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Abstract

We consider odd-symplectic manifolds admitting a cover by a contact manifold of
bounded geometry. The characteristic foliation of these manifolds defines a dynamic
that is the projection of the Reeb dynamic of the covering manifold. We prove the
existence of closed contractible characteristics in several cases. Furthermore we
define a surgery construction along isotropic spheres in an odd-symplectic manifold
that leads to a symplectic cobordism.

Abstract

Wir betrachten ungerad-dimensionale symplektische Mannigfaltigkeiten, die eine
Überlagerung durch eine Kontaktmannigfaltigkeit mit beschränkter Geometrie besit-
zen. Die charakteristische Blätterung dieser Mannigfaltigkeiten definiert eine Dyna-
mik, welche mit der projizierten Reebdynamik der überlagernden Mannigfaltigkeit
übereinstimmt. Wir zeigen die Existenz einer geschlossenen, zusammenziehbaren
Charakteristik in verschiedenen Fällen. Des weiteren definieren wir eine Chirurgie-
konstruktion entlang isotroper Sphären in ungerad-dimensionalen symplektischen
Mannigfaltigkeiten, welche symplektischen Kobordismen liefert.
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CHAPTER 1

Introduction

A Hamiltonian function on a symplectic manifold gives rise to a dynamical system.
Each characteristic of this system stays on an energy hypersurface of the Hamiltonian
function. It is interesting to study these characteristics. For a general Hamiltonian
function there is little hope to fully understand the characteristics on an arbitrary
hypersurface as the Horocycle flow shows, see [3]. Therefore, we have to make
some assumptions about the hypersurface. Energy surfaces of contact type are a
particular understandable class. In 1978, Alan Weinstein conjectured that every
closed hypersurface of contact type carries a closed characteristic. This conjecture
has been proven in several cases: starshaped hypersurfaces in R

2n [46], overtwisted
contact manifolds [29] and three-dimensional contact manifolds [45]. Recently, Fish–
Hofer [15] proved the existence of a non-dense characteristic on any closed, non-
empty, regular energy hypersurface in R

4.

These hypersurfaces are odd-symplectic in the sense of Chapter 2. We will prove
the existence of a closed characteristic for odd-symplectic manifolds that admit a
covering by a certain contact manifold.

We begin our discussion with an outline of the concepts we will work with. In
particular we will give the definition of a virtually contact structure on a covering
π : M ′ → M of an odd-symplectic manifold (M,ω), this definition was introduced
in [12]. Afterwards, in Chapter 3 and 4, we discuss the geometry of the covering
space M ′ and consider holomorphic discs in the symplectisation of M ′, in particular
those subject to a certain boundary condition that we will specify later. To be more
precise, we will carry out a bubbling off analysis as in [29,30], but adapt the technique
to a non-compact base manifold M ′, see Chapter 6. In Chapter 7 we will use the
technical preliminaries to conclude the existence of closed characteristics in several
odd-symplectic manifolds supporting a virtually contact structure. In particular,
this yields a some huge classes of non-compact contact manifolds admitting a closed
Reeb orbit. Note that all these results were already published as [5] by Bae–Zehmisch
and the author, but we will give more detailed explanations on the bubbling off
analysis and on the methods that yield closed characteristics.

In Chapter 8 we will describe a surgery construction for odd-symplectic mani-
folds. For some special cases of this surgery we will explain how this construction
is compatible with a possible virtually contact structure. Moreover, our surgery
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construction gives a symplectic cobordism between odd-symplectic manifolds. We
continue with a more abstract consideration of cobordisms between odd-symplectic
manifolds and end our discussion with the definition of a cobordism between virtu-
ally contact structures.
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CHAPTER 2

Odd-Symplectic Geometry

We give the basic definitions of odd-symplectic manifolds and virtually contact
structures. Further we formulate some elementary properties of these manifolds and
present an alternative perspective on some of these subjects.

Definition 2.1. A pair (M2n−1, ω) consisting of a smooth, oriented, (2n − 1)-
dimensional manifold M without boundary and a closed 2-form ω is called odd-
symplectic manifold if ω is maximally non-degenerate, i.e., the kernel kerω of ω
is a line field distribution. This distribution is called characteristic foliation of
(M,ω).

