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1 Abstract

Over the last decades, the giant progress of DNA sequencing led to increased
throughput and tremendously reduced costs resulting in a broad accessibility and
applicability of these technologies and thus revolutionized the entire field of microbial
genomics. Today, these developments allow the sequencing of large groups and entire
cohorts of bacterial genomes in a timely manner, whereas a mere decade ago, this was
only feasible for a few single genomes. Now, hundreds of thousands of sequenced
bacterial genomes are available in public databases and vast numbers of genomes are
sequenced worldwide on a daily basis without any foreseeable climax. Many fields of
research benefit from these developments, in particular medical microbiology and
epidemiology. Hence, genome-based analyses have nowadays become essential tools
for the detection, classification, typing and comparison of special-interest genes and
pathogenic genomes at various levels. At the same time, IT is revolutionized alike by
new developments like cloud computing and software containerization techniques.
Modern software engineering paradigms and frameworks have recently emerged and
provide new opportunities for scalable computations on distributed and heterogeneous
infrastructures that in turn imply new technical premises. Albeit the mere sequencing of
bacterial genomes as well as computing capacity in general are not the major limiting
factors anymore, the comprehensive, timely and standardized analysis of large bacterial

whole-genome sequencing data however remains an issue of rising importance.

Therefore, it was the aim of this thesis to address these challenges and provide novel
bioinformatic approaches and software tools for the scalable high-throughput analysis of
whole-genome sequencing data of large bacterial cohorts. An automated and
comprehensive workflow was designed and implemented in a portable, scalable and
user-friendly software tool ASA®P. It supports data from all contemporary DNA
sequencing platforms conducting the streamlined processing and analysis from raw
reads to assembled, annotated and comprehensively characterized genomes including
comparative analyses. The software provides both vertical and horizontal scalability
allowing researchers to take advantage of distributed and versatile computing

infrastructures. Results are presented as integrated, human-readable and interactive
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reports. Two further contributions address issues that have arisen from the design of this
workflow. For the integrated analysis of plasmids, a novel methodology has been
developed for the automated and taxonomy-independent detection and characterization
of plasmid-borne contigs from fragmented bacterial draft assemblies. As a new
approach to this problem, the natural distribution bias of protein-coding gene families
among chromosomes and plasmids is utilized, which achieves a robust and competitive
classification performance. This new methodology was implemented in the software tool
Platon, which also provides additional plasmid characterizations. A third contribution
addresses the robust and accurate but rapid computation of mutual genome distances
that is required for the automated selection of high-quality reference genomes and
whole-genome-based taxonomic classifications. As the large amount of available
genome sequences poses increasing hurdles to these steps in terms of data
accessibility, performance and runtimes, a new software tool called ReferenceSeeker
combining existing methodologies was developed and complemented by the
provisioning of integrated and customizable databases. Noteworthy, its application is not

limited to microbial genomes alone, but DNA sequences in general, including plasmids.

These three bioinformatics solutions have been used in various published and
unpublished studies and proven as useful software tools for researchers in the field of
medical microbiology. In particular, ASA3P enables researchers to take advantage of
modern and scalable IT resources and provides access to a diverse set of proven
bioinformatics software tools. Hence, even more bacterial genomes and larger cohorts
thereof can be processed, characterized and compared among each other, allowing
researchers to keep pace with DNA sequencing technologies and future demands. Due
to its extensible framework, the application of ASA3®P is however not restricted to
medical microbiology applications, but can be expanded and adapted to applications
within the much larger field of microbial genomics. Furthermore, several ideas for further
improvements and potential new software solutions emerged from this work that opened

new research questions and established interesting subjects for future investigations.
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Zusammenfassung

Immense Fortschritte auf dem Gebiet der DNA-Sequenzierung flhrten in den letzten
Jahrzehnten zu einer enormen Kostenreduzierung und Erhdhung des weltweiten
Sequenzieraufkommens. Die damit einhergehende weite Verbreitung und einfache
Anwendbarkeit dieser Technologien revolutionierte in Folge umfassend das gesamte
Gebiet der mikrobiellen Genomik. Noch vor einem Jahrzehnt undenkbar, ist es heute
méglich, zeitnah groRe Kohorten ganzer Bakteriengenome zu sequenzieren. Offentliche
Datenbanken bieten heutzutage Zugang zu hunderttausenden Bakteriengenomen und
taglich kommen ohne erkennbare Verlangsamung unzahlige hinzu. Von diesen
Entwicklungen profitieren viele Forschungsgebiete, insbesondere die medizinische
Mikrobiologie und Epidemiologie. Computergestiitzte genetische Analysen sind zu
unverzichtbaren Werkzeugen fir den Nachweis, die Klassifizierung, Typisierung und
den Vergleich pathogener Genome auf unterschiedlichsten Ebenen geworden.
Gleichzeitig  erhielten neue  Entwicklungen wie Cloud Computing und
Softwarecontainerisierung Einzug in die Informationstechnologie und revolutionieren
diese gleichermalien. Moderne Frameworks und Software-Engineering-Paradigmen
bieten neue Moglichkeiten fur skalierbare Berechnungen auf verteilten und heterogenen
Infrastrukturen, welche jedoch neue technische Ansatze und softwareseitige
Anforderungen voraussetzen. Auch wenn die Sequenzierung bakterieller Genome sowie
notwendige Rechenkapazitaten zur Analyse keine wesentlichen limitierenden Faktoren
mehr darstellen, ist die zeitnahe, eingehende und standardisierte Analyse groler
Kohorten bakterieller Genomsequenzierungsdaten gleichwohl Gegenstand aktueller

bioinformatischer Forschung.

Ziel dieser Arbeit war es daher, diese Herausforderungen zu adressieren und neue
bioinformatische Ansatze und Softwaretools far die skalierbare
Hochdurchsatzdatenanalyse von Gesamtgenomsequenzierungen grof3er bakterieller
Kohorten zu entwickeln. Hierzu wurde ein automatisierter und umfassender Workflow
entworfen und in dem portablen, skalierbaren sowie benutzerfreundlichen Softwaretool
ASA®P implementiert. Dies unterstitzt alle verbreiteten DNA-
Sequenzierungsplattformen sowie die automatische Prozessierung und Analyse der
Daten hin zu assemblierten und annotierten Genomen mit anschlieRender
umfangreicher Genomcharakterisierung und komparativen Analysen aller Genome einer
Kohorte. Die portable Software bietet eine sowohl vertikale als auch horizontale

Skalierbarkeit, welche es Forschenden ermoglicht, verteilte und Vvielseitige
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Computerinfrastrukturen zu nutzen. Alle Ergebnisse werden in standardisierten
bioinformatischen Dateiformaten ausgegeben sowie als integrierte, fir Menschen
lesbare, interaktive Berichte prasentiert. Aus der Gestaltung dieses Workflows ergaben
sich neue Fragestellungen, welche in zwei weiteren Beitragen dieser Arbeit behandelt
wurden. Fir die integrierte Analyse von Plasmiden wurde eine neuartige Methodik fir
den automatisierten und taxonomieunabhangigen Nachweis plasmidarer Contigs aus
bakteriellen Draftassemblierungen mit anschlieBender Charakterisierung entwickelt. Als
neuer Ansatz zu diesem Problem werden hierzu Unterschiede in der naturlichen
Verteilung proteinkodierender Genfamilien zwischen Chromosomen und Plasmiden
genutzt, wodurch eine robuste und kompetitive Klassifizierung erreicht wird. Diese neue
Methodik wurde mitsamt umfangreicher Plasmidcharakterisierungen in dem
Softwaretool Platon implementiert. Ein dritter Beitrag adressiert die schnelle und
genaue Berechnung bidirektionaler Genomdistanzen, welche fir die automatisierte
Auswahl hochqualitativer Referenzgenome und gesamtgenombasierter taxonomischer
Klassifikationen erforderlich ist. Die schiere Menge verfligbarer Genomsequenzen stellt
jedoch ein immer groBer werdendes Hemmnis fur diesen Auswahlprozess bezuglich
Datenverflgbarkeit, Qualitdt und Laufzeit dar. Dazu wurde ein neues Softwaretool
namens ReferenceSeeker entwickelt, welches bestehende Methoden kombiniert und
durch die Bereitstellung integrierter und erweiterbarer Datenbanken erganzt wurde. Ein
wichtiger Vorteil der Software ist dessen breite mikrobielle Anwendbarkeit, welche nicht
auf Bakteriengenome beschrankt ist, und dariber hinaus auch allgemeine DNA-

Sequenzen, insbesondere Plasmide umfasst.

Diese neuen bioinformatischen Softwareldsungen wurden in verschiedenen publizierten
Studien verwendet und haben sich als nutzliche Werkzeuge fur Forschende auf dem
Gebiet der medizinischen Mikrobiologie bewahrt. Insbesondere ermdglicht ASA3P die
Vorteile moderner und skalierbarer IT-Ressourcen zu nutzen, und bietet Zugang zu
einer Vielzahl bewahrter bioinformatischer Softwaretools und Datenbanken. So kdnnen
immer mehr Bakteriengenome und gréRere Kohorten verarbeitet, charakterisiert und
miteinander verglichen werden, und Forschende mit zuklnftigen Anforderungen Schritt
halten. Aufgrund seines modularen Designs ist die Anwendung von ASA3P jedoch nicht
auf Anwendungen in der medizinischen Mikrobiologie beschrankt, sondern kann
erweitert und an vielfaltige Anwendungen innerhalb der mikrobiellen Genomik
angepasst werden. Des Weiteren gingen aus dieser Arbeit zahlreiche Ideen fir weitere
Verbesserungen und potenzielle neue Softwarelosungen hervor, welche neue
Forschungsfragen aufwerfen und interessante Themen fur zuklnftige Untersuchungen
bieten.
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. there are 100 million times as many
bacteria in the oceans (13 x 102%)
as there are stars in the known universe.”

Microbiology by humbers
Nature Reviews Microbiology, 2011

2.1 Rationale and outline

Microbes are the oldest organisms on earth and preceded all other living beings,
especially multicellular eukaryotes like animals and plants, by nearly three billion years
[1]. They have been the pioneers of this planet and the foundation of the biosphere, from
both an evolutionary as well as an environmental perspective [2]. At all times throughout
history, humans have lived in complex ecosystems and ambivalent relationships with
these microorganisms. On the one hand, they populate complex ecological niches on
the surface of and within multicellular eukaryotes like plants and humans [3]. For a long
time, the endogenous human flora was poorly understood [4,5], but step by step more
and more white spots on this map have been erased. Today, we know that the number
of commensal bacteria colonizing the human body approximately equals or even
exceeds the number of human cells [6,7]. Only recently, we started to grasp that these
diverse communities pose an essential natural line of defense against pathogenic
microorganisms and therefore play an important role for human health [8—11]. On the
other hand, there is a large number of well-known pathogenic bacteria causing severe
infectious diseases. For millennia, mankind has been severely threatened by many of
these, which had a tremendous impact on the human population on a global scale. For
example, the plague caused by Yersinia pestis [12] has been accountable for many
large historical outbreaks [13,14]. For instance, the medieval pandemic, which had
tremendous socio-economic effects, has been described as “one of the most dramatic

examples ever” [15]. Although the plague is deemed vanquished, still today, there are
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occasional local outbreaks in different parts of the world [16,17]. However, besides
these small and large-scale epidemics, many infectious diseases are of a rather
permanent nature posing a lasting burden for humankind. For example, the typhoid
fever caused by Salmonella enterica serovar Typhi [18] led to estimated 21.7 million
infections resulting in 217,000 deaths in the year 2000 alone [19,20]; for tuberculosis
caused by Mycobacterium tuberculosis [21], 10 million infections and nearly 1.2 million
attributable deaths were reported for 2019 [22]; and for cholera caused by Vibrio
cholerae, 1.2 million cases were reported in 2017 [23]. To this brief exemplary list, a
large set of pathogens must be added that caused 600 million food-born illnesses in the
year 2010 - amongst these the most severe agents, e.g. Escherichia coli,
Campylobacter, Listeria monocytogenes and Salmonella as well as pneumonia-causing

bacteria, e.g. Streptococcus pneumoniae and Haemophilus influenzae type b [24].

In the mid-20th century, the human quest for biological survival of infectious diseases
was deemed as succeeded due to the discovery, and shortly afterwards, broad
availability of antibiotics. However, over the course of the last decades, this evolutionary
competitive edge constantly lost its effectiveness as more and more bacteria have
become resistant to many commonly used antibiotic drugs. Sadly, humankind has
induced and is rapidly approaching a situation in which bacterial infections could
become untreatable again. Unfortunately, even resistances against so-called last-resort
antibiotics are detected more frequently, as for instance, the mcr-1 gene conferring
resistance against colistin [25—-28]. These developments have evolved to a severe public
health issue and a threat for people worldwide. Already in 1990, the Nobel Prize winner
Joshua Lederberg stated: “We live in evolutionary competition with microbes — bacteria
and viruses. There is no guarantee that we will be the survivors” [29]. The magnitude of
this global medical crisis has become distressingly clear in a recent study estimating
that, without effective countermeasures, about 10 million people could die annually in
2050 due to antibiotic-resistant bacteria [30]. Likewise, it has become clear that the
implied economic burden of antimicrobial resistance (AMR) treatments is massive
[31,32].

Fortunately, simultaneously to the emergence of these threats, constant and steep
scientific progress in the fields of molecular biology, microbiology, medicine and
bioinformatics facilitated new methodologies for deeper investigations of the microbial
universe as well as for the surveillance and outbreak detection of human pathogens
[33,34]. The advent of next-generation sequencing (NGS) technologies commenced a

new era of high-throughput DNA sequencing in which bacterial genomes are
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investigated in hitherto unknown resolution and unprecedented numbers. New genome-
based approaches have expeditiously become routine for the effective surveillance and
precise tracing of infection chains within pathogen outbreaks [35]. Furthermore, whole-
genome sequencing (WGS) based antibiotic susceptibility testing (AST) matures and
might replace molecular-based phenotypic AST in the medium term [36]. Potential future
applications might comprise real-time on-site or even point-of-care sequencing of clinical
samples providing instant and actionable results. According to these global
developments, the described threat of antibiotic-resistant bacteria is on the agenda of
policy makers and health professionals worldwide. For instance, the European Union
installed a union-wide surveillance system led by the European Centre for Disease
Prevention and Control (ECDC) to collect, analyze and report data on antibiotic-resistant
bacteria through a network of national surveillance systems in which all member states
participated [37].

This strong rise of antibiotic resistance-related DNA sequencing projects in both
academia and public health authorities has contributed to the genesis of a large number
of bioinformatics software tools and databases. Although there is an obvious trend in
implementing open data standards, as for instance the well-known FAIR (findability,
accessibility, interoperability and reusability) principles [38], only few if any open
standards in clinical WGS are in place. Even worse, this large number of available
bioinformatics solutions fostered an obvious lack of consensus regarding the choice of
optimal methodologies, algorithms, software implementations and databases, which
often need to be combined in complex workflows exacerbating these issues [39].
However, to fully exploit the vast potential of these promising scientific opportunities, the
demand for standard operating procedures, common application interfaces and analysis
workflows needs to be addressed in order to handle the implied overwhelming

complexity.

In addition to the expanding complexity of data analysis workflows, the sheer amount of
existing data is increasing by magnitudes and thus challenges established information
technology (IT) infrastructures. In 2015, it has been estimated that the yearly acquisition
of DNA sequencing raw data could rise to a worldwide level of one zettabyte — a
trillion gigabytes (GB) — in 2025 [40]. This mind-boggling amount of raw data will push IT
requirements to unknown levels. Data analysis solutions provided by dedicated and
specialized but centralized online services might soon be outpaced by rising sequencing
outputs and their usage will be limited by the heavily used networks connecting local

DNA sequencing facilities with centralized online services. These bottlenecks will put a
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strong pressure on the way this raw data will be processed and finally foster new
approaches: away from centralized online services and towards local computers on the

one hand and nearby scalable cloud computing infrastructures (CCls) on the other.

Due to the increasing power of standard consumer hardware, it is nowadays still feasible
to analyze small data sets on local computers in a timely manner avoiding the limiting
public transportation of raw data and limited computing capacities of centralized
software solutions. However, increasing amounts of data like, for example, combinations
of novel DNA sequencing technologies and growing cohorts of large numbers of
samples, will inevitably require computing resources beyond the capabilities of local
computers and centralized online services. In this context, distributed CCls provide
several advantages. First and most importantly, flexibility: CCls are able to dynamically
and rapidly provide vast computing resources on demand and thus build the technical
foundation for the timely analysis of medium to even very large data sets. For example,
suitable amounts of computing resources can be requested and instantly provided
according to data sizes at hand and requested analysis workflows. Furthermore, CCls
provide the opportunity and technical solutions to dynamically adapt provisioned
computing resources to changing requirements over the course of multistep data
analysis workflows. Hence and second costs: costly upfront expenditures for local
computing infrastructures can be spared. Furthermore, CCls are able to take advantage
of economies of scale by using shared pools of computing resources thus achieving
much higher overall usage statistics compared to potentially underused local computing
infrastructures. These advantages are complemented by a considerable potential to
improve on operating expenses in terms of power efficiency. Hence, CCls provide huge
potentials for economic but also ecological cost reductions. Third data throughput:
compared to centralized online services, distributed CCls are able to provide on average
closer hosting sites. Thus, the physical distance and the number of network endpoints
that the data must pass on its way from DNA sequencing to data processing facilities is
potentially reduced. This might result in reduced overall network usage and shorter data

transportation periods.

Finally, information gained from raw data processing and analysis, either locally or CClI-
based, could then be submitted to dedicated centralized online services and information
repositories running sophisticated information aggregation and big data algorithms. This
higher level information could then be analyzed by specialized software solutions
potentially exploiting artificial intelligence to create new knowledge from this plethora of

information. However, in order to keep pace with these developments, bioinformatics
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software tools will need to fulfill an increasing number of technical requirements to play
their role in a growing stack of decentralized analysis workflows: they (i) need to be both
easily portable and installable for non-IT experts via common software environment
management systems, e.g. Docker [41], Podman [42] or BioConda [43], (ii) require
implementations that allow vertical and preferably horizontal scalability to different work
loads, (iii) need to follow community best practices in terms of standardized interfaces
and file formats allowing the seamless interconnection with other tools and the

integration into larger workflows.

To address these issues, novel approaches and bioinformatics software solutions have
been developed and are described in this thesis for the automated high-throughput
analysis of bacterial WGS data from single genomes and larger cohorts thereof. Three
new bioinformatics software tools and a new methodology are described as scientific
contributions to the field of microbial genomics. The main contribution comprises the
design of an automated analysis workflow for the processing and comprehensive
characterization of cohorts of sequenced bacterial genomes as well as its
implementation fulfilling the described contemporary requirements. Two further
contributions resulted from the design of the aforementioned workflow: the development
of a taxonomy-independent new methodology for the fully automated and robust
detection and characterization of plasmid-borne contigs resulting from bacterial draft
assemblies, and the rapid but accurate determination of suitable reference genomes for

the automated selection and usage in reference-based analysis workflows.

The following section 2.2 provides a brief historical recapitulation and introduction into
the field of medical microbiology from its beginning to the most recent developments
regarding outbreak detection, surveillance, investigation and characterization of bacterial
organisms as a major contemporary driving force of the global demand for sequenced
sets of bacterial genomes. This is followed by an introduction to the field of DNA
sequencing and related developments in downstream bioinformatics analysis in
section 2.3. To describe these immense breakthroughs and to highlight the increasingly
steep acceleration of scientific progress in these fields, a rather large time frame was
chosen. As one key driver for the large-scale sequencing of bacterial isolates, the global
dissemination of antibiotic-resistant bacteria as well as the implied emerging threats are
described in section 2.4. This is followed by section 2.5 introducing the in silico analysis
of bacterial plasmids as a key vehicle for the global dissemination of antibiotic resistance
genes. Section 2.6 describes applications for reference genomes and challenges

regarding the optimal selection thereof. Section 2.7 provides a short layout of
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contemporary challenges in microbial bioinformatics for the medical microbiology of the
coming 2020s. The introduction is concluded with a description of the scientific
challenges and gaps in the field of microbial bioinformatics regarding the automated
high-throughput analysis of bacterial WGS data in section 2.8. After short summaries of
the peer-reviewed publications being part of this thesis, these contributions are

described and discussed in the light of the explicated scientific background.

10



2.2 Medical microbiology and epidemiology in the course of
time

The second half of the 19th century was the natal hour of medical microbiology as we
know it today. Robert Koch, Louis Pasteur and Paul Ehrlich, just to name a few besides
many prominent medical and microbiological scientists, made groundbreaking
discoveries that revolutionized our fundamental understanding of infectious diseases
and the way we treat them today. Until that time, it had been believed that infectious
diseases were caused by polluted air arising from decayed organic matter, condensed in
the theory of miasma [44]. Originating from religious thoughts, Hippokrates formed a
naturalistic view of the origin of infectious diseases, which inhabited European cultures
for more than 2,000 years until the mid-19th century [45-47]. In 1854, a severe cholera
outbreak in London’s Soho district caused about 644 deaths [48]. In the middle of this
outbreak, the young British physician John Snow doubted the miasma theory in favor of
a waterborne transmission [49]. Although Snow achieved to find the spatial origin of the
outbreak by combining death cases with geographical data, he was not able to prove his
ideas. Posthum, his conception was endorsed by the medical statistician William Farr, a
former vital supporter of the miasma theory, by the statistical analysis of death rates
[50]. In the course of the following decades, the miasma theory more and more
struggled and was finally taken over by the modern germ theory. This opposing theory,
conveying the conception that microbes are the cause of infections, recurrently came up
and was described in basic versions throughout the ages, from Ibn Sina in 1025 [51] to
Girolamo Fracastoro in the mid-16th century [52]. But in 1876, this theory was finally
proven by the description of the full lifecycle of Bacillus anthracis — maybe the most
significant breakthrough in the field of medical microbiology. For the first time in history,
the full progression of an infectious disease could be described in combination with and
in the light of the causing agent that has bedeviled mankind ever since [53]. Only six
years later, in 1882, Robert Koch published the discovery of Mycobacterium
tuberculosis, the agent and cause of one of the most deadly and feared infectious
diseases causing one out of seven deaths in Europe in these times [21]. A mere year
after, Koch discovered the cholera agent Vibrio cholerae and thus finally proved John
Snow right [54]. Several of these findings have been condensed and summed up in his
famous postulates, which are still in use today and led to the discovery and description
of many bacterial pathogens in the following years [55]. These major discoveries, among

many others in the “golden age” of bacteriology, laid the cornerstone for numerous

11
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following scientific discoveries in molecular biology and genetics and thus built the
fundamental scientific basis for our today’s understanding of medical microbiology and

epidemiology.

Over the course of the following century, bacterial species were described in profusion,
hugely expanding the known microbial world. In 1980, a large reorganization of the
bacterial nomenclature reduced redundancy resulting in about 2,300 unique taxonomic
names [56]. In order to distinguish and finally identify known and new bacterial species,
an elaborate and time-consuming phenotypic description had to be conducted,
comprising the morphological description and stainings by visual inspections as well as
metabolic classifications based on chemical assays. Not until the discovery and
understanding of the DNA as the encoding molecule of the genetic information in the
middle of the 19th century, it was possible to take advantage of the inherent ultimate
blueprint of all living beings as a new approach for the description of and discrimination
between bacterial species. This discovery along with concordant progresses in
molecular biology started a shift from mere morphological and macromolecular, i.e.
phenotypic, descriptions to modern DNA-based, ie. genotypic, descriptions and
characterizations of bacterial organisms. Based on these genotypic methods, the
definition of bacterial species, the typing of closely related groups and even the
identification of single strains became conductible leading to revolutionary developments

in medical microbiology as well as new tools for modern epidemiology.

These advances in the use of molecular markers and genetics posed an epidemiological
game changer. For instance, in the 1970s DNA-DNA hybridization was introduced as a
bilateral method to differentiate between bacterial species. Genomes that showed more
than 70% DNA-DNA homology under given conditions were considered to belong to the
same species [57]. Improving from mere species delineation, in 1984 Schwartz and
Cantor developed the pulsed-field gel electrophoresis (PFGE) as an improvement to
normal gel electrophoresis [58]. This new technique enabled the DNA-based
fingerprinting of bacterial organisms with previously unreached resolution. Now, this
fine-grained discrimination of bacterial strains allowed for the tracing of individual strains
down an epidemiological chain. In 1996, the US Centers for Disease Control and
Prevention (CDC) started a programme named PulseNet aiming to create a large
compilation of PFGE-based DNA-fingerprints of foodborne bacterial human pathogens
[59]. As soon as DNA-fingerprints of new clinical isolates from hospitalized patients were
available, they could be compared to those stored in the database. Matches helped to

subsequently build a reliable link between a patient and the food or its production
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environment helping to frame foodborne pathogen outbreaks. Convinced by the results
of this project, until 2001, all US public health state laboratories engaged into PulseNet.
Until 2015, this database had grown to one million records covering more than 500,000
DNA fingerprints of Salmonella genomes alone and nearly 90,000 patterns were queried
and compared from participating public health authorities [60]. By exploiting the
pathogens’ genomes in order to identify and type them and finally trace outbreaks,

PulseNet became an epidemiological story of success.

Meanwhile, a new approach called multilocus sequence typing (MLST) was proposed in
1998. Instead of comparing physical fingerprints of DNA fragments, this new
methodology was based on recently emerging DNA sequencing technologies. Exploiting
species specific expert knowledge, DNA sequences of a tiny fraction of housekeeping
genes are collected and assigned arbitrary numbers. Combinations of these allele
numbers are assigned numbers again resulting in a digital fingerprint that is simple to
use, share and communicate [61]. Advantages in terms of electronic portability and
much higher strain resolution instantly led to the creation of MLST schemes for many
pathogenic species [62-68] as well as bioinformatics software tools and data sharing
platforms for the analysis and sharing of pathogenic bacterial genome sequence types
[69,70].

However, in 2005, when the first commercial NGS platforms entered the market, it
became clear that these new techniques had the potential to revolutionize microbiology
and epidemiology, again [71]. Only five years later, the PulseNet project used a WGS
approach to investigate an ongoing outbreak of Vibrio cholerae in Haiti with 93,000
cases and 2,100 attributable deaths [59,72]. Shortly after, in 2013, the CDC started to
use WGS techniques for the routine surveillance of Listeria. By doing so, more pathogen
genome clusters were detected, and more outbreaks could be solved than ever before.
Phylogenetic investigations exploiting the high genetic resolution of WGS approaches
were shown to be in line with epidemiological data, thus helping to reconstruct
outbreaks. Hence, WGS has transformed the surveillance of Listeria related outbreaks
[73].
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Figure 1: Exemplary depiction of cluster resolution levels of different molecular methods for
outbreak detections and investigations.

Isolates of Salmonella enterica sampled during an outbreak in the USA in 2018 have been
investigated and clustered using different genomic methods. Individual dots represent cases of
gastroenteritis with sampled and investigated isolates. Gray dots represent cases that were
determined not to be linked to an outbreak; colored dots represent cases linked to confirmed
outbreaks. A) For demonstration purposes, cases are randomly placed representing unclustered
samples if no data is available. B) Clustering of isolates according to PFGE. C) Clustering of
isolates according to WGS methods. Reprinted with permission from The NEW ENGLAND
JOURNAL of MEDICINE [77], Copyright © 2019, Massachusetts Medical Society.

This unprecedented resolution of WGS methods, combined with publicly available
genome sequences allowed the exact and rapid typing and identification of bacterial
pathogens on a global scale and hence, quickly transformed the way how outbreaks
were investigated in general [74,75]. It could be shown that the fine-grained resolution of
WGS approaches clearly outperform former methodologies like serotyping, PFGE and
MLST [76] and that this increased genomic resolution is highly advantageous for
epidemiological investigation of outbreak clusters and potential transmission routes
(Figure 1) [77]. Soon, it became a routine standard for the surveillance of many
foodborne bacterial pathogens in 2016 [59]. Furthermore, a contemporary study came to
the conservative estimation that PulseNet helped to avoid about 266,000 ililnesses from
Salmonella and nearly 10,000 illnesses from Escherichia coli annually, thus reducing
medical and productivity costs by about US$500 million [78]. Spurred by these large
medical successes, modern WGS techniques became the new PulseNet gold standard
for foodborne pathogen surveillance [79]. Furthermore, roughly 20 years after its
inauguration, the PulseNet project was expanded globally fostering new international
collaboration and standardization [80]. Against the background of its advantages over
preceding technologies, it is not surprising that WGS was rapidly picked up and has

successfully been used in many other scientific and public health projects [81,82]. For
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instance, the GenomeTrakr project was the first distributed network of US state, local,
federal as well as international laboratories solely applying WGS based approaches for
the surveillance of foodborne pathogens [83,84]. By the end of 2019, nearly 500,000
bacterial genomes were sequenced and stored publicly along with equally important
metadata. It goes without saying that PulseNet and GenomeTrakr are accompanied with
similar sequencing projects and databases all over the world. Further examples of
contemporary pathogen genome platforms for epidemiology are EnteroBase [85] and
Pathogenwatch [86]. The latter uses pre-assembled bacterial genomes to focus on the
subtyping of isolates, prediction of antibiotic resistances and the subsequent

comprehensive interactive visualization thereof combined with related metadata.

Of course, the nowadays broad application of WGS is neither limited to the analysis of
bacterial pathogens nor to the detection and surveillance of pathogenic outbreaks,
alone. DNA sequencing of large numbers of bacterial isolates and cohorts of closely
related genomes from various sources, e.g. different hosts and environments, has
tremendously contributed to our current understanding of bacterial life. Besides the
general organization of the genome itself, this also comprises fundamental underlying
genetic mechanisms, different sizes of pan-genomes i.e. the entirety of genes within a
given population, taxonomic diversity and complexity, genomic population structures and
evolutionary dynamics on various scales (Figure 2) [57,87-96]. In regards to medical
microbiology, the broader application of WGS undoubtedly propelled a better
understanding and deeper knowledge of bacterial pathogenicity [97,98], virulence and
host adaptations [99]. Likewise, our understanding of the spread and dissemination of
virulence factors and antibiotic resistance genes [100] via horizontal gene transfer highly
benefits from comparative studies that take into account more and more genome

sequences from either different species or intra-species strains [101].
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Figure 2: Molecular evolutionary mechanisms propelling genetic diversity and complexity within

bacterial populations at different scales.

a) Inherent molecular mechanisms propelling genomic diversity between species and strains. b)
Horizontal gene transfer mechanisms driving the exchange of genetic material between species
and shaping intra-species population structures. c) Evolutionary selective mechanisms shaping
populations. d) Populations at different scales: from a single genome to the pan-genome covering
the entirety of all genes of a given species to a metagenome covering all genomes in a given
microbial community. Reprinted with permission from Nature Reviews Microbiology [57],

Copyright © 2008, Springer Nature.
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ANY

. a knowledge of sequences could contribute much
to our understanding of living matter.”

