# Detektions-Mechanismen auf WO<sub>3</sub> bei Einsatz in Verbrennungsabgasen

Inauguraldissertation

zur

Erlangung des Doktorgrades der Naturwissenschaftlichen Fakultät der Justus-Liebig-Universität Gießen

vorgelegt von
Sven Lambert Baumann
aus Offenbach a.M.

Institut für Angewandte Physik
Justus-Liebig-Universität Gießen
Dezember 2003

Dekan : Prof. Dr. V. Metag

1. Berichterstatter: Prof. Dr. D. Kohl

2. Berichterstatter: Prof. Dr. G. Thummes

Tag der mündlichen Prüfung: 13.02.2004

| Z | usamn      | enfassung                                                                        | 1  |  |  |  |
|---|------------|----------------------------------------------------------------------------------|----|--|--|--|
| 1 | Ein        | leitung                                                                          | 6  |  |  |  |
| 2 | Grundlagen |                                                                                  |    |  |  |  |
|   | 2.1        | Kristallvolumen                                                                  | 8  |  |  |  |
|   | 2.2        | Kristalloberfläche                                                               | 9  |  |  |  |
|   | 2.2.       | 1 Physisorption                                                                  | 11 |  |  |  |
|   | 2.2.       | 2 Chemisorption                                                                  | 12 |  |  |  |
|   | 2.2.       | 3 Ionosorption                                                                   | 13 |  |  |  |
|   | 2.2.       | 4 Reversible Adsorption und Vergiftung                                           | 13 |  |  |  |
|   | 2.2.       | 5 Katalysatoren                                                                  | 14 |  |  |  |
|   | 2.3        | Korngrenzen-, Kornhals- und Kornkontrolliertes Modell                            | 16 |  |  |  |
|   | 2.3.       | 1 WO <sub>3</sub> -Sensitivität in Abhängigkeit der Korngröße und Debye-Länge    | 19 |  |  |  |
|   | 2.3.       | WO <sub>3</sub> -Leitfähigkeit an Kornhälsen und Kornoberflächen                 | 20 |  |  |  |
|   | 2.4        | Materialeigenschaften von WO <sub>3</sub>                                        | 21 |  |  |  |
|   | 2.5        | Elektronische Eigenschaften von WO <sub>3</sub>                                  | 23 |  |  |  |
|   | 2.6        | Material- und elektronische Eigenschaften von TiO <sub>2</sub>                   | 27 |  |  |  |
|   | 2.7        | Materialeigenschaften des WO <sub>3</sub> /TiO <sub>2</sub> -Systems             | 28 |  |  |  |
| 3 | Sta        | nd der Forschung                                                                 | 30 |  |  |  |
|   | 3.1        | Einfluss der Präparationsparameter auf die WO <sub>3</sub> -Schichteigenschaften | 30 |  |  |  |
|   | 3.1.       | 1 Herstellungsverfahren für Dünn- und Dickschichten                              | 30 |  |  |  |
|   | 3.1.       | 2 Substrattemperatur während der Deposition                                      | 31 |  |  |  |
|   | 3.1.       | Nachträgliche Temperung (Sintern)                                                | 32 |  |  |  |
|   | 3.1.       | 4 Katalytische Schichten                                                         | 33 |  |  |  |
|   | 3.1.       | Schichtsysteme aus zwei Metalloxiden                                             | 34 |  |  |  |
|   | 3.1.       | 6 Kristallphasen                                                                 | 34 |  |  |  |
|   | 3.2        | Betriebstemperatur von WO <sub>3</sub> -Sensoren                                 | 35 |  |  |  |
|   | 3.3        | Modelle zur Leitfähigkeit von WO <sub>3</sub> bei verschiedenem Gasangebot       | 38 |  |  |  |
|   | 3.3.       | 1 Betrieb an Luft                                                                | 38 |  |  |  |
|   | 3.3.       | 2 O <sub>2</sub> -Gasangebot                                                     | 39 |  |  |  |
|   | 3.3.       | NO <sub>2</sub> -, NO- oder SO <sub>2</sub> -Gasangebot                          | 39 |  |  |  |
|   | 3.3.       | 4 CH <sub>4</sub> - und CO-Gasangebot                                            | 39 |  |  |  |
|   | 3.3.       | 5 NH <sub>3</sub> -Gasangebot                                                    | 40 |  |  |  |
|   | 3.3.       | 6 H <sub>2</sub> S-Gasangebot                                                    | 41 |  |  |  |
|   | 3.3.       | 7 Ethanol-Gasangebot                                                             | 41 |  |  |  |

|   | 3.3.8    | Phosphorverbindungen als Gasangebot                                                 | 42 |
|---|----------|-------------------------------------------------------------------------------------|----|
| 4 | Experim  | entelles                                                                            | 44 |
|   | 4.1 Prä  | paratives                                                                           | 44 |
|   | 4.1.1    | WO <sub>3</sub> -Dünn- und Dickschicht-Sensoren                                     | 44 |
|   | 4.1.2    | WO <sub>3</sub> -Dünnschichten                                                      | 45 |
|   | 4.1.3    | WO <sub>3</sub> /TiO <sub>2</sub> -Dickschichten                                    | 45 |
|   | 4.1.4    | WO <sub>3</sub> /TiO <sub>2</sub> -Presslinge                                       | 47 |
|   | 4.2 Mes  | ssmethoden                                                                          | 48 |
|   | 4.2.1    | Infrarot-Strahlungspyrometer                                                        | 48 |
|   | 4.2.2    | Gasmischanlage                                                                      | 49 |
|   | 4.2.3    | Impedanzspektroskopie                                                               | 50 |
|   | 4.2.4    | Röntgen-Photoemissions-Spektroskopie (XPS)                                          | 54 |
|   | 4.2.5    | Röntgendiffraktometrie (XRD)                                                        | 57 |
|   | 4.2.6    | Bestimmung und Interpretation der thermischen Aktivierungsenergie                   | 58 |
| 5 | Ergebni  | sse                                                                                 | 60 |
|   | 5.1 Ten  | nperatur-Heizspannungs-Diagramme der WO <sub>3</sub> -Sensoren                      | 60 |
|   | 5.2 Elel | ktrisches Leitfähigkeitsverhalten von WO <sub>3</sub> -Sensoren                     | 61 |
|   | 5.2.1    | Bestimmung der Aktivierungsenergie an Luft                                          | 61 |
|   | 5.2.2    | Einfluss der Messspannung auf das Sensorsignal                                      | 63 |
|   | 5.3 Imp  | oedanzspektroskopie an WO <sub>3</sub> -Sensoren                                    | 66 |
|   | 5.3.1    | Darstellung der Sensoren durch ein Ersatzschaltbild                                 | 66 |
|   | 5.3.2    | Sensitivität                                                                        | 67 |
|   | 5.3.3    | Impedanzmessungen unter NO <sub>2</sub> -Angebot                                    | 67 |
|   | 5.3.3.1  | Sensitivität bei NO <sub>2</sub> -Angebot                                           | 74 |
|   | 5.3.4    | Impedanzmessungen unter NO-Angebot                                                  | 76 |
|   | 5.3.4.1  | Sensitivität bei NO-Angebot                                                         | 79 |
|   | 5.3.5    | Impedanzmessungen unter CO-Angebot                                                  | 80 |
|   | 5.3.5.1  | Sensitivität bei CO-Angebot                                                         | 86 |
|   | 5.4 Gle  | ichspannungsmessungen mit WO <sub>3</sub> -Sensoren bei SO <sub>2</sub> -Gasangebot | 88 |
|   | 5.5 XPS  | S-Messungen an WO <sub>3</sub> -Dünnschichten                                       | 91 |
|   | 5.5.1    | Übersichtsprofile                                                                   | 91 |
|   | 5.5.2    | Platin-Tiefenprofile (Pt4f)                                                         | 94 |
|   | 5.5.3    | Sauerstoff-Tiefenprofile (O1s)                                                      | 96 |

|   | 5.5.       | 4 Wolfram-Tiefenprofile (W4f)                                                                | 98                                                        |
|---|------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|   | 5.5.       | 5 Kohlenstoff-Tiefenprofile (C1s)                                                            | 101                                                       |
|   | 5.5.       | Quantitative Zusammensetzung der WO <sub>3</sub> -Dünnschichten                              | 102                                                       |
|   | 5.6        | Strukturanalyse der WO <sub>3</sub> -Dünnschichten mittels XRD                               | 103                                                       |
|   | <b>5.7</b> | Korngrößenbestimmung der WO <sub>3</sub> -Dünnschichten mittels XRD                          | 104                                                       |
|   | 5.8        | XPS-Messungen an WO <sub>3</sub> /TiO <sub>2</sub> -Dickschichten                            | 106                                                       |
|   | 5.8.       | l Übersichtsprofile                                                                          | 106                                                       |
|   | 5.8.       | 2 Sauerstoff-Tiefenprofile (O1s)                                                             | 108                                                       |
|   | 5.8.       | Wolfram-Tiefenprofile (W4f)                                                                  | 110                                                       |
|   | 5.8.       | 4 Titan-Tiefenprofile (Ti2p)                                                                 | 112                                                       |
|   | 5.8.       | 5 Kohlenstoff-Tiefenprofile (C1s)                                                            | 114                                                       |
|   | 5.8.       | Quantitative Zusammensetzung der WO <sub>3</sub> /TiO <sub>2</sub> -Dickschichten            | 115                                                       |
|   | 5.9        | Strukturanalyse der WO <sub>3</sub> /TiO <sub>2</sub> -Dickschichten mittels XRD             | 116                                                       |
|   | 5.10       | Korngrößenbestimmung der WO <sub>3</sub> /TiO <sub>2</sub> -Dickschichten mittels XRD        | 117                                                       |
|   | 5.11       | Strukturanalyse der WO <sub>3</sub> /TiO <sub>2</sub> -Presslinge mittels XRD                | 119                                                       |
|   | 5.12       | Korngrößenbestimmung der WO <sub>3</sub> /TiO <sub>2</sub> -Presslinge mittels XRD           | 120                                                       |
| 6 | Dis        | kussion                                                                                      | 122                                                       |
|   | 6.1        | Stabilität von WO <sub>3</sub> und WO <sub>3</sub> /TiO <sub>2</sub>                         | 122                                                       |
|   | 6.1.       | 1 Bestimmung der Stöchiometrie                                                               | 123                                                       |
|   | 6.1.       | Stöchiometrieänderung der WO <sub>3</sub> -Dünnschichten bei Betrieb in Luft                 | 123                                                       |
|   | 6.1.       | Stöchiometrieänderung der WO <sub>3</sub> /TiO <sub>2</sub> -Dickschichten bei Betrieb im Ab | gas 126                                                   |
|   | 6.2        | Gassensorische Charakterisierung der WO <sub>3</sub> -Sensoren                               | 131                                                       |
|   | 6.2.       | 1 Ersatzschaltbild der Sensoren                                                              | 131                                                       |
|   | 6.2.       | 2 WO <sub>3</sub> -Sensoren bei NO <sub>2</sub> -Angebot                                     | bestimmung der WO <sub>3</sub> -Dünnschichten mittels XRD |
|   | 6.2.       | WO <sub>3</sub> -Sensoren bei NO-Angebot                                                     | 136                                                       |
|   | 6.2.       | WO <sub>3</sub> -Sensoren im simulierten Abgasstrom mit SO <sub>2</sub>                      | 142                                                       |
|   | 6.2.       | Betrieb von WO <sub>3</sub> /TiO <sub>2</sub> -Schichten in Abgas                            | 150                                                       |
| T | iteratu    | μ                                                                                            | 152                                                       |

Zusammenfassung

## Zusammenfassung

In der vorliegenden Arbeit wurden Detektions-Mechanismen auf WO<sub>3</sub>-Schichten bei dem Einsatz in Verbrennungsabgasen untersucht. Unter Anwendungsbedingungen sind die Sensoren dabei einer komplexen Atmosphäre aus NO, NO<sub>2</sub>, CO, SO<sub>2</sub>, CO<sub>2</sub> und O<sub>2</sub> ausgesetzt. Die Untersuchungen dieser Arbeit beschäftigen sich mit den Reaktionsmechanismen der Stickoxide, des Kohlenmonoxids und des Schwefeldioxids auf der Halbleiteroberfläche. Zur einfacheren Modellbildung wurden die genannten Gase den Sensorelementen einzeln angeboten.

Um die Stabilität der gassensorischen Eigenschaften zu evaluieren, wurden Alterungstests durchgeführt.

Es wurden zwei identisch hergestellte gesputterte WO<sub>3</sub>-Dünnschichten verglichen, nachdem eine Probe einem Sensorbetrieb von 50 Stunden in synthetischer Luft bei einer Betriebstemperatur von 500 °C unterzogen wurde. Hierbei wurde der Einfluss des Betriebs auf deren Stöchiometrie und Zusammensetzung mit XPS und deren Morphologie (Kristallstruktur und Korngröße) mit XRD untersucht.

Bei Langzeittests mit WO<sub>3</sub>-Sensoren wurde von [Meg 99<sup>2</sup>] ein Materialabtrag der sensitiven Schicht bis hin zum vollständigen Ausfall bei Betriebstemperaturen ab 400 °C festgestellt. Aufgrund der Kenntnis, dass durch Zugabe von TiO<sub>2</sub> sich die Stabilität von WO<sub>3</sub> verbessert [Pin 01], wurden vier identisch präparierte siebgedruckte WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten untersucht. Von diesen wurden zwei für 80 Stunden mit einer Temperatur von 500 °C zum einen in synthetischem Abgas und zum anderen in Dieselbrennerabgas betrieben. Mittels XPS wurde der Einfluss des Betriebs im Abgas auf deren Stöchiometrie sowie Zusammensetzung und mittels XRD wurden morphologische Veränderungen untersucht. Weiterhin wurde mit XPS untersucht, ob eine durch das Abgas hervorgerufene Vergiftung der Schichten auftritt.

Weiterhin wurde der Einfluss verschiedener Temperprozesse auf die Morphologie von WO<sub>3</sub>/TiO<sub>2</sub>-Presslingen untersucht. Dazu wurde ein Teil der Presslinge nach der Präparation bei 600 °C bzw. 800 °C für zehn Stunden getempert, während ein weiterer Teil ungetempert belassen wurde.

Zur Untersuchung der Gassensitivität wurden gesputterte WO<sub>3</sub>-Dünnschicht-Sensoren und siebgedruckte WO<sub>3</sub>-Dickschicht-Sensoren verwendet. Diese unterscheiden sich in ihrer Elektrodengeometrie sowie in den bei der Präparation verwendeten Temperabläufen.

| Untersuchte Schichten                            | Stöchiometrie | Morphologie | Gassensitivität |
|--------------------------------------------------|---------------|-------------|-----------------|
| WO <sub>3</sub> -Dünnschichten                   | X             | X           |                 |
| WO <sub>3</sub> /TiO <sub>2</sub> -Dickschichten | X             | X           | X               |
| WO <sub>3</sub> /TiO <sub>2</sub> -Presslinge    |               | X           |                 |
| WO <sub>3</sub> -Sensoren                        |               |             | X               |

1 Präparation

1.1 WO<sub>3</sub>-Dünnschicht (S. 45)

1.2 WO<sub>3</sub>/TiO<sub>2</sub>-Dickschicht (S. 45)

1.3 WO<sub>3</sub>/TiO<sub>2</sub>-Presslinge (S. 47)

1.4 WO<sub>3</sub>-Dünn- und Dickschicht-Sensoren (S. 44) 2 Zusammenfassung

## 2. Charakterisierung

Da die elektronischen und somit die gassensorischen Eigenschaften von WO<sub>3-X</sub> von der Stöchiometrie abhängen, wurde diese von den WO<sub>3</sub>-Dünnschichten sowie von den WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten mit verschiedenen Auswertemethoden ermittelt und diese gegeneinander diskutiert. Für eine grobe Abschätzung der Stöchiometrie wird die Schichtfarbe herangezogen. Eine genaue Bestimmung der Stöchiometrie erfolgt aus den XPS-Messungen. Dazu werden die Atomprozente der jeweiligen Atomsorte anhand der XPS-Intensität und die Verschiebung der Bindungsenergie des W4f- sowie der des O1s-Niveaus ausgewertet.

## 2.1 WO<sub>3</sub>-Stöchiometrie (S. 123)

Aus diesen verschiedenen Auswertemethoden resultieren für die WO<sub>3</sub>-Dünnschichten verschiedene Wolfram- zu Sauerstoffverhältnisse. Eine Abschätzung der Stöchiometrie anhand der Schichtfarbe ist aufgrund der zu geringen Schichtdicke nicht möglich. Für am plausibelsten wird das Ergebnis der Verschiebung der W4f-Bindungsenergie gehalten, aus der für beide Proben eine leichte Unterstöchiometrie des WO<sub>X</sub> mit x zwischen 2,926 und 2,967 resultiert. Somit führt der Betrieb bei 500 °C in synthetischer Luft zu keiner Veränderung der Stöchiometrie. Beide WO<sub>3</sub>-Dünnschichten liegen gleichzeitig in der triklinen sowie der monoklinen Phase vor, die sich durch den zusätzlichen Betrieb bei 500 °C ebenfalls nicht verändern.

# 2.2 WO<sub>3</sub>-Morphologie (S. 103)

Die Korngröße der Schichten beträgt zwischen 110 nm und 125 nm, wobei kein signifikantes Kornwachstum durch den zusätzlichen Betrieb zu erkennen ist.

# 2.3 WO<sub>3</sub>/TiO<sub>2</sub>-Stöchiometrie (S. 126)

Die Stöchiometrie der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten wird analog bestimmt. Die Auswertung der Schichtfarbe und der Verschiebung des W4f-Bindungsenergieniveaus liefern als Ergebnis eine leichte Unterstöchiometrie des WO<sub>X</sub> mit x zwischen 2,926 und 2,967. Nur an der Oberfläche der bei 500 °C in Dieselabgas betriebenen Probe wird eine leichte Nachoxidation zu stöchiometrischem WO<sub>3</sub> festgestellt. Aufgrund der Verschiebung der Ti2p-Peaks in Richtung höherer Bindungsenergie wird bei allen Proben von stöchiometrischem TiO<sub>2</sub> in der Anatasmodifikation ausgegangen.

# 2.4 WO<sub>3</sub>/TiO<sub>2</sub>-Morphologie (S. 116)

Bei den WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten und bei den WO<sub>3</sub>/TiO<sub>2</sub>-Presslingen liegen die WO<sub>3</sub>-Körner gleichzeitig in der triklinen sowie der monoklinen Phase und die TiO<sub>2</sub>-Körner in der Anatasmodifikation vor. Eine Ausnahme stellt nur der ungetemperte WO<sub>3</sub>/TiO<sub>2</sub>-Pressling dar, der keine Kristallstruktur besitzt (amorph). Die Kristallstrukturen der untersuchten Schichten erweisen sich in den verwendeten Temperaturbereichen und unter Betrieb im Abgas als stabil.

Bei den WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten liegt die Größe der WO<sub>3</sub>-Körner zwischen 98 nm und 124 nm und die der TiO<sub>2</sub>-Körner im Bereich von 167 nm bis 184 nm. Dabei wird sowohl für die WO<sub>3</sub>-Körner als auch die TiO<sub>2</sub>-Körner kein signifikantes Kornwachstum durch den 80-stündigen Betrieb im Abgas mit 500 °C festgestellt.

Die Korngröße der  $WO_3/TiO_2$ -Presslinge liegt für die  $WO_3$ -Körner zwischen 34 nm und 36 nm und für die  $TiO_2$ -Körner zwischen 136 nm und 177 nm. Auch bei diesen wurde kein signifikantes Kornwachstum durch Erhöhung der Sintertemperatur von 600 °C auf 800 °C festgestellt.

Zusammenfassung 3

Die gassensorischen Eigenschaften der WO<sub>3</sub>-Schichten bei Angebot der im Abgas vorkommenden Gase NO<sub>2</sub>, NO und CO sowie SO<sub>2</sub> wurden untersucht. Als Messgröße dient hierbei die Impedanz der Schichten. Einzig bei SO<sub>2</sub>-Angebot wird die Änderung des Gleichstromwiderstands der Schichten betrachtet.

3. Detektionsmechanismen auf WO<sub>3</sub>

Aus den Resultaten der Impedanzmessungen wurde ein Ersatzschaltbild für die Sensoren erstellt, welches aus einer Reihenschaltung eines ohmschen Widerstandes R<sub>0</sub> und eines RC-Gliedes besteht.

Dabei wird das RC-Glied Korngrenzeffekten und somit der Verarmungsrandschicht zugeordnet. Der Widerstand des RC-Gliedes liegt im  $k\Omega$ -Bereich und zeigt in Abhängigkeit der Gaskonzentration bei  $NO_2$  und NO eine starke und bei CO eine schwache und indifferente Änderung. Die Kapazität C liegt im pF-Bereich und zeigt bei NO sowie CO nahezu keine Konzentrationsabhängigkeit (konstant). Bei  $NO_2$  verkleinert sie sich, wobei die Veränderung bei 500 °C stärker ausgeprägt ist als bei 400 °C. Der Widerstand  $R_0$  wird dem Kristallvolumenwiderstand zugeordnet und liegt im  $\Omega$ -Bereich. In Abhängigkeit der Gaskonzentration ist dieser bei Angebot von  $NO_2$ , NO und CO nahezu konstant.

Das Widerstandsverhalten der WO<sub>3</sub>-Schichten beim Angebot der Stickoxide NO<sub>2</sub> und NO wird im wesentlichen durch die Verarmungsrandschicht an den Korngrenzen erklärt.

Bei NO<sub>2</sub>-Angebot zeigen die untersuchten Schichten eine der Konzentration proportionale Widerstandserhöhung, die bei hohen Konzentrationen in eine Sättigung übergeht. Bei den verwendeten Betriebstemperaturen sind die WO<sub>3</sub>-Dickschichten jeweils eine Größenordnung empfindlicher auf NO<sub>2</sub> als die WO<sub>3</sub>-Dünnschichten, was mit einer schwächeren Versinterung der Dickschichten erklärt wird. Unabhängig vom Schichttyp ist die Sensitivität bei einer Betriebstemperatur von 400 °C etwa eine Größenordung höher als bei 500 °C.

Der Widerstandsanstieg bei NO<sub>2</sub>-Angebot wird mit der Adsorption von NO<sub>2</sub> über eines seiner Sauerstoffatome an der WO<sub>3</sub>-Oberfläche (dominanter Prozess) oder mit dem Einbau eines der Sauerstoffatome des NO<sub>2</sub> in eine Sauerstofffehlstelle erklärt.

Bei Angebot von NO tritt bei einer Betriebstemperatur von 300°C zum einen ein dominanter Oxidations- und zum anderen ein schwacher Reduktionsprozess auf.

Die beobachtete Widerstandserhöhung bei niedrigeren Konzentrationen wird mit der Bildung von  $NO^-$ -Adsorbaten an der Oberfläche beschrieben, die eine Erhöhung der Potentialbarriere an

den Korngrenzen verursachen.

Die bei höheren NO-Konzentrationen viel schwächer ausgeprägte Widerstandserniedrigung wird mit der Umsetzung eines kleinen Teils des gasförmigen NO mit  $O^-$ -Adsorbaten an der Oberfläche zu NO<sub>2</sub> und dessen Desorption erklärt.

Wie auch bei NO<sub>2</sub> sind die WO<sub>3</sub>-Dickschichten auf NO empfindlicher als die WO<sub>3</sub>-Dünnschichten.

3.1 Nachweismechanismus von NO<sub>2</sub> (S. 133)

3.2 Nachweismechanismus von NO (S. 136)

<u>4</u> Zusammenfassung

3.3 CO-Detektion (S. 86) Auf CO zeigen die WO<sub>3</sub>-Dick- sowie WO<sub>3</sub>-Dünnschichten mit einer Betriebstemperatur von 300 °C als auch 400 °C eine geringe Sensitivität und ein indifferentes Verhalten im untersuchten Konzentrationsbereich.

3.4 Nachweismechanismus von SO<sub>2</sub> (S. 142) Werden WO<sub>3</sub>-Schichten in einem simuliertem Abgasstrom (SO<sub>2</sub> + 4% O<sub>2</sub>, Rest N<sub>2</sub>, trocken) betrieben, ist deren Widerstandsverlauf stark von der Betriebstemperatur abhängig.

Zur folgenden Modellbildung wurden zusätzlich Ergebnisse von [Shi 01], [Ber 96] und [Frü 96] verwendet, die sich mit Angebot von SO<sub>2</sub> sowie H<sub>2</sub>S auf WO<sub>3</sub>- und SnO<sub>2</sub>-Schichten beschäftigt haben.

Bei Temperaturen oberhalb von 500 °C verhält sich  $SO_2$  als reduzierendes Gas, indem durch die Bildung von  $SO_3$  mit dem angebotenen  $SO_2$  und  $O^-$ -Oberflächenadsorbaten eine vollständig reversible

Widerstandserniedrigung auftritt. Diese Reduktion ist aus dem technischen Kontaktverfahren zur Herstellung von  $SO_3$  bekannt.

Bei tiefen Temperaturen unterhalb von 500 °C reagiert SO<sub>2</sub> auf der WO<sub>3</sub>-Oberfläche als oxidierendes Gas mit verschiedenen parallelen sowie aufeinander folgenden Oberflächenreaktionen. Die zu beobachtende Widerstandserhöhung resultiert aus der Bildung von  $SO_2^-$ -Ionen und aus der Bildung von Sulfitionen  $SO_3^{2^-}$  mit  $O^-$ -Oberflächenadsorbaten. Ein Teil der dabei auf der Oberfläche entstehenden Sulfitionen bildet daraufhin mit weiteren  $O^-$ -Adsorbaten Sulfationen an der Oberfläche, woraus eine anschließende teilweise Widerstandserniedrigung resultiert. Parallel dazu bilden sich stabile Oberflächensulfite mit Gittersauerstoff der WO<sub>3</sub>-Oberfläche. Von diesen Oberflächensulfiten verbindet sich wiederum ein Teil mit  $O^-$ -Adsorbaten zu stabilen Oberflächensulfaten. Aufgrund der bei dieser Temperatur beobachteten irreversiblen Oberflächensulfatisierung ("Vergiftung") nimmt die Intensität des Signalverlaufs bei weiteren SO<sub>2</sub>-Angeboten mit höherer Konzentration ab.

Die SO<sub>2</sub>-Empfindlichkeit der WO<sub>3</sub>-Sensoren ist bei 350 °C eine Größenordnung höher als bei 500 °C. Allerdings gilt dies nur für das erste SO<sub>2</sub>-Angebot, da bei weiteren die Sensitivität durch die Vergiftung der Oberfläche bei 350 °C stark abnimmt.

3.5 WO<sub>3</sub>/TiO<sub>2</sub> im Abgas (S. 150) Nach einem Betrieb der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten mit 500 °C in realem Diesel- sowie synthetischem Abgas mit einem Sauerstoffgehalt von jeweils 10 % wurden mittels XPS keine irreversiblen Oberflächenadsorbate wie z.B. Sulfite, Sulfate oder Verbindungen von Stickstoff, Phosphor, Silizium oder Kohlenwasserstoffen gefunden, die aus dem Betrieb im Abgas resultieren. Somit wird eine Vergiftung der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten bei einer Betriebstemperatur von 500 °C in Abgas ausgeschlossen, wodurch sich dieses Schichtsystem für Abgasmessungen eignet.

<u>6</u> Einleitung

## 1 Einleitung

Zur weiteren Reduzierung der Umweltbelastung durch Kraftfahrzeuge werden immer strengere Abgasnormen durch den Gesetzgeber eingeführt. Aus diesem Grund wird ein On-Board-System zur Regelung und Messung des Abgases benötigt.

Halbleiter-Gassensoren sind im Bereich der Gaserkennung weitverbreitet und bieten sich als eine kostengünstige Lösungsmöglichkeit an. In zunehmendem Maße haben sich diese aufgrund ihrer Empfindlichkeit, Schnelligkeit, Robustheit, geringen Abmessungen und der direkten Erzeugung eines elektrischen Messsignals in vielen Anwendungen qualifiziert. Zu diesen gehören zum Beispiel das System zur automatischen Lüftungsklappensteuerung im Kfz-Bereich [Die 97] und der Einsatz in industriellen Brandmeldern [Kel 96].

Die Untersuchungen dieser Arbeit wurden im Rahmen des bmb+f Verbundprojektes MEGAS – Multi-Elektroden-Gassensorsystem durchgeführt, in dem das Ziel in der Bestimmung der NO-Konzentration im Abgas von Diesel-Motoren mit Hilfe von Halbleiter-Gassensoren bestand. Dabei wurde Wolframoxid aufgrund seiner guten NO<sub>X</sub>-Detektionseigenschaften (s. Kapitel 3.2) als sensitives Schichtmaterial verwendet. Da im Dieselkatalysator die Kombination aus Wolframoxid und Titandioxid verwendet wird und die Zumischung von TiO<sub>2</sub> zu einer Verbesserung der Stabilität führt [Pin 01], wurden auch Untersuchungen an diesem Metalloxidsystem durchgeführt.

In dieser Anwendung muss der Sensor sowohl gegenüber den chemischen Bedingungen des Motorabgases wie auch gegenüber den hohen Abgastemperaturen von bis zu 500 °C beständig sein. Dabei sind die im Dieselabgas typisch vorkommenden Stoffe NO, NO<sub>2</sub>, CO und SO<sub>2</sub>. Die restliche Abgasatmosphäre besteht aus 4 % bis 20 % O<sub>2</sub>, 7 % bis 12 % CO<sub>2</sub> und einer relativen Feuchte von 10 % bei Temperaturen zwischen 200 °C und 500 °C.

Das Antriebskonzept des Diesel-Motors erfährt aufgrund des besseren thermodynamischen Wirkungsgrades reges Interesse. Gegenüber dem Otto-Motor relativiert sich der Vorteil dieses Motorkonzepts jedoch durch einen deutlich erhöhten Schadstoffausstoß von Stickstoffmonoxid und Rußpartikeln. Der Einsatz des herkömmlichen Dreiwegekatalysators bringt hier/bei NO<sub>X</sub>-Problematik keine Abhilfe, da die Verbrennung bei Dieselmotoren ausschließlich im mageren Bereich stattfindet, in dem der Konversionsgrad dieses Katalysators unzureichend ist. Um hier die Defizite bei der Abgasreinigung zu beheben wird das SCR-Verfahren (selective catalytic reduction) zur Senkung des Ausstoßes von NO<sub>X</sub>

Einleitung 7

verwendet. Bei diesem wird ein Dieselkatalysator auf der Basis von Titandioxid/Wolframoxid verwendet, der für seine Funktion die dosierte Zugabe eines reduzierenden Stoffes benötigt. Dabei wird Ammoniak als Reduktionsmittel eingesetzt. Mit diesem Verfahren wurden erhebliche Fortschritte bei der Emissionsreduzierung erzielt. Jedoch ist bei Einsatz dieses Verfahrens in der Praxis eine Sensorik erforderlich, um einen NO-Schlupf durch Unterdosierung des Reduktionsmittels bzw. einen Schlupf des Reduktionsmittels bei dessen Überdosierung zu verhindern. Die aus systemtechnischer Seite hierfür ideale Lösung ist ein NO-Sensor, der im Abgas eingesetzt werden kann.

Bei der Emissionsreduzierung von Kraftfahrzeugen mit Otto-Motoren wurden wesentliche Erfolge durch die Einführung des Dreiwegekatalysators und eines geschlossenen Regelkreises mit Verwendung von λ-Sonden erreicht. Dieser Regelkreis erlaubt die Verbrennung präzise bei stöchiometrischen Kraftstoff-Luft-Gemischen ablaufen zu lassen, wodurch eine optimale Abgasreinigung durch den Dreiwegekatalysator ermöglicht wird. Zum weiteren Ausbau dieser umweltschonenden Technologie wird eine kontinuierliche Funktionsprüfung des Dreiwegekatalysators benötigt. Für diese Funktionsüberprüfung sind neue Kfz-Abgassensoren vorzusehen, die auf Kohlenwasserstoffe oder auf Stickoxide reagieren. Während sich für die Sensoren für Kohlenwasserstoffe bereits gangbare Wege abgezeichnet haben, existieren derzeit keine NO-Sensoren der geforderten Robustheit und Güte.

Ebenso wird für Kleinfeuerungsanlagen das Konzept einer abgasgeregelten Verbrennung diskutiert. Auch dabei werden Sensoren zur Bestimmung der NO-Konzentrationen im Abgas dieser Anlagen (Abgastemperaturen bis 250°C, 100 ppm NO<sub>X</sub>) benötigt.

#### 2 Grundlagen

Die Grundlegende Funktionsweise von Halbleitergassensoren wird in Kapitel 2.1 erläutert. Wie auch bei anderen in der Gassensorik verwendeten Metalloxiden (z.B. SnO<sub>2</sub>) hängt die elektrische Leitfähigkeit von WO<sub>3</sub> von der umgebenden Gasatmosphäre durch Physisorption, Chemisorption und katalytischen Reaktionen zwischen Gasen und der Materialoberfläche (s. Kapitel 2.2) sowie von den Korneigenschaften der sensitiven Schicht (s. Kapitel 2.3) ab.

Die wichtigen Eigenschaften von Gassensoren sind Sensitivität, Selektivität und Stabilität. Idealerweise sollte ein Sensor auf sehr niedrige Konzentrationen (ppb) des zu detektierenden Gases (Zielgas) ansprechen und auf Gase (Quergase/ Störgase) nicht.

Einen sehr starken Einfluss auf diese Sensoreigenschaften hat zum einen die Mikrostruktur und Morphologie der Metalloxidschicht und zum anderen die Konzentration und Verteilung von in die Schicht eingebrachten Dotiermetallen. Eine ausreichende Stabilität des Grundsignals gewährleistet eine Langzeitstabilität der Gassensoren. Im Hinblick auf die Stabilität sollte die Sensoroberfläche resistent gegenüber einer eventuellen Vergiftung des sensitiven Materials durch irreversible Adsorption bestimmter Stoffe sein, durch die der Sensor für immer unbrauchbar wird. Eine solche Vergiftung ist z.B. bei SnO<sub>2</sub> als Sensor-Material bekannt, wenn dieses mit Schwefelverbindungen wie z.B. SO<sub>2</sub> oder H<sub>2</sub>S in Berührung kommt und sich an der Oberfläche Sulfatgruppen (s. Kapitel 2.2.4) bilden.

#### 2.1 Kristallvolumen

Die elektronischen Eigenschaften vieler oxidischer Halbleiter wie z.B. WO<sub>3</sub>, SnO<sub>2</sub>, TiO<sub>2</sub> oder Ga<sub>2</sub>O<sub>3</sub> wird durch Sauerstofffehlstellen im Kristallgitter, dem sogenannten "bulk" oder Kristallvolumen, bestimmt.

Dieser Vorgang kann folgendermaßen beschrieben werden:

$$O_O \Leftrightarrow V_O + \frac{1}{2}O_{2gas} + 2 \cdot e^- \tag{2.1}$$

Diese Sauerstofffehlstellen wirken also als Elektronendonatoren und es handelt sich somit um n-Halbleiter. Bei hohen Temperaturen stellt sich zwischen dem Sauerstoffpartialdruck in der Umgebungsatmosphäre und der Stöchiometrieabweichung des Kristalls ein thermodynamischer Gleichgewichtszustand ein. Diese Einstellung des

Gleichgewichtszustandes kann bei niedrigen Temperaturen jedoch so langsam sein, dass die Sauerstofffehlstellen im Kristallvolumen quasi "eingefroren" sind. Bei den in der Gassensorik typisch verwendeten Halbleitermaterialien wie SnO<sub>2</sub>, Ga<sub>2</sub>O<sub>3</sub> oder WO<sub>3</sub> ist dieses "Einfrieren" der Sauerstofffehlstellen bis Temperaturen von 600 °C bis 1.000 °C. [Dix 98] hat hierzu bei der Untersuchung des O2p- sowie W5d-Niveaus von reduzierten WO<sub>3</sub>-Einkristalloberflächen mittels Ultraviolett-Photoelektronenspektroskopie (UPS) festgestellt, dass eine Temperung bei 580 °C für 2 Stunden im Vakuum eine teilweise Restauration der Oberflächenstöchiometrie durch eine Sauerstoffdiffusion aus dem Kristallvolumen hervorruft.

#### 2.2 Kristalloberfläche

Eine Oberfläche stellt eine Unterbrechung der Gitterperiodizität dar. Die daraus resultierenden elektronischen Eigenschaften werden aus lokalen Energiezuständen an der Oberfläche bestimmt, den sogenannten Oberflächenzuständen, die sich energetisch auch in der verbotenen Zone des Kristalls befinden können.

Aufgrund der Angleichung der Fermienergien findet ein Ladungsaustausch zwischen den Oberflächenzuständen und dem Kristallvolumen statt, wobei sich lokalisierte Oberflächenladungen bilden. Hierbei spricht man von intrinsischen Oberflächenzuständen. Diese Bildung von lokalisierter Oberflächenladung wird zusätzlich durch die Adsorption von Gasen wie etwa Umgebungssauerstoff oder –wasser in Form von  $O_2^-$ ,  $O^-$ ,  $O^{2-}$  oder  $OH^-$  an der Oberfläche verstärkt, indem dabei weitere Elektronen aus dem Kristallvolumen eingefangen werden. Bei diesem Vorgang spricht man von extrinsischen Oberflächenzuständen.

Auf die Adsorptions- und Desorptionsvorgänge von Sauerstoff und Wasser aus der Umgebungsluft auf einer WO<sub>3</sub>-Oberfläche wird in Kapitel 3.3.1 eingegangen.

Durch die Verschiebung der freien Ladungsträger bildet sich eine Bandverbiegung aus, welche sich durch Lösen der Poissongleichung bestimmen lässt [Mad 89]:

$$\frac{d^2\Phi(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon \cdot \varepsilon_0} = \frac{e \cdot N_D}{\varepsilon \cdot \varepsilon_0}$$
 (2.2)

mit  $\rho$  = Ladungsdichte im Kristallvolumen

e = Elektronenladung

N<sub>D</sub>= Donatorendichte

Randbedingung:  $d\Phi/dx = 0$  bei x = L

L = Dicke der Raumladungsschicht

Die dabei entstehende Raumladungsschicht entsteht durch die Kompensation der Verschiebung der freien Elektronen durch die ortsfesten positiven Gitteratomrümpfe. Die Bandverbiegung bei Einfang von Elektronen in Akzeptoren an der Oberfläche, wie z.B. Sauerstoff, führt zu einer Abnahme der Konzentration (Verarmung) freier Ladungsträger in der Nähe der Kristalloberfläche. Diese Ausbildung einer Verarmungsrandschicht an der Oberfläche eines n-Halbleiters wie z.B. WO<sub>3</sub> zeigt Abbildung 2-1.

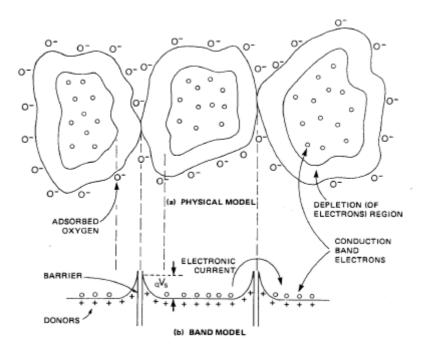



Abbildung 2-1: Polykristalliner n-Halbleiter mit Verarmungsrandschichten an den Kornoberflächen durch O2-Adsorption und das dazugehörige Bänderschema [Mad 89]

Durch diese Bandverbiegung wird letztlich die Adsorption von Sauerstoff begrenzt. Befindet sich das Niveau der Oberflächenakzeptoren energetisch auf dem elektrochemischen Potential des Kristallvolumen, so ist keine Chemisorption mehr möglich. Dieser dabei ausgebildete Gleichgewichtszustand wird als "Fermilevel-pinning" bezeichnet. Somit kann das Energieniveau der Oberflächenzustände die Fermienergie des Systems bestimmen. Durch zweimaliges Integrieren der Poissongleichung lässt sich die Höhe der Barriere an der Oberfläche  $(V_B = V(x=0))$  berechnen:

$$V_B = \frac{e \cdot N_D \cdot L^2}{2 \cdot \varepsilon \cdot \varepsilon_0} \tag{2.3}$$

mit L = Dicke der Verarmungsrandschicht

N<sub>D</sub>= Donatorendichte

Hierbei kann das Produkt von Donatorendichte N<sub>D</sub> und der Dicke der Verarmungsrandschicht L als die Dichte geladener Oberflächenzustände N<sub>S</sub> zusammengefasst werden:

$$N_D \cdot L = N_S \tag{2.4}$$

Daraus folgt die Lösung für das Oberflächenpotential in der Schottky-Approximation:

$$V_B = \frac{e \cdot N_D \cdot L^2}{2 \cdot \varepsilon \cdot \varepsilon_0} = \frac{e \cdot N_S^2}{2 \cdot \varepsilon \cdot \varepsilon_0 \cdot N_D}$$
 (2.5)

Somit führt eine Limitierung des Oberflächenpotentials  $e \cdot V_B$  zu einer Limitierung der Oberflächenzustandsdichte  $N_S$ , welche einem Bedeckungslimit entspricht. Sauerstoff z.B. erzeugt ein maximales Oberflächenpotential von etwa 1 eV wodurch eine maximale Bedeckung von etwa  $10^{12}$  bis  $10^{13}$  vorliegt (Weisz-Limit) [Mad 89].

Für die Einflüsse extrinsischer Oberflächenzustände werden in Kapitel 3.3 die Vorgänge auf WO<sub>3</sub>-Oberflächen bei Angebot verschiedener Gase erklärt.

#### 2.2.1 Physisorption

Bei der Physisorption, die eine schwache Adsorption beschreibt, liegt die physikalische Ursache für die Wechselwirkung zwischen Adsorbat und Oberfläche in elektrostatischen Kräften, Dipolkräften und van der Waals Kräften. Hierbei bleiben die geometrische Struktur sowie die elektronischen Eigenschaften der freien Teilchen und der freien Oberfläche erhalten.

Die potentielle Energie  $E_{pot}$  in Abhängigkeit des Abstandes z zwischen der Oberfläche des Festkörpers (z=0) und des Adsorbats  $X_2$  ist in Abbildung 2-2 dargestellt. Dabei handelt es sich um ein schematisches Potentialdiagramm (Lennard-Jones-Potential) für die Physisorption (rechte Kurve) eines zweiatomigen Moleküls  $X_2$ . Nähert sich dieses der Oberfläche, so kommt es im Abstand  $z^{phys}$  zu einem Energieminimum (Potentialmulde) von Abstoßung und Anziehung. Diese stelle nennt man Physisorptionsposition von  $X_2$ .

In vielen Fällen wird die Definition der Physisorption an der Bindungsenergie festgemacht. Dabei spricht man bei einer Wechselwirkungsenergien bis zu 50 kJ/mol (0,5 eV pro Teichen) von Physisorption und bei größeren Wechselwirkungsenergien von Chemisorption.

#### 2.2.2 Chemisorption

Anders als bei der Physisorption kommt es während der Chemisorption zu Änderungen in der elektronischen Struktur der freien Moleküle und der Oberfläche. Die Adsorbate gehen eine chemische Bindung mit den Oberflächenatomen ein. Hierbei bilden sich zwischen Metallen und dem Adsorbat bevorzugt kovalente Bindungen während sich zwischen Isolatoren oder Halbleitern und dem Adsorbat bevorzugt Ionenbindungen ausbilden (s. Kapitel 2.2.3). Durch diese Bindungsarten zwischen Oberfläche und Adsorbat kommt es auch zu einer Änderung der Bindungsart der Oberflächenatome untereinander.

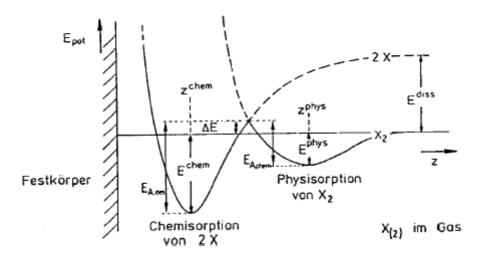



Abbildung 2-2: Schematische Darstellung eines Potentialdiagramms für die Physisorption und dissoziative Chemisorption [Hen 91<sup>1</sup>]

In Abbildung 2-1 ist schematisch ein Potentialdiagramm (Lennard-Jones-Potential) für die dissoziative Chemisorption (linke Kurve) eines zweiatomigen Moleküls  $X_2$  dargestellt. Nach Aufwendung der Dissoziationsenergie  $E^{diss}$  kann man die beiden einzelnen Atome X der Oberfläche nähern. Die beiden Atome werden dann durch die Potentialmulde im Abstand  $z^{chem}$  an die Oberfläche gebunden.

Man erkennt in den Potentialverläufen der Physisorption und der Chemisorption in Abbildung 2-2, dass sich diese in einem Punkt schneiden. Der Schnittpunkt liegt um  $\Delta E$  höher als die Energie eines in unendlicher Entfernung zur Oberfläche ruhenden Teilchens. Dies zeigt, dass ein physisorbiertes Teilchen nur durch Aufwendung einer Aktivierungsenergie  $\Delta E + E^{phys}$  in eine chemisorbierte Bindung übergehen kann. Diese dazu notwendige Energie kann z.B. in Form von thermischer Aktivierung gewonnen werden. Gleichzeitig wird deutlich, dass bei niedrigen Temperaturen kaum Chemisorption sondern hauptsächlich Physisorption vorliegt.

#### 2.2.3 Ionosorption

Die Ionosorption ist eine Form der Chemisorption. Sie wird aufgrund ihrer Bedeutung in der Gassensorik extra genannt.

Von der Ionosorption wird im Zusammenhang mit der Adsorption von Molekülen auf Halbleitern wie z.B. Metalloxiden gesprochen. Eine Ionosorption liegt vor, wenn keine kovalente Bindung zwischen Adsorbat und Oberfläche vorliegt, aber das Adsorbat durch Einfang von Elektronen als Oberflächenzustand agiert und es einen Ladungstransfer zwischen den Bindungspartnern kommt und somit durch eine elektrostatische Anziehung an die Oberfläche gebunden ist. Die Bindung zwischen Adsorbat und Adsorbenz hat dabei somit einen ionischen Charakter.

#### 2.2.4 Reversible Adsorption und Vergiftung

Wenn bei höheren Temperaturen oder durch chemische Reaktionen eine vollständige Desorption der adsorbierten Teilchen von der Oberfläche stattfindet, so spricht man von einer reversiblen Adsorption.

Es kann aber auch zu einer irreversiblen Besetzung von Adsorptionsplätzen auf der Oberfläche kommen, was als Vergiftung bezeichnet wird.

Letzteres wird z.B. bei SnO<sub>2</sub>-Schichten bei Angebot von SO<sub>2</sub> beobachtet, wobei sich auf der Oberfläche stabiles Zinnsulfat bildet, welches die elektronischen Eigenschaften der Schicht vollständig verändert [Ber 96].

## 2.2.5 Katalysatoren

Katalysatoren werden bei oxidischen Halbleitern eingesetzt, um Reaktionsgeschwindigkeiten zu erhöhen oder Selektivitäten auf bestimmte Gase zu steuern. Letzteres bedeutet, dass beispielsweise bei reduzierenden Gasen eine bestimmte Spezie wie z.B. H<sub>2</sub>S gegenüber anderen im Gasraum befindlichen wie z.B. Ethanol bevorzugt oxidiert wird. Hauptsächlich werden Metallkatalysatoren wie Platin, Gold, Silber und Palladium eingesetzt, aber auch Metalloxide wie V<sub>2</sub>O<sub>5</sub>, Co<sub>2</sub>O<sub>3</sub>, Cu<sub>2</sub>O oder NiO kommen zum Einsatz.

Die dabei auftretende Wechselwirkung zwischen dem Halbleiter und dem Katalysator kann entweder über den Spillover-Mechanismus und/oder eine Änderung der Fermienergie (Ferminiveau-Steuerung) stattfinden.

Dabei versteht man unter dem Spillover-Mechanismus ein katalytisch aktiviertes Zerfallen der Adsorbatmoleküle in ihre Einzelatome und deren Abgleiten auf die Halbleiteroberfläche, wo sie adsorbieren und als Akzeptoren oder Donatoren wirken.

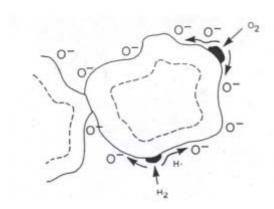



Abbildung 2-3: Spillover von Wasserstoff und Sauerstoff vom aufgebrachten Katalysator auf eine Halbleiteroberfläche [Mad 89]

Unter der Ferminiveau-Steuerung versteht man, dass das Ferminiveau des Halbleiter durch die Fermienergie des Katalysators gesteuert wird. Der Katalysator lässt sich hierbei als Oberflächenzustand beschreiben, der die Raumladungsschicht kontrolliert. Sind die Katalysatorcluster dabei in dem Maße verteilt, dass sich die durch den Katalysator induzierten einzelnen Verarmungsrandschichten auf den Körnern überlappen, so bestimmen diese die Leitfähigkeit des Halbleiters (Abbildung 2-4). Hierbei müssen die Katalysatorcluster möglichst klein sein, damit die Fermienergie des Katalysatorpartikels von den Reaktionen auf dessen Oberfläche hinreichend stark beeinflusst wird.

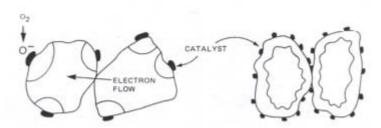



Abbildung 2-4: Ausbreitung der Verarmungsrandschichten welche durch die Anwesenheit von Oberflächenkatalysatoren induziert werden. Links ohne, rechts mit Überlappung der Randschichten [Mad 89]

## 2.3 Korngrenzen-, Kornhals- und Kornkontrolliertes Modell

Bei realen Dünnschichten spielt die Morphologie der Probe eine entscheidende Rolle. Die sensitiven Schichten von Gassensoren auf Basis von oxidischen Halbleitern wie WO<sub>3</sub> bestehen nicht aus Einkristallen sondern aus einer polykristallinen Struktur. Dies kann man als Verkettung von polykristallinen Körnern, die wiederum aus kleinen Kristalliten zusammengesetzt sind [Bos 96], verstehen.

Hierbei muss man zum einen unterscheiden, ob die einzelnen Körner nebeneinander liegen und somit keine Verbindung miteinander eingehen oder ob sie über Kornhälse an den Korngrenzen mit den Nachbarkörnern verbunden sind. Zum anderen besitzt jedes einzelne Korn eines n-leitenden Metalloxids wie WO<sub>3</sub> aufgrund der Adsorption von Sauerstoff an Luft und anderen Oberflächendefekten eine induzierte Verarmungszone an Elektronen mit einer Abschirmlänge L, die auch Raumladungsschichtdicke genannt wird. Diese unterscheidet sich somit gegenüber dem Kornvolumen durch eine geringere Ladungsträgerdichte.

Aufgrund der Abhängigkeit der Leitfähigkeit  $\sigma$  von der Ladungsträgerkonzentration n, der Hallbeweglichkeit  $\mu$  und der elektronischen Ladung e in Form von

$$\sigma = n \cdot \mu \cdot e \tag{2.6}$$

resultiert somit eine erniedrigte Leitfähigkeit.

