasis and proper cellular function. 

Glucosaminoglycans are known to play a significant role in inflammatory and 

noninflammatory lung diseases, inducing different effects on epithelial or 

mesenchymal cell types (Papakonstantinou, Roth et al. 2001; Jiang, Liang et al. 2005; 

Noble and Jiang 2006). Furthermore, GAGs regulate water homeostasis, cell and tissue 

hydration, structure and function, tumour progression, invasion and metastasis, as well 

as tissue repair and remodelling (Souza-Fernandes, Pelosi et al. 2006). This might 

suggest that differential secretion of GAGs by PASMC is associated with the vascular 

remodelling observed in IPAH. In the present study, expression of HA, the major GAG 

produced by PASMC, was significantly increased in IPAH lung tissues. Although the 

relative amount of HA was increased, the levels of the sulfated GAGs, such as 

heparan, dermatan and chondroitin sulfate were decreased, revealing an increased non-

sulfated-to-sulfated GAG ratio. The increased HA content of IPAH lung tissues was 

associated with increased and decreased gene expression of has1 and hyal1, 

respectively. Furthermore, PASMC derived from the lungs of IPAH patients 
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demonstrated a significant decrease in hyal1 mRNA levels compared with PASMC 

obtained from control donor lungs.  

Further in vitro experiments indicated that stimulation of PASMC with TGF-�1 led to 

increased has1 gene expression as early as 2 h after stimulation. This indicated that 

TGF-�1 can directly regulate the levels of HA in the pulmonary vessels. The increased 

HA staining observed in remodelled pulmonary arteries might indicate that HA 

secretion by PASMC can influence endothelial and smooth muscle cell proliferation 

and may regulate vasoreactive responses in IPAH. The latter idea is further supported 

by the observations that selective overexpression of has2 in smooth muscle cells in 

transgenic mice results in increased HA content in the tunica media, enhanced 

mechanical stiffness and strength and accelerated the development of atherosclerosis 

(Chai, Chai et al. 2005). It has been further reported that signalling through the HA 

receptor CD44 can regulate smooth muscle cell function and disease development. The 

expression of CD44 promoted susceptibility to atherosclerosis, macrophage 

recruitment and smooth muscle cell activation and proliferation (Cuff, Kothapalli et al. 

2001; Pure and Cuff 2001). It is interesting that no pulmonary vascular changes have 

been investigated thus far in these studies. It is highly likely that the observed changes 

in HA and CD44 levels in human pulmonary arteries, in the present study, can affect 

the pulmonary vascular stiffness and hence contribute to the increased resistance 

observed in IPAH.  

Further exloring the manner in which HA might regulate different cellular processes, it 

is known that HA binds 1000 times its own mass in water, and, therefore, contributes 

to tissue hydration. Also, it has been reported that increased HA synthesis and turnover 

occurs during both lung inflammation and mesenchymal cell activation. Hyaluronic 

acid regulates cellular processes, such as migration, differentiation and proliferation by 

interacting with cell-surface receptors, such as CD44 or RHAMM (Turley, Noble et al. 

2002), but also by interacting with the toll-like receptors 2 and 4 (TLR 2, 4) (Jiang, 

Liang et al. 2005). The HA-RHAMM interaction regulates focal adhesions as well as 

cytoskeletal changes required for cellular motility, which is also seen in cancer 

invasion and metastasis. The HA-CD44 interaction regulates processes, such as 

leukocyte migration and activation, and tumour invasion and metastasis. Furthermore, 

CD44-dependent clearance of HA fragments is crucial in resolving lung inflammation 

in the bleomycin model of lung injury, indicating an important role for CD44 in the 

resolution of inflammation.  
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4.6 Hyaluronic acid: Jekyll or Hyde 

A factor regulating HA effects is the average molecular mass (Turino and Cantor 

2003). Under physiological conditions, HA is a polymer of high molecular mass 

(1,000 kDa). The HA fragments of lower molecular mass accumulate after tissue 

injury, and are cleared by binding to CD44. In addition, low molecular mass HA (300–

500 kDa) has been reported to prolong the survival of eosinophils in vitro (Ohkawara, 

Tamura et al. 2000), and even lower molecular mass HA fragments (200 kDa), which 

induce the expression of chemokines or inducible nitric oxide synthase by 

macrophages, affect ECM turnover in murine alveolar macrophages (McKee, Penno et 

al. 1996). It has been demonstrated that HA can play diverse roles depending on 

molecular mass. Hyaluronic acid of a molecular mass of 250 kDa induces the 

expression of inflammatory genes, while HA of higher molecular mass exhibits the 

opposite effect, and suppresses chemokine expression (Joddar and Ramamurthi 2006). 

Therefore, it would be of great interest to elucidate in future studies whether HA 

expressed in the vascular system of control donor lung specimen is of different average 

molecular mass than in IPAH specimens. In this context, dysregulation of has/hyal 

expression and/or activity may lead to the generation of HA of different molecular 

masses, thereby exhibiting distinct biological effects, for example, facilitating PASMC 

migration and proliferation, which potentially contribute to the pathogenesis of IPAH. 

The changes in has/hyal expression, along with the change in HA synthesis and 

content in lungs of patients with IPAH, may also potentially result from the tissue 

hypoxia observed in the lungs of patients with IPAH. Notably, it has previously been 

reported that hypoxia potentiates GAG synthesis by primary lung fibroblasts induced 

by TGF-�1 or PDGF-BB, suggesting that hypoxia is a synergistic regulator of the 

increased GAG deposition observed in IPAH (Papakonstantinou, Roth et al. 2002).  

4.7 Conclusion and future directions 

Taken together, the results of the present study demonstrate that TGF-�1 can regulate 

PASMC processes, such as proliferation, migration and adhesion via PAI-1 and 

pulmonary vascular elasticity and resistance, by controlling the levels of HA in the 

lung and the enzyme that regulates HA synthesis.  

It has to be investigated more in depth the exact signalling mechanism of TGF-�-

induced PAI-1 levels in PASMC, which provide insight into other potentially 

interesting cascades involved in pulmonary vascular remodelling. A microarray 
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analysis in PASMC cells stimulated with TGF-�1 would be worth doing, since it 

would reveal novel TGF-�1 regulated genes that would be very useful for better 

understanding of vascular remodeling. 

In terms of the HA regulation, it seems that synergistic regulation of 

glycosaminoglycan-metabolising enzymes in favour of accumulation may, thus, 

regulate the pathological vascular remodelling observed in IPAH, by favouring an 

activated state of PASMC. It would be exciting to investigate the function of HA of 

different molecular mass to identify any differential effects on PASMC function. 

Furthermore, inhibition of the TFG-� signalling cascade in animal models of PAH 

would be an efficient tool to investigate in depth and understand the exact mechanism  

and the regulation of pulmonary vascular remodelling.
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