Frederick Sanger
Biographical, 1980

In the first half of the 20th century, several revolutionary experiments made by Giriffith,
Avery, MacLeod, McCarty, Hershey and Chase [102-104] finally confirmed that DNA
was the biological material that stores and transports the genetic information. Due to
investigations of the crystallographic structures of DNA created by Franklin and Wilkins,
in April 1953 Watson and Crick were able to finally solve its three-dimensional structure
[105]. Further discoveries like the one gene one enzyme hypothesis [106], the operon
concept [107] and finally the deciphering of the genetic code [108] constituted the
foundation of modern genetics and all related scientific disciplines, especially present

DNA sequencing.

2.3.1 Whole-genome shotgun sequencing

In the mid-1970s two influential protocols for DNA sequencing were published by
Sanger and Coulson [109] and Maxam and Gilbert [110]. Only two years later in 1977,
Sanger and colleagues achieved to sequence the first entire genome of the
bacteriophage ¢$X174 [111] and published a new method for DNA sequencing using
chain-terminating dideoxy inhibitors [112]. This technique was widely adopted and
hence can be considered as the birth of first generation DNA sequencing. Three years
later, Frederick Sanger was awarded his second Nobel prize for these contributions. At
the time of his award ceremony, he claimed his conviction that “... a knowledge of
sequences could contribute much to our understanding of living matter.” [113] —a well
understated claim looking back in retrospect. The first version of a sequenced genome,
the bacteriophage $X174, had a genome length of 5,375 nucleotides [111]. However,

the increasing amount of sequenced DNA fragments and resulting assembly sizes
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began to challenge their manual editing and paper-based organization, thus raising the
demand for computer aided methods. In 1977, Rodger Staden published a first set of
computer software tools supporting researchers by the in silico storage, editing and
analysis of both DNA and amino acid sequences specifically designed “for use by
people with little or no computer experience” [114]. Two years later, Staden published a
computer-aided DNA sequencing strategy along with an improved version of its software
package [115] to deal with the increasing rate of DNA sequencing. In the early 1980s,
this rate was further enhanced by new cloning protocols of small and random fragments
from DNA restriction enzyme digestion, which led to standardized DNA shotgun
protocols [116,117]. Meanwhile, first DNA databases evolved [118] which quickly led to
the foundation of two major repositories for DNA submissions shortly after in 1986
whose successors are still actively maintained, today, ie. the GenBank and the
European Molecular Biology Laboratory (EMBL) data library [119,120]. In the following
years between 1985 and 1990, the groundbreaking chain-terminating technology was
further improved [121-125]. Concurrently, the first algorithms for the sensitive and timely
sequence similarity searches evolved and first usable implementations were published
as for instance FASTA and BLAST (“basic local alignment search tool”) [126—128]. The
latter is still in use today using an omnipresent file format standard introduced by
FASTA. These developments allowed computer-aided searches for similar sequences in

DNA and protein sequence collections of hitherto unprecedented size.

Up to this point, the largest sequenced genome was that of the bacteriophage lambda
with a genome size of 48,502 base pairs [129]. The combinatorial complexity of
assembling hundreds and thousands of sequenced DNA fragments was a tedious and
demanding task that led to the development of many bioinformatics software tools for
the automated assembly of such sequenced DNA fragments into larger contigs [130].
However, the progress made in DNA sequencing technologies steeply increased the
number of such fragments and likewise the implied computational requirements. This
was a severe hurdle that limited WGS projects targeting larger genomes [2]. As a
consequence thereof, more efficient assemblers evolved, which allowed the assembly of
larger genomes [131,132]. In 1995, the first complete genome of a free living organism,
the bacterium Haemophilus influenzae, was sequenced [133] followed by the genome of
Mycoplasma genitalium shortly after [134]. Over the course of the following five years,
the genome sequences of about 30 microbes were published [2] comprising many
bacterial pathogens, e.g. Mycoplasma pneumoniae [135], Escherichia coli [136],
Bacillus subtilis [137], Helicobacter pylori [138], Borrelia burgdorferi [139], Treponema
pallidum [140] and in 1998 Mycobacterium tuberculosis [141] — 116 years after Robert
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Koch initially described its pathogenicity. At the end of the 20th century in 1999, for the
first time, two genomes of unrelated strains from the same species Helicobacter pylori
were comprehensively compared [142] by taking advantage of the aforementioned
bioinformatics tools FASTA and BLAST [127,128] in order to align and identify
orthologous and paralogous genes. In the beginning of the 21st century, in 2001
bacterial genome comparisons were taken to a new level as, for the first time, two entire
bacterial genomes were sequenced, annotated and extensively compared against each
other in a single scientific publication gaining new insights into the genomic complexity

of Staphylococcus aureus providing evidences of horizontal gene transfers [143].

In the following years, the large number of sequenced and publicly available microbial
genomes posed an enormous fundus for new discoveries leading to new insights into
the genetic repertoire and characteristics of microbial genomes. This in turn enabled the
development of new algorithms and software tools exploiting this knowledge for the
automated prediction of coding and non-coding genes [144-147]. As a consequence,
the automated prediction and comparison of microbial, especially bacterial, genes
enabled the reconstruction of genetic networks underpinned by the detection of
orthologous genes from many genomes. These networks could be further combined with
metabolic pathways leading to comprehensive and integrated genome and pathway
databases like EcoCyc [148] and KEGG [149]. Furthermore, the growing number of
individual smaller sequencing projects led to the development of genome annotation

tools supporting the manual annotation by automated annotation workflows [150—152].

2.3.2 High-throughput sequencing

In 1988, a new sequencing approach evolved that quantified the release of
pyrophosphate during DNA polymerase activity [153]. Instead of terminating DNA
synthesis, this new methodology was able to constantly monitor DNA synthesis in real-
time without perturbation [154,155]. In 2005, the first commercially available DNA
sequencing platform entered the market taking advantage of this new sequencing
protocol. This platform used an emulsion method for DNA amplification combined with a
pyrosequencing protocol and triggered a new revolution; it commenced the era of the
so-called NGS or second generation sequencing methods [71]. In the following years,

several companies, e.g. Solexa, SOLID and Polonator, entered the market offering
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commercial NGS platforms using either an emulsion PCR approach [71,156,157] or a
so-called bridge amplification. The latter one building clusters of DNA fragments on a

flow-cell [158] was implemented by Solexa, which was later acquired by Illumina [159].

The tremendous advances in DNA sequencing triggered by these NGS technologies
revolutionized DNA research and allowed researchers to conduct experiments that were
technically infeasible or unaffordable before. In 2003, the Human Genome Project
published the first human genome, which took 13 years at costs of approximately
US$2.7 billion [159]. Only five years later, using NGS technologies, the same has been
achieved at costs of approximately US$1.5 million within five years [160]. Until the time
of writing, lllumina NGS platforms made significant progress and have become the
predominant NGS technology [161,162]. Until 2019, about 15,000 lllumina short-read
sequencing machines were installed worldwide, which in total sequenced an astonishing
amount of 150 petabases —a 50% annual increase [163]. For instance, the largest
currently offered device yields an output of up to 6 terrabases and 20 billion reads in
about 44 hours [164]. These steep advances in NGS techniques have led to an
immense cost inflation. In 15 years, the costs of DNA sequencing using contemporary
sequencing platforms have precipitously dropped from US$1 million to nowadays
US$0.01 per raw megabase. For example, a 100 fold coverage of an E. coli genome
roughly costs around US$5 [165].

Spurred by these new DNA sequencing technologies and the resulting stark rise of
available DNA sequencing data, plenty of new bioinformatics methods, algorithms and
software tools emerged that address the various steps required for the adequate
analysis of resulting short-read data. These comprise the clipping of remaining DNA
adapter sequences as well as the filtering of low-quality reads or read regions [166—
169], the assembly of short DNA-sequencing reads to larger continuous sequences, i.e.
contigs and larger scaffolds [170-175], the correction of single nucleotide or larger
structural assembly errors, the filling of assembly gaps [176,177], the ordering and
reorientation of contigs and scaffolds [178-183], and finally the mapping of quality-
filtered short DNA-sequencing reads to reference genomes for phylogenetic analysis
[184—190]. Low costs and accompanying broad accessibility of NGS technologies and
bioinformatics software tools broke down barriers in terms of costs and manual efforts
and thus propelled DNA based research projects. For instance, the WGS of bacterial
isolates has become a standard methodology to address genomic questions. However,
subsequently required bioinformatics analyses became more diverse and complex than

ever due to the manifold specialized analysis steps involved. In addition, due to the short
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read lengths of NGS platforms, the analysis of bacterial genomes remained limited to
draft assemblies, as short reads are unable to span repetitive genomic regions like
ribosomal operons, insertion sequences and transposons [191-193]. Hence, complete
bacterial genomes remained a demanding goal requiring manual effort and the

combination of different sequencing approaches.

2.3.3  Single-molecule long-read sequencing

To overcome these limitations, a new methodology was described for the real-time
sequencing of single DNA molecules in 2009 [194]. In contrast to existing NGS methods
that were limited to certain numbers of sequencing cycles, this new approach used an
uninterrupted template-directed DNA synthesis. This new protocol allowed the detection
and constant incorporation of dye-labeled nucleotides into a growing DNA strand. A new
technical platform achieved to conduct this reaction within nanostructure arrays of
zeptoliter (10" ml) reaction vessels allowing the highly parallel sequencing of DNA
sequences over thousands of bases without perturbation of the reaction. This new DNA
sequencing technology was implemented and commercially offered by Pacific
Biosciences. This platform achieved read lengths larger than 1 kilobase pairs up to
several 10 kilobase pairs [194]. One drawback of this technology was the significantly
lower DNA sequencing accuracy. However, due to library preparation and sequencing
protocol improvements, recent devices are able to produce circular consensus
sequences achieving read lengths of more than 10 kilobase pairs with nucleotide

accuracies of more than 99% [195].

In 2016, Oxford Nanopore Technologies (ONT) entered the market offering an additional
DNA sequencing platform. This new platform detects the sequence of single DNA
molecules in real-time by measuring the current signal of ions passing a biological
nanopore immobilized within a synthetic membrane along with a single stranded DNA
molecule. Hereby, DNA pentamers sliding through the nanopore cause a characteristic
ion current signal. This signal is measured and deciphered via bioinformatic analysis in
order to identify the individual DNA base pairs [196—198]. Although the sequencing
accuracy of this new technology remains considerably lower than that of lllumina short-
read and Pacific Biosciences long-read sequencing technologies, lengths of resulting
DNA sequencing reads eventually exceed 100 kilobase pairs. By using this new

technology, in 2017 and 2018, world records for the longest sequenced DNA molecule
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were set achieving read lengths of 1.015 million and 1.204 million base pairs,
respectively [199,200]. The latter was even argued to actually have a length of
2,272,580 base pairs that might have been incorrectly split by the ONT MinKNOW
software into several subreads. One unique feature of these new devices is their small
size of 10.5 cm, low weight of 87 g and low price of US$1,000 making them a truly
portable and affordable sequencing platform [201]. In addition to the unprecedented
read lengths, portability and accessibility, recent ONT devices produce several
terabases per sequencing run [202,203]. However, challenging systematic homopolymer
issues remain that cannot be fully compensated via higher sequencing coverages.
However, this drawback might be extenuated or even overcome with new generations of
nanopores [204]. Also, the bioinformatic analysis of the raw current signal is under
active development and has made significant progress. Several different algorithms and
implementations have recently been published for the initial base calling and
subsequent polishing of resulting assemblies, which take advantage of hidden Markov

models and deep learning techniques [205].

These new platforms again revolutionized DNA sequencing enabling tremendous
advances in microbial WGS. Due to the possibility to sequence single DNA molecules in
real-time, combined with the outcome of significantly longer sequencing reads, these
new technologies have soon been denominated and have become referred to as
third generation sequencing technologies [206,207]. Their great potential for microbial
genome analysis led to the availability of many dedicated assemblers trying to exploit
and overcome the different advantages and disadvantages, respectively [208-214].
Sequence identities of resulting assemblies can subsequently be further improved by
using specialized genome polishing tools [177,211,215]. However, as none of the
described sequencing technologies and related bioinformatics software tools alone is
currently able to produce complete bacterial genomes with sufficiently high nucleotide
identities at low costs, hybrid sequencing approaches are conducted with dedicated
hybrid assemblers [216-218].
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2.3.4  Assembly, annotation and characterization of bacterial
whole-genome sequencing data

As explicated in the former chapters, bacterial WGS has seen tremendous progress
over the last two decades. These advances from shotgun Sanger sequencing to NGS
and finally third-generation real-time sequencing had large impacts on how microbes are
investigated today. In only 25 years since the publication of the first complete bacterial
genome sequences [133,134], high-throughput WGS has become routine and a
standard methodology for many scientific applications. However, it is obvious that the
mere sequencing of bacterial genomes alone is not sufficient to answer scientific
questions at hand and to finally create new knowledge. Instead, this is just an initial step
and many more are required to extract all the information hidden in these data. The raw
data created via several technologies and provided in various data formats must be
processed, analyzed and transformed into assembled and annotated genomes. This
sequencing-technology-independent information can then be used for specialized
in silico genome characterizations as well as various downstream analyses. In order to
do so, multiple distinct data processing steps are required, which depend on the
technology and platforms used to create the data. The following paragraphs sketch the

required raw-data processing steps and possible computational genome analyses.

As a first step, potentially remaining adapter sequences are clipped from raw
sequencing reads. Afterwards, sequencing reads of overall low quality are discarded
and regions of low quality are trimmed. Depending on the sequencing technology and
protocol, reads are filtered by length in order to discard futile too short reads and thus
reduce the complexity of downstream analyses [166,167,219,220]. Afterwards, reads
originating from potential vector contaminants can be detected via read mapping against
dedicated databases [221]. Likewise, sequencing reads can be checked against
common sources of contamination like for instance human DNA using custom
databases [222,223]. Finally, DNA sequencing yields are controlled in terms of average
per-base qualities, read length, remainders of adapter sequences and motif enrichments
[168,224]. As a second step, these quality-filtered sequencing reads are assembled into
longer contiguous sequences, called contigs. Contigs themselves might be arranged
and combined into scaffolds using additional read-based information. To achieve this
task, several approaches and algorithms have been described addressing short or long
sequencing reads or hybrid approaches using both. For instance, to assemble short
sequencing reads, overlap-layout-consensus [225] and de Bruijn graph [226,227]

algorithms evolved as the predominantly used approaches. De Bruijn graph data
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structures proved particularly suitable to represent the overlaps of short reads by using
k-mers as vertices and read paths along the k-mers as edges in the graph. Because the
graph size is determined by the genome size and content of repetitive sequences, it is in
principle not affected by favorably higher redundancy introduced by deeper read
coverage, hence the large number of developed and available de Bruijn graph-based
short-read assemblers today [170-175,228]. However, it became obvious that for the
assembly of more error-prone long sequencing reads, de Bruijn graph-based
approaches are not optimal and overlap-layout-consensus approaches were proven
more suitable, as for example implemented in Canu [210]. One variant achieves very
fast assemblies by skipping the computationally demanding consensus step
implemented in Miniasm [229]. Another approach implemented in Flye [212] generalizes
the idea of de Bruijn graphs to make them eligible for error-prone long reads, i.e. repeat
graphs. Here, long reads are assembled conducting random walks through the overlap
graph generating error-prone so-called disjointigs. These potentially repeated disjointigs
are then collapsed into repeat representatives. The final assembly is then created by
resolving these repeats via long read alignments [212]. This short exemplary list of long-
read-only algorithms and assemblers is by no means complete and many more variants
and other approaches exist [208,214,230,231]. A third approach is the combination of
both short and long sequencing reads, which can be conducted in an either short-read-
first or long-read-first manner. For the former, long reads are utilized to scaffold
assembled short-read contigs and resolve loops and repeats in the assembly graph
whereas for the latter, short reads are used to correct errors within long reads or
resulting long-read assemblies. The short-read-first approach has been shown to
provide superior results and is implemented, e.g. in Unicycler [216,232]. Nevertheless,
none of the described assembly approaches is able to create flawless assemblies. Each
DNA sequencing technology and related assembly software tools come with distinct
error profiles, which has led to the development of assembly polishing tools using either
short or long reads or even both. Whereas short reads are used to fix small-scale
assembly errors like single nucleotide mutations and short insertions and deletions
[176,233,234], long reads are used to correct medium and large-scale errors [211,235—
237]. Like hybrid assembly approaches, some assembly polishing tools even implement
multiple error-correction algorithms taking advantage of both data types [176,233]. Just
recently, it has been shown that the combination of multiple assembly polishing tools
implementing different post-assembly error correction algorithms, is able to address
various error types and thus complement each other [234]. After these steps, additional

quality checks are conducted in order to assess the quality of the assembled bacterial
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genome sequences. For this purpose, various specialized metrics and statistics like for
instance the N50, have been developed as a measure for the contiguity, which is
determined by the number and size of assembled contigs [238]. Another important
aspect, particularly for new or rare species, is the completeness of assembled genomes.
Addressing this, several phylogenomic approaches have recently evolved in order to
check assembled genomes for certain single-copy orthologous genes that are common

to all bacterial genomes or genomes of a distinct taxonomic lineage [239,240].

At the time of writing, the majority of assembled bacterial genomes available in the
public databases resulted from short-read sequencing data. As outlined in the former
chapters, these short sequencing reads cannot span the various repetitive genomic
regions of bacterial genomes and thus, resulting assemblies typically remain in an
unfinished status. These so-called draft genomes comprise varying numbers of contigs,
typically tens to hundreds. As both order and orientation of these contigs compared to
the actual biological genome sequence are determined by mere technical aspects of the
implemented assembly algorithm, these contigs are required to be ordered and
rearranged in a so-called scaffolding step. During this process, extrinsic genomic
information from a closely related reference genome may be used to increase the
synteny between the assembly and a selected reference [178,241]. To enhance this
process and to expand the proportion of syntenic genomic regions between assemblies
and the reference, recent scaffolding algorithms are able to utilize not just a single but
multiple reference genomes [180-182]. After this step, the resulting bacterial genomes
pose a common ground for many downstream analyses that are technically independent

from DNA sequencing technologies.

For many of these downstream analyses, a thorough annotation of the assembled
genome is required and crucial as both accuracy and comprehensiveness have strong
impacts on all subsequent analysis steps. However, this process is by no means trivial.
Genomic regions of interest must be either detected or predicted and then functionally
described, which is denoted as regional and functional annotation, respectively. Due to
the diverse genetic nature of these various genome features, an exceptionally large
number of dedicated algorithms, tools and databases evolved to conduct these distinct
tasks. For example, non-coding genes like tRNAs, tmRNAs, rRNAs and ncRNAs can be
detected via covariance models exploiting their characteristic folding and resulting three-
dimensional structures [242]. These models are collected and stored in public databases
to streamline their distribution and expert curation [243]. In addition, many dedicated and

more-specialized tools evolved to improve the detection, classification and functional
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description of tRNAs, tmRNAs [147,244,245] and rRNAs [246,247]. Besides these non-
coding genes, many additional feature types can be detected via distinct tools as for
example clustered regularly interspaced palindromic repeats (CRISPR) [248-253] or
homology searches against specialized databases, e.g. origins of replication and
transfer [254,255]. However, all these features combined account only for a small
proportion of a bacterial genome. The majority of the bacterial genome is constituted by
protein-coding genes and related coding sequences (CDS). In contrast to non-coding
features, these share common characteristics, i.e. nucleotide triplets denoted as codons,
that encode for amino acids as well as start and stop codons. These potential coding
sequences between start and stop codons are called open reading frames (ORFs) that
can easily be extracted from the sequence. However, due to random start and stop
positions that occur on the available six translation frames resulting from three
nucleotide positions in both directions of a DNA strand, ORFs tremendously outnumber
actual CDS. In order to find true CDS within the vast set of all ORFs, dedicated gene
prediction tools take into account additional upstream features like the presence of
ribosomal binding sites and promoter sequences [146,256,257]. Then, these predicted
nucleotide or amino acid sequences can be assigned to protein families and their
functions can be inferred from related protein sequences. This process is denoted as
functional annotation and is conducted via homology searches against databases of
known sequences and subsequences that have already been described by experts. For
this process, the mutual coverage and identity between two sequences are used as an
approximation for homology and many dedicated algorithms and tools have been
developed to solve this task as accurately and fast as possible [128,258—-261]. This
exemplary short list of annotation feature types only comprises higher-level and the
most-important features and many more could be added, in particular regulatory regions
like promoters, operators, RBS and non-coding cis-regulatory regions. Hence, the
comprehensive annotation of bacterial genomes is a complex and demanding task and
various centralized online services evolved to streamline the different steps that are
involved in this task [150,262—-264]. However, these services have become unsuitable
for the timely annotation of large-scale WGS data due to the ever-increasing speed at
which bacterial genomes are being sequenced today [265]. Furthermore, legal affairs
and sensitive data might deem the upload to external servers inappropriate or even
unacceptable. Because of these restrictions, high-throughput annotations are required to
be conducted either locally on standard consumer hardware and high-performance
computing (HPC) clusters or within scalable CCls. Several command-line software tools

have recently been developed to conduct this task [266—268].
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Based on the genome sequence, predicted and functionally described genes and
genome features, many general and more-specialized genome analyses and
characterizations are feasible. One important instance thereof is the taxonomic
classification of bacterial genomes. Due to their diverse nature and the fact that there is
more of a continuum between bacterial genomes than clearly definable boundaries,
many different in silico approaches evolved addressing the different taxa levels [269].
One approach is the phylogenetic analysis of the 16S rRNA gene sequence that is
broadly accepted and utilized for reliable phylogenetic placements [270-272]. However,
this methodology is limited in terms of resolution and thus only provides reliable
placements up to the genus level. To classify genomes with higher resolutions up to the
species level, whole-genome approaches like in silico DNA-DNA hybridization and
average nucleotide identity (ANI) have become gold standards for taxonomic
classifications [273—276]. For various applications, in particular outbreak detections and
the surveillance of certain lineages, the species classification is often not sufficient.
Hence, in silico MLST analyses are conducted to detect sub-species lineages and
assigned sequence types are compared and shared world wide [85,277]. Besides the
taxonomic classification and genome typing, annotated genomes and genes pose an
invaluable starting ground for countless downstream analyses. With regard to modern
medical microbiology and epidemiology, the detection, annotation and surveillance of
AMR genes and virulence factors are of particular interest and utmost importance to the
field and thus, led to the development of many software tools [278—-283] and databases
[282,284—288] that are available today to achieve these tasks. Another example for
specialized gene-based analyses is the detection and annotation of biosynthetic gene
clusters [289,290]. Of note, gene-based approaches are often complemented by
sequence based methodologies in order to detect and annotate genome features that

are otherwise hard to identify as for example insertion sequences [291-293].

In conclusion, this tremendous progress in the field of bacterial WGS gave rise to a
plethora of highly-specialized bioinformatics algorithms, software tools and databases.
Today, researchers must choose from multiple alternatives in order to conduct the
various explicated tasks of data processing, related downstream analysis and genome-
based computational characterizations. In addition to detailed per-genome
characterizations, the broad availability of both tools and WGS data meanwhile fosters
the standardized analysis of entire cohorts of multiple closely related genomes.
However, this constant progress, which cannot be considered to be attenuating
[206,294], implies new challenges that must be addressed. Besides data processing

steps and genome-based analyses, additional mere technical issues emerge, as for
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example rising requirements for data storage, management and transfer [40].
Furthermore, the various data processing and analysis steps need to be combined and
integrated into automated and reproducible workflows that are executed in a scalable

manner on different computing resources and infrastructures [295].
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2.4 Antibiotic-resistant bacteria — a global threat and
challenge for public health

“Then there is the danger that

the ignorant man may easily underdose himself
and by exposing his microbes to

non-lethal quantities of the drug,

make them resistant.”

Sir Alexander Fleming
Nobel Prize acceptance speech, 1945

The serendipitous discovery of penicillin in 1928 by Alexander Fleming was a milestone
in medical history [296]. In the 1940s, its clear antibacterial effects and non-human
toxicity led to large-scale production and mass treatments. Meanwhile, Selman
Waksman achieved to turn this incidental discovery into a standardized screening
procedure for molecules with antibiotic effects and introduced the technical term
antibiotic [297]. Both discoveries have been awarded with well-deserved Nobel Prizes
as these findings triggered the biggest medical revolution since the discovery of
vaccines. Accompanied with the steep scientific progress made during the mid-1900th
century, it was then thought that bacterial diseases would be easily controlled and the
threat of many infectious diseases would finally come to an end. However, already in his
Nobel Prize acceptance speech Alexander Fleming stated that “there is the danger that
the ignorant man may easily underdose himself and by exposing his microbes to non-
lethal quantities of the drug, make them resistant”. Even though, not underdosing but
quite the opposite happened, he was unfortunately proven right in the very same year by
the first detection of penicillin resistant bacteria. In the “golden era” of antibiotics around
the 1960s, most today-known classes of antibiotics have been discovered. Only a few
classes of antibiotic drugs have been found thereafter, e.g. daptomycin — the last one in
1986 [298].

Nevertheless, these fairly easy discoveries of antibiotic drugs created an uncritical and
wasteful use without decent considerations of the potential consequences, which later

on materialized [299]. Between 2010 and 2015, the aggregated consumption of
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antibiotics in 76 countries increased by 65% from 21.1 to 34.8 billion defined daily
doses —a common metric to measure antibiotic consumption [300]. This large-scale
human consumption is comprehensively described and well-understood in many
different setups and there is compelling evidence that it is a primary driver for the
emergence of antibiotic resistances [301-305]. Too often, the effectiveness of these
necessary drugs is threatened by the unnecessary prescription by physicians uncertain
of diagnoses and consumers lacking better knowledge or unaware of the problem [306].
Comparatively, these disastrous developments are even dwarfed by the mass usage of
antibiotics in livestock farming. The global consumption of antimicrobial agents was
recently estimated at a level of about 63,000 tons. Even worse, the global usage is
projected to increase by 67% to approximately 105,000 tons by the year 2030 [307]. The
soaring global demand for meat driven by the rising global population and desire of low-
and middle-income countries to catch up with the often critical lifestyle of the western
countries, led to meat production growths since 2000 of 68%, 64%, and 40% in Africa,
Asia, and South America, respectively [308]. This demand fosters antimicrobial usage in
order to increase livestock productivity, which equals a large share of 73% of the entire
global consumption of antimicrobials [309]. The considerable and nearly constant
contact of animals in livestock farms with antimicrobial drugs establishes favorable
conditions for the selection of antibiotic-resistant bacteria and might provide important
reservoirs for antibiotic resistance genes [307]. This immense evolutionary-active
selection pressure caused by the mass prescription and consumption of hundreds and
thousands of tons of antibiotics has put the world at the dawn of a post-antibiotic era that
would pose an equally severe and tragic medical regress of almost an entire century
[306].

Unfortunately, these developments are not the only concerns for public health. During
the last 50 years, at least 26 emerging bacterial infectious agents have been identified.
A key driver for this increased exposure of humans to bacterial pathogens are major
changes in human lifestyle as well as the constant rush into and settling of previously
uninhabited rural nature for both industrial and leisure reasons. Our natural environment
is a sheer infinite prokaryotic reservoir and many of those might play a pathogenic role
once transmitted from their ecological niche to humans [55,310,311]. A large proportion
of bacterial diseases originally derive from animals, livestock or wildlife, and thus are
considered as zoonoses. Since 1940, 60% of 335 emerging infectious diseases events
were zoonoses, 54% are attributable to bacteria [312]. This combination of emergence
of new bacterial pathogens on the one hand and the emergence of novel antibiotic

resistance genes on the other hand constitute a global issue for public health worldwide.
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For instance, in Europe in 2007, nearly 400,000 infections have been estimated and
about 25,000 deaths have been attributed to only six antibiotic-resistant bacterial
pathogens resulting in approximately 2.5 million extra hospital days [313]. The implied
costs of hospitalization and loss of productivity summed up to total costs of 1.5 billion €.
This estimated burden further increased to nearly 670,000 infections and about 33,000
attributed deaths in 2015 [32]. Likewise, a recent study of the CDC from 2019 estimates
2.8 million infections with antibiotic-resistant bacteria in the USA, leading to

approximately 35,000 deaths, annually [314].

This worldwide surge of multi-resistant bacteria has led to the realization that without the
implementation of effective countermeasures, in 2050 up to 10 million people could die
annually due to infections with antibiotic-resistant bacteria [30]. To address these huge
medical threats, many new drugs have been introduced, which have been evolved via
modifications of existing antibiotic targets. However, this repertoire of effective drugs
found in the golden era of antibiotics has run short and global pharmaceutical
companies became reluctant to invest in their antibiotic drug pipelines. This lack of
economic investment and research exacerbated the precarious situation of available
antibiotic drugs [315]. Because of these developments, it has become obvious to
scientists, the health-care community and policymakers, that new antibiotic targets and
approaches are urgently needed [316]. In order to guide research, discovery and
development of new antibiotics, the World Health Organization (WHO) published a
global priority list of antibiotic-resistant bacteria posing the most-severe threats to public
health, e.g. Acinetobacter baumannii, Pseudomonas aeruginosa and
Enterobacteriaceae [317]. Some of the most dangerous bacterial pathogens have
become famous as the so-called antibiotic-resistant ESKAPE pathogens: Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,

Pseudomonas aeruginosa and Enterobacter species [318].

In 2019, over 400 scientific projects from more than 300 institutions worldwide actively
investigated new antibiotic targets and drugs. A large proportion hereof follows entirely
new approaches enabled by recent findings, which in turn are only possible because of
the large amount of deeply characterized bacterial genomes as well as novel
epidemiological knowledge gained by large-scale genome analyses [319]. Although
there are considerable global efforts towards the discoveries of new antibiotic targets
and approaches, again it has become obvious and common sense that a shift of the
common mindset is required in order to fight back antibiotic resistances. Accelerating

the required pace of the global community, the WHO urgently advocated for a global
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action plan in 2015 bringing together scientists and policymakers [320]. The explicated
set of countermeasures and described paths for a more sustainable economy in regards
to the usage of antibiotics in public health, veterinary and agriculture has recently been
acquainted with the term ONE health [321,322].