An odd-symplectic diffeomorphism or odd-symplectomorphism is an ori-
entation preserving diffeomorphism ϕ : (M0, ω0) → (M1, ω1) between odd-symplectic
manifolds with ϕ∗ω1 = ω0.

Examples 2.2. The easiest example of an odd-symplectic manifold is an oriented
hypersurface M of codimension 1 in a symplectic manifold (W,Ω) together with the
2-form ω := Ω|TM . It is obvious that ω is closed and as we will see in Remark 2.3
it is easy to see that it is also non-degenerate.

A second large class of examples is provided by contact manifolds. Indeed, if
(M,α) is a contact manifold, then (M,dα) is an odd-symplectic manifold. The
characteristic foliation is spanned by the Reeb vector field.

In a given example it is often easier to check the following alternative condition
for non-degeneracy.

Remark 2.3. The 2-form ω is non-degenerate if and only if ωn−1 is nowhere van-
ishing, i.e., at each point p ∈ M there exist tangent vectors v1, . . . , v2n−2 ∈ TpM
such that ωn−1

p (v1, . . . , v2n−2) 6= 0.

Proof. Let us first assume that ω is maximally non-degenerate. Let p be a point
in M . By a parametric version of the standard form for skew-symmetric bilinear
maps (see [8, Theorem 1.1] for the unparametric version) we find local vector fields
U1, . . . , Uk, E1, . . . , Em, F1, . . . , Fm on a neighbourhood U of p which form a basis of
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TU and satisfy

ω(Ui, V ) = 0, for all 1 ≤ i ≤ k and V ∈ Γ(TU),

ω(Ei, Ej) = 0 = ω(Fi, Fj), for all 1 ≤ i, j ≤ m,

ω(Ei, Fj) = δij , for all 1 ≤ i, j ≤ m.

Since we know that dim(kerω) = 1, we get that k = 1 and therefore

ωn−1(E1, F1, . . . , En−1, Fn−1) = (n− 1)! · ω(E1, F1) · . . . · ω(En−1, Fn−1)

= (n− 1)! .

Thus for each point p ∈ M we find vector fields defined near p such that ωn−1 does
not vanish on these vector fields.

On the other hand, if we assume that ωn−1 is nowhere vanishing then by the same
standard form argument we have dim(kerω) ≥ 1 at each point. Near a point p ∈ M
we choose a local basis as in said standard form and for convenience of notation we
write Em+i := Fi for 1 ≤ i ≤ m. Now take vector fields V1, . . . , V2n−2 such that
ωn−1 does not vanish on this tuple near p. By expressing these vector fields in the
chosen basis and by linearity of ωn−1 we get

0 6= ωn−1(V1, . . . , V2n−2) =
∑

ϕ

a(ϕ) · ωn−1(Eϕ(1), . . . , Eϕ(2n−2)),

where the sum is taken over all maps ϕ : {1, . . . , 2n − 2} → {1, . . . 2m} and a(ϕ)
denotes some real coefficient. Since each vector field Uj lies in the kernel of ω, all
summands containing at least one argument equal to some Uj vanish. We assert that
the only way for the Eϕ(i) to be linear independent is if ϕ is injective and therefore
m satisfies m ≥ n − 1. For dimensional reasons we must have m = n − 1 and thus
k = 1. Hence the kernel is a line bundle distribution.

In many situations it is useful to complete an odd-symplectic form to a volume
form. This completion is achieved by a 1-form.

Definition 2.4. Let (M,ω) be an odd-symplectic manifold oriented by some volume
form volM . A 1-form γ satisfying γ ∧ ωn−1 = volM is called framing of (M,ω).

Lemma 2.5. Let (M,ω) be an odd-symplectic manifold oriented by some volume
form volM . Then there exists a framing γ. Furthermore there exists a global vector
field X with ιXvolM = ωn−1. In particular, X spans the kernel of ω and is nowhere
vanishing.

Proof. If there exists a vector field X satisfying ιXvolM = ωn−1, the fact that ωn−1

is nowhere vanishing tells us that the same is true for X. Moreover, we get

0 = ιX (ιXvolM ) = ιXω
n−1 = (n− 1) · ιXω ∧ ωn−2.
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Since ωn−2 is also nowhere vanishing, we see that ιXω = 0, so X lies in the kernel
of ω, is non-vanishing and therefore spans the kernel of ω.

