I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

ON TIME REDUCTION AND
SIMULATION
IN CELLULAR SPACES

Thomas Buchholz Andreas Klein
Martin Kutrib

IFIG RESEARCH REPORT 9703
DECEMBER 1997

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 9703, DECEMBER 1997

ON TIME REDUCTION AND SIMULATION
IN CELLULAR SPACES

Thomas Buchholz ! Andreas Klein
Martin Kutrib 2

Institute of Informatics, University of Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract.We prove a generalized and corrected version of the time reduction the-
orem for cellular spaces. One basic tool for investigations in this field is the concept
of simulation between systems of automata. We propose a general formal definition
of the intuitive concept and relate it to the notions which appear in the literature.

'E-mail: buchholz@informatik.uni-giessen.de
2E-mail: kutrib@informatik.uni-giessen.de

Copyright (©) 1998 by the authors

1 Introduction

Systems of (homogeneous) interconnected parallel acting automata are
an interesting field for investigations. Besides they are interesting of its
own they have a lot of applications. Studies have been done e.g. in view
of systems that are capable of nontrivial selfreproduction [24], systems
that are models for parallel computers or real phenomena (cf. [15]).

The specification of such a system includes the type and specification
of the single automata (these are in almost all cases finite or pushdown
automata), the interconnection scheme (which sometimes imply a di-
mension of the system), a local and/or global transformation and the
input and output modes.

One kind of system is of special interest: the cellular spaces. In this
well-investigated model homogeneously connected deterministic finite
automata work synchronously at discrete time steps. The single auto-
mata, often called cells, are identified by vectors from Z¢ for a fixed
d € N. The state set includes a so-called quiescent state gy such that
a cell remains in state g if all of its neighbours are in state gyg. At
initial time a finite connected subset S C Z¢ of cells, which are the only
non-quiescent ones, are carrying the input.

A conceptual problem arises with the end of computations. From the
definitions it follows that the system will never halt. A common way of
defining final configurations is to define a predicate these configurations
have to fulfil and, additionally, to require that final configurations are
stable in some sense, i.e. a final configuration leads always to a final
configuration.

The most popular kinds of computations are concerned with pattern
transformation and manipulation or even formal language processing

(e.g. [3, 7, 14, 19)).

Nowadays the investigations in the field of cellular spaces theory are
often restricted to spaces with a certain normalized neighbourhood (the
von-Neumann neighbourhood). This restriction should be not a strict
one since for some cases it has been shown that a given space can be
simulated by a normalized one, eventually even with a speed-up [17].
Unfortunately, the theorem is not fully correct. Fortunately, as far as
we know other results obtained with the help of the theorem are from
areas in which the theorem holds (e.g. [2, 18]).

The main object of the present paper is to prove a generalized and cor-
rected version of the time reduction theorem. Since such considerations
are based on simulations and due to the fact that sometimes construc-
tions given in proofs do not meet their definition of simulation [2, 17]
we will propose a general definition of what one might have in mind if
an automata system simulates another one. We will discuss our notions
and relate them to notions which appear in the literature.

2 Simulations

In order to formalize the intuitive notion of simulation we have clearly
to define the systems under consideration which, of course, leads to
restrictions. On the other hand, there is a natural interest in having
feasible formalizations as general as possible.

In the following we are going to propose notions of simulation between
systems of automata. The only assumptions on these systems are that
they have to work at discrete time steps according to a global transition
function and that at every time step their overall state is described by
a so-called configuration.

In order to be not too restrictive we are interested in simulations that
relate particular configurations rather than sequences of configurations.
Another notion which forces the simulating system to use essentially
the same algorithm as the simulated system is defined in [5]. There the
similarity of space-time diagrams is under consideration which leads to
the so-called topological simulation.

At the end of some computation a system should have produced the
result. Generally, the result will be a configuration but sometimes we
will have to interpret that configuration to obtain the answer we are
waiting for. Moreover, sometimes different configurations will give the
same answer (e.g., at language recognition we like to get the answer ‘yes’
or ‘no’ but there may be more than two computations producing dif-
ferent resulting configurations). Since such interpretations are strongly
dependent on the system and the problem to solve, we do not provide
a full interpretation but an equivalent relation where each equivalent
class contains exactly the configurations that give the same answer.

