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1 Abstract

Over  the  last  decades,  the  giant  progress  of  DNA  sequencing  led  to  increased 

throughput  and  tremendously  reduced  costs  resulting  in  a  broad  accessibility  and 

applicability of these technologies and thus revolutionized the entire field of microbial 

genomics. Today, these developments allow the sequencing of large groups and entire 

cohorts of bacterial genomes in a timely manner, whereas a mere decade ago, this was 

only  feasible  for  a few single  genomes.  Now,  hundreds of  thousands of  sequenced 

bacterial genomes are available in public databases and vast numbers of genomes are 

sequenced worldwide on a daily basis without any foreseeable climax. Many fields of 

research  benefit  from  these  developments,  in  particular  medical  microbiology  and 

epidemiology. Hence, genome-based analyses have nowadays become essential tools 

for  the detection,  classification,  typing and comparison of  special-interest  genes and 

pathogenic genomes at various levels. At the same time, IT is revolutionized alike by 

new  developments  like  cloud  computing  and  software  containerization  techniques. 

Modern software engineering paradigms and frameworks have recently emerged and 

provide new opportunities for scalable computations on distributed and heterogeneous 

infrastructures that in turn imply new technical premises. Albeit the mere sequencing of 

bacterial genomes as well as computing capacity in general are not the major limiting 

factors anymore, the comprehensive, timely and standardized analysis of large bacterial 

whole-genome sequencing data however remains an issue of rising importance.

Therefore, it was the aim of this thesis to address these challenges and provide novel 

bioinformatic approaches and software tools for the scalable high-throughput analysis of 

whole-genome  sequencing  data  of  large  bacterial  cohorts.  An  automated  and 

comprehensive workflow was designed and implemented in a portable,  scalable and 

user-friendly  software  tool  ASA³P.  It  supports  data  from  all  contemporary  DNA 

sequencing  platforms  conducting  the  streamlined  processing  and  analysis  from raw 

reads to assembled, annotated and comprehensively characterized genomes including 

comparative  analyses.  The  software  provides  both  vertical  and  horizontal  scalability 

allowing  researchers  to  take  advantage  of  distributed  and  versatile  computing 

infrastructures.  Results  are  presented as integrated,  human-readable  and interactive 
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1 Abstract

reports. Two further contributions address issues that have arisen from the design of this 

workflow.  For  the  integrated  analysis  of  plasmids,  a  novel  methodology  has  been 

developed for the automated and taxonomy-independent detection and characterization 

of  plasmid-borne  contigs  from  fragmented  bacterial  draft  assemblies.  As  a  new 

approach to this problem, the natural distribution bias of protein-coding gene families 

among chromosomes and plasmids is utilized, which achieves a robust and competitive 

classification performance. This new methodology was implemented in the software tool 

Platon,  which also provides additional  plasmid characterizations.  A third contribution 

addresses the robust and accurate but rapid computation of mutual genome distances 

that  is  required  for  the  automated  selection  of  high-quality  reference  genomes  and 

whole-genome-based  taxonomic  classifications.  As  the  large  amount  of  available 

genome  sequences  poses  increasing  hurdles  to  these  steps  in  terms  of  data 

accessibility, performance and runtimes, a new software tool called  ReferenceSeeker 
combining  existing  methodologies  was  developed  and  complemented  by  the 

provisioning of integrated and customizable databases. Noteworthy, its application is not 

limited to microbial genomes alone, but DNA sequences in general, including plasmids.

These  three  bioinformatics  solutions  have  been  used  in  various  published  and 

unpublished studies and proven as useful software tools for researchers in the field of 

medical microbiology.  In particular,  ASA³P enables researchers to take advantage of 

modern and scalable  IT  resources and provides  access  to  a  diverse set  of  proven 

bioinformatics software tools. Hence, even more bacterial genomes and larger cohorts 

thereof  can be processed,  characterized and compared among each other,  allowing 

researchers to keep pace with DNA sequencing technologies and future demands. Due 

to  its  extensible  framework,  the  application  of  ASA³P  is  however  not  restricted  to 

medical microbiology applications,  but can be expanded and adapted to applications 

within the much larger field of microbial genomics. Furthermore, several ideas for further 

improvements and potential new software solutions emerged from this work that opened 

new research questions and established interesting subjects for future investigations.
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1 Abstract

Zusammenfassung

Immense Fortschritte auf dem Gebiet  der DNA-Sequenzierung führten in den letzten 

Jahrzehnten  zu  einer  enormen  Kostenreduzierung  und  Erhöhung  des  weltweiten 

Sequenzieraufkommens.  Die  damit  einhergehende  weite  Verbreitung  und  einfache 

Anwendbarkeit  dieser  Technologien revolutionierte in  Folge umfassend das gesamte 

Gebiet der mikrobiellen Genomik. Noch vor einem Jahrzehnt undenkbar, ist es heute 

möglich, zeitnah große Kohorten ganzer Bakteriengenome zu sequenzieren. Öffentliche 

Datenbanken bieten heutzutage Zugang zu hunderttausenden Bakteriengenomen und 

täglich  kommen  ohne  erkennbare  Verlangsamung  unzählige  hinzu.  Von  diesen 

Entwicklungen  profitieren  viele  Forschungsgebiete,  insbesondere  die  medizinische 

Mikrobiologie  und  Epidemiologie.  Computergestützte  genetische  Analysen  sind  zu 

unverzichtbaren Werkzeugen  für  den Nachweis,  die  Klassifizierung,  Typisierung  und 

den  Vergleich  pathogener  Genome  auf  unterschiedlichsten  Ebenen  geworden. 

Gleichzeitig  erhielten  neue  Entwicklungen  wie  Cloud  Computing  und 

Softwarecontainerisierung  Einzug  in  die  Informationstechnologie  und  revolutionieren 

diese  gleichermaßen.  Moderne  Frameworks  und  Software-Engineering-Paradigmen 

bieten neue Möglichkeiten für skalierbare Berechnungen auf verteilten und heterogenen 

Infrastrukturen,  welche  jedoch  neue  technische  Ansätze  und  softwareseitige 

Anforderungen voraussetzen. Auch wenn die Sequenzierung bakterieller Genome sowie 

notwendige Rechenkapazitäten zur Analyse keine wesentlichen limitierenden Faktoren 

mehr  darstellen,  ist  die  zeitnahe,  eingehende  und  standardisierte  Analyse  großer 

Kohorten  bakterieller  Genomsequenzierungsdaten  gleichwohl  Gegenstand  aktueller 

bioinformatischer Forschung.

Ziel  dieser  Arbeit  war  es  daher,  diese Herausforderungen zu adressieren und neue 

bioinformatische  Ansätze  und  Softwaretools  für  die  skalierbare 

Hochdurchsatzdatenanalyse  von  Gesamtgenomsequenzierungen  großer  bakterieller 

Kohorten zu entwickeln. Hierzu wurde ein automatisierter und umfassender Workflow 

entworfen und in dem portablen, skalierbaren sowie benutzerfreundlichen Softwaretool 

ASA³P implementiert.  Dies  unterstützt  alle  verbreiteten  DNA-

Sequenzierungsplattformen  sowie  die  automatische  Prozessierung  und  Analyse  der 

Daten  hin  zu  assemblierten  und  annotierten  Genomen  mit  anschließender 

umfangreicher Genomcharakterisierung und komparativen Analysen aller Genome einer 

Kohorte.  Die  portable  Software  bietet  eine  sowohl  vertikale  als  auch  horizontale 

Skalierbarkeit,  welche  es  Forschenden  ermöglicht,  verteilte  und  vielseitige 
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Computerinfrastrukturen  zu  nutzen.  Alle  Ergebnisse  werden  in  standardisierten 

bioinformatischen  Dateiformaten  ausgegeben  sowie  als  integrierte,  für  Menschen 

lesbare, interaktive Berichte präsentiert. Aus der Gestaltung dieses Workflows ergaben 

sich neue Fragestellungen, welche in zwei weiteren Beiträgen dieser Arbeit behandelt 

wurden. Für die integrierte Analyse von Plasmiden wurde eine neuartige Methodik für 

den automatisierten und taxonomieunabhängigen Nachweis  plasmidärer  Contigs aus 

bakteriellen Draftassemblierungen mit anschließender Charakterisierung entwickelt. Als 

neuer  Ansatz  zu  diesem  Problem  werden  hierzu  Unterschiede  in  der  natürlichen 

Verteilung  proteinkodierender  Genfamilien  zwischen  Chromosomen  und  Plasmiden 

genutzt, wodurch eine robuste und kompetitive Klassifizierung erreicht wird. Diese neue 

Methodik  wurde  mitsamt  umfangreicher  Plasmidcharakterisierungen  in  dem 

Softwaretool  Platon implementiert.  Ein  dritter  Beitrag  adressiert  die  schnelle  und 

genaue  Berechnung  bidirektionaler  Genomdistanzen,  welche  für  die  automatisierte 

Auswahl hochqualitativer Referenzgenome und gesamtgenombasierter  taxonomischer 

Klassifikationen erforderlich ist. Die schiere Menge verfügbarer Genomsequenzen stellt 

jedoch ein immer größer  werdendes Hemmnis für  diesen Auswahlprozess bezüglich 

Datenverfügbarkeit,  Qualität  und  Laufzeit  dar.  Dazu  wurde  ein  neues  Softwaretool 

namens  ReferenceSeeker entwickelt,  welches bestehende Methoden kombiniert  und 

durch die Bereitstellung integrierter und erweiterbarer Datenbanken ergänzt wurde. Ein 

wichtiger Vorteil der Software ist dessen breite mikrobielle Anwendbarkeit, welche nicht 

auf  Bakteriengenome  beschränkt  ist,  und  darüber  hinaus  auch  allgemeine  DNA-

Sequenzen, insbesondere Plasmide umfasst.

Diese neuen bioinformatischen Softwarelösungen wurden in verschiedenen publizierten 

Studien verwendet und haben sich als nützliche Werkzeuge für Forschende auf dem 

Gebiet der medizinischen Mikrobiologie bewährt.  Insbesondere ermöglicht  ASA³P die 

Vorteile  moderner  und skalierbarer  IT-Ressourcen  zu nutzen,  und  bietet  Zugang  zu 

einer Vielzahl bewährter bioinformatischer Softwaretools und Datenbanken. So können 

immer  mehr  Bakteriengenome und größere Kohorten verarbeitet,  charakterisiert  und 

miteinander verglichen werden, und Forschende mit zukünftigen Anforderungen Schritt 

halten. Aufgrund seines modularen Designs ist die Anwendung von ASA³P jedoch nicht 

auf  Anwendungen  in  der  medizinischen  Mikrobiologie  beschränkt,  sondern  kann 

erweitert  und  an  vielfältige  Anwendungen  innerhalb  der  mikrobiellen  Genomik 

angepasst werden. Des Weiteren gingen aus dieser Arbeit zahlreiche Ideen für weitere 

Verbesserungen  und  potenzielle  neue  Softwarelösungen  hervor,  welche  neue 

Forschungsfragen aufwerfen und interessante Themen für zukünftige Untersuchungen 

bieten.
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2 Introduction

2 Introduction

“… there are 100 million times as many
bacteria in the oceans (13 × 1028)

as there are stars in the known universe.”

Microbiology by numbers
Nature Reviews Microbiology, 2011

2.1 Rationale and outline

Microbes  are  the  oldest  organisms  on  earth  and  preceded  all  other  living  beings, 

especially multicellular eukaryotes like animals and plants, by nearly three billion years 

[1]. They have been the pioneers of this planet and the foundation of the biosphere, from 

both an evolutionary as well as an environmental perspective [2]. At all times throughout 

history, humans have lived in complex ecosystems and ambivalent relationships with 

these microorganisms. On the one hand, they populate complex ecological niches on 

the surface of and within multicellular eukaryotes like plants and humans [3]. For a long 

time, the endogenous human flora was poorly understood [4,5], but step by step more 

and more white spots on this map have been erased. Today, we know that the number 

of  commensal  bacteria  colonizing  the  human  body  approximately  equals  or  even 

exceeds the number of human cells [6,7]. Only recently, we started to grasp that these 

diverse  communities  pose  an  essential  natural  line  of  defense  against  pathogenic 

microorganisms and therefore play an important role for human health  [8–11]. On the 

other hand, there is a large number of well-known pathogenic bacteria causing severe 

infectious diseases. For millennia, mankind has been severely threatened by many of 

these, which had a tremendous impact on the human population on a global scale. For 

example,  the plague caused by  Yersinia pestis [12] has been accountable  for  many 

large  historical  outbreaks  [13,14].  For  instance,  the  medieval  pandemic,  which  had 

tremendous socio-economic effects, has been described as “one of the most dramatic 

examples ever”  [15]. Although the plague is deemed vanquished, still today, there are 
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occasional  local  outbreaks in  different  parts  of  the  world  [16,17].  However,  besides 

these  small  and  large-scale  epidemics,  many  infectious  diseases  are  of  a  rather 

permanent  nature posing a lasting  burden for  humankind.  For  example,  the typhoid 

fever  caused by  Salmonella enterica serovar  Typhi  [18] led  to estimated 21.7 million 

infections resulting in 217,000 deaths in the year 2000 alone  [19,20]; for tuberculosis 

caused by Mycobacterium tuberculosis [21], 10 million infections and nearly 1.2 million 

attributable  deaths  were  reported  for  2019  [22];  and  for  cholera  caused  by  Vibrio 

cholerae, 1.2 million cases were reported in 2017  [23]. To this brief exemplary list, a 

large set of pathogens must be added that caused 600 million food-born illnesses in the 

year  2010  –  amongst  these  the  most  severe  agents,  e.g. Escherichia coli, 

Campylobacter, Listeria monocytogenes and Salmonella as well as pneumonia-causing 

bacteria, e.g. Streptococcus pneumoniae and Haemophilus influenzae type b [24].

In the mid-20th century, the human quest for biological survival of infectious diseases 

was  deemed  as  succeeded  due  to  the  discovery,  and  shortly  afterwards,  broad 

availability of antibiotics. However, over the course of the last decades, this evolutionary 

competitive  edge  constantly  lost  its  effectiveness  as  more  and  more  bacteria  have 

become  resistant  to  many  commonly  used  antibiotic  drugs.  Sadly,  humankind  has 

induced  and  is  rapidly  approaching  a  situation  in  which  bacterial  infections  could 

become untreatable again. Unfortunately, even resistances against so-called last-resort 

antibiotics  are detected more frequently,  as for  instance,  the  mcr-1 gene conferring 

resistance against colistin [25–28]. These developments have evolved to a severe public 

health issue and a threat for people worldwide. Already in 1990, the Nobel Prize winner 

Joshua Lederberg stated: “We live in evolutionary competition with microbes – bacteria 

and viruses. There is no guarantee that we will be the survivors” [29]. The magnitude of 

this global medical crisis has become distressingly clear in a recent study estimating 

that, without effective countermeasures, about 10 million people could die annually in 

2050 due to antibiotic-resistant  bacteria  [30].  Likewise,  it  has become clear  that  the 

implied  economic  burden  of  antimicrobial  resistance  (AMR)  treatments  is  massive 

[31,32].

Fortunately,  simultaneously  to  the  emergence  of  these  threats,  constant  and  steep 

scientific  progress  in  the  fields  of  molecular  biology,  microbiology,  medicine  and 

bioinformatics facilitated new methodologies for deeper investigations of the microbial 

universe as well  as for the surveillance and outbreak detection of human pathogens 

[33,34]. The advent of next-generation sequencing (NGS) technologies commenced a 

new  era  of  high-throughput  DNA  sequencing  in  which  bacterial  genomes  are 
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investigated in hitherto unknown resolution and unprecedented numbers. New genome-

based approaches have expeditiously become routine for the effective surveillance and 

precise tracing of infection chains within pathogen outbreaks [35]. Furthermore, whole-

genome sequencing (WGS) based antibiotic susceptibility  testing (AST) matures and 

might replace molecular-based phenotypic AST in the medium term [36]. Potential future 

applications might comprise real-time on-site or even point-of-care sequencing of clinical 

samples  providing  instant  and  actionable  results.  According  to  these  global 

developments, the described threat of antibiotic-resistant bacteria is on the agenda of 

policy makers and health professionals worldwide. For instance, the European Union 

installed  a  union-wide  surveillance  system led  by  the  European  Centre  for  Disease 

Prevention and Control (ECDC) to collect, analyze and report data on antibiotic-resistant 

bacteria through a network of national surveillance systems in which all member states 

participated [37].

This  strong  rise  of  antibiotic  resistance-related  DNA  sequencing  projects  in  both 

academia and public health authorities has contributed to the genesis of a large number 

of bioinformatics software tools and databases. Although there is an obvious trend in 

implementing open data standards,  as for  instance the well-known FAIR (findability, 

accessibility,  interoperability  and  reusability)  principles  [38],  only  few  if  any  open 

standards  in  clinical  WGS are  in  place.  Even worse,  this  large number  of  available 

bioinformatics solutions fostered an obvious lack of consensus regarding the choice of 

optimal  methodologies,  algorithms,  software  implementations  and  databases,  which 

often  need  to  be  combined  in  complex  workflows  exacerbating  these  issues  [39]. 

However, to fully exploit the vast potential of these promising scientific opportunities, the 

demand for standard operating procedures, common application interfaces and analysis 

workflows  needs  to  be  addressed  in  order  to  handle  the  implied  overwhelming 

complexity.

In addition to the expanding complexity of data analysis workflows, the sheer amount of 

existing data is increasing by magnitudes and thus challenges established information 

technology (IT) infrastructures. In 2015, it has been estimated that the yearly acquisition 

of  DNA sequencing  raw data  could  rise  to  a  worldwide  level  of  one  zettabyte  –  a 

trillion gigabytes (GB) – in 2025 [40]. This mind-boggling amount of raw data will push IT 

requirements to unknown levels.  Data  analysis  solutions  provided by  dedicated  and 

specialized but centralized online services might soon be outpaced by rising sequencing 

outputs and their usage will  be limited by the heavily used networks connecting local 

DNA sequencing facilities with centralized online services. These bottlenecks will put a 
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strong  pressure  on  the  way  this  raw data  will  be  processed  and  finally  foster  new 

approaches: away from centralized online services and towards local computers on the 

one hand and nearby scalable cloud computing infrastructures (CCIs) on the other. 