To obtain X, notice that we have a bundle map

Φ : Γ(M) −→ Ω2n−2(M)

X 7−→ ιXvolM .

By dimensional reasons this map is fibrewise an isomorphism if and only if it is
fibrewise injective. If ιXp(volM )p vanishes, Xp has to be zero. Otherwise we could
complete Xp to a basis and inserting the remaining basis vectors into ιXp(volM )p
would give a non-zero value.

Hence, we obtain the desired vector field X as Φ−1(ωn−1). Since ωn−1 and volM
are smooth, we get a smooth vector field X.

Choosing an arbitrary Riemannian metric g on M , we can define a 1-form γ̃ by
γ̃ := ιXg where X is the vector field determined by ιXvolM = ωn−1. By inserting
X into γ̃ ∧ ωn−1 we obtain ‖X‖2

g · ωn−1, which is a nowhere vanishing (2n − 2)-
form. So γ̃ ∧ ωn−1 is nowhere vanishing and hence a multiple of the volume form,
i.e., γ̃ ∧ ωn−1 = f · volM for some nowhere vanishing function f . We conclude that
γ := 1

f γ̃ is a framing.

Remark 2.6. For our later studies we are interested in the dynamics of an odd-
symplectic manifold (M,ω) defined by the kernel of ω. Thus it is helpful to have a
global vector field that spans this kernel as constructed in the previous lemma. The
construction of this vector field used the existence of a volume form.

Note that the orientation requirement in the definition of odd-symplectic mani-
folds is necessary and does not follow from the other conditions: Let M denote the
Möbius strip and consider the product M × R. Thinking of the Möbius strip as a
bundle over the circle S1, we denote the S1-coordinate by θ and the R-coordinate
by t. In this case dθ ∧ dt is a maximally non-degenerate 2-form.

A closed example is obtained by replacing the Möbius strip by the Klein bottle
and the line R by the circle S1.

Both of these manifolds are non-orientable and hence not odd-symplectic.

The next lemma expands the first part of Example 2.2.

Lemma 2.7. Let (W 2n,Ω) be a symplectic manifold, M ⊂ W a hypersurface with
respect to the orientation induced on M by Ω and Y , where Y is a vector field defined
in a neighbourhood and transverse to M . Then (M,Ω|TM ) is an odd-symplectic
manifold and ιY Ω|TM is a framing for Ω|TM .

Proof. By Remark 2.3 it suffices to show that Ωn−1
p 6= 0 for all p ∈ M . At p ∈ M

take Xp ∈ TpM with Ωp(Xp, Yp) 6= 0. Complete (Yp, Xp) to a symplectic basis
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(Yp, Xp, V1, . . . , V2n−2) of TpW with V1, . . . , V2n−2 ∈ TpM . We obtain

0 6= Ωn(Yp, Xp, V1, . . . , V2n−2)

= n · Ω(Yp, Xp) · Ωn−1(V1, . . . , V2n−2),

so Ωn−1|TM does not vanish. The same argument shows that

0 6= Ωn
p (Yp, Xp, V1, . . . , V2n−2)

= (ιYpΩn
p )(Xp, V1, . . . , V2n−2)

= n · ((ιYpΩp) ∧ Ωn−1
p

)
(Xp, V1, . . . , V2n−2).

Therefore, ιY Ω ∧ Ωn−1|TM is a volume form on M .

The definition of a framing behaves well under structure preserving maps. The fol-
lowing lemma states that framings are pulled back to framings under odd-symplectic
diffeomorphism up to scaling.

Lemma 2.8. Let (Mi, ωi), i = 0, 1, be orientable odd-symplectic manifolds and
ϕ : M0 → M1 an odd-symplectomorphism. Then ϕ∗γ1 ∧ ωn−1

0 is a positive vol-
ume form for any framing γ1 of ω1.

Proof. Let volMi be a volume form on Mi. Since ϕ∗ω1 = ω0, we compute

ϕ∗γ1 ∧ ωn−1
0 = ϕ∗γ1 ∧ (ϕ∗ω1)n−1 = ϕ∗(γ1 ∧ ωn−1

1 ) = ϕ∗volM1
= f · volM0

for some smooth non-vanishing function f : M0 → R
+.