For a given equivalent relation I we denote the set of equivalent classes
by [I] and a class with member ¢ by [c].

In the sequel A resp. B always denote systems with (global) transitions
T resp. 7' and configuration sets C resp. C’. All mappings are assumed
to be effectively computable.

Definition 1 Let I C C x C be an equivalent relation on the set of
configurations of system A, and let Vc € C : ¢.: N — N be a strictly
increasing partial function. System B simulates system A with respect to
I and the ¢. if and only if there exist an injective mapping f : C — C',
a mapping g : C' — [I] such that the following holds:

Vee C:Vtedom(p,): ti(c) € g(T'¢C(t) (f())

f may be seen as the encoding function which transforms an initial con-
figuration c to the corresponding one in the simulating system. The time
steps at which configurations are related via the decoding function g are

=t Ft2—t1 Fta—t2 ta—ts

g — ¢1 € [cq] 2 €leg] ———— ez €3] ———

9
; ‘ g\ /) / .
T/4>co(t1) T/¢c0(t2)7¢co(tl) Tl¢co(t3)7¢c0(t2) Tléco(u)qucu(ts)

! / J/ J
c cy ch c3

Figure 1: Illustration of a simulation.

defined by the mapping ¢.. The function f must not be too powerful
compared to 7 and 7’ such that the computation will be performed by
the automata system and not by the encodings. It is natural at least to
require f to be injective.

Due to the mappings ¢, the ratio of the time steps between two consec-
utive related configuration pairs is not necessarily a constant as is e.g. in
[1, 6, 16, 17, 23, 26]. Instead it may depend on the initial configuration
(for all ¢ € C there must exist a ¢) or the elapsed time.

To circumvent certain problems with simulations in [8] the so-called R-
simulation has been introduced. It is a weak concept since only the
results of the computations are related. Whether or not a configur-
ation is a result has to be determined algorithmically. (In our terms
R-simulation is covered by the cases where V¢ € C : |[dom(¢.)| = 1.)

Example 2 The famous open 3z + 1-problem is the question whether
there exists for all z € N a d € N such that D¢(z) = 1, where D : N — N
is a mapping defined as follows:

3r+1 ifzisodd
D(x) = { 3 otherwise
According to the problem we define the recursively enumerable formal

language Lp = {a® | 3d € N: D%(z) = 1}.
A Turing machine 7 which accepts Lp may work as follows:

Starting with the word a” on its tape it computes one application of D.
Subsequently it checks whether the new tape content is the word a or
not and moves the read/write head to the leftmost non-blank square.
If the check succeeds it stops in an accepting state otherwise it repeats
the computation. (Note: the computation will never halt if there does
not exist a appropriated d.) The time needed by 7 to compute one
application of D depends on z. In both cases it is possible to perform
the task in O(z?) time steps, say in exactly k-2, k € N constant, time
steps.

Now we want to simulate 7 by a cellular space S and additionally we
wish to be able to recompute the initial value z. For that S simply
can store a symbol + or —, dependent on the parity of z, for every
application of D.

Even if we provide a fssp synchronization before every application of D

the space can perform one application in O(x) time steps, say in exactly
l-z,] €N constant, time steps.

Let us consider the elements of the simulation in detail.

The equivalent relation consists of two classes: accepting and non-
accepting configurations. They correspond to the two possible results
we may expect at language recognition.

The mapping f is obvious: every cell gets the content of a square of the
tape as its state. Since at initial time 7 is always in the starting state
f is injective.

g maps a configuration of S to the final configuration of 7 if it consists
of just one symbol a, to a non-final configuration otherwise. Thereby
each square gets the symbol that is the state of the corresponding cell.
The read/write head is placed at the leftmost non-blank square and set
to a final resp. to the starting state. The extra information stored for
reversibility is ignored. Observe that due to the extra information g
may be not injective.