One effective and necessary countermeasure is the early containment of antimicrobial-
resistant pathogens stopping the spread of emerging or highly prevalent AMR genes. In
order to do so, a deep understanding of the underlying antibiotic resistance mechanisms
(Figure 3b) as well as their epidemiology at different scales is required to forestall
unnecessary prescriptions. The immense increase of recently sequenced antibiotic-
resistant bacterial genomes has impressively shed light on the diverse nature of
antibiotic resistance mechanisms and their genetic determinants (Figure 3c), which can
be grouped into innate and acquired resistances. Innate resistances originate from
spontaneous genetic mutations modifying cellular targets (Figure 3a) of antibiotic drugs
attenuating or stopping susceptibility to these. This comprises for instance, point
mutations in the 16S ribosomal RNA gene conferring resistance to tetracycline
derivatives [282] and alterations in the regulatory machinery leading to increased or
decreased transcription rates of resistance targets [323]. These innate resistances
primarily disseminate via vertical gene transfer. Besides, acquired resistances denote
the active or passive incorporation of new genes that cause antibiotic resistances into
the genome via horizontal gene transfer, such as conjugation, transduction and
transformation [324]. Main mechanisms hereof are mobile genetic elements, e.g.
plasmids, transposons, integrons, conjugative elements and bacteriophages [325-327].
These mobile genetic elements are key drivers for the spread and evolution of antibiotic
resistance genes. Except for bacteriophages, mobile genetic elements fall in two
categories: those that can move from one bacterial cell to another and those which can
move from one genetic location to another within a cell [327]. This often results in
complex genetic landscapes harboring resistance genes within nested mobile elements,

which therefore are able to move from one system to another [328].
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a Antibiotic targets in bacterial cells
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Figure 3: Exemplary depiction of targets, mechanisms and genetic determinants of antibiotic
resistances.

a) Groups of antibiotic drugs act on various molecular targets within bacterial cells. b) Antibiotic
resistance is implemented by numerous molecular and genetic mechanisms. ¢) Genomic
alterations and genetic mutations as determinants of antibiotic resistances. Reprinted with
permission from Nature Reviews Genetics [323], Copyright © 2019, Springer Nature.
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This large number of different genetic determinants and acquisition mechanisms make
the surveillance and epidemiological tracing of resistance genes a delicate task. For
example, the large and diverse group of B-lactamases is a prominent example for their
complex heterogeneity. Today, B-lactamases are categorized by different classification
systems, e.g. Amble and Bush-Jacoby-Medeiros using either protein sequence
homologies or phenotypic profiles, respectively [329,330]. According to the Amble
classification, B-lactamases are classified into four groups: A, C, D representing serine
B-lactamases and group B representing metallo-B-lactamases [330]. Each group
comprises many subgroups with variants denoted by different naming schemes, as for
example TEM named after Temoneira — the first patient from which samples harboring
these alleles were collected, CTX and OXA named by their primary antibiotic drug
targets cefotaxime and oxacillin, KPC named by the species Klebsiella pneumoniae and
NDM named after New Delhi —the location of its first detection [331]. The rigor
description, categorization and typing of antibiotic resistance gene alleles is a crucial
task for the surveillance of emerging genes as well as the epidemiological tracing of
their dissemination. In 2017, more than 1,800 variants [331] of B-lactamase protein
sequences have been described of which many occur globally. One example is the
NDM metallo-R-lactamase group, which has been reported for the first time in 2008 in a
patient isolate in New Delhi conferring resistance to a variety of penicillins and
cephalosporins. Only three years later, many of its derivatives are reported worldwide
[332]. Bad enough, but the rise and spread of R-lactamases, which include extended
spectrum R-lactamases, is only one example. Due to these omnipresent resistances,
other and mostly newer antibiotics are reserved as last-resort drugs, e.g. colistin.
However, just recently a plasmid-encoded resistance gene called mcr-1, which was
initially found in China [26], has now been detected all over the world, e.g. Laos,

Thailand, Nigeria, Europe [25] and Germany [27].

The described disseminations of antibiotic resistance genes are prominent examples of
the global efforts to understand the emergence and spread of these genes based on
modern WGS technologies. Increased bacterial sequencing projects driven by further
cost reductions and streamlined bioinformatic analysis pipelines are expected to
contribute to the rapid inhibition of further disseminations and hopefully real-time
outbreak detections on a global scale, soon. Though, WGS approaches are not limited
to the detection of antibiotic resistance genes alone. Another application of utmost
importance is the in silico prediction of AST. However, in 2017 the European Committee
on Antimicrobial Susceptibility Testing (EUCAST) reviewed the current development

status of WGS for bacterial antimicrobial susceptibility testing (AST) and came to the
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conclusion that there is a lack of evidence that WGS could be used for AST in clinical
settings today. Amongst many issues, more quality controls, performance standards and
common comparative measures are necessary [333]. However, despite these open
issues, DNA sequencing technologies and related protocols in clinical environments
have come a long and astonishing way considering what can nowadays be achieved by
these methodologies [334]. Once these issues are overcome, whole-genome based
in silico prediction of antibiotic susceptibility might be a fast and cost-efficient alternative
[335].

The steep progress in molecular biology and genetics led to an understanding of the
underlying molecular targets (Figure 3a) of antibiotic resistances, e.g. the gyrase
involved in DNA replication, polymerase involved in mRNA transcription, ribosomes
involved in the protein translation as well as the cell membrane and cell wall. These
targets are involved in the many known mechanisms as for instance a reduced cell
permeability, antibiotic efflux, expression changes, target protections and enzymatic
modifications and degradations of antibiotics (Figure 3b). The various underlying genetic
determinants (Figure 3c) for all of these molecular mechanisms of a phenotypic
resistance can be grouped into two aforementioned distinct classes, innate and acquired
resistances. The latter are predicted via the identification of a certain gene that is known
to infer a resistance via homology searches against resistance gene databases and the
application of decent quality thresholds, e.g. the mutual sequence coverage and identity
of query and subject sequences. Over the last decade, more than 15 public databases
of AMR genes emerged and evolved, not including many additional species-specific
databases [34,323]. However, the mere detection of an antibiotic resistance gene alone
often does not provide sufficient information for an accurate phenotype prediction as
many biological processes, as described above, can have an important effect, either in
cis or trans location. These processes form the group of innate resistances, which are
notoriously hard to predict, as many different molecular targets and often complex
mechanisms are required to be taken into account. Besides the described technical
hurdles, which hopefully and most-certainly will be overcome soon, these very complex
genetic determinants pose a severe challenge and open field for modern bioinformatics

and currently hamper the precise AST in silico.

Still, as more and more deeply sequenced and phenotypically characterized genomes of
bacterial pathogens are available, potentially combined with transcriptomic, proteomic
and metabolomic data, the numerous molecular and genetic interplays and

dependencies can be comprehensively depicted in order to foster a deeper
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understanding of complex antibiotic resistance mechanisms. One example of such deep
analysis, which achieves very high genetic resolutions, is a recent study investigating
the genetic evolution of antibiotic determinants in different bacterial in-patient isolates by
a combination of genomic and transcriptomic data [336]. Another promising but also
demanding approach is the exploitation of modern machine-learning techniques for the
analysis of large amounts of genotype and phenotype datasets in so-called genome
wide association studies (GWAS). Recently, many studies have been described that
address genomic AST by machine-learning approaches [337]. For example, Chen et al.
investigated genetic variants of 28 targeted genomic regions from more than 3,600
phenotypically described Mycobacterium tuberculosis genomes. Next to favorable
achievements in the prediction of resistance phenotypes, by doing so they could also
identify previously uncharacterized mutations as important predictors for certain
resistance types potentially pointing to new antibiotic targets and mechanisms [338].
Especially, the identification and interpretation of machine-learned genetic determinants
of innate resistances is gaining more attention, as these are notoriously hard to identify
via classical approaches. For instance, a recent study published a biochemically
interpretable machine-learning classifier for microbial GWAS putting the available
genetic data into the context of biochemical pathways [339]. A further example of
machine-learning approaches is the single nucleotide polymorphism (SNP) based
prediction of antibiotic susceptibility. High-quality data given, recent studies could show
that decent predictions are possible [36,338,340] potentially even predicting distinct
susceptibility levels, i.e. the minimal inhibitory concentration for certain drugs [341].
However, the requirement for large amounts of high-quality data poses a notable
hindrance to these promising approaches. In order to unleash their full potential, vast
numbers of sequenced genomes along with high-quality phenotypic characterizations
are required and thus will further drive and increase the rate of bacterial WGS [323].
Furthermore, this high sequencing rate combined with phenotypic characterizations
must be continued in order to forestall genomic data and actual phenotypes drifting
apart and to keep databases up to date regarding new antibiotic determinants. In
addition, further progress in DNA sequencing technologies in terms of costs and
throughput will drive the sequencing of even more isolates of given samples. This in turn
would provide the foundation for deeper analyses of intra-host evolutions and intra-

population variations on the smallest scales down to the level of single cell sequencing.
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2.5 In silico detection of bacterial plasmids

Plasmids are genetic vehicles and constitute an important mechanism for both vertical
and horizontal gene transfer in bacteria and thus play a vital role in the spread of genes
within and between bacterial populations [342-345]. Genes encoded on plasmids
comprise a large genetic repertoire often featuring non-essential metabolic, resistance
and virulence capabilities that provide an evolutionary advantage in certain
environments [346-348]. A prominent element in this group with large medical and
epidemiological implications are genes conferring resistance to antibiotic drugs. Many
acquired antibiotic resistance genes are actively or passively mediated via plasmids
between bacterial organisms and additionally exchanged between plasmids and the
chromosome via transposons and integrons [326]. These often complex and versatile
genetic landscapes foster the spread of resistance genes, which has been traced and
comprehensively described in the literature based on DNA sequencing techniques [349].
A prominent example thereof is the traced global spread of the plasmid-encoded mcr-1
gene inducing resistance against colistin — a last-resort antibiotic drug. This gene has
been initially found in Enterobacteriaceae isolated from human and animal samples
collected in China [26]. Later, the mcr-1 gene was found widely spread over the whole
world, e.g. Laos, Thailand, Nigeria and Europe [25]. In 2017, it has additionally been
described to be detected in Germany [27], as well. Therefore, the plasmid-mediated
spread of antibiotic resistance genes is an issue of increasing severity. It is well known
that plasmids are able to break species boundaries and thus spread widely, for instance

via wildlife both taxonomically and geographically [350].

Hence, the automated screening of bacterial genome assemblies for the presence of
plasmids is a necessary and important task and a powerful tool for plasmid-based
epidemiology. It is broadly known and accepted that DNA-based in silico approaches for
the identification and characterization of plasmids provide profound advantages in terms
of sensitivity and specificity over classical molecular methodologies. However,
depending on the used DNA sequencing platform, this requires several necessary
bioinformatics tasks that introduce new challenges. Due to the complex genetic
landscape of bacterial genomes and in particular plasmids, short-read WGS approaches
regularly fail to recover complete chromosome and plasmid sequences. This is caused
by repetitive regions like rRNA operons, insertion sequences and transposons, which
are known to notoriously hamper finished short-read assemblies [191-193]. Nowadays,

many of these issues can be addressed and often solved by long-read sequencing
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technologies providing sequencing reads that are long enough to span these repetitive
regions. However, new issues arise from these technologies in turn, as the advantage of
longer DNA-sequencing reads comes at the cost of comparatively lower read quality in
terms of sequence identity. For some sequencing technologies, this is even exacerbated
by higher rates of systematic sequencing errors that cannot be fully compensated by
higher sequencing depths. Because of these issues, long-read-only assemblies are still
unsuitable for many standard epidemiological in silico analysis, e.g. multi-locus
sequence typing, resistance allele typing and transmission studies. Additionally, long-
read sequencing libraries are often filtered in silico for longer sequencing reads that help
closing short-read assemblies. Unfortunately, discarding the typically large number of
shorter long reads in turn often results in losing small plasmids. It could also be shown
that small plasmids tend to be underrepresented in some long-read DNA libraries that
are optimized for larger DNA fragment sizes and thus further exacerbate these issues
[351]. For these reasons, high-accuracy short-read data is still required for such
applications [352]. To address and finally overcome these issues, hybrid sequencing
approaches combining short and long-read technologies emerged that triggered the
development of dedicated assembly tools, as for instance a recently enhanced SPAdes
version and Unicycler, which improves and complements the SPAdes assembly
workflow [216,218]. However, as long-read sequencing platforms are still notably less
cost-efficient compared to short-read sequencing platforms, most large-scale WGS
projects still rely on the latter. Furthermore, long-read technologies emerged in only
recent years and thus, public DNA repositories still provide significantly more short-read
WGS data for mere historic reasons aside from cost effects. Hence, a necessary first
step in many in silico plasmid analysis workflows is the detection and extraction of
plasmid-borne contigs from short-read draft assemblies posing a binary classification

problem: either a contig originates from the chromosome or a plasmid.

This classification problem is a bioinformatic challenge and has resulted in multiple new
approaches and many implementations of many software tools. These address either
the identification or even the entire reconstruction of plasmid sequences within bacterial
whole-genome short-read draft assemblies. They can be divided into three categories
(Table 1). The first comprises tools searching for known genes and related
subsequences in highly specialized databases. PlasmidFinder, for example, detects
DNA subsequences of genes necessary for the flawless plasmid replication machinery,
which are known as incompatibility groups [353]. MOB-suite seeks to identify conserved
relaxase protein sequences, which are necessary for the mobilization of plasmids, from

a highly curated and dedicated database [254]. A second large group comprises tools
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analyzing k-mers and varying k-mer frequencies. PlaScope [354] and PlasmidSeeker
[355] conduct lookups against pre-built databases whereas cBar [356], PlasFlow [357],
miIPlasmids [358] and PlasClass [359] take advantage of more elaborated machine-
learning approaches in order to exploit subtle frequency differences and complex non-
linearities hidden in the data. The third group comprises a heterogeneous set of tools
analyzing assembly graphs. Short-read assemblies almost never result in closed
genomes but complex graph structures representing potential paths through connected
contigs. Many tools take advantage of this additional information, which is provided by
contemporary assemblers as assembly graphs. PlasmidSPAdes [360] and Recycler
[361] exploit k-mer coverage variations between contigs. Recycler [361], PLACNETw
[362] and gplas [363] take into account additional information from paired-end reads that

bridge disjoint contigs and try to find circular paths through the assembly.

Table 1: Approaches, methodologies and tools for the detection of plasmid-borne contigs within
bacterial draft assemblies.

Category | Il 1]
Input type Assembled genomes Sequencing reads
and/or
assembly graphs
Approach Detection of K-mer frequency Assembly graph
conserved genes and  analysis analysis
sequence probes
from curated
databases
Methodology Homology searches Statistics, Statistics,
machine learning heuristics
Tools PlasmidFinder, PlaScope, PlasmidSPAdes,
MOB-suite cBar, Recycler,
PlasFlow, PLACNETwW?,
miIPlasmid’, gplas
PlasClass
Disadvantage Low sensitivity Targeted databases Dependency on
sequencing
technology

*

Non-automated interactive workflow
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All these approaches come with distinct advantages and shortcomings making the
optimal tool selection a difficult task. None of the described approaches achieves a
combination of reasonably high sensitivity and specificity, but are rather biased towards
one or the other. Furthermore, many follow targeted approaches addressing particular
taxa, favor certain plasmid sizes or ranges of sequencing coverage [364—366]. These
limitations complicate the selection of tools and methodologies and make them
inadequate for the integration into untargeted, fully automated and sequencing
technology-independent analysis workflows for the large-scale analysis of bacterial
WGS data.
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Figure 4: Overview of the MinHash approach to
approximate the Jaccard index.

A pair of input sequence sets is decomposed
into two sets of k-mers. These sets of k-mers
are transformed into sets of hashes using a
hash function. Hashes are sorted according to
their numeric values and for each set, the m
lowest hashes are selected as a sketch, ie. a
representative set of k-mers. Finally, the
fraction of common hashes between the two
sketches and the m lowest hashes of both
sketches is used as an approximation of the
Jaccard index. Reprinted with permission from
Genome Biology [374], Copyright © 2016,
Springer Nature.

Since the introduction of the very first
nucleotide databases in the 1980s
[118-120], the number of publicly
available genomes is constantly rising.
For example, between 1982 and today
(2021), the number of genomic
sequences GenBank
increased from 606 to 219,055,207. Of

note, the

stored in

number of unfinished

sequences resulting from whole-

genome short-read sequencing
projects increased from 172,768 in
2002 to 1,517,995,689 today [367].
Therefore, the average yearly growth
rate of WGS sequences of ~60%
considerably outpaced the average
yearly growth rate of complete
of ~40%. This

tremendously increasing number of

sequences

available genome sequences,
especially microbial including bacterial,
led to the realization that curated,
high-quality non-redundant collections
are necessary in order to manage,
maintain and represent the large and
diverse taxonomic range of available
microbial sequences. Over the last
decade, tremendous efforts went into
the design, setup and maintenance of
such reference sequence repositories
assemblies and

[264,368,369].

regarding  both

annotations These
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representative genome sequences as well as certain genomes, which have been
analyzed and described particularly well in vivo, in vitro as well as in silico, are generally

denoted as reference genomes and used in many types of downstream analyses.

For instance, a required task for many downstream analyses is the mapping of
sequencing reads onto a common genetic region in order to analyze similarities and
differences on various levels, e.g. single nucleotide polymorphisms, insertions, deletions
as well as structural variations [185,187,370]. High-quality reference genomes provide
these common genetic regions along with additional genomic context via annotations.
An important application of mapped sequencing reads is the single nucleotide
polymorphism detection for the subsequent calculation of phylogenetic trees to analyze
pathogenic clonal outbreaks [371]. Another example is the reference guided assembly of
short sequencing reads [372]. In contrast to de novo assemblies, reference-guided
assemblers take into account extrinsic genomic information of sufficiently related
reference genomes. A further very important processing step after the assembly is the
ordering and rearrangement of contigs within draft assemblies. As assemblers have no
or only constraint information regarding the actual order and orientation of assembled
contigs, so-called scaffolding software tools are used to map these contigs onto closely
related reference genomes to reconstruct their most likely order and orientation [179—
182].

Hence, the selection of suitable reference genomes has become an important and
critical pre-analysis task as this choice has large impacts on downstream analyses
[373]. In order to compare and rank available reference genomes regarding their
distance to a certain query genome, several in silico methodologies emerged, e.g.
comparison of tetranucleotide frequencies, Genome BLAST Distance Phylogeny, ANI
and k-mer-based Jaccard indices [273—-276,374]. Inspired by well-established in vitro
hybridization of DNA fragments, the alignment of DNA subsequences of a certain
genome against another genome with subsequent computations of average identities
and conserved values has been shown to robustly represent the relatedness between
both [273]. Hence, the computation of ANI and conserved DNA values has been
implemented in several online and offline tools [274,375,376]. However, applied on
larger numbers of bacterial genomes, the large computational effort caused by pairwise
alignments of the DNA subsequences is a crucial drawback of this methodology. A
faster approach is the alignment-free comparison of k-mer sets via the Jaccard index,
i.e. the fraction of common k-mers. However, comparing millions or even billions of k-

mers is still a demanding task. But, this process can be accelerated and requirements
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for computational resources can be reduced via the computation of MinHashes using
approximations of the Jaccard index between two genomes (Figure 4). For each
genome, all canonical k-mers are hashed, sorted and reduced to a subset of a given
size, which is denoted as a sketch. For each pair of sketches, an approximation of the
Jaccard index is calculated and provided as a measure of genome relatedness that was
shown to correlate well with more precise alignment-based ANI values [374,377].
However, this correlation depends on k-mer lengths, sketch sizes as well as the
genomic distances between genomes. Here, the reduction of runtimes, which is
achieved by reducing the amount of compared genomic content, comes at the cost of
reduced resolution for closely related genomes. In order to mitigate these drawbacks, a
k-mer based alignment-free implementation of ANI computations was recently published
[276]. However, this implementation in turn is not applicable to genomes that are too

distantly related to each other.

Hence, for each analysis a decision must be made to choose between methodologies
taking into account available computing resources, runtime requirements and genome
distances. A further common drawback of all available implementations is the necessity
to compile a database of reference genomes and a lack of integrated taxonomic
information and metadata. Of note, thoroughly calculated and sufficiently low whole-
genome distances to well described reference genomes, are also an eligible

methodology for the taxonomic classification of bacterial genomes.
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2.7 Recent IT developments and challenges for microbial
bioinformatics in the 2020s

The game-changing developments in DNA sequencing revolutionized the way how
genomic data is created and how many bacterial genomes are routinely sequenced
every day. These large amounts of genomic data represent a scientific treasure trove
providing huge potentials and possibilities. Large-scale comparisons of hundreds and
thousands of bacterial genomes can be used to investigate within-host diversity and
evolution [378,379], to delineate and reconstruct local outbreaks [380-382], to describe
global population structures and to answer epidemiological questions [74,383].
However, these massively growing numbers of sequenced genomes also introduce new
challenges. All this DNA sequencing data must be properly processed and analyzed on
its own and effectively compared against each other [384]. New standards and standard
operating procedures for bioinformatics data processing and analyses are necessary in
order to effectively compare samples analyzed using different sequencing technologies
by different laboratories worldwide. Accelerated by the tremendous cost inflation of DNA
sequencing, it has recently been estimated that the yearly acquisition of DNA
sequencing raw data could rise to a worldwide level of one zettabyte in 2025 [40]. A
well-known phenomenon and symbol of technological development is Moore’s law. It
states that the number of transistors fitting on an integrated circuit board, a rough
equivalent for CPU power, is increasing exponentially, with a doubling time of
approximately 18 months [385]. Of note, this ventured prediction held true for more than
35 years. A similar prediction exists for the storage capacity of hard drives; Kryder's law
predicts the hard drive storage capacities to double every 12 months [386]. For a long
time, this constant technological progress of computational capabilities and capacities
had easily kept pace with the requirements of DNA sequencing and related
bioinformatics. However, since the advent of the NGS technologies in the middle of the
first decade of this century, the technological progress in the field of high-throughput
DNA sequencing vastly outgrows Moore’s and Kryder’'s laws [295]. Between 2008 and
2016, the capacity of DNA sequencing platforms doubled, on average, every seven
months [40]. Large genome projects, e.g. the 100,000 Genomes Project [387], the
Human Microbiome Project [388] and the Earth Microbiome Project [389], tremendously
increase the size of public DNA data repositories. As no climax of this trend can be
anticipated in the foreseeable future, it might threaten the centralized dogma of
contemporary global genome and sequencing raw data repositories. The mere amount

of data will soon make it infeasible to upload all unprocessed raw data into centralized
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repositories and therefore, increasing the demand for local raw data processing on the
one hand and scalable, distributed and nearby computing infrastructures for large-scale
analysis of potentially pre-processed data on the other hand [295]. Meanwhile, cloud
computing has evolved for the last two decades as a new paradigm for such compute
infrastructures. According to the US National Institute of Standards and Technology
(NIST), a formal definition of cloud computing, is “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing
resources ... that can be rapidly provisioned and released with minimal management
effort or service provider interaction” [390]. Starting in the early 2000s, computational
resources were initially offered on demand. Operated and maintained within large data
centers, physical machines were shared among different users via virtual machines,
which were globally accessible via the Internet. By sharing the physical computational
backbone between many different users, synergistic effects, e.g. ceased
overprovisioning for peak loads and sharing spare resources, reduce costs and the
necessary know-how to build and maintain larger IT infrastructures [391]. This new way
how IT resources are provided and used gained momentum over the last decade, when
large technology companies entered the market. Beside computing resources on
demand, more and more software tools were provided as a centralized service known
as software as a service. This shift in the IT ecosystem also partly transforms the way
how DNA sequencing data as well as genomic data is processed and analyzed. This
process in turn will require bioinformatics software tools to be developed in a high-
throughput-savvy and scalable manner, ie. they are either executable on local

computers or deployable to scalable CCls.

Driven by many large-scale academic sequencing projects as well as applied research
projects in modern microbial biotechnology [392-394], the tremendously increased
amount of available data opened new scientific questions and constantly required new
algorithms and bioinformatics approaches. This contributed to the genesis of a plethora
of open-source bioinformatics software tools and databases. At the time of writing, the
online registry bio.tools, compiled as part of the European Infrastructure for Biological
Information (ELIXIR), includes 17,276 entries from over 2,462 contributors [395]. Among
those, 6,186 were annotated with DNA sequencing and genetics-related terms. Often,
these highly specialized tools need to be combined and integrated into more
comprehensive analysis workflows. As each of these tools has its own set of
requirements and software dependencies, the provisioning of these workflows has

become a non-trivial task.

46


https://paperpile.com/c/KdcwUe/qWDv
https://paperpile.com/c/KdcwUe/KixX+QX4P+3gFU
https://paperpile.com/c/KdcwUe/0wR5
https://paperpile.com/c/KdcwUe/DoyH
https://paperpile.com/c/KdcwUe/vg5G

2.7 Recent IT developments and challenges for microbial bioinformatics in the 2020s

Hence, in order to isolate software applications from their environment, e.g. the
operating system, installed software libraries and available third-party software tools,
software containers have recently evolved as a lightweight new mechanism of isolation
and thus also portability. In contrast to virtual machines, which require their own full
stack of operating system, libraries and software applications, containers run within the
kernel of the operating system. Thus, they require less resources and provide better
performance [396,397]. Taking advantage of these containerization techniques,
developers and researchers are able to package and execute software tools combined
with all dependencies in a lightweight and portable manner, across a wide range of
computing platforms [398—400]. Furthermore, these container images can be uploaded
to and distributed via public repositories, as for instance, Docker Hub. Today, many
distinct containerization systems exist. Among others, the most successful and widely
used are Docker [41] and Podman [42].

In addition to these issues regarding the isolation, packaging and distribution of single
tools, contemporary computational analysis workflows also have to deal with a broad set
of technical runtime issues. Robust implementations of analysis workflows are expected
to provide reproducible results on different machines over multiple iterations.
Furthermore, the analysis of large datasets requires workflows to be executed in a fault-
tolerant manner. Corrupted data parts or failed executions of the analysis of some parts
of the data must not lead to failures and crashes of the entire workflow. In these cases,
workflow implementations are expected to properly handle such failures and to further
proceed with the computation. Otherwise, problematic parts of the data or failed parts of
the underlying computing infrastructure might hinder the completion of the entire
workflow. The latter is of particular importance on fault-tolerant infrastructures like CCls.
An additional aspect, and maybe the most important, is scalability. Modern analysis
workflows need to be applicable on a broad range of data sizes. During the
developmental stage, small test cases need to return quick results, while in a production
stage, real analyses might scale to very large amounts of data. The latter often requires
to either scale vertically or horizontally by distributing the computational workload to
compute clusters of different types and varying sizes. It goes without saying that the
support of multiple HPC cluster systems [401-403] and state-of-the-art cloud computing
frameworks [404—406] facilitates increased portability of implemented workflows and
therefore, also their applicability. Hence, in order to decouple the scientific

methodological development of analysis workflows from the outlined issues of the mere
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technical execution, many dedicated workflow engines for bioinformatics use cases
have been developed and evolved. Among many others, two of the most recent, feature
rich and widely used are SnakeMake [407] and NextFlow [408].

The steep progress in DNA sequencing technologies and the resulting data inflation
require bioinformaticians to keep pace with the complex demands of modern software
tool development in bioinformatics on the one hand and the heterogeneous technical
solutions on the other hand. However, this novel layer of added technical complexity will
be worthwhile as by mastering scalability and portability challenges, a democratization
of bioinformatics and computational biology is taking place and thus removes historical
obstacles implied by unavailable or too complex computational resources [398]. Due to
public CCls, as for instance the German de.NBI cloud [409], small research groups and
even single researchers are able to conduct data analyses at almost any scale. After the
democratization of research data via the broad availability in public data repositories,

finally a democratization of data analysis is taking place, too.
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2.8 Scientific gaps in microbial bioinformatics and aim of
this thesis

The former chapters provide a brief historical introduction to the huge scientific and
technological progress in the field of microbiology, especially medical microbiology,
boosted by the revolutionary developments of high-throughput DNA sequencing
technologies and accompanying bioinformatics methodologies, software tools and
databases. Today, DNA based bioinformatic analyses have become essential and
powerful research tools for the field of microbial genomics addressing various scales
from single genomes to population structures and ecosystems. In addition, DNA based
in silico analyses have become invaluable tools for public health tasks like for example
the surveillance of bacterial pathogens, AMR monitoring and outbreak detections
[35,36,410]. Many of these applications either benefit from or even require the
processing and higher-level characterization of multiple genomes in order to determine
genetic commonalities or differences between genomes. These developments are
important factors that increase the demand for large cohorts of collectively analyzed
bacterial genomes. Meanwhile, over the last decades advances in DNA sequencing led
to massive cost reductions and a tremendous increase in sequencing throughput
(Figure 5). Hence, large-scale bacterial genome sequencing has reached
unprecedented levels and has become a standard methodology and a routine task in
laboratories worldwide. Today, public databases comprise hundreds of thousands of
bacterial genomes. For example, in 2018, the European Nucleotide Archive (ENA)
stored more than 660,000 genomes. Of note, only 20 pathogenic species are
accountable for more than 90% of these genomes, which underpins the huge

importance of these technologies and data for medical microbiology [411].
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Figure 5: Progress in DNA sequencing.

Advances in DNA sequencing technologies by time and technological revolutions. A) Throughput,
average read length and runtimes of 42 modes of commercially available DNA sequencing
devices grouped by the underlying DNA sequencing technology, i.e. Sanger sequencing, next-
generation short-read sequencing and single-molecule long-read sequencing. Distinct data points
are depicted as circles. General trends are highlighted as coloured bands according to each
characteristic [412—415]. B) The temporal course of DNA sequencing costs in USD per million
base pairs and the number of whole-genome sequences stored in the NCBI GenBank database
[416,417].

As the sequencing of bacterial genomes is evidently not a limiting factor anymore, it has
become obvious that the effective and efficient analysis of all this data is becoming a

new bottleneck. The sheer amount of available and newly generated data has made the
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2.8 Scientific gaps in microbial bioinformatics and aim of this thesis

manual analysis a tedious and time-consuming process, which thus is becoming more
and more infeasible. Furthermore, the repetitive manual execution of similar tasks is a
common source of errors and potentially insufficient standardizations are an important
aspect regarding reproducibility and comparability. Hence, the comprehensive analysis
of this data has become a very complex task. Appropriate analysis workflows comprise
many steps of which each constitutes a distinct niche in bioinformatics by means of
methodology as well as software implementation. Today, researchers can, but also have
to, select bioinformatics tools from countless choices comprising thousands of
specialized software tools [395]. This is further exacerbated by the fact that most
software tools provide a large set of options and parameters to fine-tune their
performance and behavior and to optimize the outcome of an analysis. These often
require highly specialized domain knowledge and significant experience. Even worse, in
order to conduct many of these tasks, bioinformatics software tools must be executed in
combination with specialized databases. For example, at the time of writing, there are at
least 15 publicly available AMR gene databases [323]. This poses an increasing
problem for researchers. Results of WGS data analyses become more and more
incomparable by the usage of different workflows composed of different software tools
using different sets of options and parameters potentially in combination with different

databases leaving out that many of these are provided in regularly updated releases.