Die Verarmungsschichtdicke L lässt sich folgendermaßen mit der Debye-Länge  $L_D$  und der durch die auf der  $WO_3$ -Oberfläche adsorbierten Gasart und Gasmenge entstehenden Potentialbarrierenhöhe  $e \cdot V_B$  bestimmen:

$$L = L_D \cdot \sqrt{\frac{2 \cdot e \cdot V_B}{k \cdot T}} \tag{2.7}$$

mit  $k \cdot T$  = thermische Energie

L<sub>D</sub>= Debye-Länge

Die Debye-Länge ist für WO<sub>3</sub> ein intrinsischer Wert und wird folgendermaßen bestimmt:

$$L_D = \sqrt{\frac{\varepsilon \cdot \varepsilon_0 \cdot k \cdot T}{e^2 \cdot n}}$$
 (2.8)

mit  $\varepsilon$  = Dielektrizitätskonstante

 $\varepsilon_0$  = elektrische Feldkonstante

k = Boltzmannkonstante

T = absolute Temperatur

e = elektrische Ladung des Ladungsträgers

n = Ladungsträgerkonzentration im Korn

Um den Einfluss der beiden verschiedenen Kornstrukturen sowie des Korndurchmesser D und der Raumladungsschichtdicke L auf den Widerstand und die Gassensitivität des Gesamtsystems zu untersuchen muss man vier Fälle unterscheiden. Diese sind in Abbildung 2-5 dargestellt und zeigen jeweils zwei Körner einer Schicht.

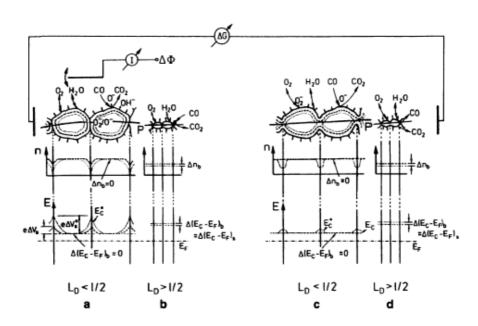



Abbildung 2-5: Schematische Darstellung polykristalliner Schichten mit unterschiedlich versinterten Körnern. Eingezeichnet sind die Grenzfälle von nicht gesinterten Schichten mit großen Körnern (a), nicht gesinterten Schichten mit kleinen Körnern (b), sowie gesinterten Schichten mit großen Körnern (c) und gesinterten Schichten mit kleinen Körnern (d) [Sch 96] (L<sub>D</sub> entspricht im Text L und l entspricht im Text D)

#### (a) Nicht verbundene Körner mit D > 2·L

Liegen die Körner ohne eine Verbindung durch Kornhälse vor, liegt an den Korngrenzen, bedingt durch Oberflächenzustände, eine Potentialbarriere vor. In diesem Fall wird der elektrische Widerstand des Gesamtsystems durch den Elektronentransport über jede dieser Korngrenzen und somit mit der Überwindung dieser Potentialbarrieren bestimmt. Diesen Fall bezeichnet man als Korngrenzen-kontrolliert ("grain-boundary-controlled"). Der Sensorwiderstand R ist dabei gegeben durch

$$R = \frac{1}{\sigma} = R_0 \cdot \exp\left(\frac{e \cdot V_B}{k \cdot T}\right) \tag{2.9}$$

mit  $\sigma$  = Leitwert

 $R_0$  = reiner Kornwiderstand und geometrische Effekte

e⋅V<sub>B</sub> = Höhe der Potentialbarriere an den Korngrenzen

k = Boltzmannkonstante

T = absolute Temperatur

Gleichzeitig wird hierbei durch Oberflächenadsorbate oder Oberflächendefekte an der Kornoberfläche eine Verarmungsschicht mit der Dicke L in jedem Korn induziert. Bei großen Körnern (D > 2·L) oder wenig Adsorbaten nimmt diese nur eine dünne Schicht an der Oberfläche des Korns ein. Durch eine Abnahme der Korngröße oder Zunahme der Oberflächenadsorbate nimmt diese einen immer größeren Teil des Kornvolumen ein woraus eine Erhöhung der Potentialbarriere resultiert.

## (b) Nicht verbundene Körner mit D < 2·L

Bei Körnern, die die Größe der doppelten Raumladungsschicht besitzen oder kleiner als diese sind ( $D < 2\cdot L$ ), verarmt das gesamte Korn an Ladungsträgern und es stellt sich ein Flachbandzustand ein. Diesen Fall bezeichnet man als Korn-kontrolliert ("grain-controlled").

#### (c) Verbundene Körner mit D > 2·L

Durch eine Verbindung der Körner durch Kornhälse befinden sich zwischen diesen Kanäle, durch die der Elektronentransport stattfindet. Die Ladungsträgerdichte in diesen Kanälen ist stark von der Korngröße und der Ausdehnung der Raumladungsschicht abhängig. Bei großen Körnern (D >> 2·L) oder kleiner Raumladungsschicht durch wenig Oberflächenadsorbate kann der Ladungstransfer nahezu ohne Überwindung eines Potentialwalls erfolgen, da der Kanal sich hierbei durch die Verarmungsschicht an der Oberfläche nur ein wenig verengt. Bei Abnahme der Korngröße (D > 2·L) oder Zunahme der Verarmungsschichtdicke durch Adsorption kann es zu einer Abschnürung des Kanals zwischen den Körnern kommen, die einen Potentialwall für die Ladungsträger darstellt. Dieser nimmt bei weiterer Abnahme der Korngröße oder Zunahme der Raumladungsschichtdicke zu. Diesen Mechanismus bezeichnet man als Kornhals-kontrolliert ("neck-controlled").

## (d) Verbundene Körner mit D < 2·L

Wenn der Korndurchmesser D abnimmt oder die Verarmungsschicht durch Adsorbate zunimmt und es gilt  $D < 2 \cdot L$ , so nimmt die Verarmungsschicht das gesamte  $WO_3$ -Korn ein. Somit hängt der Widerstand des Gesamtsystems nicht nur von dem Widerstand der Kornhälse sondern zusätzlich noch von dem an Ladungsträgern verarmten Kornvolumenwiderstand ab. In diesem Fall liegen Flachband-Bedingungen vor. Diesen Fall bezeichnet man als Kornkontrolliert ("grain-controlled").

Somit ist die Voraussetzung für eine hohe Sensitivität bei der Wechselwirkung zwischen eines n-leitenden Metalloxids und den darauf adsorbierenden Gasen ein kleines Verhältnis von Korngröße zu Debye-Länge.

Die Korngröße D kann z.B. durch Variation der Temperbedingungen (s. Kapitel 3.1.3) oder durch Beimischung eines zweiten Metalloxids (s. Kapitel 3.1.5) variiert werden. Andererseits kann die Debye-Länge L<sub>D</sub> z.B. durch Dotierung mit Akzeptoren vergrößert werden.

# 2.3.1 WO<sub>3</sub>-Sensitivität in Abhängigkeit der Korngröße und Debye-Länge

Mit der Änderung der Korngröße in reinen WO<sub>3</sub>-Schichten und der damit verbundenen Sensitivitätsänderung auf NO und NO<sub>2</sub> hat sich [Tam 94] beschäftigt. Dabei wurde mit der Erhöhung der Sintertemperatur ein Kornwachstum und somit eine Vergrößerung des Korndurchmessers D beobachtet.

Mit Abnahme der Korngröße D unter ca. 25 nm bis 33 nm wurde eine Erhöhung der NO<sub>2</sub>-Sensitivität, bei Korngrößen über 25 nm bis 33 nm aber eine nahezu konstante Sensitivität beobachtet.

Das gleiche Verhalten der Sensitivität wurde bei NO-Gasangeboten beobachtet, wobei hier allerdings die kritische Korngröße bei ca. 29 nm lag.

Die Verbesserung der Sensitivität mit Abnahme der Korngröße unterhalb einer kritischen Korngröße kann mit den in Kapitel 2.3 beschriebenen Modellen erklärt werden. Hierbei entspricht die kritische Korngröße in etwa der doppelten Verarmungsschichtdicke, womit eine nahezu vollständige Verarmung der Körner an Ladungsträgern durch die Oberflächenadsorbate resultiert.

Mit der Beimischung von kornwachstumshemmendem Material und einer Vergrößerung der Debye-Länge L<sub>D</sub> durch Dotierung hat sich [Shi 02] beschäftigt. Hierbei wurde an reinen WO<sub>3</sub>- und Titan-dotierten WO<sub>3</sub>-Dünnschichten festgestellt, dass sich die Sensitivität auf NO<sub>2</sub> durch die Beigabe von Titan zum WO<sub>3</sub> verbessert. Der Grund hierfür wird zum einen bei einer Hemmung des Kornwachstum und zum anderen durch eine Beeinflussung der Debye-Länge, die beide förderlich bei dem Übergang vom korngrenzen-kontrollierten zum korn-kontrollierten Modell sind, durch die Titan-Verunreinigung im WO<sub>3</sub> gesehen. Dies kann folgendermaßen erklärt werden.

Beim Einbau von Titan auf Wolfram-Gitterplätzen im WO<sub>3</sub>-Kristall verringert sich die Ladungsträgerkonzentration wie folgt:

$$Ti \xrightarrow{WO_3} Ti_W^" + 2h^{\bullet}$$
 (2.10)

Dabei wird die Debye-Länge durch Einfang einiger Elektronen durch die gebildeten Löcher h vergrößert. Da bei gleicher Gasart und Temperatur die Raumladungsschichtdicke L nur von der Debye-Länge L<sub>D</sub> abhängt, vergrößert sich diese ebenfalls.

Diese ausgedehnte Debye-Länge hat somit den gleichen Effekt auf die Sensitivität wie eine Korngrößenreduktion.

Bei Messungen an reinen und titandotierten WO<sub>3</sub>-Dünnschichten wird eine Tiefe der Verarmungsschicht L von unter 9 nm an Luft und zwischen 9 nm und 16,9 nm bei Angebot von 10 ppm NO<sub>2</sub> festgestellt [Shi 02].

#### 2.3.2 WO<sub>3</sub>-Leitfähigkeit an Kornhälsen und Kornoberflächen

Eine bedeutende Rolle bei Dünnschichten spielt deren Nanostruktur. Größtenteils hängt dies von den verschiedenen elektronischen Eigenschaften der Körner und der Korngrenzen ab und folglich zeigen diese ein verschiedenes elektronisches Ansprechverhalten bei der Wechselwirkung mit Gasen.

Bei [Ott 00, Ott 01] wurde bei 300 °C im Vakuum getemperten amorphen WO<sub>3</sub>-Dünnschichten aus Nanopartikeln untersucht. Die Schichten zeigten eine höhere Leitfähigkeit an den Kornhälsen, die angrenzende Partikel verknüpfen. Im Vergleich mit den Kornoberflächen werden an den Kornhälsen auch bevorzugt Sauerstofffehlstellen erzeugt.

Nach einem Angebot von Sauerstoff dreht sich das Leitfähigkeitsverhalten um, so dass die Kornhälse weniger leitfähig als die Partikeloberfläche sind.

Bei einer folgenden Temperung bei 300 °C im Vakuum wird wieder der Anfangszustand eingenommen. Dieses Verhalten deutet direkt auf das bevorzugte Absorbieren von Sauerstoff an den intergranularen Verbindungen, an denen die Sauerstofffehlstellen gesättigt werden.

#### 2.4 Materialeigenschaften von WO<sub>3</sub>

WO<sub>3</sub> ist bekannt durch seine technische Bedeutung in den Feldern der Elektrochromatik, der Sensorik und der Katalytik. Die verschiedenen Formen (Keramik, Kristallvolumen und dünne sowie dicke Schichten) sind häufiger Gegenstand von Untersuchungen um die physikalischen Eigenschaften zu verstehen.

Wolfram-(VI)-oxid WO<sub>3</sub> ist unter Normalbedingungen ein stabiles Oxid von Wolfram, das meist durch Entwässern von Wolfram-(VI)-oxidhydrat, durch thermische Zersetzung von Ammoniumparawolframat oder durch Oxidation von Wolfram hergestellt wird. In exakt stöchiometrischer Zusammensetzung ist es jedoch nur bei höherem Sauerstoffdruck zu erhalten. WO<sub>3</sub> zeigt auffällig viele kristallographische Modifikationen, die aber strukturell verwandt sind. Beim Erwärmen gibt WO<sub>3</sub> leicht Sauerstoff ab, so dass seine Darstellung in stöchiometrischer Form schwierig ist. Bei sehr hohen Temperaturen zerfällt es unter Bildung von metallischem Wolfram. Mit Reduktionsmitteln wie H<sub>2</sub>, CO und anderen kann WO<sub>3</sub> nacheinander zu den niedrigeren Oxiden oder bis zu Wolfram reduziert werden. Unter Normaldruck sublimiert WO<sub>3</sub> unter Abgabe von O<sub>2</sub> bei einer Temperatur von 950 °C [Gme 79]. Der Schmelzpunkt von WO<sub>3</sub> liegt bei ca. 1480 °C. WO<sub>3</sub> ist von anderen Wolframoxiden leicht an der Farbe unterscheidbar:

| Verbindung | $WO_3$    | WO <sub>2,88</sub> | WO <sub>2,77</sub> | $WO_2$ |
|------------|-----------|--------------------|--------------------|--------|
| Farbe      | gelb-grün | blau               | violett            | braun  |

Tabelle 1: Farben von WO<sub>3</sub> in Abhängigkeit der Stöchiometrie [Gme 79]

Die Molmasse von WO<sub>3</sub> beträgt 231,85 g mol<sup>-1</sup>.

Für die Dichte stellt [Can 99] eine Abhängigkeit von der Sintertemperatur fest, da diese von WO<sub>3</sub>-Dünnschichten nach einer 400 °C Temperung 5,57 g/cm³ und nach einer 500 °C

Temperung 6,16 g/cm³ gegenüber der kristallinen monoklinen WO<sub>3</sub>-Volumen-Dichte von 7,16 g/cm³ bei 20 °C [Dan 67] beträgt.

Zum anderen wird von einer Dichte zwischen 6 g/cm³ und 6,7 g/cm³ bei Variation des Betriebdrucks [Miy 83] und von einer Dichteerhöhung von 5,85 g/cm³ auf 6,65 g/cm³ durch Erhöhen des Sauerstoffgehalts im Sauerstoff-Argongemisch [Kan 87] beim Sputtern von WO₃-Dünnschichten wird berichtet.

Für amorphe WO<sub>3</sub>-Dünnschichten findet [Gog 99] eine Dichte von 3,6 bis 5,5 g/cm³ und für polykristalline eine Dichte von 5,02 bis 6,1 g/cm³.

Amorphes WO<sub>3</sub> durchläuft oberhalb etwa 315 °C einen irreversiblen Phasenübergang zur kristallinen Phase [Deb 73]. Kristallines WO<sub>3</sub> tritt in Abhängigkeit der Temperatur in fünf kristallographischen Modifikationen auf [Vog 99]:

| Kristallphase     | Symmetrie      | Temperaturbereich     |
|-------------------|----------------|-----------------------|
| ε-WO <sub>3</sub> | Monoklin       | unterhalb –40 °C      |
| δ-WO <sub>3</sub> | Triklin        | von –40 °C bis +17 °C |
| γ-WO <sub>3</sub> | Monoklin       | von 17 °C bis 320 °C  |
| β-WO <sub>3</sub> | Orthorhombisch | von 320 °C bis 720 °C |
| α-WO <sub>3</sub> | Tetragonal     | oberhalb 720 °C       |

Tabelle 2: Kristallographische Phasen von WO3 in Abhängigkeit der Temperatur

Phasenreines WO<sub>3</sub> besitzt in allen Phasen eine verzerrte Perowskitstruktur ABO<sub>3</sub> mit unbesetzten A-Ecken. Hierbei ist das Sauerstoff-Untergitter verzerrt und das Wolfram-Ion liegt nicht zentral sondern leicht verschoben im Oktaeder [Cor 97]. Auf die unbesetzten A-Plätze von ABO<sub>3</sub> ist ein leichter Einbau von Fremdatomen möglich, der zur Bildung von Wolframbronzen führt.

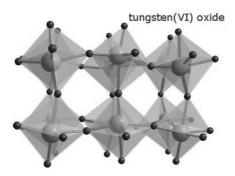



Abbildung 2-6: Festkörperstruktur von WO<sub>3</sub> [Web 03<sup>1</sup>]

Die Elementarzellen enthalten vier WO<sub>3</sub>-Moleküle. Die Abstände zwischen Sauerstoffatomen betragen etwa 2,5 Å bis 3 Å, zwischen Wolfram- und Sauerstoffatomen etwa 1,9 Å. WO<sub>3</sub> ist diamagnetisch ( $\chi \approx -0.06$ ) und gehört zu der Klasse der "wide band gap" metall-oxidischen n-Halbleiter.

Die Dielektrizitätskonstante  $\epsilon$  ist abhängig von der Temperatur und der Frequenz. Bei einer Temperatur von 200 °C für siebgedruckte WO<sub>3</sub>-Dickschichten liegt diese nach [Sch 02] bei 200 für eine Frequenz von 10 Hz und bei 10 für eine Frequenz von  $10^9$  Hz. Bei einer konstanten Frequenz von 1 kHz und einer Temperaturerhöhung von 27 °C auf 130 °C beobachtet [Els 99] an WO<sub>3</sub>-Dünnschichten eine Verringerung der Dielektrizitätskonstanten  $\epsilon$  von 355 auf 220. Gleichzeitig wird eine Verringerung von  $\epsilon$  mit steigender Frequenz im Bereich von 1 kHz bis 100 kHz beobachtet. Diese Verringerung von  $\epsilon$  wird mit zunehmender Temperatur kleiner.

Nach [Crc 99] beträgt der Wert der Dielektrizitätskonstanten  $\varepsilon = 300$ .

## 2.5 Elektronische Eigenschaften von WO<sub>3</sub>

In einem rein ionischen Modell basierend auf W<sup>6+</sup>- und O<sup>2-</sup>-Ionen besteht das Valenzband von WO<sub>3</sub> (W<sup>6+</sup>(O<sup>2-</sup>)<sub>3</sub>) aus gefüllten Sauerstoff-2p-Zuständen und ist aus neun Niveaus, 3 von jedem Sauerstoffatom, zusammengesetzt. Das Leitungsband besteht aus leeren Wolfram-(5d)-Zuständen und ist aus 5 Niveaus zusammengesetzt [Cor 97, Hje 96]. Aufgrund des Kationenabstands von 5,3 Å ist ein starker Überlapp dieser d-Zustände unwahrscheinlich.

Vielmehr sind Kombinationen aus W(d)- und O(p)-Orbitalen für das Zustandekommen eines Leitungsbandes mit starkem d-Charakter verantwortlich [Deb 73].

In Abbildung 2-7 ist das von [Cor 97] berechnete Energiebänderschema für WO<sub>3</sub> dargestellt.

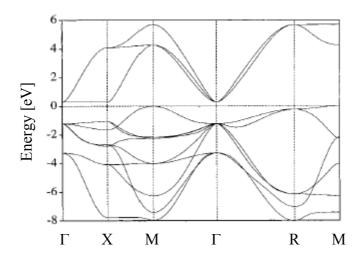



Abbildung 2-7: Berechnete Bandstruktur für WO<sub>3</sub> (kubische Phase). Der Energienullpunkt wurde so gewählt, dass er mit der Fermienergie des Materials übereinstimmt [Cor 97]

WO<sub>3</sub> ist ein n-Halbleiter mit einer Bandlücke zwischen 2,7 eV und 3,4 eV. Die Ladungsträgerdichte von WO<sub>3</sub> und somit dessen elektronische Eigenschaften hängen stark von der exakten WO<sub>3-x</sub> Stöchiometrie ab und somit von der Sauerstofffehlstellenkonzentration und der damit verbundenen Einbringung von Donatorzuständen in der Bandlücke, die durch Ionisierung bis zu 2 Elektronen an das Leitungsband abgeben können [Mol 01, Yan 99]. [Poh 01] stellt für siebgedruckte WO<sub>3</sub>-Dickschichten mittels Infrarot Emissions Spektroskopie (IRES) fest, dass es sich im Temperaturbereich von 300 °C bis 600 °C um 1-fach ionisierte Sauerstofffehlstellen handelt.

Bei sauerstoffarmen  $WO_{3-x}$  Schichten mit x > 0,5 wird eine hohe nahezu metallische elektrische Leitfähigkeit festgestellt.

Die Ladungsträgerdichte und Beweglichkeit von WO<sub>3</sub>-Schichten ist temperaturabhängig. Für den Temperaturbereich von –180 °C bis 280 °C gibt [Cap 99] eine Ladungsträgerdichte von  $10^{17}$  bis  $10^{18}$  cm<sup>-3</sup> und eine Hallbeweglichkeit von  $10^{-2}$  bis  $10^{-1}$  cm<sup>2</sup>·V<sup>-1</sup>·s<sup>-1</sup> für WO<sub>3</sub>-Dünnschichten an. [Pat 00] findet bei WO<sub>3</sub>-Dünnschichten im Temperaturbereich von 150 °C bis 285 °C eine Ladungsträgerdichte von  $2\cdot10^{19}$  cm<sup>-3</sup> und eine Hallbeweglichkeit von

10<sup>-11</sup> cm<sup>2</sup>·V<sup>-1</sup>·s<sup>-1</sup>. Die Hallbeweglichkeit der Ladungsträger wird von der Mikrostruktur beeinflusst, zu der z.B. Kristalldefekte oder Korngrenzen gehören [Mol 01].

Eine Zunahme der Ladungsträgerkonzentration sowie eine Abnahme der Beweglichkeit bei zunehmender Temperatur im Bereich von 85 °C bis 350 °C finden [Smi 93] und [Xu 90] bei Gold-dotierten WO<sub>3</sub>-Dünnschichten. [Smi 93] beobachtet gleichzeitig, dass die Ladungsträgerkonzentration im amorphen Zustand zwischen  $10^{11}$  und  $10^{13}$  cm<sup>-3</sup> liegt und somit höher als im polykristallinen Zustand mit  $10^9$  bis  $10^{11}$  cm<sup>-3</sup> ist. Die Beweglichkeit der Ladungsträger liegt hierbei im Bereich zwischen 30 und 220 cm<sup>2</sup>·V<sup>-1</sup>·s<sup>-1</sup> und nimmt durch Kristallisation der Schichten zu.

Die optische Bandlücke von WO<sub>3</sub> ist zum einen abhängig von der Kristallphase und zum anderen von der Stöchiometrie.

Eine Verkleinerung der optischen Bandlücke von 3,18 eV [Ton 01] oder 3,13 eV [Gog 99] für amorphes WO<sub>3</sub> auf 2,6 eV [Him 84] oder 2,73 eV [Gog 99] für kristalline WO<sub>3</sub>-Dünnschichten wird beobachtet.

Ebenfalls wird bei Kristallphasenübergängen von einer Veränderung der Bandlücke berichtet, wie z.B. einer Vergrößerung dieser beim Übergang von kubischem zu monoklinem und einer leichten Vergrößerung von kubischem zu hexagonalem WO<sub>3</sub> [Hje 96].

Auch wird von verschieden großen Bandlücken des WO<sub>3</sub> in Abhängigkeit der Stöchiometrie berichtet, die durch die Herstellungsparameter beeinflusst wird.

Bei Erhöhung des Betriebdrucks sowie des Sauerstoffgehalts im Sauerstoff-Argon-Gemischs beim Sputtern von WO<sub>3</sub>-Dünnschichten vergrößert sich die Bandlücke von 2,95 eV auf 3,36 eV [Man 98] oder von 2,84 eV auf 3,03 eV [Miy 82]. Im Widerspruch dazu findet [Kann 87] eine Erniedrigung der Bandlücke von 3,15 eV auf 2,98 eV bei Zunahme des Sauerstoffgehalts im Sauerstoff-Argon-Gemisch beim Sputtern. Von einer geringen Abnahme der Bandlücke von 3,18 eV auf 3,10 eV bei Erhöhung des Betriebsdruck beim Sputtern von WO<sub>3</sub>-Schichten berichtet [Miy 83]. Von Bandlücken im Bereich von 2,94 eV bis 3,25 eV berichtet [Kan 82] bei Vergleich von gesputterten und thermisch aufgedampften WO<sub>3</sub>-Schichten.

In [Lee 99, Lee 00] wurde die thermische Aktivierungsenergie im Temperaturbereich von 180 °C bis 400 °C an Luft und bei NO<sub>2</sub>-Gasangebot für WO<sub>3</sub>-, WO<sub>3</sub>/TiO<sub>2</sub>- und (W,Ti)O<sub>3</sub>-Dickschichten bestimmt.

| Gasangebot             | Aktivierungs-               | Aktivierungs-                         | Aktivierungs-               | Literatur |
|------------------------|-----------------------------|---------------------------------------|-----------------------------|-----------|
|                        | energie E <sub>a</sub> [eV] | energie E <sub>a</sub> [eV]           | energie E <sub>a</sub> [eV] |           |
|                        | für WO <sub>3</sub>         | für WO <sub>3</sub> /TiO <sub>2</sub> | für (W,Ti)O <sub>3</sub>    |           |
| Luft                   | 0,34                        | 0,32                                  | 0,25                        |           |
| 15 ppm NO <sub>2</sub> | 0,43                        | 0,43                                  | 0,50                        | [Lee 99]  |
| 30 ppm NO <sub>2</sub> | 0,49                        | 0,48                                  | 0,54                        | [Lee ))]  |
| 45 ppm NO <sub>2</sub> | 0,53                        | 0,55                                  | 0,62                        |           |
| Luft                   | 0,42                        | 0,31                                  | 0,25                        | [Lee 00]  |
| 30 ppm NO <sub>2</sub> | 0,50                        | 0,48                                  | 0,54                        | [1.00 00] |

Tabelle 3: Thermische Aktivierungsenergien für reine und mit Titan dotierte WO<sub>3</sub>-Schichten unter NO<sub>2</sub>-Angebot

Bei Untersuchungen der Leitfähigkeit von WO<sub>3</sub> in Abhängigkeit vom Sauerstoffpartialdruck und der Temperatur hat [Agu 02] festgestellt, dass bei zunehmender Sauerstoffkonzentration von 10 mbar auf 1 bar in der Umgebung die Aktivierungsenergie E<sub>a</sub> von 0,19 eV auf 0,42 eV ansteigt. Diese Abhängigkeit der Aktivierungsenergie vom Sauerstoffpartialdrucks E<sub>a</sub>([p<sub>O2</sub>]) kann mit der Bildung von Energieniveaus in der verbotenen Zone durch Sauerstoffadsorption erklärt werden, durch die die Barriere zwischen den Körnern und somit die Bandstruktur modifiziert wird.

Der Einfluss von Sauerstofffehlstellen auf die elektronischen Transporteigenschaften in WO<sub>3</sub>-Kristallen hat [Ber 70] untersucht. Hierbei wurde festgestellt, dass in der monoklinen Phase von 17 °C bis 350 °C die Temperaturabhängigkeit des Hall-Koeffizienten mit der Anregung von Elektronen von flachen Donator-Störstellenniveaus von 0,04 eV konsistent ist. Gleichzeitig ist die Temperaturabhängigkeit der Hall-Beweglichkeit mit der polaren Streuung an longitudinalen Gitterschwingungen des optischen Zweigs konsistent. Die beobachtete Beweglichkeit beträgt 16 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>. Beim Abkühlen zur triklinen Phase zwischen –40 °C und +17 °C wird eine starke Abnahme der Hall-Beweglichkeit (ungefähr Faktor 2), eine Zunahme des Seebeck-Koeffizienten und eine geringe Zunahme des Hall-Koeffizienten und seiner Temperaturabhängigkeit beobachtet.

## 2.6 Material- und elektronische Eigenschaften von TiO<sub>2</sub>

Natürlich kommt TiO<sub>2</sub> in den drei Kristallmodifikationen tetragonaler Rutil, tetragonaler Anatas und orthorhombischer Brookit vor.

Erhitzt man Anatas und Brookit (beide metastabil) über 700 °C, so wandelt es sich in Rutil um, welches thermodynamisch stabil ist [Bon 98]. In allen drei Modifikationen ist die Struktur des TiO<sub>2</sub> verzerrt oktaedrisch von Sauerstoff koordiniert wobei ein O<sup>2</sup>-Ion von drei Titan Ti<sup>4+</sup>-Ionen umgeben ist.

Titandioxid ist thermisch stabil und schmilzt bei 1855 °C mit O<sub>2</sub>-Abgabe. Titandioxid ist gegen Säuren und Basen beständig.

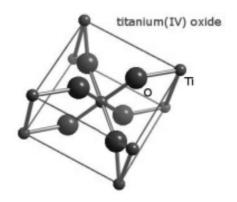



Abbildung 2-8: Kristallstruktur von Rutil (TiO<sub>2</sub>) [Web 03<sup>2</sup>]

Die Kristallstrukturen von Rutil und Anatas können als Ketten von  $TiO_6$ -Oktaedern beschrieben werden, wobei jedes  $Ti^{4+}$ -Ion oktaedrisch von sechs  $O^{2-}$ -Ionen umgeben ist (s. Abbildung 2-8). Der Rutil stellt eine verzerrte hexagonal dichteste Kugelpackung dar, deren oktaedrische Lücken zur Hälfte so mit Titan-Ionen besetzt sind, dass diese eine tetragonale Struktur (raumzentriert) bilden. Im Inneren der Elementarzelle kann man ein oktaedrisch umgebenes Titan-Ion erkennen. Dieser Oktaeder hat zwei gemeinsame Kanten (obere und untere Fläche) mit benachbarten Oktaedern. Im Rutil ist jedes Oktaeder von 10 weiteren Oktaedern umgeben. Davon sind jeweils zwei kantenverknüpft und acht eckenverknüpft.

Im Anatas sind die Oktaeder signifikant verzerrt, so dass sich eine niedrigere Symmetrie für Anatas ergibt. Die Titan-Titan-Abstände im Anatas sind länger, während die

Titan-Sauerstoff-Abstände kürzer als im Rutil sind. Im Anatas ist jeder Oktaeder von acht anderen Oktaedern umgeben, vier davon eckenverknüpft und vier kantenverknüpft.

Beim Brookit hat jeder der Oktaeder drei gemeinsame Kanten.

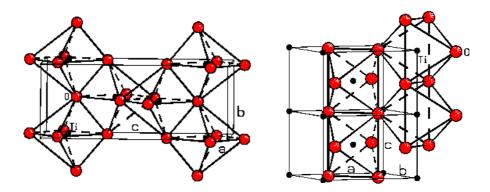



Abbildung 2-9: Kristallstruktur der Anatas- (links) und Rutilmodifikation (rechts) von TiO<sub>2</sub> [Bon 98]

Die Dichte von Anatas beträgt zwischen 3,8 g·cm<sup>-3</sup> und 3,9 g·cm<sup>-3</sup>, von Rutil 4,27 g·cm<sup>-3</sup> und von Brookit 4,1 g·cm<sup>-3</sup>. Rutil ist die thermodynamisch stabilste Modifikation [Aoc 03].

Reines TiO<sub>2</sub> weist eine Bandlücke von 3.2 eV auf [Wie 03]. Die Bandlücke von kristallinen Anatas-Schichten ist mit 3,2 eV größer als die von Rutil-Schichten mit 3,0 eV [Pas 78]. Bei amorphem TiO<sub>2</sub> ist die Bandlücke geringer als bei kristallinem TiO<sub>2</sub> [Bon 98]. In der Gassensorik wird TiO<sub>2</sub> auch als sensitives Schichtmaterial verwendet [Sav 01, Shm 02, Sur 98, Dem 99].

## 2.7 Materialeigenschaften des WO<sub>3</sub>/TiO<sub>2</sub>-Systems

Bei dem Zusammenbringen der zwei Metalloxide WO<sub>3</sub> und TiO<sub>2</sub>, welches in der Gassensorik auch als sensitive Schicht verwendet wird, bildet sich keine gemeinsame Kristallphase aus. Somit liegen, wie in dem Phasendiagramm in Abbildung 2-10 dargestellt, in diesen Schichten WO<sub>3</sub> und TiO<sub>2</sub> unabhängig von ihrer Konzentration bis zu einer Temperatur von 1233 °C als separate Körner nebeneinander vor [Cha 67]. Da der Schmelzpunkt bei einer Zusammensetzung von 64 mol% WO<sub>3</sub> und 36 mol% TiO<sub>2</sub> mit einer Temperatur von 1233 °C

niedriger liegt als der jeweilige Schmelzpunkt des einzelnen Metalloxids, handelt es sich hierbei um ein Eutektikum.

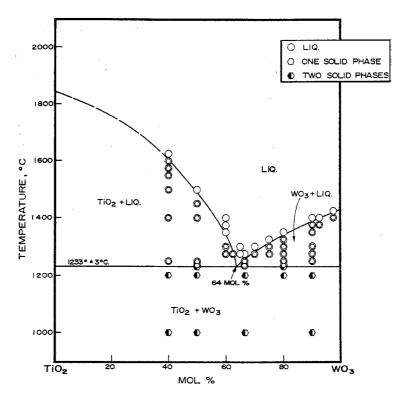



Abbildung 2-10: Phasendiagramm des WO<sub>3</sub>/TiO<sub>2</sub>-Systems [Cha 67]

## 3 Stand der Forschung

#### 3.1 Einfluss der Präparationsparameter auf die WO<sub>3</sub>-Schichteigenschaften

Die aktuelle Technologie erreicht meist nicht die optimale Sensorperformance, was auf ein unzureichendes Verständnis der Interaktion zwischen Gas und Schicht und dem dazugehörigen Sensing-Mechanismus zurückzuführen ist. Dies macht sich in fehlender Beherrschung der Schichtparameter und somit der Sensoreigenschaften bemerkbar. Hierbei wird klar, dass verbesserte Prozesstechniken und eine verbesserte Kontrolle der Schichtmikrostruktur notwendige sowie entscheidende Erfordernisse für eine Entwicklung von einer neuen Generation von chemischen Sensoren sind.

WO<sub>3</sub> besitzt interessante physikalische Eigenschaften, durch die es zu einem nutzbaren Material für Dick- und Dünnschichtapplikationen in der Gassensorik wird. Daher wird in diesem Kapitel eine Übersicht von veröffentlichten Schriften gegeben, in denen sensitive Schichten entweder aus reinem WO<sub>3</sub> oder aus einem Gemisch aus WO<sub>3</sub> und einem zweiten Metalloxid bestehen.

Es wird von verschiedenen Präparationstechniken für Dünn- sowie Dickschichten, den Herstellungsbedingungen, der Depositionstemperatur, den Temperbedingungen, katalytischen Schichten, Dotierungen und der optimalen Betriebstemperatur für verschiedene Zielgase berichtet. Auch werden in der Literatur beschriebene Modelle zur Beschreibung der Vorgänge zwischen verschiedenen Gasarten und Wolframoxid vorgestellt.

#### 3.1.1 Herstellungsverfahren für Dünn- und Dickschichten

Zu den Präparationstechniken für WO<sub>3</sub>-Dünnschichten und gehören die reaktive r.f. sowie d.c. Kathodenzerstäubung (Sputtern) [Ben 01, Bit 02, Com 00, Con 00, Deo 96, Dep 96, Der 96, Fer 97, Frü 96, Gui 00, Hon 96, Kim 00, Lem 02, Man 98, Mol 01, Mou 01, Nel 96, Pen 01, Pez 01, Sbe 95, Smi 93, Xu 90], das thermische Verdampfen [Can 96, Cat 96, Lee 01, Wen 00], die Rotationsbeschichtung (Spin-Coating) [Can 99, Gal 01, Gal 02, Kac 02, Roy 98, Wan 97], die Tauchbeschichtung (Dip-Coating) [Shi 02], die Chemical Vapour Deposition (CVD) [Dav 01, Ton 01], die Pulsed Laser Deposition (PLD) [Kaw 02, Zha 00] sowie die Ultraschall-Zerstäuber-Pyrolyse (USP) [Pat 00].

Die Präparationstechniken für WO<sub>3</sub>-Dickschichten sind das Sol-Gel Verfahren mit anschließendem Siebdruck [Chu 99, Ino 95, Lee 99, Lee 00, Sol 02, Tom 98, Tom 99, Yan 99], das thermische Verdampfen [Sol 01] sowie die Tropfenbeschichtung (Drop-Coating) [Shi 01, Sta 02, Ion 02].

#### Einflüsse bei der Kathodenzerstäubung auf die Schichten

Eine Vielzahl von Untersuchungen findet eine Abhängigkeit der Stöchiometrie sowie der Korngröße von dem Sauerstoffpartialdruck im Plasma während des Sputterns von WO<sub>3</sub>-Schichten.

Dabei wird festgestellt, dass sich durch Erhöhen des Sauerstoffpartialdrucks die Stöchiometrie der Schichten aufgrund einer Reduzierung von Sauerstofffehlstellen verbessert [Lem 02, Mou 01]. Dies steht im Widerspruch zu [Bit 02], der einen Einfluss des Ar/O<sub>2</sub>-Verhältnis und somit des Sauerstoffpartialdrucks auf die Stöchiometrie der Schicht ausschließt. Bei steigendem Sauerstoffgehalt im Plasma verkleinert sich zudem die Korngröße [Bit 02, Lem 02]. Das Gegenteil und somit eine Vergrößerung der Körner mit steigendem Sauerstoffgehalt beobachtet [Man 98].

Weiterhin beobachtet [Man 98] eine Korngrößenzunahme durch Erhöhung des Gesamtbetriebdrucks beim Sputtern.

### 3.1.2 Substrattemperatur während der Deposition

Durch eine Erhöhung der Substrattemperatur während des Depositionsvorgangs wird ein Übergang von amorphen zu kristallinen Schichten erreicht [Kaw 02, Kim 00, Lem 02, Mol 01, Mou 01]. Durch Einstellen bestimmter Substrattemperaturen ist es möglich das Wolframoxid in bestimmten Kristallphasen herzustellen [Mol 01, Mou 01]. [Lem 02] beobachtet eine durch die Substrattemperung hervorgerufene Kristallisation, die aber auch durch eine Temperung nach der Deposition der Schichten (Sintern) erreicht wird. Bei zunehmender Substrattemperatur beobachtet [Kim 00] ein Wachstum der Körner wohingegen [Kaw 02] eine Verkleinerung dieser feststellt.

## 3.1.3 Nachträgliche Temperung (Sintern)

Wichtig für die gassensitiven Eigenschaften ist die Temperung der Schichten nach der Deposition. Hierbei spielen die Temperatur, die Temperatur und die Temperatmosphäre eine entscheidende Rolle.

Diese wirken sich auf den Kristallisationsgrad, die Korngröße und somit auf die Oberfläche und Oberflächenrauhigkeit der Schichten aus.

Weiterhin wird durch eine Temperung an Luft eine Verringerung der Sauerstofffehlstellen sowie eine Verringerung des Wassers aus den Schichten beobachtet [Smi 93].

#### Temperatur während des Tempervorgangs

Durch eine Erhöhung der Temperatur der Temperung wird ein Übergang von amorphen zu polykristallinen Schichten beobachtet [Ant 95, Can 99, Cat 96, Lee 99, Lee 00, Smi 93, Sun 96, Ton 01, Wen 00, Yud 01].

Auch kann man eine gewünschte Kristallphase des WO<sub>3</sub> durch Einstellen einer bestimmten Temperatur erreichen [Lee 01, Sol 01, Sol 02].

Mit steigender Temperatur wird ein Kornwachstum und somit eine Verringerung der spezifischen Oberfläche beobachtet [Bit 02, Can 99, Chu 99, Deo 96, Dep 96, Lee 99, Lee 00, Lee 01, Nel 96, Sol 01, Sol 02, Wen 00, Yud 01].

Eine Verringerung der Sauerstofffehlstellen in den Schichten und somit eine Veränderung der Stöchiometrie durch eine Temperung an Luft beobachten [Smi 93, Chu 99].

Im Gegensatz dazu stellen [Can 99, Cat 96] bei einer nachträglichen Temperung an Luft eine Zunahme der Sauerstofffehlstellen mit steigender Temperatur fest.

[Can 99] beobachtet zudem eine Verringerung der Porösität bei zunehmender Temperatur. Durch eine zu niedrig gewählte Temperatur wird eine zu geringe Haftung der Schichten auf dem Substrat festgestellt [Tom 98].

Bei gesputterten Dünnschichten mit einem Target aus einer Metalllegierung wie z.B. Wolfram/Titan wird festgestellt, dass sich in Abhängigkeit der Temperatur verschiedene Schichttypen, wie z.B. WO<sub>3</sub> mit gelösten Titan-Ionen im WO<sub>3</sub>-Gitter, Anatas (TiO<sub>2</sub>) mit im Gitter gelösten Wolfram-Ionen bis hin zu reinem Anatas oder reinem TiO, in dem keinerlei des vor der Temperung vorhandenen Wolframs mehr zu finden ist, einstellen [Com 00, Con 00, Der 96, Fer 97, Gui 00].

#### **Temperdauer**

Bei Verlängerung der Temperung wird zum einen eine Zunahme der Kristallisation [Deo 96, Dep 96, Nel 96] und zum anderen ein Korngrößenwachstum beobachtet, welches eine Verringerung der mittleren Rauhigkeit und eine Verringerung der spezifischen Oberfläche zur Folge hat [Ant 95, Can 96].

Auch wird bei Zunahme der Temperdauer an Luft eine Zunahme der Sauerstofffehlstellen beobachtet [Can 96, Pat 00].

#### Temperatmosphäre

In [Loz 01] werden WO<sub>3</sub>-Dünnschichten mittels thermischem Verdampfens hergestellt. Anschließend werden diese Dünnschichten bei einer Tempertemperatur von entweder bei 300 °C oder bei 500 °C für 24 Stunden an Luft und anschließend noch 1 Stunde im Vakuum bei Temperaturen zwischen 50 °C und 300 °C getempert. Hierbei wird festgestellt, dass sich bei den bei 300 °C an Luft und anschließend im Vakuum getemperten Schichten durch Erhöhung der Temperatur im Vakuum die Sauerstofffehlstellen erhöhen, also eine Reduktion des WO<sub>3</sub> zu WO<sub>3-X</sub> einstellt. Die bei 500 °C an Luft getemperten Schichten sind gegenüber einer nachträglichen Temperung im Vakuum stabiler, was sich durch eine sehr viel schwächer stattfindende Reduktion des WO<sub>3</sub> darstellt.

#### 3.1.4 Katalytische Schichten

Einen weiteren Einfluss auf die gassensitiven Eigenschaften bei WO<sub>3</sub>-Sensoren ist das Aufbringen von aktiven katalytischen Schichten auf der WO<sub>3</sub>-Oberfläche. Diese werden üblicherweise zur Erhöhung des Chemisorption-Prozesses aufgebracht.

Durch Aufbringung von Edelmetall-Katalysatoren wird die Aktivierungsenergie erniedrigt, wodurch eine Senkung der Betriebstemperatur ermöglicht wird und Wechselwirkungsreaktionen beschleunigt werden. Typische Katalysatoren wie Platin, Gold, Palladium oder Silber können die Sensitivität erhöhen, die Selektivität verbessern und die Redox-Reaktion beschleunigen. Zusätzlich Verringern sie die Ansprech- und Abklingzeiten. Allerdings muss darauf geachtet werden, dass die Katalysatoren bei hohen Temperaturen

selbst oxidiert werden und somit ihre charakteristische Wirkung der Aktivierung der zu detektierenden Gase verloren geht. Auch kann es zu einer Agglomeration des Katalysators kommen womit sich dessen Oberfläche verringert und somit ein Sensitivitätsabfall zu verzeichnen ist. Es ist somit erkennbar, dass eine richtige Dosierung des katalytischen Materials von großer Bedeutung zur Erhöhung der Sensitivität sowie Selektivität ist [Pen 01].

#### 3.1.5 Schichtsysteme aus zwei Metalloxiden

Durch die Beigabe und Variation des beigefügten Anteils eines anderen Metalloxids zum WO<sub>3</sub> können die mechanische und elektronische Stabilität [Ino 95, Kis 01, Pin 01, Wan 97, Yud 01] sowie auch die sensorischen Eigenschaften wie Selektivität und Sensitivität verändert werden. Weiterhin können durch dieses Beimischen die elektronischen Grundeigenschaften eines Materials modifiziert werden. Zum Beispiel kann der Materialwiderstand zur besseren Auswertung mittels Elektronik verändert werden [Gal 01, Gal 02] oder es kann aus einem n-leitenden ein p-leitendes Material hergestellt werden [Com 00, Con 00, Gui 00].

Durch Beigabe eines zweiten Metalloxids zum WO<sub>3</sub> wird auch das Kornwachstum gegenüber reinem WO<sub>3</sub> gehemmt. Die dabei entstehenden kleineren Körner bringen eine Verbesserung der Sensitivität durch ein größeres Oberflächen zu Volumen-Verhältnis mit sich [Deo 96, Dep 96, Der 96, Fer 97, Gal 02, Lee 99, Lee 00, Shi 02, Tom 98, Wan 97, Zha 00].

In der Literatur wird von folgenden Schichtsystemen berichtet: WO<sub>3</sub>/TiO<sub>2</sub> [Deo 96, Dep 96, Der 96, Fer 97, Kis 01, Lee 99, Lee 00, Shi 02], WO<sub>3</sub>/MoO<sub>3</sub> [Gal 01, Gal 02, Kac 02], WO<sub>3</sub>/SiO<sub>2</sub> [Ino 95, Wan 97, Yud 01], WO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> [Zha 00] und WO<sub>3</sub>/Ba<sub>2</sub>O<sub>3</sub> [Tom 98, Tom 99].

#### 3.1.6 Kristallphasen

Bei [Mol 01] wird die Leitfähigkeit von WO<sub>3</sub>-Dünnschichten mit verschiedener Kristallphase in Abhängigkeit von der Temperatur untersucht. Dabei steigt die Leitfähigkeit über den gesamten Temperaturbereich von der monoklinen zur hexagonalen und zur tetragonalen Phase als Hauptbestandteil der Schichten an. Aufgrund der niedrigsten Leitfähigkeit und der damit verbundenen größeren Sensitivitäten werden Schichten in der monoklinen Phase für die Gassensorik favorisiert.

## 3.2 Betriebstemperatur von WO<sub>3</sub>-Sensoren

Eine weitere sehr wichtige Rolle spielt die Betriebstemperatur des Sensors. Hierbei muss man vor allem unterscheiden zwischen der Betriebstemperatur des Sensors zur Erreichung einer maximalen Sensitivität auf ein bestimmtes Zielgas und der optimalen Betriebstemperatur, die zusätzlich von der Ansprechzeit, der Abklingzeit und der Umgebungstemperatur bei der Applikation abhängt. Aus diesem Grund liegt die optimale Betriebstemperatur gegenüber der Temperatur der höchsten Sensitivität oftmals höher, weil bei Zielgasen, für die die höchste Sensitivität bei niedrigen Temperaturen liegt meistens die Ansprech- und Abklingzeiten bei diesen Temperaturen sehr groß sind. Man akzeptiert also eine geringere Sensitivität um die Ansprech- sowie Abklingzeiten der Sensoren zu verkürzen. Weiterhin liegt aus Stabilitätsgründen des Sensors in Anwendungen die gewählte Betriebstemperatur höher als die Temperatur der höchsten Sensitivität da z.B. die Umgebungstemperatur der Applikation höher liegt als die Temperatur der maximalen Sensitivität.