Due to the increasing power of standard consumer hardware, it is nowadays still feasible 

to analyze small data sets on local computers in a timely manner avoiding the limiting 

public  transportation  of  raw  data  and  limited  computing  capacities  of  centralized 

software solutions. However, increasing amounts of data like, for example, combinations 

of  novel  DNA  sequencing  technologies  and  growing  cohorts  of  large  numbers  of 

samples,  will  inevitably  require computing resources beyond the capabilities  of  local 

computers  and  centralized  online  services.  In  this  context,  distributed  CCIs  provide 

several advantages. First and most importantly, flexibility: CCIs are able to dynamically 

and rapidly provide vast computing resources on demand and thus build the technical 

foundation for the timely analysis of medium to even very large data sets. For example, 

suitable  amounts  of  computing  resources  can  be  requested  and  instantly  provided 

according to data sizes at hand and requested analysis workflows. Furthermore, CCIs 

provide  the  opportunity  and  technical  solutions  to  dynamically  adapt  provisioned 

computing  resources  to  changing  requirements  over  the  course  of  multistep  data 

analysis  workflows.  Hence  and  second  costs:  costly  upfront  expenditures  for  local 

computing infrastructures can be spared. Furthermore, CCIs are able to take advantage 

of economies of scale by using shared pools of computing resources thus achieving 

much higher overall usage statistics compared to potentially underused local computing 

infrastructures.  These  advantages  are  complemented  by  a  considerable  potential  to 

improve on operating expenses in terms of power efficiency. Hence, CCIs provide huge 

potentials  for  economic  but  also  ecological  cost  reductions.  Third  data  throughput: 

compared to centralized online services, distributed CCIs are able to provide on average 

closer hosting sites. Thus, the physical distance and the number of network endpoints 

that the data must pass on its way from DNA sequencing to data processing facilities is 

potentially reduced. This might result in reduced overall network usage and shorter data 

transportation periods.

Finally, information gained from raw data processing and analysis, either locally or CCI-

based, could then be submitted to dedicated centralized online services and information 

repositories running sophisticated information aggregation and big data algorithms. This 

higher  level  information  could  then  be  analyzed  by  specialized  software  solutions 

potentially exploiting artificial intelligence to create new knowledge from this plethora of 

information. However, in order to keep pace with these developments, bioinformatics 
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software tools will need to fulfill an increasing number of technical requirements to play 

their role in a growing stack of decentralized analysis workflows: they (i) need to be both 

easily  portable  and installable  for  non-IT  experts  via  common software  environment 

management  systems,  e.g. Docker  [41],  Podman  [42] or  BioConda  [43],  (ii)  require 

implementations that allow vertical and preferably horizontal scalability to different work 

loads, (iii) need to follow community best practices in terms of standardized interfaces 

and  file  formats  allowing  the  seamless  interconnection  with  other  tools  and  the 

integration into larger workflows.

To address these issues, novel approaches and bioinformatics software solutions have 

been developed  and are described in  this  thesis  for  the  automated high-throughput 

analysis of bacterial WGS data from single genomes and larger cohorts thereof. Three 

new bioinformatics software tools and a new methodology are described as scientific 

contributions to the field of microbial  genomics. The main contribution comprises the 

design  of  an  automated  analysis  workflow  for  the  processing  and  comprehensive 

characterization  of  cohorts  of  sequenced  bacterial  genomes  as  well  as  its 

implementation  fulfilling  the  described  contemporary  requirements.  Two  further 

contributions resulted from the design of the aforementioned workflow: the development 

of  a  taxonomy-independent  new  methodology  for  the  fully  automated  and  robust 

detection  and characterization  of  plasmid-borne contigs resulting  from bacterial  draft 

assemblies, and the rapid but accurate determination of suitable reference genomes for 

the automated selection and usage in reference-based analysis workflows.

The following section  2.2 provides a brief historical recapitulation and introduction into 

the field of medical microbiology from its beginning to the most recent developments 

regarding outbreak detection, surveillance, investigation and characterization of bacterial 

organisms as a major contemporary driving force of the global demand for sequenced 

sets  of  bacterial  genomes.  This  is  followed  by  an  introduction  to  the  field  of  DNA 

sequencing  and  related  developments  in  downstream  bioinformatics  analysis  in 

section 2.3. To describe these immense breakthroughs and to highlight the increasingly 

steep acceleration of scientific progress in these fields, a rather large time frame was 

chosen. As one key driver for the large-scale sequencing of bacterial isolates, the global 

dissemination of antibiotic-resistant bacteria as well as the implied emerging threats are 

described in section 2.4. This is followed by section 2.5 introducing the in silico analysis 

of bacterial plasmids as a key vehicle for the global dissemination of antibiotic resistance 

genes.  Section  2.6 describes  applications  for  reference  genomes  and  challenges 

regarding  the  optimal  selection  thereof.  Section  2.7 provides  a  short  layout  of 

9

https://paperpile.com/c/KdcwUe/LGkC
https://paperpile.com/c/KdcwUe/VKIn
https://paperpile.com/c/KdcwUe/xjPU


2 Introduction

contemporary challenges in microbial bioinformatics for the medical microbiology of the 

coming  2020s.  The  introduction  is  concluded  with  a  description  of  the  scientific 

challenges and gaps in the field of  microbial  bioinformatics regarding the automated 

high-throughput analysis of bacterial WGS data in section 2.8. After short summaries of 

the  peer-reviewed  publications  being  part  of  this  thesis,  these  contributions  are 

described and discussed in the light of the explicated scientific background.
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2.2 Medical microbiology and epidemiology in the course of 
time

The second half of the 19th century was the natal hour of medical microbiology as we 

know it today. Robert Koch, Louis Pasteur and Paul Ehrlich, just to name a few besides 

many  prominent  medical  and  microbiological  scientists,  made  groundbreaking 

discoveries  that  revolutionized  our  fundamental  understanding  of  infectious  diseases 

and the way we treat them today. Until that time, it had been believed that infectious 

diseases were caused by polluted air arising from decayed organic matter, condensed in 

the theory of miasma  [44]. Originating from religious thoughts, Hippokrates formed a 

naturalistic view of the origin of infectious diseases, which inhabited European cultures 

for more than 2,000 years until the mid-19th century [45–47]. In 1854, a severe cholera 

outbreak in London’s Soho district caused about 644 deaths [48]. In the middle of this 

outbreak, the young British physician John Snow doubted the miasma theory in favor of 

a waterborne transmission [49]. Although Snow achieved to find the spatial origin of the 

outbreak by combining death cases with geographical data, he was not able to prove his 

ideas. Posthum, his conception was endorsed by the medical statistician William Farr, a 

former vital supporter of the miasma theory, by the statistical analysis of death rates 

[50].  In  the  course  of  the  following  decades,  the  miasma  theory  more  and  more 

struggled and was finally taken over by the modern germ theory. This opposing theory, 

conveying the conception that microbes are the cause of infections, recurrently came up 

and was described in basic versions throughout the ages, from Ibn Sina in 1025 [51] to 

Girolamo Fracastoro in the mid-16th century  [52]. But in 1876, this theory was finally 

proven by the description of  the full  lifecycle  of  Bacillus  anthracis – maybe the most 

significant breakthrough in the field of medical microbiology. For the first time in history, 

the full progression of an infectious disease could be described in combination with and 

in the light of the causing agent that has bedeviled mankind ever since  [53]. Only six 

years  later,  in  1882,  Robert  Koch  published  the  discovery  of  Mycobacterium 

tuberculosis,  the  agent  and cause  of  one of  the  most  deadly  and feared infectious 

diseases causing one out of seven deaths in Europe in these times [21]. A mere year 

after, Koch discovered the cholera agent  Vibrio cholerae and thus finally proved John 

Snow right [54]. Several of these findings have been condensed and summed up in his 

famous postulates, which are still in use today and led to the discovery and description 

of many bacterial pathogens in the following years [55]. These major discoveries, among 

many others  in  the “golden  age” of  bacteriology,  laid  the  cornerstone for  numerous 
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following  scientific  discoveries  in  molecular  biology  and  genetics  and  thus  built  the 

fundamental scientific basis for our today’s understanding of medical microbiology and 

epidemiology.

Over the course of the following century, bacterial species were described in profusion, 

hugely  expanding the known microbial  world.  In  1980,  a  large reorganization  of  the 

bacterial nomenclature reduced redundancy resulting in about 2,300 unique taxonomic 

names [56]. In order to distinguish and finally identify known and new bacterial species, 

an  elaborate  and  time-consuming  phenotypic  description  had  to  be  conducted, 

comprising the morphological description and stainings by visual inspections as well as 

metabolic  classifications  based  on  chemical  assays.  Not  until  the  discovery  and 

understanding of the DNA as the encoding molecule of the genetic information in the 

middle of the 19th century, it was possible to take advantage of the inherent ultimate 

blueprint of all living beings as a new approach for the description of and discrimination 

between  bacterial  species.  This  discovery  along  with  concordant  progresses  in 

molecular  biology  started  a  shift  from mere  morphological  and  macromolecular,  i.e. 

phenotypic,  descriptions  to  modern  DNA-based,  i.e. genotypic,  descriptions  and 

characterizations  of  bacterial  organisms.  Based  on  these  genotypic  methods,  the 

definition  of  bacterial  species,  the  typing  of  closely  related  groups  and  even  the 

identification of single strains became conductible leading to revolutionary developments 

in medical microbiology as well as new tools for modern epidemiology.

These advances in the use of molecular markers and genetics posed an epidemiological 

game changer. For instance, in the 1970s DNA-DNA hybridization was introduced as a 

bilateral method to differentiate between bacterial species. Genomes that showed more 

than 70% DNA-DNA homology under given conditions were considered to belong to the 

same species  [57].  Improving from mere species  delineation,  in  1984 Schwartz and 

Cantor developed the pulsed-field gel  electrophoresis  (PFGE) as an improvement to 

normal  gel  electrophoresis  [58].  This  new  technique  enabled  the  DNA-based 

fingerprinting  of  bacterial  organisms with  previously  unreached  resolution.  Now,  this 

fine-grained discrimination of bacterial strains allowed for the tracing of individual strains 

down  an  epidemiological  chain.  In  1996,  the  US  Centers  for  Disease  Control  and 

Prevention  (CDC)  started  a  programme  named  PulseNet  aiming  to  create  a  large 

compilation of PFGE-based DNA-fingerprints of foodborne bacterial human pathogens 

[59]. As soon as DNA-fingerprints of new clinical isolates from hospitalized patients were 

available, they could be compared to those stored in the database. Matches helped to 

subsequently  build  a  reliable  link  between  a  patient  and  the  food  or  its  production 
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environment helping to frame foodborne pathogen outbreaks. Convinced by the results 

of this project, until 2001, all US public health state laboratories engaged into PulseNet. 

Until 2015, this database had grown to one million records covering more than 500,000 

DNA fingerprints of Salmonella genomes alone and nearly 90,000 patterns were queried 

and  compared  from  participating  public  health  authorities  [60].  By  exploiting  the 

pathogens’  genomes in  order  to  identify  and type them and finally  trace outbreaks, 

PulseNet became an epidemiological story of success.

Meanwhile, a new approach called multilocus sequence typing (MLST) was proposed in 

1998.  Instead  of  comparing  physical  fingerprints  of  DNA  fragments,  this  new 

methodology was based on recently emerging DNA sequencing technologies. Exploiting 

species specific expert knowledge, DNA sequences of a tiny fraction of housekeeping 

genes  are  collected  and  assigned  arbitrary  numbers.  Combinations  of  these  allele 

numbers are assigned numbers again resulting in a digital fingerprint that is simple to 

use,  share  and communicate  [61].  Advantages in  terms of  electronic  portability  and 

much higher strain resolution instantly led to the creation of MLST schemes for many 

pathogenic species  [62–68] as well as bioinformatics software tools and data sharing 

platforms for the analysis and sharing of pathogenic bacterial genome sequence types 

[69,70].

However,  in  2005,  when  the first  commercial  NGS platforms entered the market,  it  

became clear that these new techniques had the potential to revolutionize microbiology 

and epidemiology, again  [71]. Only five years later, the PulseNet project used a WGS 

approach to  investigate  an  ongoing  outbreak of  Vibrio cholerae in  Haiti  with  93,000 

cases and 2,100 attributable deaths [59,72]. Shortly after, in 2013, the CDC started to 

use WGS techniques for the routine surveillance of Listeria. By doing so, more pathogen 

genome clusters were detected, and more outbreaks could be solved than ever before. 

Phylogenetic investigations exploiting the high genetic resolution of WGS approaches 

were  shown  to  be  in  line  with  epidemiological  data,  thus  helping  to  reconstruct 

outbreaks. Hence, WGS has transformed the surveillance of  Listeria related outbreaks 

[73].
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This  unprecedented  resolution  of  WGS  methods,  combined  with  publicly  available 

genome sequences allowed the exact and rapid typing and identification of bacterial 

pathogens on a global scale and hence, quickly transformed the way how outbreaks 

were investigated in general [74,75]. It could be shown that the fine-grained resolution of 

WGS approaches clearly outperform former methodologies like serotyping, PFGE and 

MLST  [76] and  that  this  increased  genomic  resolution  is  highly  advantageous  for 

epidemiological  investigation  of  outbreak  clusters  and  potential  transmission  routes 

(Figure 1)  [77].  Soon,  it  became  a  routine  standard  for  the  surveillance  of  many 

foodborne bacterial pathogens in 2016 [59]. Furthermore, a contemporary study came to 

the conservative estimation that PulseNet helped to avoid about 266,000 illnesses from 

Salmonella and nearly 10,000 illnesses from  Escherichia coli annually,  thus reducing 

medical and productivity costs by about US$500 million  [78]. Spurred by these large 

medical successes, modern WGS techniques became the new PulseNet gold standard 

for  foodborne  pathogen  surveillance  [79].  Furthermore,  roughly  20  years  after  its 

inauguration,  the PulseNet  project  was expanded globally  fostering new international 

collaboration and standardization  [80]. Against the background of its advantages over 

preceding technologies, it  is not surprising that WGS was rapidly picked up and has 

successfully been used in many other scientific and public health projects  [81,82]. For 
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Figure  1:  Exemplary depiction of  cluster  resolution levels  of  different  molecular  methods for 
outbreak detections and investigations.

Isolates  of  Salmonella  enterica sampled during  an outbreak in  the  USA in  2018 have been 
investigated and clustered using different genomic methods. Individual dots represent cases of 
gastroenteritis  with  sampled  and  investigated  isolates.  Gray  dots  represent  cases  that  were 
determined not to be linked to an outbreak; colored dots represent cases linked to confirmed 
outbreaks. A) For demonstration purposes, cases are randomly placed representing unclustered 
samples if no data is available. B) Clustering of isolates according to PFGE. C) Clustering of  
isolates  according  to  WGS  methods.  Reprinted  with  permission  from The  NEW  ENGLAND 
JOURNAL of MEDICINE [77], Copyright © 2019, Massachusetts Medical Society.
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instance, the GenomeTrakr project was the first distributed network of US state, local, 

federal as well as international laboratories solely applying WGS based approaches for 

the surveillance of foodborne pathogens  [83,84]. By the end of 2019, nearly 500,000 

bacterial  genomes were sequenced and stored publicly  along with equally  important 

metadata. It goes without saying that PulseNet and GenomeTrakr are accompanied with 

similar  sequencing  projects  and  databases  all  over  the  world.  Further  examples  of 

contemporary pathogen genome platforms for epidemiology are EnteroBase  [85] and 

Pathogenwatch [86]. The latter uses pre-assembled bacterial genomes to focus on the 

subtyping  of  isolates,  prediction  of  antibiotic  resistances  and  the  subsequent 

comprehensive interactive visualization thereof combined with related metadata.

Of course, the nowadays broad application of WGS is neither limited to the analysis of 

bacterial  pathogens  nor  to  the  detection  and  surveillance  of  pathogenic  outbreaks, 

alone. DNA sequencing of large numbers of bacterial  isolates and cohorts of closely 

related  genomes  from  various  sources,  e.g. different  hosts  and  environments,  has 

tremendously  contributed  to  our  current  understanding  of  bacterial  life.  Besides  the 

general organization of the genome itself, this also comprises fundamental underlying 

genetic mechanisms, different sizes of pan-genomes i.e. the entirety of genes within a 

given population, taxonomic diversity and complexity, genomic population structures and 

evolutionary dynamics on various scales (Figure 2)  [57,87–96]. In regards to medical 

microbiology,  the  broader  application  of  WGS  undoubtedly  propelled  a  better 

understanding and deeper knowledge of bacterial pathogenicity  [97,98], virulence and 

host adaptations  [99]. Likewise, our understanding of the spread and dissemination of 

virulence factors and antibiotic resistance genes [100] via horizontal gene transfer highly 

benefits  from  comparative  studies  that  take  into  account  more  and  more  genome 

sequences from either different species or intra-species strains [101].
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Figure 2: Molecular evolutionary mechanisms propelling genetic diversity and complexity within 
bacterial populations at different scales.

a) Inherent molecular mechanisms propelling genomic diversity between species and strains. b) 
Horizontal gene transfer mechanisms driving the exchange of genetic material between species 
and shaping intra-species population structures. c) Evolutionary selective mechanisms shaping 
populations. d) Populations at different scales: from a single genome to the pan-genome covering 
the entirety of all genes of a given species to a metagenome covering all genomes in a given 
microbial  community.  Reprinted  with  permission  from  Nature  Reviews  Microbiology  [57], 
Copyright © 2008, Springer Nature.



2.3 The coevolution of DNA sequencing and bioinformatics

“… a knowledge of sequences could contribute much
to our understanding of living matter.”

Frederick Sanger
Biographical, 1980

In the first half of the 20th century, several revolutionary experiments made by Griffith, 

Avery, MacLeod, McCarty, Hershey and Chase  [102–104] finally confirmed that DNA 

was the biological material that stores and transports the genetic information. Due to 

investigations of the crystallographic structures of DNA created by Franklin and Wilkins, 

in April 1953 Watson and Crick were able to finally solve its three-dimensional structure 

[105]. Further discoveries like the  one gene one enzyme hypothesis  [106], the operon 

concept  [107] and  finally  the  deciphering  of  the  genetic  code  [108] constituted  the 

foundation of modern genetics and all related scientific disciplines, especially present 

DNA sequencing.