Let z. be the number of as in the configuration ¢ corresponding to the
word a”.

n

Vee O dom(ge) = {Zk (Di(z))? | n € INO}

1=0

and

be @k (Diw)?) = >0 D)

Obviously, the decoding function g can not be chosen to be injective.
Even if the classes of the equivalent relation are singletons g is often not
injective since there might be parts of computation in the simulating
system which have no counterparts in the simulated system. E.g. in [22]
an additional dimension is added to make the computation reversible.

If we set ¢.(t) = t, dom(¢p.) = N for all ¢ € C then we obtain the
simulation defined in [6]. There a generalization to reversible compu-
tations is considered also. For that (in our terms) dom(¢,) is set to Z,
which requires 7 and 7' to be invertible. However, since ¢.(t) = ¢ the
simulations are restricted to real-time.

Naturally, the time factor plays an important role. Since in definition 1
no further assumptions are made for the domain and range of ¢, it might
be difficult to determine the overall simulation time. If it is possible to
choose the points in time such that the differences between successive
ones are constant, that becomes an easy task.

Definition 3 Let system B simulate system A, and let for all c € C
{t§....,t,...} be the domain of ¢, in ascending order.

a) The simulation is ultimately uniform if and only ifVc e C :
|dom(¢pc)| > 1 and 3§ < |dom(pe)| :Vi>j:

(tF = tig = 01 — 15 A Ge(t7) — Pe(tin) = Pe(tii1) — be(t5))-

b) Define for all ¢ € C : t§ = 0 and ¢.(0) = 0. The simulation is
uniform if and only if it is ultimately uniform for j = 0.

Tt Tt Tt Tt
g —————> €yl > €[] ———> 3 E[c5] —>

T/¢(-U (t1) TI¢(-U(t1) Tl¢vo(t1) Tl¢ro(t1)

< ! &% ¢

Figure 2: Ilustration of a uniform simulation.

The definition of uniformity of simulations strengthens the notion. One
can expect that the algorithms in the simulating and simulated systems
are closer related.

The cases t1 = T - k and ¢.(t1) = T are of particular interest. They
mark a k-fold speed-up and the simulation is called to be done in 1/k
times real-time.

Ultimately uniform simulations are induced by techniques of algorithm
design in this field which require the preprocessing of inputs by the sim-
ulating system itself. Afterwards the ‘main’ simulation can take place
in a uniform manner. A common technique is the space compression of
configurations [13]. Another example is the computation of the encod-
ing function by the simulating system itself. (In this case the mapping
f is the identity.)

A picturesque example is the simulation of a cellular space by an iter-
ative array (IA). An iterative array is simply a cellular space where the
input is supplied sequentially to the cell at the origin. All other cells
are initially quiescent. It is known that in case of real-time language
recognition cellular spaces are more powerful than iterative arrays [20].

Nevertheless in a first phase an TA can read the input whereby the
symbols are stored in consecutive cells. After a subsequent fssp syn-
chronization the preprocessing is done and the TA simulates the cellular
space one to one.

The following example is due to [17].

Example 4 An one-way cellular space (OCS) is a cellular space where
each cell is connected to its right immediate neighbour only. Obviously,
the flow of information is restricted to one-way from right to left. An
OCS can simulate an CS in two times real-time according to the follow-
ing:

Consider cell z with neighbours £ — 1 and = + 1 in CS. In order to
simulate one state change of z in an OCS there must be a cell which
can collect the information (states) of the cells z — 1, z and z + 1. Due
to the restricted neighbourhood cell z — 1 can get the state of cell z in
one and the states of cell z + 1 in another one time step. Thus each
cell z in CS is simulated by cell z — 1 in OCS. For simplicity we may
assume that a cell £ — 1 becomes quiescent if the cells z and = + 1 are
quiescent.

Here we have f = identity, g(c},) is simply a k-translation to the right,
Vee C:dom(p:) =N and ¢.(n) = 2n. The simulation is uniform for
t1 =1 and ¢.(t1) = 2.

The simulated configuration of the CS in the example above shifts in
time through the space in the OCS. That is the reason why g must not
be required to be injective. If CS gets into a loop the corresponding
configurations in OCS differ in their position relative to the origin.

Another concept which strengthens simulation is given in the following
definition.