Eine Möglichkeit der Verbesserung der Sensitivität liegt in dem Betreiben des Sensor in einem Temperaturzyklus. Dies hat den Vorteil, dass man den Sensor bei der Temperatur der maximalen Sensitivität auf ein Zielgas betreibt und zur Beschleunigung des Abklingprozesses für kurze Zeit auf eine höhere Temperatur wechselt.

| Zielgas         | Sensormaterial  Dünn- oder Dickschicht  | Katalysator-<br>material | Betriebstemperatur für die höchste Sensitivität [°C] und Messatmosphäre | Literatur          |
|-----------------|-----------------------------------------|--------------------------|-------------------------------------------------------------------------|--------------------|
| NO <sub>x</sub> | WO₃-Dünn                                | -                        | 400 *                                                                   | [Sbe 95]           |
|                 | WO₃-Dünn                                | -                        | 200 **                                                                  | [Can 00]           |
|                 | WO₃-Dünn                                | -                        | 200 <sup>k.A.</sup>                                                     | [Kim 00]           |
|                 | WO₃-Dünn                                | -                        | 300 <sup>k.A.</sup>                                                     | [Mar 01]           |
|                 | WO <sub>3</sub> /TiO <sub>2</sub> -Dick | -                        | 180 **                                                                  | [Yan 99]           |
| NO <sub>2</sub> | WO₃-Dünn                                | -                        | 200 * 1                                                                 | [Sun 96], [Cat 96] |
|                 | WO <sub>3</sub> -Dünn                   | -                        | 250 *                                                                   | [Can 96]           |
|                 | WO₃-Dünn                                | -                        | 200 <sup>k.A.</sup>                                                     | [Zha 00]           |
|                 | WO₃-Dünn                                | -                        | 200 **                                                                  | [Can 00]           |
|                 | WO₃-Dünn                                | -                        | 300 **                                                                  | [Lee 01]           |
|                 | WO₃-Dünn                                | -                        | 200 **                                                                  | [Ton 01]           |
|                 | WO₃-Dünn                                | -                        | 200 **                                                                  | [Shi 02]           |
|                 | WO <sub>3</sub> -Dünn                   | -                        | 400 *                                                                   | [Kaw 02]           |

| Zielgas          | Sensormaterial  Dünn- oder Dickschicht                | Katalysator-<br>material | Betriebstemperatur für die höchste Sensitivität [°C] und Messatmosphäre | Literatur          |
|------------------|-------------------------------------------------------|--------------------------|-------------------------------------------------------------------------|--------------------|
| $NO_2$           | WO <sub>3</sub> -Dünn                                 | Ti                       | 300 **                                                                  | [Lee 01]           |
|                  | WO <sub>3</sub> -Dünn                                 | Au                       | 300 **                                                                  | [Lee 01]           |
|                  | WO <sub>3</sub> -Dünn                                 | Al                       | 300 **                                                                  | [Lee 01]           |
|                  | WO <sub>3</sub> -Dünn                                 | Pt                       | 350 **                                                                  | [Lee 01]           |
|                  | WO <sub>3</sub> -Dick                                 | -                        | 300 * 1                                                                 | [Lee 99]           |
|                  | WO <sub>3</sub> -Dick                                 | -                        | 100 **                                                                  | [Chu 99]           |
|                  | WO <sub>3</sub> -Dick                                 | -                        | 280 **                                                                  | [Lee 00]           |
|                  | WO <sub>3</sub> -Dick                                 | -                        | 226 ***                                                                 | [Sta 02]           |
|                  | WO <sub>3</sub> /TiO <sub>2</sub> -Dünn               | -                        | 200 *, **                                                               | [Nel 96]           |
|                  | WO <sub>3</sub> /TiO <sub>2</sub> -Dünn               | -                        | 200 **                                                                  | [Dep 96]           |
|                  | WO <sub>3</sub> /TiO <sub>2</sub> -Dick               | -                        | 260 ** 1                                                                | [Lee 99]           |
|                  | WO <sub>3</sub> /TiO <sub>2</sub> -Dick               | -                        | 240 **                                                                  | [Lee 00]           |
|                  | WO <sub>3</sub> /TiO <sub>2</sub> -Dünn               | -                        | 200 k.A.                                                                | [Zha 00]           |
|                  | (W,Ti)O <sub>3</sub> -Dick                            | -                        | 230 ** 1                                                                | [Lee 99]           |
|                  | (W,Ti)O <sub>3</sub> -Dick                            | -                        | 180 **                                                                  | [Lee 00]           |
|                  | WO <sub>3</sub> /Al <sub>2</sub> O <sub>3</sub> -Dünn | -                        | 200 k.A.                                                                | [Zha 00]           |
|                  | WO <sub>3</sub> /SiO <sub>2</sub> -Dünn               | -                        | 250 ** 1                                                                | [Wan 97]           |
| NO               | WO <sub>3</sub> -Dünn                                 | -                        | 180 *                                                                   | [Man 98]           |
|                  | WO <sub>3</sub> -Dünn                                 | -                        | 180 *                                                                   | [Cap 99]           |
|                  | WO <sub>3</sub> -Dünn                                 | -                        | 390 *                                                                   | [Kaw 02]           |
|                  | WO <sub>3</sub> -Dick                                 | -                        | 150 ** 1                                                                | [Tom 98]           |
|                  | WO <sub>3</sub> /Ba <sub>2</sub> O <sub>3</sub> -Dick | -                        | 150 ** 1                                                                | [Tom 98], [Tom 99] |
|                  | WO <sub>3</sub> -Pressling                            | -                        | 300 **                                                                  | [Che 03]           |
|                  | WO <sub>3</sub> -Pressling                            | Ag                       | 250 **                                                                  | [Che 03]           |
| CO               | WO <sub>3</sub> -Dünn                                 | -                        | 225 **                                                                  | [Ton 01]           |
| H <sub>2</sub> S | WO <sub>3</sub> -Dünn                                 | -                        | 150 – 200 <sup>3</sup>                                                  | [Roy 98]           |
|                  | WO <sub>3</sub> -Dünn                                 | -                        | 200 **                                                                  | [Ton 01]           |
|                  | WO <sub>3</sub> -Dünn                                 | Au                       | 200 **                                                                  | [Xu 90]            |
|                  | WO <sub>3</sub> -Dünn                                 | Au                       | 200 **                                                                  | [Smi 93]           |
|                  | WO <sub>3</sub> -Dünn                                 | Pt                       | 220 **                                                                  | [Tao 02]           |
|                  | WO <sub>3</sub> -Dünn                                 | Au                       | 90 **                                                                   | [Tao 02]           |
|                  | WO <sub>3</sub> -Dünn                                 | Au-Pt                    | 220 **                                                                  | [Tao 02]           |
|                  | WO <sub>3</sub> -Dick                                 |                          |                                                                         | r                  |

| Zielgas                          | Sensormaterial  Dünn- oder Dickschicht  | Katalysator-<br>material | Betriebstemperatur für die höchste Sensitivität [°C] und Messatmosphäre | Literatur |
|----------------------------------|-----------------------------------------|--------------------------|-------------------------------------------------------------------------|-----------|
| SO <sub>2</sub>                  | WO <sub>3</sub> -Dick                   | -                        | 400 *                                                                   | [Shi 01]  |
|                                  | WO <sub>3</sub> -Dick                   | Ag                       | 450 *                                                                   | [Shi 01]  |
| O <sub>3</sub>                   | WO₃-Dünn                                | -                        | 220 **                                                                  | [Can 99]  |
|                                  | WO <sub>3</sub> -Dünn                   | -                        | 400 **                                                                  | [Can 00]  |
|                                  | WO <sub>3</sub> -Dünn                   | -                        | 300 **                                                                  | [Wen 00]  |
|                                  | WO <sub>3</sub> -Dünn                   | -                        | 300 **                                                                  | [Agu 02]  |
|                                  | WO <sub>3</sub> -Dick                   | -                        | 180 ***                                                                 | [Sta 02]  |
| NH <sub>3</sub>                  | WO₃-Dünn                                | -                        | 200 *                                                                   | [Sbe 95]  |
|                                  | WO <sub>3</sub> /MoO <sub>3</sub> -Dick | Au                       | 400 – 500 *                                                             | [Xu 00]   |
|                                  | WO <sub>3</sub> -Dünn                   | Au                       | 350 k.A.                                                                | [Mar 01]  |
| H <sub>2</sub>                   | WO₃-Dünn                                | Au                       | 225 – 250 **                                                            | [Smi 93]  |
|                                  | WO₃-Dünn                                | Au                       | 120 **                                                                  | [Dav 01]  |
| O <sub>2</sub>                   | WO₃-Dünn                                | -                        | 220 ***                                                                 | [Gal 01]  |
|                                  | WO <sub>3</sub> /MoO <sub>3</sub> -Dünn | -                        | 370 – 420 ***                                                           | [Gal 01]  |
| CH                               | WO Draw                                 |                          | 200 **                                                                  | [Ton 01]  |
| CH <sub>4</sub>                  | WO₃-Dünn                                | -                        | 200 ***                                                                 | [Ton 01]  |
| C <sub>2</sub> H <sub>6</sub> OH | WO₃-Dünn                                | -                        | 225 **                                                                  | [Ton 01]  |
|                                  | WO <sub>3</sub> /SiO <sub>2</sub> -Dick | -                        | 80 **                                                                   | [Yud 01]  |
| Cl <sub>2</sub>                  | WO <sub>3</sub> -Dünn                   | -                        | 150 **                                                                  | [Ben 01]  |

<sup>\*</sup> in trockener Luft

<sup>\*\*</sup> in feuchter Luft

<sup>\*\*\*</sup> in N<sub>2</sub> gemessen

<sup>&</sup>lt;sup>1</sup> da die Ansprech- und Abklingzeiten groß sind, liegt die optimale Betriebstemperatur höher

<sup>&</sup>lt;sup>2</sup> erfordert nachträgliches Ausheizen bei 255°C um Grundleitwert wieder zu erhalten

<sup>&</sup>lt;sup>3</sup> im Vakuum gemessen

## 3.3 Modelle zur Leitfähigkeit von WO<sub>3</sub> bei verschiedenem Gasangebot

Im folgenden Kapitel werden Modelle der Wirkungsweise bestimmter Gase auf WO<sub>3</sub>-Schichten beschrieben, wie sie in der Literatur zu finden sind.

#### 3.3.1 Betrieb an Luft

[Yud 01] beschreibt die elektronischen Eigenschaften von WO<sub>3</sub> folgendermaßen. Der auf der Oberfläche adsorbierte Luftsauerstoff beeinflusst die Leitfähigkeit von WO<sub>3</sub>-Sensoren und ist abhängig von der Partikelgröße, der spezifischen Fläche des Materials und der Betriebstemperatur des Sensors. Mit steigender Temperatur unterzieht sich der an der WO<sub>3</sub>-Oberfläche adsorbierte Sauerstoff folgenden Reaktionen:

$$O_{2gas} \leftrightarrow O_{2ads}$$
 (3.1)

$$O_{2ads} + e^- \leftrightarrow O_{2ads}^- \tag{3.2}$$

$$O_{2ads}^{-} + e^{-} \leftrightarrow 2O_{ads}^{-} \tag{3.3}$$

$$O_{ads}^{-} + e^{-} \leftrightarrow O_{ads}^{2-} \tag{3.4}$$

Die Sauerstoffspezies fängt Elektronen vom  $WO_3$  ein, was eine Abnahme der Elektronenkonzentration zur Folge hat. Hierbei stellt  $WO_3$  ein saures Oxid dar. Zusätzlich zu den auf der  $WO_3$ -Oberfläche adsorbierten Sauerstoffarten sind dort noch aus Wasser entstandene  $OH^-$ -Adsorbate. Die vorliegende Form von chemisorbiertem Wasser auf

WO<sub>3</sub> ist komplizierter als die von adsorbiertem Sauerstoff. Die dazugehörige Reaktion kann folgendermaßen zusammengefasst werden

$$W_{lat} + H_2O \leftrightarrow (W_{lat} - OH^-) + H_{ads}^+$$
(3.5)

wobei  $W_{lat}$  die Lewis-Säure darstellt, die mit dem  $OH^-$  eine kovalente Bindung bilden kann.

Das  $H_{ads}^+$  ist das adsorbierte Wasserstoff-Ion, welches die Bronsted Säure ist und bei katalytischen Reaktionen leicht entfernt werden kann.

Bei niedrigen Temperaturen sind  $OH^-$ ,  $O_{2\ ads}^-$  und  $O_{ads}^-$  die dominierenden sauerstoffähnlichen Spezies auf den Materialoberflächen.

Von Raumtemperatur bis 175 °C sinkt der Widerstand bei zunehmender Betriebstemperatur durch das Emittieren von Elektronen aus den niedrigen Energiezuständen (wie z.B.

Donatorniveaus oder Valenzband) mit Hilfe von thermischer Energie in das Leitungsband. Im

Temperaturbereich von 175 °C bis 225 °C ist die Widerstandsänderung sehr gering. Dies liegt an der vollständigen Ionisation der Elektronen aus dem Donatorniveau und dass die Elektronenkonzentration der intrinsischen Anregung kleiner ist als die Donatorkonzentration in diesem Temperaturbereich.

Bei Temperaturen oberhalb von 250 °C desorbiert das chemisorbierte Wasser und geht über in  $O_{ads}^-$  und  $O_{ads}^{2-}$ . Der Widerstand fängt an zu steigen, was diesem

Elektronen-Verarmungs-Mechanismus zugeordnet werden kann.

#### 3.3.2 O<sub>2</sub>-Gasangebot

[Gal 01] erklärt, dass bei der Sauerstoffmessung mit WO<sub>3</sub> bei tiefen Temperaturen der Schottky-Barrieren-Effekt und bei hohen Temperaturen der Sauerstofffehlstellen-Effekt im Volumen dominiert. Aus dem Übergang von dem einen zum anderen Effekt resultiert ein nicht-linearer Widerstandsverlauf.

## 3.3.3 NO<sub>2</sub>-, NO- oder SO<sub>2</sub>-Gasangebot

Mit dem Angebot von NO<sub>2</sub>, NO oder SO<sub>2</sub> und der Beschreibung der Wechselwirkung zwischen diesen und WO<sub>3</sub>-Schichten wird sich in dieser Arbeit ausführlich in Kapitel 6.2 befasst.

#### 3.3.4 CH<sub>4</sub>- und CO-Gasangebot

Mittels in situ Raman-Spektroskopie hat [Bou 01] die Bildung von einer aktiven Form von Kohlenstoff bei Angebot von CH<sub>4</sub> oder CO auf WO<sub>3</sub>-Presslingen festgestellt. Allerdings wurden die Ergebnisse nur bei WO<sub>3</sub> mit sehr kleinen Körnern (2 nm) beobachtet. Bei größeren Körnern (35 nm) gab es für die unten beschriebenen Reaktionen in den Raman-Spektren keinerlei Hinweise. Dies wird mit dem Korngrößeneffekt erklärt, da sich bei größer werdenden Körnern das Verhältnis zwischen Oberflächenatomen zu Volumenatomen

verringert und somit die Anzahl der aktiven Stellen zur Realisierung von katalytischen Reaktionen unzureichend wird.

Bei Angebot von Methan wird dieses während des Crack-Prozess katalytisch zu CO-freiem Wasserstoff und Oberflächenkohlenstoff und Kohlenwasserstoffarten folgendermaßen zersetzt:

$$CH_4 \to \frac{C_{ads}}{[C(H)_n]_{ads}} + (2 - \frac{n}{2})H_2$$
 (3.6)

Der dabei entstandene Wasserstoff und Kohlenstoff kann weiterhin mit dem Gittersauerstoff der Wolframoxidstruktur und dem Oberflächensauerstoff  $O_2^-$ , der durch die Chemisorption von Sauerstoff auf den WO<sub>3</sub>-Partikeln entsteht, folgendermaßen reagieren:

$$O_0 + H_2 \to H_2 O + V_0^{\bullet \bullet} + 2 \cdot e^-$$
 (3.7)

$$2 \cdot C_{ads} + O_2^- \rightarrow 2 \cdot CO + e^- \tag{3.8}$$

Im Falle von CO-Molekülen können die katalytischen Schritte folgendermaßen beschrieben werden:

$$2 \cdot CO \to C_{ads} + CO_2 \tag{3.9}$$

$$2 \cdot C_{ads} + O_2^- \rightarrow 2 \cdot CO + e^- \tag{3.10}$$

Die dabei entstandenen "freien" Elektronen führen somit zu der beobachteten Widerstandserniedrigung bei beiden Gasangeboten. Die dabei beobachtete schnellere Kinetik der elektrischen Eigenschaften bei Methanangebot kann durch die höhere Zahl der dabei entstehenden "freien" Elektronen erklärt werden.

Bei anschließendem Angebot von oxidierendem NO<sub>2</sub> reagiert dieses mit dem adsorbierten Kohlenstoff und den Sauerstofffehlstellen an der Oberfläche der Wolframoxid-Partikel:

$$C_{ads} + NO_2 + V_o^{\bullet \bullet} \to CO + \frac{1}{2} \cdot N_2 + O_O - 2 \cdot e^-$$
 (3.11)

Hierbei wird eine Widerstandserhöhung beobachtet.

#### 3.3.5 NH<sub>3</sub>-Gasangebot

Nach [Mar 01] ist NH<sub>3</sub> ein reduzierendes Gas. Bei Wechselwirkung von NH<sub>3</sub> und einer WO<sub>3</sub>-Schicht steigt die Ladungsträgerkonzentration als Konsequenz einer Erniedrigung der adsorbierten Oberflächen-Sauerstoff-Konzentration nach folgender Gleichung an:

$$2 \cdot NH_3 + 3 \cdot O_{ads}^- \to N_2 + 3 \cdot H_2O + 3 \cdot e^- \tag{3.12}$$

Aus diesem Anstieg der Ladungsträgerkonzentration in der WO<sub>3</sub>-Schicht resultiert die bei NH<sub>3</sub>-Angebot beobachtete Widerstandserniedrigung.

#### 3.3.6 H<sub>2</sub>S-Gasangebot

Bei [Frü 96] wird das Verhalten von WO<sub>3</sub>-Dünnschichten bei Angebot von H<sub>2</sub>S untersucht. Hierbei wird festgestellt, dass durch das Angebot von H<sub>2</sub>S zusätzliche Sauerstofffehlstellen und somit zusätzliche elektronische Zustände in der Bandlücke des WO<sub>3</sub> entstehen. Diese Sauerstofffehlstellen entstehen durch Reaktionen der Bestandteile vom H<sub>2</sub>S (H und S) mit Gittersauerstoff und der darauf folgenden Desorption der Reaktionsprodukte (SO<sub>2</sub> und H<sub>2</sub>O). Solange reines H<sub>2</sub>S nicht mit Atmosphärendruck angeboten wurde, gab es keinerlei Anzeichen für eine Sulfidbildung (W<sub>2</sub>S) auf der Oberfläche.

[Xu 90] untersucht reine und Gold-dotierte WO<sub>3</sub>-Dünnschichten bei Angebot von H<sub>2</sub>S. Hierbei ist die Leitfähigkeit der reinen WO<sub>3</sub>-Schichten gegenüber den Au-dotierten höher, da die Goldatome als isolierte Streuzentren für die Elektronen zu sehen sind und dies eine Reduzierung in der Elektronenmobilität hervorrufen. Weiterhin wird bei Angebot von H<sub>2</sub>S im ppm-Bereich festgestellt, dass sich bei Au-dotiertem WO<sub>3</sub> die Ladungsträgerkonzentration mit steigender Temperatur erniedrigt und die Mobilität ansteigt. Ohne H<sub>2</sub>S-Angebot hingegen steigt die Ladungsträgerkonzentration und sinkt die Mobilität bei steigender Temperatur. Auch wird mit steigender H<sub>2</sub>S-Konzentration eine Abnahme der Beweglichkeit und ein Ansteigen der Ladungsträgerkonzentration bei Au-dotierten Schichten mit einer Betriebstemperatur von 200 °C beobachtet. Dies wird mit der reduzierenden Eigenschaft des H<sub>2</sub>S und dem damit verbundenen Entfernen von Sauerstoff von der Oberfläche erklärt [Xu 90, Smi 93].

#### 3.3.7 Ethanol-Gasangebot

Nach [Yud 01] entsteht bei der Wechselwirkung zwischen einer WO<sub>3</sub>-Oberfläche und Ethanol (C<sub>2</sub>H<sub>5</sub>OH) durch dessen Adsorption und Reaktion mit der Oberflächen-Lewis-Säure

(Wolfram-Ion) Ethylether (O-CH<sub>2</sub>-CH<sub>3</sub>). Diese Zersetzung von Ethanol zu Ethylether entsteht bei 250 °C. Die mögliche Reaktion wird folgendermaßen beschrieben:

$$C_2H_5OH_{gas} + W_{lat} \rightarrow (W_{lat} - O - CH_2 - CH_3) + H_{ads}^+$$
 (3.13)

wobei O-CH<sub>2</sub>-CH<sub>3</sub> negativ geladen und  $H_{ads}^+$  aktiviert ist.

$$2 \cdot H_{ads}^+ + O_{ads}^- \to H_2 O_{gas} \tag{3.14}$$

$$H_{ads}^+ + OH_{ads}^- \to H_2O_{gas} \tag{3.15}$$

$$H_{ads}^+ + O_{lat}^{2-} \to O_{lat} - H^- + V_O$$
 (3.16)

Hierbei wird eine Sauerstofffehlstelle als  $V_o$  darstellt.

Bei höherer Temperatur von 350 °C wird durch Dehydratisierung aus O-CH<sub>2</sub>-CH<sub>3</sub> und OH-Gruppen gasförmiges Ethylen (CH<sub>2</sub>=CH<sub>2</sub>) gebildet, dessen Konzentration mit steigender Temperatur zunimmt. Diese Reaktion wird folgendermaßen beschrieben:

$$(W_{lat} - O - CH_2 - CH_3) + OH_{ads}^- \to (W_{lat} - O^-) + H_2O_{eas} + (CH_2 = CH_2)_{eas} + e^-$$
(3.17)

Bei tiefer Temperatur und fehlendem Sauerstoff können zwei O-CH<sub>2</sub>-CH<sub>3</sub> miteinander Ethylether produzieren:

$$(CH_3 - CH_2 - O - W_{lat}) - O_{lat} - (W_{lat} - O - CH_2 - CH_3) \rightarrow (W_{lat} - O^-) - O - W_{lat} + (C_2H_5)2O_{gas} + e^-$$
(3.18)

Bei allen obigen Reaktionen werden Elektronen dem WO<sub>3</sub>-Volumen zurückgegeben, woraus ein Anstieg der Elektronenkonzentration und somit eine Widerstandserniedrigung resultiert.

#### 3.3.8 Phosphorverbindungen als Gasangebot

[Kim 01] untersucht das Verhalten von organischen Phosphorverbindungen wie Dimethyl Methyl Phosphonat (DMMP), Dimethyl Hydrogen Phosphonat (DMHP) und Trimethyl Methyl Phosphonat (TMP) auf WO<sub>3</sub>.

Bei Raumtemperatur wird festgestellt, dass alle drei Verbindungen mit der funktionellen Gruppe P=O über eine Wasserstoffbrückenbindung mit den Hydroxylgruppen auf der WO<sub>3</sub>-Oberfläche adsorbieren.

Bei höheren Temperaturen dissoziieren diese über Wasserstoffbrücken gebundenen organischen Phosphorverbindungen und bilden kovalent gebundene Spezies.

Bei über 200 °C desorbiert die erste Methoxygruppe von der Oberfläche und ab 300 °C auch die Zweite, während die Methylgruppen stabil bleiben.

Über 300 °C bildet sich ein stabiler Phosphoroberflächenkomplex, der evtl. für die beobachteten Vergiftungserscheinungen (irreversible Adsorption) der WO<sub>3</sub>-Schichten verantwortlich ist.

<u>44</u> Experimentelles

## 4 Experimentelles

#### 4.1 Präparatives

#### 4.1.1 WO<sub>3</sub>-Dünn- und Dickschicht-Sensoren

Für die Charakterisierung des Leitfähigkeitsverhalten, die impedanzspektroskopischen Untersuchungen und die Gleichspannungsmessungen werden WO<sub>3</sub>-Dünn- und Dickschichtsensoren verwendet. Die Substrate unterscheiden sich in verschiedenen Elektrodenabständen und in der verwendeten Tempertemperatur. Eine Übersicht dieser WO<sub>3</sub>-Sensoren ist in Tabelle 4 aufgeführt.

Die Sensoren wurden bei der Siemens AG im Rahmen des Verbundprojektes MEGAS hergestellt. Die Sensorsubstrate bestehen aus Aluminiumoxid (99,6 % Al<sub>2</sub>O<sub>3</sub>). Die Elektroden der Interdigitalstruktur auf der einen Seite sowie der Heizungsmäander auf der anderen Seite des Substrats bestehen jeweils aus 2 μm dick gesputtertem Platin. Es wurden 2- und 4-Elektroden-Substrate hergestellt, wobei die beiden Mittelelektroden der 4-Elektroden-Substrate in dieser Arbeit nicht verwendet wurden. Die WO<sub>3</sub>-Dünnschichten wurden mittels reaktiver Kathodenzerstäubung (Sputtern) und die WO<sub>3</sub>-Dickschichten mittels Siebdruckverfahren aufgebracht. Alle Sensoren wurden an synthetischer Luft getempert. Weitere Details zur Präparation sind in [Meg 98] und [Meg 99<sup>1</sup>] beschrieben.

| Sensor | WO <sub>3</sub> -Dick- o. | Schichtdicke | Elektroden-Geometrie:   | 2- oder 4- | Temperung |
|--------|---------------------------|--------------|-------------------------|------------|-----------|
|        | Dünnschicht               | [µm]         | Stegbreite, Stegabstand | Elektroden |           |
| S1     | Dünn                      | 2            | 10 μm, 30 μm            | 2          | 3h 600°C  |
| S2     | Dünn                      | 2            | 15 μm, 75 μm            | 4          | 3h 600°C  |
| S3     | Dünn                      | 2            | 10 μm, 30 μm            | 2          | 3h 800°C  |
| S4     | Dünn                      | 2            | 15 μm, 75 μm            | 4          | 3h 800°C  |
| S5     | Dick                      | 10           | 10 μm, 10 μm            | 2          | 3h 600°C  |
| S6     | Dick                      | 10           | 15 μm, 75 μm            | 4          | 3h 600°C  |
| S7     | Dick                      | 10           | 10 μm, 10 μm            | 2          | 3h 800°C  |
| S8     | Dick                      | 10           | 15 μm, 75 μm            | 4          | 3h 800°C  |

Tabelle 4: Übersicht der untersuchten WO<sub>3</sub>-Sensoren

#### 4.1.2 WO<sub>3</sub>-Dünnschichten

Für die Zusammensetzungs- und Strukturuntersuchungen mit Röntgen-Photoemissions- Spektroskopie und Röntgendiffraktometrie wurden zwei WO<sub>3</sub>-Dünnschichten mit reaktiver Kathodenzerstäubung (Sputtern) von der Siemens AG hergestellt. Beide Proben bestehen aus einer 150 nm dicken WO<sub>3</sub>-Dünnschicht auf einem Aluminiumoxidsubstrat, auf welchem sich eine 0,5 μm dicke gesputterte Interdigitalstruktur aus Platin befindet. Das Sauerstoff-Argon-Verhältnis während des Sputterns betrug 1:5, der Sputterdruck 9·10<sup>-2</sup> mbar, die Sputterrate 0,2 nm·s<sup>-1</sup> und die Substrattemperatur 400 °C. Anschließend wurden beide Proben an synthetischer Luft für 3 Stunden bei 800 °C getempert, wobei die Aufheiz- und Abkühlflanken mit einer Heiz- und Kühlrate von 2 K·min<sup>-1</sup> gefahren wurden. Zusätzlich wurde Probe 2 noch einem simulierten Sensorbetrieb unterzogen, der in einer weiteren Temperung für 50 Stunden bei 500 °C bestand. Weitere Details zur Präparation sind in [Meg 98] und [Meg 99<sup>1</sup>] beschrieben. Eine Übersicht der beiden Proben ist in Tabelle 5 zusammengefasst.

| Probe | Schichtdicke | Temperung an       | simulierter    |
|-------|--------------|--------------------|----------------|
| rioue | [nm]         | synthetischer Luft | Sensorbetrieb  |
| 1     | 150          | 3 h bei 800 °C     |                |
| 2     | 150          | 3 h bei 800 °C     | 50 h bei 500°C |

Tabelle 5: Übersicht der WO<sub>3</sub>-Dünnschichten

## 4.1.3 WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten

Für Zusammensetzungs- und Strukturuntersuchungen mittels Röntgen-Photoemissions-Spektroskopie und Röntgendiffraktometrie sowie der Untersuchung eventueller Vergiftungseffekte bei WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten durch den Betrieb in Abgas wurden 4 Proben mittels Siebdruckverfahren von der Siemens AG hergestellt. Die Proben wurden mit einer bei Siemens selbst hergestellten Siebdruckpaste mit einer Pulver-Materialkombination von 90 Gew.% WO<sub>3</sub> und 10 Gew.% TiO<sub>2</sub> auf Aluminiumoxidsubstrate präpariert. Das Pulver-Binder-Verhältnis lag bei 4 mit Ethylcellulose (Typ 00906) als Binder und einem Dispergatoranteil von 1 % (Hypermer MT-1).

Anschließend wurden alle Proben an synthetischer Luft für 3 Stunden bei 800 °C getempert, wobei die Aufheiz- und Abkühlflanken mit einer Heiz- und Kühlrate von 2 K⋅min<sup>-1</sup> gefahren

wurden. Zusätzlich wurden die Proben 5 und 6 mit einer Betriebstemperatur von 500 °C entweder 80 Stunden synthetischem Abgas oder 80 Stunden Dieselbrennerabgas ausgesetzt. Weitere Details zur Präparation sind in [Meg 99<sup>1</sup>] beschrieben.

| Probe | Schichtdicke | Temperung an       | Betrieb im Abgas          |
|-------|--------------|--------------------|---------------------------|
|       | [µm]         | synthetischer Luft | Betriebstemperatur: 500°C |
| 3     | 11-12        | 3 h bei 800 °C     |                           |
| 4     | 11-12        | 3 h bei 800 °C     |                           |
| 5     | 11-12        | 3 h bei 800 °C     | 80 h synthetisches Abgas  |
| 6     | 11-12        | 3 h bei 800 °C     | 80 h Dieselbrennerabgas   |

Tabelle 6: Übersicht der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten

Von Probe 6, die getempert und zusätzlich dem Brennerabgas ausgesetzt wurde, wurden zwei Proben (6a und 6b) aus der gleichen Charge mittels XPS vermessen, da aufgrund der Probenaufladung von Probe 6a während der XPS-Messungen eine Auswertung der Daten zum Teil nicht möglich war.

Die Temperatur und Zusammensetzung der beiden Abgasarten ist in Tabelle 7 aufgeführt. Die Sauerstoffkonzentration wurde auf 10 % eingestellt, da Abgase von Dieselmotoren wie auch Mager-Mix-Otto-Motoren einen Sauerstoffanteil von 4 Vol.% bis 20 Vol.% enthalten [Wal 00].

|                                       | Synthetisches | Dieselbrenner |
|---------------------------------------|---------------|---------------|
|                                       | Abgas         | Abgas         |
| Abgas-Temperatur [°C]                 | 300           | 350           |
| O <sub>2</sub> -Konzentration [%]     | 10            | 10            |
| CO <sub>2</sub> - Konzentration [%]   | 8             | 7             |
| H <sub>2</sub> O- Konzentration [%]   | 6             | 7             |
| CO- Konzentration [ppm]               | 1.000         | 100-200       |
| NO- Konzentration [ppm]               | 500           | 50            |
| NO <sub>2</sub> - Konzentration [ppm] | 10            |               |
| H <sub>2</sub> - Konzentration [ppm]  | 100           |               |
| SO <sub>2</sub> - Konzentration [ppm] | 20            |               |
| HC-Konzentration [ppm]                |               | <20           |
| Acethylen-Konzentration [ppm]         | 30            |               |
| Vermutliche Reststoffe                |               | S, P, Si, C   |

Tabelle 7: Zusammensetzung der verwendeten Abgasarten

# 4.1.4 WO<sub>3</sub>/TiO<sub>2</sub>-Presslinge

Zur Untersuchung von Phasenumwandlungen in WO<sub>3</sub>/TiO<sub>2</sub>-Schichten wurden XRD-Messungen an 3 Presslingen durchgeführt, die verschiedenen Temperungen unterzogen wurden. Die Proben wurden in Bezug auf das Schichtmaterial in gleicher Weise wie die WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten in Kapitel 4.1.3 von der Siemens AG präpariert und in Tablettenform gepresst. Einer der WO<sub>3</sub>/TiO<sub>2</sub>-Presslinge wurde nicht getempert (a) und die beiden anderen wurden für 10 Stunden bei 600 °C (b) oder für 10 Stunden bei 800 °C (c) getempert (s. Tabelle 8).

| Probe | Dicke | Durchmesser | Temperung an       |
|-------|-------|-------------|--------------------|
|       | [mm]  | [mm]        | synthetischer Luft |
| a     | 3     | 12          |                    |
| b     | 3     | 12          | 10 h bei 600 °C    |
| С     | 3     | 12          | 10 h bei 800 °C    |

Tabelle 8: Übersicht der WO<sub>3</sub>/TiO<sub>2</sub>-Presslinge

<u>48</u> Experimentelles

#### 4.2 Messmethoden

#### 4.2.1 Infrarot-Strahlungspyrometer

Die Temperatur von Halbleiterschichten bestimmt zu einem wesentlichen Teil die Empfindlichkeit von Gassensoren. Um eine genauere Angabe der Temperatur machen zu können werden in dieser Arbeit die tatsächlichen Oberflächentemperaturen der untersuchten Gassensoren mit einem Infrarot-Strahlungspyrometer (Typ KTR 1075-1-S, Maurer) kontrolliert.

Nach den Strahlungsgesetzen ist die spezifische Ausstrahlung (R) von Körpern von der Temperatur (T) abhängig. Nach dem Wien'schen Strahlungsgesetz und mit Hilfe des Kirchhoff'schen Gesetzes gilt für die spezifische Ausstrahlung die Temperaturabhängigkeit

$$R = R_s \cdot \alpha = \alpha \cdot \frac{8 \cdot \pi \cdot h \cdot v^3}{c^3} \cdot e^{\frac{-hv}{kT}}$$
(4.1)

mit  $\alpha$  = Absorptionsgrad (zwischen 0 und 1)

R<sub>s</sub> = spezifische Ausstrahlung eines schwarzen Strahlers

k = Boltzmannkonstante

T = absolute Temperatur

Aus Gleichung (4.1) wird deutlich, dass neben der Temperatur die Ausstrahlung auch vom Absorptionsgrad abhängt. Dieser Absorptionsgrad gibt die Korrektur zu einem idealen schwarzen Strahler an.

Mit dem eingesetzten Strahlungspyrometer besteht die Möglichkeit, die Temperatur berührungslos zu erfassen. Mit Hilfe des pyrometrischen Verfahrens wird nach den obigen Gesetzmäßigkeiten die Temperatur der strahlenden Fläche bestimmt. Der Spektralbereich des Pyrometers liegt in einem Bereich von 1  $\mu$ m bis 1,7  $\mu$ m. Der Messbereich der Temperatur erstreckt sich von 300 °C bis 1300 °C bei einer Ansprechzeit von ca. 10 ms.

Der Messfleck besitzt bei einem Messabstand von 70 mm einen Durchmesser von  $\emptyset = 0,3$  mm und ist mit Hilfe eines roten Pilotlichts fokussierbar. Die Einstellung des Absorptionsgrads für einen Körper ist von 0,1 bis 1 intern einstellbar.

Um eine genaue Positionierung des Messflecks bei den Sensortemperaturmessungen zu ermöglichen, wird das Pyrometer auf eine optische Bank mit x-y-z-Manipulator fixiert, mit

der über Mikrometerschrauben die Position des Messflecks zur Sensoroberfläche kontinuierlich verändert werden kann.

#### 4.2.2 Gasmischanlage

Zur Untersuchung der Sensoren unter definierten und reproduzierbaren Bedingungen wird eine rechnergesteuerte Gasmischanlage eingesetzt. Diese PC-gesteuerte Anlage ermöglicht es, den Sensoren verschiedene Gaskonzentrationen und Luftfeuchtigkeiten anzubieten. Sie besteht aus 4 programmierbaren Massendurchflussreglern (MFC), welche die Flüsse von

Zwei dieser Massendurchflussregler (je 0 bis 30 l/h) steuern den Strom der synthetischen Luft, wobei ein Teilstrom durch eine Waschflasche (Bubbler) geleitet wird und somit annähernd 100 % relative Feuchte besitzt. Dadurch ist eine Variation der Feuchte in dem Strom synthetischer Luft möglich.

Prüfgas und synthetischer Luft (80 % N<sub>2</sub> und 20 % O<sub>2</sub>) regeln.

Die anderen beiden Durchflussregler (je 0 bis 1,2 l/h) steuern zwei voneinander unabhängige Ströme von Prüfgasen.

Die Ströme der Prüfgase können in einem Ventilblock mit zwei 3-Wegeventilen dem Strom der synthetischen Luft zugemischt oder in einen Abzug geleitet werden. An dem Ventilblock ist ein Sensorblock, in dem die zu untersuchenden Sensoren befestigt sind, über einen Schlauch angeschlossen.

Die Massendurchflussregler werden über einen Rechner mit einer angeschlossenen D/A-Wandlerkarte durch eine Gleichspannung gesteuert.

Zur Steuerung der Anlage steht das am IAP entwickelte Programm *STEU-ALL* zur Verfügung, das den Ablauf der Messungen steuert, protokolliert und auf dem Monitor grafisch darstellt.

Bei den DC-Messungen mit Angebot von  $SO_2$  wurden die Sensorsignale mit einem digitalen Scannermultimeter (Keithley 199 DMM) aufgenommen, das die Signale über eine IEEE-Schnittstelle an den PC überträgt. Der dabei angebotene simulierte Abgasstrom bestand aus einem trockenem Stickstoff-Sauerstoff-Gemisch (96 %  $N_2$  + 4 %  $O_2$ ), dem verschiedene  $SO_2$ -Konzentrationen zugemischt wurden.

<u>50</u> Experimentelles

Die Impedanzmessungen mit Gasangebot von NO<sub>2</sub>, NO und CO wurden in synthetischer Luft mit einer relativen Feuchte von 50 % bei einem Gasfluss von 30 l/h an der Gasmischanlage durchgeführt. Die Sensorsignale werden über ein Koaxialkabel an den Frequenzganganalysator übertragen, der die Möglichkeit bietet komplette Messabläufe im Gerät zu programmieren und seine Werte über eine serielle Schnittstelle an einen angeschlossenen Rechner zu liefern. Nähere Informationen sind in Kapitel 4.2.3 beschrieben.

Die Messungen zur Bestimmung der Aktivierungsenergie wurden in synthetischer Luft mit einer relativen Feuchte von 50 % bei einem Gasfluss von 30 l/h an der Gasmischanlage durchgeführt. Zwischen jedem Messpunkt wurde ein Abstand von 30 Minuten gewählt, damit sich der Widerstandswert der Sensoren nahezu im stabilen Gleichgewicht befindet.

Den schematischen Aufbau der Gasmischanlage kann man der Abbildung 4-1 entnehmen.

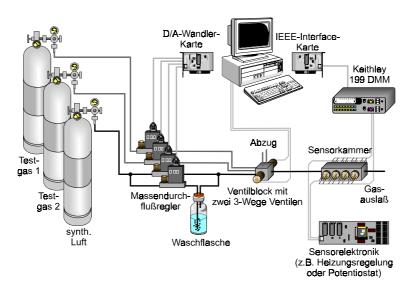



Abbildung 4-1: Rechnergesteuerte Gasmischanlage [The 98]

### 4.2.3 Impedanzspektroskopie

Zur Bestimmung der Impedanz  $Z(\omega)$  eines Systems wird eine Wechselspannung  $U(\omega)$  an dieses angelegt, was einen Wechselstromfluss  $I(\omega)$  hervorruft.

Der funktionale Zusammenhang zwischen der angelegten Spannung  $U(\omega)$  und dem Strom  $I(\omega)$  ist analog dem ohmschen Gesetz der Gleichstromlehre:

$$Z(\omega) = \frac{U(\omega)}{I(\omega)} \tag{4.2}$$

Per Definition ist die Impedanz eine komplexe Größe und lässt sich somit schreiben als:

$$Z(\omega) = |Z| \cdot e^{i \cdot \Phi} = \operatorname{Re}(Z) + i \cdot \operatorname{Im}(Z)$$
(4.3)

Dabei lassen sich der Realteil Re(Z), der Imaginärteil Im(Z), der Phasenwinkel  $\Phi$  und die Amplitude |Z| folgendermaßen darstellen:

$$Re(Z) = Z' = |Z| \cdot \cos(\Phi) \tag{4.4}$$

$$Im(Z) = Z'' = |Z| \cdot \sin(\Phi) \tag{4.5}$$

$$\Phi = \arctan(\frac{Z''}{Z'}) \tag{4.6}$$

$$|Z| = \sqrt{(Z')^2 + (Z'')^2}$$
 (4.7)

Die Darstellung von Impedanzen wird meist durch einen Nyquist-Plot dargestellt, bei dem der Imaginärteil Im(Z) gegen den Realteil Re(Z) aufgetragen wird. Zur besseren Darstellbarkeit wird hierbei meistens das Vorzeichen des Imaginärteils umgekehrt und somit –Im(Z) gegen Re(Z) aufgetragen.

Oft möchte man aus dem Impedanzspektrum einer untersuchten Probe ein Ersatzschaltbild aus realen Bauteilen ableiten. Dabei stellt man fest, dass nur einfache Impedanzspektren eindeutig auf eine Ersatzschaltung zurückgeführt werden können und kompliziertere Spektren häufig mehrdeutig sind und somit mehrere unterschiedliche Ersatzschaltkreise denkbar sind. Für die Impedanzspektroskopie an Halbleitersensoren wird versucht diese aus Kombinationen von ohmschen Widerständen R und Kapazitäten C darzustellen.

Hierbei ist die Impedanz eines ohmschen Widerstands R durch

$$Z = R + i \cdot 0 \tag{4.8}$$

und die Impedanz einer idealen Kapazität durch

$$Z = 0 + \frac{1}{i\omega C} \tag{4.9}$$

gegeben. Daraus ergibt sich für die Impedanz einer Parallelschaltung von R und C:

$$Z = \left(\frac{1}{R} + i\omega C\right)^{-1} \tag{4.10}$$

Der Nyquist-Plot dieses einfachen RC-Element zeigt einen exakten Halbkreis in der komplexen Ebene.

<u>52</u> Experimentelles

Dieser Halbkreis lässt sich mit Hilfe weniger Parameter, welche für das RC-Element charakteristisch sind beschreiben.

Liegt der erste Schnittpunkt eines Halbkreises mit der Abszisse im Ursprung des Koordinatensystems, so nennt man diesen Nullpunkts- oder Ursprungkreis.

Ist dieser Schnittpunkt jedoch in positiver Richtung auf der Re(Z)-Achse verschoben, so geht man von einem dem RC-Element vorgeschalteten ohmschen Widerstand  $R_0$  (ohne parallelgeschaltetem Kondensator) aus, dessen Wert dem ersten Schnittpunkt des ersten Halbkreises mit der Abszisse entspricht.

Der zweite Schnittpunkt mit der Abszisse befindet sich im Punkt  $R_1$ . Dieser entspricht der Größe des ohmschen Widerstandes des ersten RC-Elementes, wobei man den Wert des vorgeschalteten Widerstands  $R_0$  abziehen muss.

Alle weiteren Schnittpunkte von weiteren Halbkreisen werden mit in Serie geschalteten RC-Elementen beschrieben, wie in Abbildung 4-2 für zwei Halbkreise dargestellt, und gleichermaßen ermittelt.

Die zum Scheitelpunkt eines Halbkreises gehörende Kreisfrequenz  $\omega_p$  (Peakfrequenz) steht mit der Zeitkonstante  $\tau$  des RC-Gliedes folgendermaßen im Zusammenhang:

$$\omega_p = 2 \cdot \pi \cdot f = \frac{1}{\tau} = \frac{1}{R \cdot C} \tag{4.11}$$

Hiermit lässt sich mit Kenntnis des Widerstandes R die Kapazität C berechnen.

Bei mehreren Halbkreisen im Nyquist-Plot findet man mehrere Peakfrequenzen  $\omega_p$  und damit mehrere Relaxationszeiten  $\tau$ , wobei jede charakteristisch für ein RC-Element ist.

Eine deutliche Auflösung von z.B. zwei in Serie geschalteten RC-Gliedern, wie in Abbildung 4-2 dargestellt, ist hierbei nur möglich, wenn sich die Zeitkonstanten der einzelnen RC-Glieder um Größenordnungen unterscheiden ( $\tau_2 > \tau_1$ ).

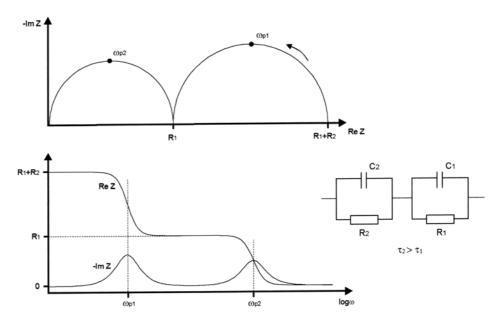



Abbildung 4-2: Impedanzspektren zweier in Reihe geschalteter RC-Glieder, deren Zeitkonstante sich um vier Größenordnungen unterscheiden [Fri 97]

Liegen wie in Abbildung 4-3 die Zeitkonstanten allerdings innerhalb einer Größenordnung  $(\tau_2 \approx \tau_1)$ , so ist eine Auflösung der verschiedenen Zeitkonstanten nicht möglich.

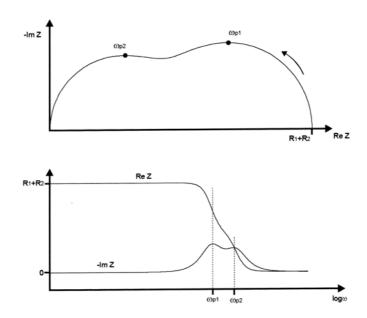



Abbildung 4-3: Impedanzspektren zweier in Reihe geschalteter RC-Glieder mit vergleichbaren Zeitkonstanten [Fri 97]

Zur Aufnahme der Impedanzspektren der in dieser Arbeit untersuchten Sensoren wurde ein Frequenzganganalysator (FRA) der Firma Solartron, Typ 1260, eingesetzt. Dieser hat einen Frequenzbereich von 10  $\mu$ Hz bis 32 MHz. Der Messbereich für ohmsche Widerstände liegt im Bereich von 10 m $\Omega$  bis 100 M $\Omega$  und für Kapazitäten von 1 pF bis 10 mF.

Die Kontaktierung der Proben wurde über ein Koaxialkabel hergestellt und die Gasangebote während der Impedanzmessungen wurde mit einer Gasmischanlage, die im Kapitel 4.2.2 beschrieben ist, durchgeführt.

Die Messungen wurden bei Sensor-Betriebstemperaturen von 300 °C, 400 °C und 500 °C für den Frequenzbereich von 1 Hz bis 20 MHz mit 200 Messpunkten und einem Sinussignal, einer Spannungsamplitude von 500 mV und einer Biasspannung von 0 mV aufgenommen.

## 4.2.4 Röntgen-Photoemissions-Spektroskopie (XPS)

Die Methode der Röntgen-Photoemissions-Spektroskopie (XPS) beruht auf dem photoelektrischen Effekt. Mittels XPS können Bindungsenergien von Elektronen in Festkörpern bestimmt werden. Diese erlauben zum einen Aussagen über die Elementzusammensetzung der Oberfläche und zum anderen auch über den Bindungszustand eines emittierenden Atoms. Die relativen Konzentrationen der Elemente können durch die Photoelektronenintensitäten bestimmt werden.

Die zu untersuchende Probe wird mit weichem, möglichst monochromatischem Röntgenlicht der Energie  $E = h \cdot v$  bestrahlt. Elektronen werden dadurch aus ihren Bindungszuständen in das Quasikontinuum oberhalb des Vakuumniveaus angeregt. Die mittlere freie Weglänge der Elektronen liegt je nach kinetischer Energie zwischen 1 und 10 Monolagen. Aus dieser geringen Informationstiefe resultiert die Oberflächensensitivität des XPS. Mit Hilfe eines Halbkugelanalysators werden die Photoelektronen energieaufgelöst nachgewiesen. In Abbildung 4-4 kann man erkennen, dass die im Spektrometer gemessene Energie von der Austrittsarbeit des Spektrometers  $\Phi_{\rm sp}$  abhängt, da die Elektronen zwar die die Probe mit  $E_{\rm Kin}$  verlassen aber mit  $E_{\rm Kin}$  in den Analysator eintreten.

Es gilt die Energiebilanz:

$$E'_{kin} = h \cdot v - E_b - e \cdot \Phi_{sp} \tag{4.12}$$

mit  $E'_{kin}$  = kinetische Energie der emittierten Photoelektronen,

 $h \cdot v$  = charakteristische Energie der Röntgenphotonen

 $E_b$  = Bindungsenergie des Atomorbitals, in dem das Elektron seinen Ursprung hat

 $e \cdot \Phi_{Sp}$  = Austrittsarbeit des Spektrometers

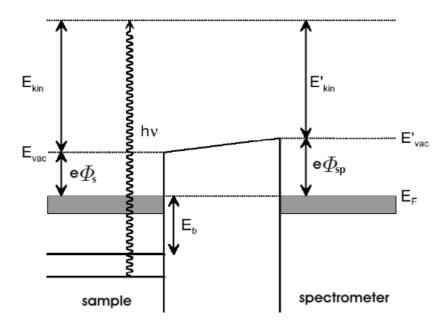



Abbildung 4-4: Schematisches XPS-Energiediagramm

Auch ist es notwendig, dass das Spektrometer und die Probe in elektrischem Kontakt miteinander stehen. Das gemeinsame Ferminiveau  $E_F$  dient dann zugleich als Bezugspunkt der Energieskala ( $E_b = 0$ ).

Die kinetische Energie eines austretenden Rumpfelektrons ist charakteristisch für das Element, aus dem es stammt, da die Bindungsenergie dieser Elektronen in erster Näherung von der Kernladungszahl abhängt. Somit können durch die Energielage der Photoelektronen die in einer Probe vorliegenden Elemente identifiziert werden. Ein Photopeak wird mit dem Elementsymbol und dem Kürzel des Herkunftsorbitales bezeichnet. Im Fall von Wolfram z.B. W4f<sub>5/2</sub>, wobei der Index die Quantenzahl für den Gesamtdrehimpuls bei Spin-Bahn-Kopplung angibt. Diese tritt bei Elektronen mit einer Nebenquantenzahl ungleich Null auf und führt zu einer Aufspaltung des Signals zu Dubletts.

<u>56</u> Experimentelles

Aussagen über die chemische Umgebung eines Elements und somit dessen Oxidationsstufe ist durch die Auswertung von sogenannten chemischen Verschiebungen ("chemical shifts") möglich, die je nach Element bis zu einigen eV betragen können. Durch die Ausbildung einer chemischen Bindung kommt es zu einer Veränderung der Elektronendichte der Valenzorbitale in Kernnähe, da diese eine gewisse Aufenthaltswahrscheinlichkeit auch dort besitzen. Da diese zur Abschirmung der Kernladung beitragen und sich mit einer Veränderung der Elektronendichte diese Abschirmung verändert, wird somit die Bindungsenergie der Rumpfelektronen beeinflusst.

Eine Quantifizierung der Elementkonzentration in einer Probe mit homogener Tiefenverteilung kann folgendermaßen durchgeführt werden:

$$I_{E} = I_{0} \cdot N_{E} \cdot A \cdot \sigma_{E} \cdot \lambda_{E} \left( E_{kin} \right) \cdot T \left( E_{kin} \right) \cdot L \tag{4.13}$$

mit I<sub>E</sub> = Intensität eines Photopeaks des Elementes E

 $I_0 = R$ öntgenfluss

A = bestrahlte Probenfläche

 $N_E$ = Zahl der Atome des Elementes E im beobachteten Volumen

 $\sigma_E$  = Wirkungsquerschnitt der Photoionisation des betrachteten Orbitals

 $\lambda_{E}\left(E_{kin}\right)$  = mittlere freie Weglänge im Festkörper des Elektrons aus Element E

 $T(E_{kin}) = Transmission des Spektrometers$ 

L = Asymmetriefunktion (erfasster Anteil der räumlichen Intensitätsverteilung)

Zur Bestimmung der Atomkonzentration  $c_E$  eines Elements in einer Verbindung von i Elementen mit einer homogenen Tiefenverteilung kann man Intensitätsverhältnisse verwenden, wodurch sich einige apparative Parameter und die Asymmetriefunktion L eliminieren lassen:

$$c_{E} = \frac{N_{E}}{\sum_{i} N_{i}} = \frac{\frac{I_{E}}{\sigma_{E} \cdot \lambda_{E} \cdot T_{E}}}{\sum_{i} \frac{I_{i}}{\sigma_{i} \cdot \lambda_{i} \cdot T_{i}}} = \frac{\frac{I_{E}}{S_{E}}}{\sum_{i} \frac{I_{i}}{S_{i}}}$$

$$(4.14)$$

Die Werte für  $\sigma$ ,  $\lambda$  und T werden zum sogenannten atomaren Empfindlichkeitsfaktor S zusammengefasst, dessen Werte auf empirischen Daten basieren und der Literatur entnommen werden können.

Für die in dieser Arbeit durchgeführten XPS-Messungen wurde als anregende Röntgenstrahlung die  $Mg[K_{\alpha}]$ -Linie verwendet, die mit Monochromatisierung auf die Probe auftrifft. Die Energie der  $Mg[K_{\alpha}]$ -Strahlung beträgt 1.253,6 eV. Die Röntgenquelle wurde mit einer Leistung von 300 W betrieben. Der Energieanalysator wurde bei den Übersichtsspektren mit einer konstanten Passenergie von 100 eV und bei den Detailspektren mit 20 eV betrieben. Die Tiefenprofile wurden angefertigt, indem mittels Sputtern eine Schichtdicke von jeweils 10 nm bis 15 nm pro Sputtervorgang abgetragen wurde und danach eine weitere XPS-Messung durchgeführt wurde.

## 4.2.5 Röntgendiffraktometrie (XRD)

An den periodisch angeordneten Atomen eines Kristalls wird die Röntgenstrahlung als Folge der Wechselwirkung mit den Hüllenelektronen der Atome elastisch gestreut. Die Streuwellen benachbarter Atome überlagern sich und es kommt zu Interferenzerscheinungen, die der Bragg-Bedingung gehorchen:

$$n \cdot \lambda = 2 \cdot d \cdot \sin(\theta) \tag{4.15}$$

mit n = Interferenzordnung

d = Abstand der Netzebenen

 $\lambda$  = Wellenlänge der Röntgenstrahlung

 $\theta = Bragg-Winkel$ 

Die mittlere Korngröße wurde mit Hilfe der Scherrer-Formel bestimmt, die die Linienverbreiterung der Beugungslinien in Abhängigkeit der mittleren Korngröße beschreibt. Bei reiner Teilchengrößenverbreiterung ist die Halbwertsbreite  $\beta$  (FWHM) der Beugungslinie gegeben durch:

$$\beta = \frac{k \cdot \lambda}{D \cdot \cos(\theta)} \tag{4.16}$$

mit k = Formfaktor

 $\lambda$  = Wellenlänge der einfallenden Röntgenstrahlung

D = mittlere Primärteilchengröße

 $\theta$  = Beugungswinkel

<u>58</u> Experimentelles

Der Formfaktor k beträgt je nach Kristallitgestalt zwischen 0,89 und 1,39 [Bai 81]. Je kugelförmiger die Körner sind um so näher liegt k bei 0,89 und wird größer um so nadelförmiger die Korngestalt wird, wobei k für ein kubisches Gitter 0,94 beträgt. Um die Teilchengröße mit der Scherrer-Formel bestimmen zu können muß zunächst die Spektrometerfunktion, d.h. die Abhängigkeit der instrumentellen Linienverbreiterung b vom Braggwinkel  $\theta$  bestimmt werden. Kennt man diese, so setzt sich die Linienbreite  $\beta$  aus der gemessenen Linienbreite B und der instrumentellen Linienbreite b wie folgt zusammen:  $\beta = B - b$ 

Bei dieser Methode bestimmen die großen Körner primär die Linienhöhe, da die Zahl der Netzebenen quadratisch in die Intensitätsformel eingeht, die kleinen Körner bestimmen die Breite, was man der Scherrer-Formel entnehmen kann. So kommt es, dass die Genauigkeit der Teilchengröße höchstens 25 % bis 50 % [Why 73] beträgt.