Definition 2.9. Let M be a smooth manifold, g a Riemannian metric and η a
k-form on M . The pointwise C0-norm of η with respect to g at a point p ∈ M is
given by

‖ηp‖C0 = sup
v1,...,vk

|ηp(v1, . . . , vk)|,

where the supremum is taken over all g-unit vectors in TpM . The C0-norm of η is

‖η‖C0 = sup
p∈M

‖ηp‖C0 .

Definition 2.10 ([12]). An odd symplectic manifold (M,ω) supports a virtually
contact structure (π : M ′ → M,ω, α, g) if there exist a covering π : M ′ → M of
M by a contact manifold (M ′, α) with dα = π∗ω and a constant K > 0 such that

i) the form α is bounded with respect to the lifted Riemannian metric g′ := π∗g,
i.e., ‖α‖C0 ≤ K,

ii) for all v ∈ ker dα it holds that |α(v)| ≥ 1
K ‖v‖g′ .
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The manifold M is oriented by the volume form volM . With respect to the orienta-
tion of M ′ given by π∗volM we additionally require that α ∧ dαn−1 > 0.

The listed properties will be referred to as boundedness conditions on the contact
manifold (M,α).

An odd-symplectic manifold (M,ω) supporting a virtually contact structure is
called virtually contact manifold.

A virtually contact structure is non-trivial if ω is not the exterior derivative of
a contact form on M .

These objects are studied in [4, 5, 12,48].

Remark 2.11. If (M,ω) is compact and supports a virtually contact structure with
respect to the metric g then any other choice of a Riemannian metric ĝ also leads
to a virtually contact structure (π : M ′ → M,ω, α, ĝ). This is due to the fact that
any two Riemannian metrics on a compact manifold are equivalent.

Examples 2.12. The first examples of virtually contact structures were given in
[12, Chapter 5]. These examples are energy hypersurfaces in the twisted cotangent
bundle of energy above the Mañé critical value.

Further examples were constructed in [48]. We repeat these constructions in
Section 7.2 and 8.1 and expand the class of possible surgery operations.

There is an alternative description of virtually contact structures that is more
focused on the geometric phenomena.

Definition 2.13. An odd symplectic manifold (M,ω) supports a virtually contact
structure (π : M ′ → M,ω, α, g) if there exist a covering π : M ′ → M of M by a
contact manifold (M ′, α) with dα = π∗ω and a constant K > 0 such that

i) the length of the Reeb vector field R of α with respect to the lifted Riemannian
metric g′ := π∗g is bounded, i.e., ‖R‖g′ ≤ K,

ii) with respect to the g′-orthogonal splitting TM ′ = ξ⊥ ⊕ ξ, where ξ = kerα, the
ξ⊥-component R⊥ satisfies ‖R⊥‖g′ > 1

K .

Lemma 2.14. The Definitions 2.10 and 2.13 are equivalent.

Proof. Let (π : M ′ → M,ω, α, g) denote the data as in the definitions and set
ξ := kerα and g′ := π∗g. In both cases it suffices to show the estimates in the
respective definition.

Starting with 2.10 we have to show that

‖R‖g′ ≤ K and 1
K ≤ ‖R⊥‖g′ ,

where R denotes the Reeb vector field and R⊥ is the ξ⊥-component of R in the
g′-orthogonal splitting ξ⊥ ⊕ ξ. By Definition 2.10 we have |α(v)| ≥ 1

C · ‖v‖g′ for all
v ∈ kerπ∗ω. We can apply this to the Reeb vector field and obtain

‖R‖g′ ≤ K · |α(R)| = K.

7



For the second estimate we write R = R⊥ + Y ∈ ξ⊥ ⊕ ξ as in Definition 2.13. We
know that

1 = |α(R)| = |α(R⊥) + α(Y )|.

Since Y is contained in the kernel of α this equation becomes 1 = |α(R⊥)|. By the
first estimate in Definition 2.10 we have |α(R⊥)| ≤ C · ‖R⊥‖g′ . So we can conclude

1

K
≤ ‖R⊥‖g′ .

Therefore every virtually contact structure in the sense of Definition 2.10 is a virtu-
ally contact structure in the sense of Definition 2.13.