Definition 5 Let system B simulate system A. The simulation is
strong if and only if

Vee O [d] = 1 A dom(g) = range(f) A g(f(c)) = [d)-

i

i Ttl Ttl Ttl
Co 1 C2 C3
T
%eo(t1) 1Peo(t1) F1%Peo(t1) 7 %eo (1)
o a ch c

Figure 3: Ilustration of a strong uniform simulation.

One of the aspects of strongness in simulations is the injectivity of the
function g (which follows immediately from the definition). With that
we are going to compare strong and uniform simulations.

Since the shifts of configurations in example 4 require g not to be in-
jective the presented simulation is not strong (but uniform). Generally,
strong simulations do not allow shifting configurations.

Now let us consider example 2, where the non-uniformity can immedi-
ately be seen from the equations defining ¢.. Since due to the extra

information g can not be injective the simulation is neither uniform nor
strong.

On the other hand, if we do not provide the mechanism to recompute the
initial value z then g is an injective function. (In fact, the mechanism is
the only reason why g is not injective.) Moreover, a closer look at f and
g lets one observe that the simulation is now strong (but not uniform).

The simulations defined in [17] are in our terms covered by simulations
which are both strong and uniform with dom(¢.) = N. Several examples
may be obtained from the time reduction theorem in section 4.

In order to classify a simulation more precisely we need to express
whether it is complete (i.e., whether the whole computation is simu-
lated). Therefore we have to distinguish between finite and infinite
computations. Moreover, there are at least two more natural character-
istics for which the denotations are defined below.

Definition 6 Let system B simulate system A.

a) The simulation is complete if and only ifVc € C : |dom(¢.)| = oo
or the computation of A is finite, takes t; time steps, and ¢.(ty)
is defined.

b) Let k € NU {00} be a constant. The simulation is k-close if and
only ifVc € C : |dom(¢.)| = k.

¢) The simulation is direct if and only if C C C' and f is the identity
on C.

Intuitively, simulations which use essentially the same algorithms are
‘closer’ than simulations which simply compute the same input-output
function. In order to express how close related the computations are
we consider the domain of the mapping ¢.. If the simulation is 1-close
then we have the same input-output function only (e.g. R-simulation
[8]). Examples of co-close simulations with dom(¢.) = N are given
in [9] where cellular spaces are simulated by some kind of restricted
Turing machines, the so-called sweeping machines. Thereby for each
configuration of the space there is a related configuration of the sweeping
machine. In [16] simulations between cellular spaces on Cayley graphs
are investigated. The simulation defined there in our terms is covered by
simulation which are strong, uniform, oo-close and complete and where
dom(¢.) =N and ¢.(t) =T -t, T € N constant, holds.

The notion direct is slightly of another flavour. It is introduced to
express that there is no initial encoding necessary. Observe that cor-
responding simulations may be oco-close, too. For example, two cellular
spaces with different neighbourhoods simulating each other in a straight-
forward way.

3 Cellular spaces

In this section we shall give a formal definition of cellular spaces and
provide some details of their underlying topology.

We denote the integers by Z, the positive natural numbers {1,2,...}
by N and for N U {0} we write Ng. Z¢ denotes the set of all d-tuples
of elements of Z. The field of fractions of Z is denoted by Q, and Q%
denotes the d-dimensional vector space over Q.

Formally, a cellular space is defined as follows.

Definition 7 A cellular space (CS) is a system S = (S,d,N,o,q),
where

a) S is the finite, nonempty set of states,

b) d € N is the dimension,

¢) N =(aq,-..,a,) is the neighbourhood index (of degree n), i.e. an
n-tuple of distinct elements of Z¢,

d) o: 8™ — S is the local transition function, and

e) qo € S is the quiescent state for which o(qq,-..,qo) = qo holds.

Sometimes it is convenient to consider the set of neighbours instead of
the neighbourhood index, which is actually a vector. Since such cases
are easily resolved from the context we do not use a different notation.

A configuration of S at time ¢t € Ny describes the states of all the cells.
It is formalized as mapping c; : Z¢ — S. The state of cell z € Z¢ at
time ¢ + 1 is computed according to

cr1(z) = ole(z + ar),-..,ci(z + ap)).