Die XRD-Untersuchungen wurden mit einem Siemens Röntgendiffraktometer D5000 in Bragg-Brentano-Anordnung durchgeführt. Als Anodenmaterial der verwendeten Röntgenquelle wurde eine  $Cu[K_{\alpha}]$ -Anode mit einer Wellenlänge von  $\lambda=0,1541874$  nm verwendet.

Bei den untersuchten Schichten wurden als Apertur-, Streustrahl- und Monochromatorblende Blenden mit 2°, 2° und 1° Öffnung verwendet. Bei dieser Spaltkombination beträgt die instrumentellen Linienbreite b = 0,1°. Der Formfaktor k wurde mit 0,94 angesetzt. Als Integrationszeit wurde 1,2 s gewählt und als Schrittweite für den Vorschub der Röntgenröhre 0,1°.

## 4.2.6 Bestimmung und Interpretation der thermischen Aktivierungsenergie

Zur Berechnung der Aktivierungsenergien der Leitfähigkeit der untersuchten Sensoren wird der Logarithmus des Widerstands in Abhängigkeit von der reziproken Betriebstemperatur des Sensors (Arrhenius-Darstellung) bei einer konstanten Messspannung an der sensitiven Schicht aufgetragen. Die dabei ermittelte Steigung der linearen Näherung in einem Temperaturintervall bestimmt mit Annahme des Widerstand-Gesetzes (4.18) die Aktivierungsenergie E<sub>a</sub>.

$$R = R_0 \cdot \exp\left(\frac{E_a}{k \cdot T}\right) \tag{4.18}$$

Bei der Interpretation der Ergebnisse muss überlegt werden, welcher physikalische Vorgang für die berechnete Aktivierungsenergie zuständig ist.

Zum einen ist es möglich den Bandabstand von WO<sub>3</sub> zu bestimmen (intrinsischer Bereich). Dieser sollte zwischen 2,6 eV und 3,36 eV (s. Kapitel 2.5) liegen.

Auch besteht die Möglichkeit eine extrinsische Aktivierungsenergie zu erhalten (Ionisation von Donatoren). Im Fall des WO<sub>3</sub> handelt es sich dabei um Sauerstofffehlstellen, deren Ionisationsenergie in der Größenordnung 0,01 eV bis 0,05 eV (s. Kapitel 2.5) liegt. Weiterhin kann es sich bei der Aktivierungsenergie um die Potential-Barrierenhöhe e·V<sub>B</sub> (s. Kapitel 2.3) handeln, die aufgrund der Adsorption von Gasteilchen an den Korngrenzen entsteht. Da die Messungen dieser Arbeit an Raumluft durchgeführt wurden, handelt es sich bei der adsorbierten Spezie um Luftsauerstoff in Form von  $O_{2\ ads}^{-}$ ,  $O_{ads}^{-}$  und  $O_{ads}^{2-}$  oder Wasser in Form von  $OH^{-}$ .

## 5 Ergebnisse

## 5.1 Temperatur-Heizspannungs-Diagramme der WO<sub>3</sub>-Sensoren

Zur Einstellung bestimmter Betriebstemperaturen der verwendeten Sensoren (s. Kapitel 4.1.1) wurde für jeden ein Temperatur-Heizspannungs-Diagramm aufgenommen. Hierzu wurde die am Sensor anliegende Heizspannung in 0,25 V-Schritten zwischen 3 V und 6,5 V variiert und die Oberflächentemperatur des Sensors mit einem Infrarot-Strahlungspyrometer (s. Kapitel 4.2.1) gemessen.

Exemplarisch ist das Diagramm für den  $WO_3$ -Dünnschicht-Sensor S1 in Abbildung 5-1 dargestellt. Die Funktion T ( $U_{Heiz}$ ) ist für alle Sensoren im Temperaturbereich zwischen 325 °C und 675 °C annähernd linear.

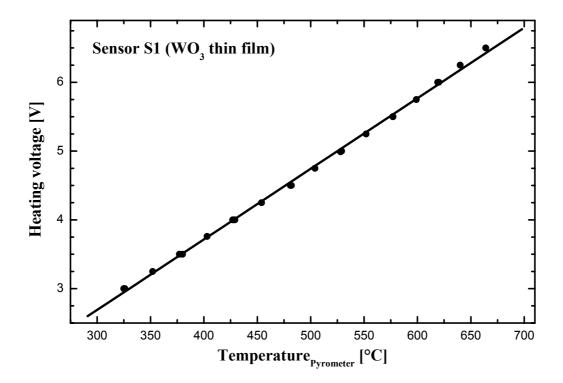



Abbildung 5-1: Temperatur-Heizspannungs-Diagramm des WO<sub>3</sub>-Sensors S1

Für alle verwendeten WO<sub>3</sub>-Dünn- sowie WO<sub>3</sub>-Dickschicht-Sensoren gibt Tabelle 9 Auskunft über die notwendigen Heizspannungen zum Einstellen der Sensortemperatur auf 300 °C, 400 °C und 500 °C.

| Sensorbezeichnung | Temperatur |        |        |
|-------------------|------------|--------|--------|
|                   | 300°C      | 400°C  | 500°C  |
| S1                | 2,69 V     | 3,72 V | 4,74 V |
| S2                | 2,79 V     | 3,79 V | 4,78 V |
| S3                | 2,44 V     | 3,15 V | 4,08 V |
| S4                | 2,83 V     | 3,85 V | 4,86 V |
| S5                | 2,66 V     | 3,67 V | 4,67 V |
| S6                | 2,99 V     | 4,07 V | 5,16V  |
| S7                | 2,91 V     | 3,85 V | 4,95 V |
| S8                | 2,95 V     | 4,03 V | 5,11 V |

Tabelle 9: Temperatur-Heizspannungs-Diagramme der WO<sub>3</sub>-Sensoren

#### 5.2 Elektrisches Leitfähigkeitsverhalten von WO<sub>3</sub>-Sensoren

#### 5.2.1 Bestimmung der Aktivierungsenergie an Luft

Um Hinweise über die elektronische Struktur der untersuchten WO<sub>3</sub>-Dick- und Dünnschicht-Sensoren (s. Kapitel 4.1.1) machen zu können wurde deren Aktivierungsenergie an Raumluft ermittelt. Die Bestimmung der Aktivierungsenergie wird in Kapitel 4.2.6 beschrieben. Hierzu wurde der Grundwiderstand der Sensoren bei einer konstanten Messspannung von 500 mV in Abhängigkeit der Temperatur aufgenommen. Die Temperatur wurde dabei in 25 °C-Schritten von ca. 300 °C bis 700 °C variiert.

In Abbildung 5-2 und Abbildung 5-3 ist die Arrhenius-Darstellung der Temperaturabhängigkeit des elektrischen Widerstands und die linear genäherte Steigung exemplarisch für den Dünnschicht-Sensor S1 und den Dickschicht-Sensor S5 dargestellt. Für alle Sensoren wurde die Steigung der linearen Näherung und somit die Aktivierungsenergie Ea im Temperaturintervall von ca. 430 °C bis 700 °C bestimmt. Die starke Änderung der Steigung des Widerstandsverlauf im Temperaturbereich unterhalb von 430 °C wird einer Kristallphasenumwandlung vom Monoklinen zum Orthorhombischen zugeschrieben [Kis 01, Tom 98, Tom 99].

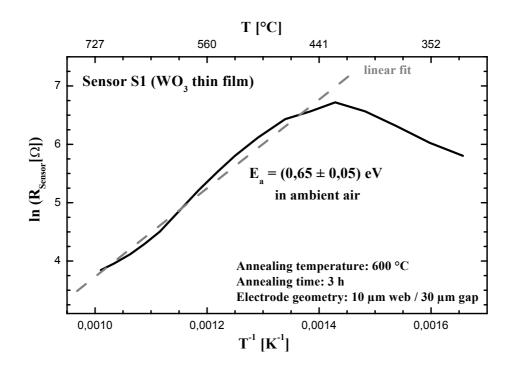



Abbildung 5-2: Arrhenius-Darstellung der Temperaturabhängigkeit des elektrischen Widerstands des WO<sub>3</sub>-Sensors S1 an Luft

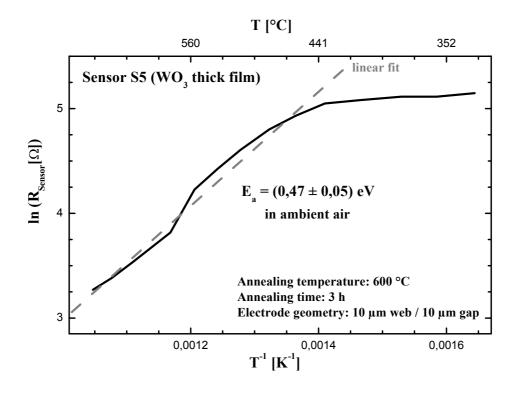



Abbildung 5-3: Arrhenius-Darstellung der Temperaturabhängigkeit des elektrischen Widerstands des WO<sub>3</sub>-Sensors S5 an Luft

Die Werte der Aktivierungsenergie der untersuchten Sensoren sind in Tabelle 10 aufgeführt.

| Sensor | WO <sub>3</sub> -Dick- oder<br>Dünnschicht | Temperung | Aktivierungs-<br>energie [eV] |
|--------|--------------------------------------------|-----------|-------------------------------|
| S1     | Dünn                                       | 3h 600°C  | $0,65 \pm 0,05$               |
| S2     | Dünn                                       | 3h 600°C  | $0,65 \pm 0,12$               |
| S3     | Dünn                                       | 3h 800°C  | $0,75 \pm 0,03$               |
| S4     | Dünn                                       | 3h 800°C  | $0,95 \pm 0,05$               |
| S5     | Dick                                       | 3h 600°C  | $0,47 \pm 0,05$               |
| S6     | Dick                                       | 3h 600°C  | $0,79 \pm 0,07$               |
| S7     | Dick                                       | 3h 800°C  | $0,72 \pm 0,04$               |
| S8     | Dick                                       | 3h 800°C  | $0.86 \pm 0.05$               |

Tabelle 10: Aktivierungsenergien der WO<sub>3</sub>-Sensoren

Die berechneten Aktivierungsenergien der WO<sub>3</sub>-Schichten liegen zwischen 0,47 eV und 0,95 eV. Somit liegen diese sowohl nicht im intrinsischen Bereich der Bandlücke als auch nicht im extrinsischen Bereich der Ionisation von Sauerstofffehlstellen (Donatoren), deren Größenordnungen in Kapitel 2.5 beschrieben sind.

Aus diesem Grund werden die hier ermittelten Aktivierungsenergien den Potential-Barrieren durch adsorbierten Luftsauerstoff und Wasser zugeordnet.

Die bei 800 °C getemperten Dick- sowie Dünnschichten besitzen gegenüber den bei 600 °C getemperten Schichten mit jeweils gleicher Elektrodengeometrie eine höhere

Aktivierungsenergie. Dies kann durch die Temperung bei höherer Temperatur an Luft und einer damit verbundenen Ausheilung von mehr Sauerstofffehlstellen erklärt werden, die einer Abnahme der ionisierten Donatorzustände entspricht.

In Abhängigkeit der Elektrodengeometrie zeigen bei gleicher Temperatur getemperten Sensoren mit den 4-Punkt-Elektroden größere Aktivierungsenergien als die mit den 2-Punkt-Elektroden. Eine Ausnahme bilden die beiden Sensoren S1 und S2 mit einer gleich großen Aktivierungsenergie.

## 5.2.2 Einfluss der Messspannung auf das Sensorsignal

Zur elektrischen Charakterisierung der Grundleitfähigkeit der WO<sub>3</sub>-Sensoren wurde der Einfluss der Messspannung im Bereich von –1 V bis +1 V in 0,1 V-Schritten untersucht.

<u>64</u> Ergebnisse

Die I-U-Kennlinien wurden bei einer Betriebstemperatur von 400 °C und Angebot von synthetischer Luft (50 % rel. Feuchte) mit einem Fluss von 30 l/h an der Gasmischanlage aufgenommen. Nach Einstellen der jeweiligen Messspannung wurde bis zum Ablesen des Strommesswertes 20 Minuten gewartet.

In Abbildung 5-4 und Abbildung 5-5 ist die I-U-Kennlinie exemplarisch für den Dünnschicht-Sensor S1 und den Dickschicht-Sensor S5 dargestellt.

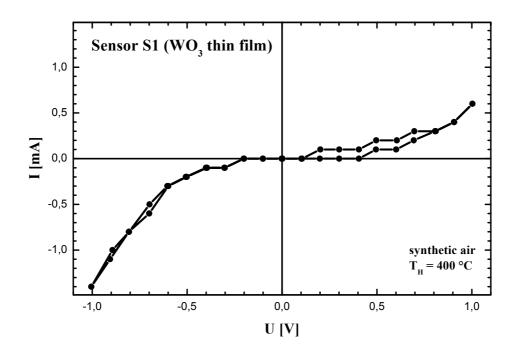



Abbildung 5-4: I-U-Kennlinie des WO<sub>3</sub>-Sensors S1 mit einer Betriebstemperatur von 400 °C in synthetischer Luft

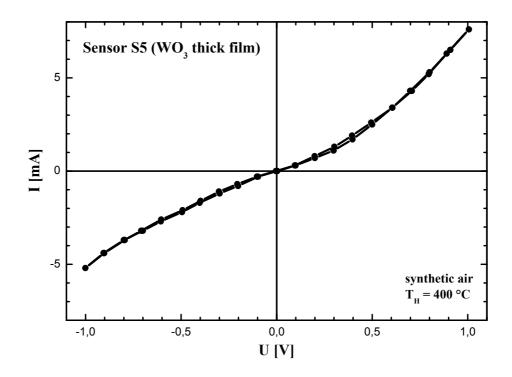



Abbildung 5-5: I-U-Kennlinie des WO<sub>3</sub>-Sensors S5 mit einer Betriebstemperatur von 400 °C in synthetischer Luft

Für die Dünnschicht-Sensoren ergibt sich unabhängig von ihrer Temperung und Elektrodengeometrie für Messspannungen zwischen –0,5 V und +0,5 V eine nahezu lineare I-U-Kennlinie. Dieses Verhalten entspricht dem eines rein elektronischen Leiters. Bei den Dickschicht-Sensoren ist dieses lineare Verhalten für Messspannungen zwischen -0,3 V und +0,3 V zu beobachten. Der rein lineare Verlauf bei kleinen Messspannungen beider Sensortypen zeigt, dass dabei keine Kontaktwiderstände Metall-Halbleiter in Form von Schottky-Dioden auftreten.

Oberhalb dieser Messspannungen zeigen die Sensoren einen deutlichen Anstieg der I-U-Kennlinien. Ein möglicher Grund hierfür kann das Auftreten von nichtlinearen Effekten sein, die ihren Ursprung in hohen Feldstärken im Schichtmaterial haben.

Die leichten Hysteresen sind bei den Dickschicht-Sensoren etwas stärker ausgeprägt als bei den Dünnschicht-Sensoren. Diese resultieren wahrscheinlich aus einem geringen ionischen Leitfähigkeitsanteil, der durch die hier verwendeten DC-Messungen hervorgerufen wird. Aus diesem Grund sollte die Messspannung der Sensoren bei maximal 0,5 V liegen.

Ergebnisse Ergebnisse

Damit eine Veränderung des Systems durch eine ionische Leitfähigkeit nahezu ausgeschlossen werden kann, sollte bei den Impedanzmessungen auf sehr niedrige Frequenzen verzichtet werden.

#### 5.3 Impedanzspektroskopie an WO<sub>3</sub>-Sensoren

Um den Einfluss verschiedener Gase auf die Impedanz der Sensoren zu untersuchen wurden impedanzspektroskopische Messungen mit einem Frequenzganganalysator der Firma Solartron (s. Kapitel 4.2.3) durchgeführt. Mit Hilfe dieser können Aussagen über Effekte am Kristallvolumen (bulk), an den Korngrenzen oder den Kontakten gemacht werden. Die hierbei verwendeten Gase sind die im Dieselabgas typisch vorkommenden Stoffe. Dabei handelt es sich um NO<sub>2</sub> im Konzentrationsbereich zwischen 50 ppm und 600 ppm, NO zwischen 500 ppm und 1.500 ppm und CO im Bereich von 50 ppm bis 300 ppm. Bei den NO<sub>2</sub>-Messungen lag die Sensor-Betriebstemperatur bei 400 °C und 500 °C, bei den NO-Messungen bei 300 °C und bei den CO-Messungen bei 300 °C und 400 °C.

#### 5.3.1 Darstellung der Sensoren durch ein Ersatzschaltbild

Die Ergebnisse der Impedanzmessungen unter NO<sub>2</sub>-, NO- und CO-Gasangebot wurden zur Erstellung eines Ersatzschaltbildes verwendet.

Unter jeder Gasatmosphäre zeigen die Nyquist-Plots nur einen abgeflachten Halbkreis, dessen Beginn nicht im Ursprung liegt sondern etwas in positiver Richtung auf der Realteil-Achse verschoben ist. Aus diesem Grund wurden die Daten an ein Netzwerk aus einem Vorwiderstand  $R_0$  und einer Parallelschaltung eines Widerstandes  $R_1$  und einer Kapazität  $C_1$  (RC-Glied) angepasst. Bei allen Sensoren liegt der Widerstand  $R_0$  unter allen  $NO_2$ -, NO- und CO-Gasangeboten im zwei- bis dreistelligen  $\Omega$ -Bereich, der Widerstand  $R_1$  im ein- bis dreistelligen  $k\Omega$ -Bereich und die Kapazitäten im ein- bis zweistelligen pF-Bereich.

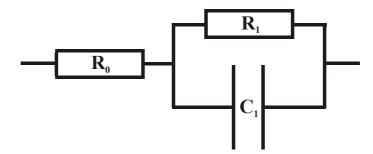



Abbildung 5-6: Ersatzschaltbild für die WO<sub>3</sub>-Sensoren

#### 5.3.2 Sensitivität

Um Aussagen über die Empfindlichkeit der WO<sub>3</sub>-Sensoren auf NO<sub>2</sub>, NO und CO machen zu können, wurde die Sensitivität S in Abhängigkeit der jeweiligen Gaskonzentration aufgetragen.

$$S = \frac{R_{Gas}}{R_{SL}} \tag{5.1}$$

Hierbei ist  $R_{Gas}$  der Widerstand bei Angebot des jeweiligen Gases und  $R_{SL}$  der Grundwiderstand des Sensors in synthetischer Luft. Die Widerstände sind als Gleichstromwiderstände zu verstehen und stammen aus den Impedanzmessungen.

## 5.3.3 Impedanzmessungen unter NO<sub>2</sub>-Angebot

Die WO<sub>3</sub>-Sensoren zeigen bei allen angebotenen NO<sub>2</sub>-Konzentrationen zwischen 50 ppm und 600 ppm und Betriebstemperaturen von 400 °C und 500 °C Halbkreise im Nyquist-Plot. Diese sind charakteristisch für eine RC-Schaltung und beschreiben im Ersatzschaltbild den Sensor. Dabei vergrößern sich die Radien der Halbkreise mit wachsender NO<sub>2</sub>-Konzentration. Dies entspricht einem Anstieg der Realteile der Impedanzen und somit einer Widerstandserhöhung, die bei niedrigen Konzentrationen stark ausgeprägt ist. Mit zunehmender Konzentration wird diese Widerstandserhöhung kleiner und deutet somit auf eine Sättigung hin. Exemplarisch sind die Nyquist-Plots für den Dünnschicht-Sensor S1 und den Dickschicht-Sensor S5 bei Betriebstemperaturen von 400 °C sowie 500 °C in Abbildung 5-7, Abbildung 5-8, Abbildung 5-9 und Abbildung 5-10 dargestellt.

<u>68</u> Ergebnisse

Dass der Beginn der Halbkreise nicht genau im Ursprung liegt, sondern leicht in Richtung höherer Realteile verschoben ist, deutet auf einen bei hohen Frequenzen auftretenden Widerstand ohne parallelgeschaltete Kapazität hin. In den Abbildungen ist dies aufgrund der sehr kleinen Verschiebung gegenüber der Größe der Halbkreise nur schwach erkennbar. Auch wird bei allen Sensoren ein Abflachen der Halbkreise beobachtet, was in der Literatur [Mac 87] mit "depressed arcs" bezeichnet wird. Dieses Abflachen kann mit mehreren in Reihe geschalteten RC-Gliedern erklärt werden, die eine vergleichbare Zeitkonstante besitzen (s. Kapitel 4.2.3, Abbildung 4-3).

Weiterhin werden induktive Anteile bei hohen Frequenzen gemessen. Diese entstehen vermutlich durch den verwendeten Messadapter.

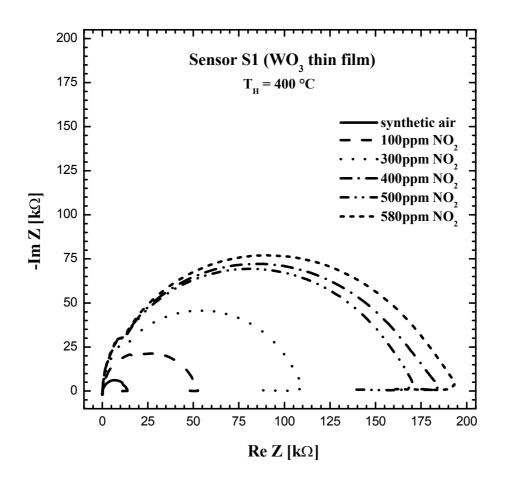



Abbildung 5-7: Impedanzspektrum des WO<sub>3</sub>-Dünnschicht-Sensors S1 mit einer Betriebstemperatur von 400 °C unter NO<sub>2</sub>-Angebot

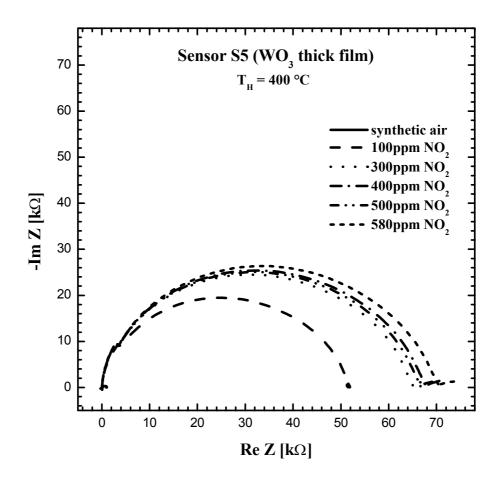



Abbildung 5-8: Impedanzspektrum des WO<sub>3</sub>-Dickschicht-Sensors S5 mit einer Betriebstemperatur von 400 °C unter NO<sub>2</sub>-Angebot

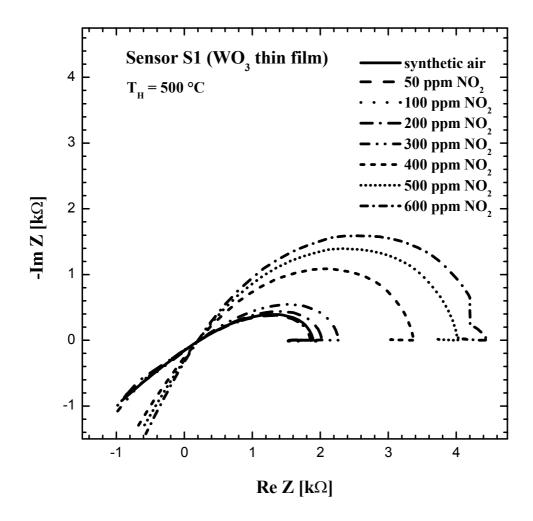



Abbildung 5-9: Impedanzspektrum des WO<sub>3</sub>-Dünnschicht-Sensors S1 mit einer Betriebstemperatur von 500 °C unter NO<sub>2</sub>-Angebot

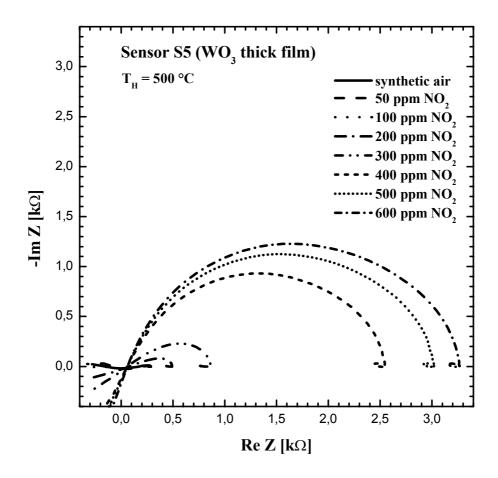



Abbildung 5-10: Impedanzspektrum des WO<sub>3</sub>-Dickschicht-Sensors S5 mit einer Betriebstemperatur von 500 °C unter NO<sub>2</sub>-Angebot

Tabelle 11 bis Tabelle 14 zeigen die für die Sensoren ermittelten Vorwiderstände R<sub>0</sub> und die Widerstände R<sub>1</sub> sowie die Kapazitäten C<sub>1</sub> des RC-Gliedes unter NO<sub>2</sub>-Angebot bei Betriebstemperaturen von 400 °C und 500 °C.

Der Widerstand R<sub>0</sub> ist für alle Sensoren bei einer Temperatur von 400 °C unabhängig von der angebotenen NO<sub>2</sub>-Konzentration nahezu konstant. Bei einer Temperatur von 500 °C ist für die Sensoren S1, S3 und S5 mit steigender NO<sub>2</sub>-Konzentration eine leichte Verringerung und für Sensor S7 eine leichte Vergrößerung von R<sub>0</sub> zu beobachten.

Der Widerstand  $R_1$  aller Sensoren steigt bei beiden Betriebstemperaturen proportional zur  $NO_2$ -Konzentration an und geht bei hohen Konzentrationen in ein Sättigungsverhalten über.

Die Kapazität C<sub>1</sub> der beiden Dünnschicht-Sensoren ist bei 400 °C bei allen Gasangeboten nahezu konstant und somit unabhängig von der NO<sub>2</sub>-Konzentration. Bei gleicher Temperatur zeigen die beiden Dickschicht-Sensoren hingegen nur bei dem Wechsel zwischen synthetischer Luft und NO<sub>2</sub>-Gasangebot eine Kapazitätsabnahme und bei Variation der NO<sub>2</sub>-Konzentration eine nahezu konstante und somit konzentrationsunabhängige Kapazität. Bei 500 °C nimmt die Kapazität C<sub>1</sub> mit steigender NO<sub>2</sub>-Konzentration bei allen Sensoren ab. Allerdings ist diese Abnahme bei den Dickschichten stärker ausgeprägt.

| NO <sub>2</sub> -Konz. | $\mathbf{R_0}$ | R <sub>1</sub>       | $C_1$ |
|------------------------|----------------|----------------------|-------|
| [ppm]                  | $[\Omega]$     | $[\mathbf{k}\Omega]$ | [pF]  |
| 1.Meßreihe             |                |                      |       |
| 600                    | ı              | -                    | 1     |
| 580 <sup>b</sup>       | 226            | 130,2                | 5,2   |
| 580 <sup>a</sup>       | 225            | 194,2                | 5,1   |
| 500                    | 218            | 170,1                | 5,3   |
| 400                    | 221            | 184,3                | 4,9   |
| 300                    | 227            | 109,9                | 5,4   |
| 200                    | 1              | -                    | -     |
| 100                    | 228            | 52,3                 | 4,9   |
| 50                     | 1              | -                    | -     |
| synth. Luft            | 224            | 14,1                 | 4,7   |
| 2.Meßreihe             |                |                      |       |
| 500                    | 225            | 174,4                | 5,2   |
| 300                    | 224            | 148,2                | 5,1   |
| 200                    | 226            | 112,1                | 4,8   |
| 100                    | 223            | 19,0                 | 4,5   |

| NO <sub>2</sub> -Konz. [ppm] | $R_0$ | $\mathbf{R}_1$ [k $\Omega$ ] | C <sub>1</sub> [pF] |
|------------------------------|-------|------------------------------|---------------------|
| լիիուլ                       | [Ω]   | [K22]                        | lbr.                |
| 600                          | 201   | 4,4                          | 7,0                 |
| 580 <sup>b</sup>             | -     | -                            | -                   |
| 580 <sup>a</sup>             | -     | -                            | -                   |
| 500                          | 202   | 4,0                          | 7,1                 |
| 400                          | 207   | 3,4                          | 7,6                 |
| 300                          | 221   | 2,3                          | 10,4                |
| 200                          | 226   | 2,0                          | 11,9                |
| 100                          | 224   | 1,9                          | 12,6                |
| 50                           | 224   | 1,9                          | 13,7                |
| synth. Luft                  | 225   | 1,9                          | 12,6                |

Tabelle 11: WO<sub>3</sub>-Dünnschicht-Sensor S1 unter NO<sub>2</sub>-Angebot bei 400 °C (links) und 500 °C (rechts) Betriebstemperatur

| NO <sub>2</sub> -Konz. | $R_0$      | $\mathbf{R}_{1}$     | $\mathbf{C_1}$ |
|------------------------|------------|----------------------|----------------|
| [ppm]                  | $[\Omega]$ | $[\mathbf{k}\Omega]$ | [pF]           |
| 1.Meßreihe             |            |                      |                |
| 600                    | -          | -                    | 1              |
| 580 <sup>b</sup>       | 223        | 42,7                 | 6,0            |
| 580 <sup>a</sup>       | 227        | 43,7                 | 5,8            |
| 500                    | 227        | 42,2                 | 6,0            |
| 400                    | 229        | 40,9                 | 5,7            |
| 300                    | 224        | 38,2                 | 6,1            |
| 200                    | 1          | -                    | -              |
| 100                    | 222        | 23,0                 | 5,6            |
| 50                     | -          | -                    | 1              |
| synth. Luft            | 221        | 16,5                 | 5,6            |
| 2.Meßreihe             |            |                      |                |
| 500                    | 225        | 42,0                 | 6,1            |
| 300                    | 223        | 30,4                 | 6,0            |
| 200                    | 222        | 25,2                 | 5,6            |
| 100                    | 223        | 20,7                 | 5,7            |

| NO <sub>2</sub> -Konz. | $R_0$      | $\mathbf{R}_{1}$     | $C_1$ |
|------------------------|------------|----------------------|-------|
| [ppm]                  | $[\Omega]$ | $[\mathbf{k}\Omega]$ | [pF]  |
|                        |            |                      |       |
| 600                    | 193        | 0,78                 | 28,1  |
| 580 <sup>b</sup>       | -          | -                    | -     |
| 580 <sup>a</sup>       | -          | -                    | -     |
| 500                    | 197        | 0,76                 | 28,7  |
| 400                    | 200        | 0,71                 | 30,8  |
| 300                    | 206        | 0,67                 | 32,4  |
| 200                    | 210        | 0,64                 | 34,7  |
| 100                    | 213        | 0,62                 | 35,9  |
| 50                     | 215        | 0,62                 | 36,3  |
| synth. Luft            | 221        | 0,60                 | 38,3  |

Tabelle 12: WO<sub>3</sub>-Dünnschicht-Sensor S3 unter NO<sub>2</sub>-Angebot bei 400 °C (links) und 500 °C (rechts) Betriebstemperatur

| NO <sub>2</sub> -Konz. | $\mathbf{R_0}$ | $R_1$                | $\mathbf{C_1}$ |
|------------------------|----------------|----------------------|----------------|
| [ppm]                  | $[\Omega]$     | $[\mathbf{k}\Omega]$ | [pF]           |
| 1.Meßreihe             |                |                      |                |
| 600                    | 1              | -                    | ı              |
| 580 <sup>b</sup>       | 61             | 78,3                 | 19,1           |
| 580 <sup>a</sup>       | 65             | 70,4                 | 19,6           |
| 500                    | 69             | 66,7                 | 19,0           |
| 400                    | 69             | 67,8                 | 18,7           |
| 300                    | 65             | 65,0                 | 19,5           |
| 200                    | 1              | -                    | ı              |
| 100                    | 66             | 51,8                 | 19,0           |
| 50                     | 1              | -                    | 1              |
| synth.Luft             | 56             | 0,9                  | 40,8           |
| 2.Meßreihe             |                |                      |                |
| 500                    | 66             | 86,4                 | 18.9           |
| 300                    | 68             | 80,6                 | 18.6           |
| 200                    | 67             | 76,5                 | 18.0           |
| 100                    | 67             | 28,2                 | 17.7           |

| NO <sub>2</sub> -Konz. | $R_0$      | R <sub>1</sub>       | C <sub>1</sub> |
|------------------------|------------|----------------------|----------------|
| [ppm]                  | $[\Omega]$ | $[\mathbf{k}\Omega]$ | [pF]           |
|                        |            |                      |                |
| 600                    | 62         | 3,3                  | 19,9           |
| 580 <sup>b</sup>       | -          | -                    | -              |
| 580 <sup>a</sup>       | -          | -                    | -              |
| 500                    | 60         | 3,0                  | 20,1           |
| 400                    | 60         | 2,5                  | 20,4           |
| 300                    | 62         | 0,9                  | 34,2           |
| 200                    | 79         | 0,5                  | 56,5           |
| 100                    | 170        | 0,3                  | 121,4          |
| 50                     | 220        | 0,3                  | 185,1          |
| synth.Luft             | 175        | 0,3                  | 132,0          |

Tabelle 13: WO<sub>3</sub>-Dickschicht-Sensor S5 unter NO<sub>2</sub>-Angebot bei 400 °C (links) und 500 °C (rechts) Betriebstemperatur

| NO <sub>2</sub> -Konz. | $\mathbf{R_0}$ | $R_1$                | $C_1$ |  |  |
|------------------------|----------------|----------------------|-------|--|--|
| [ppm]                  | $[\Omega]$     | $[\mathbf{k}\Omega]$ | [pF]  |  |  |
| 1.Messreihe            |                |                      |       |  |  |
| 600                    | -              | -                    | -     |  |  |
| 580 <sup>b</sup>       | 223            | 441,5                | 6,7   |  |  |
| 580 <sup>a</sup>       | 224            | 504,8                | 6,3   |  |  |
| 500                    | 224            | 392,9                | 6,3   |  |  |
| 400                    | 226            | 399,3                | 6,2   |  |  |
| 300                    | 224            | 340,8                | 6,2   |  |  |
| 200                    | -              | -                    | -     |  |  |
| 100                    | 225            | 259,8                | 6,3   |  |  |
| 50                     | -              | -                    | -     |  |  |
| synth. Luft            | 157            | 1,4                  | 17,0  |  |  |
| 2.Messreihe            | 2.Messreihe    |                      |       |  |  |
| 500                    | 224            | 467,6                | 6,3   |  |  |
| 300                    | 225            | 425,3                | 6,4   |  |  |
| 200                    | 224            | 402,2                | 6,2   |  |  |
| 100                    | 224            | 139,5                | 5,9   |  |  |

| NO <sub>2</sub> -Konz. | $\mathbf{R}_{0}$ | $\mathbf{R}_{1}$     | $C_1$ |
|------------------------|------------------|----------------------|-------|
| [ppm]                  | $[\Omega]$       | $[\mathbf{k}\Omega]$ | [pF]  |
|                        |                  |                      |       |
| 600                    | 208              | 18,1                 | 6,0   |
| 580 <sup>b</sup>       | ı                | 1                    | ı     |
| 580 <sup>a</sup>       | -                | -                    | -     |
| 500                    | 208              | 17,5                 | 6,2   |
| 400                    | 205              | 15,5                 | 5,9   |
| 300                    | 194              | 6,1                  | 7,1   |
| 200                    | 185              | 3,1                  | 9,1   |
| 100                    | 173              | 1,1                  | 19,9  |
| 50                     | 176              | 1,0                  | 21,9  |
| synth. Luft            | 170              | 1,0                  | 21,9  |

Tabelle 14: WO<sub>3</sub>-Dickschicht-Sensor S7 unter NO<sub>2</sub>-Angebot bei 400 °C (links) und 500 °C (rechts) Betriebstemperatur

## 5.3.3.1 Sensitivität bei NO<sub>2</sub>-Angebot

Bei 400 °C (Abbildung 5-11) zeigen beide Dünnschicht-Sensoren eine mit steigender NO<sub>2</sub>-Konzentration zunehmende Sensitivität. Ab einer Konzentration von ca. 400 ppm nimmt der Anstieg ab und geht in eine Sättigung über. In diesem Konzentrationsbereich beträgt die Sensitivität für Sensor S1 ca. 14 und für Sensor S3 ca. 2,5.

Bei der gleichen Temperatur zeigen auch die Dickschicht-Sensoren eine mit steigender NO<sub>2</sub>-Konzentration zunehmende Sensitivität, die aber schon ab einer Konzentration von ca. 100 ppm für beide Sensoren (S5 und S7) ein Sättigungsverhalten zeigt. Oberhalb dieser Konzentration liegt die Sensitivität für Sensor S5 bei ca. 70 und für Sensor S7 bei ca. 280. Die Dickschicht-Sensoren sind somit bei einer Betriebstemperatur von 400 °C etwa eine Größenordnung empfindlicher auf NO<sub>2</sub> als die Dünnschicht-Sensoren.

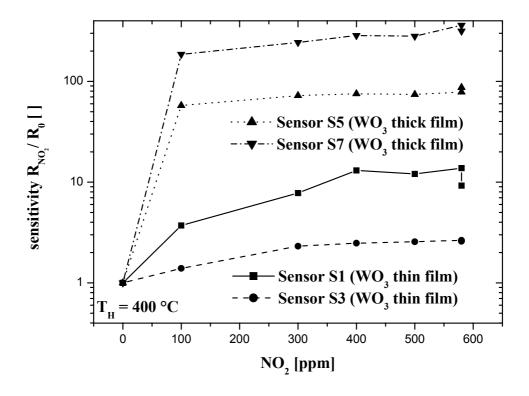



Abbildung 5-11: Sensitivität der WO<sub>3</sub>-Sensoren unter NO<sub>2</sub>-Angebot mit 400 °C Betriebstemperatur

Bei 500 °C (Abbildung 5-12) unterscheidet sich der Sensitivitätsverlauf der WO<sub>3</sub>-Sensoren von dem bei 400 °C Betriebstemperatur. Unterhalb von 100 ppm NO<sub>2</sub> sind die Sensoren unabhängig von ihrer Schichtdicke kaum Sensitivität gegenüber NO<sub>2</sub>. Bei Konzentrationen oberhalb von 100 ppm steigt die Sensitivität der Dickschicht-Sensoren mit steigender Konzentration stark an und geht ab ca. 400 ppm in eine Sättigung über. Die NO<sub>2</sub>-Sensitivität der Dünnschicht-Sensoren hingegen ist auch oberhalb von 100 ppm nur gering und zeigt ab ca. 400 ppm auch ein Sättigungsverhalten.

Für die Dünnschicht-Sensoren beträgt die Sensitivität im Sättigungsbereich (oberhalb von 400 ppm) ca. 2,3 für Sensor S1 und ca. 1,3 für Sensor S3. Im gleichen Konzentrationsbereich liegt die Sensitivität des Dickschicht-Sensors S5 bei ca. 11 und von Sensor S7 bei ca. 18. Wie auch bei einer Betriebstemperatur von 400 °C ist bei 500 °C die NO<sub>2</sub>-Sensitivität der Dickschicht-Sensoren etwa eine Größenordnung höher als die der Dünnschicht-Sensoren.

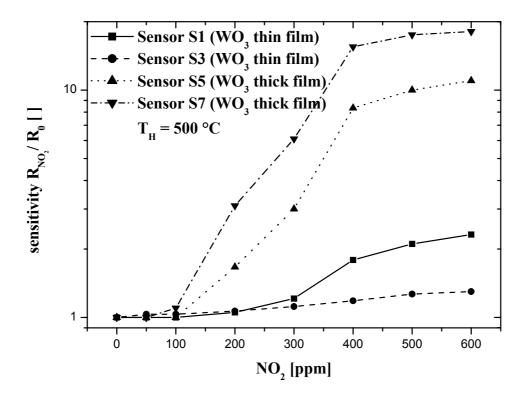



Abbildung 5-12: Sensitivität der WO<sub>3</sub>-Sensoren unter NO<sub>2</sub>-Angebot mit 500 °C Betriebstemperatur

Die Messungen zeigen, dass unabhängig von der Betriebstemperatur die siebgedruckten WO<sub>3</sub>-Dickschicht-Sensoren gegenüber den gesputterten WO<sub>3</sub>-Dünnschicht-Sensoren empfindlicher auf NO<sub>2</sub> sind.

Auch ist die NO<sub>2</sub>-Sensitivität der Sensoren unabhängig von ihrem Schichttyp bei 400 °C ca. eine Größenordnung höher als bei 500 °C.

#### 5.3.4 Impedanzmessungen unter NO-Angebot

Bei allen NO-Konzentrationen zwischen 500 ppm und 1.500 ppm zeigen die WO<sub>3</sub>-Sensoren mit einer Betriebstemperatur von 300 °C leicht abgeflachte Halbkreise im Nyquist-Plot. Das Abflachen der Halbkreise unter NO-Angebot ist etwa gleich stark ausgeprägt wie bei den NO<sub>2</sub>-Messungen. Die Impedanz der Sensoren ist unter NO-Angebot größer als in

synthetischer Luft. Dies entspricht einer Widerstandserhöhung unter Angebot von NO, die sich bei hohen Konzentrationen aber ein wenig verringert.

In Abbildung 5-13 und Abbildung 5-14 ist der Nyquist-Plot exemplarisch für den WO<sub>3</sub>-Dünnschicht-Sensors S1 und WO<sub>3</sub>-Dickschicht-Sensors S5 mit einer Betriebstemperatur von 300 °C dargestellt.

Der Realteil des Widerstandes bei höheren Frequenzen nimmt bei NO-Angebot leicht zu. Ebenfalls werden auch die vermutlich vom Messadapter herrührenden induktiven Anteile bei hohen Frequenzen gemessen.

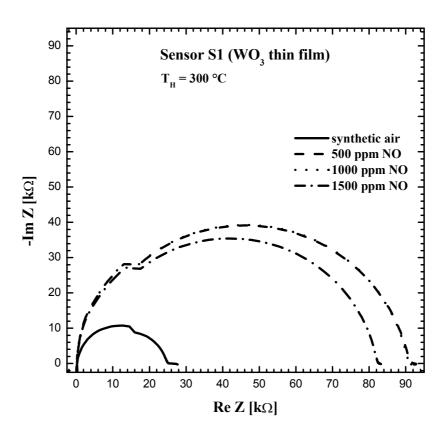



Abbildung 5-13: Impedanzspektrum des WO<sub>3</sub>-Dünnschicht-Sensors S1 mit einer Betriebstemperatur von 300 °C unter NO-Angebot

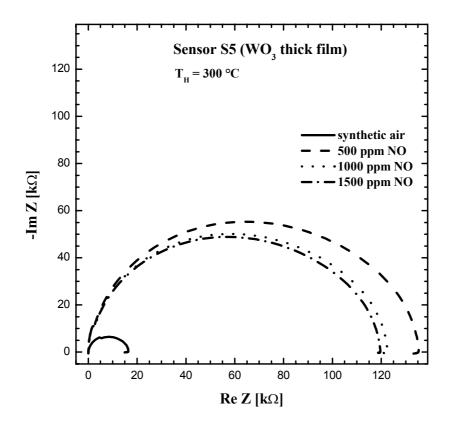



Abbildung 5-14: Impedanzspektrum des WO<sub>3</sub>-Dickschicht-Sensors S5 mit einer Betriebstemperatur von 300 °C unter NO-Angebot

Tabelle 15 und Tabelle 16 zeigen die für die Sensoren ermittelten Widerstände  $R_0$  und  $R_1$  sowie die Kapazitäten  $C_1$  unter NO-Gasangebot bei einer Betriebstemperatur von 300 °C. Der Widerstand  $R_0$  nimmt unter NO-Angebot leicht zu und ist bei hohen Konzentrationen nahezu konstant.

Im niedrigeren und mittleren NO-Konzentrationsbereich zeigen die Sensoren einen starken Anstieg von R<sub>1</sub>, der sich bei höheren Konzentrationen allerdings wieder etwas verringert und in eine Sättigung übergeht. Aufgrund der geringen Widerstandserniedrigung bei hohen NO-Konzentrationen handelt es sich bei dem starken Widerstandsanstieg im niedrigen Konzentrationsbereich um den dominanteren Prozess.

Die Kapazität C<sub>1</sub> der Sensoren ist unabhängig von der NO-Konzentration nahezu konstant.

| NO-Konz.    | $\mathbf{R_0}$ | $\mathbf{R}_{1}$     | $C_1$ |
|-------------|----------------|----------------------|-------|
| [ppm]       | $[\Omega]$     | $[\mathbf{k}\Omega]$ | [pF]  |
| 1500        | 244            | 84,5                 | 4,6   |
| 1000        | 245            | 91,8                 | 4,7   |
| 500         | 239            | 92,9                 | 4,6   |
| synth. Luft | 232            | 25,0                 | 4,8   |

| NO-Konz.    | $R_0$      | $R_1$                | $C_1$ |
|-------------|------------|----------------------|-------|
| [ppm]       | $[\Omega]$ | $[\mathbf{k}\Omega]$ | [pF]  |
| 1500        | 220        | 18,6                 | 5,9   |
| 1000        | 220        | 19,0                 | 5,7   |
| 500         | 221        | 20,1                 | 5,4   |
| synth. Luft | 223        | 21,3                 | 5,6   |

Tabelle 15: WO<sub>3</sub>-Dünnschicht-Sensoren S1 (links) und S3 (rechts) mit 300 °C Betriebstemperatur unter NO-Angebot

| NO-Konz.    | $R_0$      | R <sub>1</sub>       | $C_1$ |
|-------------|------------|----------------------|-------|
| [ppm]       | $[\Omega]$ | $[\mathbf{k}\Omega]$ | [pF]  |
| 1500        | 71         | 119,7                | 16,1  |
| 1000        | 71         | 122,4                | 15,8  |
| 500         | 70         | 135,3                | 15,5  |
| synth. Luft | 65         | 16,4                 | 16,9  |

| NO-Konz.    | $\mathbf{R_0}$ | $\mathbf{R}_{1}$     | $C_1$ |
|-------------|----------------|----------------------|-------|
| [ppm]       | $[\Omega]$     | $[\mathbf{k}\Omega]$ | [pF]  |
| 1500        | 229            | 325,2                | 5,5   |
| 1000        | 228            | 332,4                | 5,3   |
| 500         | 227            | 372,1                | 5,6   |
| synth. Luft | 224            | 47,3                 | 5,8   |

Tabelle 16: WO<sub>3</sub>-Dickschicht-Sensoren S5 (links) und S7 (rechts) mit 300 °C Betriebstemperatur unter NO-Angebot

## 5.3.4.1 Sensitivität bei NO-Angebot

Bei einer Betriebstemperatur von 300 °C ist die Sensitivität auf NO bei den betrachteten Konzentrationen nahezu konstant (s. Abbildung 5-15). Oberhalb von 500 ppm nimmt die Sensitivität der beiden Dickschicht-Sensoren S5 und S7 mit Erhöhung des NO ein wenig ab und geht in eine Sättigung über. Hierbei beträgt die Sensitivität bei 500 ppm NO für Sensor S5 ca. 8,2 und für Sensor S7 ca. 7,9.

Qualitativ zeigt die Sensitivität des Dünnschicht-Sensor S1 einen ähnlichen Verlauf wie die der beiden Dickschicht-Sensoren. Allerdings beträgt dessen Sensitivität bei 500 ppm NO nur ca. 3,7 und ist somit nur etwa halb so groß wie die der beiden Dickschicht-Sensoren.

Der Dünnschicht-Sensor S3 zeigt nahezu keine Empfindlichkeit gegenüber NO und wird aus diesem Grund nicht weiter betrachtet.

Die Messungen zeigen, dass die NO-Sensitivität der siebgedruckten Dickschicht-Sensoren etwa doppelt so stark ausgeprägt ist wie die des gesputterten Dünnschicht-Sensors bei 300 °C Betriebstemperatur.

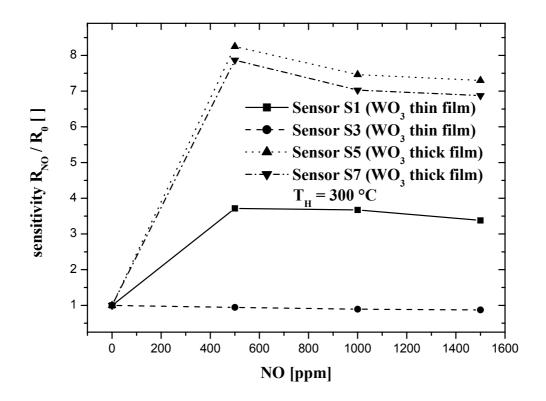



Abbildung 5-15: Sensitivität der WO<sub>3</sub>-Sensoren unter NO-Angebot mit 300 °C Betriebstemperatur

#### 5.3.5 Impedanzmessungen unter CO-Angebot

Unter CO-Angebot mit Konzentrationen zwischen 50 ppm und 300 ppm zeigen die WO<sub>3</sub>-Sensoren mit Betriebstemperaturen von 300 °C oder 400 °C leicht abgeflachte Halbkreise im Nyquist-Plot. Diese sind exemplarisch für den Dünnschicht-Sensor S1 und den Dickschicht-Sensor S5 in Abbildung 5-16 und Abbildung 5-17 bei 300 °C und in Abbildung 5-18 und Abbildung 5-19 bei 400 °C Betriebstemperatur dargestellt.

Bei hohen Frequenzen zeigen die Sensoren einen nahezu konstanten Widerstand. Weiterhin wird auch ein Auftreten von induktiven Anteilen bei hohen Frequenzen unter

CO-Angebot beobachtet.

Bei Betrachtung der Realteilachse erkennt man, dass die Sensoren bei einer Temperatur von sowohl 300 °C als auch 400 °C auf CO nur eine geringe Empfindlichkeit und in Abhängigkeit der CO-Konzentration eine indifferente Widerstandsveränderungen zeigen.