Let us assume we begin with a virtually contact structure in the sense of Defini-
tion 2.13. We have to show that

1
K · ‖v‖g′ ≤ |α(v)| and |α(w)| ≤ K · ‖w‖g′

for all v ∈ kerπ∗ω and w ∈ TM ′. Take v ∈ kerπ∗ω and write v = µ · R for some
µ ∈ R. Using the length estimate for the Reeb vector field we get

‖v‖g′ = |µ| · ‖R‖g′ ≤ |µ| ·K.

It follows that

|α(v)| = |α(µ ·R)| = |µ| ≥ ‖v‖g′

K
.

It remains to show that |α(w)| ≤ K ·‖w‖g′ for all w ∈ TM ′. We write w = µ·R+wξ ∈
R ·R⊕ ξ and replace R by R⊥ + Y ∈ ξ⊥ ⊕ ξ and hence

w = µ ·R⊥ + (µ · Y + wξ).

By the Pythagorean theorem we have

‖w‖2
g′ = ‖µ ·R⊥‖2

g′ + ‖µ · Y + wξ‖2
g′ ≥ |µ|2 · ‖R⊥‖2

g′ ,

and therefore

‖w‖g′ ≥ |µ| · ‖R⊥‖g′ .

Note that w = µ · R + wξ ∈ R · R ⊕ ξ implies α(w) = µ. Combining this with the
previous estimates and 1

K ≤ ‖R⊥‖g′ we get

|α(w)| = |µ| ≤ ‖w‖g′

‖R⊥‖g′

≤ K · ‖w‖g′ .

This shows that every virtually contact structure in the sense of Definition 2.13 is a
virtually contact structure in the sense of Definition 2.10.
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Definition 2.15. An odd-symplectic manifold (M,ω) supporting a virtually contact
structure (π : M ′ → M,ω, α, g) is somewhere contact if there exists a non-empty,
open set U ⊂ M such that ω|TU admits a primitive αU on U with αU ∧(dαU )n−1 6= 0
and π∗αU = α|π−1(U).

Lemma 2.16 (Darboux theorem for odd-symplectic manifolds). Let (M,ω) be an
odd-symplectic manifold and p ∈ M . Then there exists a neighbourhood U of p and
a 1-form αU such that dαU = ω|U . Moreover, αU can be chosen to be a contact
form on U and there are local coordinates (z,x,y) such that ω = dx ∧ dy.

Proof. Let U be a contractible neighbourhood of p. Using the Poincaré lemma we
obtain a 1-form α′ on U with ω|U = dα′. We may assume that U is the flow-box of
some local vector field spanning the kernel of ω, for example the restriction of X as in
Lemma 2.5 to U . Without loss of generality we considerM = R

2n−1 with coordinates
(z, x1, y1, . . . , xn−1, yn−1) and kerω|U = R ·∂z. Adding dz to α′, if necessary, we can
ensure that α(∂z) 6= 0 and still dα = ω. We claim that α is a contact form and
check this by applying the definition. First observe that α∧ (dα)n−1 = α∧ωn−1 and
second that ι∂z (α ∧ ωn−1) = α(∂z) · ωn−1 is non-vanishing. Therefore α ∧ (dα)n−1

is also non-vanishing and α is a contact form. The rest follows from the Darboux
theorem for contact manifolds [19, Theorem 2.5.1].

Remark 2.17. Note that Lemma 2.16 does not imply that every virtually contact
structure is somewhere contact: The contact form on the covering is in general not
invariant with respect to deck transformations.

In the following we consider ourselves with non-trivial virtual contact structures.

Remark 2.18 ([4]). If (M,ω) is supports a virtually contact structure (π : M ′ →
M,ω, α, g) with a finite covering π, then (M,ω = dαM ) is already a contact manifold.
To see this, assume that π : M ′ → M is a finite covering, i.e., each point has finitely
many preimages under π. Let G be the (finite) group of deck transformations. Recall
that α ∧ (dα)n−1 is positive with respect to the orientation given by π∗ volM .

We define an alternative contact form α̃ on M ′ by

α̃ =
1

|G|
∑

ϕ∈G
ϕ∗α,

where α is the contact form on the cover M ′ with dα = π∗ω. Then (π : M ′ →
M,ω, α̃, g) is a trivial virtually contact structure. First note that α̃ is well-defined

9



and invariant under the group action. Further it satisfies

dα̃ =
1

|G|
∑

ϕ∈G
ϕ∗dα =

1

|G|
∑

ϕ∈G
ϕ∗π∗ω

=
1

|G|
∑

ϕ∈G
(π ◦ ϕ)∗ω =

1

|G|
∑

ϕ∈G
π∗ω

=
1

|G| |G|π∗ω = π∗ω,

so α̃ is indeed a primitive of π∗ω. Here π ◦ ϕ = π since all ϕ ∈ G are deck transfor-
mations.