Let C denote the set of all configurations of §. The local transition
function induces a global transition function 7 : C — C describing the
evolution of § dependent on the initial configuration.

In the sequel S, d, N, o, T and ¢y are denoting the set of states, dimen-
sion, neighbourhood index, local transition function, global transition
function and quiescent state of a cellular space S. Similarly S’ consists
of a state set S’, has dimension d’ and so on.

Now the underlying lattice structure given by Z% is considered with
respect to the neighbourhood.

It is well known that the set Z¢ forms a module over Z with the usual
pointwise sum of d-tuples and multiplication of an integer with a d-
tuple. If X is a subset of Z%, then (X) denotes the span of X, i.e. the
smallest submodule of Z¢ containing X. Clearly,

n
<X> = {ZEZ.TZ | neNz; € X,¢ =:|:1}

i=1

holds.

It is known that every submodule X of Z% has a basis of ¢, t < d, ele-
ments, i.e. the basis spans X and any element of X is uniquely express-
ible as a sum of multiples of basis elements [11]. A similar property
is well known for all subspaces of a vector space over some field. If
h: X — Y is a module homomorphism, then h(X) denotes the image
of h and ker h the kernel of h, i.e. the submodule of X consisting of all
elements mapped to zero by h. As usual, the factor module of a module
X and a submodule Y of X is denoted by X/Y.

For nonempty subsets X,Y C Z% we define their sum X + Y pointwise,
and the multiples of X are recursively defined by 1X := X and (k +
1)X := kX + X for all positive integers k.

Based on the span of the neighbourhood index we now may classify
some cellular spaces.

Definition 8 A d-dimensional cellular space with neighbourhood index
N is weakly connected iff (N) = Z%. Tt is strongly connected iff (kN) =
7% for all positive integers k.

Remark.

a) There exist weakly but not strongly connected cellular spaces: Let
d=1and N =(—1,1) then (N) = Z but (2N) = (—2,0,2) = 2Z.

b) Let S be a weakly connected cellular space. If its neighbourhood
index contains the 0 it is strongly connected since 0 € N implies
N C kN for all positive integers k.

A cellular space that is not weakly connected is sometimes called a lam-
inated cellular space. It can be regarded as a disjoint union of independ-
ently working copies of some cellular space. For a general investigation
of so-called laminations we refer to [25].

Using familiar proof techniques the following two results concerning
modules over Z can be derived. The first pays tribute to the fact that
every proper submodule of Z% can be extended to a proper submodule
having a basis of d elements.

Lemma 9 Each proper submodule of Z% is contained in some proper
submodule of Z% which is isomorphic to Z¢.

Proof. Let X be a proper submodule of Z¢. W.Lo.g. we may assume
that X has a basis z1,...,xs of t, t < d, elements.

x1,...,z; are linearly independent elements of Q%. So z1,...,z; can be
extended to a basis x1,...,%s, Tei1,...,Tq of QF where Tyy1,...,Z4 €
Q% Now we can easily find a scalar multiple z; of Z;, i = t+1,...,d
such that z1,...,24_1,2z4 are vectors from Z? which form a basis of
Q.

Let Y be the span of z1,...,%4_1,2zq in Z%. Since z1,...,T4_1,224 is

a basis of Q%, every element of Y is uniquely expressible as a sum of

10

multiples of that basis and, hence, is a basis of Y. Since z; € Y and a
bijection between that basis of Y and the standard basis of Z% can easily
be uniquely extended to an isomorphism, Y is a proper submodule of
Z% which is isomorphic to Z¢ and contains X. O

The second result is somewhat technical. It plays an important role in
the next section.

Lemma 10 Let h : Z¥ — 7% be a homomorphism and K a finite
nonempty subset of Z% such that h(Z*) + K = Z%. Then d' > d and
7% and Zdl/kerh are isomorphic. Moreover d' = d if and only if h is
injective.