2.3.1 Whole-genome shotgun sequencing

In  the  mid-1970s  two  influential  protocols  for  DNA  sequencing  were  published  by 

Sanger and Coulson [109] and Maxam and Gilbert [110]. Only two years later in 1977, 

Sanger  and  colleagues  achieved  to  sequence  the  first  entire  genome  of  the 

bacteriophage X174 [111]  and published a new method for  DNA sequencing usingϕ  

chain-terminating  dideoxy  inhibitors  [112].  This  technique  was  widely  adopted  and 

hence can be considered as the birth of first generation DNA sequencing. Three years 

later, Frederick Sanger was awarded his second Nobel prize for these contributions. At 

the time of  his  award ceremony,  he claimed his  conviction that  “… a knowledge of 

sequences could contribute much to our understanding of living matter.” [113] – a well 

understated claim looking back in retrospect. The first version of a sequenced genome, 

the bacteriophage X174, had a genome length of 5,375ϕ  nucleotides [111]. However, 

the  increasing  amount  of  sequenced  DNA  fragments  and  resulting  assembly  sizes 
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began to challenge their manual editing and paper-based organization, thus raising the 

demand for computer aided methods. In 1977, Rodger Staden published a first set of 

computer  software tools  supporting  researchers  by  the  in silico storage,  editing  and 

analysis  of  both  DNA and  amino  acid  sequences  specifically  designed  “for  use  by 

people with little or no computer experience” [114]. Two years later, Staden published a 

computer-aided DNA sequencing strategy along with an improved version of its software 

package [115] to deal with the increasing rate of DNA sequencing. In the early 1980s, 

this rate was further enhanced by new cloning protocols of small and random fragments 

from  DNA  restriction  enzyme  digestion,  which  led  to  standardized  DNA  shotgun 

protocols [116,117]. Meanwhile, first DNA databases evolved [118] which quickly led to 

the foundation  of  two  major  repositories  for  DNA submissions  shortly  after  in  1986 

whose  successors  are  still  actively  maintained,  today,  i.e. the  GenBank  and  the 

European Molecular Biology Laboratory (EMBL) data library [119,120]. In the following 

years between 1985 and 1990, the groundbreaking chain-terminating technology was 

further improved [121–125]. Concurrently, the first algorithms for the sensitive and timely 

sequence similarity searches evolved and first usable implementations were published 

as for instance FASTA and BLAST (“basic local alignment search tool”) [126–128]. The 

latter  is  still  in  use  today  using  an  omnipresent  file  format  standard  introduced  by 

FASTA. These developments allowed computer-aided searches for similar sequences in 

DNA and protein sequence collections of hitherto unprecedented size.

Up to this point, the largest sequenced genome was that of the bacteriophage lambda 

with  a  genome  size  of  48,502 base pairs  [129].  The  combinatorial  complexity  of 

assembling hundreds and thousands of sequenced DNA fragments was a tedious and 

demanding task that led to the development of many bioinformatics software tools for 

the automated assembly of such sequenced DNA fragments into larger contigs  [130]. 

However, the progress made in DNA sequencing technologies steeply increased the 

number of such fragments and likewise the implied computational requirements. This 

was  a  severe  hurdle  that  limited  WGS projects  targeting  larger  genomes  [2].  As  a 

consequence thereof, more efficient assemblers evolved, which allowed the assembly of 

larger genomes [131,132]. In 1995, the first complete genome of a free living organism, 

the bacterium Haemophilus influenzae, was sequenced [133] followed by the genome of 

Mycoplasma genitalium shortly after  [134]. Over the course of the following five years, 

the  genome sequences  of  about  30  microbes  were  published  [2] comprising  many 

bacterial  pathogens,  e.g. Mycoplasma pneumoniae [135],  Escherichia coli [136], 

Bacillus subtilis [137],  Helicobacter pylori [138],  Borrelia burgdorferi [139],  Treponema 

pallidum [140] and in 1998  Mycobacterium tuberculosis [141] – 116 years after Robert 
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Koch initially described its pathogenicity. At the end of the 20th century in 1999, for the 

first time, two genomes of unrelated strains from the same species  Helicobacter pylori 

were  comprehensively  compared  [142] by  taking  advantage  of  the  aforementioned 

bioinformatics  tools  FASTA  and  BLAST  [127,128] in  order  to  align  and  identify 

orthologous  and  paralogous  genes.  In  the  beginning  of  the  21st  century,  in  2001 

bacterial genome comparisons were taken to a new level as, for the first time, two entire 

bacterial genomes were sequenced, annotated and extensively compared against each 

other in a single scientific publication gaining new insights into the genomic complexity 

of Staphylococcus aureus providing evidences of horizontal gene transfers [143].

In the following years, the large number of sequenced and publicly available microbial 

genomes posed an enormous fundus for new discoveries leading to new insights into 

the genetic repertoire and characteristics of microbial genomes. This in turn enabled the 

development  of  new algorithms and software tools  exploiting  this  knowledge for  the 

automated prediction of coding and non-coding genes  [144–147]. As a consequence, 

the  automated  prediction  and  comparison  of  microbial,  especially  bacterial,  genes 

enabled  the  reconstruction  of  genetic  networks  underpinned  by  the  detection  of 

orthologous genes from many genomes. These networks could be further combined with 

metabolic  pathways leading  to  comprehensive  and integrated  genome and  pathway 

databases like  EcoCyc  [148] and KEGG  [149].  Furthermore,  the growing number of 

individual  smaller  sequencing projects led to the development of  genome annotation 

tools supporting the manual annotation by automated annotation workflows [150–152].

2.3.2 High-throughput sequencing

In  1988,  a  new  sequencing  approach  evolved  that  quantified  the  release  of 

pyrophosphate  during  DNA  polymerase  activity  [153].  Instead  of  terminating  DNA 

synthesis, this new methodology was able to constantly monitor DNA synthesis in real-

time  without  perturbation  [154,155].  In  2005,  the  first  commercially  available  DNA 

sequencing  platform  entered  the  market  taking  advantage  of  this  new  sequencing 

protocol. This platform used an emulsion method for DNA amplification combined with a 

pyrosequencing protocol and triggered a new revolution; it commenced the era of the 

so-called NGS or  second generation sequencing methods  [71]. In the following years, 

several  companies,  e.g. Solexa,  SOLiD  and  Polonator,  entered  the  market  offering 
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commercial NGS platforms using either an emulsion PCR approach  [71,156,157] or a 

so-called bridge amplification. The latter one building clusters of DNA fragments on a 

flow-cell [158] was implemented by Solexa, which was later acquired by Illumina [159].

The tremendous advances in DNA sequencing triggered by these NGS technologies 

revolutionized DNA research and allowed researchers to conduct experiments that were 

technically  infeasible  or  unaffordable  before.  In  2003,  the  Human  Genome  Project 

published  the  first  human  genome,  which  took  13  years  at  costs  of  approximately 

US$2.7 billion [159]. Only five years later, using NGS technologies, the same has been 

achieved at costs of approximately US$1.5 million within five years [160]. Until the time 

of  writing,  Illumina  NGS platforms  made significant  progress  and  have  become the 

predominant NGS technology  [161,162]. Until  2019, about 15,000 Illumina short-read 

sequencing machines were installed worldwide, which in total sequenced an astonishing 

amount  of  150 petabases – a  50% annual  increase  [163].  For  instance,  the  largest 

currently offered device yields an output of up to 6 terrabases and 20 billion reads in 

about  44 hours  [164].  These  steep  advances  in  NGS  techniques  have  led  to  an 

immense cost inflation. In 15 years, the costs of DNA sequencing using contemporary 

sequencing  platforms  have  precipitously  dropped  from  US$1 million  to  nowadays 

US$0.01 per raw megabase. For example, a 100 fold coverage of an  E. coli genome 

roughly costs around US$5 [165].

Spurred by these new DNA sequencing  technologies  and the resulting  stark rise  of 

available DNA sequencing data, plenty of new bioinformatics methods, algorithms and 

software  tools  emerged  that  address  the  various  steps  required  for  the  adequate 

analysis  of resulting short-read data.  These comprise the clipping of remaining DNA 

adapter sequences as well as the filtering of low-quality reads or read regions  [166–

169], the assembly of short DNA-sequencing reads to larger continuous sequences, i.e. 

contigs  and  larger  scaffolds  [170–175],  the  correction  of  single  nucleotide  or  larger 

structural  assembly  errors,  the  filling  of  assembly  gaps  [176,177],  the  ordering  and 

reorientation  of  contigs  and  scaffolds  [178–183], and  finally  the  mapping  of  quality-

filtered short  DNA-sequencing reads to reference genomes for  phylogenetic  analysis 

[184–190]. Low costs and accompanying broad accessibility of NGS technologies and 

bioinformatics software tools broke down barriers in terms of costs and manual efforts 

and thus propelled DNA based research projects. For instance, the WGS of bacterial 

isolates has become a standard methodology to address genomic questions. However, 

subsequently required bioinformatics analyses became more diverse and complex than 

ever due to the manifold specialized analysis steps involved. In addition, due to the short 
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read lengths of NGS platforms, the analysis of bacterial genomes remained limited to 

draft  assemblies,  as short  reads are unable  to span repetitive genomic  regions like 

ribosomal operons, insertion sequences and transposons  [191–193]. Hence, complete 

bacterial  genomes  remained  a  demanding  goal  requiring  manual  effort  and  the 

combination of different sequencing approaches.

2.3.3 Single-molecule long-read sequencing

To overcome these  limitations,  a  new methodology  was  described  for  the  real-time 

sequencing of single DNA molecules in 2009 [194]. In contrast to existing NGS methods 

that were limited to certain numbers of sequencing cycles, this new approach used an 

uninterrupted template-directed DNA synthesis. This new protocol allowed the detection 

and constant incorporation of dye-labeled nucleotides into a growing DNA strand. A new 

technical  platform  achieved  to  conduct  this  reaction  within  nanostructure  arrays  of 

zeptoliter  (10-18 ml)  reaction  vessels  allowing  the  highly  parallel  sequencing  of  DNA 

sequences over thousands of bases without perturbation of the reaction. This new DNA 

sequencing  technology  was  implemented  and  commercially  offered  by  Pacific 

Biosciences.  This  platform achieved  read  lengths  larger  than  1 kilobase pairs  up  to 

several 10 kilobase pairs  [194]. One drawback of this technology was the significantly 

lower DNA sequencing accuracy. However, due to library preparation and sequencing 

protocol  improvements,  recent  devices  are  able  to  produce  circular  consensus 

sequences  achieving  read  lengths  of  more  than  10 kilobase pairs  with  nucleotide 

accuracies of more than 99% [195].

In 2016, Oxford Nanopore Technologies (ONT) entered the market offering an additional 

DNA  sequencing  platform.  This  new  platform  detects  the  sequence  of  single  DNA 

molecules  in  real-time  by  measuring  the  current  signal  of  ions  passing  a  biological 

nanopore immobilized within a synthetic membrane along with a single stranded DNA 

molecule. Hereby, DNA pentamers sliding through the nanopore cause a characteristic 

ion current signal. This signal is measured and deciphered via bioinformatic analysis in 

order  to  identify  the  individual  DNA base pairs  [196–198].  Although  the sequencing 

accuracy of this new technology remains considerably lower than that of Illumina short-

read and Pacific Biosciences long-read sequencing technologies,  lengths of resulting 

DNA  sequencing  reads  eventually  exceed  100 kilobase pairs.  By  using  this  new 

technology, in 2017 and 2018, world records for the longest sequenced DNA molecule 
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were  set  achieving  read  lengths  of  1.015 million  and  1.204 million  base pairs, 

respectively  [199,200].  The  latter  was  even  argued  to  actually  have  a  length  of 

2,272,580 base  pairs  that  might  have been incorrectly  split  by  the ONT MinKNOW 

software into several subreads. One unique feature of these new devices is their small 

size of 10.5 cm, low weight  of  87 g and low price of US$1,000 making them a truly 

portable  and affordable  sequencing platform  [201].  In  addition  to the unprecedented 

read  lengths,  portability  and  accessibility,  recent  ONT  devices  produce  several 

terabases per sequencing run [202,203]. However, challenging systematic homopolymer 

issues  remain  that  cannot  be  fully  compensated  via  higher  sequencing  coverages. 

However, this drawback might be extenuated or even overcome with new generations of 

nanopores  [204].  Also,  the  bioinformatic  analysis  of  the  raw current  signal  is  under 

active development and has made significant progress. Several different algorithms and 

implementations  have  recently  been  published  for  the  initial  base  calling  and 

subsequent polishing of resulting assemblies, which take advantage of hidden Markov 

models and deep learning techniques [205].

These  new  platforms  again  revolutionized  DNA  sequencing  enabling  tremendous 

advances in microbial WGS. Due to the possibility to sequence single DNA molecules in 

real-time, combined with the outcome of significantly longer sequencing reads, these 

new  technologies  have  soon  been  denominated  and  have  become  referred  to  as 

third generation sequencing technologies  [206,207]. Their great potential for microbial 

genome analysis led to the availability of many dedicated assemblers trying to exploit 

and  overcome  the  different  advantages  and  disadvantages,  respectively  [208–214]. 

Sequence identities of resulting assemblies can subsequently be further improved by 

using  specialized  genome  polishing  tools  [177,211,215].  However,  as  none  of  the 

described sequencing technologies and related bioinformatics software tools alone is 

currently able to produce complete bacterial genomes with sufficiently high nucleotide 

identities  at  low costs,  hybrid  sequencing  approaches are  conducted with  dedicated 

hybrid assemblers [216–218]. 
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2.3.4 Assembly, annotation and characterization of bacterial 
whole-genome sequencing data

As explicated in the former chapters, bacterial  WGS has seen tremendous progress 

over the last two decades. These advances from shotgun Sanger sequencing to NGS 

and finally third-generation real-time sequencing had large impacts on how microbes are 

investigated today. In only 25 years since the publication of the first complete bacterial 

genome  sequences  [133,134],  high-throughput  WGS  has  become  routine  and  a 

standard methodology for many scientific applications. However, it is obvious that the 

mere  sequencing  of  bacterial  genomes  alone  is  not  sufficient  to  answer  scientific 

questions at hand and to finally create new knowledge. Instead, this is just an initial step 

and many more are required to extract all the information hidden in these data. The raw 

data created via several technologies and provided in various data formats must  be 

processed,  analyzed and transformed into assembled and annotated genomes.  This 

sequencing-technology-independent  information  can  then  be  used  for  specialized 

in silico genome characterizations as well as various downstream analyses. In order to 

do  so,  multiple  distinct  data  processing  steps  are  required,  which  depend  on  the 

technology and platforms used to create the data. The following paragraphs sketch the 

required raw-data processing steps and possible computational genome analyses.

As  a  first  step,  potentially  remaining  adapter  sequences  are  clipped  from  raw 

sequencing reads. Afterwards, sequencing reads of overall  low quality are discarded 

and regions of low quality are trimmed. Depending on the sequencing technology and 

protocol, reads are filtered by length in order to discard futile too short reads and thus 

reduce the complexity  of  downstream analyses [166,167,219,220].  Afterwards,  reads 

originating from potential vector contaminants can be detected via read mapping against 

dedicated  databases  [221].  Likewise,  sequencing  reads  can  be  checked  against 

common  sources  of  contamination  like  for  instance  human  DNA  using  custom 

databases [222,223]. Finally, DNA sequencing yields are controlled in terms of average 

per-base qualities, read length, remainders of adapter sequences and motif enrichments 

[168,224]. As a second step, these quality-filtered sequencing reads are assembled into 

longer  contiguous sequences,  called  contigs.  Contigs themselves might  be arranged 

and combined into scaffolds using additional read-based information. To achieve this 

task, several approaches and algorithms have been described addressing short or long 

sequencing reads or hybrid approaches using both.  For instance,  to assemble short 

sequencing  reads,  overlap-layout-consensus  [225]  and  de Bruijn  graph  [226,227] 

algorithms  evolved  as  the  predominantly  used  approaches.  De Bruijn  graph  data 
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structures proved particularly suitable to represent the overlaps of short reads by using 

k-mers as vertices and read paths along the k-mers as edges in the graph. Because the 

graph size is determined by the genome size and content of repetitive sequences, it is in 

principle  not  affected  by  favorably  higher  redundancy  introduced  by  deeper  read 

coverage, hence the large number of developed and available de Bruijn graph-based 

short-read assemblers today [170–175,228]. However, it  became obvious that for the 

assembly  of  more  error-prone  long  sequencing  reads,  de  Bruijn  graph-based 

approaches  are  not  optimal  and  overlap-layout-consensus  approaches  were  proven 

more suitable, as for example implemented in Canu [210]. One variant achieves very 

fast  assemblies  by  skipping  the  computationally  demanding  consensus  step 

implemented in Miniasm [229]. Another approach implemented in Flye [212] generalizes 

the idea of de Bruijn graphs to make them eligible for error-prone long reads, i.e. repeat 

graphs. Here, long reads are assembled conducting random walks through the overlap 

graph generating error-prone so-called disjointigs. These potentially repeated disjointigs 

are then collapsed into repeat representatives. The final assembly is then created by 

resolving these repeats via long read alignments [212]. This short exemplary list of long-

read-only algorithms and assemblers is by no means complete and many more variants 

and other approaches exist [208,214,230,231]. A third approach is the combination of 

both short and long sequencing reads, which can be conducted in an either short-read-

first  or  long-read-first  manner.  For  the  former,  long  reads  are  utilized  to  scaffold 

assembled short-read contigs and resolve  loops and repeats in  the assembly graph 

whereas  for  the  latter,  short  reads  are  used  to  correct  errors  within  long  reads  or 

resulting  long-read  assemblies.  The  short-read-first  approach  has  been  shown  to 

provide superior results and is implemented,  e.g. in Unicycler [216,232]. Nevertheless, 

none of the described assembly approaches is able to create flawless assemblies. Each 

DNA sequencing technology and related assembly software tools  come with distinct 

error profiles, which has led to the development of assembly polishing tools using either 

short  or  long  reads or  even  both.  Whereas  short  reads are  used to  fix  small-scale 

assembly  errors  like  single  nucleotide  mutations  and  short  insertions  and  deletions 

[176,233,234], long reads are used to correct medium and large-scale errors [211,235–

237]. Like hybrid assembly approaches, some assembly polishing tools even implement 

multiple error-correction algorithms taking advantage of both data types [176,233]. Just 

recently, it has been shown that the combination of multiple assembly polishing tools 

implementing  different  post-assembly  error  correction  algorithms,  is  able  to  address 

various error types and thus complement each other [234]. After these steps, additional 

quality checks are conducted in order to assess the quality of the assembled bacterial 
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genome sequences. For this purpose, various specialized metrics and statistics like for 

instance  the  N50,  have  been  developed  as  a  measure  for  the  contiguity,  which  is 

determined  by  the  number  and  size  of  assembled  contigs  [238].  Another  important 

aspect, particularly for new or rare species, is the completeness of assembled genomes. 

Addressing this,  several phylogenomic approaches have recently evolved in order to 

check assembled genomes for certain single-copy orthologous genes that are common 

to all bacterial genomes or genomes of a distinct taxonomic lineage [239,240].