Accordingly, there is a rising demand for standardization in bacterial WGS data analysis
for the sake of reproducibility of conducted analysis and comparability of results. Raw
sequencing data from varying DNA sequencing platforms must be processed and
analyzed and subsequent results are to be aggregated and prepared to create human
readable reports facilitating the rapid and comprehensive understanding of the results
(Figure 6). To overcome these issues, automated and centralized analysis platforms
recently emerged, e.g. Bacterial Analysis Pipeline [418], Patric [287] and Galaxy [419].
These platforms provide researchers with access to complex analysis workflows that are
executed on centralized IT infrastructures via convenient web user interfaces thus hiding
most of the implied scientific and technical complexity. However, centralized platforms
cannot constantly keep pace with the steep increase of generated data resulting from
decentralized sequencing sites worldwide. In addition, the transfer of large amounts of
raw data is physically limited by public network capacities. Furthermore, sensitive data is

often not eligible for the analysis on third party infrastructures due to legal restrictions.
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Figure 6: Transformation from raw data to information

Depiction of the transformation from raw data into information with examples in regards to
microbial bioinformatics. Large-scale raw data resulting from different DNA sequencing platforms
must be processed and analyzed in various ways to create new results. To gain new information,
these diverse results must be aggregated, prepared and finally presented in comprehensible
manners.

Consequently, there is a need for automated and comprehensive but also portable
analysis pipelines that can be executed either locally on standard consumer hardware
and HPC clusters or CCls in a scalable manner. However, there is a lack of
bioinformatics software pipelines fulfilling all these requirements. Hence, it was the aim
of this thesis to address this gap by developing a new bioinformatic analysis pipeline for
the automated, comprehensive and scalable analysis of small to large cohorts of
bacterial WGS data from different DNA sequencing platforms. The following chapters
briefly describe the requirements of the involved tasks that resulted from this objective.
The first task was the design and implementation of the analysis pipeline. The second
and third tasks resulted from the design of its fully automated workflow and addressed
the automated detection and characterization of plasmids and the rapid but thorough

determination of suitable reference genomes.
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2.8 Scientific gaps in microbial bioinformatics and aim of this thesis

2.8.1 Standardized high-throughput analysis of whole-genome
sequencing data of bacterial cohorts

Driven by the inflation of sequenced bacterial genomes in many different settings, e.g.
academia and public health, the first task of the described objective is the development
of a new bioinformatics software tool for the analysis of bacterial WGS data fulfilling the

following requirements:

* Design of a fully automated, standardized, reproducible and comprehensive data
processing and analysis workflow

*  Support for WGS data from all major contemporary DNA sequencing platforms,
i.e. lllumina, Pacific Biosciences and Oxford Nanopore Technologies

* Execution of a comprehensive set of per-isolate genome characterizations

* Implementation of comparative and phylogenetic analyses

» Vertical and horizontal scalability on local hardware, HPC clusters and CCls to
keep pace with rising amounts of data

* Portability and user-friendly installation routines on standard consumer
hardware.

» Extensibility via a modular framework design

+ Compilation of human-readable, user-friendly and interactive hypertext markup
language (HTML) reports aggregating, preparing and visualizing intermediate

and final results
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2.8.2 Automated and taxonomy-independent detection of
plasmid-borne contigs from short-read draft assemblies

Due to their important role in the horizontal transfer of resistance genes, a crucial aspect
of bacterial WGS data analysis is the detection and characterization of plasmids, which
has been addressed by a large number of dedicated bioinformatics software tools that
have recently evolved [354-358,360-363,420]. However, despite the previously
described heterogeneity of plasmid detection methodologies and software tools, none of
these provide all properties that are required for the seamless integration into a

contemporary and automated WGS data analysis workflow described in task I:

* A non-interactive and thus fully automated workflow

* An underlying classification approach that is purely based on assembled draft
genomes providing a common workflow entry point for the support of various
DNA sequencing platforms

* Untargeted and taxonomy-independent workflow and database

* High detection accuracy achieving balanced sensitivity and specificity

Compliance with all these requirements would make such a methodology applicable to
WGS data from a large range of bacterial taxa supporting different sequencing platforms
and thus would allow the automated separation of plasmid-borne contigs from the
chromosome for focused and more detailed downstream analyses. Hence, it was the
second task to develop a new methodology fulfiling the outlined requirements and to
implement this new approach as an automated bioinformatic software tool for high-
throughput applications.
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2.8 Scientific gaps in microbial bioinformatics and aim of this thesis

2.8.3 Accurate but rapid determination of suitable reference
genomes

The deep characterization of bacterial isolates on a nucleotide level is an important task
to understand phenotypic differences between strains caused by single nucleotide
variants (SNVs) and SNPs, which are detected against closely related common
reference genomes. Moreover, SNPs that have been called against a common
reference genome pose a well-accepted method for the calculation of phylogenetic trees
with utmost precision down to each single nucleotide. Here, reference genomes act as a
genetic template masking non-common genetic information. Hence, the selection of
suitable closely related reference genomes is an essential task with large implications
for the results of SNP based analysis. Another application requiring even more than a
single reference genome is the ordering, rearrangement and scaffolding of assembled
contigs. Modern scaffolding software tools are able to utilize combinations of different
genomic landscapes from several reference genomes for the rearrangement and
optimal placing of contigs [180-182]. Both examples are essential parts of the
comprehensive workflow described in the objective of this thesis and task one. However,
contemporary software tools [274-276] for the assessment of potential reference

genomes do not fulfill all of the required following properties:

* Alocally executable command line implementation
* A fully automated workflow
» Short runtime while still achieving high-quality results

* Integrated databases comprising public high-quality genomes

Hence, it was the third task to develop a rapid, accurate and integrated bioinformatic

software solution for the fully automated lookup of suitable reference genomes.
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3 Thesis contributions

This thesis comprises three peer-reviewed publications, which are presented and briefly

summarized in the following subchapters.

e ASA°®P: An automatic and scalable pipeline for the assembly, annotation and
higher-level analysis of closely related bacterial isolates.
Oliver Schwengers, Andreas Hoek, Moritz Fritzenwanker, Linda Falgenhauer,
Torsten Hain, Trinad Chakraborty & Alexander Goesmann (2020).
PLoS Computational Biology, DOI: 10.1371/journal.pcbi.1007134

* Platon: identification and characterization of bacterial plasmid contigs in short-
read draft assemblies exploiting protein-sequence-based replicon distribution
scores.

Oliver Schwengers, Patrick Barth, Linda Falgenhauer, Torsten Hain, Trinad Chakraborty
& Alexander Goesmann (2020).
Microbial Genomics, DOI: 10.1099/mgen.0.000398

* ReferenceSeeker: rapid determination of appropriate reference genomes.
Oliver Schwengers, Torsten Hain, Trinad Chakraborty & Alexander Goesmann (2020).
Journal of Open Source Software, DOI: 10.21105/joss.01994
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3.1 ASA®P

ASA®P: An automatic and scalable pipeline for the assembly,
annotation and higher-level analysis of closely related bacterial

isolates.

Oliver Schwengers, Andreas Hoek, Moritz Fritzenwanker, Linda Falgenhauer,
Torsten Hain, Trinad Chakraborty & Alexander Goesmann (2020).

PLoS Computational Biology, DOI: 10.1371/journal.pcbi.1007134

This publication presents and describes ASA3P, a new bioinformatic software tool for the
comprehensive analysis of WGS data from bacterial isolates. ASA3P implements a
state-of-the-art fully automated analysis workflow comprising the quality control and
assembly of raw reads, scaffolding and annotation of resulting assemblies and the
thorough characterization of bacterial isolates. The latter comprises taxonomic
classifications and subtyping, the detection of AMR genes and virulence factors, and the
detection of SNPs. These per-isolate analyses are complemented by comparative
analysis, i.e. the computation of core and pan genomes and phylogenetic trees. Of note,
ASA®P supports all contemporary major sequencing platforms, i.e. lllumina short-read
sequencing as well as Pacific Biosciences and Oxford Nanopore Technologies long-
read sequencing. ASA®P is publicly available and provided as two distinct software
distributions. Small to medium cohorts can be locally analyzed via Docker-based Linux
containers, whereas large to massive groups of up to thousands of isolates can be
analyzed with a highly scalable cloud computing version, which is able to fully exploit the
flexibility and scalability of modern CCls. Finally, results are provided in standard
bioinformatics file formats and gathered information is presented via user-friendly
reports comprising interactive visualizations. It has been demonstrated that the software
smoothly scales from small to very large datasets comprising more than 1,000
genomes, and it has been successfully applied in various data analysis projects, which

are described in chapter 4.1.2.
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3.2 Platon

Platon: identification and characterization of bacterial plasmid
contigs in short-read draft assemblies exploiting protein-

sequence-based replicon distribution scores.

Oliver Schwengers, Patrick Barth, Linda Falgenhauer, Torsten Hain,
Trinad Chakraborty & Alexander Goesmann (2020).

Microbial Genomics, DOI: 10.1099/mgen.0.000398

Platon is a new bioinformatic command line tool for the fully automated detection,
characterization and extraction of plasmid-borne contigs from bacterial draft assemblies.
Via large-scale homology searches of publicly available closed chromosome and
plasmid sequences, it could be shown that a large proportion of bacterial proteins is
unequally encoded within the different replicon types. A new statistical score termed
replicon distribution score (RDS) reflecting this bias for each marker protein sequence
(MPS) is defined and introduced as a new methodology to approach this problem. Via
RDS, Platon is able to exploit this natural distribution bias for the determination of the
origin of contigs, which is further enhanced by heuristics taking into account higher-level
contig characterizations as for example: circularization tests, detection of incompatibility
groups, mobilization and conjugative genes, detection of origin of transfer sequences,
detection of ribosomal genes, and homology searches against plasmid reference
databases. Final results are provided in standardized human and machine-readable file
formats for user-friendly examination as well as automated downstream analysis. Platon
was shown to achieve higher accuracies and more robust classifications in taxonomy-
independent benchmarks and better or equal performance on targeted benchmarks than

existing tools.
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3.3 ReferenceSeeker

ReferenceSeeker: rapid determination of appropriate reference

genomes.

Oliver Schwengers, Torsten Hain, Trinad Chakraborty & Alexander Goesmann
(2020).

Journal of Open Source Software, DOI: 10.21105/joss.01994

This publication describes the new bioinformatic software tool ReferenceSeeker that
allows researchers to query large microbial genome databases for closely related high-
quality reference genomes in a rapid and integrated manner. The software implements a
two-step search process combining the rapid lookup of candidate reference genomes
from integrated local databases via k-mer fingerprints with detailed computation of the
well-established average nucleotide identity and conserved DNA values. Even more
detailed comparisons can be conducted via the computation of bidirectional ANI values.
Due to this generic approach, the software supports a broad range of microbial taxa.
Furthermore, the software allows the creation of customized databases incorporating
non-public genomes. Pre-compiled databases comprising NCBI RefSeq genomes are
publicly available via open data repositories for bacteria, archaea, fungi, protozoa and

viruses.
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4 Results and discussion

This thesis provides three scientific contributions to the field of microbial bioinformatics

addressing the highly relevant explicated issues: the analysis of large-scale bacterial

WGS data, the automated prediction of plasmid-borne contigs from draft assemblies and

the rapid determination of suitable reference genomes from custom and public

databases for high-throughput applications (Figure 7).
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Figure 7: A comprehensive and fully automated analysis workflow for bacterial WGS data.
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Depicted is the comprehensive analysis workflow developed in this thesis starting after
upstream wet laboratory steps. Raw sequencing reads are processed by ASA®P resulting in
assembled and annotated bacterial genomes that are further analyzed and characterized.
Results are provided as human-readable interactive reports. Open bioinformatic challenges that
emerged from the design of this workflow have been addressed by new methodologies and

approaches implemented in the software tools Platon and ReferenceSeeker.
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4 Results and discussion

4.1 Comprehensive, scalable and fully automated high-
throughput analysis of whole-genome sequencing data
from bacterial isolates with ASA®P

411 Features and comparison with contemporary software tools

Triggered by the constantly increasing computational demands caused by the immense
developments in high-throughput DNA sequencing, a comprehensive analysis workflow
has been designed and implemented in a scalable, locally executable and portable
manner resulting in the software tool ASA3®P. It provides a true one-stop solution
lightening the burden of repetitive bioinformatics analysis tasks. By design, the pipeline
provides no adjustable parameters to the user and by doing so, enforces the
standardization of the analysis and in turn the reproducibility as well as comparability of
results. These are generated in standard bioinformatics file formats and stored in a well-
defined and predictable file structure suitable for subsequent custom analysis. In
addition, the software generates user-friendly interactive reports as standard HTML
documents, which can easily be compressed and sent to colleagues and research
partners and viewed with common web browsers. Hereby, accessible and
comprehensible higher-level insights to the underlying data are provided to users

without the need for sophisticated bioinformatics or Linux command line skills.

Moreover, support for the analysis of raw sequencing reads from lllumina, Pacific
Biosciences and ONT sequencing platforms increases the overall usability of the
software. The conducted analyses as well as generated reports cover a comprehensive
set of contemporary bacterial genome characterizations as for example the taxonomic
classification and MLST subtyping, the prediction of antibiotic resistance genes and
detection of virulence factors, as well as SNP-based comparisons to reference
genomes. The software was implemented following a modular design and therefore, it

can easily be expanded with further analysis modules.

Depending on available IT capacities and the number of sequenced genomes, users
can choose from a locally executable Docker-based version and an OpenStack-based
cloud computing version. Hence, by providing these distinct software distributions,

ASA®P is able to scale from the analysis of tiny bacterial cohorts executed on regular
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4.1 Comprehensive, scalable and fully automated high-throughput analysis of whole-
genome sequencing data from bacterial isolates with ASA3P

desktop machines to the analysis of thousands of bacterial genomes within large
distributed HPC clusters or CCls. Hence, ASA®P enabled researchers to keep pace with

the demands of contemporary bacterial WGS data analysis.

Recently, several bioinformatics software tools and pipelines for the automated offline
analysis of bacterial WGS data have evolved following different approaches to meet
distinct requirements. Although all available tools provide a comparable set of core
analysis features, each tool has different properties in terms of supported data types,
scalability and flexibility and thereby addresses distinct requirements. For example,
BacPipe [421], Tormes [422], Nullarbor [423], rMAP [424] and ProkEvo [425] only
support short-read sequencing data. Bactopia [426], for instance, supports the hybrid
assembly of short-read and long-read sequencing data. However, it does not support
the assembly of long sequencing reads, only. In contrast to ASA®P and Tormes, the user
interfaces of Bactopia, BacPipe and Nullarbor provide adjustable parameters in order to
adapt the underlying workflows and analysis steps. Bactopia and BacPipe generate
results in bioinformatics file formats only whereas Tormes, Nullarbor and ASA3P
generate human readable reports as markdown, static and interactive HTML files,
respectively. All software tools but BacPipe provide vertical scalability and Bactopia and
ASA3P additionally provide horizontal scalability supporting HPC clusters and CCls.

Furthermore, all software pipelines but Tormes provide portable Linux container images.

In conclusion, albeit each software provides its unique set of properties, at the time of
writing, ASA®P is the only available open-source bioinformatic software tool providing a
fully automated and comprehensive analysis workflow, support for both short and long
read data assembled in either separate or hybrid mode, vertical and horizontal
scalability on HPC and CCls, and the generation of comprehensive and user-friendly
reports in a portable manner for the offline analysis of bacterial WGS data. Thus, it
enables researchers to take advantage of scalable IT resources and a diverse set of
robust and proven bioinformatics software tools dedicated to the various tasks involved
in the process. Hence, even more bacterial genomes and larger cohorts thereof can be
analyzed, characterized and compared allowing to keep up with DNA sequencing

technologies and future demands.
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4 Results and discussion

4.1.2 Examples of application

Long before its publication, ASA3P has already been widely used as an inhouse analysis
pipeline at the department for Bioinformatics and Systems Biology and the Institute of
Medical Microbiology within several scientific projects in the context of the German
Center for Infection Research (DZIF). Over the course of the recent years, more than
8,400 sequenced genomes of bacterial pathogens have been analyzed covering a broad
taxonomic range comprising more than 50 distinct genera [427,428]. Table 2 lists the 15
most frequently analyzed genera comprising many severe pathogens, among these all
of the so-called ESKAPE species [429]. From the analysis of these small and large-
scale data, various scientific findings have been published in the field of medical
microbiology based on the cohort analyses of antibiotic-resistant bacteria conducted
with ASA3P.
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4.1 Comprehensive, scalable and fully automated high-throughput analysis of whole-
genome sequencing data from bacterial isolates with ASA3P

Table 2: Number of pathogenic bacterial isolates analyzed with ASA®P within the various

subprojects of the DZIF grouped at the genus taxon. Listed are the 15 most frequently analyzed

genera. [427].
Genus Number of
analyzed isolates
Escherichia 3,597
Klebsiella 872
Enterococcus 840
Serratia 764
Enterobacter 501
Listeria 224
Pseudomonas 196
Citrobacter 191
Acinetobacter 184
Proteus 96
Staphylococcus 68
Actinobacillus 62
Streptococcus 42
Hafnia 25
Moraxella 18

For instance, E. coli isolates from Nigerian and Ghanaian poultry farms as well as from
hospitals in Germany and Switzerland have been analyzed and characterized regarding
prevalent taxonomic sublineages and AMR genes [430—432]. Similarly, ASA3P has been
used to study clinically relevant bacteria collected from German surface waters
[28] —among these E. coli, A. baumannii, K. pneumoniae, C. freundii, E. cloacae and
P. aeruginosa. Also, ASA®P has been used to analyze and delineate isolates of
L. monocytogenes [433]. In all these studies, the entire in silico data processing,
analysis and characterization was conducted using ASA3P to provide the relevant
information within the distinct studies’ contexts, e.g. the clonal subtyping using multi-

locus sequence typing as well as the detection of antibiotic resistance genes.
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4 Results and discussion

In addition to these cohort analyses, in several studies ASA3P facilitated the deep
characterization and comparison of distinct strains of a certain species of interest. For
instance, WGS data from isolates of Bordetella pseudohinzii, a new atypical species
causing respiratory infections like whooping cough, has been analyzed in order to
deeply characterize the sequenced genomes via detected SNPs against public
reference genomes. Furthermore, intermediate ASA3P results from pre-processed WGS
data were used to be further analyzed by more specialized downstream analysis tools
[434]. Likewise, ASA®P has also been used to deeply characterize different capsule
mutants of Strepfococcus pyogenes on a per-SNP basis against related wildtypes [435].
A further example is the analysis of Enterobacter bugandensis — a pathogen that causes
severe infections of neonates, which has been isolated in Germany for the first time
[436]. WGS data of sequenced samples was processed, assembled in a hybrid
approach, annotated and characterized using ASA®P. In total, ASA®P has been cited 28

times due to Dimensions.ai, at the time of writing.

4.1.3 Ongoing developments and pending challenges

ASA®P conducts a comprehensive and state-of-the-art workflow to process and analyze
bacterial WGS data. However, several important aspects of bacterial WGS analysis
remained untouched, which are subject of current and future developments. This
certainly pertains to the detection and analysis of mobile genetic elements like
prophages and transposons as they play a vital role in the dissemination of antibiotic
resistance genes and potentially have large impacts on phenotypes
[326,328,345,437,438]. If both scientifically and technically feasible, these mobile

genetic elements should be well characterized and compared against each other.

For example, the detection and characterization of plasmids is of very high relevance for
the analysis of bacterial genomes. In order to automatically detect plasmids within
genome assemblies while simultaneously supporting different sequencing technologies,
the underlying plasmid detection methodology is required to be able to work on the
assembled genome sequences alone. From the many bioinformatics software tools for
the automated plasmid sequence detection publicly available today, only a tiny fraction
works solely on draft assemblies [353,354,356,357]. These, however, do not satisfy the
manifold requirements of this automated, taxonomy-independent, integrated, multi-

sequencing-platform analysis workflow, as they either require species specific
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4.1 Comprehensive, scalable and fully automated high-throughput analysis of whole-
genome sequencing data from bacterial isolates with ASA3P

databases [354] or predict plasmid sequences strongly biased towards sensitivity or
specificity [353,356,364]. To overcome this issue, the development and implementation
of a new plasmid-born contig detection methodology fulfiling the explicated
requirements became an interesting and challenging objective during the design of the
ASA®P workflow. As a result, a new methodology for the robust detection and
characterization of plasmid-borne sequences within bacterial draft genomes became

part of this thesis and is described in the following chapter 4.2.

In addition, further issues became obvious while designing and implementing the
workflow of ASA®P. In order to calculate reference genome SNP-based phylogenetic
trees, a single particular reference genome is required and must be provided by the
user. However, it might not be clear which reference genome fits best the data at hand.
This issue is exacerbated by the sheer overwhelming number of publicly available
reference genomes, which is constantly rising. Hence, it would be beneficial to the
results of the conducted analyses as well as to the overall usability, if appropriate
reference genomes could be tested, assessed and finally chosen to be included in the
analysis in an automated manner if no reference genomes are provided by the user.
Furthermore, as modern scaffolding software tools are able to take advantage of
multiple reference genomes, the automated selection of larger numbers of closely
related reference genomes might further improve scaffolding results of short-read draft
assemblies [179,180,182]. Hence, the automated determination of suitable reference
genomes was one objective of this thesis and is addressed in more detail in chapter 4.3.
The described hierarchical approach has already been re-implemented in Groovy and
integrated into ASA®P as a replacement for the k-mer based taxonomic classification via
Kraken [439]. Compared to Kraken, this new taxonomic classification approach is based
on well-established ANI and conserved DNA species boundary thresholds computed
against a tightly integrated compilation of reference genomes. As a positive side effect,
this resulted in a database storage size reduction from 142 GB to 29 GB and thus,

significantly reduced overall resource requirements.

Another example for potential future enhancements is the annotation of assembled
bacterial genomes. At the time of writing, ASA®P takes advantage of the widely accepted
software tool Prokka due to its streamlined command line interface and short runtimes.
The latter is achieved by using hierarchical annotation databases exploiting annotated
reference genomes, which are aggregated to the genus level. However, this information
must be provided via a distinct parameter, which therefore, is required to be provided by

ASA3P users. A taxonomy-independent annotation software tool would allow to relax or
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4 Results and discussion

even remove this requirement. Furthermore, the annotation workflow conducted by
Prokka exhibits certain limitations, e.g. the detection and annotation of small CDS, a
large proportion of CDS annotated as hypothetical protein especially in rare species and

the proper detection and annotation of CDS spanning artificial replicon edges.
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4.2 Robust detection and characterization of plasmid-borne
contigs from bacterial draft assemblies with Platon

Plasmids are vital vehicles for bacterial genes. As a key mechanism of horizontal gene
transfer, plasmids play an essential role in the dissemination of antibiotic and metal
resistance genes. In order to monitor and understand the role of plasmids within single
genomes as well as their dynamics within bacterial populations, nowadays, the detection
and characterization of plasmid sequences via the bioinformatic analysis of bacterial
WGS data has become an essential tool. However, due to the often complex and nested
composition of different mobile genetic elements, short-read assemblies are hardly ever
complete but fragmented, comprising multiple contigs. These fragmented sequences
make the in silico detection and characterization of plasmids a difficult task [328,364].
Recent bioinformatics software tools for the detection of plasmid-borne contigs from
WGS assemblies do not fulfill the complete set of requirements for fully automated, non-
interactive, scalable and taxonomy-independent analyses without the necessity to

choose between either sensitivity or specificity.

Hence, a novel methodology was developed achieving the outlined requirements for the
seamless integration into ASA3P’s workflow. As a new approach to this problem,
differential distributions of protein-coding gene families among chromosomes and
plasmids were investigated by large-scale analysis [440]. It could be shown that a
considerable proportion of these protein sequences is significantly unequally distributed
among replicons. This inherent natural bias is used to classify contigs and to predict a
replicon’s origin. The conducted benchmarks show that this methodology achieves a
superior classification performance compared to both taxonomy-independent [356,357]
as well as targeted approaches [353,354]. Furthermore, it is applicable without any
adaptations or customizations within both scenarios as its classification was proven to
be the most sensitive whilst still achieving a specificity close to the most specific
approaches [353]. It was implemented as a stand-alone bioinformatic software tool
providing contemporary plasmid characterizations providing useful additional

information, e.g. sequence circularity and incompatibility factors.

Moreover, due to a fully automated database creation workflow, Platon’s mandatory
taxonomy-independent database can regularly be updated without manual efforts. Thus,
the increasing amount of sequences that are stored in public genome repositories can

be utilized to constantly keep RDS values of MPS up to date and thus, forestall
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databases from becoming outdated. Furthermore, the incorporation of more complete
chromosome and plasmid sequences will further improve the predictive power of MPS
and their RDS values. Indeed, a benchmark on 1,765,157 simulated contig sequences
alike those conducted in the publication showed that Platon’s classification performance
was further increased by a recent database update incorporating replicon sequences of
RefSeq release 202. The highest contig classification accuracy defining the RDS
conservative threshold (CT) that was achieved, could be further increased compared to

the published software release v1.2.0.

4.2.1 Integration into ASA*P

Contig Inc-type Relative coverage Length GC-Content Circularisable Blast hit Score #RNAs #RNAs

x

12 19.486 05

1.2 18.299 0,53

143 0 0
92
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Figure 8: Integration of the Platon analysis workflow results into the ASA3P reports.

Detected plasmid contigs are comprehensively characterized via Platon. Results are integrated
into and presented as detailed ASA3P reports.

Its non-interactive workflow and robust classification performance makes Platon a
suitable fit and ideal for the integration into ASA3P for the automated detection and
characterization of plasmid fragments from bacterial draft assemblies in a taxonomy-
independent manner [441]. At the time of writing, Platon has been integrated into ASA3P
and is currently undergoing testing and debugging. Results of Platon’s analysis workflow
are part of ASA3P’s interactive HTML reports (Figure 8). To additionally indicate public
plasmid sequences that are potentially contained within given draft genomes,
visualizations of possible plasmid sequence reconstructions are integrated into ASA3P’s
reports (Figure 9). At the time of writing, Platon has been cited 19 times due to

Dimensions.ai.
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4.2 Robust detection and characterization of plasmid-borne contigs from bacterial draft
assemblies with Platon
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Figure 9: Visualization of potential plasmid reconstructions via detected
plasmid contigs.

130.905 bp

90,006 bp

Plasmid contigs of a bacterial draft assembly were detected with Platon and
mapped onto complete reference plasmids. Reference plasmids with contig
hits of two or more contigs are visualized along with contig hits in order to
reveal potential reconstructions of plasmids within a certain genome. Light
gray circle: reference plasmid sequence; dark gray regions: alignments of
contigs resulting from short-read draft assembilies.

4.2.2 Ongoing developments and potential improvements of
Platon

An interesting aspect for future explorations that has not yet been addressed is the
application of Platon for the analysis of whole-metagenome sequencing data. Initially,
Platon has been developed to detect plasmid-borne contigs from WGS draft assemblies
of single bacterial isolates. However, as the underlying methodology and its
implementation is not fundamentally bound to assemblies of isolated genomes, in
principle, the methodology is also applicable to metagenomic approaches. However,
due to the significantly larger data sizes implied, it might be beneficial or even necessary
to analyze assembled metagenomic contigs in parallel. This is already implemented for
the various contig characterization steps but not yet for the ab initio prediction of protein-
coding genes as well as the lookup of MPS. A reimplementation in a dedicated workflow
engine providing divide-and-conquer approaches for large numbers of contigs, as for
instance NextFlow [442], will significantly improve vertical scalability, add new horizontal

scalability features and thus, will reduce the overall runtime of the software.
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Furthermore, while debugging and benchmarking Platon it became obvious that many
contigs are located within diffuse niches of the multidimensional feature space reflecting
the various contig characterizations. These contigs are hard to classify via simple
heuristics. Hence, it might be rewarding to address this challenging classification task by
using machine-learning approaches, e.g. artificial neural networks, to target these
partially non-linear properties of the data. These approaches might utilize, combine and
thus take advantage of the various general and plasmid specific features, as for instance
differences in the GC content, contig lengths, coverages and k-mer frequencies. A
recent study has shown that machine-learning approaches utilizing combinations of

these features are able to provide competitive results [443].

An idea for future investigation directly aims at Platon’s underlying RDS methodology
that takes into account differences of protein sequence homology search hits on
complete replicons, i.e. chromosomes and plasmids. This binary homology search could
easily be expanded to other sequence types and thus generalized for the detection of
further mobile genetic elements harboring protein-coding genes like prophages. In
principle, this approach can be used on all protein encoding DNA sequences that can be
separated into two or more categories. It might be rewarding to reuse and test this

approach for other detection or classification tasks.

Another example for future enhancements follows up on the visual indication of publicly
known plasmid sequences that are potentially contained in assembled draft genomes
(Figure 8). Instead of the mere visual indication of public plasmid sequences taking into
account contigs that have priorly been identified to be plasmid-borne on their own,
databases of known plasmid sequences could be screened for potential reconstructions
based on all contigs that are present in a given draft assembly. In addition, this would
facilitate the parameterized screening for plasmid sequences allowing for either relaxed

or conservative searches.
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4.3 Rapid and automated determination of suitable
reference genomes with ReferenceSeeker

“Taxonomy is described
sometimes as a science and sometimes as an art,
but really it’s a battleground.”

Bill Bryson
A Short History of Nearly Everything

Selecting suitable microbial reference genomes is a necessary task for many WGS data
analyses. Due to the large and constantly rising number of publicly available genomes,
this selection process becomes more and more difficult. Many contemporary
bioinformatics software tools are provided via online services [274,275] or interactive
graphical user interface (GUI) implementations [274] and thus, are not applicable to
large-scale data analysis. However, available tools that are locally executable via a
command line interface, do not provide integrated databases [276] or do not achieve
sufficient resolutions at the required strain level [374,377]. Likewise, some tools are not
usable for more-distantly related genomes [276]. To solve this issue, this thesis provides
a new bioinformatic software tool called ReferenceSeeker for the scalable command line
search for suitable microbial reference genomes from large integrated databases [444].
To achieve this task, the implemented two-step approach combines a rapid k-mer
fingerprint lookup of potential reference genome candidates with the robust and
thorough calculation of ANI and conserved DNA values. It scales vertically and thus
achieves short wall-clock runtimes. ANI based genome to genome distances allow
reasonably detailed comparisons of query and reference genomes, even at small DNA
fragment levels. Default values for ANl and conserved DNA thresholds are set to well
known boundaries for bacterial species. However, these are adjustable parameters
allowing more or less constrained taxonomical searches to increase potential

applications [273].

In contrast to existing tools, ReferenceSeeker provides a dedicated database integrating
k-mer fingerprints, taxonomic information as well as compressed DNA sequences of all

entries in the reference genome database. For further convenience, five pre-compiled
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databases are provided for the following microbial taxa: viruses, archaea, bacteria, fungi
and protozoa. Noteworthy, as the implemented approach is generally able to compare
all types of larger DNA sequences, recently, a dedicated plasmid database comprising
26,907 sequences has been compiled and publicly provided via Zenodo [445].
Furthermore, the software provides a command line interface for streamlined
compilations of custom databases and the local import of available genomes or DNA
sequences. Thus, users are able to create dedicated customized local databases for
targeted taxonomic analysis. At the time of writing, ReferenceSeeker has been cited two

times due to Dimensions.ai.

Although this tool was developed for the automated lookup of suitable reference
genomes, it is also a useful tool for taxonomic classifications of bacterial genomes by

applying generally accepted thresholds for ANI and conserved DNA values [276].