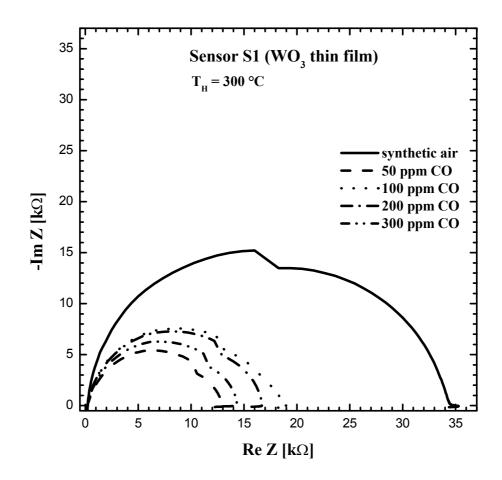



Abbildung 5-16: Impedanzspektrum des WO<sub>3</sub>-Dünnschicht-Sensors S1 mit einer Betriebstemperatur von 300 °C unter CO-Angebot

<u>82</u> Ergebnisse

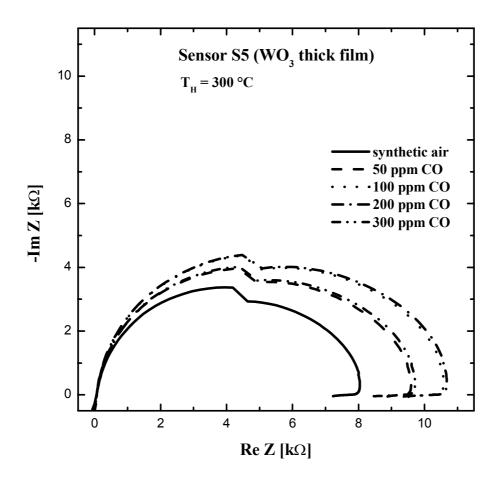



Abbildung 5-17: Impedanzspektrum des WO<sub>3</sub>-Dickschicht-Sensors S5 mit einer Betriebstemperatur von 300 °C unter CO-Angebot

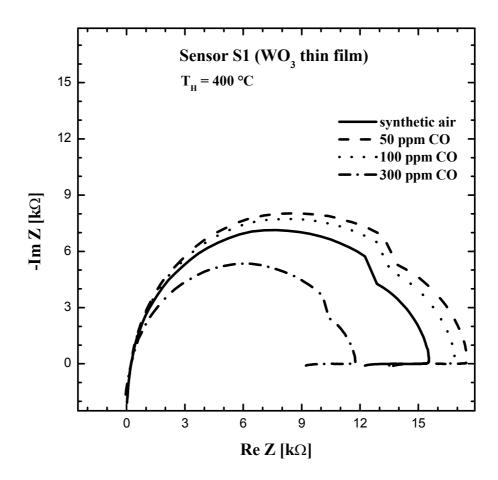



Abbildung 5-18: Impedanzspektrum des WO<sub>3</sub>-Dünnschicht-Sensors S1 mit einer Betriebstemperatur von 400 °C unter CO-Angebot

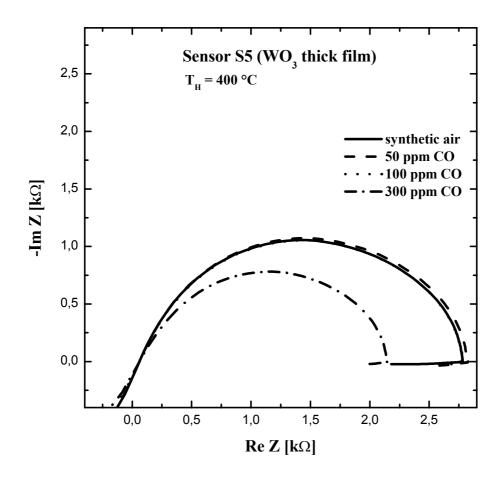



Abbildung 5-19: Impedanzspektrum des WO<sub>3</sub>-Dickschicht-Sensors S5 mit einer Betriebstemperatur von 400 °C unter CO-Angebot

Tabelle 17 bis Tabelle 20 zeigen die ermittelten Werte der Widerstände  $R_0$  und der Widerstände  $R_1$  sowie der Kapazitäten  $C_1$  unter CO-Angebot bei Betriebstemperaturen von 300 °C und 400 °C.

Unter CO-Angebot ist der Widerstand  $R_0$  wie auch die Kapazität  $C_1$  bei beiden Betriebstemperaturen nahezu konstant und somit unabhängig von der angebotenen Konzentration.

Die Widerstandsänderung von R<sub>1</sub> ist bei beiden Betriebstemperaturen gering und indifferent, woraus eine geringe CO-Empfindlichkeit der Sensoren resultiert.

| CO-Konz.    | $\mathbf{R_0}$ | R <sub>1</sub>       | $C_1$ |
|-------------|----------------|----------------------|-------|
| [ppm]       | $[\Omega]$     | $[\mathbf{k}\Omega]$ | [pF]  |
| 300         | 227            | 14,3                 | 5,0   |
| 200         | 224            | 17,4                 | 4,7   |
| 100         | 223            | 18,9                 | 4,9   |
| 50          | 221            | 13,0                 | 5,1   |
| synth. Luft | 232            | 34,3                 | 4,5   |

| CO-Konz.    | $R_0$      | $\mathbf{R}_{1}$     | $\mathbf{C_1}$ |
|-------------|------------|----------------------|----------------|
| [ppm]       | $[\Omega]$ | $[\mathbf{k}\Omega]$ | [pF]           |
| 300         | 236        | 11,8                 | 4,7            |
| 200         | -          | -                    | -              |
| 100         | 238        | 16,9                 | 4,6            |
| 50          | 230        | 17,5                 | 4,4            |
| synth. Luft | 239        | 15,5                 | 4,6            |

Tabelle 17: WO<sub>3</sub>-Dünnschicht-Sensor S1 unter CO-Angebot mit 300 °C (links) und 400 °C (rechts) Betriebstemperatur

| CO-Konz.    | $R_0$      | $R_1$                | $C_1$ |
|-------------|------------|----------------------|-------|
| [ppm]       | $[\Omega]$ | $[\mathbf{k}\Omega]$ | [pF]  |
| 300         | 151        | 2,4                  | 11,8  |
| 200         | 192        | 7,4                  | 6,9   |
| 100         | 197        | 8,8                  | 6,9   |
| 50          | 194        | 8,5                  | 6,5   |
| synth. Luft | 157        | 3,4                  | 10,7  |

| CO-Konz.    | $R_0$      | $R_1$                | $\mathbf{C_1}$ |
|-------------|------------|----------------------|----------------|
| [ppm]       | $[\Omega]$ | $[\mathbf{k}\Omega]$ | [pF]           |
| 300         | 218        | 7,3                  | 5,9            |
| 200         | -          | -                    | -              |
| 100         | 222        | 9,0                  | 5,7            |
| 50          | 226        | 12,1                 | 5,4            |
| synth. Luft | 219        | 7,4                  | 6,3            |

Tabelle 18: WO<sub>3</sub>-Dünnschicht-Sensor S3 unter CO-Angebot mit 300 °C (links) und 400 °C (rechts) Betriebstemperatur

| CO-Konz.    | $\mathbf{R_0}$ | $\mathbf{R}_{1}$     | $C_1$ |
|-------------|----------------|----------------------|-------|
| [ppm]       | $[\Omega]$     | $[\mathbf{k}\Omega]$ | [pF]  |
| 300         | 63             | 9,7                  | 15,8  |
| 200         | 66             | 10,7                 | 14,3  |
| 100         | 64             | 10,6                 | 14,4  |
| 50          | 66             | 9,6                  | 15,9  |
| synth. Luft | 59             | 8,0                  | 19,1  |

| CO-Konz.    | $\mathbf{R_0}$ | $\mathbf{R}_{1}$     | $C_1$ |
|-------------|----------------|----------------------|-------|
| [ppm]       | $[\Omega]$     | $[\mathbf{k}\Omega]$ | [pF]  |
| 300         | 60             | 2,1                  | 22,3  |
| 200         | -              | -                    | -     |
| 100         | 59             | 2,8                  | 19,8  |
| 50          | 61             | 2,8                  | 19,8  |
| synth. Luft | 61             | 2,8                  | 19,8  |

Tabelle 19: WO<sub>3</sub>-Dickschicht-Sensor S5 unter CO-Angebot mit 300 °C (links) und 400 °C (rechts) Betriebstemperatur

| CO-Konz.    | $\mathbf{R_0}$ | $R_1$                | $\mathbf{C_1}$ |
|-------------|----------------|----------------------|----------------|
| [ppm]       | $[\Omega]$     | $[\mathbf{k}\Omega]$ | [pF]           |
| 300         | 214            | 21,3                 | 6,1            |
| 200         | 215            | 25,0                 | 6,1            |
| 100         | 217            | 27,6                 | 5,5            |
| 50          | 219            | 31,1                 | 4,9            |
| synth. Luft | 216            | 27,8                 | 5,5            |

| CO-Konz.    | $R_0$ | R <sub>1</sub>       | $C_1$ |
|-------------|-------|----------------------|-------|
| [ppm]       | [Ω]   | $[\mathbf{k}\Omega]$ | [pF]  |
| 300         | 196   | 5,5                  | 7,2   |
| 200         | 1     | -                    | -     |
| 100         | 206   | 8,8                  | 6,3   |
| 50          | 205   | 8,6                  | 6,5   |
| synth. Luft | 204   | 7,9                  | 6,5   |

Tabelle 20: WO<sub>3</sub>-Dickschicht-Sensor S7 unter CO-Angebot mit 300 °C (links) und 400 °C (rechts) Betriebstemperatur

# 5.3.5.1 Sensitivität bei CO-Angebot

Bei 300 °C Betriebstemperatur (Abbildung 5-20) zeigen die Sensoren S1 (Dünnschicht) und S7 (Dickschicht) im untersuchten Konzentrationsbereich beide eine leichte Widerstandsabnahme, die jedoch keinen direkten Zusammenhang mit der Konzentration erkennen lässt. Die beiden anderen Sensoren S3 (Dünnschicht) und S5 (Dickschicht) zeigen hingegen unter CO-Angebot eine leichte Widerstandserhöhung, bei der ebenfalls kein direkter Zusammenhang mit der Konzentration festgestellt wird.

Die Sensitivität des Sensors S3 beträgt im betrachteten Konzentrationsbereich maximal 2,6 und des Sensors S5 maximal 1,3. Zur besseren Vergleichbarkeit wird die Sensitivität der Sensoren S1 und S7 aufgrund der Widerstandsabnahme bei CO-Angebot als reziproker Wert der Gleichung (5.1) bestimmt. Damit beträgt die Sensitivität des Sensors S1 maximal 2,5 und des Sensors S7 maximal 1,3.

Aufgrund der geringen Sensitivität sowie dem gegenläufigen und indifferenten Widerstandsverhalten der Sensoren unter CO-Angebot ist die CO-Empfindlichkeit bei 300 °C nahezu vernachlässigbar.

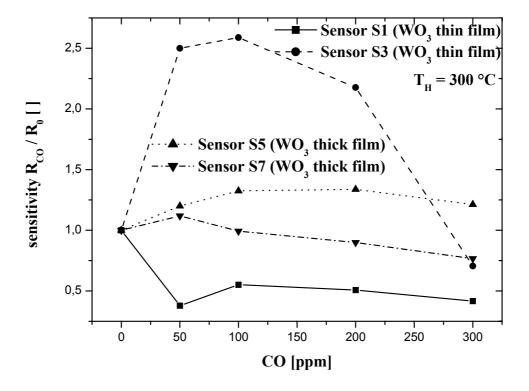



Abbildung 5-20: Sensitivität der WO<sub>3</sub>-Sensoren unter CO-Angebot mit 300 °C Betriebstemperatur

Bei 400 °C (Abbildung 5-21) zeigen die Sensoren bis zu einer CO-Konzentration von ca. 100 ppm eine Sensitivität größer 1 und somit eine Widerstandszunahme. Bei Angebot von 300 ppm hingegen reagieren die Sensoren mit einer Widerstandsabnahme, die eine Sensitivität kleiner 1 zur Folge hat. Dabei besitzt Sensor S3 im untersuchten Konzentrationsbereich von allen Sensoren mit ca. 1,7 die größte Sensitivität. Aufgrund der geringen Sensitivität sowie dem indifferenten Widerstandsverhalten der Sensoren unter CO-Angbot resultiert auch bei 400 °C eine nahezu vernachlässigbare CO-Empfindlichkeit.

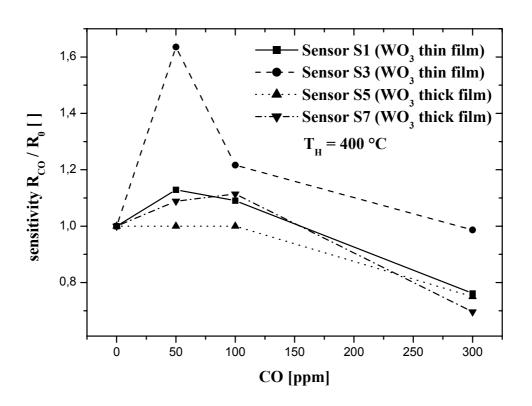



Abbildung 5-21: Sensitivität der WO<sub>3</sub>-Sensoren unter CO-Angebot mit 400 °C Betriebstemperatur

Die Messungen zeigen, dass die WO<sub>3</sub>-Sensoren unabhängig von ihrem Schichttyp bei einer Betriebstemperatur von sowohl 300 °C als auch 400 °C eine nahezu vernachlässigbare Empfindlichkeit und ein indifferentes Verhalten auf CO im untersuchten Konzentrationsbereich zeigen.

## 5.4 Gleichspannungsmessungen mit WO<sub>3</sub>-Sensoren bei SO<sub>2</sub>-Gasangebot

Zur Charakterisierung der WO<sub>3</sub>-Sensoren bei Angebot eines typisch im Abgas vorkommenden und für andere Sensormaterialien typischen Vergiftungsgases (s. Kapitel 2.2.4) wurde SO<sub>2</sub> angeboten. Um einen Diesel-Abgasstrom zu simulieren wurde trockenes Trägergas aus 96 % Stickstoff und 4 % Sauerstoff verwendet, da Abgase von Dieselmotoren wie auch Mager-Mix-Otto-Motoren einen Sauerstoffanteil zwischen ca. 4 Vol.% und 20 Vol.% enthalten [Wal 00]. Die konstante Messspannung der Sensoren lag bei 0,1 V. Die Messungen und Datenaufnahme wurden mit der in Kapitel 4.2.2 beschriebenen Gasmischanlage durchgeführt.

In Abbildung 5-22 ist die SO<sub>2</sub>-Messung mit den beiden Sensoren S1 und S3 dargestellt, die mit einer Temperatur von 350 °C betrieben wurden. Die angebotene SO<sub>2</sub>-Konzentration lag hierbei zwischen 50 ppm und 500 ppm.

Während dem ersten Gasangebot von 50 ppm SO<sub>2</sub> steigt der Widerstand zunächst stark an und nimmt daraufhin teilweise ab. Bei jedem der folgenden SO<sub>2</sub>-Angebote mit steigender Konzentration ist dieses Widerstandsverhalten zu beobachten, wobei jedoch die Widerstandserhöhung und damit auch die Sensitivität S abnimmt. In Tabelle 21 sind diese nach Gleichung (5.1) berechneten Sensitivitäten aufgeführt.

Nach einem zweistündigen Betrieb im reinen Trägergas wurde den Sensoren ein weiteres mal 100 ppm SO<sub>2</sub> angeboten. Während diesem steigt der Widerstand wie bei den vorhergehenden SO<sub>2</sub>-Angeboten stark an und nimmt anschliessend teilweise ab. Allerdings ist hierbei die Widerstandserhöhung und damit auch die Sensitivität sehr viel schwächer ausgeprägt als bei dem ersten 50 ppm SO<sub>2</sub>-Angebot.

| SO <sub>2</sub> -Konz. [ppm] | 50   | 100 | 200 | 500 | 50 | 100 |
|------------------------------|------|-----|-----|-----|----|-----|
| Sensitivität<br>Sensor S1    | 12,9 | 5,8 | 3,5 | 2,3 |    | 2,9 |
| Sensitivität<br>Sensor S3    | 16,5 | 8,3 | 4,7 | 3,1 |    | 2,5 |

Tabelle 21: Sensitivität der WO<sub>3</sub>-Sensoren bei 350 °C Betriebstemperatur

Diese Empfindlichkeitsabnahme durch vorhergehende SO<sub>2</sub>-Beaufschlagung bei 350 °C Betriebstemperatur deutet auf einen irreversiblen Prozess zwischen der WO<sub>3</sub>-Oberfläche und dem SO<sub>2</sub> hin.

Aufgrund der Widerstandserhöhung zu Beginn der SO<sub>2</sub>-Angebote findet bei 350 °C ein dominanter Oxidationsprozess an der der WO<sub>3</sub>-Oberfläche statt, dem ein etwas schwächerer Reduktionsprozess mit einer Widerstandserniedrigung folgt.

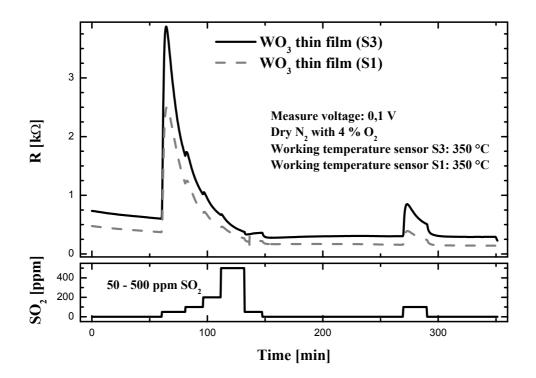



Abbildung 5-22: SO<sub>2</sub>-Angebot bei einer Betriebstemperatur von 350 °C

Das gleiche SO<sub>2</sub>-Gasprofil wurde den Sensoren S3 und S7 angeboten, wobei deren Betriebstemperatur jedoch auf 500 °C erhöht wurde (Abbildung 5-23).

Im Gegensatz zur Messung bei 350 °C zeigen die Sensoren eine der SO<sub>2</sub>-Konzentration proportionale Widerstandserniedrigung. Auch wird bei Vergleich der beiden 50 ppm SO<sub>2</sub>-Angebote keine Abnahme der Sensitivität beobachtet.

Zur besseren Vergleichbarkeit mit der Sensitivität bei 350 °C wird aufgrund der Widerstandsabnahme bei 500 °C diese für die Sensoren als reziproker Wert der Gleichung (5.1) bestimmt. Die berechneten Werte der Sensitivität sind in Tabelle 22 dargestellt.

| SO <sub>2</sub> -Konz. [ppm] | 50   | 100  | 200  | 500  | 50   |
|------------------------------|------|------|------|------|------|
| Sensitivität<br>Sensor S3    | 1,08 | 1,12 | 1,22 | 1,47 | 1,07 |
| Sensitivität<br>Sensor S7    | 1,14 | 1,23 | 1,38 | 1,65 | 1,16 |

Tabelle 22: Sensitivität der WO<sub>3</sub>-Sensoren bei 500 °C Betriebstemperatur

Bei 500 °C liegt somit eine reproduzierbare und sehr geringe Empfindlichkeit vor. Diese wird auf einen vollständig reversiblen Reduktions-Prozess zwischen SO<sub>2</sub> und der WO<sub>3</sub>-Oberfläche zurückgeführt.

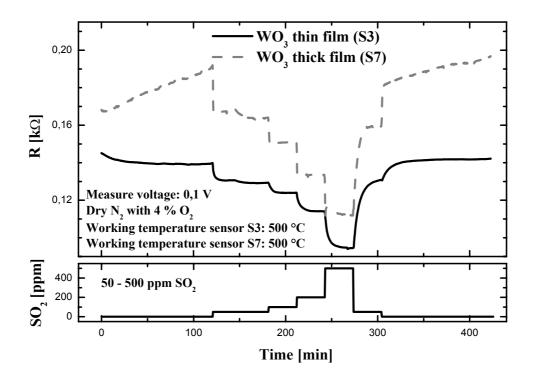



Abbildung 5-23: SO<sub>2</sub>-Angebot bei einer Betriebstemperatur von 500 °C

## 5.5 XPS-Messungen an WO<sub>3</sub>-Dünnschichten

Zur Untersuchung möglicher Schichtveränderungen von WO<sub>3</sub>-Schichten während eines Betriebs wurden an zwei WO<sub>3</sub>-Dünnschichten (Probe 1 und 2) XPS- und XRD-Messungen durchgeführt. Beide Proben wurden auf gleiche Weise präpariert (s. Kapitel 4.1.2) und Probe 2 unterscheidet sich von Probe 1 in einer künstlichen Alterung. Die Alterung (simulierter Sensorbetrieb) bestand aus einer zusätzlichen 50-stündigen Temperung bei 500 °C in synthetischer Luft.

## 5.5.1 Übersichtsprofile

In Abbildung 5-24, Abbildung 5-25, Abbildung 5-26 und Abbildung 5-27 ist jeweils ein XPS-Übersichtsprofil und ein Übersichtstiefenprofil der beiden WO<sub>3</sub>-Dünnschicht-Proben dargestellt. Der betrachtete Bindungsenergiebereich liegt zwischen 0 eV und 1.100 eV. Die Übersichtsprofile wurden hierbei in einer Schichttiefe von ca. 20 nm bis 30 nm aufgenommen.

Die Proben 1 und 2 zeigen keine Unterschiede in den vorkommenden Elementen. Sie bestehen aus den Elementen Wolfram (W), Sauerstoff (O), Platin (Pt) und Kohlenstoff (C) (s. Abbildung 5-24 und Abbildung 5-26).

Die Tiefenprofile (Abbildung 5-25 und Abbildung 5-27) zeigen bei den gefundenen Elementen W, O, Pt und C eine quantitative Veränderung dieser in den verschiedenen Schichttiefen. Um genauere Informationen zu erhalten wurden XPS-Messungen mit höherer Auflösung bei den betreffenden Bindungsenergien der Elemente durchgeführt.

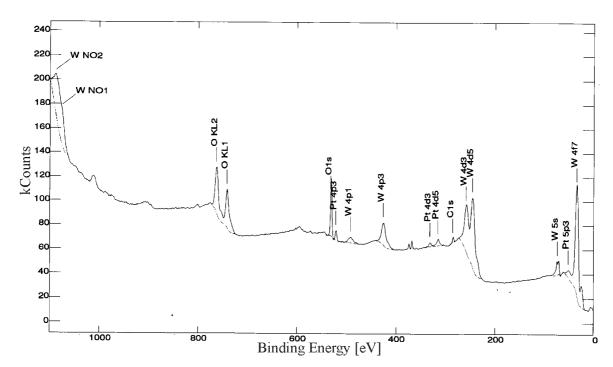



Abbildung 5-24: Übersichtsprofil der  $WO_3$ -Dünnschicht Probe 1 in einer Schichttiefe von 20 nm - 30 nm

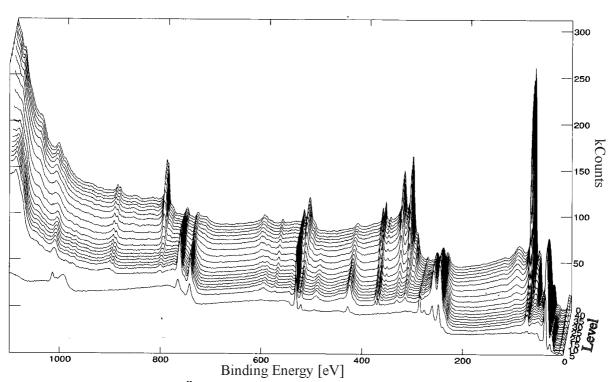



Abbildung 5-25: Übersichtstiefenprofil der WO<sub>3</sub>-Dünnschicht Probe 1

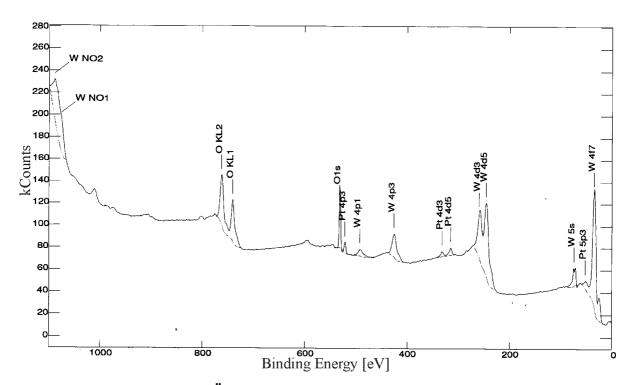



Abbildung 5-26: Übersichtsprofil der  $WO_3$ -Dünnschicht Probe 2 in einer Schichttiefe von 20~nm-30~nm

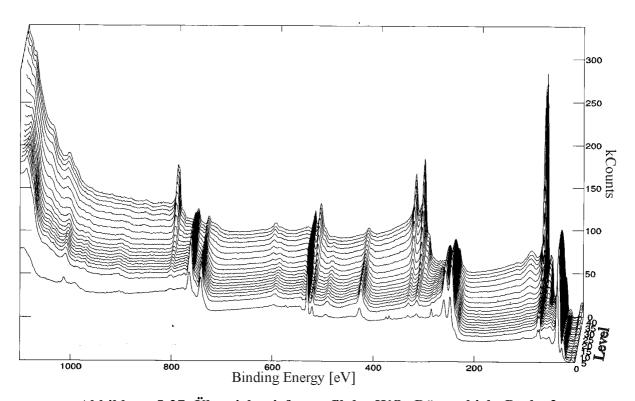



Abbildung 5-27: Übersichtstiefenprofil der WO<sub>3</sub>-Dünnschicht Probe 2

## 5.5.2 Platin-Tiefenprofile (Pt4f)

Da eine mögliche Interdiffusion von Platin in die WO<sub>3</sub>-Schicht während des Sensorbetriebes die Sensoreigenschaften verändern würde, wurde das Tiefenprofil des Pt4f-Niveaus der beiden Proben aufgenommen. In Abbildung 5-28 ist dieses für Probe 1 und in Abbildung 5-29 für Probe 2 dargestellt.

Die gemessenen Bindungsenergien beider Proben in verschiedenen Schichttiefen sind in Tabelle 23 aufgeführt. Der in Klammern eingefasste Wert hinter der gemessenen Energie ist die auf den Literaturwert bezogene Verschiebung ("chemical shift"), wobei der Literaturwert in der letzten Zeile der Tabelle aufgeführt ist. Das Vorzeichen der Energieverschiebung hat bei Verschiebung in Richtung höherer Bindungsenergie ein positives Vorzeichen und bei Verschiebung in Richtung niedriger Bindungsenergie ein negatives Vorzeichen.

Die Pt4f-Niveaus der beiden Proben liegen mit geringen Verschiebungen in Übereinstimmung mit dem Literaturwert für metallisches Platin.

Zur Erstellung eines Tiefenverlaufs wurde die jeweils oberste Schicht abgesputtert. Dabei wurde pro Sputterlevel zwischen 10 nm bis 15 nm Schicht abgetragen.

Die Tiefenverläufe beider Proben zeigen einen konstanten sehr geringen Platinanteil an der Oberfläche, der bis zu einer Schichttiefe von ca. 100 nm bis 150 nm kaum zunimmt. In Schichttiefen größer 100 nm bis 150 nm wächst dieser dann aber sehr stark an. Dieser Anstieg kann mit dem Vorliegen der Platinelektroden in dieser Tiefe erklärt werden.

Das Auftreten des Platins in geringeren Schichttiefen als 100 nm bis 150 nm ist wahrscheinlich auf eine Verwaschung des Sputterabtrages zurückzuführen. Dies ist folgendermaßen zu verstehen: Durch die auf dem Substrat aufgebrachten Elektroden liegt keine glatte Oberfläche vor, auf der die WO<sub>3</sub>-Dünnschicht aufgebracht ist. Dadurch wird beim Absputtern der jeweils obersten Schicht an den Kanten der Elektroden, an denen die WO<sub>3</sub>-Schichtdicke sehr gering ist, etwas Platin mit abgetragen.

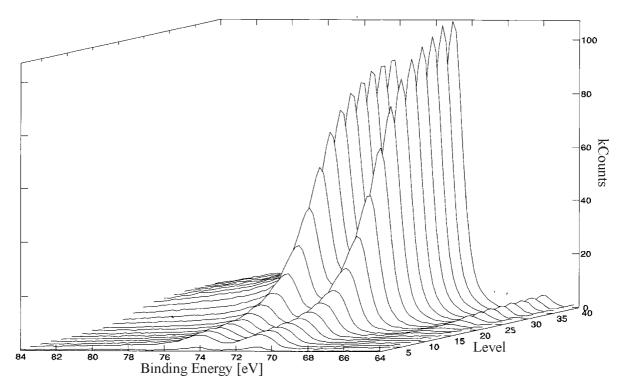



Abbildung 5-28: Tiefenprofil des Pt4f-Niveaus der  $\mathrm{WO_3}$ -Dünnschicht Probe 1

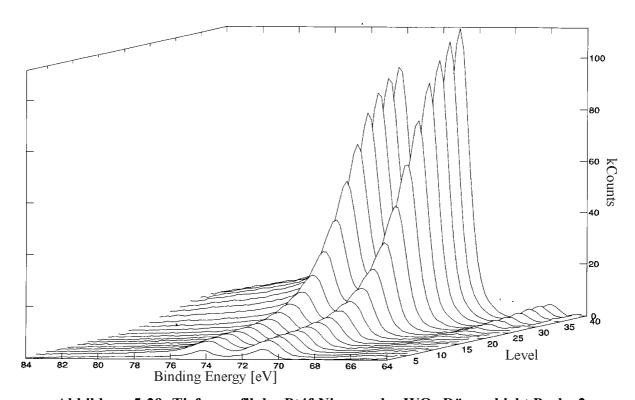



Abbildung 5-29: Tiefenprofil des Pt4f-Niveaus der WO<sub>3</sub>-Dünnschicht Probe 2

|               | Pt4f-Bindungsenergie<br>in 10 nm – 15 nm Schichttiefe<br>und<br>Verschiebung | Pt4f-Bindungsenergie<br>in 290 nm – 435 nm Schichttiefe<br>und<br>Verschiebung |  |  |
|---------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
|               | gegenüber Literaturwert                                                      | gegenüber Literaturwert                                                        |  |  |
| Probe 1       | Pt 4f <sub>5/2</sub> : 74,60 eV (+0,07 eV)                                   | Pt 4f <sub>5/2</sub> : 74,20 eV (-0,33 eV)                                     |  |  |
| 110001        | Pt $4f_{7/2}$ : 71,20 eV (±0,00 eV)                                          | Pt 4f <sub>7/2</sub> : 71,00 eV (-0,20 eV)                                     |  |  |
| Probe 2       | Pt 4f <sub>5/2</sub> : 75,00 eV (+0,47 eV)                                   | Pt 4f <sub>5/2</sub> : 74,40 eV (-0,13 eV)                                     |  |  |
| Frobe 2       | Pt 4f <sub>7/2</sub> : 71,00 eV (-0,20 eV)                                   | Pt 4f <sub>7/2</sub> : 71,00 eV (-0,20 eV)                                     |  |  |
| Literaturwert | Pt 4f <sub>7/2</sub> : 71,2 eV                                               |                                                                                |  |  |
| [Mou 92]      | $\Delta(\operatorname{Pt} 4f_{5/2} - \operatorname{Pt} 4f_{5/2})$            | $\Delta(\text{Pt }4f_{5/2} - \text{Pt }4f_{7/2}) = 3{,}33 \text{ eV}$          |  |  |

Tabelle 23: gemessene Peaklagen des Platins und Literaturwert

Bei Vergleich der Platin-Tiefenprofilanalysen der beiden WO<sub>3</sub>-Dünnschichten wird kein signifikanter Unterschied erkennbar. Aus diesem Grund kann eine Diffusion des Platins während des simulierten Sensorbetriebs nahezu ausgeschlossen werden.

Allerdings kann eine Platin-Diffusion in die WO<sub>3</sub>-Dünnschicht z.B. während der Präparation oder Temperung nicht vollständig ausgeschlossen werden, da dieses in allen Schichttiefen existiert. Die hierfür verwendete Erklärung der unebenen Oberfläche der Proben und der damit verbundenen ungleichmäßigen Schichtabtragung ist nur eine mögliche Interpretation.

#### 5.5.3 Sauerstoff-Tiefenprofile (O1s)

In Abbildung 5-30 und Abbildung 5-31 sind die Sauerstoff-Tiefenprofile des O1s-Niveaus der beiden Proben dargestellt. Die gemessenen Bindungsenergien und deren Abweichung vom Literaturwert für verschiedene Schichttiefen sind in Tabelle 24 aufgeführt.

An der Oberfläche liegt die gefundene O1s-Bindungsenergie der Probe 1 mit 530,6 eV in guter Übereinstimmung mit dem Literaturwert für WO<sub>3</sub> (s. Tabelle 24, letzte Zeile). Die Bindungsenergie der Probe 2 hingegen liegt an der Oberfläche mit 530,8 eV um +0,2 eV verschoben.

Gleichzeitig fällt die bei Probe 1 stark ausgeprägte Schulter bei ca. 533 eV (Abbildung 5-30) auf, die bei Probe 2 nur noch schwach zu erkennen ist. Da nach [Mou 92] 533,2 eV der Bindungsenergie von Sauerstoff in einem Wassermolekül entspricht, kann die auftretende Schulter mit an der Oberfläche adsorbiertem Wasser interpretiert werden, welches durch den simulierten Betrieb bei Probe 2 größtenteils desorbiert ist.

Ab einer Schichttiefe von ca. 140 nm bis 210 nm ist bei beiden Proben eine langsame Abnahme des Sauerstoffanteils zu erkennen. Dies kann mit den in dieser Schichttiefe immer stärker freigesputterten Platinelektroden der Interdigitalstruktur zusammenhängen, durch deren Vorliegen die Menge des WO<sub>3</sub>-Schichtmaterials und somit des darin gebundenen Sauerstoffs abnimmt.

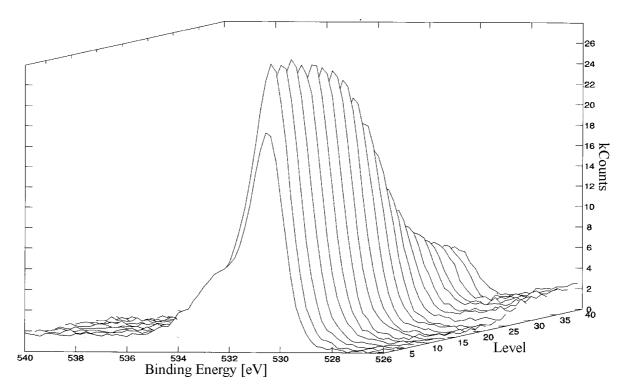



Abbildung 5-30: Tiefenprofil des O1s-Niveaus der WO3-Dünnschicht Probe 1

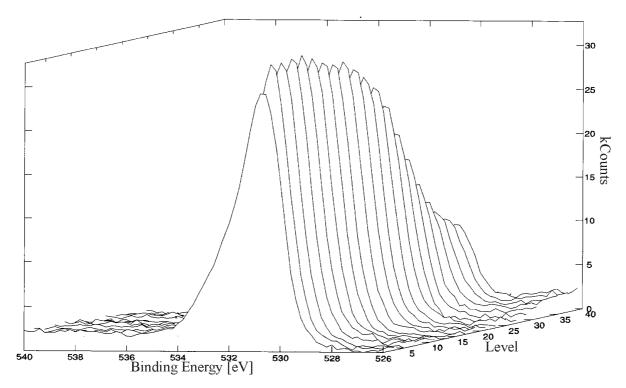



Abbildung 5-31: Tiefenprofil des O1s-Niveaus der WO3-Dünnschicht Probe 2

|                           | O1s-Bindungsenergie<br>an der Oberfläche<br>und<br>Verschiebung<br>gegenüber Literaturwert      | O1s-Bindungsenergie<br>in 10 nm – 15 nm Schichttiefe<br>und<br>Verschiebung<br>gegenüber Literaturwert |  |
|---------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Probe 1                   | 530,6 eV (±0,00 eV)                                                                             | 530,8 eV (+0,20 eV)                                                                                    |  |
| Probe 2                   | 530,8 eV (+0,20 eV)                                                                             | 530,8 eV (+0,20 eV)                                                                                    |  |
| Literaturwert<br>[Mou 92] | O 1s für WO <sub>3</sub> : 530,6 eV<br>WO <sub>2</sub> : 530,4 eV<br>H <sub>2</sub> O: 533,2 eV |                                                                                                        |  |

Tabelle 24: gemessene Peaklage des Sauerstoffs und Literaturwert

## 5.5.4 Wolfram-Tiefenprofile (W4f)

In Abbildung 5-32 und Abbildung 5-33 sind die Wolfram-Tiefenprofile der beiden Proben dargestellt. Die gemessenen Bindungsenergien und deren Abweichung vom Literaturwert sind in Tabelle 25 für verschiedene Schichttiefen zusammengefasst.

An der Oberfläche liegen die gemessenen W4 $f_{7/2}$ -Bindungsenergien um -0.2 eV für Probe 1 und -0.4 eV für Probe 2 gegenüber dem Literaturwert für WO<sub>3</sub> verschoben. Die W4 $f_{5/2}$ -Verschiebung beträgt für beide Proben -0.18 eV.

Diese kleinen Verschiebungen in Richtung niedriger Bindungsenergie deuten bei beiden Proben auf eine leichte Unterstöchiometrie hin, die an der Oberfläche der Probe 2 etwas stärker als bei Probe 1 ausgeprägt ist. Die stärkere Unterstöchiometrie von Probe 2 gegenüber Probe 1 ist auch durch eine leichte Schulterbildung bei ca. 33 eV und somit einer Aufweitung des W4f-Niveaus an der Oberfläche von Probe 2 (Abbildung 5-33) erkennbar. Dies wird auf eine Überlagerung verschieden stark ausgeprägter W4f-Niveaus verschiedener Oxidationszustände des Wolfram (W<sup>6+</sup>, W<sup>4+</sup>, W<sup>0</sup>) zurückgeführt, deren Bindungsenergie in Tabelle 25 aufgeführt ist. Mit dieser Überlagerung kann auch das bei Probe 1 stärker ausgeprägte Tal zwischen den beiden W4f-Peaks erklärt werden.

Nach Absputtern der obersten WO<sub>3</sub>-Schicht und Auswertung der 10 nm bis 15 nm tieferen Schicht ist bei beiden Proben eine starke Veränderung der Spektren zu erkennen. Die beiden an der Oberfläche deutlich zu trennenden W4f<sub>7/2</sub>- und W4f<sub>5/2</sub>-Energieniveaus des WO<sub>3</sub> spalten bei beiden Proben in drei erkennbare Peaks bei 31,0 eV, 33,2 eV und 35,4 eV sowie einer entstehenden Schulter bei 37,8 eV auf. Da diese Peaks zum einen den Bindungsenergien des W4f<sub>7/2</sub>- und W4f<sub>5/2</sub>-Niveaus von WO<sub>3</sub> (W<sup>6+</sup>) und zum anderen den Energiewerten des W4f<sub>7/2</sub>- und W4f<sub>5/2</sub>-Niveaus von metallischem Wolfram (W<sup>0</sup>) zugeordnet werden können, weisen sie auf das Vorhandensein des Wolfram in zwei verschiedenen Oxidationsstufen hin. Diese teilweise Reduktion des Wolfram in den tieferliegenden Schichten lässt sich durch ein bevorzugtes Absputtern von Sauerstoff gegenüber Wolfram erklären [Hen 91<sup>2</sup>; Khy 00], welches beim Absputtern der jeweils obersten Schicht zur Erstellung der Tiefenprofile auftritt.



Abbildung 5-32: Tiefenprofil des W4f-Niveaus der WO<sub>3</sub>-Dünnschicht Probe 1

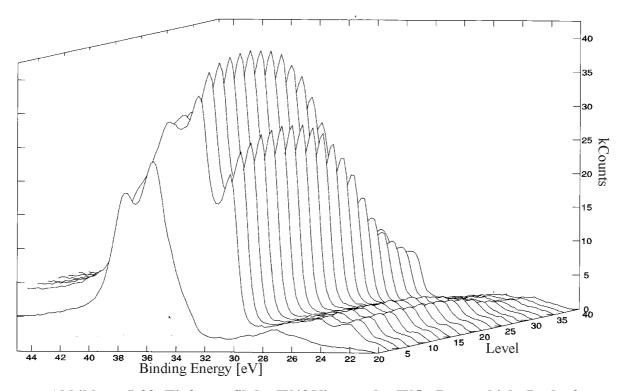



Abbildung 5-33: Tiefenprofil des W4f-Niveaus der WO<sub>3</sub>-Dünnschicht Probe 2

|                           | W4f-Bindungsenergie<br>an der Oberfläche                       | W4f-Bindungsenergie<br>in 10 nm – 15 nm Schichttiefe       |  |  |  |
|---------------------------|----------------------------------------------------------------|------------------------------------------------------------|--|--|--|
|                           | und<br>Verschiebung                                            | und<br>Verschiebung                                        |  |  |  |
|                           | gegenüber Literaturwert                                        | gegenüber Literaturwert                                    |  |  |  |
| Probe 1                   |                                                                | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,8 eV (-0,18 eV) |  |  |  |
|                           | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,8 eV (-0,18 eV)     | W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,4 eV (-0,40 eV) |  |  |  |
|                           | W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,6 eV (-0,20 eV)     | $W 4f_{5/2} (W) : 33,2 \text{ eV } (-0.38 \text{ eV})$     |  |  |  |
|                           |                                                                | $W 4f_{7/2} (W) : 31,0 \text{ eV} (-0,40 \text{ eV})$      |  |  |  |
| Probe 2                   |                                                                | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,8 eV (-0,18 eV) |  |  |  |
|                           | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,8 eV (-0,18 eV)     | W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,4 eV (-0,40 eV) |  |  |  |
|                           | W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,4 eV (-0,40 eV)     | $W 4f_{5/2} (W) : 33,2 \text{ eV } (-0.38 \text{ eV})$     |  |  |  |
|                           |                                                                | $W 4f_{7/2} (W) : 31,0 \text{ eV} (-0,40 \text{ eV})$      |  |  |  |
| Literaturwert<br>[Mou 92] | $W 4f_{7/2} \text{ für } W (W^0): 31,4 \text{ eV}$             |                                                            |  |  |  |
|                           | WO <sub>2</sub> (W <sup>4+</sup> ): 32,8 eV                    |                                                            |  |  |  |
|                           | W <sub>18</sub> O <sub>49</sub> (WO <sub>2.72</sub> ): 34,3 eV |                                                            |  |  |  |
|                           | WO <sub>3</sub> (W <sup>6+</sup> ): 35,8 eV                    |                                                            |  |  |  |
|                           | $\Delta(W 4f_{5/2} - W 4f_{7/2}) = 2.18 \text{ eV}$            |                                                            |  |  |  |

Tabelle 25: gemessene Peaklagen des Wolframs und Literaturwert

#### 5.5.5 Kohlenstoff-Tiefenprofile (C1s)

Bei dem Übersichts-Tiefenprofil der Probe 1 (Abbildung 5-34) tritt an der Oberfläche bei einer Bindungsenergie von 285,0 eV ein Kohlenstoff-Peak auf, der ab einer Schichttiefe von 10 nm bis 15 nm nicht mehr zu beobachten ist. Zugeordnet werden kann dieser Kohlenwasserstoffen, deren Literaturwerte im Energiebereich bei 285 eV liegen [Mou 92]. Bei Probe 2 hingegen wird keinerlei Kohlenstoff-Peak beobachtet.

Zurückzuführen sind diese an der Oberfläche adsorbierten Kohlenwasserstoffe auf eine Kontamination aus der Luft während dem Einbau in die XPS-Anlage oder auf Kohlenstoff im Präparationsmaterial [Can 99].

Da keinerlei weitere Peaks gefunden wurden, die auf fremde Ionen hindeuten, werden andere Elemente als Verunreinigung ausgeschlossen.

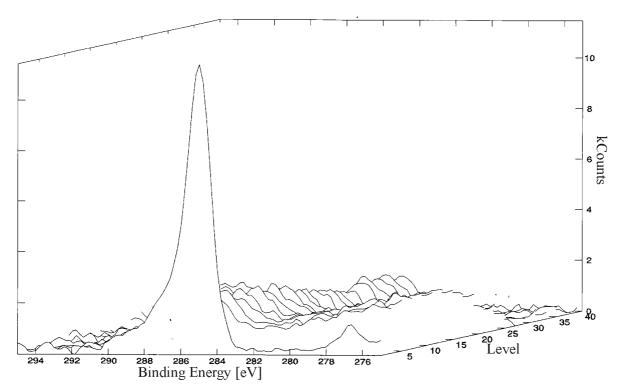



Abbildung 5-34: Tiefenprofil des C1s-Niveaus der WO<sub>3</sub>-Dünnschicht Probe 1

## 5.5.6 Quantitative Zusammensetzung der WO<sub>3</sub>-Dünnschichten

Aufgrund der starken Oberflächenveränderung der WO<sub>3</sub>-Dünnschichten beim Absputtern der jeweils obersten Schicht ist eine quantitative Auswertung der Schichtzusammensetzung (s. Kapitel 4.2.4) nur an der ungesputterten Oberfläche sinnvoll. Diese sind für die Proben 1 und 2 quantitativ in Tabelle 26 aufgeführt. Die einzelnen Spalten enthalten die Atomprozent (At.%) der jeweiligen Atomsorte und die letzte Spalte zeigt das berechnete Sauerstoff zu Wolframverhältnis (O/W).

Hierbei sollte das das O/W-Verhältnis einer stöchiometrischen WO<sub>3</sub>-Dünnschicht genau drei betragen. Die berechneten Werte weisen jedoch auf stark unterstöchiometrisches WO<sub>3</sub> hin, wobei die Unterstöchiometrie der Probe 2 stärker ausgeprägt ist als die der Probe 1.

|                      | O [At.%] | Pt [At.%] | C [At.%] | W [At.%] | <b>O</b> / <b>W</b> |
|----------------------|----------|-----------|----------|----------|---------------------|
| Probe 1 (Oberfläche) | 36       | 1         | 49       | 14       | 2,57                |
| Probe 2 (Oberfläche) | 54       | 2         | 22       | 22       | 2,45                |

Tabelle 26: Quantitative Zusammensetzung der WO<sub>3</sub>-Dünnschichtoberflächen

### 5.6 Strukturanalyse der WO<sub>3</sub>-Dünnschichten mittels XRD

Zur Bestimmung der Kristallstruktur wurden beide WO<sub>3</sub>-Dünnschichten (Probe 1 und 2) mittels XRD untersucht. In Abbildung 5-35 sind die Übersichtsscans beider Proben im Winkelbereich 20 zwischen 10° und 90° dargestellt.

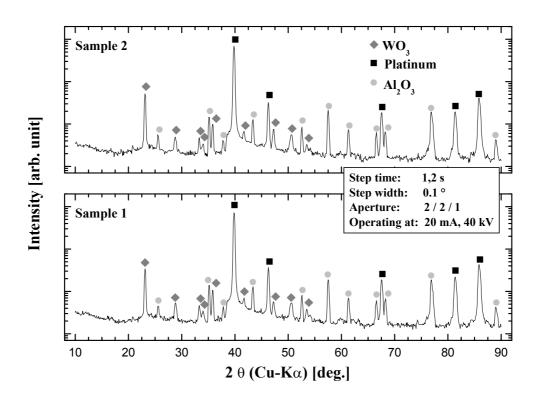



Abbildung 5-35: XRD-Spektren der beiden WO<sub>3</sub>-Dünnschichten

Beide Proben zeigen charakteristische Platin-Reflexe, bei denen es sich um metallisches Platin [JCP 97<sup>1</sup>] handelt und die von den unter der WO<sub>3</sub>-Dünnschicht liegenden Platinelektroden stammen. Auch werden bei beiden Proben Al<sub>2</sub>O<sub>3</sub>-Peaks [JCP 97<sup>2</sup>] gefunden, die dem Substrat zugeordnet werden können, auf dem die Platinelektroden sowie die WO<sub>3</sub>-Dünnschicht aufgebracht ist.

Die auftretenden WO<sub>3</sub>-Reflexe beider Proben lassen sich zwei verschiedenen und gleichzeitig auftretenden Kristallphasen des WO<sub>3</sub> zuordnen. Dabei handelt es sich um die trikline Phase [JCP 97<sup>3</sup>] und die monokline Phase [JCP 97<sup>4</sup>]. Das gleichzeitige Vorliegen beider Strukturen

ist verständlich, da sich der Übergang von der triklinen zur monoklinen Kristallphase bei einer Temperatur von 17 °C vollzieht und die Proben bei Raumtemperatur vermessen wurden. Bei Vergleich der Intensitäten der WO<sub>3</sub>-Peaks beider Proben ist kein signifikanter Unterschied erkennbar. Dies deutet auf ein stabiles Vorliegen der triklinen sowie monoklinen Phase des WO<sub>3</sub> hin. Zusätzlich kann daraus geschlossen werden, dass sich die Kristallinität der Probe 2 durch den simulierten Sensorbetrieb nicht merklich erhöht.

### 5.7 Korngrößenbestimmung der WO<sub>3</sub>-Dünnschichten mittels XRD

Wie in Kapitel 2.3 beschrieben ändert sich durch ein Korngrößenwachstum die Schichtcharakteristik. Tritt bei der Betriebstemperatur eines Sensors ein Kornwachstum auf, so resultiert daraus eine kontinuierliche Eigenschaftsveränderung des Sensors, durch die z.B. die Langzeitstabilität beeinträchtigt wird. Da diese bei dem Einsatz von Gassensoren in Anwendungen notwendig ist, sollte sich bei einem Gassensor die Korngröße nicht durch die Betriebstemperatur verändern.

Zur Bestimmung der Korngröße der WO<sub>3</sub>-Dünnschichten wurde der WO<sub>3</sub>-Reflex bei dem Bragg-Winkel  $2\theta = 23,1$ ° verwendet. Das Verfahren zur Ermittlung der Korngröße und die dabei verwendeten Parameter werden in Kapitel 4.2.5 beschrieben.

Das Ergebnis der Korngrößenbestimmung ist in Tabelle 27 aufgeführt.

| Probe | Oxidtyp | Peaklage<br>2θ [°] | gemessene<br>Linienbreite B [°] | Korngröße<br>[nm] |
|-------|---------|--------------------|---------------------------------|-------------------|
| 1     | $WO_3$  | 23,1               | 0,182                           | 110               |
| 2     | $WO_3$  | 23,1               | 0,174                           | 122               |

Tabelle 27: Peaklage, Peakbreite und hieraus ermittelte Korngröße der WO<sub>3</sub>-Dünnschichten

Die Korngröße der WO<sub>3</sub>-Dünnschichten liegt zwischen 110 nm bei Probe 1 und 125 nm bei Probe 2. Somit ist diese bei der zusätzlich für 50 Stunden bei 500 °C betriebenen Probe 2 etwas größer.

Die Genauigkeit bei der Bestimmung der absoluten Teilchengröße beträgt mit der hier verwendeten Methode nach [Why 73] höchstens 25 % bis 50 %.

Da die Körner eines Sensors nicht alle gleich groß sind existiert eine Streuung der Messergebnisse. Aus diesem Grund wird die größere Korngröße von Probe 2 gegenüber Probe 1 nicht als signifikantes Kornwachstum, sondern als Resultat einer solchen Streuung interpretiert.

Die Körner der untersuchten WO<sub>3</sub>-Dünnschicht haben sich somit durch den ca. zweitägigen Betrieb bei 500 °C nicht signifikant vergrößert. Dies weist darauf hin, dass die WO<sub>3</sub>-Dünnschichten in einer Applikation bei Betriebstemperaturen von bis zu 500 °C betrieben werden können ohne deren Langzeitstabilität aufgrund von Korngrößenveränderungen zu beeinträchtigen.