Proof. FExtend h in the unique way to a vector space homomorphism
h from Q% into QY. Let H := h(Z¥) and H := h(Q¥) and suppose
dim H < d. Then there exists an £ € Q?\ H and consequently we find
some scalar multiple z of z belonging to 77 \ H. Cousider the cosets
cx+H,c€Z,of Hin Z% Since (c—d)z € H C H if and only if c = d
for ¢,d € Z, these cosets are distinct. Further H + K = Z% implies that
every such coset has some representative in K. Since K is finite we have
a contradiction. So d’ > dim H > d and, clearly, d = d if and only if h
is injective.

Since by the homomorphism theorem Zd'/ker h and H are isomorphic it
suffices to show that H and Z¢ are isomorphic. Therefore let z1, ..., z,
t < d, be a basis of H. Obviously, z1,...,z; is a basis of H, too. Since
dim H > d it follows t = d. Finally, the extension of a bijection of
Z1,...,Tq onto the standard basis of Z¢ is an isomorphism mapping H
onto Z¢. O

4 Time Reduction

The present section is devoted to the time reduction theorem for cellular
spaces. In the notions previously introduced in section 2 time reduction
means a strong, uniform, co-close and complete simulation of a cellular
space by some (other) cellular space. Since the directness is not required
the simulating cellular space may start with a configuration that is an
(injective) encoding of the initial configuration of the simulated cellular
space. Therefore, we distinguish time reduction from speed-up where
an acceleration of the computation under exactly the same input must
be achieved.

The time reduction theorem was originally shown by Cole [4] for iter-
ative arrays. Later on Smith [17] adapted the idea to cellular spaces.
Unfortunately, his proof concentrates on the choice of an appropriate
neighbourhood index for the simulating space. It does not regard the
necessity to simulate all the cells of the simulated space.

11

For a simplified discussion we recall the original lemma from [17] in our
terms:

Let S and S’ be d-dimensional cellular spaces. Let h be an injective
homomorphism from the additive group Z% into Z¢, and let K C Z¢ be
a finite set of points. Define the state set of a cell in &' at a point x
to be the Cartesian product of the state sets of the cells at points in
{h(z)} + K in S. Then a sufficient condition that a transition function
exists for simulation of § by 8" in 1/k times real time is that

h(N')+ K D kN + K.

Observe, that the encoding f of configurations from § is implicitly given
by the way the state set of S’ is defined.

The following example causes problems. It is based on the possibility
that the simulated space need not to be strongly connected.

Example 11 For simplicity we call a cell z of S imitated by S’ if there
exists a cell 2’ of 8’ such that z € {h(z')} + K.

Now let S be a cellular space such that (kN) # Z? for some positive
integer k, i.e. S is not strongly connected. Then lemma 9 ensures the

existence of an isomorphism A from Z¢ onto a proper submodule of Z¢
that contains kN. Further let K := {0} and N’ := h~1(kN).

We obtain h(N') + K D kN + K and, therefore, one might conclude
that there exists a local transition function such that &’ simulates S in
the described manner. However, h(Z%) + K = h(Z%) # 7¢ and, hence,
S’ imitates not all cells of S.

Now we have the situation that the encoding is not injective (if |S| > 1)
and, thus, we have no simulation of S by &' at all.

Observe, that the simulation defined in [17] requires an injective encod-
ing, too. Even if we would define simulations without the injectivity of
encodings there can arise problems. In [10, 12, 21] language recognition
is investigated where a configuration is accepting if all of its cells are in
an accepting state simultaneously.

Example 12 Define the stutterer language L over {a,b} as all words
in which the symbols at the odd positions are all the same and the
symbols at the even positions are all the same. (abababa, bbb, baba € L
but aab ¢ L.) The cellular space S = (S,1, N, 0,q) with N = (-2,0, 2)
can recognize L in one time step. KEvery cell accepts iff both of its
neighbours are in the same state as the cell itself or in the quiescent
state. Otherwise the cells enter a rejecting state.

We now apply the original time reduction lemma with N’ = (—1,0,1),
h(z) = 2z, K = {0} and k = 1. Then all assumptions are fulfilled, but

12

S’ simulates only the cells at even positions. Therefore, S’ would also
accept words like abaa ¢ L, where all symbols at the even positions are
the same but the symbols at the odd positions are different.

The problem in the example arises because (N) = 2Z # Z. Now we are
going to propose the following corrected and generalized version of the
time reduction theorem.