4.3.1 Integration into ASA3P

The integrated and fast implementation makes ReferenceSeeker another appropriate fit
for the close integration into ASA®P. In the recent release v1.3.0 after the initial
publication, the k-mer based taxonomic classification using Kraken [439] was replaced
by ReferenceSeeker taking advantage of the ANI methodology for which widely
accepted species boundary thresholds exist. This replacement significantly reduced
ASA®P’s storage requirements from 142 GB to only 29 GB and thus increased its
general usability, especially for installations on standard consumer hardware providing

only limited hardware capacities.

4.3.2 Ongoing developments

ReferenceSeeker and other contemporary bioinformatics software tools for the
calculation of inter-genomic distances are currently only applicable for the automated
lookup of reference genomes based on a single query genome. To analyze, for
instance, a cohort of bacterial genomes, this single reference genome should ideally
reflect as much as possible of the entire genomic landscape of all genomes in this
analysis, in order not to unintentionally mask certain genomic regions in a SNP calling

analysis. A further application requiring sufficiently related syntenic genomic regions is
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4.3 Rapid and automated determination of suitable reference genomes with
ReferenceSeeker

the ordering and rearrangement of contigs within draft assemblies. However, the larger
a group of genomes or the more diverse its members, the more demanding this
selection becomes. Currently, ASA3P users are required to provide at least one, better
more, closely related reference genomes. Of course, these manual selections of
reference genomes introduce an unnecessary bias as it remains questionable if
manually selected reference genomes always reflect the optimal choice from the

hundreds and thousands of available public genomes.

To address these issues and to fully automate this selection process for subsequent
bacterial cohort analyses with ASA®P, the expansion of the ReferenceSeeker workflow
from the current 1:n to an m:n approach for query and reference genomes, respectively,
is a promising approach, which is currently being addressed in an ongoing Master thesis

at the time of writing.
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5 Conclusion

The giant progress in DNA sequencing technologies revolutionized the field of microbial
genomics. Vast numbers of genomes are sequenced worldwide every day and many
research areas benefit tremendously from these developments, in particular medical
microbiology and epidemiology. Nowadays, genome-based analyses are essential tools
for the detection, classification, typing and comparison of special-interest genes and
genomes at various levels. At the same time, IT is revolutionized alike by new trends
such as software containerization and cloud computing. New software engineering
paradigms and frameworks have recently emerged to conduct robust and scalable
computations executed on distributed and heterogeneous IT infrastructures. Albeit the
mere sequencing of bacterial genomes as well as computing capacity in general are not
limiting factors anymore, the comprehensive, timely and standardized analysis of all this

data however remains an issue of rising importance.

This thesis provides novel bioinformatics software tools for the fully automated and
scalable analysis of WGS data of small and large cohorts of bacterial genomes. As a
first contribution, ASA®P directly addresses this objective. In contrast to existing software
tools, it offers a unique and comprehensive combination of features in terms of support
for different DNA sequencing platforms and assembly approaches, thorough per-isolate
characterization, comparative analyses, and both vertical and horizontal scalability. It
supports researchers with a single software suite for the collective analysis of bacterial
genomes and furthermore allows the seamless upscaling from small to vast numbers of
genomes using regular consumer hardware or HPC and CCls, respectively. A second
and third contribution comprise a novel bioinformatic methodology and two new software
tools addressing distinct issues that have arised from the design of this workflow. To
improve the integrated analysis of plasmids, RDSs were introduced as a new approach
for the automated and taxonomy-independent detection of plasmid-borne contigs from
draft assembilies. It achieves a robust and balanced classification performance and was
implemented in Platon. To streamline both the automated selection of closely related
reference genomes and the taxonomic classification of assembled genomes, a novel

approach combining existing tools and methodologies has been implemented in
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5 Conclusion

ReferenceSeeker. Due to their automated taxonomy-independent workflows and
integrated databases, these tools fit both the scientific and technical requirements for
the integration into ASA®P. Furthermore, they are available as stand-alone bioinformatic

software tools, as well.

These contributions have already been used in various studies and publications. In
particular, ASA®P has been shown to be a useful tool for researchers in the field of
medical microbiology and epidemiology streamlining the data processing and genome
characterization workflow. It enables researchers to take advantage of scalable IT
resources and a diverse set of proven bioinformatics software tools dedicated to the
various tasks involved. Hence, even more bacterial genomes and larger cohorts thereof
can be analyzed, characterized and compared, allowing to keep up with DNA
sequencing technologies and future demands. It will help to address urgent issues in the
field of medical microbiology as for instance, AMR and the spread of pathogenic
bacteria. However, it must be mentioned that by no means ASA3P is restricted to these
applications. The robust and extensible framework of this software provides a platform
that can be expanded and adapted. Hence, many research areas that include the
analysis of bacterial genomes, e.g. biotechnology, veterinary medicine, microbial
ecology and space microbiology, might benefit from these automated and scalable
solutions opening further applications within the much larger research field of microbial
genomics. Furthermore, new questions and ideas for improvements and potential new
tools emerged from this thesis regarding for example, reference genomes for entire
cohorts, the improvement of contig classifications via machine learning approaches and
potential metagenome applications, the screening of publicly known plasmid sequences
and the annotation of bacterial genomes. These ideas provide interesting and promising

subjects for further investigations and future research projects.
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Abstract

Whole genome sequencing of bacteria has become daily routine in many fields. Advances
in DNA sequencing technologies and continuously dropping costs have resulted in a tre-
mendous increase in the amounts of available sequence data. However, comprehensive in-
depth analysis of the resulting data remains an arduous and time-consuming task. In order
to keep pace with these promising but challenging developments and to transform raw data
into valuable information, standardized analyses and scalable software tools are needed.
Here, we introduce ASA®P, a fully automatic, locally executable and scalable assembly,
annotation and analysis pipeline for bacterial genomes. The pipeline automatically executes
necessary data processing steps, i.e. quality clipping and assembly of raw sequencing
reads, scaffolding of contigs and annotation of the resulting genome sequences. Further-
more, ASA®P conducts comprehensive genome characterizations and analyses, &.g. taxo-
nomic classification, detection of antibiotic resistance genes and identification of virulence
factors. All results are presented via an HTMLS user interface providing aggregated informa-
tion, interactive visualizations and access to intermediate results in standard bicinformatics
file formats. We distribute ASA®P in two versions: a locally executable Docker container for
small-to-medium-scale projects and an OpenStack based cloud computing version able to
automatically create and manage seli-scaling compute clusters. Thus, automatic and stan-
dardized analysis of hundreds of bacterial genomes becomes feasible within hours. The
software and further information is available at: asap.computational.bio.

This is a PLOS Computational Biology Software paper.

Introduction

In 1977 DNA sequencing was introduced to the scientific community by Frederick Sanger [1].
Since then, DNA sequencing has come a long way from dideoxy chain termination over high
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throughput sequencing of millions of short DNA fragments and finally to real-time sequencing
of single DNA molecules [2,3]. Latter technologies of so-called next generation sequencing
(NGS) and third generation sequencing have caused a massive reduction of time and costs,
and thus, led to an explosion of publicly available genomes. In 1995, the first bacterial genomes
of M. genitalium and H. influenzae were published [4,5). Today, the NCBI RefSeq database
release 93 alone contains 54,854 genomes of distinct bacterial organisms [6]. Due to the matu-
ration of NGS technologies, the laborious task of bacterial whole genome sequencing (WGS)
has transformed into plain routine [7] and nowadays, has become feasible within hours [£].

As the sequencing process is not a limiting factor anymore, focus has shifted towards deeper
analyses of single genomes and also large cohorts of e.g. clinical isolates in a comparative way
to unravel the plethora of genetic mechanisms driving diversity and genetic landscape of bacte-
rial populations [9]. Comprehensively characterizing bacterial organisms has become a desir-
able and necessary task in many fields of application including environmental- and medical
microbiology [10]. The recent worldwide surge of multi-resistant microorganisms has led to
the realization, that without the implementation of adequate measures in 2050 up to 10 million
people could die each year due to infections with antimicrobial resistant bacteria alone [11].
Thus, sequencing and timely characterization of large numbers of bacterial genomes is a key
element for successful outbreak detection, proper surveillance of emerging pathogens and
monitoring the spread of antibiotic resistance genes [12]. Comparative analysis could lead to
the identification of novel therapeutic drug targets to prevent the spread of pathogenic and
antibiotic-resistant bacteria [13-16].

Another very promising and important field of application for microbial genome sequenc-
ing is modern biotechnology. Due to deeper knowledge of the underlying genomic mecha-
nisms, genetic engineering of genes and entire bacterial genomes has become an indispensable
tool to transform them into living chemical factories with vast applications, as for instance,
production of complex chemicals [17], synthesis of valuable drugs [18-20] and biofuels [21],
decontamination and degradation of toxins and wastes [22,23] as well as corrosion protection
[24].

Now, that the technological barriers of WGS have fallen, genomics finally transformed into
Big Data science [25] inducing new issues and challenges [26]. To keep pace with these devel-
opments, we believe that continued efforts are required in terms of the following issues:

a) Automation: Repeated manual analyses are time consuming and error prone. Following
the well-known “don’t repeat yourself” mantra and the pareto principle, scientists should be
able to concentrate on interesting and promising aspects of data analysis instead of ever repeat-
ing data processing tasks.

b) Standard operating procedures (SOPs): In a world of high-throughput data creation and
complex combinations of bisinformatic tools SOPs are indispensable to increase and maintain
both reproducibility and comparability [27].

c) Scalability: To keep pace with the available data, bioinformatics software needs to take
advantage of modern computing technologies, e.g. multi-threading and cloud computing.

Addressing these issues, several major platforms for the automatic annotation and analysis
of prokaryotic genomes have evolved in recent years as for example the NCBI Prokaryotic
Genome Annotation Pipeline [6], RAST [28] and PATRIC [29]. All three provide sophisti-
cated genome analysis and annotation pipelines and pose a de-facto community standard in
terms of annotation quality. In addition, several offline tools, e.g. Prokka [30], have been pub-
lished in order to address major drawbacks of the aforementioned online tools, i.e. they are
not executable on local computers or in on-premises cloud computing environments. How-
ever, comprehensive analysis of bacterial WGS data is not limited to the process of annotation
alone but also requires sequencing technology-dependent pre-processing of raw data as well as
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subsequent characterization steps. As analysis of bacterial isolates and cohorts will be a stan-
dard method in many fields of application in the near future, demand for sophisticated local
assembly, annotation and higher-level analysis pipelines will rise constantly. Furthermore, we
believe that the utilization of portable devices for DNA sequencing will shift analysis from cen-
tral software installations to either decentral offline tools or scalable cloud solutions. To the
authors’ best knowledge, there is currently no published bioinformatics software tool success-
fully addressing all aforementioned issues. In order to overcome this bottleneck, we introduce
ASA’P, an automatic and scalable software pipeline for the assembly, annotation and higher-
level analysis of closely related bacterial isolates.

Design and implementation

ASA’P is implemented as a modular command line tool in Groovy (http://groovy-lang.org),

a dynamic scripting language for the Java virtual machine. In order to achieve acceptable to
best possible results over a broad range of bacterial genera, sequencing technologies and
sequencing depths, ASA’P incorporates and takes advantage of published and well performing
bioinformatics tools wherever available and applicable in terms of lean and scalable implemen-
tation. As the pipeline is also intended to be used as a preprocessing tool for more specialized
analyses, it provides no user-adjustable parameters by design and thus facilitates the imple-
mentation of robust SOPs. Hence, each utilized tool is parameterized according to community
best practices and knowledge (51 Table).

Workflow, tools and databases

Depending on the sequencing technology used to generate the data, ASA'P automatically
chooses appropriate tools and parameters. An explanation on which tool was chosen for each
task is given in 52 Table. Semantically, the pipeline’s workflow is divided into four stages (Fig
1). In the first mandatory stage A (Fig 1A), provided input data are processed, resulting in
annotated genomes. Therefore, raw sequencing reads are quality controlled and clipped via
FastQC (https://github.com/s-andrews/Fast()C}), FastQ Screen (https://www.bioinformatics.
babraham ac.uk/projects/fastq_screen), Trimmomatic [31] and Filtlong (https://github.com/
rrwick/Filtlong). Filtered reads are then assembled via SP Ades [32] for lllumina reads, HGAP
4[33] for Pacific Bioscience (PacBio) reads and Unicycler [34] for Oxford Nanopore Technol-
ogy (ONT) reads, respectively. Hybrid assemblies of [llumina and ONT reads are conducted
via Unicycler, as well. Before annotating assembled genomes with Prokka [30], contigs are
rearranged and ordered via the multi-reference scaffolder MeDuSa [35]. For the annotation of
subsequent pseudogenomes ASA’P uses custom genus-specific databases based on binned
RefSeq genomes [6] as well as specialized protein databases, i.e. CARD [36] and VFDB [37]. In
order to integrate public or externally analyzed genomes, ASA’P is able to incorporate differ-
ent types of pre-processed data, e.g. contigs, scaffolds and annotated genomes.

In an optional second stage B (Fig 1B}, all assembled and annotated genomes are exten-
sively characterized. A taxonomic classification is conducted comprising three distinct meth-
ods, i.e. a kmer profile search, a 165 sequence homology search and a computation of an
average nucleotide identity (ANI) [38] against user provided reference genomes. For the kmer
profile search, the software takes advantage of the Kraken package [39] and a custom reference
genome database based on RefSeq [6]. The 165 based classification is implemented using
BLAST+ [40] and the SILVA [41] database. Calculation of ANI values is implemented in
Groovy using nucmer within the MUMmer package [42]. A subspecies level multi locus
sequence typing (MLST) analysis is implemented in Groovy using BLAST+ [40] and the
PubMLST.org [43] database. Detection of antibiotic resistances (ABRs) is conducted via RGI
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Fig 1. The ASA'P workflow and incorporated third party software tools and databases. The ASA*P workflow is arganized in four stages (large
white boxes, A-DY) comprising per-isolate processing and characterization, comparative analysis and reporting steps (orange boxes). The processing
stage A is mandatory whereas stage B and C are optional and can be skipped by the user. Each step takes advantage of selected third-party software
toals (hlue boxes) and/or databases (green ovals) depending on the type of provided input data at hand.

hitps:/fdoi.org/10.137 1/journal pebi 1007134.9001

and the CARD [36] database. A detection of virulence factors (VFs) is implemented via
BLAST+ [40] and VFDB [37]. Quality clipped reads get mapped onto user provided reference
genomes via Bowtie2 [44] for [llumina, pbalign (https://github.com/PacificBiosciences/
phalign) for PacBio and Minimap2 [45] for ONT sequence reads, respectively. Based on these
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read mappings, the pipeline calls, filters and annotates SNPs via SAMtools [46] and SnpEff
[47] and finally computes consensus sequences for each isolate. In order to maximize parallel
execution and thus reducing overall runtime, stage A and B are technically implemented as a
single step.

A third optional comparative stage C (Fig 1C) is triggered as soon as stages A and B are
completed, i.e. all genomes are processed and characterized. Utilizing aforementioned consen-
SUS SeqUENCes, ASA’P computes a phylogenetic approximately maximum-likelihood tree via
FastTreeMP [48]. This is complemented by the calculation of a core, accessory and pan-
genome as well as the detection of isolate genes conducted via Roary [49].

In a final stage (Fig 1D), the pipeline aggregates analysis results and data files and finally
provides a graphical user interface (GUI), i.e. responsive HTML5S documents comprising
detailed information via interactive widgets and visualizations. Therefore, ASA”P takes advan-
tage of modern web frameworks, e.g. Bootstrap (https://getbootstrap.com) and jQuery
(https://jquery.com) as well as adequate JavaScript visualization libraries, e.g. Google Charts
(https://developers.google.com/chart), D3 (https://d3js.org) and C3 (http://c3js.org).

User input and output

Each set of bacterial isolates to be analyzed within a single execution is considered as a self-con-
tained analysis of bacterial cohorts and is subsequently referred to as an ASAP project. As
ASA’P was developed in order to analyze cohorts of closely related isolates, e.g. a clonal out-
break, the pipeline expects all genomes within a project to belong to at least the same genus,
although a common species is most favourable. For each project, the pipeline expects a distinct
directory comprising a configuration spreadsheet containing necessary project information and
a subdirectory containing all input data files. Such a directory is subsequently referred to as
project directory. In order to ease provisioning of necessary information, we provide a configu-
ration spreadsheet template comprising two sheets (S1 and 52 Figs). The first sheet contains
project meta information such as project names and descriptions as well as contact information
on project maintainers and provided reference genomes. The second sheet stores information
on each isolate comprising a unique identifier as well as data input type and related files. ASA’P
is currently able to process input data in the following standard file formats: Illumina paired-
end and single-end reads as compressed Fast() files, PacBio RSII and Sequel reads provided
either as single unmapped bam files or via triples of bax.h5 files, demultiplexed ONT reads as
compressed Fast() files, pre-assembled contigs or pseudogenomes as Fasta files and pre-anno-
tated genomes as Genbank, EMBL or GFF files. In the latter case, corresponding genome
sequences can either be included in the GFF file or provided via separate Fasta files.

As ASA’P is also intended to be used as an automatic preprocessing tool providing as much
reliable information as possible, the results are stored in a standardized manner within project
directories comprising quality clipped reads, assemblies, ordered and scaffolded contigs, anno-
tated genomes, mapped reads, detected SNPs as well as ABRs and VFs. In detail, all result files
are stored in distinct subdirectories for each analysis by the pipeline and for certain analyses
further subdirectories are created therein for each genome (53 Fig). Aggregated information is
stored in a standardized but flexible document structure as JSON files. Text and binary result
files are stored in standard bicinformatics file formats, i.e. FastQ, Fasta, BAM, VCF and New-
ick. Providing results in such a machine-readable manner, ASA’P outputs can be further
exploited by manual or automatic downstream analyses since customized scripts with a more
targeted focus can easily access necessary data. In addition, ASA’P creates user-friendly
HTMLS reports providing both prepared summaries as well as detailed information via
sophisticated interactive visualizations.
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Implementation and software distributions

ASA™Pis designed as a modular and expandable application with high scalability in mind. It
consists of three distinct tiers, i.e. a command line interface, an application programming
interface (API) and analysis specific cluster distributable worker scripts. A common software-
wide APl is implemented in Java, whereas the core application and worker scripts are imple-
mented in Groovy. [n order to overcome common error scenarios on distributed high-perfor-
mance computing (HPC) clusters and cloud infrastructures and thereby delivering robust
runtime behavior, the pipeline takes advantage of a well-designed shared file system-oriented
data organization, following a convention over configuration approach. Thus, loosely coupled
software parts run both concurrently and independently without interfering with each other.
In addition, future enhancements and externally customized scripts reliably find intermediate
files at reproducible locations within the file system.

As ASA’P requires many third-party dependencies such as software libraries, bioinformat-
ics tools and databases, both distribution and installation is a non-trivial task. In order to
reduce the technical complexity as much as possible and to overcome this bottleneck for non-
computer-experts, we provide two distinct distributions addressing different use cases and
project sizes, i.e. a locally executable containerized version based on Docker (DV) (https://
www.docker.com) as well as an OpenStack (OS) (https://www.openstack.org) based cloud
computing version (OSCV). Details and appropriate use cases of both are described in the fol-
lowing sections.

Docker

For small to medium projects and utmost simplicity we provide a Docker container image
encapsulating all technical dependencies such as software libraries and system-wide executa-
bles. As the DV offers only vertical scalability, it addresses small projects of less than ca. 200
genomes. The necessary container image is publicly available from our Docker repository
(https://hub.docker.com/r/oschwengers/asap) and can be started without any prior installa-
tion, except of the Docker software itself. For the sake of lightweight container images and to
comply with Docker best practices, all required bioinformatics tools and databases are pro-
vided via an additional tarball, subsequently referred to as ASA*P volume which users merely
need to download and extract, once. For non-Daocker savvy users, a shell script hiding all
Docker related aspects is also provided. By this, executing the entire pipeline comes down to a
single command:

< asap_dir>=/asap-docker.sh -p < project_path>.

Cloud computing

For medium to very large projects, we provide an OS based version in order to utilize horizon-
tal scaling capabilities of modern cloud computing infrastructures. Since creation and configu-
ration of such complex setups require advanced technical knowledge, we provide a shell script
taking care of all cloud specific aspects and to orchestrate and execute the underlying workflow
logic. Necessary cloud specific properties such as available hardware quotas, virtual machine
(VM) flavours and OS identifiers are specified and stored in a custom property file, once. In
order to address contemporary demands for high scalability, the OSCV is able to horizontally
scale out and distribute workloads on an internally managed Sun Grid Engine (SGE) based
compute cluster. A therefore indispensable shared file system is provided by an internal net-
work file system (NFS) server sharing distinct storage volumes for both project data and a nec-
essary ASA’P volume. In order to create and orchestrate both software and hardware
infrastructures in a fully automatic manner, the pipeline takes advantage of the BiBiGrid
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(https://github.com/BiBiServ/bibigrid/) framework. Hereby, ASA’P is able to adjust the com-
pute cluster size fitting the number of isolates within a project as well as available hardware
quotas. Except of an initial VM acting as a gateway into an OS cloud project, the entire com-
pute cluster infrastructure is antomatically created, setup, managed and finally shut down by
the software. Thus, ASA*P can exploit vast hardware capacities and is portable to any OS com-
patible cloud. For further guidance, all prerequisite installation steps are covered in a detailed

user manual.

Results
Analysis features

ASA’P conducts a comprehensive set of pre-processing tasks and genome analyses. In order to
delineate currently implemented analysis features, we created and analyzed a benchmark data
set comprising 32 Illumina sequenced Listeria monocytogenes isolates randomly selected from
SRA as well as four Listeria monocytogenes reference genomes from Genbank (53 Table). All
isolates were successfully assembled, annotated, deeply characterized and finally included in
comparative analyses. Table 1 provides genome wise minimum and maximum values for key
metrics covering results from workflow stages A and B. After conducting a quality control and
adapter removal for all raw sequencing reads, a minimum of 393,300 and a maximum of
6,315,924 reads remained, respectively. Genome wise minimum and maximum mean phred
scores were 34.7 and 37.2. Assembled genome sizes ranged between 2,818 kbp and 3,201 kbp
with a minimum of 12 and a maximum of 108 contigs. Hereby, a maximum N50 of 1,568 kbp
was achieved. After rearranging and ordering contigs to aforementioned reference genomes,
assemblies were reduced to 2 to 10 scaffolds and 0 to 42 contigs per genome, thus increasing
the minimum and maximum N50 to 658 kbp and 3,034 kbp, respectively. Pseudolinked
genomes were subsequently annotated resulting in between 2,735 and 3,200 coding genes and
between 95 and 144 non-coding genes.

After pre-processing, assembling and annotating all isolates, ASA’P successfully conducted
deep characterizations of all isolates, which were consistently classified to the species level via

Table 1. Common genome analysis key metrics for processing and characterization steps analyzing a benchmark dataset comprising 32 Listeria monocytogenes iso-
lates. Minimum and maximum values for selected common genome analysis key metrics resulting from an automatic analysis conducted with ASA’P of an exemplary
benchmark dataset comprising 32 Listeria monocytogenes isolates. Metrics are given for quality control (QC), assembly, scaffolding and annotation processing steps as well
as detection of antibiotic resistances and virulence factors characterization steps on a per-isolate level

Analysis Metric Minimum Maximum
QC reads 393,300 6,315,924
Qc Mean read length 125.7 nt 223850t
QC mean Phred score 347 372
assembly Genome size 2817892 bp 3.201,054 bp
assembly contigs 12 108
assembly N50 56,125 bp 1,568,056 bp
assembly GC content 7% 38%
scaffolding scaffiolds 1 10
scaffolding contigs 0 42
scaffolding NS0 657,549 bp 3,034,489 bp
annotation coding genes 735 3.200
annotation non-coding genes 95 144
antibiotic resistance ABR genes o 2
virulence factors VF genes 16 35
https=/idoi.ong/10.137 1/journal pchi. 10071344001
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kmer-lookups as well as 165 ribosomal RNA database searches as Listeria monocytogenes,
except of a single isolate classified as Listeria innocua. In line with these results all isolates
shared an ANT value above 95% and a conserved DNA of at least 80% with at least one of the
reference genomes, except for the L. innocua isolate which shared a maximum ANI of 90.7%
and a conserved DNA of only 37.3%. Furthermore, the pipeline successfully subtyped all but
one of the isolates via MLST, by automatically detecting and applying the “Imonocytogenes”
schema. Noteworthy, the L. innocua isolate constitutes a distinct MLST lineage, i.e. L. innocua.
ASA’P detected between 0 and 2 antibiotic resistance genes and between 16 and 35 virulence
factor genes. A comprehensive list of all key metrics for each genome is provided in a separate
spreadsheet (51 File).

Finally, core and pan-genomes were computed resulting in 1,485 core genes and a pan-
genome comprising 7,242 genes. Excluding the L. innocua strain and re-analyzing the dataset
reduced the pan-genome to 6,197 genes and increased the amount of core genes to 2,004 addi-
tionally endorsing its taxonomic difference.

Data visualization

Analysis results as well as aggregated information get collected, transformed and finally pre-
sented by the pipeline via user friendly and detailed reports. These comprise local and respon-
sive HTMLS documents containing interactive JavaScript visualizations facilitating the easy
comprehension of the results. Fig 2 shows an exemplary collection of embedded data visualiza-
tions. Where appropriate, specialized widgets were implemented, as for instance circular
genome annotation plots presenting genome features, GC content and GC skew on separate
tracks (Fig 2A). These plots can be zoomed, panned and downloaded in VG format for subse-
quent re-utilization. Another example is the interactive and dynamic visualization of SNP
based phylogenetic trees (Fig 2E) via the Phylocanvas library (http://phylocanvas.org) enabling
customizations by the user, as for instance changing tree types as well as collapsing and rotat-
ing subtrees. In order to provide users with an expeditious but conclusive overview on bacte-
rial cohorts, key genome characteristics are visualized via an interactive parallel coordinates
plot (Fig 2F) allowing for the combined selection of value ranges in different dimensions.
Thus, clusters of isolates sharing high-level genome characteristics can be explored and identi-
fied straightforward. In order to rapidly compare different ABR capabilities of individual iso-
lates, a specialized widget was designed and implemented {Fig 2D). For each isolate an ABR
profile based on detected ABR genes grouped to 34 distinct target drug classes is computed,
visualized and stacked for the easy perception of dissimilarities between genomes. Throughout
the reports wherever appropriate, numeric results are interactively visualized as, for instance,
the distribution of detected MLST sequence types (Fig 2B) and per-isolate analysis results
summarized via key metrics presented within sortable and filterable data tables (Fig 2C).

Scalability and hardware requirements

When analyzing projects with growing numbers of isolates, local execution can quickly
become infeasible. In order to address varying amounts of data, we provide two distinct
ASA’P distributions based on Docker and cloud computing environments. Each features indi-
vidual scalability properties and implies different levels of technical complexity in terms of dis-
tribution and installation requirements. In order to benchmark the pipeline’s scalability, we
measured wall clock runtimes analyzing two projects comprising 32 and 1,024 L. monacyto-
genes isolates, respectively (S3 Table). Accession numbers for the large data set will be pro-
vided upon request. In addition to both public distributions, we also tested a custom
installation on an inhouse SGE-based HPC cluster. The DV was executed ona VM providing
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Fig 2. Selection of interactive GUI widge bedded in g d HTMLS reports. (A) Circular genome plot for a Listeria monocytogenes pseudogenome.
The zoomable and scalable SViG based circular genome pl.ot provides comprehensive information on genome features on mouseover events. Reference-guided
rearranged contigs are linked to psendogenomes for the sake of better readability. From the outermost inward: genes on the forward and reverse strand,
respectively, GC content and GC skew. {B) Donut chart of MLST sequence type (ST) distribution. The MLST ST distribution of all isolates analyzed within a
project is shown by and interactive donut chart. Single STs can be selected or deselected. (C) Visual representation of normalized assembly key statistics. Fer-
isolate assembly key statistics are normalized to minimom and maximum values within a project column-wise and visualized within an interactive data table
allowing for column-based sorting and filtering for the rapid comparison of isolates and detection of outliers. (D) Antibiotic resistance profile overview widget.
An antibiotic resistance profile comprising 34 distinct target drug classes is computed based on CARD annotations for each isolate and transformed into an
averview widget allowing a rapid resistome comparison of all analyzed isolates. Black rectangle: a mouseover triggered tooltip describing detected antibiotic
target drug resistance. (E) SNP-based approximately-maximum-likelihood phylogenetic tree. An approximately-maximum-likelihood phylogenetic tree is
computed based on SNPs detected via read-mapping against a reference genome and stored in standard newick file format. The resulting tree is visualized via
the interactive Phylocanvas JavaScript library providing comprehensive user interaction features, e g. collapsing, expanding and rotating subtrees and tree type
selection. (F) Parallel coordinates plot providing a multi-dimensional cohort overview of per-isolate genome metrics and characteristics. A selection of seven
genome key metrics and characteristics is visualized in a parallel coordinates plot providing a multi-dimensional cohort overview enabling the rapid detection
of clustered isolates and outliers. Vertical bars: key metrics or characteristic as plot di ions; coloured horizontal lines: isolates and related values providing
table-synchronized highlighting upon mouseovers.

hittps:doi.org/10.1371/journal. pchi. 1007 134.g002

32vCPUs and 64 GB memory. The quotas of the 05 cloud project allowed for a total amount
of 560 vCPUs and 1,280 GB memory. The HPC cluster comprised 20 machines with 40 cores
and 256 GB memory, each. All machines hosted an Ubuntu 16.04 operating system. Table 2
shows the best-of-three runtimes for each version and benchmark data set combination. The
pipeline successfully finished all benchmark analyses, except of the 1,024 dataset analyzed by
the DV, due to lacking memory capacities required for the calculation of a phylogenetic tree
comprising this large amount of genomes. Analyzing the 32 L. monocytogenes data set on
larger compute infrastructures, i.e. the OS cloud (5:02:24 h) and HPC cluster (4:49:24 h),
shows significantly reduced runtimes by approximately 50%, compared to the Docker-based
executions (10:59:34 h). Not surprisingly, runtimes of the OSCV are slightly longer than HPC
runtimes, due to the inherent overhead of automatic infrastructure setup and management
procedures. Excluding these overheads reduces runtimes by approximately half an hour, lead-
ing to slightly shorter periods compared to the HPC version. We attribute this to a saturated
workload distribution combined with faster CPUs in the cloud as stated in $4 Table. Compar-
ing measured runtimes for both data sets exhibit a ~5.8- and ~6.9-fold increase for the HPC
cluster (27:56:37 h) and OSCV (34:47:45 h) version, respectively, although the amount of iso-
lates was increased 32-fold.