The next step is to show that α̃ is indeed a contact structure. To this end, we
check the contact condition.

α̃ ∧ (dα̃)n−1 = α̃ ∧ (π∗ω)n−1 = α̃ ∧ π∗(ωn−1)

=


 1

|G|
∑

ϕ∈G
ϕ∗α


 ∧ π∗(ωn−1) =

1

|G|
∑

ϕ∈G
ϕ∗α ∧ π∗ωn−1.

By the G-invariance of π∗ω this becomes

1

|G|
∑

ϕ∈G
ϕ∗(α ∧ π∗ωn−1) =

1

|G|
∑

ϕ∈G
ϕ∗(f · volM ′)

for some positive function f . Since f is positive, we obtain

α̃ ∧ (dα̃)n−1 =
1

|G|
∑

ϕ∈G
ϕ∗(f · volM ′) =

1

|G|
∑

ϕ∈G
(f ◦ ϕ) · ϕ∗volM ′

≥ 1

|G|

(
min
M ′

f

)
·
∑

ϕ∈G
volM ′ =

(
min
M ′

f

)
· volM ′

> 0,

where we used that any deck transformation preserves the orientation of M ′.
Since α̃ is invariant under the action of the deck transformation group it descents

to a 1-form on M . As α̃ is a contact form on M ′ with π∗αM = α̃ we see that αM is
also a contact form which satisfies dαM = ω. Indeed,

0 < α̃ ∧ (dα̃)n−1 = π∗αM ∧ (dπ∗αM )n−1

= π∗
(
αM ∧ (dαM )n−1

)
,

and thus we have

0 < αM ∧ (dαM )n−1,

since π is orientation preserving.
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CHAPTER 3

A Tame Geometry

The covering space M ′ that appears in a virtually contact structure is of a bounded
geometry. We explore how the lifted metric g′ is related to a metric induced by α and
an almost complex structure j. We use these structures to prove an isoperimetric
inequality for certain curves in M ′.

3.1. The Induced Structure

Let (π : M ′ → M,ω, α, g) be a contact manifold with compact base mani-
fold (M,ω). Further denote by ξ the kernel of α and by g′ the lift of g with re-
spect to the covering map π. On the contact structure ξ = kerα the 2-form dα is
non-degenerate and we can solve the equation

dα = g′(Φ(·), ·)

to obtain a skew adjoint vector bundle isomorphism Φ : ξ → ξ. Then −Φ2 is self
adjoint and positive definite, hence its square root is well defined. Using [19, Propo-
sition 2.4.5] and the construction in [19, Proposition 1.3.10] the complex structure
on ξ obtained by

j := Φ ◦
√

−Φ2
−1

is compatible with dα, i.e.,

gj := dα(·, j·)

is a bundle metric on ξ. In this situation we say that the 2-form dα tames the
complex structure j. In the following we compare the geometries of ξ induced by
the restriction of g′ and by gj with each other.

Lemma 3.1. The norm ‖ · ‖ induced by gj and the restriction of the norm ‖ · ‖g′ to
ξ are uniformly equivalent, i.e., there exist constants c1, c2 > 0 such that on ξ

1
c1

‖ · ‖g′ ≤ ‖ · ‖j ≤ c2‖ · ‖g′ .
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Remark 3.2. Let us take a closer look at the second condition in Definition 2.13.
By computing the sine of the angle ̺ between the Reeb vector field R and the
contact structure ξ = kerα we see that ̺ is bounded away from 0 and π. To make
this precise, write R = R⊥ + Y ∈ ξ⊥ ⊕ ξ ∼= TM ′. The sine of ̺ is given by

sin(̺) =
‖R⊥‖g′

‖R‖g′

.

Applying the estimates given in Definition 2.13 we obtain

sin(̺) >
1

K2
> 0.