Definition 13 A strong, uniform, oo-close and complete simulation
where dom(¢.) = kN and ¢.(k - t) = t for some positive integer k is
called a 1/k-time-reduction.

Theorem 14 Let S and S’ be d- resp. d'-dimensional cellular spaces.
Let h be an homomorphism from Z% into 7% and let K be a finite
subset of Z%. Define the state set of a cell in S’ at a point z' to be the
Cartesian product of the state sets of the cells at points in {h(z')} + K
in §. Then a sufficient condition that a local transition function exists
for a 1/k-time-reduction of S by S’ is that the time reduction condition

h(N')+ K DkN+ K
and the covering condition
nz?) + K = 7¢

hold.

Proof. The proof is straightforward if we observe the original proof and
the fact that the covering condition clearly implies that the implicitly
given encoding is injective. Moreover, by the covering condition all the
cells of § are imitated. O

As mentioned before the problems arise if the simulated space is not
strongly connected. Another way to correct the theorem would have
been to add that condition to the theorem. But the covering condition
is a weaker one:

Define in example 12 K = {0,1}. Now the covering condition holds,
but the recognizer for the stutterer language is not strongly connected.
For the converse we can show the following lemma.

Lemma 15 If S is strongly connected then the time reduction condi-
tion implies the covering condition.

Proof. Obviously h(Z%)+K C Z%. To prove the converse inclusion let
z € Z% be some cell of S and let 2y € K. Since S is strongly connected
kN spans Z¢. Therefore there exists a sequence zg, 1, ... ,Tp = T such
that ;41 € x; + kN or x; € x;41 + kN for 0 < i < p— 1. (Note that
kN need not to be symmetric, i.e. kN may differ from —kN.)

13

Proceeding by induction we show that for each z; there is an z} € z¢
such that z; € h(z}) + K. Trivially choosing z{; := 0 we may now
assume that we have found an z for some 0 < i < p. Corresponding to
the different possible relations between x; and z;; we distinguish the
following two cases.

Case 1: z;41 € x; + kN.
Since z; € h(z}) + K and the time reduction condition holds it
follows

Tiy1 € T; + kN C h(z}) + K + kN C h(z + N') + K.

So there exists some z’_ ; € '+ N’ such that z;.1 € h(z},)+ K.
i+1 i + i+1

Case 2: z; € z;41 + EkN.
Let y; := z; + j(x; — xi41) for j € Ng. Then y; 41 € y; + kN and
using the same argument as in the previous case we find y; e 7?
such that y; = h(y;) +a; for a; € K and j € No. Since K is finite
there are indices | < m for which a; = a,,. It follows

Ym + Wm —u1) = h(ym + c(Wm — 91)) + am

for all integers ¢ € Z. In particular there exists some positive
integer ¢ and some T’ € 7% such that

T :=1z; +c(zip1 —) € H(IT') + K.

Applying the argument of the first case once more to the sequence
T,%Z + (% — Tip1),..., %41 the existence of an z; with z;, €
h(z}, ;) + K is ensured.

Since z = x, € h(z},) + K it follows Z* C h(Z¥) + K, i.e. the covering
condition holds. O

In theorem 14 no restrictions on the dimension of S resp. S’ have been
made. It follows from lemma 10 that d' > d which means that for time
reduction the dimension of the simulating space have to be at least as
large as the dimension of the simulated space. The next result shows
that it suffices to have the same dimension.

Theorem 16 Let S be a d-dimensional cellular space. Then the con-
ditions of the time reduction theorem imply the existence of a d-dimen-
sional cellular space 8" for a 1/k-time-reduction of S by §".

Proof. By the homomorphism theorem there exists a unique iso-
morphism p from Z%ker h onto h(Z%). By lemma 10 there is fur-
ther a isomorphism ¢ from Z¢ onto Zd'/keT h. Define 1 to be the
composition of y and ¥, i.e. n(z) = pu((z)) for all z € Z¢, and let
N" := {4 (2’ + kerh) | z' € N'} be the neighbourhood index of

14

some d-dimensional cellular space 8”. Then clearly n(N") = h(N) and

n(z*

) = h(z%). Moreover, the state set of a cell in 8" at a point x

might be the Cartesian product of the state sets of the cells at points
{n(z)} + K of S. Since h(z') = h(y') if and only if ' and y’ belong to
the same coset of ker h the state set of a cell in §” is well defined. An
application of the time reduction theorem 14 (replacing h by 7 and S’
by §") concludes the proof. O

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

Amoroso, S. and Guilfoyle, R. Some comments on neighbourhood
size for tesselation automata. Information and Control 21 (1972),
48-55.