Ein direkter Vergleich zwischen den in dieser Arbeit und den in der Literatur gemessenen Korngrößen ist aufgrund der dort ungenügenden Beschreibung der verwendeten Ausgangsmaterialien sowie der Präparationsschritte nicht sinnvoll.

### 5.8 XPS-Messungen an WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten

Zur Untersuchung möglicher Schichtveränderungen oder Vergiftungseffekte durch einen Betrieb in Abgas wurden WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten mittels XPS untersucht. Die Messungen wurden an vier auf gleiche Weise präparierten WO<sub>3</sub>/TiO<sub>2</sub>-Proben durchgeführt. Von diesen dienten zwei als Referenz und die beiden anderen wurden entweder synthetischem Abgas oder Dieselbrennerabgas ausgesetzt (s. Kapitel 4.1.3).

## 5.8.1 Übersichtsprofile

Stellvertretend für alle Proben zeigt Abbildung 5-36 das Übersichtsprofil in einer Schichttiefe zwischen 10 nm und 15 nm der im Brennerabgas betriebenen WO<sub>3</sub>/TiO<sub>2</sub>-Dickschicht Probe 6. Das XPS-Übersichtstiefenprofil der gleichen Probe ist auf Abbildung 5-37 dargestellt, wobei der Bindungsenergiebereich zwischen 0 eV bis 1.100 eV liegt.

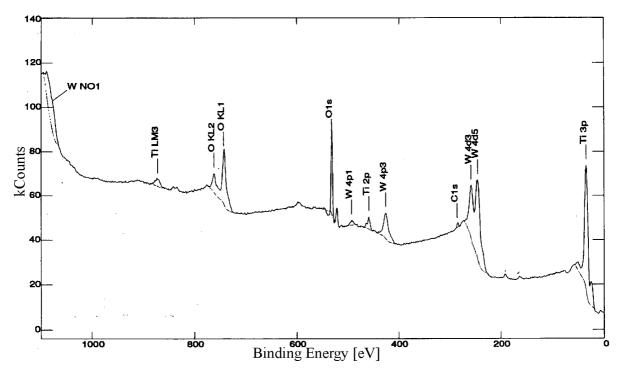



Abbildung 5-36: Übersichtsprofil der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschicht Probe 6 in einer Schichttiefe von 10 nm – 15 nm

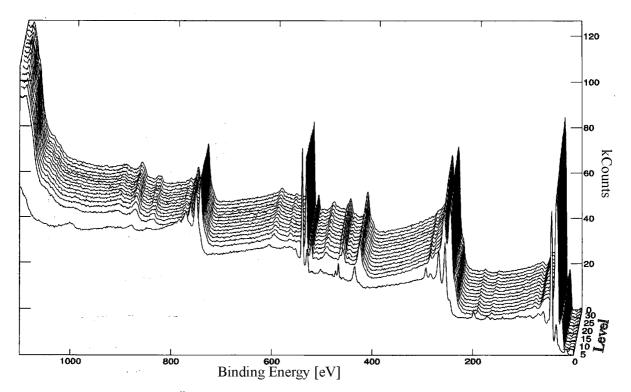



Abbildung 5-37: Übersichtstiefenprofil der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschicht Probe 6

Wie auch alle anderen vermessenen WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten (Probe 3, 4 und 5) besteht Probe 6 aus den Elementen Wolfram (W), Titan (Ti), Sauerstoff (O), Platin (Pt) und Kohlenstoff (C). Um genauere Informationen zu erhalten wurden XPS-Messungen mit höherer Auflösung bei den betreffenden Bindungsenergien der Elemente durchgeführt.

In allen Proben werden zwei weitere schwache Signale beobachtet, die nicht eindeutig einem Element zuzuordnen sind.

Hierbei handelt es sich zum einen um eine Linie bei ca. 164 eV, bei der es sich um das S2p<sub>3/2</sub>-Niveau von Schwefel handeln könnte. Unverständlich bei dieser Zuordnung ist allerdings das Auftreten dieser Linie bei einer der Referenzproben, die keinem Abgas ausgesetzt wurde, und die unabhängig von der Schichttiefe zu beobachtende konstante Menge. Zur eindeutigen Schwefel-Zuordnung hätte eine gleichstarke Linie des S2s-Niveaus bei 228 eV existieren müssen. Da in diesem Bereich jedoch auch die W4d-Linie des Wolframs liegt, kann keine eindeutige Aussage getroffen werden.

Zum anderen wird in allen Proben in jeder Schichttiefe eine Linie bei ca. 190 eV gefunden. Diese kann der B1s-Linie des Bors zugeordnet werden, wobei deren Herkunft nicht erklärbar ist.

Bei einer der Referenzproben (Probe 4) wurden zwei weitere Linien gefunden. Dabei handelt es sich bei etwa 368 eV um das Ag3p-Niveau des Silbers und bei etwa 707 eV um das Fe2p-Niveau des Eisens. Bei dem Silber handelt es sich um das zur Kontaktierung der Proben verwendete Leitsilber. Das Eisen resultiert aus dem Probenhalter, da der Sputter- und Messfleck während dem Sputtern und der Spektrenaufnahme etwas nahe am Rand der Probe lag.

### 5.8.2 Sauerstoff-Tiefenprofile (O1s)

An allen WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten wurde eine Sauerstoff-Tiefenprofilanalyse durchgeführt. In Abbildung 5-38 ist stellvertretend für diese das Sauerstoff-Tiefenprofil der dem Brennerabgas ausgesetzten Probe 6b dargestellt. Eine Übersicht der für die Proben gemessenen Bindungsenergie des O1s-Niveaus und deren Abweichung vom Literaturwert ist in Tabelle 28 aufgeführt.

An der Oberfläche der Referenzproben 3 und 4 liegt die O1s-Niveauverschiebung zwischen +0,1 eV und +0,2 eV. Eine Auswertung der Oberfläche der den Abgasen ausgesetzten Proben 5 und 6a ist aufgrund einer elektrischen Aufladung, auf die weiter unten eingegenagen wird, nicht möglich. Gegenüber den Referenzproben ist bei der dem Dieselabgas ausgesetzten Probe 6b eine Verschiebung von +0,5 eV zu beobachten.

In einer Schichttiefe zwischen 10 nm und 15 nm tritt bei den Referenzproben und der dem synthetischen Abgas ausgesetzten Probe eine Verschiebung von +0,2 eV auf. Bei den beiden Proben 6a und 6b, die Brennerabgas ausgesetzt wurden, beträgt diese zwischen 0,4 eV und 0,5 eV.

Bei einem Vergleich der Proben fällt auf, dass die O1s-Bindungsenergie der dem Brennerabgas ausgesetzten Proben gegenüber den Referenzproben und der dem synthetischen Abgas ausgesetzten Probe stärker in Richtung höherer Energie verschoben ist.

Auch besitzen alle Proben an der Oberfläche gegenüber ihrem Volumen einen erhöhten Sauerstoffgehalt. Diese im Schichtvolumen zu beobachtende Verringerung des Sauerstoffanteils kann mit einem bevorzugten Absputtern des Sauerstoffs während der Abtragung der jeweils obersten Schicht erklärt werden. Aus diesem Grund ist eine quantitative Aussage des Sauerstoffgehalts im Volumen nicht sinnvoll.

Auffällig bei dem O1s-Spektrum von Probe 6b (Abbildung 5-38) ist die an der Oberfläche ausgeprägte "Schulter" bei 532,99 eV, die in einer Schichttiefe zwischen 10 nm und 15 nm nicht mehr erkennbar ist. Diese deutet auf eine andere Sauerstoffbindung als WO<sub>3</sub> hin. Da nach [Mou 92] der Sauerstoff in  $H_2O$  eine Bindungsenergie von 533,2 eV besitzt, handelt es sich hierbei vermutlich um an der Oberfläche adsorbiertes Wasser oder  $OH^-$ -Gruppen.

An der Oberfläche der Probe 5 fällt das um +8,2 eV sehr stark verschobene O1s-Energieniveau auf. Diese extrem große Verschiebung kann auf eine elektrische Aufladung der Probe während der Messung zurückgeführt werden. Die Ursache hierfür kann an einer starken Isolierung der Probenoberfläche und somit einer Behinderung des Ladungsabflusses liegen. Durch Überhitzung der Probe und einem dadurch bedingten starken punktuellen Abdampfen der Schicht nimmt deren Dicke stark ab. Aufgrund dieser geringen Schichtdicke ist nun der Ladungsabfluss schlecht. Eine solche elektrische Aufladung ist auch für eine ähnlich große Verschiebung des O1s-Energieniveaus an der Oberfläche von Probe 6a verantwortlich. Aus diesem Grund wurde zusätzlich Probe 6b vermessen, die aus der gleichen Serie wie Probe 6a stammt.

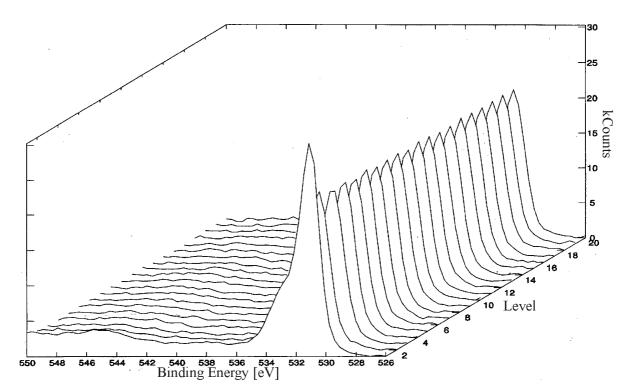



Abbildung 5-38: Tiefenprofil des O1s-Niveaus der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschicht Probe 6b

|               | O1s-Bindungsenergie<br>an der Oberfläche<br>und<br>Verschiebung<br>gegenüber Literaturwert | O1s-Bindungsenergie<br>in 10 nm – 15 nm Schichttiefe<br>und<br>Verschiebung<br>gegenüber Literaturwert |  |  |
|---------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| Probe 3       | 530,8 eV (+0,20 eV)                                                                        | 530,8 eV (+0,20 eV)                                                                                    |  |  |
| Probe 4       | 530,7 eV (+0,10 eV)                                                                        | 530,8 eV (+0,20 eV)                                                                                    |  |  |
| Probe 5       | 538,8 eV (+8,20 eV)                                                                        | 530,8 eV (+0,20 eV)                                                                                    |  |  |
| Probe 6a      | 537,8 eV (+7,20 eV)                                                                        | 531,0 eV (+0,40 eV)                                                                                    |  |  |
| Probe 6b      | 531,1 eV (+0,50 eV)<br>"Schulter": 532,99 eV                                               | 531,1 eV (+0,50 eV)                                                                                    |  |  |
| T .           | O 1s für WO <sub>3</sub> : 530,6 eV                                                        |                                                                                                        |  |  |
| Literaturwert | 2 ,                                                                                        |                                                                                                        |  |  |
| [Mou 92]      |                                                                                            | ΓiO <sub>2</sub> : 529,9 eV<br>H <sub>2</sub> O: 533,2 eV                                              |  |  |

Tabelle 28: gemessene Peaklage des Sauerstoffs und Literaturwert

## 5.8.3 Wolfram-Tiefenprofile (W4f)

Für alle WO<sub>3</sub>/TiO<sub>2</sub>-Proben wurde eine Wolfram-Tiefenprofilanalyse erstellt. Exemplarisch für diese zeigt Abbildung 5-39 das W4f-Tiefenprofil der dem Brennerabgas ausgesetzten Probe 6b. Eine Übersicht der gemessenen W4f-Bindungsenergien der Proben und deren Verschiebung gegenüber dem Literaturwert ist in Tabelle 29 zusammengefasst.

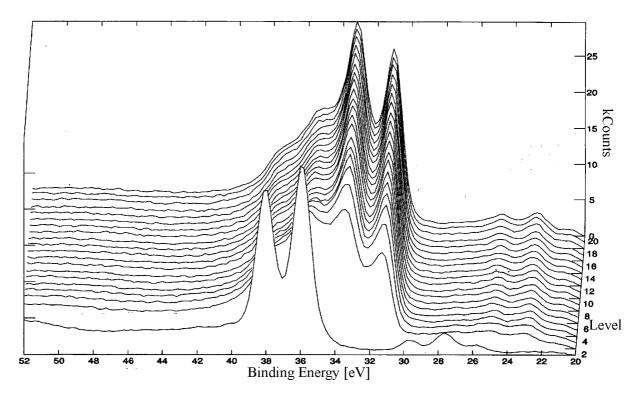



Abbildung 5-39: Tiefenprofil des W4f-Niveaus der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschicht Probe 6b

An der Oberfläche weisen die W4f-Niveaus der Referenzproben 3 und 4 Verschiebungen zwischen –0,18 eV und –0,38 eV auf. Eine Auswertung der Oberfläche der dem Abgas ausgesetzten Proben 5 und 6a ist aufgrund einer elektrischen Aufladung der Proben nicht möglich (s. Kapitel 5.8.2). Im Vergleich zu den Referenzproben zeigt die dem Dieselabgas ausgesetzte Probe 6b an der Oberfläche eine positive Verschiebung von +0,02 eV bis +0,1 eV.

Im Vergleich zur Oberfläche treten bei allen Proben in einer Schichttiefe zwischen 10 nm und 15 nm zwei zusätzliche W4f-Energieniveaus auf, die metallischem Wolfram zugeordnet werden können [Mou 92]. Somit liegt eine Überlagerung der zwei verschiedenen Oxidationsstufen W<sup>6+</sup> (WO<sub>3</sub>) und W<sup>0</sup> (metallisch) des Wolframs vor.

Die gemessenen Bindungsenergien aller Proben sind dabei zwischen –0,18 eV und –0,4 eV verschoben. Das Auftreten des metallischen Wolframs kann hierbei mit einem bevorzugtem Absputtern des Sauerstoffs gegenüber Wolfram bei Abtragung der jeweils obersten Schicht erklärt werden [Hen 91<sup>2</sup>; Khy 00].

|                           | W4f-Bindungsenergie<br>an der Oberfläche                                                                                 | W4f-Bindungsenergie<br>in 10 nm – 15 nm Schichttiefe                                                                                                                                                                     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | und                                                                                                                      | und                                                                                                                                                                                                                      |
|                           | Verschiebung                                                                                                             | Verschiebung                                                                                                                                                                                                             |
|                           | gegenüber Literaturwert                                                                                                  | gegenüber Literaturwert                                                                                                                                                                                                  |
| Probe 3                   | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,8 eV (-0,18 eV)<br>W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,6 eV (-0,20 eV) | $\begin{array}{l} W\ 4f_{5/2}\ (WO_3);\ 37,8\ eV\ (-0,18\ eV) \\ W\ 4f_{7/2}\ (WO_3);\ 35,6\ eV\ (-0,20\ eV) \\ W\ 4f_{5/2}\ (W)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                  |
| Probe 4                   | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,6 eV (-0,38 eV)<br>W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,5 eV (-0,30 eV) | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,8 eV (-0,18 eV)<br>W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,6 eV (-0,20 eV)<br>W 4f <sub>5/2</sub> (W) : 33,4 eV (-0,18 eV)                                                 |
| Probe 5                   | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 45,9 eV (+7,92 eV)<br>W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 43,8 eV (+8,00 eV) | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,8 eV (-0,18 eV)<br>W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,4 eV (-0,40 eV)<br>W 4f <sub>5/2</sub> (W) : 33,2 eV (-0,38 eV)<br>W 4f <sub>7/2</sub> (W) : 31,0 eV (-0,40 eV) |
| Probe 6a                  | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 46,0 eV (+8,02 eV)<br>W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 43,8 eV (+8,00 eV) | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,8 eV (-0,18 eV)<br>W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,4 eV (-0,40 eV)<br>W 4f <sub>5/2</sub> (W) : 33,2 eV (-0,38 eV)<br>W 4f <sub>7/2</sub> (W) : 31,0 eV (-0,40 eV) |
| Probe 6b                  | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 38,0 eV (+0,02 eV)<br>W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,9 eV (+0,10 eV) | W 4f <sub>5/2</sub> (WO <sub>3</sub> ): 37,8 eV (-0,18 eV)<br>W 4f <sub>7/2</sub> (WO <sub>3</sub> ): 35,4 eV (-0,40 eV)<br>W 4f <sub>5/2</sub> (W) : 33,2 eV (-0,38 eV)<br>W 4f <sub>7/2</sub> (W) : 31,0 eV (-0,40 eV) |
| Literaturwert<br>[Mou 92] | $WO_{2} \ W_{18}O_{49} \ (W \ WO_{3})$                                                                                   | V (W <sup>0</sup> ): 31,4 eV<br>(W <sup>4+</sup> ): 32,8 eV<br>VO <sub>2,72</sub> ): 34,3 eV<br>(W <sup>6+</sup> ): 35,8 eV<br>4f <sub>7/2</sub> ) = 2,18 eV                                                             |

Tabelle 29: gemessene Peaklagen des Wolframs und Literaturwert

# 5.8.4 Titan-Tiefenprofile (Ti2p)

Für alle Proben wurden Titan-Tiefenprofilanalysen durchgeführt. Abbildung 5-40 zeigt exemplarisch das Ti2p-Tiefenprofil der Referenzprobe 4. Die gemessenen Bindungsenergien sowie deren Verschiebung gegenüber dem Literaturwert sind in Tabelle 30 für alle Proben zusammengefasst.

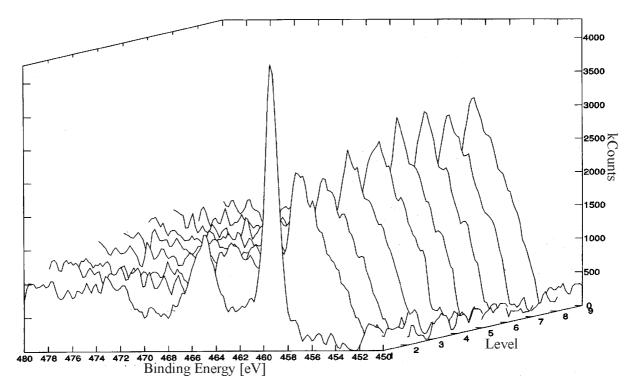



Abbildung 5-40: Tiefenprofil des Ti2p-Niveaus der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschicht Probe 4

Die gemessenen Peaklagen der Proben deuten auf ein Vorliegen des TiO<sub>2</sub> in Anatas- bzw. Rutilmodifikation hin, deren Ti2p<sub>3/2</sub>-Bindungsenergie in der Literatur [Mou 92] mit 459,2 eV angegeben wird.

An der Oberfläche sind die  $Ti2p_{1/2}$ - und  $Ti2p_{3/2}$ -Niveaus zwischen +0,1 eV und +0,66 eV und in einer Schichttiefe zwischen 10 nm und 15 nm zwischen -0,24 eV und +0,46 eV gegenüber dem Literaturwert verschoben.

Gegenüber dem Schichtvolumen liegt an der Oberfläche ein auffallend erhöhter Titangehalt vor. Dieser resultiert vermutlich aus einem bevorzugten Absputtern des Titans.

Die starke Verbreiterung der Titan-Peaks auf der Seite niedriger Bindungsenergie in den tieferen Schichten kann mit einem bevorzugtem Absputtern von Sauerstoff gegenüber Titan erklärt werden. Dabei wird das TiO<sub>2</sub> teilweise reduziert und liegt leicht unterstöchiometrisch vor.

Bei den Probe 5 und 6a fällt die starke Verschiebung des Ti2p-Niveaus an der Oberfläche auf, die aus einer elektrischen Aufladung der Probe resultiert (s. Kapitel 5.8.2).

|               | Ti2p-Bindungsenergie                           | Ti2p-Bindungsenergie<br>in 10 nm – 15 nm Schichttiefe                 |  |  |
|---------------|------------------------------------------------|-----------------------------------------------------------------------|--|--|
|               | an der Oberfläche<br>und                       | und                                                                   |  |  |
|               | Verschiebung                                   | Verschiebung                                                          |  |  |
|               | gegenüber Literaturwert                        | gegenüber Literaturwert                                               |  |  |
| Probe 3       | Ti 2p <sub>1/2</sub> : 465,2 eV (+0,46 eV)     | Ti 2p <sub>1/2</sub> : 465,2 eV (+0,46 eV)                            |  |  |
| 110063        | Ti 2p <sub>3/2</sub> : 459,4 eV (+0,20 eV)     | Ti 2p <sub>3/2</sub> : 459,4 eV (+0,20 eV)                            |  |  |
| Probe 4       | Ti 2p <sub>1/2</sub> : 465,0 eV (+0,26 eV)     | Ti 2p <sub>1/2</sub> : 464,5 eV (-0,24 eV)                            |  |  |
| 110064        | Ti 2p <sub>3/2</sub> : 459,3 eV (+0,10 eV)     | Ti 2p <sub>3/2</sub> : 459,0 eV (-0,20 eV)                            |  |  |
| Probe 5       | Ti 2p <sub>1/2</sub> : 473,1 eV (+8,36 eV)     | Ti 2p <sub>1/2</sub> : 464,7 eV (-0,04 eV)                            |  |  |
| 11000 3       | Ti 2p <sub>3/2</sub> : 467,5 eV (+8,30 eV)     | V) Ti $2p_{3/2}$ : 459,5 eV (+0,30 eV)                                |  |  |
| Probe 6a      | Ti 2p <sub>1/2</sub> : 472,1 eV (+7,36 eV)     | Ti 2p <sub>1/2</sub> : 464,8 eV (+0,06 eV)                            |  |  |
| 1100e oa      | Ti 2p <sub>3/2</sub> : 466,4 eV (+7,20 eV)     | Ti 2p <sub>3/2</sub> : 459,2 eV (±0,00 eV)                            |  |  |
| Probe 6b      | Ti 2p <sub>1/2</sub> : 465,4 eV (+0,66 eV)     | Ti 2p <sub>1/2</sub> : 464,8 eV (+ 0,06 eV)                           |  |  |
| 11000 00      | Ti 2p <sub>3/2</sub> : 459,7 eV (+0,50 eV)     | Ti 2p <sub>3/2</sub> : 459,3 eV (+ 0,10 eV)                           |  |  |
|               | Ti 2p <sub>3/2</sub> für TiO                   | O <sub>2</sub> (Ti <sup>4+</sup> ): 458,8 eV                          |  |  |
| Literaturwert |                                                | as, Rutil: 459,2 eV                                                   |  |  |
|               |                                                | O (Ti <sup>2+</sup> ): 455,1 eV                                       |  |  |
| [Mou 92]      |                                                | Ti (Ti <sup>0</sup> ): 453,9 eV                                       |  |  |
|               | $\Delta({ m Ti}\ 2p_{1/2}$ - $^{\prime\prime}$ | $\Delta(\text{Ti } 2p_{1/2} - \text{Ti } 2p_{3/2}) = 5,54 \text{ eV}$ |  |  |

Tabelle 30: gemessene Peaklagen des Titans und Literaturwert

## 5.8.5 Kohlenstoff-Tiefenprofile (C1s)

Da die C1s-Tiefenprofile der Proben alle sehr ähnlich sind, wird exemplarisch nur das der Probe 4 in Abbildung 5-41 dargestellt.

Die gemessene Bindungsenergie des C1s-Peaks liegt bei 284,8 eV. Zugeordnet werden kann dieser Kohlenwasserstoffen, deren Literaturwerte im Energiebereich von 285 eV liegen [Mou 92].

Dieser Kohlenstoff tritt jedoch nur vermehrt an der Oberfläche auf und liegt in tieferen Schichten nur in geringen und konstanten Mengen vor. Zurückzuführen ist dies auf eine Kontamination aus der Luft während dem Einbau in die XPS-Anlage oder auf Kohlenstoff im Präparationsmaterial [Can 99].

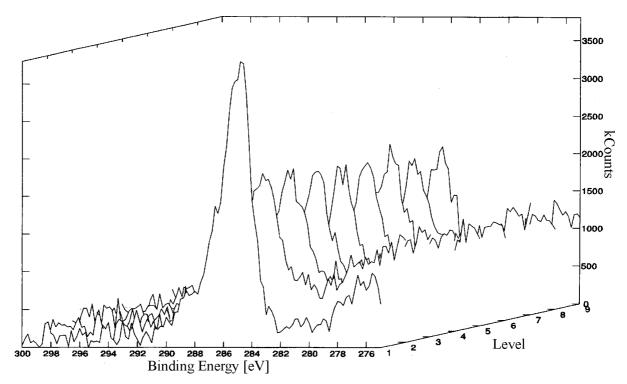



Abbildung 5-41: Tiefenprofil des C1s-Niveaus der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschicht Probe 4

#### 5.8.6 Quantitative Zusammensetzung der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten

Aufgrund der starken Veränderung der W4f-Niveaus nach Abtrag der jeweils obersten Schicht mittels Sputtern und der verschieden stark ausgeprägten Abtragsraten von Sauerstoff, Wolfram und Titan [Hen 91<sup>2</sup>] kann keine eindeutige Aussage über den Atomgehalt dieser Elemente in den tieferen Schichten gemacht werden. Aus diesem Grund wurde nur die Zusammensetzung der Oberfläche ausgewertet.

Die quantitative Zusammensetzung der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichtoberflächen der Proben ist in Tabelle 31 dargestellt. Die einzelnen Spalten enthalten die Atomprozent (At.%) der jeweiligen Atomsorte und die letzte Spalte gibt das daraus berechnete Wolfram- zu Titan-Verhältnis an.

|         | C [At.%] | O [At.%] | W [At.%] | Ti [At.%] | W/Ti [ ] |
|---------|----------|----------|----------|-----------|----------|
| Probe 3 | 11       | 62       | 22       | 4         | 5,7      |
| Probe 4 | 29       | 51       | 17       | 3         | 5,7      |
| Probe 5 | 15       | 62       | 19       | 4         | 4,9      |
| Probe 6 | 19       | 60       | 17       | 4         | 4,3      |

Tabelle 31: Quantitative Zusammensetzung der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichtoberflächen

Das für die WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten in Tabelle 31 aufgeführte gemessene Wolfram- zu Titan-Verhältnis W/Ti beträgt 5,7 für die nicht im Abgas btriebenen und zwischen 4,3 und 4,9 für die dem Abgas ausgesetzten Proben.

Bei der Präparation wurde ein WO<sub>3</sub>/TiO<sub>2</sub>-Massen-Verhältnis von 9 benutzt, welches einem W/Ti-Verhältnis von 3,1 entspricht. Somit liegt nach einer 800 °C-Temperung an der Oberfläche der WO<sub>3</sub>/TiO<sub>2</sub>-Proben ein gegenüber dem Ausgangsmaterial erhöhtes Wolframzu Titanverhältnis vor. Diese Erhöhung wird zwar durch den Betrieb im Abgas reduziert, ist aber anschliessend immer noch größer als das bei der Herstellung verwendete Verhältnis. Ein solches Verhalten wurde in der Literatur bei siebgedruckten WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten nicht beobachtet. Aus diesem Grund kann ohne eine genauere Untersuchung dazu keine sinnvolle Aussage getroffen werden.

Im Vergleich dazu wird aber von einer Veränderung des Wolfram- zu Titanverhältnis bei Untersuchungen an W-Ti-O-Dünnschichten berichtet, die aus W-Ti-Legierung-Targets gesputtert wurden [Com 00, Con 00, Deo 96, Dep 96, Der 96, Feo 97, Fer 97, Gui 00, Kac 00]. Bei diesen segregiert Wolfram während der Temperung und es bilden sich einzelne WO<sub>3</sub>-Kristallite auf der Schichtoberfläche. Da die gebildeten WO<sub>3</sub>-Körner nicht fest an die Oberfläche gebunden sind und sich leicht lösen nimmt der Wolframanteil an der Oberfläche ab.

Diese Interpretation ist bei den in dieser Arbeit untersuchten siebgedruckten WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten aber nicht zulässig, da deren Körner aus jeweils einem der beiden Metalloxide bestehen und somit eine Entmischung nicht auftreten kann.

#### 5.9 Strukturanalyse der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten mittels XRD

Zur Bestimmung der Kristallstruktur wurden die drei WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten (Probe 4, 5 und 6) mittels XRD untersucht. Abbildung 5-42 zeigt den Übersichtsscan der Proben im Winkelbereich 2θ zwischen 10° und 90°.

Bei allen Proben lassen sich die auftretenden WO<sub>3</sub>-Reflexe zwei verschiedenen gleichzeitig auftretenden Kristallphasen des WO<sub>3</sub> zuordnen. Dabei handelt es sich zum einen um die trikline Phase [JCP 97<sup>3</sup>] und zum anderen um die monokline Phase [JCP 97<sup>4</sup>]. Erklärt werden kann dies mit dem Vermessen der Proben bei Raumtemperatur und der Übergangstemperatur von der triklinen zur monoklinen Kristallphase bei 17 °C.

Bei Vergleich der WO<sub>3</sub>-Peak-Intensitäten der Proben ist kein signifikanter Unterschied erkennbar, was auf ein stabiles Vorliegen beider Kristallphasen des WO<sub>3</sub> hindeutet. Weiterhin liegt ein Peak bei 2θ = 25,3 ° vor, der nicht WO<sub>3</sub> zugeordnet werden kann. Nach [JCP 97<sup>5</sup>] handelt es sich bei diesem um den Hauptpeak von Anatas (TiO<sub>2</sub>). Vergleicht man dessen Intensität bei den vermessenen Proben, so fällt ebenfalls keine Veränderung durch den Betrieb im Abgas auf. Das Vorhandensein von Anatas (TiO<sub>2</sub>) stimmt auch mit den Ergebnissen der XPS-Messungen in Kapitel 5.8.4 überein. Diese zeigen bei den gleichen WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten ebenfalls Anatas als Kristallstruktur des TiO<sub>2</sub>. Eine Abbildung der Anatas-Kristallstruktur ist in Abbildung 2-9 dargestellt.

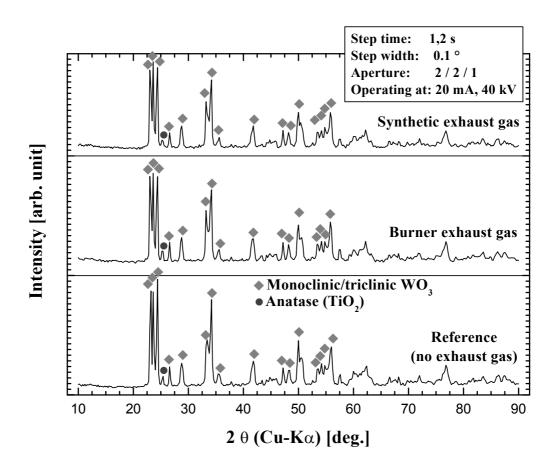



Abbildung 5-42: XRD-Spektren der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten

# 5.10 Korngrößenbestimmung der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten mittels XRD

Zur Bestimmung der Korngrößen der  $WO_3/TiO_2$ -Dickschichten wurde der  $WO_3$ -Peak bei dem Bragg-Winkel  $2\theta = 23,1$  ° [JCP  $97^3$ , JCP  $97^4$ ] und der Anatas-Peak ( $TiO_2$ ) bei  $2\theta = 25,3$  °

[JCP 97<sup>5</sup>] verwendet. Die bei den Proben gemessenen Winkel 2θ für WO<sub>3</sub> sind allerdings gegenüber dem Literaturwert wischen +0,1 ° und +0,4 ° verschoben.

Das Verfahren zur Ermittlung der Korngröße und die dabei verwendeten Parameter werden in Kapitel 4.2.5 beschrieben. Das Ergebnis der Korngrößenbestimmung ist in Tabelle 32 aufgeführt.

| Probe | Oxidtyp          | Peaklage | gemessene          | Korngröße |
|-------|------------------|----------|--------------------|-----------|
|       |                  | 2θ [°]   | Linienbreite B [°] | [nm]      |
| 4     | $WO_3$           | 23,3     | 0,093              | 98        |
| 4     | TiO <sub>2</sub> | 25,3     | 0,150              | 184       |
| 5     | $WO_3$           | 23,2     | 0,093              | 98        |
| 5     | TiO <sub>2</sub> | 25,3     | 0,155              | 167       |
| 6     | $WO_3$           | 23,5     | 0,073              | 124       |
| 6     | TiO <sub>2</sub> | 25,3     | 0,150              | 184       |

Tabelle 32: Peaklage, Peakbreite und hieraus ermittelte Korngröße der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten

Hierbei müssen die Größen der WO<sub>3</sub>- und TiO<sub>2</sub>-Körner getrennt betrachtet werden, da diese jeweils aus einem der beiden Metalloxide bestehen.

Die TiO<sub>2</sub>-Körner sind bei allen Proben größer als die WO<sub>3</sub>-Körnern, wobei die WO<sub>3</sub>-Korngröße zwischen 98 nm und 124 nm und die der TiO<sub>2</sub>-Körner zwischen 167 nm und 184 nm liegt. Auch [Lee 00] hat bei der Korngrößenbestimmung von siebgedruckten WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten nach einer 800 °C-Temperung festgestellt, dass die TiO<sub>2</sub>-Körner größer sind als die WO<sub>3</sub>-Körner. Allerdings liegt die Größe der TiO<sub>2</sub>-Körner im Bereich von 3 μm und die der WO<sub>3</sub>-Körner deutlich unterhalb von 2 μm.

Vergleicht man die ermittelten Korngrößen der Proben (s. Tabelle 32) von jeweils einem der beiden Metalloxide wird kein signifikanter Unterschied zwischen der Referenzprobe 4 und den beiden im Abgas betriebenen Proben 5 und 6 festgestellt.

Wie auch in Kapitel 5.7 beschrieben, beträgt die Genauigkeit bei der Bestimmung der absoluten Teilchengröße hierbei höchstens 25 % bis 50 % [Why 73] und aufgrund der nicht gleichgroßen Korngröße der Körner eines Metalloxids liegt eine Streuung dieser vor. Aus diesem Grund werden die Veränderungen der Korngröße der einzelnen Proben auch nicht als Kornwachstum, sondern als Streuung der Messergebnisse interpretiert.

Die Größe der Körner der untersuchten WO<sub>3</sub>/TiO<sub>2</sub>-Proben hat sich somit durch den ca. 3,5-tägigen Betrieb mit 500 °C nicht signifikant verändert. Somit kann eine Beeinflussung der

Langzeitstabilität aufgrund eines Kornwachstums bei den WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten durch den Betrieb mit 500 °C nahezu ausgeschlossen werden.

## 5.11 Strukturanalyse der WO<sub>3</sub>/TiO<sub>2</sub>-Presslinge mittels XRD

Der Einfluss der Sintertemperatur auf die Kristallstruktur wurde mittels XRD an WO<sub>3</sub>/TiO<sub>2</sub>-Presslingen untersucht, die in Kapitel 4.1.4 beschrieben sind. Es handelt sich dabei um einen (a) nicht getemperten, um einen (b) für 10 Stunden bei 600 °C getemperten und um einen (c) für 10 Stunden bei 800 °C getemperten WO<sub>3</sub>/TiO<sub>2</sub>-Pressling.

Das Ergebnis der XRD-Messungen ist für alle Proben in Abbildung 5-43 dargestellt.

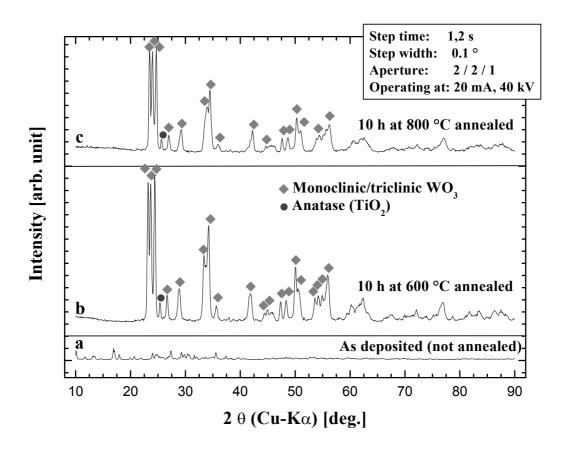



Abbildung 5-43: XRD-Spektren der WO<sub>3</sub>/TiO<sub>2</sub>-Presslinge

Der ungetemperte Pressling (a) zeigt keine charakteristischen Peaks, was auf eine amorphe Schichtstruktur schließen lässt. Bei den beiden getemperten Schichten (b und c) liegt unabhängig von der Sintertemperatur das WO<sub>3</sub> gleichzeitig in der triklinen [JCP 97<sup>3</sup>] und monoklinen [JCP 97<sup>4</sup>] Kristallstruktur und das TiO<sub>2</sub> als Anatas [JCP 97<sup>5</sup>] vor.

## 5.12 Korngrößenbestimmung der WO<sub>3</sub>/TiO<sub>2</sub>-Presslinge mittels XRD

Der Einfluss einer Schichttemperung hat zwei verschiedene Auswirkungen. Zum einen wird in der Literatur durch Erhöhen der Temperatur bei der Temperung ein Kornwachstum beobachtet (s. Kapitel 3.1.3). Da sich die Sensitivtät von Gassensoren aber mit zunehmender Korngröße verringert, wird versucht diese Temperatur so niedrig wie möglich zu wählen. Zum anderen bewirkt eine Erhöhung der Temperatur eine Verbesserung des Kristallisationsgrades und der mechanischen Stabilität einer Schicht (s. Kapitel 3.1.3). Deshalb wird bei der Herstellung von Sensoren versucht einen Kompromiss für die Temperatur bei der Temperung zu finden, der eine ausreichende Stabilität sowie eine genügend große Sensitivität zur Folge hat.

Aus diesem Grund wurde der Einfluss der Sintertemperatur bei einer 10-stündigen Temperung bei 600 °C sowie bei 800 °C auf die Korngröße von  $WO_3/TiO_2$ -Presslingen mittels XRD untersucht. Zur Bestimmung der Korngröße wurde der  $WO_3$ -Peak bei dem Bragg-Winkel  $2\theta = 23,1$  ° und für Anatas ( $TiO_2$ ) bei  $2\theta = 25,3$  ° verwendet. Die gemessenen Winkel  $2\theta$  sind hierbei gegenüber dem Literaturwert für  $WO_3$  und  $TiO_2$  etwas verschoben. Das Verfahren zur Ermittlung der Korngröße und die dabei verwendeten Parameter werden in Kapitel 4.2.5 beschrieben. In Tabelle 33 ist das Ergebnis der Korngrößenbestimmung aufgeführt.

| Probe | Oxidtyp                           | Peaklage | gemessene          | Korngröße |
|-------|-----------------------------------|----------|--------------------|-----------|
|       |                                   | 2θ [°]   | Linienbreite B [°] | [nm]      |
| a     | WO <sub>3</sub> /TiO <sub>2</sub> |          |                    |           |
| b     | $WO_3$                            | 23,2     | 0,365              | 34        |
| b     | TiO <sub>2</sub>                  | 25,4     | 0,152              | 177       |
| c     | $WO_3$                            | 23,5     | 0,350              | 36        |
| c     | TiO <sub>2</sub>                  | 25,7     | 0,168              | 136       |

Tabelle 33: Peaklage, Peakbreite und hieraus ermittelte Korngröße der WO<sub>3</sub>/TiO<sub>2</sub>-Presslinge

Da Probe a amorph vorliegt und keinerlei Peaks zeigt, die man WO<sub>3</sub> oder TiO<sub>2</sub> zuordnen kann, wurde an dieser keine Korngrößenbestimmung durchgeführt.

Die Korngröße für die bei 600 °C und 800 °C getemperten Presslinge liegt für die WO<sub>3</sub>-Körner zwischen 34 nm und 36 nm und für die TiO<sub>2</sub>-Körner zwischen 136 nm und 177 nm. Wie auch bei den WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten (s. Kapitel 5.10) sind die TiO<sub>2</sub>-Körner größer als die WO<sub>3</sub>-Körner. Die Veränderung der Korngröße wird wie auch in Kapitel 5.7 auf eine Streuung der Korngröße und nicht auf eine Veränderung dieser zurückgeführt. Somit hat sich kein signifikantes Kornwachstum durch die Erhöhung der Sintertemperatur von 600 °C auf 800 °C bei den WO<sub>3</sub>/TiO<sub>2</sub>-Presslingen eingestellt.

#### 6 Diskussion

#### 6.1 Stabilität von WO<sub>3</sub> und WO<sub>3</sub>/TiO<sub>2</sub>

In den letzten Jahren wurden auf dem Gebiet der Halbleitergassensorik viele Untersuchungen mit Wolframtrioxid als sensitives Schichtmaterial durchgeführt (s. Kapitel 3). Dieses zeichnet sich vor allem durch seine hohe Nachweisempfindlichkeit gegenüber Stickoxiden aus, durch die es zum interessanten Material zur Abgasmessung und Regelung wird. Aus diesem Grund wurde es auch für die Untersuchungen dieser Arbeit (im Rahmen des bmb+f Verbundprojektes MEGAS) verwendet.

Bei Verwendung von WO<sub>3</sub> zur Abgasmessung muss dieses neben den Detektionseigenschaften allerdings auch resistent gegenüber Vergiftungen (irreversible Adsorption) durch Abgasbestandteile und thermisch stabil gegenüber der Abgastemperatur von bis zu 550 °C im Katalysator [Wal 00] sein. Dazu hat [Meg 99<sup>2</sup>] bei einem 3-monatigem Langzeittest mit WO<sub>3</sub>-Dickschicht- und WO<sub>3</sub>-Dünnschicht-Sensoren mit 400 °C und 600 °C Betriebstemperatur einen Materialabtrag beobachtet, der bei den Dünnschichten größer ist als bei den Dickschichten und mit zunehmender Betriebstemperatur ansteigt. Dieser Abtrag führte zu einem nahezu vollständigen Verschwinden der Schicht und somit zu einem Ausfall der Sensoren.

Aufgrund dieser thermischen Instabilität von WO<sub>3</sub> gegenüber Abgastemperaturen wurde auch das Materialsystem WO<sub>3</sub>/TiO<sub>2</sub> (WO<sub>3</sub> als Hauptbestandteil) in Form von siebgedruckten Dickschichten in dieser Arbeit untersucht. Dieses hat sich bei der Verwendung im Abgas als Basismaterial des Dieselkatalysators bewährt. Auch zeigt sich durch das Hinzufügen von TiO<sub>2</sub> zu WO<sub>3</sub> bei Untersuchungen von [Pin 01] eine größere thermische Stabilität des Systems gegenüber reinem WO<sub>3</sub>. Hierbei wird eine Temperaturverschiebung des Phasenübergangs von  $\gamma$ -WO<sub>3</sub> nach  $\beta$ -WO<sub>3</sub> (s. Tabelle 2) zu höherer Temperatur hin beobachtet, die auch auf eine Verschiebung der Sublimationstemperatur schliessen lässt. Ein zusätzlicher Vorteil der Beigabe von TiO<sub>2</sub> zu WO<sub>3</sub> resultiert aus dem gehemmten Kornwachstum gegenüber reinem WO<sub>3</sub> (s. Kapitel 3.1.5).

## 6.1.1 Bestimmung der Stöchiometrie

Die elektronischen und somit die gassensorischen Eigenschaften von WO<sub>3-X</sub> hängen von der genauen Stöchiometrie ab. Aus diesem Grund wurde der Einfluss eines Betriebs mit 500 °C in synthetischer Luft auf die Stöchiometrie von WO<sub>3</sub>-Dünnschichten sowie der Einfluss eines Betriebs mit 500 °C in Abgas auf die Stöchiometrie von WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten untersucht. Dabei wurden drei verschiedene Methoden der Auswertung verwendet und verglichen. Neben den Auswertungen der XPS-Messungen lässt sich auch eine grobe Einstufung der Stöchiometrie von WO<sub>3</sub>-Schichten durch deren Farbe treffen. Diese variiert bei Wolframoxid in Abhängigkeit der Stöchiometrie von gelb-grün (WO<sub>3</sub>) über blau (WO<sub>2,88</sub>) bis braun (WO<sub>2</sub>) (s. Tabelle 1).

Eine der drei verwendeten Methoden zur Auswertung der quantitativen Zusammensetzung ist die Bestimmung der Atomprozent der jeweiligen Atomsorte mittels XPS-Intensitäten (Flächen) der einzelnen Energieniveaus (s. Kapitel 5.5.6 und 5.8.6).

Zum anderen besteht die Möglichkeit die Stöchiometrie durch Auswertung der Bindungsenergie-Verschiebung des W4f- oder O1s-Niveaus zu bestimmen.

Dabei ist das W4f-Niveau besonders geeignet, da dessen Bindungsenergie sich von 35,8 eV für WO<sub>3</sub> auf 32,8 eV für WO<sub>2</sub> verändert und die Verschiebung somit 3,0 eV beträgt. Die Verschiebung des O1s-Niveaus von 530,6 eV für WO<sub>3</sub> auf 530,4 eV für WO<sub>2</sub> dagegen ist nur 0,2 eV groß und lässt sich somit ungenauer ermitteln.

#### 6.1.2 Stöchiometrieänderung der WO<sub>3</sub>-Dünnschichten bei Betrieb in Luft

Aus den drei verschiedenen Auswertemethoden resultieren für die bei 800 °C in synthetischer Luft getemperten WO<sub>3</sub>-Dünnschichten, wovon eine zusätzlich für 50 Stunden mit 500 °C in synthetischer Luft betrieben wurde, verschiedene Stöchiometrien.

Die Möglichkeit einer groben Abschätzung der Stöchiometrie aufgrund der Schichtfarbe ist nicht möglich, da diese in Abhängigkeit des Blickwinkels gelb-grün oder violett schimmern. Dies wird aufgrund der Schichtdicke von ca. 150 nm auf Interferenzerscheinungen ("Farben dünner Plättchen") und nicht auf die Schichtfarbe zurückgeführt.

Für am plausibelsten wird das Ergebnis der W4f-Bindungsenergie-Verschiebung gehalten, welches in einer leichten Unterstöchiometrie beider Schichten besteht. Dabei wird keine Veränderung durch den Betrieb bei 500 °C in synthetischer Luft beobachtet.

Die Stöchiometriebestimmung durch Auswertung der Verschiebung des W4f-Niveaus sind in Tabelle 34 aufgeführt, wobei die Verschiebung aus Tabelle 25 entnommen ist. Hierbei wurde das x für  $WO_X$  durch eine lineare Interpolation der Verschiebung zwischen dem  $W4f_{7/2}$ -Bindungsenergiewert von 35,8 eV für  $WO_3$  und von 34,3 eV für  $WO_{2,72}$  und dem dazugehörigen  $W4f_{5/2}$ -Bindungsenergiewert bestimmt.

|         | W4f-<br>Bindungsenergie-<br>Verschiebung<br>gegenüber<br>Literaturwert an<br>der Oberfläche | Stöchiometrie<br>WO <sub>X</sub> | W4f-<br>Bindungsenergie-<br>Verschiebung<br>gegenüber<br>Literaturwert in<br>10 nm – 15 nm<br>Schichttiefe | Stöchiometrie<br>WO <sub>X</sub>      |
|---------|---------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Probe 1 | W 4f <sub>5/2</sub> : -0,18 eV<br>W 4f <sub>7/2</sub> : -0,20 eV                            | 2,967<br>2,963                   | W $4f_{5/2}$ : $-0.18$ eV<br>W $4f_{7/2}$ : $-0.40$ eV                                                     | · · · · · · · · · · · · · · · · · · · |
| Probe 2 | W 4f <sub>5/2</sub> : -0,18 eV<br>W 4f <sub>7/2</sub> : -0,40 eV                            | 2,967<br>2,926                   | W 4f <sub>5/2</sub> : -0,18 eV<br>W 4f <sub>7/2</sub> : -0,40 eV                                           | · · · · · · · · · · · · · · · · · · · |

Tabelle 34: interpolierte Stöchiometrie der WO<sub>3</sub>-Dünnschichten

Beide Proben liegen an der Oberfläche wie auch in 10 nm bis 15 nm Schichttiefe leicht unterstöchiometrisch vor. Dabei beträgt x zwischen 2,926 und 2,967.

Somit wird keine Veränderung der Stöchiometrie durch den zusätzlichen Betrieb mit 500 °C in synthetischer Luft beobachtet.

Allerdings muss bei der Auswertung in 10 nm und 15 nm Schichttiefe das Vorliegen von metallisches Wolfram berücksichtigt werden, welches bei der Abtragung der obersten Schicht durch das bevorzugte Sputtern von Sauerstoff entsteht. Aus diesem Grund trifft die in Tabelle 34 bestimmte Stöchiometrie für die tiefere Schicht nur für einen Teil der dort vorliegenden Wolframatome zu.

Die ermittelte Stöchiometrie der WO<sub>3</sub>-Dünnschichten stimmt gut mit den Ergebnissen von [Sik 80] überein. Dieser hat eine Wolframplatte bei Temperaturen zwischen 568 °C und 908 °C und 0,048 bar Sauerstoffpartialdruck getempert und deren Stöchiometrie in Abhängigkeit der Temperatur bestimmt. Die Ergebnisse sind in Tabelle 35 aufgeführt.

| Oxidation  | x in WO <sub>3-X</sub> |
|------------|------------------------|
| temp. (°C) |                        |
| 568        | 0,032                  |
| 680        | 0,107                  |
| 800        | 0,159                  |
| 908        | 0,170                  |

Tabelle 35: Abweichung der Stöchiometrie x bei WO<sub>3-X</sub> [Sik 80] bei verschiedenen Temperaturen [Sik 80]

Bei einer 800 °C-Temperung und einem Sauerstoffgehalt von ca. 4 % wird hierbei für das WO<sub>X</sub> ein x von 2,841 ermittelt. Um dieses Ergebnis vergleichen zu können, muss berücksichtigt werden, dass mit zunehmendem Sauerstoffgehalt das x von WO<sub>X</sub> bei der Temperung zunimmt. Der Grund dafür ist, dass das WO<sub>X</sub> und der umgebende Sauerstoff versuchen ins thermodynamische Gleichgewicht zu kommen. Somit sollte das x im WO<sub>X</sub> für die in dieser Arbeit untersuchten Schichten aufgrund der Temperung in synthetischer Luft (20 % O<sub>2</sub>) größer als 2,841 und kleiner als 3 sein. Dies trifft nur für die Ergebnisse der W4f-Bindungsenergie-Verschiebung zu.

Die XPS-Intensitäten wurden aufgrund der starken Schichtveränderung durch das Abtragen der obersten Schicht mittels Sputtern nur an der Oberfläche betrachtet. Die ermittelten Atomprozentwerte der jeweiligen Atomsorten sind in Tabelle 26 aufgeführt.

Das kleinere O/W-Verhältnis von 2,45 der Probe 2 gegenüber 2,57 der Probe 1 deutet auf eine stärkere Unterstöchiometrie dieser Schicht hin, die mit einer Reduzierung der Probenoberfläche durch den Betrieb bei 500 °C in synthetischer Luft erklärt werden kann. Allerdings widerspricht die bei beiden Proben gemessene Bindungsenergie des W4f<sub>7/2</sub>-Niveaus zwischen 35,4 eV und 35,6 eV diesem Ergebnis. Würde es sich hierbei wirklich um WO<sub>X</sub> mit x zwischen 2,45 und 2,57 handeln, so müsste diese zwischen 32,8 eV (WO<sub>2</sub>) und 34,3 eV (WO<sub>2,72</sub>) liegen.