We furthermore investigated internal pipeline scaling properties for combinations of fixed
and varying HPC cluster and project sizes (54 Fig). In a first setup, growing numbers of L.
monacytogenes isolates were analyzed utilizing a fixed-size HPC cluster of 4 compute nodes
providing 32 vCPUs and 64 GB RAM each. lteratively doubling the amount of isolates from 32
to 1,024 led to runtimes approximately increasing by a factor of 2, in line with our expecta-
tions. Nevertheless, we observed an overproportional increase in runtime of the internal com-
parative steps within stage C compared to the per-isolate steps of stage A and B. We attribute

Table 2. Wall clock runtimes for each ﬁk’?w!miﬂljﬂngdlﬁ!ml hardware infrastructures and benchmark dataset sizes. Provided are best-of-three wall clock
runtimes for complete ASA’F executions analyzing Listeria monocytogenes benchmark datasets comprising 32 and 1,024 isolates given in hh-mm:ss formar. Ducker a sin-
gle virtual machine with 32 vCPUs and 64 GB memory was used. Analysis of the 1,024 isolate dataset was not feasible due to memory limitations: HPC: ASAP automati-
cally distributed the workload to an SGE-based high-performance computing cluster comprising 20 nodes providing 40 cores and 256 GB memory each: Cloud: ASA™P
was executed in a.queuSmr_k based cloud computing project comprising 560 wCPUs and 1,280 GB memory in total. Runtimes in parenthesis exchude build times for auto-
‘matic infrastructure setups, i.e. the pure A5A’P wall clock runtimes.

Docker Cloud HPC
32 L. monocytogenes 10:59:34 5:02:24 4:49:24
(4:31:59)
1024 L. monocytogenes - 344745 27:56:37
(33:25:26)
https=/idoi.ong/10.1371/journal pebi.1007134.1002
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this to the implementations and inherent algorithms of internally used third party executables.
As this might become a bottleneck for the analysis of even larger projects, this will be subject
to future developments.

In addition, we repetitively analyzed a fixed number of 128 L. monocytogenes isolates while
increasing underlying hardware capacities, i.e. available HPC compute nodes. In this second
setup, we could measure significant runtime reductions for up to 8 compute nodes. Further
hardware capacity expansions led to saturated workload distributions and contributed negligi-
ble runtime benefits. To summarize all conducted runtime benchmarks, we conclude that
ASA’P is able to horizontally scale-out to larger infrastructures and thus, conducting expedi-
tious analysis of large projects within favourable periods of time.

To test the reliable distribution and robustness of the pipeline, we executed the DV on an
Apple iMac running MacOS 10.14.2 providing 4 cores and 8 GB of memory. ASA’P success-
fully analyzed a downsampled dataset comprising 4 L. monocytogenes isolates within a mea-
sured wall clock runtime of 8:43:12 hours. In order to assess minimal hardware requirements,
the downsampled data set was analyzed iteratively reducing provided memory capacities of an
0S VM. Hereby, we could determine a minimal memory requirement of 8 GB and thus draw
the conclusion that ASA*P allows the execution of a sophisticated workflow for the analysis of
bacterial WGS data cohorts on ordinary consumer hardware. However, since larger amounts
of isolates, more complex genomes or deeper sequencing coverages might result in higher
hardware requirements, we nevertheless recommend at least 16 GB of memory.

Conclusion

We described ASA’P, a new software tool for the local, automatic and highly scalable analysis
of bacterial WGS data. The pipeline integrates many common analyses in a standardized and
community best practices manner and is available for download either as a local command
line tool encapsulated and distributed via Docker or a self-orchestrating OS cloud version. To
the authors’ best knowledge it is currently the only publicly available tool for the automatic
high-throughput analysis of bacterial cohorts WGS data supporting all major contemporary
sequencing platforms, offering SOPs, robust scalability as well as a user friendly and interactive
graphical user interface whilst still being locally executable and thus offering on-premises anal-
ysis for sensitive or even confidential data. So far, ASA”P has been used to analyze thousands
of bacterial isolates covering a broad range of different taxa.

Availability and future directions

The source code is available on GitHub under GPL3 license at https://github.com/oschwenge
rs/asap. The Docker container image is accessible at Docker Hub: https://hub.docker.com/r/
oschwengers/asap. The ASA’P software volume containing third-party executables and data-
bases, OpenStack cloud scripts, a comprehensive manual and configuration templates are
hosted at Zenodo: http://doiorg/10.5281/zenodo.3606300. Benchmark and exemplary data
projects are hosted sepatately at Zenodo: https://doLorg/10.5281/zenodo.3606761. Questions
and issues can be sent to “asap@computational bio”, bug reports can be filed as GitHub issues.

Albeit ASA’P itself is published and distributed under a GPL3 license, some of its depen-
dencies bundled within the ASA”P volume are published under different license models, e.g.
CARD and PubMLST. Comprehensive license information on each dependency and database
is provided as a DEPENDENCY _LICENSE file within the ASA'P directory.

Future directions comprise the development and integration of further analyses, £.g. detec-
tion and characterization of plasmids, phages and CRISPR cassettes as well as further enhance-
ments in terms of scalability and usability.
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Supporting information

S1 Table. Third party executable parameters and options. Parameters and options without
scientific impact are excluded, ¢.g. input/output directories or number of threads.
(PDF)

S2 Table. Selection of task-specific third party bioinformatics software tools. Third party
bioinformatics software tools selected for each task within ASA*P along with a short argumen-

tative reasoning for why they were selected.
(PDF)

§3 Table. Accession numbers of 32 Listeria monocytogenes isolates and reference genomes
of the ASA®P benchmark project. This exemplary project comprises 32 isolates from SRR
Bioproject PRINA215355 as well as two Listeria monocytogenes reference genomes from
RefSeq. The project is provided as a GNU zipped tarball at http://doi.org/10.5281/zenodo.
3606761

(PDF)

$4 Table. Host CPU information used for wall clock runtime benchmarks.
(PDF)

51 Fig. Exemplary screenshot of configuration template sheet 1.
(PDF)

S2 Fig. Exemplary screenshot of configuration template sheet 2.
(PDF)

S3 Fig. Exemplary project directory structure. Each project analyzed by ASA®P strictly fol-
lows a conventional directory organization and thus forestalls the burden of unnecessary con-
figurations. Shown is an exemplary project structure representing input and output files and
directories of the Listeria monocytogenes example project. For the sake of readability repeated
blocks are collapsed represented by a triple dot ..

(PDF)

$4 Fig. Wall clock runtimes for varying compute node and isolate numbers. Runtimes
given in hours and separated between comparative and per-isolate internal pipeline stages due
to different scalability metrics. Each compute node provides 32 vCPUs and 64 GB memory. L.
monocytogenes strains were randomly chosen from SRA Bioproject PRINA215355. (A) Run-
times of a fixed-size compute cluster comprising 4 compute nodes analyzing varying isolate
numbers. (B) Runtimes of compute clusters with varying numbers of compute nodes analyz-
ing a fixed amount of 128 isolates.

(PDF)

§1 File. Comprehensive list of all per-genome key metrics.
(XLS)
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Name Fda-Imonocytogenes
Description A subset of 32 clinical/environmental Listeria monocytogenes isolates...
Genus Listeria
User
Name Oliver
Surname Schwengers
Email oliver.schwengers(@computational.bio. uni-giessen.de

Reference Genomes

Reference Genome List

NC_003210-Listeria-monocytogenes-EGDe.gbk

NC_022568-Listeria-monocytogenes-EGD.gbk

NZ_CP019164-Listeria-monocytogenes-strain-HPB2088.gbk

NZ CP019615-Listeria-monocytogenes-strain-10-092876-0168.qbk

S$1 Fig. Exemplary screenshot of configuration template sheet 1.



Species
MONOCYIDOENES
monocylogenes
monocytogenes
monocytogenes
monocylogenss
monocylogenes
monocylogenes
monocylogenes
monocylogenas
monocylogenes
monocytogenes

Strain
SRR3330409
SRR1810516
SRRZE24581
SRRA3101601
SRRA3634446
SRR3181835
SRR2082078
SRR3574517
SRR1575873
SRR3830175
SRR1973978

Input
paired-end
paired-end

7.2 Supplementary Information — ASA3P

File 1
SRR3I330409_1.fastg.gz
SRR1810516_1.fastq.gz

paired-end EF{R292-1531 _.fasig.gz

sirgle

matr-par
pactinTsl
b seguel
nancpan
[
oot
cenligardered
gencme

paired-end

SRR3101601_1.fastq.qz
SRR3634446 1 fastq.qz
SRR31B81835_1 fastq.gz
SRRZ082078_1.fastq.qz
SRR3574517_1.faslg.oz
SRR1575973_1.fasiq.qz
SRR3830175_1 fastg.qz

'SRR1973978_1 fasty gz

[File 2]
SRR3330409_2 fastg.ge
SRRIB10516_2 fasiq gz
SRR2024581_2 fastq.gz
SRR3I101601_2 fastq.qz
SRR3I634446 2 fastq.qz
SRR3181835_2 fastq.gz
SRR2982078_2 fasiq.gz
SRR3574517_2.fastq.gz
SRR1575973_2 fasiq.qz
SRR3930175_2 fastq.qz
SRR1973878_2 fastg gz

S2 Fig. Exemplary screenshot of configuration template sheet 2.

[File3]
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— asap.log

— state.finished

— config.json

—— config.xls

—— abr

— Listeria_monocytogenes_SRR1810516.finished

—— Listeria_monocytogenes_SRR1810516.json

—— Listeria_monocytogenes SRR1810516.qsub.log

— Listeria_monocytogenes_SRR1810516.stdout.log

—— annotations

— Listeria_monocytogenes_ SRR1810516
info.json
Listeria_monocytogenes SRR1810516.faa
Listeria_monocytogenes_SRR1810516.ffn
Listeria_monocytogenes_SRR1810516.gbk
Listeria_monocytogenes_SRR1810516.gff
gsub.log
stderr.log

—— assemblies

—— Listeria_monocytogenes_SRR1810516
info.json
Listeria_monocytogenes_SRR1810516-discarded.fasta
Listeria_monocytogenes SRR1810516.fasta
gsub.log
state.finished
stdout.log

—— corepan

—— core.fasta

— info.json

— pan.fasta

—— pan-matrix.tsv

— state.finished

— std.log

—— Listeria_monocytogenes_SRR1810516.json

—— data

— Listeria_monocytogenes_10-092876-1155-LM6.gbk
— Listeria_monocytogenes-EGDe-AL591824-2015.gbk
— SRR1810516_1.fastq.gz

— SRR1810516_2.fastq.gz

—— mappings

— Listeria_monocytogenes_SRR1810516.bam

— Listeria_monocytogenes_SRR1810516.bam.bai
— Listeria_monocytogenes_SRR1810516.bt2.1og

— Listeria_monocytogenes_SRR1810516.finished
—— Listeria_monocytogenes SRR1810516.json

— Listeria_monocytogenes_SRR1810516.stdout.log
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—

—— mlst

— Listeria_monocytogenes_SRR1810516.finished
—— Listeria_monocytogenes_SRR1810516.json

— Listeria_monocytogenes_SRR1810516.stdout.log
— phylogeny

— info.json

—— consensus.fasta

— state.finished

— stdout.log

— tree.nwk

— reads_gqc

— Listeria_monocytogenes_ SRR1810516
— info.json
—— SRR1810516_1

kmer_profiles.png

—— SRR1810516_1.fastq.gz
—— SRR1810516_2
kmer_profiles.png

—— SRR1810516_2 fastq.gz
—— state.finished
— stdout.log

—— reads_raw
— Listeria_monocytogenes_SRR1810516
—— SRR1810516_1

kmer_profiles.png

—— SRR1810516_1.fastq.gz
—— SRR1810516_2
kmer_profiles.png

L SRR1810516_2.fastq.gz

—— references

— Listeria_monocytogenes_10-092876-1155-LM6.fasta
— Listeria_monocytogenes_10-092876-1155-LM6.fasta.fai
— Listeria_monocytogenes_10-092876-1155-LM6.gbk

— Listeria_monocytogenes-EGDe-AL591824-2015.fasta
— Listeria_monocytogenes-EGDe-AL591824-2015 fasta.fai
— Listeria_monocytogenes-EGDe-AL591824-2015.gbk

— scaffolds

— Listeria_monocytogenes_SRR1810516
info.json
Listeria_monocytogenes SRR1810516.fasta
Listeria_monocytogenes SRR1810516-pseudo.fasta
state.finished
stdout.log
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—— snps
— Listeria_monocytogenes_SRR1810516.chk

— Listeria_monocytogenes_SRR1810516.consensus.fasta
— Listeria_monocytogenes_SRR1810516.csv

— Listeria_monocytogenes_SRR1810516.finished

— Listeria_monocytogenes_SRR1810516.genes.txt

— Listeria_monocytogenes_SRR1810516.json

— Listeria_monocytogenes_SRR1810516.stdout.log

— Listeria_monocytogenes SRR1810516.vcf.gz

— Listeria_monocytogenes_SRR1810516.vef.gz.thi

—— taxonomy

— Listeria_monocytogenes_SRR1810516.finished

— Listeria_monocytogenes_SRR1810516.json

—— Listeria_monocytogenes SRR1810516.stdout.log

— vif

— Listeria_monocytogenes_SRR1810516.finished

— Listeria_monocytogenes_SRR1810516.json

— Listeria_monocytogenes_ SRR1810516.stdout.log

—— reports

S$3 Fig. Exemplary project directory structure. Each project analyzed by ASA®P strictly follows a
conventional directory organization and thus forestalls the burden of unnecessary configurations.
Shown is an exemplary project structure representing input and output files and directories of the
Listeria monocytogenes example project. For the sake of readability repeated blocks are collapsed
represented by a triple dot *..."
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A 40

35
30
25

20

Rungme [h]

15

10

32 64 128 256 512 1024

Number of isolates:

B 16

14
12

10

Runtime [h]

1 2 4 8 16 24
Number of compaste nades

Per-lsolate © Comparative

S4 Fig. Wall clock runtimes for varying compute node and isolate numbers. Runtimes given
in hours and separated between comparative and per-isolate internal pipeline stages due to
different scalability metrics. Each compute node provides 32 vCPUs and 64 GB memory. L.
monocytogenes strains were randomly chosen from SRA Bioproject PRIJNA215355. (A) Runtimes
of a fixed-size compute cluster comprising 4 compute nodes analyzing varying isolate numbers. (B)
Runtimes of compute clusters with varying numbers of compute nodes analyzing a fixed amount of
128 isolates.
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S$1 Table. Third party executable parameters and options. Parameters and options
scientific impact are excluded, e.g. input/output directories or number of threads.

without

Tool

Parameters

Trimmomatic

“ILLUMINACLIP:...:2:30:10"
“LEADING:15"
“TRAILING:15"
“SLIDINGWINDOW:4:20"
“MINLEN:20"
“TOPHRED33"

Filtlong

--min_length 500
--min_mean_q 85
--min_window_q 65

FastQ Screen

--aligner bowtie2' (bwa for PacBio)
--subset 1000 (for PacBio)

SPAdes

--careful
--disable-gzip-output
--cov-cutoff auto
--phred-offset 33

HGAP

Pbalign.task_options.min_accuracy: 70
Pbalign.task_options.no_split_subreads: false
Genomic_consensus.task_options.min_confidence: 40
falcon_ns.task_options. HGAP_Genomelength_str:
6000000

Pbcoretools.task_options.read_length: O
Genomic_consensus.task_options.use_score: 0
Pbalign.task_options.min_length: 50
Pbalign.task_options.algorithm_options: --minMatch 12
--bestn 10 —minPctSimilarity 70.0
Pbalign.task_options.hit_policy: randombest
Pbcoretools.task_options.other_filters: rg >= 0.7
Pbalign.task_options.concordant: false
Genomic_consensus.task_options.min_coverage: 5
falcon_ns.task_options. HGAP_SeedCoverage_str: 30
falcon_ns.task_options.HGAP_AggressiveAsm_bool: false
Genomic_consensus.task_options.algorithm: best
falcon_ns.task_options.HGAP_SeedLengthCutoff_str: -1
Genomic_consensus.task_options.diploid: false

MeDuSa

-random 100

Prokka

--Usegenus
--force
--addgenes
--rfam
--rawproduct

cmsearch (taxonomy, 16S)

--rfam
--noali

blastn (taxonomy, 16S)

-evalue 1E-10

blastn (MLST)

-ungapped
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-dust no

-evalue 1E-20
-word_size 32
-culling_limit 2

-perc_identity 95
blastp (VF) -culling_limit 2
RGI (ABR) --input_type contig
bowtie2 (mapping) --sensitive
minimap2 (mapping) -a

=X map-ont
samtools mpileup (SNP -uRl

detection)

bcftools call (SNP detection)

--variants-only
--skip-variants indels
--gutput-type v
--ploidy 1

-C

SNPsift filter (SNP detection)

"( QUAL >= 30 ) & (( na FILTER ) | (FILTER = 'PASS") &

(DP>=20)&(MQ>=20)"

SNPeff ann (SNP detection)

-nodownload

-no-intron

-no-downstream

-no SPLICE_SITE_REGION
-upDownStreamLen 250

bcftools consensus --haplotype 1
(phylogenetic tree)
fasttreemp -nt

-boot 100
roary -e

-n

-cd 100

-g 100000
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S2 Table. Selection of task-specific third party biocinformatics software tools. Third
party bicinformatics software tools selected for each task within ASA®P along with a short

140

argumentative reasoning for why was selected.

Task - Tool

Parameters

QC - Trimmomatic

Published
Well performing (due to publication)
Community standards and best practices

QC - FiltLong Well performing (broad experience)
One of the first tools available, broadly used
QC - FastQC Well performing (broad experience)

Community standards and best practices
Broad applicability (all sequencing platforms)
Actively maintained

QC - FastQ Screen

Well performing (broad experience)
Broad applicability (all sequencing platforms)
Actively maintained

Assembly lllumina - SPAdes

Well performing (publication & broad experience)
Community standards and best practices
Actively maintained

Assembly PacBio - HGAP

Well performing (publication & broad experience)
One of the first tools available
Actively maintained

Assembly NanoPore/Hybrid
(llumina) - Unicycler

Well performing (publication & broad experience)
Unicycler combines trimming, polishing and dnaA
rotation like no other assembly pipeline whilst still
being easy to technically integrate

Scaffolding - MeDuSa

Well performing (publication & broad experience)
Supporting multiple references

In contradiction to many other multi-reference
scaffolders, MeDuSa is available as a locally
executable tool

Annotation - Prokka

Well performing (publication & broad experience)
Community standards and best practices
Actively maintained

ABR - CARD rgi

Well designed AMR ontology

All-in-one AMR detection tool (acquired genes,
mutation based, efflux pump mediated)
Actively maintained

Pan/Core Genome
calculation - Roary

Well performing (publication & broad experience)
Community standards and best practices
Computationally applicable for large cohorts
Actively maintained
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Phylogenomics - FastTree - Well performing (publication & broad experience)
- Computationally applicable for large cohorts
- Community standards and best practices
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S2 Table. Accession numbers of 32 Listeria monocytogenes isolates and reference
genomes of the ASA®P benchmark project. This exemplary project comprises 32 isolates from
SRR Bioproject PRINA215355 as well as two Listeria monocyfogenes reference genomes from
RefSeq. The project is provided as a GNU zipped tarball at hitps://s3.computational.bio.uni-
giesen.de/swift/v1/asap/example-lmonocylogenes-32 tar.gz

Type Accession numbers
reference NC_003210.1
NC_022568.1

NZ_CP019164.1
NZ_CP019615.1

isolates SRR3330409, SRR1810516, SRR2924581,
SRR3101601, SRR3634446, SRR3181835,
SRR2982078, SRR3574517, SRR1575973,
SRR3930175, SRR1973978, SRR2140707,
SRR2976738, SRR2636959, SRR3173568,
SRR3928673, SRR1709558, SRR1514752,
SRR3489851, SRR1811627, SRR2878357,
SRR1272887, SRR3147168, SRR2533768,
SRR1569796, SRR1763858, SRR3395006.
SRR3930198, SRR2861532, SRR2562281,
SRR3453146, SRR3137565
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S$3 Table. Information on host CPUs used for wall clock runtime benchmarks.

Infrastructure

Host CPU

Docker OS cloud VM

Intel(R) Xeon(R) CPU E5-2690 v4
@ 2.60GHz
2x 14 cores without hyperthreading

OS cloud

Intel(R) Xeon(R) CPU E5-2690 v4
@ 2.60GHz
2x 14 cores without hyperthreading

HPC cluster

Intel(R) Xeon(R) CPU E5-2670 v2
@ 2.50GHz
2% 10 cores with hyperthreading
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Platon: identification and characterization of bacterial plasmid
contigs in short-read draft assemblies exploiting protein
sequence-based replicon distribution scores

Oliver Schwengers'**, Patrick Barth', Linda Falgenhauer®*f, Torsten Hain®?, Trinad Chakraborty™*t and
Alexander Goesmann'*t

Abstract

Plasmids are extrachromosomal genetic elements that replicate independently of the chromosome and play a vital role in
the environmental adaptation of bacteria. Due to potential mobilization or conjugation capabilities, plasmids are important
genetic vehicles for antimicrobial resistance genes and virulence factors with huge and increasing clinical implications. They
are therefore subject to large genomic studies within the scientific community worldwide. As a result of rapidly improving
next-generation sequencing methods, the quantity of sequenced bacterial genomes is constantly increasing, in turn raising the
need for specialized tools to (i) extract plasmid sequences from draft assemblies, (i) derive their origin and distribution, and
{iii) further investigate their genetic repertoire. Recently, several bioinformatic methods and tools have emerged to tackle this
issue; however, a combination of high sensitivity and specificity in plasmid sequence identification is rarely achieved in a taxon-
independent manner. In addition, many software tools are not appropriate for large high-throughput analyses or cannot be
included in existing software pipelines due to their technical design or software implementation. In this study, we investigated
differences in the replicon distributions of protein-coding genes on a large scale as a new approach to distinguish plasmid-
borne from chromosome-borne contigs. We defined and computed statistical discrimination thresholds for a new metric: the
replicon distribution score (RDS), which achieved an accuracy of 946.6%. The final performance was further improved by the
combination of the RDS metric with heuristics exploiting several plasmid-specific higher-level contig characterizations. We
implemented this workflow in a new high-throughput taxon-independent bicinformatics software tool called Platon for the
recruitment and characterization of plasmid-borne contigs from short-read draft assemblies. Compared to PlasFlow, Platon
achieved a higher accuracy (97.5%) and more balanced predictions (F1=82 6%) tested on a broad range of bacterial taxa and
better or equal performance against the targeted tools PlasmidFinder and PlaScope on sequenced Escherichia coli isolates.
Platon is available at: hitp://platon.computational.bic/.

DATA SUMMARY (3) All database versions are hosted at Zemodo (DOI:
(1) Platon was developed as a Python 3 command line 10.5281/zenodo.3349651).
application for Linux. (4) Platon is available via the bioconda package platon.
(2) The complete source code and documentation are availa- (5) Platon is available via the PyP1 package cb-platon.
ble on GitHub under a GPL3 license: https://github.com/ (6) The bacterial representative sequences for UniProt’s
oschwengers/platon and http://platon.computational bio. UniRef90 protein clusters, complete bacterial genome
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sequences from the National Center for Biotechnology
Information (NCBI) RefSeq database, complete plasmid
sequences from the NCBI genomes plasmid section,
created artificial contigs, replicon distribution score
(RDS) threshold metrics and raw protein replicon hit
counts used to create and evaluate the marker protein
sequence database are hosted at Zenodo (DOI: 10.5281/
zenodo.3759169).

(7) Twenty-four Escherichia coli isolates sequenced with
short-read (Illumina MiSeq) and long-read sequencing
technologies (Oxford Nanopore Technology GridlON
platform) used for real data benchmarks are available
under the following NCBI BioProjects: PRINA505407
and PRINA387731.

INTRODUCTION

Plasmids are bacterial extrachromosomal DNA elements that
replicate independently of the chromosome. They are mostly
circular, have characteristic copy numbers per cell and carry
genes that are usually not essential under normal conditions
but rather allow bacteria to adapt to specific environments
and conditions [1]. These genes, for instance, provide anti-
biotic or heavy metal resistance, are involved in alternative
metabolic pathways or encode for virulence factors [2]. As
plasmids are not only inherited by daughter cells, but can
also be dispersed by horizontal gene transfer, they can spread
rapidly within and between bacterial populations [3=5]. For
example, identical antibiotic resistance plasmids have already
been isolated from humans and animals [6]. Thus, plasmids
are important mediators of antibiotic resistance spread and
recent findings have confirmed that they frequently play a
major role in clinical outbreaks (7, 8]. Therefore, it is of huge
importance to properly identify and analyse plasmids.

Such analysis can be performed by plasmid DNA isolation
followed by sequencing [9]. However, due to decreased
sequencing costs, it is now affordable and often easier to
sequence the entire genome of bacterial organisms using
next-generation whole-genome shotgun sequencing [10].
Furthermore, this approach allows the reanalysis of already
sequenced genomes to identify plasmids that have not been
detected before. Unfortunately, this introduces a new issue
that needs to be addressed: plasmid and chromosomal
contigs are mixed in draft assemblies and need to be distin-
guished from each other.

This task, however, is hard to achieve for biological and
technical reasons [11]. Plasmids often contain mobile
genetic elements, e.g. transposons and integrons, which
are drivers for the genetic exchange between different
DNA replicons and regions [12, 13]. Hence, these genetic
elements are often encoded on both replicon types and thus
the origin of DNA fragments encoding such elements is
hard to predict. Modern short-read assemblers add addi-
tional intricacy, further aggravating these issues, as they are
notoriously hard pressed to correctly assemble repetitive
regions such as the aforementioned DNA elements [14].
To tackle this issue, many new bioinformatic tools have

Impact Statement

Plasmids play avital role in the spread of antibiotic resist-
ance and pathogenicity genes. The increasing numbers
of clinical outbreaks involving resistant pathogens
worldwide pushed the scientific community to increase
their efforts to comprehensively investigate bacte-
rial genomes. Due to the maturation of next-generation
sequencing technologies, entire bacterial genomes,
including plasmids, are now sequenced on a huge scale.
To analyse draft assemblies, a mandatory first step is to
separate plasmid from chromosome contigs. Recently,
many bioinformatic tools have emerged to tackle this
issue. Unfortunately, several tools are only implemented
as interactive or web-based tools, making them unavail-
able for the necessary high-throughput analysis of large
datasets. Other tools providing such a high-throughput
implementation, however, often come with certain
drawbacks, eg. providing taxon-specific databases
only, not providing actionable, ie. true, binary classifi-
cation, or showing classification performance that is
biased towards either sensitivity or specificity. Here, we
introduce the tool Platon. implementing a new replicon
distribution-based approach combined with higher-level
contig characterizations to address the aforementioned
issues. In addition to the plasmid detection within draft
assemblies, Platon provides the user with valuable infor-
mation on certain higher-level contig characterizations.
We show that Platon provides a balanced classification
performance as well as a scalable implementation for
high-throughput analyses. We therefore consider Platon
to be a powerful, species-independent and flexible tool
to scan large gquantities of bacterial whole-genome
sequencing data for their plasmid content.

recently been developed, following different approaches:
(i) Recycler and plasmidSPAdes [15, 16] exploit coverage
variations of sequenced DNA fragments within a genome;
(ii) PLACNET investigates paired-end reads linking contig
ends [17]; (iii) PlasmidFinder searches for plasmid specific
motifs, i.e. incompatibility groups [18]; (iv) cBar, PlasFlow
and mIPlasmids use machine learning methods to classify
k-mer frequencies [19-21]; (v) PlaScope and PlasmidSeeker
perform fast k-mer-based database searches of known
plasmid sequences [22, 23]; Recycler additionally exploits
information on circularization [15]. Overall, each approach
provides unique advantages and drawbacks. For example,
approaches based on sequencing coverage variations are
unable to detect plasmids with copy numbers equal to the
chromosome, whereas sequence motif- and k-mer-based
methods tend to identify only known plasmids. This often
leads to distinct profiles in terms of sensitivity and speci-
ficity, which are often biased towards one of the metrics, and
as this impacts on the conducted analysis a choice must be
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made between conservative or more aggressive classifica-
tions [11].

A further aspect of growing importance is ‘big data’ aware-
ness. Due to increasing quantities of generated sequence data
[24], there is a growing need for automated high-throughput
analysis tools. Unfortunately, not all of the currently avail-
able bioinformatics software tools are suitable for high-
throughput analysis, let alone technical integration into
larger analysis pipelines [25-27] due to interactive designs
or web-based implementations [17, 18, 21, 28]. Taxon-
specific database designs also pose additional barriers, as
users might not have sufficient computational resources or
bioinformatics support to build customized or large multi-
taxon databases |20, 22]. Furthermore, dependence on raw
or intermediate data such as sequence reads and assembly
graphs might impede analyses, as such data might not be
available [15, 16]. In order to allow for big data scaling
necessities, bioinformatic software tools should therefore
be designed and implemented in a high-throughput savvy
manner, including: (i) where possible a taxon-independent
database design; (ii) a non-interactive command line imple-
mentation; and (iii) an actionable classification output, i.e.
a true binary classification.

To address these issues we present Platon, a new bioin-
formatics software tool to distinguish and characterize
plasmid contigs from chromosome contigs in bacterial
draft assemblies following a new approach: analysis of the
replicon distribution differences of protein-coding genes,
i.e. frequency differences for being encoded on plasmid
or chromosome contigs. The rationale behind this protein
sequence-based replicon, i.e. chromosome vs plasmid, clas-
sification is a natural distribution bias of certain protein-
coding genes. For instance, essential housekeeping genes
that are mandatory for bacterial organisms are mostly
encoded on chromosomes [2]. In contrast, genes providing
an evolutionary advantage under distinct situations are
quite widespread on plasmids, e.g. antibiotic resistance and
virulence genes. Here, we introduce the replicon distribu-
tion score (RDS), a new metric to express the measured
bias of protein-coding genes' replicon distributions to
distinguish plasmid- from chromosome-related contigs.

METHODS

Marker protein sequences and computation of
replicon distribution scores

To build a database of marker protein sequences (MPSs) we
collected all bacterial representative sequences of UniProt’s
UniRef90 protein clusters (n=69 803 841) [29] and analysed
their replicon distributions, i.e. the normalized plasmid vs
chromosome abundance ratios. Therefore, we conducted a
homology search via Diamond [30] of all MPS against coding
sequences (CDSs) predicted via Prodigal [29] on two refer-
ence replicon sets, i.e. all National Center for Biolechnology
Information (NCBI) plasmid sequences from the bacterial
NCBI Genomes plasmid section (n=17 369) (ftp://ftp.ncbi.
nlm.nih.gov/genomes/GENOME_REPORTS/plasmids. txt)

and the chromosomes of all complete bacterial NCBI RefSeq
release 98 genomes. To prevent potential plasmid contamina-
tion in the chromosome set, all replicons shorter than 100 kbp
were excluded, resulting in 17 430 chromosome sequences.
The resulting alignment hit counts (A) of the single best hit
per sequence with a sequence coverage =80 % and a sequence
identity of at least 90 %, as well as the number of replicons (R)
for both plasmids (p) and chromosomes (c) were integrated
into a normalized, transformed and scaled RDS for each
cluster, defined by:

RDS:zt-(IEF:ET—D.S)1E";—EL¢(l—Pm}

=4 i o | —Fes
with Fr = t. E= i'. L M_P. where n is the number
of elements of the MPS database and p_ is the P value of a

two-sided Fisher’s exact test using a contingency table of hit
and no-hit counts for both replicon types.