At  the time of  writing,  the majority  of  assembled bacterial  genomes available  in  the 

public databases resulted from short-read sequencing data. As outlined in the former 

chapters,  these short  sequencing  reads cannot  span  the various  repetitive  genomic 

regions  of  bacterial  genomes  and  thus,  resulting  assemblies  typically  remain  in  an 

unfinished status. These so-called draft genomes comprise varying numbers of contigs, 

typically tens to hundreds. As both order and orientation of these contigs compared to 

the actual biological genome sequence are determined by mere technical aspects of the 

implemented  assembly  algorithm,  these  contigs  are  required  to  be  ordered  and 

rearranged  in  a  so-called  scaffolding  step.  During  this  process,  extrinsic  genomic 

information  from a  closely  related  reference  genome may  be  used  to  increase  the 

synteny between the assembly and a selected reference  [178,241]. To enhance this 

process and to expand the proportion of syntenic genomic regions between assemblies 

and the reference, recent scaffolding algorithms are able to utilize not just a single but 

multiple reference genomes [180–182]. After this step, the resulting bacterial genomes 

pose a common ground for many downstream analyses that are technically independent 

from DNA sequencing technologies.

For  many  of  these  downstream  analyses,  a  thorough  annotation  of  the  assembled 

genome is required and crucial as both accuracy and comprehensiveness have strong 

impacts on all subsequent analysis steps. However, this process is by no means trivial.  

Genomic regions of interest must be either detected or predicted and then functionally 

described, which is denoted as regional and functional annotation, respectively. Due to 

the diverse genetic  nature of  these various genome features,  an exceptionally  large 

number of dedicated algorithms, tools and databases evolved to conduct these distinct 

tasks. For example, non-coding genes like tRNAs, tmRNAs, rRNAs and ncRNAs can be 

detected via covariance models exploiting their characteristic folding and resulting three-

dimensional structures [242]. These models are collected and stored in public databases 

to streamline their distribution and expert curation [243]. In addition, many dedicated and 

more-specialized tools evolved to improve the detection,  classification and functional 
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description of tRNAs, tmRNAs [147,244,245] and rRNAs [246,247]. Besides these non-

coding genes, many additional feature types can be detected via distinct tools as for 

example  clustered regularly  interspaced palindromic  repeats  (CRISPR)  [248–253] or 

homology  searches  against  specialized  databases,  e.g. origins  of  replication  and 

transfer  [254,255].  However,  all  these  features  combined  account  only  for  a  small 

proportion of a bacterial genome. The majority of the bacterial genome is constituted by 

protein-coding genes and related coding sequences (CDS). In contrast to non-coding 

features, these share common characteristics, i.e. nucleotide triplets denoted as codons, 

that encode for amino acids as well as start and stop codons. These potential coding 

sequences between start and stop codons are called open reading frames (ORFs) that 

can easily be extracted from the sequence.  However,  due to random start  and stop 

positions  that  occur  on  the  available  six  translation  frames  resulting  from  three 

nucleotide positions in both directions of a DNA strand, ORFs tremendously outnumber 

actual CDS. In order to find true CDS within the vast set of all ORFs, dedicated gene 

prediction  tools  take  into  account  additional  upstream features  like  the  presence  of 

ribosomal binding sites and promoter sequences [146,256,257]. Then, these predicted 

nucleotide  or  amino  acid  sequences  can  be  assigned  to  protein  families  and  their 

functions can be inferred from related protein sequences. This process is denoted as 

functional  annotation and is  conducted via homology searches against  databases of 

known sequences and subsequences that have already been described by experts. For 

this process, the mutual coverage and identity between two sequences are used as an 

approximation  for  homology  and  many  dedicated  algorithms  and  tools  have  been 

developed to solve this task as accurately  and fast  as possible  [128,258–261].  This 

exemplary short  list  of  annotation  feature types only  comprises  higher-level  and the 

most-important features and many more could be added, in particular regulatory regions 

like  promoters,  operators,  RBS  and  non-coding  cis-regulatory  regions.  Hence,  the 

comprehensive annotation of bacterial genomes is a complex and demanding task and 

various centralized online  services evolved to streamline the different  steps that  are 

involved in this task  [150,262–264]. However, these services have become unsuitable 

for the timely annotation of large-scale WGS data due to the ever-increasing speed at 

which bacterial genomes are being sequenced today  [265]. Furthermore, legal affairs 

and sensitive data might  deem the upload to external servers inappropriate or  even 

unacceptable. Because of these restrictions, high-throughput annotations are required to 

be  conducted  either  locally  on  standard  consumer  hardware  and  high-performance 

computing (HPC) clusters or within scalable CCIs. Several command-line software tools 

have recently been developed to conduct this task [266–268].
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2.3 The coevolution of DNA sequencing and bioinformatics

Based  on  the  genome  sequence,  predicted  and  functionally  described  genes  and 

genome  features,  many  general  and  more-specialized  genome  analyses  and 

characterizations  are  feasible.  One  important  instance  thereof  is  the  taxonomic 

classification of bacterial genomes. Due to their diverse nature and the fact that there is 

more of  a  continuum between bacterial  genomes than clearly  definable  boundaries, 

many different  in silico approaches evolved addressing the different taxa levels [269]. 

One approach is  the  phylogenetic  analysis  of  the  16S rRNA gene sequence  that  is 

broadly accepted and utilized for reliable phylogenetic placements [270–272]. However, 

this  methodology  is  limited  in  terms  of  resolution  and  thus  only  provides  reliable 

placements up to the genus level. To classify genomes with higher resolutions up to the 

species  level,  whole-genome  approaches  like  in silico DNA-DNA  hybridization  and 

average  nucleotide  identity  (ANI)  have  become  gold  standards  for  taxonomic 

classifications [273–276]. For various applications, in particular outbreak detections and 

the surveillance  of  certain  lineages,  the species  classification  is  often not  sufficient. 

Hence,  in silico MLST  analyses  are  conducted  to  detect  sub-species  lineages  and 

assigned sequence types are compared and shared world wide [85,277]. Besides the 

taxonomic classification and genome typing, annotated genomes and genes pose an 

invaluable starting ground for countless downstream analyses. With regard to modern 

medical microbiology and epidemiology, the detection, annotation and surveillance of 

AMR genes and virulence factors are of particular interest and utmost importance to the 

field and thus, led to the development of many software tools [278–283] and databases 

[282,284–288]  that  are available  today to achieve these tasks.  Another  example  for 

specialized gene-based analyses is the detection and annotation of biosynthetic gene 

clusters  [289,290].  Of  note,  gene-based  approaches  are  often  complemented  by 

sequence based methodologies in order to detect and annotate genome features that 

are otherwise hard to identify as for example insertion sequences [291–293].

In conclusion, this tremendous progress in the field of bacterial  WGS gave rise to a 

plethora of highly-specialized bioinformatics algorithms, software tools and databases. 

Today,  researchers  must  choose  from  multiple  alternatives  in  order  to  conduct  the 

various explicated tasks of data processing, related downstream analysis and genome-

based  computational  characterizations.  In  addition  to  detailed  per-genome 

characterizations, the broad availability of both tools and WGS data meanwhile fosters 

the  standardized  analysis  of  entire  cohorts  of  multiple  closely  related  genomes. 

However,  this  constant  progress,  which  cannot  be  considered  to  be  attenuating 

[206,294],  implies new challenges that must  be addressed.  Besides data processing 

steps and genome-based analyses,  additional  mere technical  issues emerge,  as for 
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example  rising  requirements  for  data  storage,  management  and  transfer  [40]. 

Furthermore, the various data processing and analysis steps need to be combined and 

integrated into automated and reproducible workflows that are executed in a scalable 

manner on different computing resources and infrastructures [295].
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2.4 Antibiotic-resistant bacteria – a global threat and 
challenge for public health

“Then there is the danger that
the ignorant man may easily underdose himself

and by exposing his microbes to
non-lethal quantities of the drug,

make them resistant.”

Sir Alexander Fleming
Nobel Prize acceptance speech, 1945

The serendipitous discovery of penicillin in 1928 by Alexander Fleming was a milestone 

in  medical  history  [296].  In  the 1940s,  its  clear  antibacterial  effects  and non-human 

toxicity  led  to  large-scale  production  and  mass  treatments.  Meanwhile,  Selman 

Waksman  achieved  to  turn  this  incidental  discovery  into  a  standardized  screening 

procedure  for  molecules  with  antibiotic  effects  and  introduced  the  technical  term 

antibiotic [297]. Both discoveries have been awarded with well-deserved Nobel Prizes 

as  these  findings  triggered  the  biggest  medical  revolution  since  the  discovery  of 

vaccines. Accompanied with the steep scientific progress made during the mid-1900th 

century, it was then thought that bacterial diseases would be easily controlled and the 

threat of many infectious diseases would finally come to an end. However, already in his 

Nobel Prize acceptance speech Alexander Fleming stated that “there is the danger that 

the ignorant man may easily underdose himself and by exposing his microbes to non-

lethal quantities of the drug, make them resistant”. Even though, not underdosing but 

quite the opposite happened, he was unfortunately proven right in the very same year by 

the first detection of penicillin resistant bacteria. In the “golden era” of antibiotics around 

the 1960s, most today-known classes of antibiotics have been discovered. Only a few 

classes of antibiotic drugs have been found thereafter, e.g. daptomycin – the last one in 

1986 [298]. 

Nevertheless, these fairly easy discoveries of antibiotic drugs created an uncritical and 

wasteful use without decent considerations of the potential consequences, which later 

on  materialized  [299].  Between  2010  and  2015,  the  aggregated  consumption  of 
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antibiotics  in  76  countries  increased  by  65% from 21.1  to  34.8 billion  defined  daily 

doses – a  common metric  to  measure antibiotic  consumption  [300].  This  large-scale 

human  consumption  is  comprehensively  described  and  well-understood  in  many 

different  setups and there  is  compelling  evidence  that  it  is  a  primary  driver  for  the 

emergence of  antibiotic  resistances  [301–305].  Too often,  the effectiveness of  these 

necessary drugs is threatened by the unnecessary prescription by physicians uncertain 

of diagnoses and consumers lacking better knowledge or unaware of the problem [306]. 

Comparatively, these disastrous developments are even dwarfed by the mass usage of 

antibiotics  in  livestock  farming.  The global  consumption  of  antimicrobial  agents  was 

recently estimated at  a level  of  about  63,000 tons.  Even worse,  the global  usage is 

projected to increase by 67% to approximately 105,000 tons by the year 2030 [307]. The 

soaring global demand for meat driven by the rising global population and desire of low- 

and middle-income countries to catch up with the often critical lifestyle of the western 

countries, led to meat production growths since 2000 of 68%, 64%, and 40% in Africa, 

Asia, and South America, respectively [308]. This demand fosters antimicrobial usage in 

order to increase livestock productivity, which equals a large share of 73% of the entire 

global  consumption  of  antimicrobials  [309].  The  considerable  and  nearly  constant 

contact  of  animals  in  livestock  farms  with  antimicrobial  drugs  establishes  favorable 

conditions for the selection of antibiotic-resistant bacteria and might provide important 

reservoirs  for  antibiotic  resistance  genes  [307].  This  immense  evolutionary-active 

selection pressure caused by the mass prescription and consumption of hundreds and 

thousands of tons of antibiotics has put the world at the dawn of a post-antibiotic era that 

would pose an equally severe and tragic medical regress of almost an entire century 

[306].

Unfortunately, these developments are not the only concerns for public health. During 

the last 50 years, at least 26 emerging bacterial infectious agents have been identified. 

A key driver for this increased exposure of humans to bacterial pathogens are major 

changes in human lifestyle as well as the constant rush into and settling of previously 

uninhabited rural nature for both industrial and leisure reasons. Our natural environment 

is a sheer infinite prokaryotic reservoir and many of those might play a pathogenic role 

once transmitted from their ecological niche to humans [55,310,311]. A large proportion 

of bacterial diseases originally derive from animals, livestock or wildlife,  and thus are 

considered as zoonoses. Since 1940, 60% of 335 emerging infectious diseases events 

were zoonoses, 54% are attributable to bacteria [312]. This combination of emergence 

of  new bacterial  pathogens on the one hand and the emergence of  novel  antibiotic 

resistance genes on the other hand constitute a global issue for public health worldwide. 
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For instance, in Europe in 2007, nearly 400,000 infections have been estimated and 

about  25,000  deaths  have  been  attributed  to  only  six  antibiotic-resistant  bacterial 

pathogens resulting in approximately 2.5 million extra hospital days  [313]. The implied 

costs of hospitalization and loss of productivity summed up to total costs of 1.5 billion €. 

This estimated burden further increased to nearly 670,000 infections and about 33,000 

attributed deaths in 2015 [32]. Likewise, a recent study of the CDC from 2019 estimates 

2.8 million  infections  with  antibiotic-resistant  bacteria  in  the  USA,  leading  to 

approximately 35,000 deaths, annually [314].

This worldwide surge of multi-resistant bacteria has led to the realization that without the 

implementation of effective countermeasures, in 2050 up to 10 million people could die 

annually due to infections with antibiotic-resistant bacteria [30]. To address these huge 

medical threats, many new drugs have been introduced, which have been evolved via 

modifications of  existing antibiotic  targets. However,  this repertoire of  effective drugs 

found  in  the  golden  era  of  antibiotics  has  run  short  and  global  pharmaceutical 

companies  became reluctant  to  invest  in  their  antibiotic  drug pipelines.  This  lack  of 

economic investment and research exacerbated the precarious situation  of  available 

antibiotic  drugs  [315].  Because  of  these  developments,  it  has  become  obvious  to 

scientists, the health-care community and policymakers, that new antibiotic targets and 

approaches  are  urgently  needed  [316].  In  order  to  guide  research,  discovery  and 

development  of  new antibiotics,  the  World  Health  Organization  (WHO)  published  a 

global priority list of antibiotic-resistant bacteria posing the most-severe threats to public 

health,  e.g.  Acinetobacter baumannii,  Pseudomonas aeruginosa and 

Enterobacteriaceae [317].  Some  of  the  most  dangerous  bacterial  pathogens  have 

become famous as the so-called antibiotic-resistant ESKAPE pathogens: Enterococcus 

faecium,  Staphylococcus aureus,  Klebsiella pneumoniae,  Acinetobacter baumannii, 

Pseudomonas aeruginosa and Enterobacter species [318].

In 2019, over 400 scientific projects from more than 300 institutions worldwide actively 

investigated new antibiotic targets and drugs. A large proportion hereof follows entirely 

new approaches enabled by recent findings, which in turn are only possible because of 

the  large  amount  of  deeply  characterized  bacterial  genomes  as  well  as  novel 

epidemiological  knowledge  gained  by  large-scale  genome  analyses  [319].  Although 

there are considerable global efforts towards the discoveries of new antibiotic targets 

and approaches, again it has become obvious and common sense that a shift of the 

common mindset is required in order to fight back antibiotic resistances. Accelerating 

the required pace of the global community, the WHO urgently advocated for a global 
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action plan in 2015 bringing together scientists and policymakers [320]. The explicated 

set of countermeasures and described paths for a more sustainable economy in regards 

to the usage of antibiotics in public health, veterinary and agriculture has recently been 

acquainted with the term ONE health [321,322].

One effective and necessary countermeasure is the early containment of antimicrobial-

resistant pathogens stopping the spread of emerging or highly prevalent AMR genes. In 

order to do so, a deep understanding of the underlying antibiotic resistance mechanisms 

(Figure 3b)  as  well  as  their  epidemiology  at  different  scales  is  required  to  forestall 

unnecessary  prescriptions.  The  immense  increase  of  recently  sequenced  antibiotic-

resistant  bacterial  genomes  has  impressively  shed  light  on  the  diverse  nature  of 

antibiotic resistance mechanisms and their genetic determinants (Figure 3c), which can 

be  grouped  into  innate  and  acquired  resistances.  Innate  resistances  originate  from 

spontaneous genetic mutations modifying cellular targets (Figure 3a) of antibiotic drugs 

attenuating  or  stopping  susceptibility  to  these.  This  comprises  for  instance,  point 

mutations  in  the  16S  ribosomal  RNA  gene  conferring  resistance  to  tetracycline 

derivatives  [282] and alterations in  the regulatory machinery leading to increased or 

decreased  transcription  rates  of  resistance  targets  [323].  These  innate  resistances 

primarily disseminate via vertical gene transfer. Besides, acquired resistances denote 

the active or passive incorporation of new genes that cause antibiotic resistances into 

the  genome  via  horizontal  gene  transfer,  such  as  conjugation,  transduction  and 

transformation  [324].  Main  mechanisms  hereof  are  mobile  genetic  elements,  e.g. 

plasmids, transposons, integrons, conjugative elements and bacteriophages [325–327]. 

These mobile genetic elements are key drivers for the spread and evolution of antibiotic 

resistance  genes.  Except  for  bacteriophages,  mobile  genetic  elements  fall  in  two 

categories: those that can move from one bacterial cell to another and those which can 

move from one  genetic  location  to  another  within  a  cell  [327].  This  often results  in 

complex genetic landscapes harboring resistance genes within nested mobile elements, 

which therefore are able to move from one system to another [328]. 
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Figure  3: Exemplary depiction of targets, mechanisms and genetic determinants of antibiotic 
resistances.

a) Groups of antibiotic drugs act on various molecular targets within bacterial cells. b) Antibiotic  
resistance  is  implemented  by  numerous  molecular  and  genetic  mechanisms.  c)  Genomic 
alterations  and  genetic  mutations  as  determinants  of  antibiotic  resistances.  Reprinted  with 
permission from Nature Reviews Genetics [323], Copyright © 2019, Springer Nature.
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This large number of different genetic determinants and acquisition mechanisms make 

the surveillance and epidemiological  tracing of  resistance genes a delicate task.  For 

example, the large and diverse group of β-lactamases is a prominent example for their 

complex heterogeneity. Today, β-lactamases are categorized by different classification 

systems,  e.g. Amble  and  Bush-Jacoby-Medeiros  using  either  protein  sequence 

homologies  or  phenotypic  profiles,  respectively  [329,330].  According  to  the  Amble 

classification, β-lactamases are classified into four groups: A, C, D representing serine 

β-lactamases  and  group  B  representing  metallo-β-lactamases  [330].  Each  group 

comprises many subgroups with variants denoted by different naming schemes, as for 

example TEM named after Temoneira – the first patient from which samples harboring 

these alleles  were  collected,  CTX and  OXA named by  their  primary  antibiotic  drug 

targets cefotaxime and oxacillin, KPC named by the species Klebsiella pneumoniae and 

NDM  named  after  New  Delhi – the  location  of  its  first  detection  [331].  The  rigor 

description, categorization and typing of antibiotic resistance gene alleles is a crucial 

task for the surveillance of emerging genes as well  as the epidemiological tracing of 

their  dissemination.  In  2017,  more than  1,800 variants  [331] of  β-lactamase protein 

sequences have been described of  which many occur globally.  One example is  the 

NDM metallo-ß-lactamase group, which has been reported for the first time in 2008 in a 

patient  isolate  in  New  Delhi  conferring  resistance  to  a  variety  of  penicillins  and 

cephalosporins. Only three years later, many of its derivatives are reported worldwide 

[332]. Bad enough, but the rise and spread of ß-lactamases, which include extended 

spectrum ß-lactamases, is only one example. Due to these omnipresent resistances, 

other  and  mostly  newer  antibiotics  are  reserved  as  last-resort  drugs,  e.g. colistin. 