Die stärker ausgeprägte Unterstöchiometrie von Probe 2 wird nicht auf eine Reduzierung ihrer Oberfläche sondern auf eine starke "Schulter" bei ca. 33 eV bei Probe 1 zurückgeführt. Diese wird durch adsorbiertes Wasser hervorgerufen (s. Kapitel 5.5.3) und bedingt durch den im Wasser gebundenen Sauerstoff eine höheres O/W-Verhältnis und somit eine höhere Stöchiometrie dieser Probe. Aufgrund dieser Verfälschung des O/W-Verhältnis kann mit Hilfe der Intensitätsauswertung auch keine Aussage über eine Veränderung der Stöchiometrie durch den Betrieb gemacht werden.

Aus der Verschiebung der O1s-Niveaus (s. Tabelle 24) resultiert für die Oberfläche von Probe 1 eine exakte Stöchiometrie (WO<sub>3</sub>) und für die Oberfläche der zusätzlich mit 500 °C betriebenen Probe eine leichte Nachoxidation. Auch wird bei beiden Proben in einer Schichttiefe zwischen 10 nm und 15 nm eine leichte Überstöchiometrie festgestellt. Somit widerspricht auch das Ergebnis der O1s-Verschiebung der Auswertung der W4f-Niveaus. Die zu beobachtende leichte Verschiebung in Richtung höherer Bindungsenergie wird aus diesem Grund nicht auf eine Nachoxidation sondern auf Oberflächenadsorbate zurückgeführt, deren Sauerstoffniveau eine etwas höhere Bindungsenergie besitzt als der Sauerstoff im WO<sub>3</sub>. Dabei kann es sich z.B. um Wasser handeln, dessen O1s-Niveau bei 533,2 eV liegt.

Eine andere Interpretation der Verschiebung des O1s-Niveaus in Richtung höherer Bindungsenergie wird von [Khy 01] beschrieben. Dieser hat WO<sub>3</sub>-Schichten mittels XPS untersucht und für die O1s-Bindungsenergie von monoklinem WO<sub>3</sub> 530,78 eV und von hexagonalem WO<sub>3</sub> 530,86 eV beobachtet. Hiermit kann die in dieser Arbeit gefundenen O1s-Bindungsenergie von 530,8 eV statt mit einer Überstöchiometrie des WO<sub>3</sub> mit der Existenz eine der beiden Kristallstrukturen erklärt werden. Gestützt wird dies durch die XRD-Messungen in Kapitel 5.6, aus denen für beide Proben die monokline Phase des WO<sub>3</sub> resultiert. Gegen diese Interpretation sprechen allerdings die von [Khy 01] gefundenen W4f-Bindungsenergien von 35,95 eV für monoklines und 36,02 eV für hexagonales WO<sub>3</sub>, die beide größer sind als die in dieser Arbeit bestimmten W4f-Bindungsenergien.

## 6.1.3 Stöchiometrieänderung der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten bei Betrieb im Abgas

Zur Bestimmung der Stöchiometrie der WO<sub>3</sub>/TiO<sub>2</sub>-Schichten wurde analog zu den WO<sub>3</sub>-Dünnschichten in Kapitel 6.1.2 die Verschiebung der W4f-Niveaus, die Intensität und die O1s-Niveauverschiebung der XPS-Messungen ausgewertet.

Bei den untersuchten Proben handelt es sich um vier bei 800 °C getemperte WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten, von denen zwei als Referenz (Probe 3 und 4) dienten und die beiden anderen in synthetischem Abgas (Probe 5) oder Dieselbrennerabgas (Probe 6) mit 500 °C betrieben wurden. Die beiden Abgasströme enthielten dabei einen Sauerstoffgehalt von 10 %.

Wie auch bei der Bestimmung der Stöchiometrie der WO<sub>3</sub>-Dünnschichten resultieren für die WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten verschiedene Ergebnisse aus den drei Auswertemethoden.

Im Gegensatz zu den Dünnschichten konnte aufgrund der gelb-grünen Farbe der Dickschichten die Stöchiometrie grob zu WO<sub>3</sub> (s. Tabelle 1) abgeschätzt werden. Da aus der Auswertung der W4f-Bindungsenergie-Verschiebung ebenfalls nahezu stöchiometrisch vorliegendes WO<sub>X</sub> mit x zwischen 2,926 und 2,967 nach der Temperung der Schichten und stöchiometrisches WO<sub>3</sub> an der Oberfläche der bei 500 °C in Dieselabgas betriebenen Probe resultiert, wird diese für am plausibelsten gehalten.

Für das TiO<sub>2</sub> wird bei allen Proben aufgrund einer Verschiebung der Ti2p-Peaks gegenüber dem Literaturwert in Richtung höherer Bindungsenergie von einer stöchiometrischen Verbindung in Anatas- oder Rutilmodifikation ausgegangen (s. Kapitel 5.8.4), die mit Hilfe von XRD-Messungen (s. Kapitel 5.9) eindeutig Anatas zugeordnet wird.

Die Auswertung der Verschiebungen der W4f-Niveaus sind in Tabelle 36 aufgeführt. Analog zur Auswertung der WO<sub>3</sub>-Dünnschichten wurde hierbei das x für WO<sub>X</sub> durch eine lineare Interpolation der Verschiebung zwischen dem W4f<sub>7/2</sub>-Bindungsenergiewert 35,8 eV für WO<sub>3</sub> und 34,3 eV für WO<sub>2,72</sub> und den dazugehörigen W4f<sub>5/2</sub>-Bindungsenergiewerten bestimmt. An der Oberfläche der Proben 5 und 6a ist die Bestimmung durch eine elektrische Aufladung der Proben während der XPS-Messungen nicht sinnvoll (s. Kapitel 5.8.3).

|          | W4f-<br>Bindungsenergie-<br>Verschiebung<br>gegenüber<br>Literaturwert an<br>der Oberfläche | interpolierte<br>Stöchiometrie<br>WO <sub>X</sub><br>an der<br>Oberfläche | gegenüber                                                        | interpolierte<br>Stöchiometrie<br>WO <sub>X</sub><br>in 10 nm – 15 nm<br>Schichttiefe |
|----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Probe 3  | W 4f <sub>5/2</sub> : -0,18 eV                                                              | 2,967                                                                     | W $4f_{5/2}$ : $-0.18$ eV                                        | 2,967                                                                                 |
|          | W 4f <sub>7/2</sub> : -0,20 eV                                                              | 2,963                                                                     | W $4f_{7/2}$ : $-0.20$ eV                                        | 2,963                                                                                 |
| Probe 4  | W 4f <sub>5/2</sub> :-0,38 eV                                                               | 2,930                                                                     | W 4f <sub>5/2</sub> : -0,18 eV                                   | 2,967                                                                                 |
|          | W 4f <sub>7/2</sub> : -0,30 eV                                                              | 2,945                                                                     | W 4f <sub>7/2</sub> : -0,20 eV                                   | 2,963                                                                                 |
| Probe 5  | W 4f <sub>5/2</sub> :+7,92 eV<br>W 4f <sub>7/2</sub> : +8,00 eV                             |                                                                           | W 4f <sub>5/2</sub> : -0,18 eV<br>W 4f <sub>7/2</sub> : -0,40 eV | 2,967<br>2,926                                                                        |
| Probe 6a | W 4f <sub>5/2</sub> :+8,02 eV<br>W 4f <sub>7/2</sub> : +8,00 eV                             |                                                                           | W 4f <sub>5/2</sub> : -0,18 eV<br>W 4f <sub>7/2</sub> : -0,40 eV | 2,967<br>2,926                                                                        |
| Probe 6b | W 4f <sub>5/2</sub> :+0,02 eV                                                               | 3,004                                                                     | W 4f <sub>5/2</sub> : -0,18 eV                                   | 2,967                                                                                 |
|          | W 4f <sub>7/2</sub> : +0,10 eV                                                              | 3,019                                                                     | W 4f <sub>7/2</sub> : -0,40 eV                                   | 2,926                                                                                 |

Tabelle 36: interpolierte Stöchiometrie der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten

Mit Ausnahme der im Dieselabgas betriebenen Probe liegt bei allen Proben das Wolframoxid an der Oberfläche wie auch in einer Schichttiefe zwischen 10 nm und 15 nm als leicht unterstöchiometrisches WO<sub>x</sub> mit x zwischen 2,926 und 2,967 vor. Die im Dieselabgas betriebene Probe 6b hingegen weist an der Oberfläche eine leichte Überstöchiometrie mit x zwischen 3,004 und 3,019 auf und in einer Schichttiefe zwischen 10 nm und 15 nm besitzt sie eine gleich stark ausgeprägte leichte Unterstöchiometrie wie alle anderen Proben. Die hierbei gefundene leichte Unterstöchiometrie der WO<sub>X</sub> Schichten mit x zwischen 2,926 und 2,967 steht in guter Übereinstimmung mit dem zur beobachteten grün-gelben Schichtfarbe gehörigen WO<sub>3</sub>. Aufgrund der geringen Überstöchiometrie an der Oberfläche der im Dieselabgas betriebenen Probe wird dieses als stöchiometrisches WO3 interpretiert. Analog zu den WO<sub>3</sub>-Dünnschichten (s. Kapitel 6.1.2) stimmt die für die WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten mit der W4f-Niveauverschiebung bestimmte Stöchiometrie auch mit dem Ergebnis von [Sik 80] überein. Dieser ermittelte für das WO<sub>X</sub> einer Wolframplatte nach einer 800 °C-Temperung in einer Atmosphäre mit 0,048 bar Sauerstoff ein x von 2,841 (s. Tabelle 35). Da mit zunehmendem Sauerstoffgehalt bei der Temperung das x bei WO<sub>X</sub> zunimmt und die WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten zum einen in synthetischer Luft mit einem Sauerstoffgehalt von 20 % getempert wurden und zum anderen auch das Abgas 10 % Sauerstoff enthält, sollte bei diesen das x im WO<sub>X</sub> größer als 2,841 und kleiner als 3 sein.

Die an der Oberfläche mit Auswertung der XPS-Intensitäten ermittelten Atomprozent der jeweiligen Atomsorten sind in Tabelle 31 aufgeführt. Dabei wurde die Stöchiometrie nur an der Oberfläche bestimmt, weil sich die Intensität der W4f-Niveaus des WO<sub>3</sub> in den tieferen Schichten durch die Entstehung von metallischem Wolfram aufgrund des bevorzugten Sputterns von Sauerstoff sehr stark erniedrigt (s. Kapitel 5.5.4).

Unter der Annahme, dass Wolfram und auch Titan als stöchiometrisches Oxid (WO<sub>3</sub> und TiO<sub>2</sub>) in den Proben vorliegen, ergibt sich aus den gemessenen Wolfram- und Titananteilen ein dafür notwendiger Sauerstoffanteil (stöchiometrischer Zusammensetzung entsprechender /berechneter Sauerstoffanteil, s. Tabelle 37). Durch Vergleich des gemessenen und dem zur stöchiometrischen Zusammensetzung entsprechenden Sauerstoffanteils ergeben sich die in der letzten Spalte der Tabelle 37 aufgeführten Verhältnisse, die somit ein Maß für die Stöchiometrie sind. Allerdings ist hierbei zu berücksichtigen, dass der gemessene Sauerstoff nicht nur aus WO<sub>3</sub> und TiO<sub>2</sub>, sondern auch aus anderen an der Oberfläche vorhandenen Verbindungen wie z.B. Wasseradsorbaten herrühren kann.

|         | stöchiometrischer<br>Zusammensetzung<br>entsprechender<br>/berechneter<br>Sauerstoffanteil | Vorhandener<br>/gemessener<br>Sauerstoffanteil | Verhältnis<br>vorhandener O/<br>stöchiometrischer<br>Zusammensetzung<br>entsprechender O |
|---------|--------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|
| Probe 3 | 74 at%                                                                                     | 62 at%                                         | 84 %                                                                                     |
| Probe 4 | 57 at%                                                                                     | 51 at%                                         | 89 %                                                                                     |
| Probe 5 | 65 at%                                                                                     | 62 at%                                         | 95 %                                                                                     |
| Probe 6 | 59 at%                                                                                     | 60 at%                                         | 102 %                                                                                    |

Tabelle 37: Sauerstoffanteil der WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichtoberflächen

Bei den Referenzproben liegt das Verhältnis von vorhandenem zu dem der stöchiometrischen Zusammensetzung entsprechenden Sauerstoff zwischen 84 % und 89 % und entspricht einer starken Unterstöchiometrie. Im Vergleich dazu enthalten die Oberflächen der beiden im Abgas betriebenen Proben mehr Sauerstoff, was auf eine Nachoxidation durch die oxidierenden Bedingungen im Abgas hindeutet. Somit hat sich durch das Betreiben der Schichten im synthetischen Abgas aus einem stark unterstöchiometrischen Oxid eine nahezu stöchiometrische Verbindung gebildet. Durch Betreiben im Brennerabgas ist dieser Effekt noch stärker ausgeprägt. Hierbei wird sogar ein für eine stöchiometrische Verbindung zu hoher Sauerstoffanteil gefunden.

Die aus der XPS-Intensität resultierende Stöchiometrie der Probenoberflächen widerspricht allerdings den gemessenen Bindungsenergien der W4f-Niveaus (s. Tabelle 36). Bei einer solch starken Unterstöchiometrie, wie sie bei den beiden Referenzproben vorliegt, würde das W4f<sub>7/2</sub>-Niveau zwischen 32,8 eV (WO<sub>2</sub>) und 34,3 eV (WO<sub>2,72</sub>) liegen. Auch bei der im synthetischen Abgas betriebenen Probe würde das W4f<sub>7/2</sub>-Niveau aufgrund der durch die XPS-Intensität festgestellten starken Unterstöchiometrie viel stärker in Richtung niedriger Bindungsenergie verschoben sein. Ein zusätzlicher Widerspruch zu den Ergebnissen der XPS-Intensitätsmessung ist die zu WO<sub>3</sub> gehörende gelb-grüne Schichtfarbe aller Proben.

Im Vergleich dazu resultiert aus der Auswertung der O1s-Verschiebung (s. Tabelle 28) für die WO<sub>3</sub>/TiO<sub>2</sub>-Referenzproben eine leichte Überstöchiometrie an der Oberfläche wie auch in einer Schichttiefe zwischen 10 nm und 15 nm. An der Oberfläche der dem synthetischen Abgas ausgesetzten Probe ist die Auswertung der O1s-Verschiebung aufgrund einer elektrischen Aufladung der Probe nicht möglich, zeigt aber in einer Schichttiefe zwischen 10 nm und 15 nm eine mit den Referenzproben vergleichbare leichte Überstöchiometrie. Nur

die im Brennerabgas betriebenen Proben 6a und 6b unterscheiden sich von den anderen Proben durch eine stärkere Überstöchiometrie, die auf eine Nachoxidation im Abgas hinweist. Da hierbei für alle Schichten eine Überstöchiometrie festgestellt wird und diese im Widerspruch zu den Ergebnissen der Auswertung der W4f-Niveauverschiebung stehen, werden die gemessenen Bindungsenergien des O1s-Niveaus wie bei den WO<sub>3</sub>-Dünnschichten auf Oberflächenadsorbate wie z.B. Wasser zurückgeführt (s. Kapitel 6.1.2). Auch wird die bei allen WO<sub>3</sub>/TiO<sub>2</sub>-Proben beobachtete Verschiebung des O1s-Niveaus nicht auf die von [Khy 01] festgestellte höhere Bindungsenergie von monoklinem oder hexagonalem WO<sub>3</sub> zurückgeführt (s. Kapitel 6.1.2). Obwohl bei XRD-Messungen an den WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten die monokline Phase für WO<sub>3</sub> gefunden wurde (Kapitel 5.9), stimmen die gemessenen W4f-Bindungsenergien nicht mit denen von [Khy 01] für monoklines oder hexagonales WO<sub>3</sub> beobachteten überein.

### 6.2 Gassensorische Charakterisierung der WO<sub>3</sub>-Sensoren

Im Hinblick auf die Anwendung der Abgasmessung von Kraftfahrzeugen sowie Kleinfeuerungsanlagen wurden gesputterte WO<sub>3</sub>-Dünnschicht- sowie siebgedruckte WO<sub>3</sub>-Dickschicht-Sensoren auf ihre gassensorischen Eigenschaften mit Hauptaugenmerk auf die im Abgas vornehmlich vorkommenden Gase NO<sub>2</sub>, NO sowie SO<sub>2</sub> untersucht. Im folgenden werden die Ergebnisse der Impedanzmessungen bei Angebot von NO<sub>2</sub> und NO sowie die DC-Messungen bei Angebot von SO<sub>2</sub> diskutiert. Weiterhin werden Modelle zur Beschreibung der Reaktionen zwischen diesen Gasen und der WO<sub>3</sub>-Oberfläche aufgestellt (Detektions-Mechanismen).

#### 6.2.1 Ersatzschaltbild der Sensoren

Ein Sensor kann stellvertretend durch ein Ersatzschaltbild dargestellt werden. Dieses besteht aus einer Serienschaltung eines Widerstandes und zwei RC-Gliedern. Der dazugehörige Nyquist-Plot zeigt dabei zwei getrennte Halbkreise, die um den Wert des einzelnen Widerstandes auf der Realteilachse verschoben sind. Hierbei wird der einzelne Widerstand dem elektronischen Widerstandsanteil des Kristallvolumens, ein RC-Glied dem Metall-Halbleiter-Kontakt (Schottky-Diode) an den Elektroden und das zweite RC-Glied den Korngrenzeffekten zugeordnet. Letztere resultieren aus einer Potentialbarrierenveränderung zwischen den einzelnen Körnern durch Oberflächenadsorbate.

Bei den in dieser Arbeit durchgeführten Messungen wurde bei allen Gasangeboten allerdings nur ein Halbkreis und somit nur ein RC-Glied beobachtet, welcher ein wenig auf der Realteilachse verschoben ist (s. Kapitel 5.3).

Hierbei wird der Vorwiderstand R<sub>0</sub> dem elektronischen Widerstandsanteil des Kristallvolumens (bulk) sowie geometrischen Effekten und das R<sub>1</sub>C<sub>1</sub>-Glied den Korngrenzeffekten zugeordnet. Da die Impedanzmessungen mit einer Spannungsamplitude von 500 mV durchgeführt wurden und die I-U-Kennlinien bei kleinen Messspannungen einen linearen Verlauf zeigen (s. Kapitel 5.2.2) wird ein Auftreten von Kontakteffekten zwischen Halbleiter und Metallelektroden ausgeschlossen. Dieses lineare Verhalten bei kleinen Messspannungen wurde auch von der Firma Siemens an Sensoren aus dem gleichen Herstellungsprozess beobachtet [Meg 99<sup>1</sup>].

Dass es sich bei den beobachteten Halbkreisen um Korngrenzeffekte und nicht um Kontakteffekte handelt, wird ebenfalls durch deren Abflachen unterstützt. Dieses entsteht durch das Vorhandensein mehrerer in Reihe geschalteter RC-Elemente mit vergleichbaren Zeitkonstanten (s. Kapitel 4.2.3, Abbildung 4-3). Unter der Annahme dass jede Korngrenze zwischen zwei Körnern des Sensors einem RC-Element entspricht und die Zeitkonstanten dieser leicht variieren, resultiert daraus ein abgeflachter Halbkreis im Nyquist-Plot. Der Widerstand R<sub>1</sub> wird dabei als Summe der einzelnen Potentialbarrieren zwischen den Körnern interpretiert.

Im Vergleich dazu treten bei einem Sensor durch seine zwei Elektroden auch nur zwei Halbleiter-Metall-Kontakte auf. Eine Abflachung der Halbkreise durch diese zwei RC-Glieder wäre nicht so stark ausgeprägt wie die bei den Messungen beobachteten. Aus diesem Grund wird eine Zuordnung der abgeflachten Halbkreise den Kontakteffekten nahezu ausgeschlossen.

Somit besteht das Ersatzschaltbild für die in dieser Arbeit untersuchten  $WO_3$ -Dünn- sowie Dickschicht-Sensoren aus einer Serienschaltung eines ohmschen Widerstandes  $R_0$  für das Kristallvolumen und eines  $R_1C_1$ -Gliedes für die Korngrenzeffekte.

Für die Gase  $NO_2$ , NO und CO ist bei allen Sensoren der Kristallvolumenwiderstand  $R_0$  unabhängig von der angebotenen Gaskonzentration nahezu konstant und liegt im  $\Omega$ -Bereich. Aufgrund dessen dass der den Korngrenzeffekten zugeordnete Widerstand  $R_1$  im  $k\Omega$ -Bereich liegt und sich bei Gasangebot von  $NO_2$ , NO sowie CO verändert, wird das Widerstandsverhalten der  $WO_3$ -Sensoren im wesentlichen durch diese Korngrenzeffekte bestimmt. Diese resultieren aus einer Veränderung der Potentialbarrieren zwischen den Körnern, die durch Oberflächenadsorbate der angebotenen Gase und einer damit verbundenen Veränderung der Verarmungsrandschicht hervorgerufen werden.

Die Kapazität C<sub>1</sub> zeigt bei NO sowie CO nahezu keine Konzentrationsabhängigkeit (konstant) und liegt bei allen verwendeten Gasen im pF-Bereich. Nur bei NO<sub>2</sub>-Angebot wird eine Veränderung der Kapazität C<sub>1</sub> festgestellt.

### 6.2.2 WO<sub>3</sub>-Sensoren bei NO<sub>2</sub>-Angebot

Da die Leitfähigkeit und somit auch der Volumenwiderstand nach Gleichung (2.6) unabhängig von Oberflächenadsorbaten ist, bestätigt die Konstanz und somit die nicht erkennbare Konzentrationsabhängigkeit von  $R_0$  die Interpretation, dass es sich dabei um den elektronischen Widerstandsanteil des Kristallvolumens handelt.

Der zur NO<sub>2</sub>-Konzentration proportionale Widerstandsanstieg von R<sub>1</sub> wird mit einer Adsorption des NO<sub>2</sub> als negativer Oberflächenzustand und einer damit verbundenen Vergrößerung der Verarmungsrandschicht an den Korngrenzen erklärt. Die damit verbundene Erhöhung der Potentialbarriere zwischen den Körnern ist bei den siebgedruckten Dickschicht-Sensoren stärker ausgeprägt als bei den gesputterten Dünnschicht-Sensoren. Dies enspricht der in Kapitel 5.3.3.1 festgestellten größeren NO<sub>2</sub>-Empfindlichkeit der Dickschicht-Sensoren.

Eine mögliche Erklärung der größeren Sensitivität der Dickschicht-Sensoren auf NO<sub>2</sub> ist eine schwächere Versinterung dieser gegenüber den Dünnschichten. Daraus resultiert bei den Dickschichten ein kleinerer Querschnitt des Leitungskanal zwischen den Körnern als bei den Dünnschichten. Adsorbiert nun NO<sub>2</sub> als oxidierendes Gas, so wird die Verarmungsrandschicht vergrößert und der Leitungskanal verengt sich. Diese Verengung hat bei einem engeren Kanal eines Dickschicht-Sensors einen stärkeren Einfluss auf die Potentialbarriere und somit den Widerstand R<sub>1</sub> als bei einem großen Kanal eines Dünnschicht-Sensors (s. Kapitel 2.3).

Die Abnahme der NO<sub>2</sub>-Sensitivität beider Sensortypen durch Erhöhung der Betriebstemperatur von 400 °C auf 500 °C liegt vermutlich an einer höheren Desorptionsrate des NO<sub>2</sub> bei höherer Temperatur.

Bei 400 °C ist die Kapazität C<sub>1</sub> der Dünnschicht-Sensoren nahezu konzentrationsunabhängig und konstant. Die Kapazität C<sub>1</sub> der Dickschicht-Sensoren hingegen verkleinert sich bei dem Übergang von synthetischer Luft zu NO<sub>2</sub>-Angebot und bleibt bei Variation der NO<sub>2</sub>-Konzentration nahezu konstant. Bei 500 °C hingegen verkleinert sich die Kapazität C<sub>1</sub> bei allen Sensoren proportional zur NO<sub>2</sub>-Konzentration, wobei dies bei den Dickschichten stärker ausgeprägt ist.

Dabei kann die größere NO<sub>2</sub>-Empfindlichkeit der Kapazität bei den Dickschicht-Sensoren wie auch bei dem Korngrenzwiderstand R<sub>1</sub> mit einer geringeren Versinterung der Körner bei

diesen erklärt werden. Bei einer schwächeren Versinterung resultiert aus dem NO<sub>2</sub> als oxidierendes Gas eine stärkere Zunahme der Dicke der Verarmungsrandschicht zwischen den Körnern. Da die Kapazität antiproportional zur Verarmungsschichtdicke ist, resultiert hieraus eine stärkere Abnahme der Kapazität bei den Dickschichten.

Eine weitere mögliche Erklärung für die größere Empfindlichkeit der Dickschichten kann in einer größeren Anzahl von Korngrenzen bei diesen vermutet werden. Allerdings sprechen Rasterelektronenmikroskopaufnahmen der Firma Siemens an Sensoren aus dem gleichen Herstellungsprozess dagegen [Meg 99 $^1$ ]. Hierbei lag die Korngröße der Dickschichten zwischen 100 nm und 600 nm und die der Dünnschichten zwischen 300 nm und 500 nm. Gleichzeitig beträgt der Stegabstand zwischen den Elektroden bei den Dickschichten 10  $\mu$ m und bei den Dünnschichten 30  $\mu$ m. Somit sollten im Vergleich zur Vermutung bei den Dünnschichten mindestens gleichviele oder eher mehr Korngrenzen existieren.

Die Reaktion, die für den Anstieg von R<sub>1</sub> bei Zunahme von NO<sub>2</sub> verantwortlich ist, wird in einem dominanten Adsorptionsprozess gesehen, bei dem das NO<sub>2</sub> über ein Sauerstoffatom an der WO<sub>3</sub>-Oberfläche als negativer Oberflächenzustand adsorbiert. Gleichzeitig wird aber auch ein schwächerer Prozess vermutet, bei dem eines der Sauerstoffatome des NO<sub>2</sub> in eine Sauerstofffehlstelle der WO<sub>3</sub>-Oberfläche eingebaut wird.

Bei der Adsorption von NO<sub>2</sub> an der Oberfläche wirkt der Sauerstoff als Oberflächenakzeptor und entzieht dem WO<sub>3</sub> freie Elektronen. Daraus resultiert eine Vergrößerung der Verarmungsrandschicht woraus nach Gleichung (2.3) eine Erhöhung der Potentialbarriere zwischen den Körnern resultiert.

$$NO_{2gas} + e^- \rightarrow NO_{2ads}^- \tag{6.1}$$

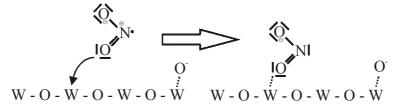



Abbildung 6-1: Adsorption von NO2 auf WO3

Durch den Einbau des Sauerstoffs von NO<sub>2</sub> in eine Sauerstofffehlstelle an der WO<sub>3</sub>-Oberfläche erniedrigt sich die Donatorkonzentration, womit nach Gleichung (2.5) ebenfalls eine Potentialbarrierenerhöhung verbunden ist.

$$NO_{2gas} + V_O^{\bullet} + e^- \rightarrow NO_{gas} + O_O$$
 (6.2)

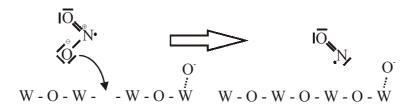



Abbildung 6-2: Einbau des Sauerstoffs von NO2 in eine Sauerstofffehlstelle

Die Interpretation von R<sub>0</sub> als Kristallvolumeneffekt, der bei hohen Frequenzen auftaucht, und von einem R<sub>1</sub>C<sub>1</sub>-Gliedes, welches für die Korngrenzeffekte steht, die bei niedrigeren Frequenzen zu sehen sind, korrespondiert mit den Ergebnissen von [Lin 02]. Hier wurden Impedanzmessungen an WO<sub>3</sub>-Presslingen unter NO<sub>2</sub>-Angebot in trockener Luft bei einer Betriebstemperatur von 300 °C durchgeführt. Bei Angebot von 1,5 ppm NO<sub>2</sub> wurde eine Vergrößerung des Korngrenzwiderstandes und eine nahezu konstante Korngrenzkapazität zwischen 28 pF und 35 pF gefunden. Die Vergrößerung des Korngrenzwiderstandes wird dabei mit der Adsorption von NO<sub>2</sub> mit Einfang eines Elektrons aus dem bulk und einer damit verbundenen Vergrößerung der Korngrenz-Barrierenhöhe erklärt. Die Barrierenhöhe wurde hierbei zu 212 meV in Luft und zu 291 meV bei 1,5 ppm NO<sub>2</sub> bestimmt.

Auch bei [Lee 00] wird die der adsorbierten NO<sub>2</sub>-Menge proportionale Widerstandserhöhung von siebgedruckten WO<sub>3</sub>-Dickschichten bei einer Betriebstemperatur von 300 °C in Luft mit der Adsorption des NO<sub>2</sub>-Moleküls als oxidierendes Gas erklärt. Dabei entzieht dieses dem bulk ein Elektron und die Verarmungsrandschicht und somit die Barrierenhöhe zwischen den Körnern vergrößert sich.

Bei [Can 00] wird die NO<sub>2</sub>-Sensitivität von gesputterten, rotationsbeschichteten Sol-Gel und thermisch aufgedampften WO<sub>3</sub>-Sensoren verglichen. Dabei zeigen die Sol-Gel-Sensoren unabhängig von der Betriebstemperatur die größte Empfindlichkeit auf NO<sub>2</sub>. Bei Vergleich der Temperbedingungen fällt auf, dass die Sol-Gel-Sensoren viel kürzer getempert wurden als die gesputterten und thermisch aufgedampften Sensoren. Dies deutet möglicherweise auf eine weniger starke Versinterung der Körner bei den Sol-Gel-Sensoren hin, die auch in dieser

Arbeit als Grund für die größere NO<sub>2</sub>-Empfindlichkeit der untersuchten Dickschicht-Sensoren gesehen wird.

In Übereinstimmung mit dem Ergebnis dieser Arbeit findet auch [Kaw 02] bei der Untersuchung von WO<sub>3</sub>-Dünnschicht-Sensoren in trockener Luft eine maximale NO<sub>2</sub>-Empfindlichkeit bei 400 °C. Dabei untersuchte dieser den Betriebstemperaturbereich zwischen 200 °C und 600 °C.

Im Gegensatz dazu stellt [Sun 96] bei WO<sub>3</sub>-Dünnschicht-Sensoren und NO<sub>2</sub>-Angebot eine Sensitivitätserhöhung mit Erhöhung der Betriebstemperatur von 400 °C auf 500 °C fest. Erst bei einer weiteren Erhöhung der Temperatur auf 600 °C nimmt die NO<sub>2</sub>-Sensitivität ab. Bei [Lee 99], [Lee 00] und [Lee 01] hingegen liegt die maximale NO<sub>2</sub>-Empfindlichkeit von WO<sub>3</sub>-Dünnschicht- sowie WO<sub>3</sub>-Dickschicht-Sensoren bei einer Betriebstemperatur von ca. 300 °C. Gleichzeitig wird durch das Zumischen von TiO<sub>2</sub> zum WO<sub>3</sub> eine Empfindlichkeitssteigerung und eine Verschiebung der optimalen Temperatur hin zu niedrigeren Temperaturen beobachtet.

#### 6.2.3 WO<sub>3</sub>-Sensoren bei NO-Angebot

Wird WO<sub>3</sub>-Sensoren NO angeboten, so treten zwei parallele Prozesse an der WO<sub>3</sub>-Oberfläche auf. Zum einen handelt es sich dabei um einen dominanten Oxidations- und zum anderen um einen schwachen Reduktionsprozess, wobei letzterer bei den Messungen dieser Arbeit eine untergeordnete Rolle spielt.

Dabei agiert das NO folgendermaßen als oxidierendes Gas, wobei sich der Widerstand des WO<sub>3</sub> erhöht:

$$NO_{gas} + e^- \to NO_{ads}^- \tag{6.3}$$

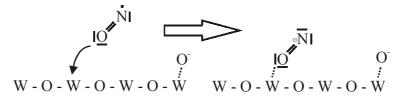



Abbildung 6-3: NO als oxidierendes Gas auf WO<sub>3</sub>

Der untergeordnete Reduktionsprozess, aus dem eine Widerstandserniedrigung resultiert, wird durch folgende Reaktion beschrieben:

$$NO_{gas} + O_{ads}^{-} \rightarrow NO_{2gas} + e^{-}$$
 (6.4)

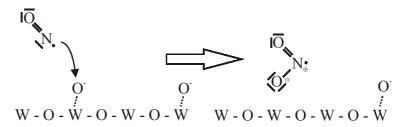



Abbildung 6-4: NO als reduzierendes Gas auf WO<sub>3</sub>

Die Interpretation von  $R_0$  als elektronischer Widerstandsanteil des Kristallvolumens wird folgendermaßen bestätigt. Bei Erhöhung der NO-Konzentration erkennt man eine Erhöhung der Kornvolumenwiderstände  $R_0$ , wobei die dabei beobachtete Widerstandzunahme  $\Delta R_0$  mit zunehmender NO-Konzentration abnimmt. Das Ansteigen von  $R_0$  resultiert aus einer Reduzierung der Ladungsträgerkonzentration im bulk, die durch einen Oxidationsprozess an der Oberfläche entsteht. Dieser Prozess wird weiter unten in Gleichung (6.3) beschrieben. Bei dem Übergang von 1.000 ppm NO auf 1.500 ppm NO nimmt  $R_0$  von Sensor S1 ein wenig ab. Diese kleine Widerstandserniedrigung des Kornvolumens deutet auf einen sehr schwachen Reduktionsprozess bei sehr hohen NO-Konzentrationen hin. Erklärt wird dieser weiter unten mit der in Gleichung (6.4) beschriebenen Reduktion der Oberfläche. Die Sensoren S5 und S7 hingegen zeigen im sehr hohen NO-Konzentrationsbereich nur eine deutliche Abnahme der Widerstandserhöhung  $\Delta R_0$ , die einem Sättigungsverhalten entspricht.

Der im niedrigeren NO-Konzentrationsbereich zu beobachtende dominante Widerstandsanstieg von R<sub>1</sub> wird mit einer Adsorption des NO als negativer Oberflächenzustand nach Gleichung (6.3) und einer damit verbundenen Vergrößerung der Verarmungsrandschicht an den Korngrenzen erklärt. Wie bei der NO-Sensitivität in Kapitel 5.3.4.1 festgestellt, ist die damit verbundene Erhöhung der Potentialbarriere zwischen den Körnern bei den siebgedruckten Dickschicht-Sensoren stärker ausgeprägt als bei den gesputterten Dünnschicht-Sensoren. Die mögliche Erklärung der größeren NO-Empfindlichkeit der Dickschicht-Sensoren wird analog zu NO<sub>2</sub> in einer schwächeren Versinterung dieser gegenüber den Dünnschicht-Sensoren gesehen.

Bei sehr großen NO-Konzentrationen bildet sich ein sehr viel schwächer ausgeprägter und gegenläufiger Prozess aus, der in Gleichung (6.4) beschrieben wird. Die dabei schwach auftretende Widerstandsabnahme wird mit einer Reduktion der Oberfläche erklärt, bei der sich ein kleiner Teil des gasförmigen NO mit einem Sauerstoffadsorbat zu NO<sub>2</sub> verbindet und desorbiert. Dabei werden Ladungsträger an das WO<sub>3</sub>-Kristallvolumen zurückgegeben, woraus eine Erniedrigung der Potentialbarriere und somit eine Widerstandserniedrigung resultiert. Die genaue Grenzkonzentration, ab der dieser reduzierende Prozess im Widerstandsverlauf sichtbar wird, wurde dabei nicht genauer bestimmt.

Das beschriebene Verhalten der WO<sub>3</sub>-Sensoren wird folgendermaßen erklärt: Bei synthetischer Luft und einer Betriebstemperatur von 300 °C liegen Sauerstoffoberflächenadsorbate als  $O_{ads}^-$  und  $O_{2ads}^-$  vor.

Bei Angebot von NO adsorbiert dieses zum einen an der WO<sub>3</sub>-Oberfläche als  $NO_{ads}^-$ -Adsorbate und zum anderen bildet es mit  $O_{ads}^-$ - und  $O_{2\ ads}^-$ -Adsorbaten NO<sub>2</sub>, welches desorbiert. Dabei ist die Bildung von  $NO_{ads}^-$ -Adsorbaten der dominante Prozess. Die untergeordnete und sehr viel schwächer ausgeprägte Bildung von gasförmigem NO<sub>2</sub> spielt erst bei sehr hohen NO-Konzentrationen von über 500 ppm eine Rolle.

Eine Möglichkeit dieses Verhalten zu erklären ist, dass bei hohen NO-Konzentrationen aufgrund des sogenannten Weisz-Limits (s. Kapitel 2.2) keine weitere Bedeckung der Oberfläche mit  $NO_{ads}^-$  möglich ist. Somit stellt sich eine nahezu konstante

Oberflächenbedeckung ein, aus der eine konstante Potentialbarriere und somit ein konstanter Widerstand resultiert. Wenn nun die NO-Konzentration weiter erhöht wird, steigt der Sensorwiderstand aufgrund des oxidierenden Charakters des NO nicht weiter an. Gleichzeitig werden jedoch aufgrund des reduzierenden Charakters des NO weiterhin Sauerstoffadsorbate von der Oberfläche entfernt, wodurch sich der Widerstand mit weiter zunehmender NO-Konzentration verringert. Dabei ist die aus dem reduzierenden Prozess resultierende relative Widerstandsabnahme gegenüber der relativen Widerstandszunahme durch den oxidierenden Charakter des NO schwächer ausgeprägt und geht in eine Sättigung über, wie in Abbildung 5-15 im Konzentrationsbereich oberhalb von 1.000 ppm zu sehen ist.

Die Ergebnisse dieser Arbeit stimmen gut mit denen von [Che 03] überein. Dabei wurden mit Silber dotierte WO<sub>3</sub>-Presslinge bei einer Betriebstemperatur von 350 °C und Angebot von Luft sowie 40 ppm NO mittels Impedanzspektroskopie untersucht. Bei Auftragung des

Imaginärteils gegen den Realteil wurde ebenfalls ein Halbkreis beobachtet. Dieser ist auf der Realteilachse etwas in positiver Richtung verschoben. Die Ergebnisse wurden wie in dieser Arbeit einem Ersatzschaltbild zugeordnet, welches aus einem vorgeschaltetem Widerstand R<sub>a</sub> und einem in Reihe geschalteten RC-Gliedes besteht. Auch die im Ersatzschaltbild den einzelnen Elementen zugeordneten physikalischen Eigenschaften entsprechen denen in dieser Arbeit verwendeten (s. Kapitel 6.2.1) mit dem vorgeschalteten Widerstand als Kornwiderstand, dem Widerstand R des RC-Gliedes mit dem Widerstand zwischen den einzelnen Körnern und der dazu parallelgeschalteten Kapazität mit der Oberflächenverarmungsrandschicht. Die ermittelten Werte für die Kapazität liegen bei ca. 20 pF und somit in der gleichen Größenordnung wie die in dieser Arbeit beobachteten. Allerdings muss hierbei die Geometrieabhängigkeit der Kapazität berücksichtigt werden, wodurch ein direkter Vergleich der Kapazitäten ohne Betrachtung der Schichtgeometrien unzulässig ist. Der von [Che 03] den Korngrenzen zugeordnete Widerstand an Luft liegt im 100 kΩ-Bereich und steigt bei 40 ppm NO um etwas mehr als eine Größenordnung. Im Vergleich liegen die in dieser Arbeit ermittelten Werte für den Widerstand der Korngrenzen in synthetischer Luft im 10 k $\Omega$ - bis 50 k $\Omega$ -Bereich und steigen durch Angebot von 500 ppm NO um etwas weniger als eine Größenordnung (s. Kapitel 5.3.4). Daraus resultiert eine kleinere Empfindlichkeit der in dieser Arbeit untersuchten Sensoren gegenüber den von [Che 03] untersuchten Presslingen. Auch der Kornvolumenwiderstand liegt bei [Che 03] in Luft mit 3,2 k $\Omega$  etwa ein bis zwei Größenordnungen höher als bei den in dieser Arbeit untersuchten Sensoren. Bei Angebot von 40 ppm NO verkleinert sich bei [Che 03] der Kornvolumenwiderstand um etwas weniger als 10 %. Im Gegensatz dazu wird bei den Sensoren dieser Arbeit eine kleine Zunahme zwischen 1,5 % und 8 % bei 500 ppm NO beobachtet (s. Kapitel 5.3.4).

[Che 03] erklärt die Widerstandserhöhung der Presslinge bei NO-Angebot mit der katalytischen Funktion des Silbers, durch die das NO zu  $NO_2$  oxidiert wird und das dabei entstandene  $NO_2$  auf der Oberfläche möglicherweise an den durch Sauerstofffehlstellen bedingten sauerstoffverarmten Wolframplätzen als  $NO_2^-$ -Ion adsorbiert. Dabei vergrößert dieses die Raumladungsschicht und somit die Potentialbarriere zwischen den Körnern, welches mit der beobachteten Widerstandserhöhung verbunden ist.

Ebenfalls eine Widerstandserhöhung bei Angebot zwischen 3 ppm und 10 ppm NO in trockener Luft hat [Cap 99] bei der Untersuchung von gesputterten WO<sub>3</sub>-Dünnschichten mit

einer Betriebstemperatur von 180 °C beobachtet. Die Ursache für die Widerstandserhöhung wird dabei durch zwei verschiedene Wirkmechanismen des NO beschrieben.

Zum einen mit einer vollständigen Umsetzung von NO zu NO<sub>2</sub> mit dem im Gasraum befindlichen Luftsauerstoff über der Sensoroberfläche und der anschließenden Adsorption des dabei entstandenen NO<sub>2</sub> als  $NO_{2ads}^-$ :

$$NO_{2gas} + e^- \rightarrow NO_{2ads}^-$$
 (6.5)

oder mit der Reaktion von NO<sub>2</sub> mit dem auf der WO<sub>3</sub>-Oberfläche adsorbiertem  $O_{2 ads}^-$  zu adsorbiertem  $NO_{2 ads}^-$  und  $O_{ads}^-$ :

$$NO_{2\,eas} + O_{2\,ads}^{-} + 2 \cdot e^{-} \rightarrow NO_{2\,ads}^{-} + 2 \cdot O_{ads}^{-}$$
 (6.6)

Zum anderen mit einer Adsorption des nicht zu NO<sub>2</sub> umgesetzten gasförmigen NO an einem Sauerstoffoberflächenadsorbat  $O_2^-$  und einem Elektron aus dem WO<sub>3</sub>-Volumen zu adsorbiertem  $NO_{2ads}^-$  und  $O_{ads}^-$ 

$$NO_{gas} + O_{2 ads}^{-} + e^{-} \rightarrow NO_{2 ads}^{-} + O_{ads}^{-}$$
 (6.7)

wobei in allen drei Fällen dem WO<sub>3</sub>-Kristallvolumen Elektronen entzogen werden, woraus die beobachtete Widerstandszunahme resultiert.

NO reagiert mit Sauerstoff bei Raumtemperatur sofort zu NO<sub>2</sub>, wobei sich das Gleichgewicht, da es sich hierbei um eine exotherme Reaktion handelt, bei höheren Temperaturen zugunsten des NO verlagert und oberhalb von 650 °C vollständig auf der Seite des NO liegt [Wal 00]. Da die verwendete Betriebstemperatur bei den Messungen dieser Arbeit bei 300 °C lag und somit nur eine geringe und unvollständige Umsetzung des NO zu NO<sub>2</sub> oberhalb der Sensoroberfläche stattfindet wird der bei [Cap 99] vermutete Reaktionsmechanismus für die in dieser Arbeit gewonnenen Ergebnisse nicht angenommen.

Ebenfalls sprechen die Ergebnisse von [Pen 98] gegen die Umsetzung von NO zu NO<sub>2</sub>. Dieser beaufschlagte WO<sub>3</sub>-Dünnschichten mit einer Betriebstemperatur von 300 °C in trockener Luft mit bis zu 4.000 ppm NO und bis zu 100 ppm NO<sub>2</sub>. Dabei wurde beobachtet, dass die NO-Sensitivität gleicher WO<sub>3</sub>-Schichten bei gleicher Betriebstemperatur (300 °C) um ca. 2 Größenordnungen geringer ist als die NO<sub>2</sub>-Sensitivität. Unter der Annahme einer vollständigen Umsetzung von NO zu NO<sub>2</sub> in der Luft oberhalb der Sensoroberfläche müssten die beiden Sensitivitäten aber nahezu gleich groß sein.

Weiterhin wurde von [Pen 98] entgegen den Ergebnissen dieser Arbeit kein gegenläufiger und somit widerstandserniedrigender Prozess bei sehr hohen NO-Konzentrationen beobachtet. Es wurde nur eine sehr schwach ausgeprägte relative Widerstandserhöhung von 2,5 % pro 1.000 ppm NO registriert, die einem Sättigungsverhalten entspricht.

Ausser [Pen 98] wurde keine weitere Literatur gefunden, in der WO<sub>3</sub>-Schichten sehr hohe NO-Konzentrationen angeboten wurde. Möglicherweise wird aus diesem Grund in der Literatur nicht über die in dieser Arbeit beobachtete kleine Erniedrigung des Widerstandes bei sehr hohen NO-Konzentrationen berichtet.

Auch [Tom 98], der einem  $WO_3/Bi_2O_3$ -Dickschicht-Sensor mit 300 °C bis zu 277 ppm NO in trockener Luft angeboten hat, beobachtet nur eine mit zunehmender NO-Konzentration immer stärker abnehmende Widerstandsänderung. Diese beträgt bei 277 ppm NO nahezu Null und beschreibt somit eine Sättigung, die mit einer nahezu vollständigen Oberflächenbedeckung von adsorbiertem Sauerstoff  $O^-$  erklärt werden kann. Von einer Umkehr des Widerstandsverhaltens wird jedoch nicht berichtet.

## 6.2.4 WO<sub>3</sub>-Sensoren im simulierten Abgasstrom mit SO<sub>2</sub>

Werden WO<sub>3</sub>-Sensoren in einem simulierten Abgasstrom (50 ppm bis 500 ppm SO<sub>2</sub> in einem 4 % O<sub>2</sub> - 96 % N<sub>2</sub>-Gemisch) betrieben, so muss das Verhalten dieser in Abhängigkeit von der Betriebstemperatur unterschieden werden.

Bei Temperaturen oberhalb von 500 °C verhält sich  $SO_2$  als reduzierendes Gas. Hierbei tritt eine vollständig reversible Widerstandserniedrigung bei der Bildung von  $SO_3$  aus dem angebotenen  $SO_2$  und adsorbiertem Sauerstoff  $O^-$  auf.

$$SO_{2gas} + O_{ads}^{-} \to SO_{3gas} + e^{-}$$
 (6.8)

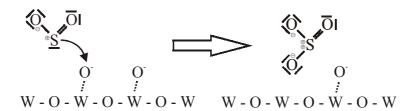



Abbildung 6-5: SO<sub>3</sub>-Bildung an der WO<sub>3</sub>-Oberfläche

Bei tiefen Temperaturen unterhalb von 500 °C reagiert SO<sub>2</sub> auf der WO<sub>3</sub>-Oberfläche als oxidierendes Gas. Gleichzeitig treten aber auch irreversible Oberflächenreaktionen (Vergiftung) auf, durch die die Sensoreigenschaften stark verändert werden.

Dabei besteht der Oxidationsprozess aus der Bildung von  $SO_2^-$ -Ionen an der WO<sub>3</sub>-Oberfläche, aus dem eine Widerstandserhöhung resultiert:

$$SO_{2gas} + e^- \rightarrow SO_{2ads}^- \tag{6.9}$$

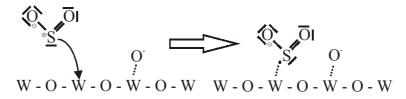



Abbildung 6-6: SO<sub>2</sub>-Adsorbat an der WO<sub>3</sub>-Oberfläche

Gleichzeitig werden Sulfitionen  $SO_3^{2-}$  gebildet, durch die sich der Widerstand ebenfalls erhöht:

$$SO_{2gas} + O_{ads}^{-} + e^{-} \rightarrow SO_{3 ads}^{2-}$$
 (6.10)

Ein Teil der dabei auf der Oberfläche entstehenden Sulfitionen bildet daraufhin mit weiterem adsorbierten Sauerstoff  $O^-$  auf der Oberfläche stabile Sulfationen. Dieser Prozess hat eine Widerstandserniedrigung zur Folge:

$$SO_{3 \ ads}^{2-} + O_{ads}^{-} \to SO_{4 \ ads}^{2-} + e^{-}$$
 (6.11)

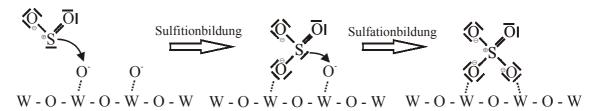



Abbildung 6-7: reversible Sulfition- sowie stabile Sulfationbildung an der WO<sub>3</sub>-Oberfläche

Parallel dazu bilden sich aus SO<sub>2</sub> stabile Oberflächensulfite mit Gittersauerstoff der WO<sub>3</sub>-Oberfläche, wobei im Vergleich zur Sulfitionenbildung keine Widerstandsänderung auftritt:

$$SO_{2gas} + O_O \rightarrow (SO_3)_O \tag{6.12}$$

Von diesen Oberflächensulfiten verbindet sich ein Teil mit adsorbiertem Sauerstoff  $O^-$  zu stabilen Oberflächensulfaten, woraus eine Widerstandserniedrigung wie bei der Sulfationenbildung resultiert:

$$(SO_3)_O + O_{ads}^- \to (SO_4)_O + e^-$$
 (6.13)

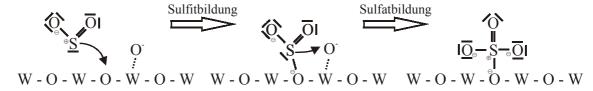



Abbildung 6-8: stabile Sulfit- sowie stabile Sulfatbildung mit der WO<sub>3</sub>-Oberfläche

Bei hohen Temperaturen ab 500 °C reagieren die WO<sub>3</sub>-Sensoren in dem simulierten Abgasstrom mit einer der SO<sub>2</sub>-Konzentration proportionalen Widerstandserniedrigung (s. Abbildung 5-23). Dieses Verhalten wird folgendermaßen erklärt:

Während dem SO<sub>2</sub>-Angebot reagiert der Sensor mit einer Widerstandserniedrigung durch die Bildung von SO<sub>3</sub> des SO<sub>2</sub> mit adsorbiertem Sauerstoff  $O^-$  und der Abgabe eines Elektron an das Kristallvolumen nach Gleichung (6.8). Dieser Prozess zeigt bei 500 °C ein vollständig reversibles Verhalten.

Die hierbei auftretende Oxidation des SO<sub>2</sub> zu SO<sub>3</sub> auf der WO<sub>3</sub>-Oberfläche ist eine exotherme Gleichgewichtsreaktion, die aus dem Kontaktverfahren (technisches Verfahren zur Herstellung von Schwefelsäure) bekannt ist. Bei diesem bestehen die Vorrausetzungen für eine 97 %ige Oxidation von SO<sub>2</sub> zu SO<sub>3</sub> aus einer Temperatur von ca. 440 °C, einem SO<sub>2</sub>/O<sub>2</sub>-Verhältnis von mindestens 1:2 und einem Katalysator, der in der technischen Anwendung als V<sub>2</sub>O<sub>5</sub> vorliegt. Bei den in dieser Arbeit durchgeführten Messung ist somit die Temperatur mit 500 °C auf der WO<sub>3</sub>-Oberfläche und der Sauerstoffüberschuss durch die 4 % O<sub>2</sub> im Trägergas gewährleistet. Als Katalysator dient hier allerdings das WO<sub>3</sub>.