Butler, J. T. A note on cellular automata simulations. Information
and Control 26 (1974), 286-295.

Choffrut, C. and Culik II, K. On real-time cellular automata and
trellis automata. Acta Informatica 21 (1984), 393-407.

Cole, S. N. Real-time computation by n-dimensional iterative arrays
of finite-state machines. IEEE Transactions on Computers C-18
(1969), 349-365.

Culik TI, K. and Yu, S. Translation of systolic algorithms between
systems of different topology. TEEE 14** International Conference
on Parallel Processing, 1985, pp. 756—-763.

Durand-Lose, J. O. Partitioning automata, cellular automata, sim-
ulation and reversibility. Research Report 95-01, Ecole Normale
Supérieure de Lyon, Lyon, 1995.

Dyer, C. R. One-way bounded cellular automata. Information and
Control 44 (1980), 261-281.

Hollerer, W. O. and Vollmar, R. On forgetful cellular automata.
Journal of Computer and System Sciences 11 (1975), 237-251.

Ibarra, O. H., Kim, S. M., and Moran, S. Sequential machine
characterizations of trellis and cellular automata and applications.
STAM Journal on Computing 14 (1985), 426-447.

Ibarra, O. H., Palis, M. A., and Kim, S. M. Fast parallel language
recognition by cellular automata. Theoretical Computer Science 41
(1985), 231-246.

Jacobson, N. Lectures in Abstract Algebra 2. Van Nostrand Rein-
hold, New York, 1953.

15

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Kim, S. and McCloskey, R. A characterization of constant-time
cellular automata computation. Physica D 45 (1990), 404-419.

Kosaraju, S. R. On some open problems in the theory of cellular
automata. IEEE Transactions on Computers C-23 (1974), 561-565.

Kutrib, M. Pushdown cellular automata. Theoretical Computer
Science (1998).

Kutrib, M., Vollmar, R., and Worsch, Th. Introduction to the
special issue on cellular automata. Parallel Computing 23 (1997),
1567-1576.

Roéka, Z. Simulations between cellular automata on cayley graphs.
Research Report RR 94-40, Ecole Normale Supérieure de Lyon,
Lyon, 1994.

Smith III, A. R. Cellular automata complexity trade-offs. Inform-
ation and Control 18 (1971), 466-482.

Smith ITI, A. R. Simple computation—universal cellular spaces.
Journal of the ACM 18 (1971), 339-353.

Smith III, A. R. Two-dimensional formal languages and pattern
recognition by cellular automata. IEEE Conference Record of 12
Annual Symposium on Switching and Automata Theory, 1971,
pp- 144-152.

Smith ITI, A. R. Real-time language recognition by one-dimensional
cellular automata. Journal of Computer and System Sciences 6
(1972), 233-253.

Sommerhalder, R. and van Westrhenen, S. C. Parallel language
recognition in constant time by cellular automata. Acta Informatica
19 (1983), 397-407.

Toffoli, T. Computation and construction universality of reversible
cellular automata. Journal of Computer and System Sciences 15
(1977), 213-231.

Vollmar, R. Cellular spaces and parallel algorithms. In Feilmeier,
M. (ed.), Parallel Computers — Parallel Mathematics, IMACS.
North-Holland, 1977, pp. 49-58.

von Neumann, J. Theory of Self-Reproducing Automata. edited
and completed by Arthur W. Burks. University of Illinois Press,
1966.

Yamada, H. and Amoroso, S. Tesselation automata. Information

and Control 14 (1969), 299-317.

Yamada, H. and Amoroso, S. Structural and behavioral equivalences
of tesselation automata. Information and Control 18 (1971), 1-31.

16