However,  just  recently  a  plasmid-encoded  resistance  gene  called  mcr-1, which  was 

initially  found  in  China  [26],  has  now  been  detected  all  over  the  world,  e.g. Laos, 

Thailand, Nigeria, Europe [25] and Germany [27]. 

The described disseminations of antibiotic resistance genes are prominent examples of 

the global efforts to understand the emergence and spread of these genes based on 

modern WGS technologies. Increased bacterial sequencing projects driven by further 

cost  reductions  and  streamlined  bioinformatic  analysis  pipelines  are  expected  to 

contribute  to  the  rapid  inhibition  of  further  disseminations  and  hopefully  real-time 

outbreak detections on a global scale, soon. Though, WGS approaches are not limited 

to  the  detection  of  antibiotic  resistance  genes  alone.  Another  application  of  utmost 

importance is the in silico prediction of AST. However, in 2017 the European Committee 

on  Antimicrobial  Susceptibility  Testing  (EUCAST)  reviewed  the  current  development 

status of WGS for bacterial antimicrobial susceptibility testing (AST) and came to the 
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conclusion that there is a lack of evidence that WGS could be used for AST in clinical 

settings today. Amongst many issues, more quality controls, performance standards and 

common  comparative  measures  are  necessary  [333].  However,  despite  these  open 

issues,  DNA sequencing  technologies  and related protocols  in  clinical  environments 

have come a long and astonishing way considering what can nowadays be achieved by 

these methodologies  [334].  Once these  issues  are  overcome,  whole-genome based 

in silico prediction of antibiotic susceptibility might be a fast and cost-efficient alternative 

[335].

The steep progress in molecular biology and genetics led to an understanding of the 

underlying  molecular  targets  (Figure 3a)  of  antibiotic  resistances,  e.g. the  gyrase 

involved  in  DNA  replication,  polymerase  involved  in  mRNA transcription,  ribosomes 

involved in the protein translation as well  as the cell  membrane and cell  wall.  These 

targets are involved in  the many known mechanisms as for  instance a reduced cell 

permeability,  antibiotic  efflux,  expression  changes,  target  protections  and  enzymatic 

modifications and degradations of antibiotics (Figure 3b). The various underlying genetic 

determinants  (Figure 3c)  for  all  of  these  molecular  mechanisms  of  a  phenotypic 

resistance can be grouped into two aforementioned distinct classes, innate and acquired 

resistances. The latter are predicted via the identification of a certain gene that is known 

to infer a resistance via homology searches against resistance gene databases and the 

application of decent quality thresholds, e.g. the mutual sequence coverage and identity 

of query and subject sequences. Over the last decade, more than 15 public databases 

of  AMR genes emerged and evolved,  not  including many additional  species-specific 

databases [34,323]. However, the mere detection of an antibiotic resistance gene alone 

often does not provide sufficient  information for an accurate phenotype prediction as 

many biological processes, as described above, can have an important effect, either in 

cis or  trans location. These processes form the group of innate resistances, which are 

notoriously  hard  to  predict,  as  many  different  molecular  targets  and  often  complex 

mechanisms are required to be taken into account.  Besides the described technical 

hurdles, which hopefully and most-certainly will be overcome soon, these very complex 

genetic determinants pose a severe challenge and open field for modern bioinformatics 

and currently hamper the precise AST in silico. 

Still, as more and more deeply sequenced and phenotypically characterized genomes of 

bacterial pathogens are available, potentially combined with transcriptomic, proteomic 

and  metabolomic  data,  the  numerous  molecular  and  genetic  interplays  and 

dependencies  can  be  comprehensively  depicted  in  order  to  foster  a  deeper 
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understanding of complex antibiotic resistance mechanisms. One example of such deep 

analysis, which achieves very high genetic resolutions, is a recent study investigating 

the genetic evolution of antibiotic determinants in different bacterial in-patient isolates by 

a combination of genomic and transcriptomic data  [336].  Another promising but also 

demanding approach is the exploitation of modern machine-learning techniques for the 

analysis  of large amounts of  genotype and phenotype datasets in so-called genome 

wide association studies (GWAS). Recently,  many studies have been described that 

address genomic AST by machine-learning approaches [337]. For example, Chen et al. 

investigated  genetic  variants  of  28 targeted  genomic  regions from more than  3,600 

phenotypically  described  Mycobacterium tuberculosis genomes.  Next  to  favorable 

achievements in the prediction of resistance phenotypes, by doing so they could also 

identify  previously  uncharacterized  mutations  as  important  predictors  for  certain 

resistance types potentially  pointing to new antibiotic  targets and mechanisms  [338]. 

Especially, the identification and interpretation of machine-learned genetic determinants 

of innate resistances is gaining more attention, as these are notoriously hard to identify 

via  classical  approaches.  For  instance,  a  recent  study  published  a  biochemically 

interpretable  machine-learning  classifier  for  microbial  GWAS  putting  the  available 

genetic  data  into  the  context  of  biochemical  pathways  [339].  A  further  example  of 

machine-learning  approaches  is  the  single  nucleotide  polymorphism  (SNP)  based 

prediction of antibiotic susceptibility. High-quality data given, recent studies could show 

that  decent  predictions  are  possible  [36,338,340] potentially  even  predicting  distinct 

susceptibility  levels,  i.e. the  minimal  inhibitory  concentration  for  certain  drugs  [341]. 

However,  the  requirement  for  large  amounts  of  high-quality  data  poses  a  notable 

hindrance to these promising approaches. In order to unleash their full potential, vast 

numbers of sequenced genomes along with high-quality phenotypic characterizations 

are required and thus will  further drive and increase the rate of bacterial WGS  [323]. 

Furthermore,  this  high  sequencing  rate  combined  with  phenotypic  characterizations 

must  be continued in  order  to forestall  genomic data and actual  phenotypes drifting 

apart  and  to  keep  databases  up  to  date  regarding  new  antibiotic  determinants.  In 

addition,  further  progress  in  DNA  sequencing  technologies  in  terms  of  costs  and 

throughput will drive the sequencing of even more isolates of given samples. This in turn 

would  provide the foundation for  deeper  analyses of  intra-host  evolutions  and intra-

population variations on the smallest scales down to the level of single cell sequencing.
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2.5 In silico detection of bacterial plasmids

Plasmids are genetic vehicles and constitute an important mechanism for both vertical 

and horizontal gene transfer in bacteria and thus play a vital role in the spread of genes 

within  and  between  bacterial  populations  [342–345].  Genes  encoded  on  plasmids 

comprise a large genetic repertoire often featuring non-essential metabolic, resistance 

and  virulence  capabilities  that  provide  an  evolutionary  advantage  in  certain 

environments  [346–348].  A  prominent  element  in  this  group  with  large  medical  and 

epidemiological implications are genes conferring resistance to antibiotic drugs. Many 

acquired antibiotic  resistance genes are actively  or  passively  mediated via  plasmids 

between bacterial  organisms and additionally  exchanged  between plasmids  and  the 

chromosome via transposons and integrons  [326]. These often complex and versatile 

genetic landscapes foster the spread of resistance genes, which has been traced and 

comprehensively described in the literature based on DNA sequencing techniques [349]. 

A prominent example thereof is the traced global spread of the plasmid-encoded mcr-1 

gene inducing resistance against colistin – a last-resort antibiotic drug. This gene has 

been initially  found  in  Enterobacteriaceae isolated  from human and animal  samples 

collected in China [26]. Later, the mcr-1 gene was found widely spread over the whole 

world,  e.g. Laos, Thailand, Nigeria and Europe  [25]. In 2017, it has additionally been 

described to be detected in  Germany  [27],  as well.  Therefore,  the plasmid-mediated 

spread of antibiotic resistance genes is an issue of increasing severity. It is well known 

that plasmids are able to break species boundaries and thus spread widely, for instance 

via wildlife both taxonomically and geographically [350].

Hence, the automated screening of bacterial genome assemblies for the presence of 

plasmids  is  a  necessary  and  important  task  and  a  powerful  tool  for  plasmid-based 

epidemiology. It is broadly known and accepted that DNA-based in silico approaches for 

the identification and characterization of plasmids provide profound advantages in terms 

of  sensitivity  and  specificity  over  classical  molecular  methodologies.  However, 

depending  on  the  used  DNA  sequencing  platform,  this  requires  several  necessary 

bioinformatics  tasks  that  introduce  new  challenges.  Due  to  the  complex  genetic 

landscape of bacterial genomes and in particular plasmids, short-read WGS approaches 

regularly fail to recover complete chromosome and plasmid sequences. This is caused 

by repetitive regions like rRNA operons, insertion sequences and transposons, which 

are known to notoriously hamper finished short-read assemblies [191–193]. Nowadays, 

many of  these issues can be addressed and often solved by long-read sequencing 
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technologies providing sequencing reads that are long enough to span these repetitive 

regions. However, new issues arise from these technologies in turn, as the advantage of 

longer DNA-sequencing reads comes at the cost of comparatively lower read quality in 

terms of sequence identity. For some sequencing technologies, this is even exacerbated 

by higher rates of systematic sequencing errors that cannot be fully compensated by 

higher sequencing depths. Because of these issues, long-read-only assemblies are still 

unsuitable  for  many  standard  epidemiological  in silico analysis,  e.g. multi-locus 

sequence typing, resistance allele typing and transmission studies. Additionally,  long-

read sequencing libraries are often filtered in silico for longer sequencing reads that help 

closing short-read assemblies. Unfortunately, discarding the typically large number of 

shorter long reads in turn often results in losing small plasmids. It could also be shown 

that small plasmids tend to be underrepresented in some long-read DNA libraries that 

are optimized for larger DNA fragment sizes and thus further exacerbate these issues 

[351].  For  these  reasons,  high-accuracy  short-read  data  is  still  required  for  such 

applications  [352]. To address and finally overcome these issues,  hybrid sequencing 

approaches  combining  short  and long-read technologies  emerged that  triggered  the 

development of dedicated assembly tools, as for instance a recently enhanced SPAdes 

version  and  Unicycler,  which  improves  and  complements  the  SPAdes  assembly 

workflow  [216,218]. However, as long-read sequencing platforms are still notably less 

cost-efficient  compared  to  short-read  sequencing  platforms,  most  large-scale  WGS 

projects still  rely  on the latter.  Furthermore,  long-read technologies  emerged in  only 

recent years and thus, public DNA repositories still provide significantly more short-read 

WGS data for mere historic reasons aside from cost effects. Hence, a necessary first  

step  in  many  in silico plasmid  analysis  workflows  is  the  detection  and  extraction  of 

plasmid-borne contigs from short-read draft  assemblies posing a binary classification 

problem: either a contig originates from the chromosome or a plasmid.

This classification problem is a bioinformatic challenge and has resulted in multiple new 

approaches and many implementations of many software tools. These address either 

the identification or even the entire reconstruction of plasmid sequences within bacterial 

whole-genome short-read draft assemblies. They can be divided into three categories 

(Table 1).  The  first  comprises  tools  searching  for  known  genes  and  related 

subsequences  in  highly  specialized  databases.  PlasmidFinder,  for  example,  detects 

DNA subsequences of genes necessary for the flawless plasmid replication machinery, 

which are known as incompatibility groups [353]. MOB-suite seeks to identify conserved 

relaxase protein sequences, which are necessary for the mobilization of plasmids, from 

a highly curated and dedicated database [254]. A second large group comprises tools 
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2.5 In silico detection of bacterial plasmids

analyzing k-mers and varying k-mer frequencies. PlaScope  [354] and PlasmidSeeker 

[355] conduct lookups against pre-built databases whereas cBar [356], PlasFlow [357], 

mlPlasmids  [358] and PlasClass  [359] take advantage of  more elaborated machine-

learning approaches in order to exploit subtle frequency differences and complex non-

linearities hidden in the data. The third group comprises a heterogeneous set of tools 

analyzing  assembly  graphs.  Short-read  assemblies  almost  never  result  in  closed 

genomes but complex graph structures representing potential paths through connected 

contigs. Many tools take advantage of this additional information, which is provided by 

contemporary  assemblers  as  assembly  graphs.  PlasmidSPAdes  [360] and  Recycler 

[361] exploit  k-mer coverage variations between contigs.  Recycler  [361], PLACNETw 

[362] and gplas [363] take into account additional information from paired-end reads that 

bridge disjoint contigs and try to find circular paths through the assembly.

Table 1: Approaches, methodologies and tools for the detection of plasmid-borne contigs within 

bacterial draft assemblies.

Category I II III

Input type Assembled genomes Sequencing reads 
and/or
assembly graphs

Approach Detection of 
conserved genes and 
sequence probes 
from curated 
databases

K-mer frequency 
analysis

Assembly graph 
analysis

Methodology Homology searches Statistics,
machine learning

Statistics,
heuristics

Tools PlasmidFinder,
MOB-suite

PlaScope,
cBar,
PlasFlow,
mlPlasmid*,
PlasClass

PlasmidSPAdes,
Recycler,
PLACNETw*,
gplas

Disadvantage Low sensitivity Targeted databases Dependency on 
sequencing 
technology

* Non-automated interactive workflow
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All  these  approaches  come  with  distinct  advantages  and  shortcomings  making  the 

optimal  tool  selection a difficult  task.  None of  the described approaches achieves a 

combination of reasonably high sensitivity and specificity, but are rather biased towards 

one or the other. Furthermore, many follow targeted approaches addressing particular 

taxa, favor certain plasmid sizes or ranges of sequencing coverage  [364–366]. These 

limitations  complicate  the  selection  of  tools  and  methodologies  and  make  them 

inadequate  for  the  integration  into  untargeted,  fully  automated  and  sequencing 

technology-independent  analysis  workflows  for  the  large-scale  analysis  of  bacterial 

WGS data.
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2.6 Applications for reference genomes and optimal 
selections thereof

Since the introduction of the very first 

nucleotide  databases  in  the  1980s 

[118–120],  the  number  of  publicly 

available genomes is constantly rising. 

For example, between 1982 and today 

(2021),  the  number  of  genomic 

sequences  stored  in  GenBank 

increased from 606 to 219,055,207. Of 

note,  the  number  of  unfinished 

sequences  resulting  from  whole-

genome  short-read  sequencing 

projects  increased  from  172,768  in 

2002  to  1,517,995,689  today  [367]. 

Therefore,  the average yearly  growth 

rate  of  WGS  sequences  of  ~60% 

considerably  outpaced  the  average 

yearly  growth  rate  of  complete 

sequences  of  ~40%.  This 

tremendously  increasing  number  of 

available  genome  sequences, 

especially microbial including bacterial, 

led  to  the  realization  that  curated, 

high-quality  non-redundant  collections 

are  necessary  in  order  to  manage, 

maintain and represent the large and 

diverse  taxonomic  range  of  available 

microbial  sequences.  Over  the  last 

decade,  tremendous efforts went  into 

the design, setup and maintenance of 

such reference sequence repositories 

regarding  both  assemblies  and 

annotations  [264,368,369].  These 
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Figure 4: Overview of the MinHash approach to 
approximate the Jaccard index.

A pair  of  input  sequence sets is decomposed 
into two sets of k-mers. These sets of k-mers 
are  transformed  into  sets  of  hashes  using  a 
hash function. Hashes are sorted according to 
their  numeric  values and for  each set,  the  m 
lowest hashes are selected as a sketch,  i.e. a 
representative  set  of  k-mers.  Finally,  the 
fraction  of  common  hashes  between  the  two 
sketches  and  the  m lowest  hashes  of  both 
sketches  is  used  as  an  approximation  of  the 
Jaccard index. Reprinted with permission from 
Genome  Biology  [374],  Copyright  ©  2016, 
Springer Nature.
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representative  genome  sequences  as  well  as  certain  genomes,  which  have  been 

analyzed and described particularly well in vivo, in vitro as well as in silico, are generally 

denoted as reference genomes and used in many types of downstream analyses.

For  instance,  a  required  task  for  many  downstream  analyses  is  the  mapping  of 

sequencing reads onto a common genetic region in order to analyze similarities and 

differences on various levels, e.g. single nucleotide polymorphisms, insertions, deletions 

as well as structural variations  [185,187,370]. High-quality reference genomes provide 

these common genetic regions along with additional genomic context via annotations. 

An  important  application  of  mapped  sequencing  reads  is  the  single  nucleotide 

polymorphism detection for the subsequent calculation of phylogenetic trees to analyze 

pathogenic clonal outbreaks [371]. Another example is the reference guided assembly of 

short  sequencing  reads  [372].  In  contrast  to  de  novo assemblies,  reference-guided 

assemblers  take  into  account  extrinsic  genomic  information  of  sufficiently  related 

reference genomes. A further very important processing step after the assembly is the 

ordering and rearrangement of contigs within draft assemblies. As assemblers have no 

or only constraint information regarding the actual order and orientation of assembled 

contigs, so-called scaffolding software tools are used to map these contigs onto closely 

related reference genomes to reconstruct their most likely order and orientation  [179–

182].

Hence,  the  selection  of  suitable  reference  genomes  has  become an  important  and 

critical  pre-analysis  task  as  this  choice  has  large  impacts  on  downstream analyses 

[373].  In  order  to  compare  and  rank  available  reference  genomes  regarding  their 

distance  to  a  certain  query  genome,  several  in silico methodologies  emerged,  e.g. 

comparison of tetranucleotide frequencies,  Genome BLAST Distance Phylogeny, ANI 

and k-mer-based Jaccard indices  [273–276,374]. Inspired by well-established  in vitro 

hybridization  of  DNA  fragments,  the  alignment  of  DNA  subsequences  of  a  certain 

genome against another genome with subsequent computations of average identities 

and conserved values has been shown to robustly represent the relatedness between 

both  [273].  Hence,  the  computation  of  ANI  and  conserved  DNA  values  has  been 

implemented  in  several  online  and  offline  tools  [274,375,376].  However,  applied  on 

larger numbers of bacterial genomes, the large computational effort caused by pairwise 

alignments  of  the  DNA subsequences is  a crucial  drawback of  this  methodology.  A 

faster approach is the alignment-free comparison of k-mer sets via the Jaccard index, 

i.e. the fraction of common k-mers. However, comparing millions or even billions of k-

mers is still a demanding task. But, this process can be accelerated and requirements 
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for computational resources can be reduced via the computation of MinHashes using 

approximations  of  the  Jaccard  index  between  two  genomes  (Figure 4).  For  each 

genome, all canonical k-mers are hashed, sorted and reduced to a subset of a given 

size, which is denoted as a sketch. For each pair of sketches, an approximation of the 

Jaccard index is calculated and provided as a measure of genome relatedness that was 

shown  to  correlate  well  with  more  precise  alignment-based  ANI  values  [374,377]. 