Bei einer Betriebstemperatur von 350 °C ist der Widerstandsverlauf der WO<sub>3</sub>- Sensoren in einer trockenen Atmosphäre aus 96 %  $N_2$  + 4 %  $O_2$  (Trägergas) bei jedem SO<sub>2</sub>-Angebot ähnlich (Abbildung 5-22). Allerdings fällt die bei zunehmender SO<sub>2</sub>-Konzentration abnehmende Sensitivität auf. Dieses Verhalten wird mit folgendem Modell erklärt: Während eines SO<sub>2</sub>-Angebots reagiert der Sensor zuerst mit einem sehr schnellen Anstieg des Widerstands zum einen durch die Bildung von  $SO_2^-$ -Ionen an anderen

WO<sub>3</sub>-Oberflächenplätzen wie die der Sauerstoffadsorbate  $O^-$  mit einem Elektron aus dem WO<sub>3</sub>-Kristallvolumen nach Gleichung (6.9) und zum anderen durch die Bildung von Sulfitionen  $SO_3^{2-}$  des SO<sub>2</sub> mit adsorbiertem Sauerstoff  $O^-$  und ebenfalls einem Elektron aus dem Kristallvolumen des WO<sub>3</sub> nach Gleichung (6.10).

Der während des SO<sub>2</sub>-Angebots darauf eintretende Widerstandsabfall resultiert aus zwei verschiedenen Prozessen. Der erste ist eine Sulfationenbildung auf der WO<sub>3</sub>-Oberfläche. Diese bilden sich aus den Sulfitionen und weiteren Sauerstoffadsorbaten  $O^-$ , wobei ein Elektronentransfer vom Sulfition zum WO<sub>3</sub>-Kristallvolumen nach Gleichung (6.11) auftritt. Der zweite Prozess, aus dem ein Widerstandsabfall resultiert, ist die Bildung von Oberflächensulfaten nach Gleichung (6.13). Diese bilden sich aus Sauerstoffadsorbaten  $O^-$ 

und den nach Gleichung (6.12) mit Gittersauerstoff gebildeten Oberflächensulfiten, bei deren Bildung keine Widerstandsänderung auftritt.

Bei weiteren  $SO_2$ -Angeboten mit zunehmender Konzentration ist der Widerstandsverlauf ähnlich, wobei allerdings die Sensitivität stark abnimmt. Diese Abnahme liegt an der irreversiblen Sulfat- sowie Sulfationenbildung und der daraus resultierenden Oberflächensulfatisierung. Durch diese stehen weniger freie Adsorbatplätze für die  $SO_2^-$ -Reaktion (6.9) sowie weniger  $O^-$ -Adsorbate für die Sulfitionenbildung nach Gleichung (6.10) zur Verfügung.

Der nach Abschalten des  $SO_2$ -Angebots zu beobachtende Widerstandsabfall resultiert aus der Desorption der  $SO_2^-$ -Ionen als  $SO_2$  mit der umgekehrten Reaktion wie Gleichung (6.9)

$$SO_{2ads}^- \rightarrow SO_2 + e^-$$
 (6.14)

und der Desorption der auf der Oberfläche adsorbierten  $SO_3^{2-}$ -Ionen als  $SO_3$ , die sich nicht mit adsorbiertem Sauerstoff  $O^-$  zu einem Sulfation auf der Oberfläche verbunden haben:

$$SO_{3 ads}^{2-} \rightarrow SO_3 + 2 \cdot e^- \tag{6.15}$$

Zu einer ähnlichen Interpretation kommt [Shi 01] bei der Untersuchung von WO<sub>3</sub>-Dickschichten mit einer Betriebstemperaturen zwischen 350 °C und 600 °C und einem SO<sub>2</sub>-Angebot von 800 ppm in trockener Luft.

Hierbei wird der in dieser Arbeit bei 350 °C Betriebstemperatur beobachtete qualitative Verlauf des Widerstandes erst bei einer Temperatur von 500 °C beobachtet (s. Abbildung 6-9, Kurve (d)). Die dabei auftretende Widerstandserhöhung bei  $SO_2$ -Angebot wird wie in dieser Arbeit mit der Bildung von  $SO_2^-$ -Adsorbaten an anderen  $WO_3$ -Oberflächenplätzen wie die der Sauerstoffadsorbate  $O^-$  und einem damit verbundenen Elektronentransfer vom Kristallvolumen zu den Oberflächenadsorbaten erklärt.

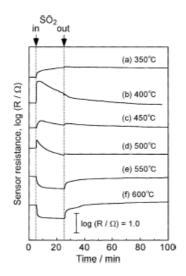



Abbildung 6-9: Sensorwiderstand von WO<sub>3</sub>-Dickschichten in Abhängigkeit der Temperatur bei 800 ppm SO<sub>2</sub>-Angebot [Shi 01]

Die in dieser Arbeit bei 500 °C beobachtete reversible Widerstandserniedrigung der WO<sub>3</sub>-Sensoren bei SO<sub>2</sub>-Angebot wird von [Shi 01] erst bei Temperaturen zwischen 550 °C und 600 °C (Abbildung 6-9, Kurve (e),(f)) beobachtet.

Aufgrund des Widerstandsverhaltens in Abhängigkeit der Temperatur werden dem SO<sub>2</sub> von [Shi 01] oxidierende Eigenschaften bei Temperaturen unter 450 °C und reduzierende Eigenschaften bei Temperaturen oberhalb von 550 °C zugeordnet.

Neben den Untersuchungen von WO<sub>3</sub>-Schichten bei SO<sub>2</sub>-Angebot hat [Shi 01] auch SO<sub>2</sub>-Messungen an SnO<sub>2</sub>-Schichten mit Betriebstemperaturen zwischen 100 °C und 600 °C durchgeführt. Dabei wird bei den SnO<sub>2</sub>-Schichten mit einer Betriebstemperatur von 600 °C eine ähnliche Widerstandserhöhung (Abbildung 6-10) wie bei den WO<sub>3</sub>-Schichten mit 500 °C und den in dieser Arbeit durchgeführten Messungen bei 350 °C beobachtet. Allerdings ist im Gegensatz zu WO<sub>3</sub> bei den SnO<sub>2</sub>-Schichten diese Widerstandserhöhung auch nach Ausschalten des SO<sub>2</sub> fast vollständig irreversibel.

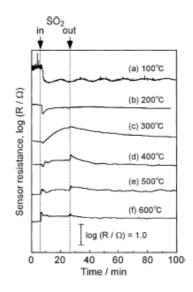



Abbildung 6-10: Sensorwiderstand von SnO<sub>2</sub>-Schichten in Abhängigkeit der Temperatur bei 800 ppm SO<sub>2</sub>-Angebot [Shi 01]

Dieses von [Shi 01] beobachtete irreversible Verhalten kann mit den Ergebnissen aus XPSsowie FTIR-Messungen von [Ber 96] an SnO<sub>2</sub>-Schichten bei SO<sub>2</sub>-Gasangebot erklärt werden. Hierbei werden an der Oberfläche von SnO<sub>2</sub> in Abhängigkeit der Temperatur Sulfationen  $SO_4^{2-}$ , Sulfitionen  $SO_3^{2-}$  sowie Oberflächensulfid  $S^{2-}$  gefunden.

Bei  $SnO_2$  mit Temperaturen oberhalb von 500 °C, bei der der Widerstandsverlauf des  $SnO_2$  dem des  $WO_3$  mit einer Temperatur von 350 °C ähnelt, verschwindet die Spezie  $SO_3^{2-}$  nahezu vollständig und es werden nur  $SO_4^{2-}$  und Thiosulfate  $S_XO_Y$  sowie ein ab 500 °C auftretendes Oberflächensulfid  $S^{2-}$  zu finden. Dabei nimmt die  $SO_4^{2-}$ -Konzentration mit steigender Temperatur bis zu 900 °C ab und gleichzeitig die des  $S_XO_Y$  zu. Dies wird mit der thermischen Zersetzung des  $SO_4^{2-}$  zu  $S_XO_Y$  begründet.

Damit kann die bei den Messungen von [Shi 01] beobachtete irreversible Widerstandserhöhung bei  $SnO_2$  durch die irreversible Adsorption von  $SO_4^{2-}$ , dessen Zersetzungsprodukt  $S_XO_Y$  und dem Oberflächensulfid interpretiert werden.

Weiterhin wurden zum Vergleich mit den in dieser Arbeit gefundenen Ergebnisse zum einen in der Literatur beschriebene Gasangebote von H<sub>2</sub>S an WO<sub>3</sub> und zum anderen SO<sub>2</sub>-Gasangebote an anderen Halbleitermaterialien betrachtet.

[Frü 96] hat gesputterten WO<sub>3</sub>-Dünnschichten mit einer Betriebstemperatur von 200 °C H<sub>2</sub>S angeboten und diese mittels XPS untersucht. Hierbei wurde festgestellt, dass nach Angebot von H<sub>2</sub>S mit Konzentrationen von 100 ppm bis zu reinem H<sub>2</sub>S mit Atmosphärendruck an der Oberfläche Sulfit- sowie Sulfatgruppen im Bindungsenergiebereich von 167 eV bis 172 eV zu finden sind und durch Angebot von nachträglichem reinen Sauerstoff mit Atmosphärendruck nicht von der Oberfläche zu entfernen waren. Oberflächensulfide wurden erst bei Angebot von reinem H<sub>2</sub>S mit Atmosphärendruck beobachtet, die durch ein nachträgliches Angebot von reinem Sauerstoff mit Atmosphärendruck vollständig von der Oberfläche entfernt werden konnten.

Dieses Verhalten lässt sich mit der Bildung von irreversiblen Oberflächensulfaten sowie Oberflächensulfiten und vollständig reversiblen Oberflächensulfiden auf WO<sub>3</sub> bei niedrigen Betriebstemperaturen interpretieren.

Bei Zusammenfassung der beschriebenen Ergebnisse kommt man zu folgendem Schluss: Werden SnO<sub>2</sub>-Schichten bei 600 °C mit SO<sub>2</sub> beaufschlagt, so werden an der Oberfläche Sulfationen, Sulfat, Thiosulfate und Sulfid [Ber 96] beobachtet. Aus diesem Grund kann die irreversible Widerstandserhöhung der SnO<sub>2</sub>-Schichten nur durch diese hervorgerufen werden. Unter Annahme dass die Bildungsreaktionen von Sulfat und Sulfation bei SnO<sub>2</sub> denen bei WO<sub>3</sub> gleicht (s. Abbildung 6-7 und Abbildung 6-8), so liefern diese keinen Beitrag zu einer irreversiblen Widerstandserhöhung und können somit ebenfalls ausgeschlossen werden. Aus diesem Grund sind das Sulfid und/oder die Thiosulfate für das irreversible Widerstandsverhalten (Vergiftung) von SnO<sub>2</sub> zuständig.

Auf WO<sub>3</sub>-Schichten bilden sich bei Angebot von H<sub>2</sub>S [Frü 96] nur bei sehr hohen Konzentrationen (reinem H<sub>2</sub>S) Sulfide, die durch einen kurzen Betrieb mit 200 °C in Sauerstoff vollständig reversibel sind. Aus diesem Grund wird bei WO<sub>3</sub> nach SO<sub>2</sub>-Angebot auch keine irreversible Widerstandserhöhung wie bei SnO<sub>2</sub> beobachtet.

Für die bei wiederholter Beaufschlagung von WO<sub>3</sub> mit SO<sub>2</sub> enstehende verminderte Empfindlichkeit resultiert somit aus der Bildung von Sulfitionen, Sulfit, Sulfationen, Sulfat oder Thiosulfat. Da durch irreversible Sulfitionen eine irreversible Widerstandserhöhung resultieren würde, die jedoch nicht beobachtet wird, werden auch diese ausgeschlossen. Im Gegensatz dazu würde aus einer irreversiblen Sulfatbildung eine irreversible Widerstandserniedrigung resultieren, die ebenfalls nicht beobachtet wird.

Somit wird die verminderte Sensitivität auf eine irreversible Bildung von Sulfit, Sulfationen und Thiosulfaten an der WO<sub>3</sub>-Oberfläche mit 350 °C Betriebstemperatur zurückgeführt.

Eine Sulfatisierung durch SO<sub>2</sub> wird auch bei Katalysatoren aus TiO<sub>2</sub>/WO<sub>3</sub>/V<sub>2</sub>O<sub>5</sub> beobachtet und führt bei diesen zu einem Verlust des NO<sub>X</sub>-Sorptionsvermögens. Dabei ist bekannt, dass diese durch Zersetzung der Sulfate bei Temperaturen oberhalb von 650 °C regeneriert werden können, wodurch aber häufig eine thermische Schädigung des Katalysators hervorgerufen wird [Wal 00].

Ein qualitativ gleicher Widerstandsverlauf bei  $SO_2$ -Angebot wie der in dieser Arbeit bei  $350\,^{\circ}$ C Betriebstemperatur wurde bei [Vár 95] bei der Untersuchung von gesputterten  $CeO_2$ -Dünnschichten mit  $550\,^{\circ}$ C in wechselnder Gasatmosphäre ( $N_2$  sowie  $N_2 + 10\,^{\circ}$   $O_2$ ) beobachtet. Der dabei aufgetretene Widerstandsverlauf ist in Abbildung 6-11 dargestellt. Die in dieser Abbildung mit Zahlen zwischen 1 und 4 aufgeteilten Abschnitte der Messung sind jeweils verschiedenen Gasatmosphären zugeteilt. Hierbei beschreibt Abschnitt 1 eine Atmosphäre aus  $N_2 + 10\,^{\circ}$   $N_3 + 10\,$ 

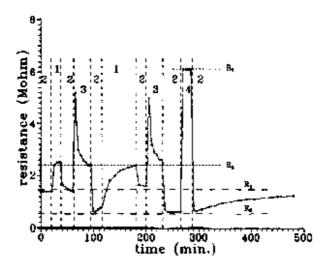



Abbildung 6-11: Sensorwiderstand von CeO<sub>2</sub>-Dünnschichten bei 550 °C Betriebstemperatur und SO<sub>2</sub>-Angebot in wechselnder Gasatmosphäre [Vár 95]

[Vár 95] vermutet hierbei, dass der direkt nach der schnellen Widerstandszunahme zu beobachtende Widerstandsabfall durch entstandene Sauerstofffehlstellen und deren Ionisation

bedingt ist. Diese entstehen bei der Oxidation des SO<sub>2</sub> mit Gittersauerstoff zu SO<sub>3</sub> und geben bei der Ionisation Elektronen an das Leitungsband ab.

In der zu Beginn des  $SO_2$ -Angebots beobachteten Widerstandserhöhung wird ein zusätzlicher konkurierender Prozess vermutet. Dieser basiert auf einer Widerstandserhöhung durch die Bildung von  $SO_3^-$  zwischen dem aus  $SO_2$  und Gittersauerstoff gebildeten  $SO_3$ , bei der die gebildeten Sulfitionen dem  $CeO_2$ -Kristallvolumen Elektronen entziehen.

Bei einer Betriebstemperatur von 550 °C wird nun davon ausgegangen, dass der Oberflächenprozess überwiegt und somit eine Netto-Widerstandserhöhung beobachtet wird. Bei höheren Temperaturen wird von einer Kompensation der beiden auftauchenden Prozesse ausgegangen, bei der keinerlei Widerstandsänderung zu beobachten sein dürfte.

Der Widerstandsabfall direkt nach dem starken Anstieg bei Gasangebot wird mit dem Einstellen eines Reaktionsgleichgewichts erklärt. Dieses stellt sich durch Desorption von  $SO_3$  zwischen dem adsorbierten und desorbierten  $SO_3$  ein, wobei Elektronen bei der Desorption an das Kristallvolumen zurückgegeben werden. Der nach Gasangebot zu beobachtende Widerstand bei ca. 100 Minuten, der kleiner ist als der Widerstand vor  $SO_2$ -Angebot, wird mit der Bildung von  $SO_3$  mit Hilfe von Gittersauerstoff und der Ionisation der dabei entstehenden Sauerstofffehlstellen interpretiert. Durch Angebot von  $N_2 + 10$  %  $O_2$  wird nun durch Einbau von Sauerstoff in die Fehlstellen der ursprüngliche vor Gasangebot existierende Widerstand erreicht.

Aus den durchgeführten Messungen resultiert, dass WO<sub>3</sub>-Sensoren in einer oxidierenden und SO<sub>2</sub>-haltigen Atmosphäre mit ca. 500 °C betrieben werden sollten, um eine Empfindlichkeitsabnahme durch irreversible Adsorbate an der Oberfläche (Oberflächensulfatisierung) auszuschliessen.

## 6.2.5 Betrieb von WO<sub>3</sub>/TiO<sub>2</sub>-Schichten in Abgas

Aufgrund der Stabilitätsverbesserung von WO<sub>3</sub> durch Hinzufügen von TiO<sub>2</sub> (s. Kapitel 6.1) wurden in dieser Arbeit auch siebgedruckte WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten verwendet. Diese wurden in synthetischem sowie in realem Dieselbrennerabgas mit 500 °C betrieben und mittels XPS auf irreversible Oberflächenadsorbate (Vergiftung) untersucht, die aus dem Betrieb im Abgas resultieren. Aufgrund der nicht durch SO<sub>2</sub> stattfindenden Vergiftung von

WO<sub>3</sub>-Sensoren bei einer Betriebstemperatur von 500 °C (s. Kapitel 6.2.4) wurden hierbei die WO<sub>3</sub>/TiO<sub>2</sub>-Dickschichten bei dieser Temperatur betrieben.

Mittels XPS wurden die Referenzproben mit den im Abgas betriebenen Proben verglichen und keine irreversiblen Oberflächenadsorbate beobachtet, die aus dem Betrieb im Abgas resultieren (s. Kapitel 5.8.1).

Es wird davon ausgegangen, dass SO<sub>2</sub> sich auf WO<sub>3</sub>/TiO<sub>2</sub>-Schichten mit einer Betriebstemperatur von 500 °C wie auch auf reinen WO<sub>3</sub>-Schichten (s. Kapitel 6.2.4) mit mindestens 500 °C zu SO<sub>3</sub> umsetzt und sich dabei keine irreversiblen Schwefelverbindungen auf der Oberfläche anlagern. Zum anderen wurden auch keine anderen irreversiblen Verbindungen von Stickstoff, Phosphor, Silizium oder Kohlenwasserstoffen gefunden, die in den angebotenen Abgasen enthalten sind.

Aus diesem Grund stellt das WO<sub>3</sub>/TiO<sub>2</sub>-Schichtsystem mit 500 °C Betriebstemperatur ein resistentes Material gegenüber Vergiftung durch Abgas dar.

## Literatur

[Agu 02] : K. Aguir, C. Lemire, D. B. B. Lollman, Electrical properties of reactively sputtered WO<sub>3</sub> thin films as ozone gas sensor, Sensors and Actuators, B 84 (2002), 1-5

- [Ant 95]
   M. D. Antonik, J. E. Schneider, E. L. Wittman, K. Snow, J. F. Vetelino,
   R. J. Lad, Microstructural effects in WO<sub>3</sub> gas-sensing films, Thin Solid
   Films, 256 (1995), 247-252
- [Aoc 03] : http://h2o.aci.uni-hannover.de/download/AC\_F/C/ACF3.doc (Protokoll zum Anorganisch-Chemischen F-Praktikum, Hannover)
- [Bai 81] : A. Baiker, Experimentelle Methoden der Katalysatorcharakterisierung, Chimia, 35 (11) (1981)
- [Bar 02] : M.-I. Baraton, L. Merhari, H. Ferkel, J.-F. Castagnet, Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: carbon monoxide and oxygen detection, Materials Science and Engineering, C 19 (2002), 315- 321
- [Ben 01] : F. Bender, C. Kim, T. Mlsna, J. F. Vetelino, Characterization of a WO<sub>3</sub> thin film chlorine sensor, Sensors and Actuators, B 77 (2001), 281-286
- [Ber 70]
   J. M. Berak and M. J. Sienko, Effect of Oxygen-Deficiency on Electrical Transport Properties of Tungsten Trioxide Crystals, Journal of Solid State Chemistry, 2 (1970), 109- 133
- [Ber 96] : F. Berger, E. Beche, R. Berjoan, D. Klein, A. Chambaudet, An XPS and FTIR study of SO<sub>2</sub> adsorption on SnO<sub>2</sub> surfaces, Applied Surface Science, 93 (1996), 9-16

[Bit 02]
 C. Bittencourt, R. Landers, E. Llobet, X. Correig, J. Calderer, The role of oxygen partial pressure and annealing temperature on the formation of W=O bonds in thin WO<sub>3</sub> films, Semiconductor Science Technology, 17 (2002), 522-525

- [Bon 98] : E. Bonsen, Photokatalytischer Abbau von Ammoniak und Alkylaminen mit reinem und dotiertem TiO<sub>2</sub>, Dissertation, Universität Dortmund, 1998
- [Bos 96] : Offenlegungsschrift eines Sensors zum Nachweis von brennbaren Gasen,
   DE 44 45 359 A1, Anmelder: Robert Bosch GmbH, Erfinder: H. Potthast,
   B. Schumann, Offenlegungstag: 27.06.1996
- [Bou 01] : M. Boulova, A. Gaskov, G. Lucazeau, Tungsten oxide reactivity versus CH<sub>4</sub>, CO and NO<sub>2</sub> molecules studied by Raman spectroscopy, Sensors and Actuators, B 81 (2001), 99- 106
- [Can 96] : C. Cantalini, M. Pelino, H. T. Sun, M. Faccio, S. Santucci, L. Lozzi, M. Passacantando, Cross sensitivity and stability of NO<sub>2</sub> sensors from WO<sub>3</sub> thin film, Sensors and Actuators, B 35- 36 (1996), 112- 118
- [Can 99]
   C. Cantalini, M. Z. Atashbar, Y. Li, M. K. Ghantasala, S. Santucci, W. Wlodarski, M. Passacantando, Characterization of sol-gel prepared WO<sub>3</sub> thin films as a gas sensor, Journal of Vacuum Sciences, A 17 (4) (Jul/Aug 1999), 1873-1879
- [Can 00] : C. Cantalini, W. Wlodarski, Y. Li, M. Passacantando, S. Santucci, E. Comini, G. Faglia, G. Sberveglieri, Investigation on the O<sub>3</sub> sensitivity properties of WO<sub>3</sub> thin films prepared by sol-gel, thermal evaporation and r.f. sputtering techniques, Sensors and Actuators, B 64 (2000), 182-188
- [Cap 99]
   S. Capone, R. Rella, P. Siciliano, L. Vasanelli, A comparison between V<sub>2</sub>O<sub>5</sub> and WO<sub>3</sub> thin films as sensitive elements for NO detection, Thin Solid Films, 350 (1999), 264- 268

[Cat 96] : C. Cantalini, H. T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, M. Passacantando, NO<sub>2</sub> sensitivity of WO<sub>3</sub> thin film obtained by high vacuum thermal evaporation, Sensors and Actuators, B 31 (1996), 81-87

- [Cha 67]
   L. L. Y. Chang, M. G. Scroger, B. Phillips, High-temperature, condensed-phase equilibria in the system Ti-W-O, Journal of the Less-Common Metals, 12 (1967), 51-56
- [Che 03] : L. Chen, S. C. Tsang, Ag doped WO<sub>3</sub>-based powder sensor for the detection of NO gas in air, Sensors and Actuators, B 89 (2003), 68-75
- [Chu 99] : Y.-K. Chung, M.-H. Kim, W.-S. Um, H.-S. Lee, J.-K. Song, S.-C. Choi, K.-M. Yi, M.-J. Lee, K.-W. Chung, Gas sensing properties of WO<sub>3</sub> thick film for NO<sub>2</sub> gas dependent on process condition, Sensors and Actuators, B 60 (1999), 49-56
- [Con 00] : E. Comini, G. Sberveglieri, M. Ferroni, V. Guidi, G. Martinelli, NO<sub>2</sub> monitoring with a novel p-type material: TiO, Sensors and Actuators, B 68 (2000), 175- 183
- [Com 00] : E. Comini, G. Sberveglieri, V. Guidi, Ti-W-O sputtered thin film as n- or p-type gas sensors, Sensors and Actuators, B 70 (2000), 108-114
- [Cor 97] : F. Corà, M. G. Stachiotti, C. R. A. Catlow, C. O. Rodriguez, Transition Metal Oxide Chemistry: Electronic Structure Study of WO<sub>3</sub>, ReO<sub>3</sub> and NaWO<sub>3</sub>, Journal of Physical Chemistry, B 101 (1997), 3945-3952
- [Crc 99] : D. R. Lide, Handbook of Chemistry and Physics, 79<sup>th</sup> Edition, CRC Press, 1998-1999
- [Dan 67] : D'Ans, Lax, Taschenbuch für Chemiker und Physiker, Makroskopische physikalisch-chemische Eigenschaften, Erster Band, Springer Verlag, 1967

[Dav 01]
 D. Davazoglou, T. Dritsas, Fabrication and calibration of a gas sensor based on chemically vapor deposited WO<sub>3</sub> films on silicon substrates Application to H<sub>2</sub> sensing, Sensors and Actuators, B 77 (2001), 359-362

- [Deb 73] : S. K. Deb, Philosophical Magazine, 27 (1973), 801
- [Dem 99] : C. Demetry, X. Shi, Grain size-dependent electrical properties of rutile (TiO<sub>2</sub>), Solid State Ionics, 118 (1999), 271- 279
- [Deo 96]
   L. E. Depero, I. Natali Sora, C. Perego, L. Sangaletti, G. Sberveglieri,
   Kinetics of disorder-order transition of Ti-W oxide thin-film sensors,
   Sensors and Actuators, B 31 (1996), 19- 24
- [Dep 96] : L. E. Depero, M. Ferroni, V. Guidi, G. Marca, G. Martinelli, P. Nelli, L. Sangaletti, G. Sberveglieri, Preparation and micro-structural characterization of nanosized thin film of TiO<sub>2</sub>-WO<sub>3</sub> as a novel material with high sensitivity towards NO<sub>2</sub>, Sensors and Actuators, B 35- 36 (1996), 381- 383
- [Der 96] : L. E. Depero, S. Groppelli, I. Natali-Sora, L. Sangaletti, G. Sberveglieri, E. Tondello, Structural Studies of Tungsten-Titanium Oxide Thin Films,
   Journal of Solid State Chemistry, 121 (1996), 379-387
- [Die 97] : C. Diehl, H. Rump, Verbesserung der Luftgüte für Fahrzeuginnenräume.
   Sensorik für geruchsaktive Stoffe, VDI-Seminar Mikrosystemtechnik im Automobilbau, München, 9./10. April 1997
- [Dix 98]
   R. A. Dixon, J. J. Williams, D. Morris, J. Rebane, F. H. Jones, R. G. Egdell,
   S. W. Downes, Electronic states at oxygen deficient WO<sub>3</sub> (001) surfaces: a
   study by resonant photoemission, Surface Science, 399 (1998), 199-211
- [Els 99]
   A. Elshafie, H. H. Afify, A. Abdel-All, Dielectric Properties of Tungsten
   Oxide Thin Film Prepared by Spray Pyrolysis, Physical State of Solids, (a)
   174 (1999), 301-310

[Feo 97]
 M. Ferroni, V. Guidi, G. Martinelli, G. Sberveglieri, Microstructural characterization of a titanium-tungsten oxide gas sensor, Journal of Material Research, 12 (3), March 1997, 793-798

- [Fer 97] : M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, G. Sberveglieri, Gas-sensing applications of W-Ti-O-based nanosized thin films prepared by r.f. reactive sputtering, Sensors and Actuators, B44 (1997), 499- 502
- [Fri 97] : Th. Fritz, Impedanzspektroskopie an oxidischen Halbleitergassensoren,
   Diplomarbeit, Institut für Angewandte Physik, Justus-Liebig-Universität
   Giessen, 1997
- [Frü 96] : B. Frühberger, M. Grunze, D. J. Dwyer, Surface chemistry of H<sub>2</sub>S-sensitive tungsten oxide films, Sensors and Actuators, B 31 (1996), 167- 174
- [Gal 01]
   K. Galatsis, Y. X. Li, W. Wlodarski, K. Kalantar-zadeh, Sol-gel prepared MoO<sub>3</sub>-WO<sub>3</sub> thin-films for O<sub>2</sub> gas sensing, Sensors and Actuators, B 77 (2001), 478-483
- [Gal 02] : K. Galatsis, Y. X. Li, W. Wlodarski, E. Comini, G. Sberveglieri, C.
   Cantalini, S. Santucci, M. Passacantando, Comparison of single and binary oxide MoO<sub>3</sub>, TiO<sub>2</sub> and WO<sub>3</sub> sol-gel gas sensors, Sensors and Actuators, B 83 (2002), 276-280
- [Gme 79] : Gmelin Handbuch der anorganischen Chemie, Wolfram, Ergänzungsband B2, Oxide, Springer Verlag, 1979
- [Gog 99]
   D. Gogova, K. Gesheva, A. Szekeres, M. Sendova-Vassileva, Structural and Optical Properties of CVD Thin Tungsten Oxide Films, Physical State of Solid, (a) 176 (1999), 969-984
- [Gra 95] : C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, 1995

[Gui 00]
 V. Guidi, D. Boscarino, E. Comini, G. Faglia, M. Ferroni, C. Malaù, G.
 Martinelli, V. Rigato, G. Sberveglieri, Preparation and characterisation of titanium-tungsten sensors, Sensors and Actuators, B 65 (2000), 264-266

- [Hen 91] : M. Henzler, W. Göpel, Oberflächenphysik des Festkörpers, Teubner Studienbücher Physik, B. G. Teubner Stuttgart, 1991 (<sup>1</sup> S. 368, <sup>2</sup> S. 286)
- [Him 84]
   F. J. Himpsel, J. F. Morar, F. R. McFeely, R. A. Pollak, G. Hollinger, Corelevel shifts and oxidation states of Ta and W: Electron spectroscopy for chemical analysis applied to surfaces, Physical Review B, 30 (12) (1984), 7236-41
- [Hje 96] : A. Hjelm, C. G. Granqvist, J. M. Wills, Electronic structure and optical properties of WO<sub>3</sub>, LiWO<sub>3</sub>, and HWO<sub>3</sub>, Physical Review B, 54 (1996) 4, 2436-2445
- [Hon 96]
   H.-K. Hong, H. W. Shin, H. S. Park, D. H. Yun, C. H. Kwon, K. Lee, S.-T. Kim, T. Moriizumi, Gas identification using micro gas sensor array and neural-network pattern recognition, Sensors and Actuators, B 33 (1996), 68-71
- [Ino 95]
   T. Inoue, K. Ohtsuka, Y. Yoshida, Y. Matsuura, Y. Kajiyama, Metal oxide semiconductor NO<sub>2</sub> sensor, Sensors and Actuators, B 24- 25 (1995), 388-391
- [Ion 02]
   R. Ionescu, E. Llobet, Wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors, Sensors and Actuators, B 81 (2002), 289-295
- [Ish 96]
   T. Ishihara, S. Sato, Y. Takita, Sensitive detection of nitrogen oxides based upon capacitance changes in binary oxide mixture, Sensors and Actuators, B 30 (1996), 43-45

[JCP 97] : JCPDS-International Centre for Diffraction Data, 1997

- <sup>1</sup> Platinum, syn, File Nr.04-0802
- <sup>2</sup> α-Al<sub>2</sub>O<sub>3</sub>, Aluminium Oxide, Corundum, syn, File Nr. 46-1212
- <sup>3</sup> WO<sub>3</sub>, Tungsten Oxide, Triclinic, File Nr. 32-1395
- <sup>4</sup> WO<sub>3</sub>, Tungsten Oxide, Monoclinic, File Nr. 43-1035
- <sup>5</sup> TiO<sub>2</sub>, Titanium Oxide, Anatase, syn, File Nr. 21-1272
- [Kac 00] : S. Kaciulis, G. Mattogno, Characterization of thin-film devices for gas sensing, Surface and Interface Analysis, 30 (2000), 502-506
- [Kac 02]
   S. Kaciulis, L. Pandolfi, S. Viticoli, G. Sberveglieri, E. Zampiceni, W.
   Wlodarski, K. Galatsis, Y. X. Li, Investigation of thin films of mixed oxides for gas-sensing applications, Surface and Interface Analysis, 34 (2002), 672-676
- [Kan 82] : H. Kaneko, K. Miyake, Y. Teramoto, Preparation and properties of reactively sputtered tungsten oxide films, Journal of Applied Physics, 53
   (4), April 1982
- [Kan 87] : H. Kaneko, F. Nagao, K. Miyake, Preparation and properties of the dc reactively sputtered tungsten oxide films, Journal of Applied Physics, 63
   (2), Januar 1988
- [Kaw 02] : H. Kawasaki, J. Namba, K. Iwatsuji, Y. Suda, K. Wada, K. Ebihara, T.
   Ohshima, NO<sub>X</sub> gas sensing properties of tungsten oxide thin films synthesized by pulsed laser deposition method, Applied Surface Science, 197- 198 (2002), 547- 551
- [Kel 96] : J. Kelleter, Künstliche Nase für gasförmige Emissionen aus vollständiger
   Verbrennung, Dissertation, Justus-Liebig-Universität Gießen, 1996
- [Khy 00] : O. Y. Khyzhun, XPS, XES and XAS studies of the electronic structure of tungsten oxides, Journal of Alloys and Compounds, 305 (2000), 1-6

[Khy 01]
 O. Y. Khyzhun, Y. M. Solonin, V. D. Dobrovolsky, Electronic structure of hexagonal tungsten trioxide: XPS, XES, and XAS studies, Journal of Alloys and Compounds, 320 (2001), 1-6

- [Kim 00]
   T. S. Kim, Y. B. Kim, K. S. Yoo, G. S. Sung, H. J. Jung, Sensing characteristics of dc reactive sputtered WO<sub>3</sub> thin films as an NO<sub>X</sub> gas sensor, Sensors and Actuators, B 62 (2000), 102-108
- [Kim 01] : C. S. Kim, R. J. Lad, C. P. Tripp, Interaction of organophosphorous compounds with TiO<sub>2</sub> and WO<sub>3</sub> surfaces probed by vibrational spectroscopy, Sensors and Actuators, B 76 (2001), 442-448
- [Kis 01] : G. Kiss, Z. Pintér, I. V. Perczel, Z. Sassi, F. Réti, Study of oxide semiconductor sensor materials by selected methods, Thin Solid Films, 391 (2001), 216-223
- [Lee 99] : D.-S. Lee, S.-D. Han, J.-S. Huh, D.-D. Lee, Nitrogen oxides-sensing characteristics of WO<sub>3</sub>-based nanocrystalline thick film gas sensor, Sensors and Actuators, B60 (1999), 57-63
- [Lee 00] : D.-S. Lee, S.-D. Han, S.-M. Lee, J.-S. Huh, D.-D. Lee, The TiO<sub>2</sub>-adding effects in WO<sub>3</sub>-based NO<sub>2</sub> sensors prepared by coprecipitation and precipitation method, Sensors and Actuators, B 65 (2000), 331-335
- [Lee 01]
   D.-S. Lee, J.-W. Lim, S.-M. Lee, J.-S. Huh, D.-D. Lee, Fabrication and characterization of micro-gas sensor for nitrogen oxides gas detection,
   Sensors and Actuators, B 64 (2000), 31-36
- [Lem 02] : C. Lemire, D. B. B. Lollman, A. A. Mohammad, E. Gillet, K. Aguir,

  Reactive R.F. magnetron Sputtering deposition of WO<sub>3</sub> thin films, Sensors
  and Actuators, B 84 (2002), 43-48

[Lin 02] : Z. Ling, C. Leach, R. Freer, A time resolved study of the response of a WO<sub>3</sub> gas sensor to NO<sub>2</sub> using AC impedance spectroscopy, Sensors and Actuators, B 87 (2002), 215- 221

- [Loz 01]
   L. Lozzi, L. Ottaviano, M. Passacantando, S. Santucci, C. Cantalini, The influence of air and vacuum thermal treatments on the NO<sub>2</sub> gas sensitivity of WO<sub>3</sub> thin films prepared by thermal evaporation, Thin Solid Films, 391 (2001), 224- 228
- [Mac 87] : J. R. Macdonald, Impedance spectroscopy emphazing solid materials and systems, John Wiley & Sons, New York, 1987
- [Mad 89] : M. J. Madou, S. R. Morrison, Chemical Sensing with Solid State Devices, Academic Press Inc., 1989
- [Man 98]
   D. Manno, A. Serra, M. Di Giulio, G. Micocci, A. Tepore, Physical and structural characterization of tungsten oxide thin films for NO gas detection, Thin Solid Films, 324 (1998), 44-51
- [Mar 01] : B. T. Marquis, J. F. Vetelino, A semiconducting metal oxide sensor array for the detection of NO<sub>X</sub> and NH<sub>3</sub>, Sensors and Actuators, B 77 (2001), 100-110
- [Meg 98] : bmb+f Verbundprojekt: Multi-Elektroden-Gassensorsystem (MEGAS), Statusbericht 1998, Siemens AG, München
- [Meg 99] : bmb+f Verbundprojekt: Multi-Elektroden-Gassensorsystem (MEGAS),

  <sup>1</sup> Statusbericht 1999, Siemens AG, München

  <sup>2</sup> Zwischenbericht 1999, GfG mbH, Dortmund
- [Miy 82] : K. Miyake, H. Kaneko, Y. Teramoto, Electrical and optical properties of reactively sputtered tungsten oxide films, Journal of Applied Physics, 53
   (3), März 1982

[Miy 83] : K. Miyake, H. Kaneko, N. Suedomi, S. Nishimoto, Physical and electrochromic properties of rf sputtered tungsten oxide films, Journal of Applied Physics, 54 (9), September 1983

- [Mol 01]
   S. C. Moulzolf, L. J. LeGore, R. J. Lad, Heteroepitaxial growth of tungsten oxide films on sapphire for chemical gas sensors, Thin Solid Films, 400 (2001), 56-63
- [Mou 92]
   J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Reference Book, Perkin Elmer
   Corporation, Physical Electronics Division, 1992, ISBN 0-9627026-2-5
- [Mou 01] : S. C. Moulzolf, S.-a. Ding, R. J. Lad, Stoichiometry and microstructure effects on tungsten oxide chemiresistive films, Sensors and Actuators, B 77 (2001), 375-382
- [Nel 96]
   P. Nelli, L. E. Depero, M. Ferroni, S. Groppelli, V. Guidi, F. Ronconi, L. Sangaletti, G. Sberveglieri, Sub-ppm NO<sub>2</sub> sensors based on nanosized thin films of titanium-tungsten oxides, Sensors and Actuators, B 31 (1996), 89-92
- [Ott 00] : L. Ottaviano, L. Lozzi, M. Passacantando, S. Santucci, On the spatially resolved electronic structure of polycrystalline WO<sub>3</sub> films investigated with scanning tunneling spectroscopy, Surface Science, 475 (2001), 73-82
- [Ott 01] : L. Ottaviano, E. Maccallini, S. Santucci, Visualisation of the preferential adsorption sites of oxygen onto WO<sub>3</sub> nano-particles, Surface Science, 492 (2001), L700- L704
- [Pas 78] : J. Pascual, J. Camassel, H. Mathieu, Fine Structure in the Intrinsic Absorption Edge of TiO<sub>2</sub>, Physical Review B, 18 (1978), 5606-
- [Pat 00] : P. S. Patil, P. R. Patil, E. A. Ennaoui, Characterization of ultrasonic spray pyrolyzed tungsten oxide thin films, Thin Solid Films, 370 (2000), 38-44

[Pen 98]
 M. Penza, M. A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, G.
 Cassano, Tungsten trioxide (WO<sub>3</sub>) sputtered thin films for a NO<sub>X</sub> gas sensor, Sensors and Actuators, B 50 (1998), 9- 18

- [Pen 01] : M. Penza, G. Cassano, F. Tortorella, Gas recognition by activated WO<sub>3</sub> thin-film sensors array, Sensors and Actuators, B 81 (2001), 115-121
- [Pez 01] : M. Penza, G. Cassano, F. Tortorella, G. Zaccaria, Classification of food, beverages and perfumes by WO<sub>3</sub> thin-film sensors array and pattern recognition techniques, Sensors and Actuators, B 73 (2001), 76-87
- [Pin 01]
   Z. Pinter, Z. Sassi, S. Kornely, Ch. Pion, I.V. Perczel, K. Kovacs, R. Bene,
   J.C. Bureau, F. Reti, Thermal behaviour of WO3 and WO3/TiO2 materials,
   Thin Solid Films, 391 (2001), 243- 246
- [Poh 01]
   R. Pohle, M. Fleischer, H. Meixner, Infrared emission spectroscopic study of the adsorption of oxygen on gas sensors based on polycristalline metal oxide films, Sensors and Actuators, B 78 (2001), 133-137
- [Roy 98]
   T. L. Royster, Jr., D. Chatterjee, G. R. Paz-Pujalt, C. A. Marrese,
   Fabrication and evaluation of thin-film solid-state sensors for hydrogen
   sulfide detection, Sensor and Actuators, B 53 (1998), 155- 162
- [Sav 01]
   N. Savage, B. Chwieroth, A. Ginwalla, B. R. Patton, S. A. Akbar, P. K.
   Dutta, Composite n-p semiconducting titanium oxides as gas sensors,
   Sensor and Actuators, B 79 (2001), 17-27
- [Sbe 95] : G. Sberveglieri, L. Depero, S. Groppelli, P. Nelli, WO<sub>3</sub> sputtered thin films for NO<sub>X</sub> monitoring, Sensors and Actuators, B 26- 27 (1995), 89- 92
- [Sch 96] : K.-D. Schierbaum, W. Göpel, Chemische Sensoren : Grundlagen und Anwendungen, in Multisensorpraxis, Ahlers (Hrsg.), Springer Verlag, Berlin, 1996, 61-100

[Sch 02]
 R. Schmitt, D. McCann, B. Marquis, D. E. Kotecki, Dielectric relaxation of WO<sub>3</sub> thick films from 10 Hz to 1.8 GHz, Journal of Applied Physics, 91 (2002) 10, 6775-6777

- [Shi 01]
   Y. Shimizu, N. Matsunaga, T. Hyodo, M. Egashira, Improvement of SO<sub>2</sub> sensing properties of WO<sub>3</sub> by noble metal loading, Sensors and Actuators, B 77 (2001), 35-40
- [Shi 02] : J. Shieh, H. M. Feng, M. H. Hon, H. Y. Juang, WO<sub>3</sub> and W-Ti-O thin film gas sensors prepared by sol-gel dip-coating, Sensors and Actuators, B 86 (2002), 75-80
- [Shm 02]
   Y. Shimizu, N. Kuwano, T. Hyodo, M. Egashira, High H<sub>2</sub> sensing performance of anodically oxidized TiO<sub>2</sub> film contacted with Pd, Sensors and Actuators, B 83 (2002), 195-201
- [Sik 80]
   V. K. Sikka, C. J. Rosa, The oxidation kinetics of tungsten and the determination of oxygen diffusion coefficient in tungsten trioxide,
   Corrosion Science, Vol. 20 (1980), 1201-1219
- [Smi 93]
   D. J. Smith, J. F. Vetelino, R. S. Falconer, E. L. Wittman, Stability, sensitivity and selectivity of tungsten trioxide films for sensing applications, Sensors and Actuators, B 13- 14 (1993), 264- 268
- [Sol 01]
   J. L. Solis, A. Hoel, L. B. Kish, C. G. Granqvist, S. Saukko, V. Lantto, Gas-Sensing Properties of Nanocrystalline WO<sub>3</sub> Films Made by Advanced Reactive Gas Deposition, Journal of the American Ceramic Society, Vol. 84, No. 7 (2001), 1504-1508
- [Sol 02]
   J. L. Solis, S. Saukko, L. B. Kish, C. G. Granqvist, V. Lantto,
   Nanocrystalline tungsten oxide thick-films with high sensitivity to H<sub>2</sub>S at room temperature, Sensors and Actuators, B 77 (2001), 316-321

[Sta 02] : Th. K. H. Starke, G. S. V. Coles, H Ferkel, High sensitivity NO<sub>2</sub> sensors for environmental monitoring produced using laser ablated nanocrystalline metal oxides, Sensors and Actuators, B 85 (2002), 239- 245

- [Sto 03] : D. Stolcic, Sauerstoff- und Stickstoff-Chemisorption an Metallclustern,Dissertation, Universität Konstanz, Fachbereich Physik, 2003
- [Sun 96] : H.-T. Sun, C. Cantalini, L. Lozzi, M. Passacantando, S. Santucci, M. Pelino, Microstructural effect on NO<sub>2</sub> sensitivity of WO<sub>3</sub> thin film gas sensors Part
   1. Thin film devices, sensors and actuators, Thin Solid Films, 287 (1996), 258-265
- [Sur 98]
   C. Suresh, V. Biju, P. Mukundan, K. G. K. Warrier, Anatase to rutile transformation in sol-gel titania by modification of precursor, Polyhedron, Vol. 17 (18) (1998), 3131-3135
- [Tam 94] : J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, N. Yamazoe, Grain-Size Effects in Tungsten Oxide-Based Sensor for Nitrogen Oxides, Journal of Electrochemical Society, 141 (8) (Aug. 1994), 2207-2210
- [Tao 02] : W.-H. Tao, Ch.-H. Tsai, H<sub>2</sub>S sensing properties of noble metal doped WO<sub>3</sub> thin film sensor fabricated by micromachining, Sensors and Actuators, B 81 (2002), 237- 247
- [The 98] : M. Theiß, Entwicklung und Aufbau eines Sensorsystems zur schnellen Glutnesterkennung in eingehausten Fördersystemen, Diplomarbeit, Institut für Angewandte Physik, Justus-Liebig-Universität Giessen, 1998
- [Tom 98] : A. A. Tomchenko, V. V. Khatko, I. L. Emelianov, WO<sub>3</sub> thick-film gas sensors, Sensors and Actuators, B 46 (1998), 8- 14

[Tom 99] : A. A. Tomchenko, I. L. Emelianov, V. V. Khatko, Tungsten trioxide-based thick-film NO sensor: design and investigation, Sensors and Actuators, B 57 (1999), 166-170

- [Ton 01] : M. Tong, G. Dai, Y. Wu, X. He, D. Gao, Journal of Materials Science, 36 (2001), 2535- 2538
- [Vár 95]
   E. B. Várhegyi, J. Gerblinger, F. Réti, I. V. Perczel, H. Meixner, Study of the behaviour of CeO<sub>2</sub> in SO<sub>2</sub>-containing environment, Sensors and Actuators, B 24- 25 (1995), 631- 635
- [Vog 99] : T. Vogt, P. M. Woodward, B. A. Hunter, The high-temperature phases of WO<sub>3</sub>, Journal of Solid State Chemistry, 144 (1999), 209- 215
- [Wal 00] : Ch. Walz, NO<sub>X</sub>-Minderung nach dem SCR-Verfahren: Untersuchungen zum Einfluß des NO<sub>2</sub>-Anteils, Dissertation, Fakultät für Chemie, Universität Karlsruhe (TH), 2000
- [Wan 97]
   X. Wang, G. Sakai, K. Shimanoe, N. Miura, N. Yamazoe, Spin-coated thin films of SiO<sub>2</sub>-WO<sub>3</sub> composites for detection of sub-ppm NO<sub>2</sub>, Sensors and Actuators, B 45 (1997), 141- 146
- [Wan 03] : S.-H. Wang, T.-C. Chou, C.-C. Liu, Nano-crystalline tungsten oxide NO<sub>2</sub> sensor, Sensors and Actuators, B 94 (2003), 343-351
- [Web 03] : http://www.webelements.com/webelements/compounds/text/...
  - <sup>1</sup>...W/O3W1-1314358.html
  - <sup>2</sup>...Ti/O2Ti1-13463677.html
- [Wen 00] : W. Qu, W. Wlodarski, A thin-film sensing element for ozone, humidity and temperature, Sensors and Actuators, B 64 (2000), 42-48
- [Why 73] : T. E. Whyte Jr., Metal particle size determination of supported metal catalysts, Catalysis Review, 8 (2) 1973, 117

- [Wie 03] : http://info.tuwien.ac.at/histu/inst/fp/0001650000.html
- [Xu 90]
   Z. Xu, J. F. Vetelino, R. Lec, D. C. Parker, Electrical properties of tungsten trioxide films, Journal of Vacuum Science Technology, A 8 (4) (Jul/Aug 1990), 3634-3638
- [Xu 00] : C. N. Xu, N. Miura, Y. Ishida, K. Matsuda, N. Yamazoe, Selective detection of NH<sub>3</sub> over NO in combustion exhausts by using Au and MoO<sub>3</sub> doubly promoted WO<sub>3</sub> element, Sensors and Actuators, B 65 (2000), 163-165
- [Yan 99] : J.-I. Yang, H. Lim, S.-D. Han, Influence of binders on the sensing and electrical characteristisc of WO<sub>3</sub>-based gas sensors, Sensors and Actuators, B 60 (1999), 71-77
- [Yud 01] : W. Yu-De, Ch. Zhan-Xian, L. Yan-Feng, Z. Zhen-Lai, W. Xing-Hui, Electrical and gas-sensing properties of WO<sub>3</sub> semiconductor material, Solid-State Electronics, 45 (2001), 639-644
- [Zha 00]
   Y. Zhao, Z.-Ch. Feng, Y. Liang, Pulsed laser deposition of WO<sub>3</sub>-base film for NO<sub>2</sub> gas sensor application, Sensors and Actuators, B 66 (2000), 171-173

## Danksagung

Herrn Prof. Dr. D. Kohl sei an erster Stelle herzlich gedankt. Er gab die Anregung zu dieser Arbeit und trug mit vielen Hinweisen und wertvollen Diskussionen maßgeblich zum Gelingen bei. Außerdem möchte ich mich für die Vermittlung von Denkweisen und Kenntnissen bedanken, die mir bei der Bearbeitung von Verbundprojekten und Firmenaufträgen entscheidend geholfen haben.

Herrn Prof. Dr. G. Thummes danke ich für die Übernahme des Koreferats.

Frau S. Kornely von der Firma Siemens AG München möchte ich für die zur Verfügung gestellten Proben danken.

Frau Gabriel danke ich für ihre Unterstützung bei allen Verwaltungsangelegenheiten ganz besonders.

Der feinmechanischen Werkstatt des Instituts für Angewandte Physik danke ich für die stets schnelle und sorgfältige Ausführung der in Auftrag gegebenen Arbeiten.

Frau U. Frisch und Herrn Dr. W. Kriegseis danke ich für die Unterstützung bei der Durchführung von XRD-Messungen.

Den Mitarbeitern des Instituts für Angewandte Physik, allen voran Dipl.-Phys. T. Sauerwald, Dipl.-Phys. N. Felde, Dipl.-Phys. D. Skiera, Dr. F. Becker, Dr. A. Eberheim und Dipl.-Phys. M. Lämmer, danke ich für die sehr gute Zusammenarbeit und die angenehme und konstruktive Atmosphäre.

Meinen Eltern Petra und Lambert danke ich für ihre unermüdliche Unterstützung in all den Jahren und dass sie immer an mich geglaubt haben.

Meiner Freundin Renata danke ich für ihre liebe und unermüdliche Unterstützung. Unserer "Prinzessin" Sarah danke ich für das entspannende "Knuffeln" und für ihre parallel angefertigte eigene "Promo".