Hence there exists an ε > 0 such that the angle ̺ is contained in [ε, π − ε].
Remember that Tπ(R) spans the kernel of ω, so the Reeb vector field is invariant

under deck transformations up to rescaling. In general this will not be true for the
contact structure ξ. That said the previous discussions show that the image of the
contact structure under the projection π is contained in a cone like subset of TM
that stays away from the kernel of ω.

Sketch of proof of Lemma 3.1. The proof is based on the observation that the eigen-
values of

√
−Φ2 are uniformly bounded away from 0 and from above. This obser-

vation is achieved by considering the map Ω : TM → T ∗M, v 7→ ιvω. The kernel
of Ω is the characteristic line bundle of (M,ω). We regard the cone like subset C
of TM consisting of all tangent vectors whose angle to the characteristic distribution
is greater or equal than some uniform constant c0 > 0. As we just saw, we have

Tπ(ξ) ⊂ C

if c0 is chosen small enough. The map Ω has uniform upper and lower bounds on the
compact subset C ∩ STM , where STM is the unit cotangent bundle with respect
to g. The set C lifts to a cone like subbundle C ′ of TM ′ and the bounds for Ω imply
the existence of the same bounds for the map Ω′ : TM ′ → T ∗M ′, v 7→ ιvdα and
C ′ ∩ STM ′. The next point we have to address is that

‖Ω′(v)‖(g′)♭ = ‖Φ(v)‖g′

for all v ∈ ξ. Here (g′)♭ denotes the dual metric of g′ on M ′ defined by

(g′
p)
♭ : T ∗

pM
′ × T ∗

pM
′ −→ R

(α1, α2) 7−→ (g′
p)
♭(α1, α2) = g′

p(v1, v2),

where vi is the dual vector of αi uniquely determined by αi = g′
p(vi, ·). That is we

have the same bounds for Φ. To conclude the lemma we observe that

gj = g′
(√

−Φ2 · , ·
)
.

12



Indeed,

gj = dα
(

· ,Φ ◦
√

−Φ2
−1
)

= g′
(

Φ · ,Φ ◦
√

−Φ2
−1 ·

)
.

Since Φ is skew adjoint, this becomes

g′
(

−Φ2 · ,
√

−Φ2
−1 ·

)
= g′

(√
−Φ2 ◦

√
−Φ2 · ,

√
−Φ2

−1 ·
)
.

The square root of a self adjoint linear map is also self adjoint, thus we obtain

gj = g′
(√

−Φ2 · , ·
)
.

Therefore,

λ1‖ · ‖2
g′ ≤ ‖ · ‖2

j ≤ λ2‖ · ‖2
g′ ,

where λ1 and λ2 are the smallest and the largest eigenvalue of
√

−Φ2, respectively.
Observe that the smallest eigenvalue λ1 is given by the operator norm ‖Φ−1‖ and
λ2 by ‖Φ‖, both of which are uniformly bounded.

We extend the metric gj on ξ = kerα to a Riemannian metric on the covering
space M ′ via

gα := α⊗ α+ gj

with respect to the splitting TM ′ = R · R ⊕ ξ. As we have done for g′|ξ and gj , we
compare the metrics g′ and gα.

Lemma 3.3 ([5, Lemma 2.4.1]). The norm ‖ · ‖α induced by gα and the norm ‖ · ‖g′

are uniformly equivalent on M ′, i.e., there exist constants c1, c2 > 0 such that

1
c1

‖ · ‖g′ ≤ ‖ · ‖α ≤ c2‖ · ‖g′ .

3.2. Length and Area

As we just saw, the norms induced by gα and g′ are uniformly equivalent, hence
we can use both to formulate isoperimetric inequalities. By that we mean if we
can prove an isoperimetric inequality with respect to one of the metrics, we also
obtain it for the other one after adjusting the constant. For the further discussion
we emphasise that the base manifold M is closed.