However,  this  correlation  depends  on  k-mer  lengths,  sketch  sizes  as  well  as  the 

genomic  distances  between  genomes.  Here,  the  reduction  of  runtimes,  which  is 

achieved by reducing the amount of compared genomic content, comes at the cost of 

reduced resolution for closely related genomes. In order to mitigate these drawbacks, a 

k-mer based alignment-free implementation of ANI computations was recently published 

[276]. However, this implementation in turn is not applicable to genomes that are too 

distantly related to each other.

Hence, for each analysis a decision must be made to choose between methodologies 

taking into account available computing resources, runtime requirements and genome 

distances. A further common drawback of all available implementations is the necessity 

to  compile  a  database  of  reference  genomes  and  a  lack  of  integrated  taxonomic 

information and metadata.  Of  note,  thoroughly  calculated and sufficiently  low whole-

genome  distances  to  well  described  reference  genomes,  are  also  an  eligible 

methodology for the taxonomic classification of bacterial genomes.
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2.7 Recent IT developments and challenges for microbial 
bioinformatics in the 2020s

The  game-changing  developments  in  DNA  sequencing  revolutionized  the  way  how 

genomic data is  created and how many bacterial  genomes are routinely  sequenced 

every day. These large amounts of genomic data represent a scientific treasure trove 

providing huge potentials and possibilities. Large-scale comparisons of hundreds and 

thousands of  bacterial  genomes can be used to investigate within-host diversity and 

evolution [378,379], to delineate and reconstruct local outbreaks [380–382], to describe 

global  population  structures  and  to  answer  epidemiological  questions  [74,383]. 

However, these massively growing numbers of sequenced genomes also introduce new 

challenges. All this DNA sequencing data must be properly processed and analyzed on 

its own and effectively compared against each other [384]. New standards and standard 

operating procedures for bioinformatics data processing and analyses are necessary in 

order to effectively compare samples analyzed using different sequencing technologies 

by different laboratories worldwide. Accelerated by the tremendous cost inflation of DNA 

sequencing,  it  has  recently  been  estimated  that  the  yearly  acquisition  of  DNA 

sequencing raw data could rise to a worldwide level of one zettabyte in 2025  [40]. A 

well-known phenomenon and symbol of technological development is Moore’s law. It 

states  that  the  number  of  transistors  fitting  on  an  integrated  circuit  board,  a  rough 

equivalent  for  CPU  power,  is  increasing  exponentially,  with  a  doubling  time  of 

approximately 18 months [385]. Of note, this ventured prediction held true for more than 

35 years. A similar prediction exists for the storage capacity of hard drives; Kryder's law 

predicts the hard drive storage capacities to double every 12 months [386]. For a long 

time, this constant technological progress of computational capabilities and capacities 

had  easily  kept  pace  with  the  requirements  of  DNA  sequencing  and  related 

bioinformatics. However, since the advent of the NGS technologies in the middle of the 

first decade of this century, the technological progress in the field of high-throughput 

DNA sequencing vastly outgrows Moore’s and Kryder’s laws [295]. Between 2008 and 

2016,  the  capacity  of  DNA sequencing  platforms doubled,  on average,  every seven 

months  [40].  Large  genome  projects,  e.g. the  100,000 Genomes  Project  [387],  the 

Human Microbiome Project [388] and the Earth Microbiome Project [389], tremendously 

increase the size of public DNA data repositories. As no climax of this trend can be 

anticipated  in  the  foreseeable  future,  it  might  threaten  the  centralized  dogma  of 

contemporary global genome and sequencing raw data repositories. The mere amount 

of data will soon make it infeasible to upload all unprocessed raw data into centralized 
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repositories and therefore, increasing the demand for local raw data processing on the 

one hand and scalable, distributed and nearby computing infrastructures for large-scale 

analysis of potentially pre-processed data on the other hand  [295]. Meanwhile, cloud 

computing has evolved for the last two decades as a new paradigm for such compute 

infrastructures.  According  to  the US National  Institute  of  Standards  and Technology 

(NIST),  a  formal  definition  of  cloud  computing,  is  “a  model  for  enabling  ubiquitous, 

convenient,  on-demand network  access to  a  shared pool  of  configurable  computing 

resources … that can be rapidly provisioned and released with minimal management 

effort or service provider interaction”  [390]. Starting in the early 2000s, computational 

resources were initially offered on demand. Operated and maintained within large data 

centers,  physical  machines were shared among different  users via  virtual  machines, 

which were globally accessible via the Internet. By sharing the physical computational 

backbone  between  many  different  users,  synergistic  effects,  e.g. ceased 

overprovisioning  for  peak loads  and sharing spare  resources,  reduce costs and the 

necessary know-how to build and maintain larger IT infrastructures [391]. This new way 

how IT resources are provided and used gained momentum over the last decade, when 

large  technology  companies  entered  the  market.  Beside  computing  resources  on 

demand, more and more software tools were provided as a centralized service known 

as software as a service. This shift in the IT ecosystem also partly transforms the way 

how DNA sequencing data as well as genomic data is processed and analyzed. This 

process in  turn will  require  bioinformatics  software tools  to  be developed in  a high-

throughput-savvy  and  scalable  manner,  i.e. they  are  either  executable  on  local 

computers or deployable to scalable CCIs.

Driven by many large-scale academic sequencing projects as well as applied research 

projects  in  modern  microbial  biotechnology  [392–394],  the  tremendously  increased 

amount of available data opened new scientific questions and constantly required new 

algorithms and bioinformatics approaches. This contributed to the genesis of a plethora 

of open-source bioinformatics software tools and databases. At the time of writing, the 

online registry bio.tools, compiled as part of the European Infrastructure for Biological 

Information (ELIXIR), includes 17,276 entries from over 2,462 contributors [395]. Among 

those, 6,186 were annotated with DNA sequencing and genetics-related terms. Often, 

these  highly  specialized  tools  need  to  be  combined  and  integrated  into  more 

comprehensive  analysis  workflows.  As  each  of  these  tools  has  its  own  set  of 

requirements  and  software  dependencies,  the  provisioning  of  these  workflows  has 

become a non-trivial task.
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Hence,  in  order  to  isolate  software  applications  from  their  environment,  e.g. the 

operating system, installed software libraries and available  third-party software tools, 

software containers have recently evolved as a lightweight new mechanism of isolation 

and thus also portability.  In contrast to virtual machines,  which require their own full 

stack of operating system, libraries and software applications, containers run within the 

kernel of the operating system. Thus, they require less resources and provide better 

performance  [396,397].  Taking  advantage  of  these  containerization  techniques, 

developers and researchers are able to package and execute software tools combined 

with all  dependencies in a lightweight  and portable manner, across a wide range of 

computing platforms [398–400]. Furthermore, these container images can be uploaded 

to and distributed via public  repositories,  as for instance,  Docker Hub.  Today,  many 

distinct containerization systems exist. Among others, the most successful and widely 

used are Docker [41] and Podman [42].

In addition to these issues regarding the isolation, packaging and distribution of single 

tools, contemporary computational analysis workflows also have to deal with a broad set 

of technical runtime issues. Robust implementations of analysis workflows are expected 

to  provide  reproducible  results  on  different  machines  over  multiple  iterations. 

Furthermore, the analysis of large datasets requires workflows to be executed in a fault-

tolerant manner. Corrupted data parts or failed executions of the analysis of some parts 

of the data must not lead to failures and crashes of the entire workflow. In these cases, 

workflow implementations are expected to properly handle such failures and to further 

proceed with the computation. Otherwise, problematic parts of the data or failed parts of 

the  underlying  computing  infrastructure  might  hinder  the  completion  of  the  entire 

workflow. The latter is of particular importance on fault-tolerant infrastructures like CCIs. 

An additional  aspect,  and maybe the most  important,  is  scalability.  Modern analysis 

workflows  need  to  be  applicable  on  a  broad  range  of  data  sizes.  During  the 

developmental stage, small test cases need to return quick results, while in a production 

stage, real analyses might scale to very large amounts of data. The latter often requires 

to either scale vertically  or  horizontally  by distributing the computational  workload to 

compute clusters of different types and varying sizes. It  goes without saying that the 

support of multiple HPC cluster systems [401–403] and state-of-the-art cloud computing 

frameworks  [404–406] facilitates  increased  portability  of  implemented  workflows  and 

therefore,  also  their  applicability.  Hence,  in  order  to  decouple  the  scientific 

methodological development of analysis workflows from the outlined issues of the mere 
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2 Introduction

technical  execution,  many  dedicated  workflow  engines  for  bioinformatics  use  cases 

have been developed and evolved. Among many others, two of the most recent, feature 

rich and widely used are SnakeMake [407] and NextFlow [408].

The steep progress in  DNA sequencing technologies  and the resulting data inflation 

require bioinformaticians to keep pace with the complex demands of modern software 

tool development in bioinformatics on the one hand and the heterogeneous technical 

solutions on the other hand. However, this novel layer of added technical complexity will 

be worthwhile as by mastering scalability and portability challenges, a democratization 

of bioinformatics and computational biology is taking place and thus removes historical 

obstacles implied by unavailable or too complex computational resources [398]. Due to 

public CCIs, as for instance the German de.NBI cloud [409], small research groups and 

even single researchers are able to conduct data analyses at almost any scale. After the 

democratization of research data via the broad availability in public data repositories, 

finally a democratization of data analysis is taking place, too.
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2.8 Scientific gaps in microbial bioinformatics and aim of 
this thesis

The former chapters provide a brief  historical  introduction to the huge scientific  and 

technological  progress  in  the  field  of  microbiology,  especially  medical  microbiology, 

boosted  by  the  revolutionary  developments  of  high-throughput  DNA  sequencing 

technologies  and  accompanying  bioinformatics  methodologies,  software  tools  and 

databases.  Today,  DNA  based  bioinformatic  analyses have  become  essential  and 

powerful research tools for the field of microbial genomics addressing various scales 

from single genomes to population structures and ecosystems. In addition, DNA based 

in silico analyses have become invaluable tools for public health tasks like for example 

the  surveillance  of  bacterial  pathogens,  AMR  monitoring  and  outbreak  detections 

[35,36,410].  Many  of  these  applications  either  benefit  from  or  even  require  the 

processing and higher-level characterization of multiple genomes in order to determine 

genetic  commonalities  or  differences  between  genomes.  These  developments  are 

important  factors that  increase the demand for  large cohorts of  collectively  analyzed 

bacterial genomes. Meanwhile, over the last decades advances in DNA sequencing led 

to  massive  cost  reductions  and  a  tremendous  increase  in  sequencing  throughput 

(Figure  5).  Hence,  large-scale  bacterial  genome  sequencing  has  reached 

unprecedented levels and has become a standard methodology and a routine task in 

laboratories worldwide.  Today,  public  databases comprise hundreds of  thousands of 

bacterial  genomes.  For  example,  in  2018,  the  European  Nucleotide  Archive  (ENA) 

stored  more  than  660,000  genomes.  Of  note,  only  20  pathogenic  species  are 

accountable  for  more  than  90%  of  these  genomes,  which  underpins  the  huge 

importance of these technologies and data for medical microbiology [411].
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2 Introduction

As the sequencing of bacterial genomes is evidently not a limiting factor anymore, it has 

become obvious that the effective and efficient analysis of all this data is becoming a 

new bottleneck. The sheer amount of available and newly generated data has made the 
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Figure 5: Progress in DNA sequencing.

Advances in DNA sequencing technologies by time and technological revolutions. A) Throughput, 
average  read  length  and  runtimes  of  42  modes  of  commercially  available  DNA  sequencing 
devices grouped by the underlying DNA sequencing technology,  i.e. Sanger sequencing, next-
generation short-read sequencing and single-molecule long-read sequencing. Distinct data points 
are depicted as circles.  General  trends are highlighted as coloured bands according to each 
characteristic [412–415]. B) The temporal course of DNA sequencing costs in USD per million  
base pairs and the number of whole-genome sequences stored in the NCBI GenBank database 
[416,417].
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manual analysis a tedious and time-consuming process, which thus is becoming more 

and more infeasible. Furthermore, the repetitive manual execution of similar tasks is a 

common source of errors and potentially insufficient standardizations are an important 

aspect regarding reproducibility and comparability. Hence, the comprehensive analysis 

of this data has become a very complex task. Appropriate analysis workflows comprise 

many steps of which each constitutes a distinct  niche in bioinformatics by means of 

methodology as well as software implementation. Today, researchers can, but also have 

to,  select  bioinformatics  tools  from  countless  choices  comprising  thousands  of 

specialized  software  tools  [395].  This  is  further  exacerbated  by  the  fact  that  most 

software  tools  provide  a  large  set  of  options  and  parameters  to  fine-tune  their 

performance and behavior  and to optimize the outcome of  an analysis.  These often 

require highly specialized domain knowledge and significant experience. Even worse, in 

order to conduct many of these tasks, bioinformatics software tools must be executed in 

combination with specialized databases. For example, at the time of writing, there are at 

least  15  publicly  available  AMR  gene  databases  [323].  This  poses  an  increasing 

problem  for  researchers.  Results  of  WGS  data  analyses  become  more  and  more 

incomparable by the usage of different workflows composed of different software tools 

using different sets of options and parameters potentially in combination with different 

databases leaving out that many of these are provided in regularly updated releases. 

Accordingly, there is a rising demand for standardization in bacterial WGS data analysis 

for the sake of reproducibility of conducted analysis and comparability of results. Raw 

sequencing  data  from  varying  DNA  sequencing  platforms  must  be  processed  and 

analyzed and subsequent results are to be aggregated and prepared to create human 

readable reports facilitating the rapid and comprehensive understanding of the results 

(Figure 6).  To overcome these issues,  automated and centralized analysis  platforms 

recently emerged, e.g. Bacterial Analysis Pipeline [418], Patric [287] and Galaxy [419]. 

These platforms provide researchers with access to complex analysis workflows that are 

executed on centralized IT infrastructures via convenient web user interfaces thus hiding 

most of the implied scientific and technical complexity. However, centralized platforms 

cannot constantly keep pace with the steep increase of generated data resulting from 

decentralized sequencing sites worldwide. In addition, the transfer of large amounts of 

raw data is physically limited by public network capacities. Furthermore, sensitive data is 

often not eligible for the analysis on third party infrastructures due to legal restrictions.
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Consequently,  there  is  a  need  for  automated  and  comprehensive  but  also  portable 

analysis pipelines that can be executed either locally on standard consumer hardware 

and  HPC  clusters  or  CCIs  in  a  scalable  manner.  However,  there  is  a  lack  of 

bioinformatics software pipelines fulfilling all these requirements. Hence, it was the aim 

of this thesis to address this gap by developing a new bioinformatic analysis pipeline for 

the  automated,  comprehensive  and  scalable  analysis  of  small  to  large  cohorts  of 

bacterial WGS data from different DNA sequencing platforms. The following chapters 

briefly describe the requirements of the involved tasks that resulted from this objective. 

The first task was the design and implementation of the analysis pipeline. The second 

and third tasks resulted from the design of its fully automated workflow and addressed 

the automated detection and characterization of plasmids and the rapid but thorough 

determination of suitable reference genomes.
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Figure 6: Transformation from raw data to information

Depiction  of  the  transformation  from raw data  into  information  with  examples  in  regards  to 
microbial bioinformatics. Large-scale raw data resulting from different DNA sequencing platforms 
must be processed and analyzed in various ways to create new results. To gain new information, 
these diverse results must be aggregated,  prepared and finally presented in comprehensible 
manners.
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2.8.1 Standardized high-throughput analysis of whole-genome 
sequencing data of bacterial cohorts

Driven by the inflation of sequenced bacterial genomes in many different settings,  e.g. 

academia and public health, the first task of the described objective is the development 

of a new bioinformatics software tool for the analysis of bacterial WGS data fulfilling the 

following requirements:

• Design of a fully automated, standardized, reproducible and comprehensive data 

processing and analysis workflow

• Support for WGS data from all major contemporary DNA sequencing platforms, 

i.e. Illumina, Pacific Biosciences and Oxford Nanopore Technologies

• Execution of a comprehensive set of per-isolate genome characterizations

• Implementation of comparative and phylogenetic analyses

• Vertical and horizontal scalability on local hardware, HPC clusters and CCIs to 

keep pace with rising amounts of data

• Portability  and  user-friendly  installation  routines  on  standard  consumer 

hardware.