Thus, the RDS value of a protein sequence represents its replicon
distribution bias as both the ratio and the absolute difference of
hit count frequencies as well as its statistical power. As a first

F.
factor of the formula, the hit count frequency ratio ( EFa*FrF)
is transformed by the minuend —0.5 and the factor 2 to the
range [-1,1] and hence, shifts the RDS values of chromosomal
proteins to a negative range [-1,0] and to a positive value range
[0,1] for proteins with a positive plasmid bias. To integrate the
scale of the difference in the hit count frequencies, we added
the absolute difference of replicon hit count frequencies (F; — -
) normalized to the mean difference of hit count frequencies
of all MPSs (@) as a second factor. In order to also include a
measure of statistical confidence in the new RDS metric, a
third factor (1 — Pur) was added, taking the P value of a two-
sided Fisher’s exact test using a contingency table of hit and
non-hit counts of both replicon types under the assumption
that these are not equally distributed - the main idea behind
the RDS metric. Thus, RDS values resulting from statistically
insignificant hit count numbers are minimized towards zero. In
order to finally classify entire contigs, the mean RDS of all the
per-protein-sequence RDS values of each contig is calculated
and then tested against defined thresholds. Predicted CDSs, for
which no MPS can be identified are assigned the neutral default
RDS value of zero.

Evaluation of replicon distribution scores

In order to assess the discriminative power of protein
sequence based RDS, we created 10 random fragments of
each sequence in the reference replicon sets for each of the
following lengths: 1, 5, 10, 20 and 50 kbp. For each random
fragment, a mean RDS was computed and tested against a
range of discrimination thresholds between —50 and 10 with
a step size of 0.1. For each discrimination threshold, a confu-
sion matrix was set up upon which sensitivity [tp/(tp+fn)],
specificity [(tn/(tn+fp)] and accuracy [(tp+tn)/(tp+tn+fp+fn)]
metrics were calculated, where tp, tn, fp and fin are the number
of true positives, true negatives, false positives and false nega-
tives, respectively.

7.3 Platon: identification and characterization of bacterial plasmid contigs from short-
read draft assemblies exploiting protein-sequence-based replicon distribution scores.
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Higher-level contig characterization

The comprehensive characterization of contigs by higher-
level plasmid-related sequence analysis often requires many
specialized command line and web-based tools and thus is a
time-consuming task. To streamline this process, we imple-
mented and included many higher-level sequence analyses
in the workflow. Hence, Platon provides valuable contig
information and can take advantage thereof by integrating
applied heuristics into the classification process. Contigs are
comprehensively characterized using different approaches:
(i) testing for circularization; (i) detection of incompat-
ibility groups; (iii) detection of rRNA genes; (iv) detection of
antimicrobial resistance genes; (v) homology search against
reference plasmid sequences; (vi) detection of oriT sequences;
(vii) detection of plasmid replication genes; (viii) detection
of mobilization genes; (ix) detection of conjugation genes.

Contigs are tested for circularization by aligning sub-
sequences from both ends against each other using nucmer
from the MUMmer package [31]. Contig ends with overlaps
larger than or equal to 100 bp and an identity >95 % are
considered to be circularizable. To detect incompatibility
groups, Platon conducts a homology search using the Plas-
midFinder database (n=273) [18] via sLAST+ [32] against
contigs filtering for query coverages 260 % and percentage
sequence identities >90 %. Although rare exceptional cases
are described in the literature [33], the majority of ribosomal
genes are encoded on chromosomes [33]. In order to exploit
this distribution bias, ribosomal genes are detected via Rfam
and Infernal [34]. As antimicrobial resistance genes are often
encoded on mobile genetic elements (e.g. plasmids), Platon
uses the NCBI ResFam hidden Markov models (HMM) data-
base [35] and HMMER [36] to detect potential antimicrobial
resistance genes. In order to detect contigs as sub-sequences
of larger plasmids or entire plasmids with known sequences,
Platon conducts a homology search via sLasT+ [30] against
the RefSeq plasmid sequence database [37] filtering for query
coverages and percentage sequence identities 280 %, setting
a dynamic -word_size parameter to 1 % of the query contig
Ienglh. To detect oriT sequences, Platon conducts a BLasT+
[32] homology search against oriT sequences of the MOB
suite database [38] filtering for both 90 % sequence coverage
and identity:

Depending on their genetic backbone, plasmids can be
mobilizable or conjugative [4]. The presence or absence of
specialized proteins involved in the replication, mobiliza-
tion and conjugation processes plays an important role as a
determinant for the classification of plasmids. Platon takes
advantage of the highly plasmid-specific nature of these
proteins by scanning predicted CDSs against a custom
HMM database. Therefore, we extracted relevant RefSeq
PCLA protein clusters via text mining and subsequently built
HMM models on aligned protein sequences per cluster (Table
S§1, available with the online version of this article), creating
two distinct HMM databases: replication and conjugation,
comprising 257 and 1 663 HMM models, respectively. To take
advantage of the expert knowledge and manual efforts that led

to the high-quality relaxase HMM profiles of the MOBscan
database [39], these were incorporated into this workflow. A
scan against each HMM database is integrated into the clas-
sification process.

Platon analysis workflow

Platon combines the analysis of the replicon distribution bias
of protein sequences with a set of higher-level contig charac-
terizations to predict the replicon origin of contigs (Fig. 1). In
a first step, Platon classifies all contigs with a length smaller
than 1 kbp or larger than 500 kbp as chromosomal. The
rationale behind this heuristic is that sequences with <1 kbp
seldom host either a CDS or other exploitable information
that would permit reliable classification. On the other hand,
from our experience, contigs >500 kbp rarely or never origi-
nate from plasmids, as those often encode genetic features
hindering the assembly of larger sequences, for example
transposons and integrons. Thus, this heuristic enhances the
overall analysis runtime performance without unduly sacri-
ficing classification performance.

In a second step, CDSs are predicted via Prodigal [40] and
searched against a database of MPS via Diamond [30],
applying rigorous detection cutoffs in line with the cluster
specifications of the underlying UniRef90 clusters, ie. a
coverage of at least 80 % and a sequence identity of at least
90 %. For each contig, the mean RDS of all detected MPSs
is computed. Contigs with a mean RDS lower than the
sensitivity threshold (SNT) are classified as chromosomal
sequences. The remaining contigs are then comprehensively
characterized as described in the previous section.

Contigs are subsequently classified as plasmid sequences if
one or more of the following conditions are met: the contig
(i) has a mean RDS larger than the specificity threshold (SPT);
(ii) can be circularized; (iii) provides at least one replication or
mobilization protein; (iv) contains an incompatibility factor;
(v) contains an oriT sequence; (vi) has a mean RDS larger
than the conservative threshold (CT) and a sLasT+ [32]
hit against the RefSeq plasmid database without encoding
ribosomal genes.

Performance benchmarks

The overall replicon classification performance of Platon
v1.3.1 was benchmarked against PlaScope 1.3.1, PlasFlow
1.1.0 and the PlasmidFinder database (version 2018-11-20)
in two setups: a targeted benchmark comparing Platon against
PlaScope and PlasmidFinder on sequenced Escherichia coli
isolates and an untargeted benchmark comparing Platon
against PlasFlow on simulated short-read assemblies of all
complete RefSeq genomes. PlaScope and PlasFlow were used
with default parameters and publicly provided prebuilt data-
bases. As PlasmidFinder is currently only available as a web
tool or via Docker, which is not usable in our HPC cluster
setup, its workflow was reimplemented in bash using equal
BLAST+ parameters (-perc_identity 90; query coverage >=60
%). As both PlaScope and PlasFlow allow a third classification
label, i.e. unclassified, and thus are not true binary classifiers,
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Fig. 1. Flowchart describing the workflow implemented in Platon. ORF, open reading frames; MP5, marker protein sequence; ROS,
replicon distribution score; ST, sensitivity threshold; SPT, specificity threshold; incomp. groups, incompatibility groups; CT, conservative

thrashold.

replicon fragments were treated as being classified as chromo-
somes as long as they were not explicitly classified as plasmid
for the sake of comparability. For each benchmark, we calcu-
lated sensitivity, specificity and accuracy metrics as described
above. To also include statistically balanced metrics, we calcu-
lated the positive predictive power (PPV) [tp/(tp+fp)], the
negative predictive power (NPP) [tn/(tn +fn)] as well as F1
score and Matthews correlation coefficient (MCC) using the
SciKit-learn Python package. For the simulated benchmark
dataset, we used all bacterial NCBI RefSeq genomes (release
98) at the assembly level ‘Complete Genome’ (n=13 930) to
generate artificial short reads via ART (2.5.8) [41] with read
lengths of 150 bp, 40-fold coverage, 500 bp mean insert size
and 10 bp insert size standard deviation. Simulated reads were
then assembled with SPAdes (3.12.0) [42] using the --careful
and --cov-cutaff auto parameters. The resulting contigs (n=820
932) were aligned against original genomes with BLAST+

(2.7.1) [32] and finally labelled either as chromosome or
plasmid according to the single best BLAST+ hit.

To benchmark on real data, we isolated 24 multidrug-resistant
E. coli genomes in Germany from humans, dogs and horses
[43] (Table S2). Isolates were sequenced on the [llumina MiSeq
platform using the Nextera XT sequencing kit (2x250 or
2x300 nt) as well as the Oxford Nanopore GridION platform
using a SpotON Mk I R9 version flow cell (FLO-MIN106),
native barcoding kit (EXP-NBD103) and 1D chemistry (SQK-
LSK108). Oxford Nanopore raw data (fast5) were basecalled
using Albacore (1.11.8) (https://community nanoporetech.
com). For each isolate, two assemblies were performed: (i) a
hybrid assembly using Unicycler v0.4.6 [44] and (i) a short
read-only assembly with SPAdes. For 21 isolates, the hybrid
assembly resulted in circular chromosomes, which were
used as the benchmarking ground truth, as the majority of

7.3 Platon: identification and characterization of bacterial plasmid contigs from short-
read draft assemblies exploiting protein-sequence-based replicon distribution scores.
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remaining contigs thus originate from unclosed plasmids.
The remaining three isolates with unclosed chromosomes
were excluded from the benchmark dataset, as the former
requirement was not fulfilled. Short-read contigs <1 kbp
were discarded. The remaining contigs (n=1 337) were then
aligned against closed hybrid assemblies as described above.
The raw sequencing data for all 24 isolates are available as
NCBI BioProjects (PRINAS05407, PRINA387731).

RESULTS AND DISCUSSION

Creation of the MPS database and RDS-based
inference of contig origins

The proposed new metric RDS exploits the natural distribu-
tion biases of protein-coding genes between chromosomes
and plasmids to classify the origin of contigs from short-read
assemblies. In order to investigate and test this rationale, we
aligned a broad range of bacterial protein sequences (n=69
803 841) from UniProts UniRef90 protein cluster repre-
sentative sequences against a set of known chromosome
and plasmid reference replicons from the NCBI RefSeq and
NCBI Genomes databases and 12 795 544 of these protein
sequences could be aligned to at least 1 replicon. For each of
these protein sequences, a two-sided Fisher's exact test was
conducted and sequences with a P value of 1 were excluded.
The remaining protein sequences (n=4 108 727), along with
their RDS values, product description and sequence lengths,
were then used to compile the final MPS database. For 99.5
% of these protein sequences (n=4 089 068) a transformed
hit count ratio smaller than 0.5 (n=3 600 927) or larger than
0.5 (n=488 141) was computed, indicating a rather unequal
distribution between chromosomes and plasmids (Fig. 2).
However, only a minor fraction of 7.8 % (n=322 151) of all
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Fig. 2. Replicon distribution and alignment hit frequencies of marker
protein sequences. Shown here are summed plasmid and chromoseme
alignment hit frequencies per marker protein sequence plotted against
plasmid/chromosome hit count ratios scaled ta [-1, 1]; Hue: normalized
replicon distribution score values (min=-100, max=100). hit count
outliers below 107" and above 1 are discarded for the sake of readability.

MPSs had a normalized alignment hit count sum regarding
both replicon types larger than 0.001. Hence, the majority
of MPS database sequences were relatively rarely detected
on average. These findings endorse the incorporation of the
statistical significance of each MPS replicon distribution as
well as the scaling by the absolute difference of replicon hit
count frequencies in order to raise the contribution of abun-
dant protein sequences and decrease the contribution of rare
protein sequences, for which insufficient data are available in
the reference replicon sets.

In order to assess the discriminative performance of RDS
regarding the replicon origin of contigs, we tested a broad
range of thresholds computing sensitivity, specificity and
accuracy metrics. The sensitivity, specificity and accuracy
values for a range of RDS thresholds are plotted in Fig. 3.
The sensitivity and specificity curves follow a sharp inflec-
tion point near the default RDS value, i.e. 0. We attribute this
behaviour to contigs harbouring protein sequences that are
not covered by the MPS database. To overcome this limita-
tion and achieve both sensitive and specific classifications, we
defined three distinct thresholds: (i) an SNT; (ii) an SPT; (iii)
a CT set to 95 % sensitivity, 99.9 % specificity and the highest
accuracy, respectively. Thus, contigs with an RDS smaller than
the SNT can be classified as chromosomal while still retaining
95 % of all plasmid contigs. Correspondingly, contigs with
an RDS larger than the SPT can be classified as plasmid frag-
ments achieving a specificity 299.9 %. To compute actual
values for these thresholds, we conducted classifications of
Monte Carlo replicon Fragment simulations (n=1 564 639)
by which the follow'ing values were established: SNT=-7.7,
SPT=0.4 and CT=0.1 at a maximal accuracy of 84.1 %. These
values surround the inflection point near 00 and were hence-
forth used as the final discrimination thresholds in the Platon
implementation.

To finally assess the RDS-based contig classification, a compre-
hensive performance benchmark was conducted. To do this,
we created simulated short reads based on all complete NCBI
RefSeq genomes (n=13 930) covering a broad range of bacte-
rial taxa. The resulting short reads were then reassembled into
contigs (n=820 392), which were aligned back to the original
genomes, thus creating our ground truth. This benchmark
dataset comprised a total of 63 107 true plasmid contigs. All
contigs were classified by their mean RDS value, applying
the computed SNT and SPT thresholds. This RDS workflow
classified 38 197 plasmid contigs and 754 082 chromosomal
contigs correctly, thus achieving an accuracy of 0.966 and
a sensitivity of 0.605, as well as an F1 score of 0.731 and an
MCC of 0.732, calculated using the following confusion
matrix: tp=38 197, tn=754 082, fp=3 203, fn=24 910.

Although the RDS approach achieved an accuracy of 0.966,
it still misclassified 24 910 true plasmid contigs and 3 203
true chromosomal contigs. It is common knowledge that
certain proteins are encoded on both replicon types, for
instance, relaxases and type4-coupling proteins (T4CP) - key
proteins of integrative conjugative elements [45]. To assess the
discriminative power of the RDS metric on these widespread
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Fig. 3. Evaluation statistics for replicon distribution score thresholds. Sensitivity, specificity and accuracy values are plotted against
replicon distribution score threshold ranges. (a) Overview thresheld range [=50,10]. {b) Detailed threshold range [=1,1]. Sensitivity is
in black, specificity is in brown and accuracy is in blue. Red vertical lines from left to right: sensitivity threshold (-7.7), conservative

thresheld {0.1) and specificity threshold (0.4).

protein classes we extracted a set of 4 683 relaxase and 2 151
T4CP clusters from the MPS database by MOBscan [39] and
TXSscan [46] HMM profile searches and investigated the
range of related RDS values (Fig. $1); 73 and 66 % from the
relaxase (n=3 321) and T4CP (n=1 436) protein clusters had
an RDS between —0.5 and 0.5 and thus can be considered to
be quite equally distributed. Small contigs solely or mainly
encoding these protein sequences could therefore be espe-
cially hard to classify by the RDS metric. However, we also
found 817 and 411 protein clusters that were quite chromo-
somally biased with a related RDS below —0.5 and extremes
reaching values of —64.96 and —37.47 for the relaxases and
TACP, respectively. In addition, 445 and 304 protein clusters
were quite plasmid biased with a related RDS above 0.5 and
extremes reaching values of as high as 109.60 and 79.76 for the
relaxases and T4CP, respectively. The latter protein clusters
constitute approximately a quarter and a third of all relaxase
and T4CP MPS subsets and have highly discriminative
related RDS values. Hence, although there are protein classes
harbouring many fairly equally distributed protein clusters,
e.g. the analysed relaxases and T4CP, which are often encoded
in very-hard-to-classify integrative conjugative elements, we
still found MPSs with a strong predictive power regarding the
replicon origin of a contig.

Performance of the entire Platon workflow

As shown in the simulated short-read benchmark, the RDS
metric achieved a high accuracy (ac=0.966) but rather
maderate sensitivity (sn=0.605) due to the high number of
false negatives (fn=24910). In order to increase the detection
rate of true plasmid contigs, the Platon workflow additionally
comprises higher-level plasmid-related contig characteriza-
tions that serve as a basis for several heuristics. As both the
protein homology search and the contig characterizations

of large plasmids are computationally expensive, contigs
=500 kbp are automatically assigned to the chromosome. To
assess the potentially negative impact of this heuristic on the
classification performance, contig length distributions for
both replicon types within the simulated short-read dataset
(Fig. 52) were investigated. In line with the smaller plasmid
contig length on average, only 119 of 63 107 plasmid contigs
were actually larger than 500 kbp compared to 15 750 of 757
285 chromosome contigs. Hence, only 0.19 % of all plasmid
corltig;s were erroneously a.ssigned to the chromosome, but
99.25 % of all contigs larger than 500 kbp were correctly
classified by this heuristic, which thus qualifies as an eligible
tradeoff between sensitivity and runtime.

To measure and assess the overall classification performance
of the entire implemented workflow (Fig. 1), we conducted
two benchmarks against contemporary command line
tools: an untargeted benchmark against PlasFlow on the
aforementioned simulated short-read dataset as well as a
targeted benchmark against PlaScope and PlasmidFinder on
sequenced E. coli isolates.

Performance benchmark on taxonomically diverse
simulated short-read assemblies

To assess the performance of the extended Platon workflow in
an u.ma.rgﬂed, i.e. taxon- independent, setup, we conducted a
comprehensive benchmark against PlasFlow, a contemporary
plasmid prediction tool for metagenomics that was presented
to also be eligible for the recruitment of plasmid contigs from
isolates. For this benchmark, all complete bacterial NCEI
RefSeq genomes (n=13 930) covering a broad range of bacte-
rial taxa were used to simulate short reads that were de novo
assembled. The resulting contigs were then aligned back onto
original genomes. A confusion matrix as well as common
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Table 1. Performance benchmark results computed contig-wise on
simulated short-read data

Metric PlasFlow Flaton
Accuracy 0871 0976
Sensitvity 07 0.766
Specificity 0.882 0.993
PPV 0341 0902
NPV 0.975 0.981
F1 0465 0828
MCC 0440 0818
™ 45999 48333
TN 668 573 7521 00
FF B8 712 5177
FN 17 108 14774

classifier performance metrics aggregated for all contigs
(n=820 392) are shown in Table 1. In this benchmark Platon
recruited 48 333 and PlasFlow 45 999 true plasmid contigs,
resulting in comparable sensitivity and negative predictive
values (NPV) of 0.762 and 0.729 and 0.98 and 0.975, respec-
tively. However, PlasFlow predicted 17 times more false posi-
tives (fp=88 712) than Platon (fp=5 277). Due to the notably
lower number of false positives, Platon clearly outperformed
PlasFlow in terms of accuracy, specificity and positive predic-
tive value (PPV), as well as the balanced metrics F1 score and
Matthew's correlation coefficient (MCC). An overview of how
many contigs could be classified by which RDS threshold and
heuristic filter is given in Table S3.

Due to different contig lengths, the mere number of correctly
classified contigs might not always be congruent with the

recruited plasmid content, which could play a vital role
in downstream analyses, e.g. the recruitment of plasmid-
borne genes or sequence motifs, such as oriT and oriV.
Hence, benchmarks that only measure the number of clas-
sified contigs might, to some extent, be misleading, and so
we complemented the former benchmark with a genomic
content-based view calculating an additional confusion
matrix based on classified DNA nucleotides (Table S4). Fig. 4
provides a combined view on both benchmark setups. In this
complementary benchmark, the specificity values for PlasFlow
increased from 0.883 contig-wise to 0.979 nucleotide-wise
compared to stable and higher values for Platon (contig-
‘wise=0.993; nucleotide-wise=0.995). The accuracy values also
increased from 0.871 contig-wise to 0.974 nucleotide-wise for
PlasFlow, whereas the accuracy values achieved by Platon only
improved slightly (contig-wise=0.976; nucleotide-wise=0.99).
Taking into account the genomic content of classified contigs
revealed a performance improvement of PlasFlow in terms of
accuracy and specificity, but it still fell slightly below Platon.
However, PlasFlow predicted 4.3 times more false-positive
plasmid nucleotides (fp=1 115.3 mbp) than Platon (fp=260.9
mbp), in line with the contig-wise benchmark.

‘The taxonomic compositions of training datasets for machine
learning approaches and prebuilt databases can have a severe
impact on benchmark performanceand the results of analyses.
To assess a potential bias towards certain taxa we additionally
analysed the taxonomic distribution of the recruited plasmid
contigs of the simulated short-read dataset binned to the genus
level (Fig. 5). The underlying benchmark dataset contained
true plasmid contigs from 469 distinct genera and 1234
species. From these, Platon recruited plasmid contigs from
434 genera, whereas PlasFlow recruited plasmid contigs from
384 genera (Table 55). For both tools, the three taxa Escheri-
chia, Klebsiella and Enterococcus accounted for nearly 40 %
of the recruited sequences alike the taxonomic profile of the
underlying benchmark dataset in which the aforementioned
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taxa accounted for 26 %. On a species level, Platon and
PlasFlow recruited plasmid contigs from 1 128 and 1 014
distinct species, respectively, in line with the aforementioned
genus-level results. Although PlasFlow was developed as an
untargeted tool for metagenomics, Platon recruited plasmid
contigs from a wider taxonomic range, thus demonstrating
the competitive edge of the taxon-independent RDS approach
complemented by contig characterization heuristics.

Targeted performance benchmark on sequenced E.
coli isolates

Simulated data seldom reflect the existing biological and
technical complexity and the plethora of potential pitfalls.
Hence, we additionally benchmarked the Platon workflow on
real data in a targeted setup. We compared the performance of
Platon a.gainst PlaScope and PlasmidFinder, which were both
published as targeted approaches for the plasmid prediction
within whole-genome sequencing data. PlaScope provides a
precompiled E. coli database for download, which was used in
this benchmark, and PlasmidFinder was specifically designed
for the analysis of Enterobacteriaceae genomes. As the Plas-
midFinder database is part of Platon’s contig characterization,
we assessed its performance to transparently compare both
tools side by side. For this benchmark the genomes of 24 E.
coli isolates were sequenced using both lllumina short-read
and Oxford Nanopore long-read technologies. For 21 isolates
the hybrid assemblies resulted in closed chromosomes, which
were used as the ground truth data. Contigs from short
read-only assemblies (n=1 337) were aligned to the closed
assemblies and used as the actual benchmark data. Table 2
shows the confusion matrix as well as computed benchmark
metrics. PlasmidFinder achieved the lowest false-positive rate
(fp=14) resulting in the highest specificity of 0.987, closely
followed by Platon (sp=0.966) and PlaScope (sp=0.952), but
showed the lowest true-positive rate (tp=57) and sensitivity
(sn=0.223), thus performing worse than Platon (sn=0.699)
and PlaScope (sn=0.684). With regard to accuracy, PPV, NPV,

F1 score and MCC metrics, Platon and PlaScope performed
nearly on par, although Platon was slightly ahead on each.
Both tools performed better than PlasmidFinder on these
metrics. This was especially true for the balanced metrics
F1 score and MCC, for which Platon and Plascope clearly
outperformed PlasmidFinder.

Similarly, with the simulated short-read benchmark we
also compared the performances of Platon, PlaScope and
PlasmidFinder, taking into account the amount of genomic
content (Fig. 6) computed on a nucleotide-wise confusion
matrix (Table $6). The nucleotide-wise results were in line
with those calculated contig-wise: PlasmidFinder had the
lowest number of false positives, but also detected remark-
ably fewer plasmid nucleotides than PlaScope and Platon.
The latter two detected a nearly equal quantity of plasmid

Table 2. Performance benchmark results contig-wise on sequenced
izolate short-read data

Metric PlaScope PlasmidFinder Platon
Accuracy 0901 0841 0.915
Sensitiviry 684 0223 0.699
Specificity 0952 0.987 05966
PPV 0771 0.803 0.829
NPV 0927 0843 0.931
F1 0725 0349 0.758
MCC 666 0.368 0.711
TP 175 57 179
™ 1029 1067 144
FP 52 4 a7
EM Bl 189 77
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content, with Platon predicting notably fewer false positives
than PlaScope.

Conclusion

Due to the complex nature of plasmid fragments, replicon
type classification, ie. prediction of origin, for contigs
resulting from short-read draft assemblies is a difficult
task. Many different methods and tools have recently been
described in the literature, but few work on draft assemblies
only, are implemented in a high-throughput savvy manner or
provide statistically balanced predictions in an untargeted, i.e.
taxon-independent manner.

To tackle this issue, we investigated the natural distribution
biases of protein-coding genes between chromosomes and
plasmids for a large set of protein sequences in bacteria.
In this study, we defined, computed and tested statistical
discrimination thresholds for the introduced new metric
RDS and showed that it is a feasible approach to the
problem. However, small contigs without sufficient protein
sequences or contigs encoding for protein sequences that
were either not covered by the MPS database or equally
distributed between chromosomes and plasmids remained
hard to classify correctly. However, even for the protein
classes relaxases and T4CP, which are often found on noto-
riously hard-to-classify integrative conjugative elements,
we found protein sequences with strong predictive power.
To mitigate these drawbacks and improve the overall
sensitivity, we complemented this approach with several
heuristics exploiting higher-level plasmid-related sequence
characterizations. We implemented this new workflow in
a software tool called Platon and conducted benchmarks
against three contemporary software tools, i.e. PlaScope,
PlasFlow and PlasmidFinder on both simulated short-read

data and sequenced isolates.

Analysing a large set of diverse bacterial species, Platon
achieved equal sensitivity but higher accuracy and specificity
than PlasFlow, while the predictions made by Platon were
more balanced in terms of F1 score and MCC due to a low
number of false positives.

Even though the underlying MPS database follows an untar-
geted approach, i.e. it is not restricted to or focused on certain
taxa, Platon achieved competitive results compared to the
targeted tools PlaScope and PlasmidFinder in a benchmark
using real sequencing data for E. coli isolates. In both bench-
marks Platon achieved the highest sensitivity and accuracy,
thus endorsing the exploitation of the natural replicon distri-
bution biases of protein-coding genes as an eligible method
for the large-scale, high-throughput, taxon-independent
prediction of plasmid-borne contigs from short-read draft
assemblies.

Implemented as a multithreaded, locally executable Linux
command line application in Python 3, we also envision
it as an appropriate fit for integration into larger analysis
pipelines as well as an upfront tool for subsequent plasmid-
specific analyses. For the sake of a streamlined integration
and installation, all necessary third party executables are
bundled with the software. All source code and documenta-
tion are freely available under a GPL3 license and hosted at
GitHub (https://github.com/oschwengers/platon) and http://
platon.computational.bio/. For further convenience, Platon is
also available as a BioConda package (platon) and via PyPI
(ch-platon). A prebuilt database is hosted at Zenodo (DOI:
10.5281/zenodo.3349652).

Future developments will include the addition of new higher-

level contig characterizations as well as further enhancements
of applied heuristics.
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1. Platon was developed as a Python 3 command line application for
Linux.

2. The complete source code and documentation are available on
GitHub under a GPL3 license: https://github.com/oschwengers/platon
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Supplementary Table S$1. Regular expressions used for PCLA cluster extraction for
subsequent HMM creation

Type Regular Expression

conjugation Tra[MCG]
Trb[A-Z]

Trw[*ABC]

VirB[0-9]

replication RepH
SopA

KorB

ParM

ParR

*(plasmid).+(partition).*

*(plasmid).+(rep)
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Supplementary Table S2. Isolated and sequenced Escherichia coli genomes used in the real
data benchmark.

Isolate SRA Host Assembled Chromosome Closed
Accession ID Contigs from Closed in Plasmids in
Short Reads Hybrid Hybrid
>=1 kbp Assemblies  Assemblies

HE9 SRX5007771 Homo sapiens 69 yes 2
SRX5007759

H100 SRX5007774 Homo sapiens 4d yes 3
SRX5007760

H105 SRX5002883 Homo sapiens 59 yes 4
SRX5002892

H108 SRX5007773 Homo sapiens 69 yes 3
SRX5007761

H113 SRX5007776 Homo sapiens 35 yes 2
SRX5007762

H136 SRX5007775 Homo sapiens 77 yes 5
SRX5007763

H157 SRX5007770 Homo sapiens 87 yes 4
SRX5007756

H162 SRX5007769 Homo sapiens 56 yes 1
SRXS007757

H176 SRX5007772 Homo sapiens 92 yes 2
SRX5007758

VAl SRX5007768 Canis lupus 61 yes 6
SRX5007764

va SRX5007790 Equus caballus 46 yes 2
SRX5007782

V9 SRX5007786 Equus caballus 118 yes 5
SRX5007784

Va1 SRX5007794 Canis lupus 82 yes 3
SRXS007777

V64 SRX5007789 Canis lupus 52 yes 2
SRX5007780

V71 SRX5007788 Canis lupus 90 yes 7
SRX5007766

V73 SRX5007791 Egquus caballus 65 yes 2
SRX5007783

V79 SRX6897800 Equus caballus 55 no 5
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SRX6897801

V80 SRX5007787 Equus caballus 68 yes 0
SRX5007785

V173 SRX5007767 Equus caballus 75 yes 1
SRX5007765

V177 SRX50077893 Canis lupus 66 yes 3
SRX5007781

V195 SRX5007792 Canis lupus 51 yes 4
SRX5007779

V292 SRX5007795 Canis lupus 99 yes 3
SRX5007778

V215 SRX6897802 Equus caballus no ]
SRX6897803

V232 SRX6897804 Canis lupus no 1
SRX6897805
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Supplementary Table S3. Number of classified contigs for each RDS and length threshold and
characterization heuristic implemented in the Platon workflow for both simulated and real

benchmarks.

RDS threshold / Simulated data Real data
heuristic

Length < 1kb 0 0
Length == 500 kb 15,869 22
RDS SNT 443,159 985
RDS SPT 42,669 241
RDS CT 50,525 212
Circularity 53,611 266
Incompatibility group 5,749 82
Replication gene 6,772 48
Mabilization gene 287 0
OriT 1,614 40
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Supplementary Table S4. Confusion matrix for the untargeted simulated short-read data
benchmark computed by classified genomic content measured in contig nucleotides.

Metric PlasFlow Platon

TP 1,061,149,767 1,087,412,371
TN 51,894,599,885  52,749,014,593
FP 1,115,299,457 260,884,749
EN 310,703,527 284,440,923
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Supplementary Table S5. Taxa of bacterial genomes for which true plasmid contigs have been
correctly identified by each tool in the simulated short-read benchmark binned to the genus
taxon. Aggregated counts for each genus are provided in parenthesis.

PlasFlow Platon
Escherichia (7585) Klebsiella (T651)
Klebsiella (7577) Escherichia (7099)

Enterococcus (2309)
Bacillus (2150)
Salmanelia (2002)
Sinorhizobium (1713)
Rhizobium (1707)
Ralstonia (1633)
Lactobacillus (1139)
Shigella (1124)
Enterobacter (898)
Xanthomonas (653)
Acinetobacter (647)
Staphylococcus (645)
Acetobacter (591)
Citrobacter (570)
Pseudomonas (534)
Azospirillum (504)
Piscirickettsia (489)
Yersinia (456)
Burkholderia (433)
Borreliella (336)
Vibrio (326)
Sphingobium (319)
Rhodococcus (296)
Borrelia (292)
Lactococcus (285)
Phaeobacter (283)
Microvirga (260)
Agrobacterium (259)
Paracoccus (234)
Paraburkholderia (232)
Streptomyces (208)
Aeromonas (183)
Deinococcus (173)
Nostoc (162)
Cupriavidus (161)
Sphingomonas (157)
Rhodobacter (151)
Mycobacterium (151)
Pantoea (143)
Methylobacterium (142)
Novosphingobium (128)
Komagataeibacter (123)
Bradyrhizobium (114)
Leclercia (112)
Shewanelfa (103)
Raoultella (101)

Enterococcus (3382)
Bacillus (2109)
Salmonella (1835)
Sinorhizobium (1706)
Rhizobium (1684)
Ralstonia (1659)
Lactobacillus (15986)
Shigella (1109)
Enterobacter (881)
Acinetobacter (792)
Piscirickettsia (750)
Acetobacter (728)
Xanthomonas (641)
Staphylococcus (638)
Citrobacter (571)
Pseudomonas (539)
Baorrelielia (503)
Yersinia (464)
Phaeobacter (429)
Azospirillum (418)
Borrelia (380)
Burkholderia (363)
Vibrio (339)
Sphingobium (310)
Lactococcus (308)
Rhodococcus (258)
Streptomyces (258)
Paracoccus (249)
Agrobacterium (242)
Deinococcus (216)
Aeromonas (200)
Microvirga (165)
Clostridium (163)
Nostoc (153)
Mycabacterium (145)
Cupriavidus (145)
Pantoea (139)
Pediococcus (135)
Pseudonocardia (128)
Campylobacter (121)
Novosphingobium (120)
Thermus (118)
Komagataeibacter (118)
Sphingomonas (114)
Rhodobacter (113)
Paraburkholderia (108)
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Pediococcus (99)
Ensifer (96)
Pandoraea (91)
Clostridium (89)
Pseudonocardia (85)
Thermus (82)
Sulfitobacter (80)
Acaryochloris (75)
Ochrobactrum (69)
Campylobacter (68)
Acidiphilium (67)
Serratia (66)
Mesorhizobium (62)
Gloeothece (62)
Roseomonas (61)
Photobacterium (60)
Arsenophonus (59)
Methylorubrum (57)
Sphingopyxis (57)
Kozakia (55)
Arthrobacter (54)
Leptolyngbya (51)
Leuconostoc (50)
Enterobacteriaceae (49)
Shinella (48)
Phytobacter (48)
Listeria (47)
Froteus (44)
Cronobacter (43)
Candidatus (40)
Gluconobacter (39)
Mycoplasma (39)
Synechococcus (38)
Moraxella (37)
Synechacystis (36)
Haematobacter (36)
Helicobacter (35)
Aminobacter (33)
Paenibacillus (32)
Acidovorax (32)
Corynebacterium (31)
Mycolicibacterium (31)
Streptococcus (30)
Neorhizobium (29)
Carnobacterium (29)
Croceicoccus (28)
Azotobacter (28)
Geobacillus (28)
Erwinia (26)
Celeribacter (25)
Antarctobacter (24)
Legionelia (23)
Aliivibrio (23)
Oscillatoria (23)
Chilamydia (22)
Xylella (22)

Raoultella (106)
Moraxella (102)
Shewanella (102)
Leuconostoc (96)
Ensifer (96)
Sulfitobacter (95)
Leclercia (92)
Methylobacterium (91)
Bradyrhizobium (91)
Listeria (82)
Arsenophonus (79)
Legionella (77)
Gloeothece (T7)
Acaryochloris (76)
Pandoraea (73)
Candidatus (71)
Sphingopyxis (67)
Synechococcus (65)
Paenibacillus (62)
Ochrobactrum (60)
Arthrobacter (60)
Chlamydia (58)
Fhotobacterium (59)
Serratia (58)
Acidiphilium (57)
Synechocystis (57)
Leptolyngbya (56)
Azotobacter (51)
Kozakia (51)
Cronobacter (50)
Zymomonas (48)
Enterobacteriaceae (47)
Aminobacter (48)
Phytobacter (46)
Proteus (43)
Methylorubrum (42)
Clavibacter (41)
Shinella (41)
Mesorhizobium (40)
Acidovorax (37)
Roseomonas (37)
Geobacillus (36)
Corynebacterium (36)
Gluconobacter (35)
Neisseria (34)
Leptospira (33)
Weissella (31)
Acidithiobacillus (31)
Rickettsia (31)
Helicobacter (30)
Haematobacter (30)
Psychrobacter (29)
Meiothermus (29)
Leisingera (29)
Celeribacter (29)
Planococcus (28)
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Stanieria (22)
Aureimonas (22)
Confluentimicrobium (22)
Phyllobacterium (22)
Zymomonas (21)
Xenorhabdus (21)
Nitrobacter (21)
Rahnelia (20)
Rhodovulum (20)
Octadecabacter (20)
Aromatoleum (20)
Rhizorhabdus (20)
Neisseria (19)
Gordonia (19)
Yangia (19)
Epibacterium (19)
Buchnera (18)
Martelella (18)
Indioceanicola (18)
Rippkaea (18)
Leptospira (17)
Weissella (17)
Nocardia (17)
Psychrobacter (17)
Thioclava (17)
Edwardsiella (16)
Anabaena (16)
Cyanothece (16)
Alteromonas (15)
Rickettsia (15)
Polaromonas (15)
Sagittula (15)
Methylosinus (14)
Planococcus (14)
Marinobacter (14)
Calothrix (14)
Leisingera (14)
Dinoroseobacter (14)
Salipiger (14)
Pelagibaca (14)
Defluviimonas (14)
Spiroplasma (13)
Clavibacter (13)
Microcoleus (13)
Sedimentitalea (13)
Metakosakonia (13)
Marinovum (12)
Fseudanabaena (12)
Alicycliphilus (12)
Gemmobacter (12)
Francisella (11)
Acidithiobacillus (11)
Oligotropha (11)
Macrococcus (11)
Kosakonia (11)
Crinalium (11)

Calothrix (28)

Stanieria (28)
Polaromonas (28)
Erwinia (27)
Carnobacterium (27)
Oscillatoria (27)
Streptococcus (26)
Pseudanabaena (26)
Xylella (25)
Antarctobacter (25)
Yangia (25)
Indioceanicola (25)
Rhodovulum (24)
Croceicoccus (24)
Neorhizobium (23)
Mycolicibacterium (23)
Martelella (23)
Cyanothece (23)
Bacteroides (22)
Ruminococcus (22)
Rippkaea (22)
Buchnera (21)
Aliivibrio (21)
Anabaena (21)
Granulicella (20)
Confluentimicrobium (20)
Pseudoalteromonas (19)
Marinovurm (19)
Deferribacter (19)
Phyllobacterium (19)
Methylosinus (18)
liyobacter (18)
Aromatoleumn (18)
Salipiger (18)
Aureimonas (18)
Geminocystis (18)
Peptociostridium (17)
Ketoguilonicigenium (17)
Epibacterium (17)
Pelagibaca (17)
Xenorhabdus (16)
Desulfovibrio (16)
Rhizorhabdus (16)
Sedimentitalea (16)
Edwardsiella (15)
Rahnella (15)
Pseudarthrobacter (15)
Sagiftula (15)
Pseudorhodobacter (15)
Alteromonas (14)
Nocardia (14)
Salinibacter (14)
Gemmatirosa (14)
Gemmobacter (14)
Metakosakonia (14)
Fusobacterium (13)
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Trichormus (11)
Chelativorans (11)
Bosea (11)
Geminocystis (11)
Frondihabitans (11)
Pseudoalteromonas (10)
Pseudarthrobacter (10)
Chondrocystis (10)
Buttiauxella (10)
Pseudorhodobacter (10)
Lysinibacillus (9)
Ruegeria (9)
Tistrella (9)

Yoonia (9)

Massilia (9)
Hymenobacter (9)
Niveispirifiurm (8)
Acidisarcina (9)
Bifidobacterium (8)
Mycobacteroides (8)
Meiothermus (8)
Ketogulonicigenium (8)
Dietzia (8)

Cedecea (8)
Deferribacter (8)
Granulicella (8)
Morganeila (7)
Bacteroides (T)
Virgibacillus (7)
Tetragenococcus (T)
Methylibium (7)
Methylocystis (7)
Cryobacterium (T)
Biastornonas (T)
Xanthobacter (6)
Pectobacterium (6)
Providencia (6)
Ruminococcus (6)
Parageobacillus (6)
Anoxybacillus (6)
Paenarthrobacter (6)
Rhodoferax (6)
Kocuria (6)
Halomonas (6)
Rhizobiales (6)
Parphyrobacter (6)
Citricoccus (6)
Coxiella (5)
Clostridioides (5)
Roseobacter (5)
Thauera (5)
Achromobacter (5)
Methylocella (5)
Aster (5)

Hoeflea (5)
Microbacterium (5)

Nitrobacter (13)
Selenomonas (13)
Lysinibacillus (13)

Dinoroseobacter (13)
Methylomonas (13)
Microcoleus (13)
Francisella (12)
Coxiella (12)
Parageobacillus (12)
Mycoplasma (12)
Marinobacter (12)
Octadecabacter (12)
Ruegeria (12)
Methylocystis (12)
Crinalium (12)
Defiuviimonas (12)
Acidisarcina (12)
Nitrosomonas (11)
Rubrobacter (11)
Asticcacaulis (11)
Chondrocystis (11)

Treponema (10)

Chelativorans (10)

Phenyilobacterium (10)
Halormonas (10)
Thioclava (10)
Citricoccus (10)
Xanthobacter (9)
Bifidobacterium (9)
Achromobacter (3)
Methydibium (9)
Sulfuricurvum (8)
Alicycliphilus (9)
Yoonia (9)
Kosakonia (9)
Massilia (9)
Hymenobacter (9)
Bosea (9)
Niveispirilium (9)
Hoeflea (9)
Planctomyces (9)
Providencia (8)
Clostridioides (8)
Gordonia (8)
Haliscomenobacter (8)
Roseobacter (8)
Oligotropha (8)
Pannonibacter (8)
Tistrella (8)
Frondihabitans (8)
Runella (8)
Buttiauxella (8)
Pectobacterium (T)
Morganella (T)
Rhodothermus (7)
Melissococcus (T)
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Rhodobacteraceae (5)
Acidibrevibacterium (5)
Tabrizicola (5)
Crocosphaera (5)
Beijerinckia (4)
Plesiomonas (4)
Actinobacillus (4)
Pasteurella (4)
Nitrosomonas (4)
Thiomonas (4)
Selenomonas (4)
Allochromatium (4)
Microcystis (4)
Brevibacillus (4)
Kitasatospora (4)
Tsukamurelfla (4)
Lawsonia (4)
Gluconacetobacter (4)
Glutamicibacter (4)
Nodularia (4)
Myroides (4)
Asticcacaulis (4)
Desulfovibrio (4)
Labrenzia (4)
Phenyilobacterium (4)
Exiguobacterium (4)
Oscillibacter (4)
Vagococcus (4)
Neokomagataea (4)
Plautia (4)

Swingsia (4)
Hartmannibacter (4)
Clostridiaceae (4)
Simplicispira (4)
Bordetella (3)

Hafnia (3)
Fusobacterium (3)
Rhodospirillum (3)
Halobacillus (3)
Desulfobacterium (3)
Bartonella (3)
Sodalis (3)
Pannonibacter (3)
Salinibacter (3)
Roseovarius (3)
Thalassospira (3)
Alicyclobacilius (3)
Chelatococcus (3)
Salimicrobium (3)
Haematospirifiurn (3)
Erythrobacter (3)
Nostocales (3)
Glaesserella (3)
Lelliottia (3)
Thiomicrorhabdus (3)
Hydrocarboniclastica (3)

Myroides (7)
Chryseobacterium (7)
Dietzia (T)
Trichormus (7)
Kocuria (7)
Acidibrevibacterium (7)
Virgibacillus (6)
Desulfobacterium (6)
Arcobacter (6)
Lawsonia (6)
Paenarthrobacter (6)
Tetragenococcus (6)
Sodalis (6)
Caulobacter (6)
Macrococcus (6)
Rhodoferax (6)
Simkania (6)
Amycolatopsis (6)
Cedecea (6)
Thalassospira (6)
Methylocella (6)
Singulisphaera (6)
Aquabacterium (6)
Rhodobacteraceae (6)
Clostridiaceae (8)
Lelliottia (6)
Tabrizicola (8)
Flesiomonas (5)
Nitrosococcus (5)
Nitrosospira (5)
Pelobacter (5)
Mycobacteroides (5)
Butyrivibrio (5)
Chroococcidiopsis (5)
Labrenzia (5)
Roseovarius (5)
Tateyamaria (5)
Exiguobacterium (5)
Oscillibacter (5)
Flammeovirga (5)
Thermaerobacter (5)
Porphyrobacter (5)
Brachyspira (4)
Hydrogenophilus (4)
Thiomonas (4)
Rhodospirilium (4)
Halobacillus (4)
Prevotelia (4)
Geobacter (4)
Glutamicibacter (4)
Thauera (4)
Curtobacterium (4)
Thioflavicoccus (4)
Bartonelia (4)
Blattabacterium (4)
Geoalkalibacter (4)
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Vitreoscilla (2)
Hydrogenophilus (2)
Sebaldella (2)
Finegoldia (2)
Cutibacterium (2)
Haliscomenobacter (2)
Brochothrix (2)
Pelobacter (2)
Caldicellulosiruptor (2)
Desulfohalobium (2)
Prevotella (2)
Chroococcidiopsis (2)
Thioflavicoccus (2)
Moritella (2)

Simkania (2)
endosymbiont (2)
Caulobacter (2)
Rivularia (2)
Cyanobacterium (2)
Singulisphaera (2)
Hoyosella (2)
Azoarcus (2)
Polymorphum (2)
Dickeya (2)
Gloeocapsa (2)
Aquabacterium (2)
Halocynthiibacter (2)
Euzebya (2)
Cnuibacter (2)
Planctomyces (2)
Nitratireductor (2)
Brachybacterium (2)
Gammaproteobacteria (2)
Sterolibacteriaceae (2)
Thermaerobacter (2)
Comamonas (1)
Alcaligenes (1)
Histophilus (1)
Gallibacterium (1)
Marivirga (1)
Rhodopseudomonas (1)
Prosthecochloris (1)
Nitrosospira (1)
Dermacoccus (1)
Brevibacterium (1)
Peptoclostridium (1)
Acidipropionibacterium (1)
Desulfurella (1)
Zymobacter (1)
Sinomonas (1)
Rubrobacter (1)
Hydrogenophaga (1)
Wigglesworthia (1)
Tatumeilla (1)

Waddilia (1)
Mannheimia (1)

Neokomagataea (4)
Cryobacterium (4)
Azoarcus (4)
Gloeocapsa (4)
Haematospirilium (4)
Blastomonas (4)
Cnuibacter (4)
Microbacterium (4)
Actinobacillus (3)
Allochromatium (3)
Microcystis (3)
Brevibacillus (3)
Tsukamurella (3)
Spiroplasma (3)
Caldicellulosiruptor (3)
Desulfohalobium (3)
Nodularia (3)

Aster (3)
Thermovirga (3)
Thermobacillus (3)
Cyanobacterium (3)
Vagococcus (3)
Salimicrobium (3)
Neochlamydia (3)
Simplicispira (3)
Chromobacterium (3)
Thiomicrorhabdus (3)
Silvanigrellales (3)
Crocosphaera (3)
Vitreoscilla (2)
Bordetella (2)
Beijerinckia (2)
Hafnia (2)
Pasteurella (2)
Sebaldella (2)
Finegoldia (2)
Dermacoccus (2)
Streptosporangium (2)
Gluconacetobacter (2)
Streptobacillus (2)
Sinomonas (2)
Tatumella (2)
Pseudodesulfovibrio (2)
Desulfocapsa (2)
endosymbiont (2)
Cardinium (2)
Methylovorus (2)
Jannaschia (2)
Anoxybacillus (2)
Advenella (2)
Rivularia (2)
Natranaerobius (2)
Thicalkalivibrio (2)
Mantalea (2)
Calditerrivibrio (2)
Rufibacter (2)
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Solibacilius (1)
Brachyspira (1)
Desuifotalea (1)
Halobacteriovorax (1)
Kineococcus (1)
Rummeliibacillus (1)
Cardinium (1)
Methylovorus (1)
Jannaschia (1)
Photorhabdus (1)
Tateyamaria (1)
Advenella (1)
Geobacter (1)
Verminephrobacter (1)
Natranaerobius (1)
Thioalkalivibrio (1)
Tessaracoccus (1)
Nitrosococcus (1)
Prauserella (1)
Allofrancisella (1)
Frankia (1)
Jeotgalibaca (1)
Methylophaga (1)
Arcobacter (1)
Pusillimonas (1)
Moorea (1)
Catharanthus (1)
Mucilaginibacter (1)
Cycloclasticus (1)
Paludisphaera (1)
Geosporobacter (1)
Sedimenticola (1)
Aquitalea (1)
Psychromicrobium (1)
Spongiibacter (1)
Magnetospirillum (1)
Agarilytica (1)
Fischereila (1)
Paraphatobacterium (1)
Sphingosinicella (1)
Amycolatopsis (1)
Tenericutes (1)
Marivivens (1)
Sporosarcina (1)
Sulfuriferula (1)
Thalassococcus (1)
Ahniella (1)
Mycetocola (1)
Butyricimonas (1)
Miniimonas (1)
Catenovulum (1)
Runelia (1)
Humibacter (1)
Flammeovirga (1)
Xylanibacterium (1)
Xanthomonadaceae (1)

Opitutaceae (2)
Desulfosporosinus (2)
Plautia (2)
Halioglobus (2)
Polymorphum (2)
Dickeya (2)
Altererythrobacter (2)
Capnocytophaga (2)
Paludisphaera (2)
Cetia (2)
Hartmannibacter (2)
Rickettsiales (2)
Erythrobacter (2)
Nostocales (2)
Thalassococcus (2)
Glaesserella (2)
Gammaproteobacteria (2)
Catenovulum (2)
Humibacter (2)
Planctopirus (1)
Isosphaera (1)
Comamonas (1)
Alcaligenes (1)
Histophilus (1)
Gallibacterium (1)
Herbaspirilium (1)
Marivirga (1)
Saprospira (1)
Prosthecochlors (1)
Gottschalkia (1)
Kitasatospora (1)
Hirschia (1)
Brochothrix (1)
Tumneriella (1)
Desulfurella (1)
Zymobacter (1)
Eubacterium (1)
Rothia (1)
Hydrogenophaga (1)
Wigglesworthia (1)
Flavobacterium (1)
Wadadlia (1)
Mannheimia (1)
Moritedla (1)
Desulfotalea (1)
Halobacteriovorax (1)
Kineococcus (1)
Marinitoga (1)
Carboxydocella (1)
Xylanimonas (1)
Thermovibrio (1)
Methylomicrobium (1)
Collimonas (1)
Photorhabdus (1)
Persephonella (1)
Pontibacter (1)
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Rhodopseudomonas (1)

Verminephrobacter (1)

Tatumella (1) Alicyclobacilius (1)
Nitrosospira (1) Oceanimonas (1)
Fischerella (1) Prauserella (1)
Mannheimia (1) Pelagibacterium (1)
Photorhabdus (1) Phycisphaera (1)
Spongiibacter (1) Allofrancisella (1)
Jannaschia (1) Haoyosella (1)
Methylovorus (1) Sulfuricella (1)
Thalassococcus (1) Frankia (1)
Alcaligenes (1) Jeotgalibaca (1)
Catenovulum (1) Verrucosispora (1)
Zymobacter (1) Pusillimonas (1)
Tenericutes (1) Thiolapillus (1)
Xanthomonadaceae (1) Elizabethkingia (1)
Mucilaginibacter (1) Mesotoga (1)
Jeotgalibaca (1) Catharanthus (1)
Mycetocola (1) Magnetaspira (1)
Psychromicrobium (1) Swingsia (1)
Hydrogenophaga (1) Mucilaginibacter (1)
Cycloclasticus (1)

Serpentinomonas (1)

Erysipelothrix (1)

Sedimenticola (1)

Halocynthiibacter (1)

Aquitalea (1)

Psychromicrobium (1)

Spongiibacter (1)

Mitsuaria (1)

Magnetaspirillum (1)
Chelatococcus (1)
Agarilytica (1)
Fischerella (1)

Paraphotobacterium (1)

Nitratireductor (1)
Sphingosinicella (1)
Acetobacteraceae (1)
Marivivens (1)
Sporosarcina (1)
Sulfuriferula (1)
Brachybacterium (1)
Ahniella (1)
Sphingarhabdus (1)
Butyricimonas (1)

Sterolibacteriaceae (1)
Hydrocarboniclastica (1)
Oenococcus (1)
Thermoactinomycetaceae (1)
Streptomonospora (1)
Rhizobiales (1)
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Supplementary Table S6. Confusion matrix for the targeted real short-read/long-read hybrid
data benchmark computed by classified genomic content measured in contig nucleotides.

Metric PlaScope PlasmidFinder Platon

TP 2,884,199 1,776,553 2,745,897
TN 97,966,253 98,841,671 98,525,184
FP 1,309,315 433,897 750,384
FN 2,337,708 3,445,354 2,476,010
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Summary

The enormous success and ubiquitous application of next and third generation sequencing has
led to a large number of available high-quality draft and complete microbial genomes in the
public databases. Today, the NCBI RefSeq database release 90 alone contains 11,060 com-
plete bacterial genomes (Haft et al., 2018 ). Concurrently, selection of appropriate reference
genomes (RGs) is increasingly important as it has enormous implications for routine in-silico
analyses, as for example in detection of single nucleotide polymarphisms, scaffolding of draft
assemblies, comparative genomics and metagenomic tasks. Therefore, a rigorously selected
RG is a prerequisite for the accurate and successful application of the aforementioned bioinfor-
matic analyses. In order to address this issue several new databases, methods and tools have
been published in recent years eg. RefSeq, DNA-DNA hybridization (Meier-Kolthoff, Auch,
Klenk, & Géker, 2013), average nucleotide identity (ANI) as well as percentage of conserved
DNA (conDNA) values (Goris et al., 2007) and Mash (Ondov et al., 2016). Nevertheless, the
sheer amount of currently available databases and potential RGs contained therein, together
with the plethora of tools available, often requires manual selection of the most suitable RGs.
To the best of the authors’ knowledge, there is currently no such tool providing both an inte-
grated, highly specific workflow and scalable and rapid implementation. ReferenceSeeker was
designed to overcome this bottleneck. As a novel command line tool, it combines a fast kmer
profile-based lookup of candidate reference genomes (CRGs) from high quality databases with
rapid computation of (mutual) highly specific ANI and conserved DNA values.

Implementation

ReferenceSeeker is a linux command line tool implemented in Python 3. All necessary external
binaries are bundled with the software. The tool itself requires no external dependencies other
than Biopython for file input and output.

Databases

ReferenceSeeker takes advantage of taxon-specific custom databases in order to reduce data
size and owverall runtime. Pre-built databases for the taxonomic groups bacteria, archaea,
fungi, protozoa and viruses are provided. Each database integrates genomic as well as taxo-
nomic information comprising genome sequences of all RefSeq genomes with an assembly level
‘complete’ or whose RefSeq category is either denoted as ‘reference genome’ or 'representa-
tive genome’, as well as kmer profiles, related species names, NCBI Taxonomy identifiers and

Schwengers et al., (2020). ReferenceSeeker: rapid determination of appropriate reference genomes. Journal of Open Source Software, 5(46), 1
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RefSeq assembly identifiers. For conwenient and fully automatic updates, we provide locally
executable scripts implemented in bash and Mextflow (Di Tommaso et al., 2017). Non-public
genomes can be imported into existing or newly created databases by an auxiliary command
line interface.

Database Lookup of CRGs

To reduce the number of necessary ANI calculations a kmer profile-based lookup of CRGs
against custom databases is carried out. This step is implemented via Mash parameterized
with a Mash distance of 0.1, which was shown to correlate well with an ANI of roughly 90%
(Ondov et al., 2016) and thereby establishing a lower limit for reasonably related genomes. The
resulting set of CRGs is subsequently reduced to a configurable number of CRGs (default=100)
with the lowest Mash distances.

Determination of RG

Mash distances used for the preliminary selection of CRGs were shown to correlate well with
ANI wvalues capturing nuclectide-level sequence similarities. However, Mash distances do not
correlate well with the conDNA statistic, which captures the query sequence coverage within
a certain reference sequence (Figure 1). In order to precisely calculate sequence similarities
beyond the capability of kmer fingerprints and to assure that RGs share an adequate portion
of the query genome, ReferenceSeeker calculates both AMI and conDNA to derive a highly
specific measure of microbial genome relationships (Goris et al., 2007).
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Figure 1: Figure 1: Scatter plots showing the correlation between Mash distance, ANI and conDMNA
values. AN| and conserved DNA values are plotted against Mash distance values for 500 candidate
reference genomes with the lowest Mash distance within the bacterial database for 10 randomly
selected Escherichia coli genomes from the RefSeq database, each.

Therefore, required sequence alignments are conducted via Nucmer of the MUMmer package
(Marcais et al., 2018) as it was recently shown that Nucmer based implementations (ANIn)
compare favourably to BLAST+ based implementations (ANIb) in terms of runtime. Exact
calculations of ANI and conDNA values were adopted from (Goris et al., 2007) and are carried

Schwengers et al., (2020). ReferenceSeeker: rapid determination of appropriate reference genomes. Journal of Open Source Software, 5(46), 2
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out as follows. Each query genome is split into consecutive 1,020 bp nucleotide fragments
which are aligned to a reference genome via NMucmer. The conDNA value is then calculated
as the ratio between the sum of all aligned nucleotides within nucleotide fragments with an
alignment with a sequence identity above 90% and the sum of nucleotides of all nuclectide
fragments. The ANI value is calculated as the mean sequence identity of all nucleotide
fragments with a sequence identity above 30% and an alignment length of at least 70% along
the entire fragment length.

Given that compared genomes are closely related, i.e. they share an ANI of above 90%, it was
also shown that ANIn correlates well with ANIb (Yoon, Ha, Lim, Kwon, & Chun, 2017). This
requirement is ensured by the prior Mash-based selection of CRGs. As an established threshold
for species boundaries (Goris et al., 2007), results are subsequently filtered by configurable
ANI and conDNA values with a default of 95% and 69%, respectively. Finally, CRGs are
sorted according to the harmonic mean of ANI and conDNA values in order to incorporate
both the nucleotide identity and the genome coverage between the query genome and resulting
CRGs. In this manner, ReferenceSeeker ensures that the resulting RGs sufficiently reflect the
genomic landscape of a query genome. If desired by the user, this approach can be extended
to a bidirectional computation of aforementioned ANI and conDNA values.

Application

ReferenceSeeker takes as input a microbial genome assembly in fasta format and the path to a
taxonomic database of choice. Results are returned as a tabular separated list comprising the
following information: RefSeq assembly identifier, ANI, conDNA, NCBI taxonemy identifier,
assembly status and organism name. To illustrate the broad applicability at different scales
we tested ReferenceSeeker with 12 microbial genomes from different taxonomic groups and
measured overall runtimes on a common consumer laptop providing 4 cores and a server
providing 64 cores (Table 1). For the tested bacterial genomes, ReferenceSeeker limited the
number of resulting RGs to a default maximum of 100 genomes. Runtimes of archaeal and
wviral genomes are significantly shorter due to a small number of available RGs in the database
and overall smaller genome sizes, respectively.

Table 1: Runtimes and numbers of resulting RG executed locally on a quad-core moderate consumer
laptop and a 64 core server machine.

Genome  Laptop Server 7
Genome Size [kb] [mm:ss] [mm:ss] RG
Escherichia coli str. K-12 substr. MG1665 4,641 324 0:30  100*
(GCF_000005845.2)
Pseudomonas aeruginosa PAD1 6,264 5:20 0:44  100*
(GCF_000006765.1)
Listeria monocytogenes EGD-e 2,944 2:52 0:24  100*
(GCF_000196035.1)
Staphylococcus aureus subsp aureus NCTC 2,821 2:31 0:21  100*
8325 (GCF_000013425.1)
Halobacterium salinarum NRC-1 2,571 0:04 0:03 2
(GCF_000006805.1)
Methanococcus maripaludis X1 1,746 0:22 0:09 5
(GCF_000220645.1)
Aspergiflus fumigatus Af293 20,384 i 2:07 1
(GCF_000002655.1)
Candida albicans $C5314 14,282 0:21 0:19 1

(GCF_D00182965.3)

Schwengers et al., (2020). ReferenceSeeker: rapid determination of appropriate reference genomes. Journal of Open Source Software, 5(46), 3

1904, https:

doiorg,/10.21105/ joss.01994
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Genome  Laptop Server b
Genome Size [kb]  [mm:ss]  [mm:ss] RG
Entamoeba histolytica HM-1:1MSS 20,835 6:04 4:41
(GCF_000208925.1)
Plasmodium falciparum 3D7 23,326 2:52 1:49 1
(GCF_000002765.4)
Influenza A virus (GCF_001343785.1) 13 0:03 0:02 1
Human coronavirus NL63 27 0:04 0:02 1

(GCF_D00853865.1)

Availability

The source code is available on GitHub under a GPL3 license: https://github.com
oschwengers referenceseeker. The software is packaged and publicly available via BioConda.
Pre-built databases for bacteria, archaea, fungi, protozoa and viruses are hosted at Zen-
odo: https:/ /doi.org/10.5281 /zenodo.3562005. All installation instructions, examples and
download links are provided on GitHub.
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