• Extensibility via a modular framework design

• Compilation of human-readable, user-friendly and interactive hypertext markup 

language  (HTML)  reports  aggregating,  preparing  and  visualizing  intermediate 

and final results
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2.8.2 Automated and taxonomy-independent detection of 
plasmid-borne contigs from short-read draft assemblies

Due to their important role in the horizontal transfer of resistance genes, a crucial aspect 

of bacterial WGS data analysis is the detection and characterization of plasmids, which 

has been addressed by a large number of dedicated bioinformatics software tools that 

have  recently  evolved  [354–358,360–363,420].  However,  despite  the  previously 

described heterogeneity of plasmid detection methodologies and software tools, none of 

these  provide  all  properties  that  are  required  for  the  seamless  integration  into  a 

contemporary and automated WGS data analysis workflow described in task I:

• A non-interactive and thus fully automated workflow

• An underlying classification approach that is purely based on assembled draft 

genomes providing a common workflow entry point for the support of various 

DNA sequencing platforms

• Untargeted and taxonomy-independent workflow and database

• High detection accuracy achieving balanced sensitivity and specificity

Compliance with all these requirements would make such a methodology applicable to 

WGS data from a large range of bacterial taxa supporting different sequencing platforms 

and  thus  would  allow  the  automated  separation  of  plasmid-borne  contigs  from  the 

chromosome for focused and more detailed downstream analyses. Hence, it  was the 

second task to develop a new methodology fulfilling the outlined requirements and to 

implement  this  new approach  as  an automated bioinformatic  software tool  for  high-

throughput applications.
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2.8.3 Accurate but rapid determination of suitable reference 
genomes

The deep characterization of bacterial isolates on a nucleotide level is an important task 

to  understand  phenotypic  differences  between  strains  caused  by  single  nucleotide 

variants  (SNVs)  and  SNPs,  which  are  detected  against  closely  related  common 

reference  genomes.  Moreover,  SNPs  that  have  been  called  against  a  common 

reference genome pose a well-accepted method for the calculation of phylogenetic trees 

with utmost precision down to each single nucleotide. Here, reference genomes act as a 

genetic  template  masking  non-common genetic  information.  Hence,  the  selection  of 

suitable closely related reference genomes is an essential task with large implications 

for the results of SNP based analysis. Another application requiring even more than a 

single reference genome is the ordering, rearrangement and scaffolding of assembled 

contigs. Modern scaffolding software tools are able to utilize combinations of different 

genomic  landscapes  from  several  reference  genomes  for  the  rearrangement  and 

optimal  placing  of  contigs  [180–182].  Both  examples  are  essential  parts  of  the 

comprehensive workflow described in the objective of this thesis and task one. However, 

contemporary  software  tools  [274–276] for  the  assessment  of  potential  reference 

genomes do not fulfill all of the required following properties:

• A locally executable command line implementation

• A fully automated workflow

• Short runtime while still achieving high-quality results

• Integrated databases comprising public high-quality genomes

Hence, it was the third task to develop a rapid, accurate and integrated bioinformatic 

software solution for the fully automated lookup of suitable reference genomes. 
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3 Thesis contributions

This thesis comprises three peer-reviewed publications, which are presented and briefly 

summarized in the following subchapters.

• ASA³P: An automatic and scalable pipeline for the assembly, annotation and 
higher-level analysis of closely related bacterial isolates.
Oliver Schwengers, Andreas Hoek, Moritz Fritzenwanker, Linda Falgenhauer, 

Torsten Hain, Trinad Chakraborty & Alexander Goesmann (2020).

PLoS Computational Biology, DOI: 10.1371/journal.pcbi.1007134

• Platon: identification and characterization of bacterial plasmid contigs in short-
read draft assemblies exploiting protein-sequence-based replicon distribution 
scores.
Oliver Schwengers, Patrick Barth, Linda Falgenhauer, Torsten Hain, Trinad Chakraborty 

& Alexander Goesmann (2020).

Microbial Genomics, DOI: 10.1099/mgen.0.000398

• ReferenceSeeker: rapid determination of appropriate reference genomes.
Oliver Schwengers, Torsten Hain, Trinad Chakraborty & Alexander Goesmann (2020).

Journal of Open Source Software, DOI: 10.21105/joss.01994
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3.1 ASA³P

ASA³P: An automatic and scalable pipeline for the assembly, 
annotation and higher-level analysis of closely related bacterial 
isolates.

Oliver Schwengers, Andreas Hoek, Moritz Fritzenwanker, Linda Falgenhauer, 

Torsten Hain, Trinad Chakraborty & Alexander Goesmann (2020).

PLoS Computational Biology, DOI: 10.1371/journal.pcbi.1007134

This publication presents and describes ASA³P, a new bioinformatic software tool for the 

comprehensive  analysis  of  WGS data  from  bacterial  isolates.  ASA³P  implements  a 

state-of-the-art  fully  automated  analysis  workflow  comprising  the  quality  control  and 

assembly  of  raw  reads,  scaffolding  and  annotation  of  resulting  assemblies  and  the 

thorough  characterization  of  bacterial  isolates.  The  latter  comprises  taxonomic 

classifications and subtyping, the detection of AMR genes and virulence factors, and the 

detection  of  SNPs.  These  per-isolate  analyses  are  complemented  by  comparative 

analysis, i.e. the computation of core and pan genomes and phylogenetic trees. Of note, 

ASA³P supports all contemporary major sequencing platforms,  i.e. Illumina short-read 

sequencing as well  as Pacific  Biosciences and Oxford Nanopore Technologies long-

read sequencing.  ASA³P  is  publicly  available  and  provided  as  two  distinct  software 

distributions. Small to medium cohorts can be locally analyzed via Docker-based Linux 

containers,  whereas large to massive groups of  up to thousands of  isolates  can be 

analyzed with a highly scalable cloud computing version, which is able to fully exploit the 

flexibility  and  scalability  of  modern  CCIs.  Finally,  results  are  provided  in  standard 

bioinformatics  file  formats  and  gathered  information  is  presented  via  user-friendly 

reports comprising interactive visualizations. It has been demonstrated that the software 

smoothly  scales  from  small  to  very  large  datasets  comprising  more  than  1,000 

genomes, and it has been successfully applied in various data analysis projects, which 

are described in chapter 4.1.2.
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3.2 Platon

Platon: identification and characterization of bacterial plasmid 
contigs in short-read draft assemblies exploiting protein-
sequence-based replicon distribution scores.

Oliver Schwengers, Patrick Barth, Linda Falgenhauer, Torsten Hain, 

Trinad Chakraborty & Alexander Goesmann (2020).

Microbial Genomics, DOI: 10.1099/mgen.0.000398

Platon  is  a  new  bioinformatic  command  line  tool  for  the  fully  automated  detection, 

characterization and extraction of plasmid-borne contigs from bacterial draft assemblies. 

Via  large-scale  homology  searches  of  publicly  available  closed  chromosome  and 

plasmid sequences, it  could be shown that a large proportion of bacterial  proteins is 

unequally  encoded within the different replicon types. A new statistical  score termed 

replicon distribution score (RDS) reflecting this bias for each marker protein sequence 

(MPS) is defined and introduced as a new methodology to approach this problem. Via 

RDS, Platon is able to exploit this natural distribution bias for the determination of the 

origin of contigs, which is further enhanced by heuristics taking into account higher-level 

contig characterizations as for example: circularization tests, detection of incompatibility 

groups, mobilization and conjugative genes, detection of origin of transfer sequences, 

detection  of  ribosomal  genes,  and  homology  searches  against  plasmid  reference 

databases. Final results are provided in standardized human and machine-readable file 

formats for user-friendly examination as well as automated downstream analysis. Platon 

was shown to achieve higher accuracies and more robust classifications in taxonomy-

independent benchmarks and better or equal performance on targeted benchmarks than 

existing tools.
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3.3 ReferenceSeeker

ReferenceSeeker: rapid determination of appropriate reference 
genomes.

Oliver Schwengers, Torsten Hain, Trinad Chakraborty & Alexander Goesmann 

(2020).

Journal of Open Source Software, DOI: 10.21105/joss.01994

This  publication  describes the new bioinformatic  software tool  ReferenceSeeker  that 

allows researchers to query large microbial genome databases for closely related high-

quality reference genomes in a rapid and integrated manner. The software implements a 

two-step search process combining the rapid lookup of candidate reference genomes 

from integrated local databases via k-mer fingerprints with detailed computation of the 

well-established  average nucleotide  identity  and conserved DNA values.  Even more 

detailed comparisons can be conducted via the computation of bidirectional ANI values. 

Due to this generic approach, the software supports a broad range of microbial taxa. 

Furthermore, the software allows the creation of customized databases incorporating 

non-public genomes. Pre-compiled databases comprising NCBI RefSeq genomes are 

publicly available via open data repositories for bacteria, archaea, fungi, protozoa and 

viruses.
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4 Results and discussion

This thesis provides three scientific contributions to the field of microbial bioinformatics 

addressing the highly relevant explicated issues: the analysis of large-scale bacterial 

WGS data, the automated prediction of plasmid-borne contigs from draft assemblies and 

the  rapid  determination  of  suitable  reference  genomes  from  custom  and  public 

databases for high-throughput applications (Figure 7).
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Figure 7: A comprehensive and fully automated analysis workflow for bacterial WGS data.

Depicted  is  the  comprehensive  analysis  workflow  developed  in  this  thesis  starting  after 
upstream wet laboratory steps. Raw sequencing reads are processed by ASA³P resulting in 
assembled  and  annotated  bacterial  genomes  that  are  further  analyzed  and  characterized. 
Results are provided as human-readable interactive reports. Open bioinformatic challenges that  
emerged from the design of this workflow have been addressed by new methodologies and 
approaches implemented in the software tools Platon and ReferenceSeeker.



4 Results and discussion

4.1 Comprehensive, scalable and fully automated high-
throughput analysis of whole-genome sequencing data 
from bacterial isolates with ASA³P

4.1.1 Features and comparison with contemporary software tools

Triggered by the constantly increasing computational demands caused by the immense 

developments in high-throughput DNA sequencing, a comprehensive analysis workflow 

has been  designed  and  implemented  in  a  scalable,  locally  executable  and portable 

manner  resulting  in  the  software  tool  ASA³P.  It  provides  a  true  one-stop  solution 

lightening the burden of repetitive bioinformatics analysis tasks. By design, the pipeline 

provides  no  adjustable  parameters  to  the  user  and  by  doing  so,  enforces  the 

standardization of the analysis and in turn the reproducibility as well as comparability of 

results. These are generated in standard bioinformatics file formats and stored in a well-

defined  and  predictable  file  structure  suitable  for  subsequent  custom  analysis.  In 

addition,  the  software  generates  user-friendly  interactive  reports  as  standard  HTML 

documents,  which  can  easily  be  compressed  and  sent  to  colleagues  and  research 

partners  and  viewed  with  common  web  browsers.  Hereby,  accessible  and 

comprehensible  higher-level  insights  to  the  underlying  data  are  provided  to  users 

without the need for sophisticated bioinformatics or Linux command line skills.

Moreover,  support  for  the  analysis  of  raw  sequencing  reads  from  Illumina,  Pacific 

Biosciences  and  ONT  sequencing  platforms  increases  the  overall  usability  of  the 

software. The conducted analyses as well as generated reports cover a comprehensive 

set of contemporary bacterial genome characterizations as for example the taxonomic 

classification  and MLST subtyping,  the  prediction  of  antibiotic  resistance genes and 

detection  of  virulence  factors,  as  well  as  SNP-based  comparisons  to  reference 

genomes. The software was implemented following a modular design and therefore, it 

can easily be expanded with further analysis modules.

Depending on available IT capacities and the number of sequenced genomes, users 

can choose from a locally executable Docker-based version and an OpenStack-based 

cloud  computing  version.  Hence,  by  providing  these  distinct  software  distributions, 

ASA³P is able to scale from the analysis of tiny bacterial cohorts executed on regular 
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4.1 Comprehensive, scalable and fully automated high-throughput analysis of whole-
genome sequencing data from bacterial isolates with ASA³P

desktop  machines  to  the  analysis  of  thousands  of  bacterial  genomes  within  large 

distributed HPC clusters or CCIs. Hence, ASA³P enabled researchers to keep pace with 

the demands of contemporary bacterial WGS data analysis.

Recently, several bioinformatics software tools and pipelines for the automated offline 

analysis  of bacterial  WGS data have evolved following different  approaches to meet 

distinct  requirements.  Although  all  available  tools  provide  a  comparable  set  of  core 

analysis features, each tool has different properties in terms of supported data types, 

scalability  and  flexibility  and  thereby  addresses  distinct  requirements.  For  example, 

BacPipe  [421],  Tormes  [422],  Nullarbor  [423],  rMAP  [424] and  ProkEvo  [425] only 

support short-read sequencing data. Bactopia  [426], for instance, supports the hybrid 

assembly of short-read and long-read sequencing data. However, it does not support 

the assembly of long sequencing reads, only. In contrast to ASA³P and Tormes, the user 

interfaces of Bactopia, BacPipe and Nullarbor provide adjustable parameters in order to 

adapt  the  underlying  workflows and analysis  steps.  Bactopia  and BacPipe  generate 

results  in  bioinformatics  file  formats  only  whereas  Tormes,  Nullarbor  and  ASA³P 

generate  human  readable  reports  as  markdown,  static  and  interactive  HTML  files, 

respectively. All software tools but BacPipe provide vertical scalability and Bactopia and 

ASA³P  additionally  provide  horizontal  scalability  supporting  HPC clusters  and  CCIs. 

Furthermore, all software pipelines but Tormes provide portable Linux container images.

In conclusion, albeit each software provides its unique set of properties, at the time of 

writing, ASA³P is the only available open-source bioinformatic software tool providing a 

fully automated and comprehensive analysis workflow, support for both short and long 

read  data  assembled  in  either  separate  or  hybrid  mode,  vertical  and  horizontal 

scalability on HPC and CCIs, and the generation of comprehensive and user-friendly 

reports in a portable manner for  the offline analysis  of  bacterial  WGS data. Thus, it 

enables researchers to take advantage of scalable IT resources and a diverse set of 

robust and proven bioinformatics software tools dedicated to the various tasks involved 

in the process. Hence, even more bacterial genomes and larger cohorts thereof can be 

analyzed,  characterized  and  compared  allowing  to  keep  up  with  DNA  sequencing 

technologies and future demands.
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4 Results and discussion

4.1.2 Examples of application

Long before its publication, ASA³P has already been widely used as an inhouse analysis 

pipeline at the department for Bioinformatics and Systems Biology and the Institute of 

Medical  Microbiology  within  several  scientific  projects  in  the  context  of  the  German 

Center for Infection Research (DZIF). Over the course of the recent years, more than 

8,400 sequenced genomes of bacterial pathogens have been analyzed covering a broad 

taxonomic range comprising more than 50 distinct genera [427,428]. Table 2 lists the 15 

most frequently analyzed genera comprising many severe pathogens, among these all 

of the so-called ESKAPE species  [429]. From the analysis of these small  and large-

scale  data,  various  scientific  findings  have  been  published  in  the  field  of  medical 

microbiology  based on the cohort  analyses of  antibiotic-resistant  bacteria  conducted 

with ASA³P.
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4.1 Comprehensive, scalable and fully automated high-throughput analysis of whole-
genome sequencing data from bacterial isolates with ASA³P

Table 2: Number of pathogenic bacterial isolates analyzed with ASA³P within the various 

subprojects of the DZIF grouped at the genus taxon. Listed are the 15 most frequently analyzed 

genera. [427].

Genus Number of
analyzed isolates

Escherichia 3,597

Klebsiella 872

Enterococcus 840

Serratia 764

Enterobacter 501

Listeria 224

Pseudomonas 196

Citrobacter 191

Acinetobacter 184

Proteus 96

Staphylococcus 68

Actinobacillus 62

Streptococcus 42

Hafnia 25

Moraxella 18

For instance, E. coli isolates from Nigerian and Ghanaian poultry farms as well as from 

hospitals in Germany and Switzerland have been analyzed and characterized regarding 

prevalent taxonomic sublineages and AMR genes [430–432]. Similarly, ASA³P has been 

used  to  study  clinically  relevant  bacteria  collected  from  German  surface  waters 

[28] – among these  E. coli,  A. baumannii,  K. pneumoniae,  C. freundii,  E. cloacae and 

P. aeruginosa.  Also,  ASA³P  has  been  used  to  analyze  and  delineate  isolates  of 

L. monocytogenes [433].  In  all  these  studies,  the  entire  in silico data  processing, 

analysis  and  characterization  was  conducted  using  ASA³P  to  provide  the  relevant 

information within the distinct studies’  contexts,  e.g. the clonal subtyping using multi-

locus sequence typing as well as the detection of antibiotic resistance genes.

65

https://paperpile.com/c/KdcwUe/cihP
https://paperpile.com/c/KdcwUe/lwkT
https://paperpile.com/c/KdcwUe/9cIl+96AG+3IUS
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In  addition  to  these  cohort  analyses,  in  several  studies  ASA³P  facilitated  the  deep 

characterization and comparison of distinct strains of a certain species of interest. For 

instance, WGS data from isolates of  Bordetella pseudohinzii,  a new atypical species 

causing  respiratory  infections  like  whooping  cough,  has  been  analyzed  in  order  to 

deeply  characterize  the  sequenced  genomes  via  detected  SNPs  against  public 

reference genomes. Furthermore, intermediate ASA³P results from pre-processed WGS 

data were used to be further analyzed by more specialized downstream analysis tools 

[434].  Likewise,  ASA³P has also  been used to deeply  characterize different  capsule 

mutants of Streptococcus pyogenes on a per-SNP basis against related wildtypes [435]. 

A further example is the analysis of Enterobacter bugandensis – a pathogen that causes 

severe infections of neonates, which has been isolated in Germany for the first  time 

[436].  WGS  data  of  sequenced  samples  was  processed,  assembled  in  a  hybrid 

approach, annotated and characterized using ASA³P. In total, ASA³P has been cited 28 

times due to Dimensions.ai, at the time of writing.

4.1.3 Ongoing developments and pending challenges

ASA³P conducts a comprehensive and state-of-the-art workflow to process and analyze 

bacterial  WGS data.  However,  several  important  aspects  of  bacterial  WGS analysis 

remained  untouched,  which  are  subject  of  current  and  future  developments.  This 

certainly  pertains  to  the  detection  and  analysis  of  mobile  genetic  elements  like 

prophages and transposons as they play a vital role in the dissemination of antibiotic 

resistance  genes  and  potentially  have  large  impacts  on  phenotypes 

[326,328,345,437,438].  If  both  scientifically  and  technically  feasible,  these  mobile 

genetic elements should be well characterized and compared against each other.

For example, the detection and characterization of plasmids is of very high relevance for 

the  analysis  of  bacterial  genomes.  In  order  to  automatically  detect  plasmids  within 

genome assemblies while simultaneously supporting different sequencing technologies, 

the underlying plasmid detection methodology is  required to be able to work on the 

assembled genome sequences alone. From the many bioinformatics software tools for 

the automated plasmid sequence detection publicly available today, only a tiny fraction 

works solely on draft assemblies [353,354,356,357]. These, however, do not satisfy the 

manifold  requirements  of  this  automated,  taxonomy-independent,  integrated,  multi-

sequencing-platform  analysis  workflow,  as  they  either  require  species  specific 

66

https://paperpile.com/c/KdcwUe/NoOr+gpeU+3C0B+T29r
https://paperpile.com/c/KdcwUe/X8NE+2t3e+Opgm+ZjcV+VxQY
https://paperpile.com/c/KdcwUe/T1TP
https://paperpile.com/c/KdcwUe/EWOf
https://paperpile.com/c/KdcwUe/sm0M


4.1 Comprehensive, scalable and fully automated high-throughput analysis of whole-
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databases  [354] or  predict  plasmid sequences strongly  biased  towards sensitivity  or 

specificity [353,356,364]. To overcome this issue, the development and implementation 

of  a  new  plasmid-born  contig  detection  methodology  fulfilling  the  explicated 

requirements became an interesting and challenging objective during the design of the 

ASA³P  workflow.  As  a  result,  a  new  methodology  for  the  robust  detection  and 

characterization  of  plasmid-borne sequences  within  bacterial  draft  genomes became 

part of this thesis and is described in the following chapter 4.2.

In  addition,  further  issues  became  obvious  while  designing  and  implementing  the 

workflow of ASA³P. In order to calculate reference genome SNP-based phylogenetic 

trees, a single particular  reference genome is required and must be provided by the 

user. However, it might not be clear which reference genome fits best the data at hand. 

This  issue  is  exacerbated  by  the  sheer  overwhelming  number  of  publicly  available 

reference  genomes,  which  is  constantly  rising.  Hence,  it  would  be  beneficial  to  the 

results  of  the  conducted  analyses  as  well  as  to  the  overall  usability,  if  appropriate 

reference genomes could be tested, assessed and finally chosen to be included in the 

analysis in an automated manner if no reference genomes are provided by the user. 

Furthermore,  as  modern  scaffolding  software  tools  are  able  to  take  advantage  of 

multiple  reference  genomes,  the  automated  selection  of  larger  numbers  of  closely 

related reference genomes might further improve scaffolding results of short-read draft 

assemblies  [179,180,182].  Hence,  the automated determination  of  suitable  reference 

genomes was one objective of this thesis and is addressed in more detail in chapter 4.3. 

The  described hierarchical approach has already been re-implemented in Groovy and 

integrated into ASA³P as a replacement for the k-mer based taxonomic classification via 

Kraken [439]. Compared to Kraken, this new taxonomic classification approach is based 

on well-established ANI and conserved DNA species boundary thresholds computed 

against a tightly integrated compilation of reference genomes. As a positive side effect, 

this  resulted in  a database storage size  reduction  from 142 GB to 29 GB and thus, 

significantly reduced overall resource requirements.

Another  example  for  potential  future  enhancements  is  the  annotation  of  assembled 

bacterial genomes. At the time of writing, ASA³P takes advantage of the widely accepted 

software tool Prokka due to its streamlined command line interface and short runtimes. 

The latter is achieved by using hierarchical annotation databases exploiting annotated 

reference genomes, which are aggregated to the genus level. However, this information 

must be provided via a distinct parameter, which therefore, is required to be provided by 

ASA³P users. A taxonomy-independent annotation software tool would allow to relax or 
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4 Results and discussion

even  remove  this  requirement.  Furthermore,  the  annotation  workflow  conducted  by 

Prokka exhibits certain limitations,  e.g. the detection and annotation of small CDS, a 

large proportion of CDS annotated as hypothetical protein especially in rare species and 

the proper detection and annotation of CDS spanning artificial replicon edges.
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4.2 Robust detection and characterization of plasmid-borne 
contigs from bacterial draft assemblies with Platon

Plasmids are vital vehicles for bacterial genes. As a key mechanism of horizontal gene 

transfer,  plasmids play an essential  role in  the dissemination  of  antibiotic  and metal 

resistance genes. In order to monitor and understand the role of plasmids within single 

genomes as well as their dynamics within bacterial populations, nowadays, the detection 

and characterization of plasmid sequences via the bioinformatic analysis  of  bacterial 

WGS data has become an essential tool. However, due to the often complex and nested 

composition of different mobile genetic elements, short-read assemblies are hardly ever 

complete but  fragmented,  comprising multiple  contigs.  These fragmented sequences 

make the  in silico detection and characterization of plasmids a difficult task  [328,364]. 

Recent  bioinformatics software tools  for  the detection  of  plasmid-borne contigs from 

WGS assemblies do not fulfill the complete set of requirements for fully automated, non-

interactive,  scalable  and  taxonomy-independent  analyses  without  the  necessity  to 

choose between either sensitivity or specificity.

Hence, a novel methodology was developed achieving the outlined requirements for the 

seamless  integration  into  ASA³P’s  workflow.  As  a  new  approach  to  this  problem, 

differential  distributions  of  protein-coding  gene  families  among  chromosomes  and 

plasmids  were  investigated  by  large-scale  analysis  [440].  It  could  be  shown  that  a 

considerable proportion of these protein sequences is significantly unequally distributed 

among replicons. This inherent natural bias is used to classify contigs and to predict a 

replicon’s origin.  The conducted benchmarks show that this methodology achieves a 

superior classification performance compared to both taxonomy-independent  [356,357] 

as  well  as  targeted approaches  [353,354].  Furthermore,  it  is  applicable  without  any 

adaptations or customizations within both scenarios as its classification was proven to 

be  the  most  sensitive  whilst  still  achieving  a  specificity  close  to  the  most  specific 

approaches  [353].  It  was  implemented  as  a  stand-alone  bioinformatic  software  tool 

providing  contemporary  plasmid  characterizations  providing  useful  additional 

information, e.g. sequence circularity and incompatibility factors.

Moreover,  due to a fully  automated database creation  workflow,  Platon’s  mandatory 

taxonomy-independent database can regularly be updated without manual efforts. Thus, 

the increasing amount of sequences that are stored in public genome repositories can 

be  utilized  to  constantly  keep  RDS  values  of  MPS  up  to  date  and  thus,  forestall  
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databases from becoming outdated. Furthermore, the incorporation of more complete 

chromosome and plasmid sequences will further improve the predictive power of MPS 

and their RDS values. Indeed, a benchmark on 1,765,157 simulated contig sequences 

alike those conducted in the publication showed that Platon’s classification performance 

was further increased by a recent database update incorporating replicon sequences of 

RefSeq  release  202.  The  highest  contig  classification  accuracy  defining  the  RDS 

conservative threshold (CT) that was achieved, could be further increased compared to 

the published software release v1.2.0.

4.2.1 Integration into ASA³P

Its  non-interactive  workflow  and  robust  classification  performance  makes  Platon  a 

suitable fit  and ideal  for  the integration into ASA³P for  the automated detection and 

characterization of plasmid fragments from bacterial  draft  assemblies in a taxonomy-

independent manner [441]. At the time of writing, Platon has been integrated into ASA³P 

and is currently undergoing testing and debugging. Results of Platon’s analysis workflow 

are part of ASA³P’s interactive HTML reports (Figure 8). To additionally indicate public 

plasmid  sequences  that  are  potentially  contained  within  given  draft  genomes, 

visualizations of possible plasmid sequence reconstructions are integrated into ASA³P’s 

reports  (Figure 9).  At  the  time  of  writing,  Platon  has  been  cited  19  times  due  to 

Dimensions.ai.
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Figure 8: Integration of the Platon analysis workflow results into the ASA³P reports.

Detected plasmid contigs are comprehensively characterized via Platon. Results are integrated 
into and presented as detailed ASA³P reports.



4.2 Robust detection and characterization of plasmid-borne contigs from bacterial draft
assemblies with Platon

4.2.2 Ongoing developments and potential improvements of 
Platon

An interesting aspect  for  future explorations that  has not  yet  been addressed is the 

application of Platon for the analysis of whole-metagenome sequencing data. Initially, 

Platon has been developed to detect plasmid-borne contigs from WGS draft assemblies 

of  single  bacterial  isolates.  However,  as  the  underlying  methodology  and  its 

implementation  is  not  fundamentally  bound  to  assemblies  of  isolated  genomes,  in 

principle,  the methodology is  also  applicable  to metagenomic approaches.  However, 

due to the significantly larger data sizes implied, it might be beneficial or even necessary 

to analyze assembled metagenomic contigs in parallel. This is already implemented for 

the various contig characterization steps but not yet for the ab initio prediction of protein-

coding genes as well as the lookup of MPS. A reimplementation in a dedicated workflow 

engine providing divide-and-conquer approaches for large numbers of contigs, as for 

instance NextFlow [442], will significantly improve vertical scalability, add new horizontal 

scalability features and thus, will reduce the overall runtime of the software.
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Figure 9:  Visualization  of  potential  plasmid  reconstructions  via  detected 
plasmid contigs.

Plasmid contigs of a bacterial draft assembly were detected with Platon and 
mapped onto complete reference plasmids. Reference plasmids with contig 
hits of two or more contigs are visualized along with contig hits in order to 
reveal potential reconstructions of plasmids within a certain genome. Light 
gray circle: reference plasmid sequence; dark gray regions: alignments of 
contigs resulting from short-read draft assemblies.
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Furthermore, while debugging and benchmarking Platon it became obvious that many 

contigs are located within diffuse niches of the multidimensional feature space reflecting 

the  various  contig  characterizations.  These  contigs  are  hard  to  classify  via  simple 

heuristics. Hence, it might be rewarding to address this challenging classification task by 

using  machine-learning  approaches,  e.g. artificial  neural  networks,  to  target  these 

partially non-linear properties of the data. These approaches might utilize, combine and 

thus take advantage of the various general and plasmid specific features, as for instance 

differences  in  the  GC content,  contig  lengths,  coverages  and  k-mer  frequencies.  A 

recent  study  has  shown  that  machine-learning  approaches  utilizing  combinations  of 

these features are able to provide competitive results [443].

An idea for future investigation directly aims at Platon’s underlying RDS methodology 

that  takes  into  account  differences  of  protein  sequence  homology  search  hits  on 

complete replicons, i.e. chromosomes and plasmids. This binary homology search could 

easily be expanded to other sequence types and thus generalized for the detection of 

further  mobile  genetic  elements  harboring  protein-coding  genes  like  prophages.  In 

principle, this approach can be used on all protein encoding DNA sequences that can be 

separated into two or  more categories.  It  might  be rewarding to reuse and test  this 

approach for other detection or classification tasks.

Another example for future enhancements follows up on the visual indication of publicly 

known plasmid sequences that are potentially contained in assembled draft genomes 

(Figure 8). Instead of the mere visual indication of public plasmid sequences taking into 

account  contigs  that  have  priorly  been  identified  to  be  plasmid-borne  on their  own, 

databases of known plasmid sequences could be screened for potential reconstructions 

based on all contigs that are present in a given draft assembly. In addition, this would 

facilitate the parameterized screening for plasmid sequences allowing for either relaxed 

or conservative searches.
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4.3 Rapid and automated determination of suitable 
reference genomes with ReferenceSeeker

“Taxonomy is described
sometimes as a science and sometimes as an art,

but really it’s a battleground.”

Bill Bryson
A Short History of Nearly Everything

Selecting suitable microbial reference genomes is a necessary task for many WGS data 

analyses. Due to the large and constantly rising number of publicly available genomes, 

this  selection  process  becomes  more  and  more  difficult.  Many  contemporary 

bioinformatics software tools are provided via online services  [274,275] or interactive 

graphical  user interface (GUI)  implementations  [274] and thus,  are not  applicable  to 

large-scale  data  analysis.  However,  available  tools  that  are  locally  executable  via  a 

command line interface, do not provide integrated databases  [276] or do not achieve 

sufficient resolutions at the required strain level [374,377]. Likewise, some tools are not 

usable for more-distantly related genomes [276]. To solve this issue, this thesis provides 

a new bioinformatic software tool called ReferenceSeeker for the scalable command line 

search for suitable microbial reference genomes from large integrated databases [444]. 

To  achieve  this  task,  the  implemented  two-step  approach  combines  a  rapid  k-mer 

fingerprint  lookup  of  potential  reference  genome  candidates  with  the  robust  and 

thorough calculation of ANI and conserved DNA values. It  scales vertically and thus 

achieves  short  wall-clock  runtimes.  ANI  based  genome  to  genome  distances  allow 

reasonably detailed comparisons of query and reference genomes, even at small DNA 

fragment levels. Default values for ANI and conserved DNA thresholds are set to well 

known  boundaries  for  bacterial  species.  However,  these  are  adjustable  parameters 

allowing  more  or  less  constrained  taxonomical  searches  to  increase  potential 

applications [273].

In contrast to existing tools, ReferenceSeeker provides a dedicated database integrating 

k-mer fingerprints, taxonomic information as well as compressed DNA sequences of all 

entries in the reference genome database. For further convenience, five pre-compiled 
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databases are provided for the following microbial taxa: viruses, archaea, bacteria, fungi 

and protozoa. Noteworthy, as the implemented approach is generally able to compare 

all types of larger DNA sequences, recently, a dedicated plasmid database comprising 

26,907  sequences  has  been  compiled  and  publicly  provided  via  Zenodo  [445]. 

Furthermore,  the  software  provides  a  command  line  interface  for  streamlined 

compilations of custom databases and the local import of available genomes or DNA 

sequences. Thus, users are able to create dedicated customized local databases for 

targeted taxonomic analysis. At the time of writing, ReferenceSeeker has been cited two 

times due to Dimensions.ai.

Although  this  tool  was  developed  for  the  automated  lookup  of  suitable  reference 

genomes, it is also a useful tool for taxonomic classifications of bacterial genomes by 

applying generally accepted thresholds for ANI and conserved DNA values [276].

4.3.1 Integration into ASA³P

The integrated and fast implementation makes ReferenceSeeker another appropriate fit 

for  the  close  integration  into  ASA³P.  In  the  recent  release  v1.3.0  after  the  initial  

publication, the k-mer based taxonomic classification using Kraken [439] was replaced 

by  ReferenceSeeker  taking  advantage  of  the  ANI  methodology  for  which  widely 

accepted  species  boundary  thresholds  exist.  This  replacement  significantly  reduced 

ASA³P’s  storage  requirements  from  142 GB  to  only  29 GB  and  thus  increased  its 

general usability, especially for installations on standard consumer hardware providing 

only limited hardware capacities.

4.3.2 Ongoing developments

ReferenceSeeker  and  other  contemporary  bioinformatics  software  tools  for  the 

calculation of inter-genomic distances are currently only applicable for the automated 

lookup  of  reference  genomes  based  on  a  single  query  genome.  To  analyze,  for 

instance, a cohort of bacterial genomes, this single reference genome should ideally 

reflect  as much as possible  of  the entire genomic landscape of  all  genomes in this 

analysis, in order not to unintentionally mask certain genomic regions in a SNP calling 

analysis. A further application requiring sufficiently related syntenic genomic regions is 
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the ordering and rearrangement of contigs within draft assemblies. However, the larger 

a  group  of  genomes  or  the  more  diverse  its  members,  the  more  demanding  this 

selection becomes. Currently, ASA³P users are required to provide at least one, better 

more,  closely  related  reference  genomes.  Of  course,  these  manual  selections  of 

reference  genomes  introduce  an  unnecessary  bias  as  it  remains  questionable  if 

manually  selected  reference  genomes  always  reflect  the  optimal  choice  from  the 

hundreds and thousands of available public genomes. 

To address these issues and to fully automate this selection process for subsequent 

bacterial cohort analyses with ASA³P, the expansion of the ReferenceSeeker workflow 

from the current 1:n to an m:n approach for query and reference genomes, respectively, 

is a promising approach, which is currently being addressed in an ongoing Master thesis 

at the time of writing.
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5 Conclusion

The giant progress in DNA sequencing technologies revolutionized the field of microbial 

genomics. Vast numbers of genomes are sequenced worldwide every day and many 

research areas benefit  tremendously  from these developments,  in  particular  medical 

microbiology and epidemiology. Nowadays, genome-based analyses are essential tools 

for  the detection,  classification,  typing and comparison of  special-interest  genes and 

genomes at various levels. At the same time, IT is revolutionized alike by new trends 

such  as  software  containerization  and  cloud  computing.  New  software  engineering 

paradigms  and  frameworks  have  recently  emerged  to  conduct  robust  and  scalable 

computations executed on distributed and heterogeneous IT infrastructures. Albeit the 

mere sequencing of bacterial genomes as well as computing capacity in general are not 

limiting factors anymore, the comprehensive, timely and standardized analysis of all this 

data however remains an issue of rising importance.

This  thesis  provides  novel  bioinformatics  software tools  for  the  fully  automated  and 

scalable analysis of WGS data of small and large cohorts of bacterial genomes. As a 

first contribution, ASA³P directly addresses this objective. In contrast to existing software 

tools, it offers a unique and comprehensive combination of features in terms of support 

for different DNA sequencing platforms and assembly approaches, thorough per-isolate 

characterization,  comparative analyses,  and both vertical  and horizontal  scalability.  It 

supports researchers with a single software suite for the collective analysis of bacterial 

genomes and furthermore allows the seamless upscaling from small to vast numbers of 

genomes using regular consumer hardware or HPC and CCIs, respectively. A second 

and third contribution comprise a novel bioinformatic methodology and two new software 

tools addressing distinct issues that have arised from the design of this workflow. To 

improve the integrated analysis of plasmids, RDSs were introduced as a new approach 

for the automated and taxonomy-independent detection of plasmid-borne contigs from 

draft assemblies. It achieves a robust and balanced classification performance and was 

implemented in Platon. To streamline both the automated selection of closely related 

reference genomes and the taxonomic classification of assembled genomes, a novel 

approach  combining  existing  tools  and  methodologies  has  been  implemented  in 
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ReferenceSeeker.  Due  to  their  automated  taxonomy-independent  workflows  and 

integrated databases, these tools fit both the scientific and technical requirements for 

the integration into ASA³P. Furthermore, they are available as stand-alone bioinformatic 

software tools, as well.

These contributions  have already been used in  various  studies  and publications.  In 

particular,  ASA³P has been shown to be a useful tool for researchers in the field of 

medical microbiology and epidemiology streamlining the data processing and genome 

characterization  workflow.  It  enables  researchers  to  take  advantage  of  scalable  IT 

resources and a diverse set of proven bioinformatics software tools dedicated to the 

various tasks involved. Hence, even more bacterial genomes and larger cohorts thereof 

can  be  analyzed,  characterized  and  compared,  allowing  to  keep  up  with  DNA 

sequencing technologies and future demands. It will help to address urgent issues in the 

field  of  medical  microbiology  as  for  instance,  AMR  and  the  spread  of  pathogenic 

bacteria. However, it must be mentioned that by no means ASA³P is restricted to these 

applications. The robust and extensible framework of this software provides a platform 

that  can  be  expanded  and  adapted.  Hence,  many  research  areas  that  include  the 

analysis  of  bacterial  genomes,  e.g. biotechnology,  veterinary  medicine,  microbial 

ecology  and  space  microbiology,  might  benefit  from  these  automated  and  scalable 

solutions opening further applications within the much larger research field of microbial 

genomics. Furthermore, new questions and ideas for improvements and potential new 

tools  emerged from this  thesis  regarding for  example,  reference genomes for  entire 

cohorts, the improvement of contig classifications via machine learning approaches and 

potential metagenome applications, the screening of publicly known plasmid sequences 

and the annotation of bacterial genomes. These ideas provide interesting and promising 

subjects for further investigations and future research projects.
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