Since g′ is defined as the lift of g with respect to the covering map π : M ′ → M ,
the metrics are locally isometric and therefore g′ is of bounded geometry in the
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sense of [44, Definition 2.4]. Additionally, g′ is geodesically complete since this holds
for g, see [10, Theorem I.7.2]. The bounded geometry implies that the absolute
value of the sectional curvature is uniformly bounded and the injectivity radius
of g′ is bounded away from zero by, say 2i0 > 0, see [9, 18]. Further, the bounded
injectivity radius implies that for all p ∈ M ′ the exponential map that is defined
on the whole tangent space TpM ′ becomes a diffeomorphism when restricted to the
tangent vectors v ∈ TpM

′ of length ‖v‖g′ < i0, that is, we have a diffeomorphism

TpM
′ ⊃ Bi0(0) −→ Bi0(p) ⊂ M ′

between the open ball of radius i0 in TpM
′ and the open g′-geodesic ball Bi0(p)

in M ′. We denote this restriction of expp to Bi0(0) ⊂ TpM
′ by Ep. As explained

in [42, p. 318], the linearisation of Ep and E−1
p are uniformly bounded in the operator

norm with respect to g′, i.e., there exists a constant C > 0 such that for all p ∈ M ′

‖TEp‖g′ , ‖TE−1
p ‖g′ < C.

We formulate an isoperimetric inequality for smooth loops that are contained in
a geodesic ball of radius i0. Consider a 2π-periodic map c : R → M ′ with image
in Bi0(c(0)). We associate to c a loop of tangent vectors in Tc(0)M

′ as the unique

solution of expc(0)X(θ) = c(θ) or, in other words, X(θ) = E−1
c(0)(c(θ)). This loop

extends to a map fc : D → M ′ on the closed unit disc D ⊂ C via

fc(re
iθ) = expc(0)(rX(θ)),

with polar coordinates z = reiθ on D.

Lemma 3.4. With the notation as above and C as a bound on both the linearisation
of Ec(0) and E−1

c(0) we have

‖∂rfc(reiθ)‖g′ ≤ C
2 lengthg′(c)

and

‖∂θfc(reiθ)‖g′ ≤ C2‖ċ(θ)‖g′ ,

where the length of a curve c : [0, 2π] → M ′ with respect to the metric g′ is given as

lengthg′(c) :=
∫ 2π

0
‖ċ(θ)‖g′dθ.

Proof. We can estimate the g′-norm of X using the g′-length of the curve c as
follows. The map E−1

c(0) is a radial isometry and therefore the norm ‖X(θ)‖g′ equals

the distance between c(0) and c(θ). Since the distance is the infimum over the length
of all possible paths connecting c(0) and c(θ) it is always a lower bound for length
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of a specific path connecting these points. In our case we use this to say

distg′

(
c(0), c(θ)

) ≤
∫ θ

0
‖ċ(θ′)‖g′dθ′

and

distg′

(
c(0), c(θ)

) ≤
∫ 2π

θ
‖ċ(θ′)‖g′dθ′.

Adding these equations and dividing by 2 we obtain

‖X(θ)‖g′ ≤ 1
2 lengthg′(c),

which is independent of θ. Given this estimate, the first inequality in the lemma
follows by

‖∂rfc(reiθ)‖g′ =
∥∥∂r

(
(Ec(0)

(
rX(θ)

)) ∥∥
g′

≤ ‖TEc(0)‖g′ · ‖X(θ)‖g′

≤ C
2 lengthg′(c).

The second estimate is more elementary to obtain. We just calculate

‖∂θfc(reiθ)‖g′ = ‖∂θ(expc(0)(r ·X(θ))‖g′

= ‖∂θEc(0)(r · E−1
c(0)(c(θ)))‖g′

= ‖TrXEc(0) · r · TE(X)E−1
c(0)ċ(θ)‖g′

≤ C2‖ċ(θ)‖g′ ,

where we used the uniform bound on Ec(0) and E−1
c(0) as well as the fact that r ≤ 1.

Corollary 3.5 (Isoperimetric Inequality). Keeping our notation, we estimate the
area of the disc fc(D) by

Areag′(fc(D)) ≤ C3

2

(
lengthg′(c)

)2
.

Proof. The area of the disc f(D) is

Areag′(fc(D)) =
∫

(0,1)×(0,2π)

√
det(f∗

c g
′)ij dr ∧ dθ.

We can estimate the determinant of the pulled back metric by

det(f∗
c g

′)ij = ‖fr‖2
g′‖fθ‖2

g′ − g(fr, fθ)
2

≤ ‖fr‖2
g′‖fθ‖2

g′ .
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Combining this with the results of the previous lemma we obtain

Areag′(fc(D)) ≤
∫

(0,1)×(0,2π)
‖fr‖g′‖fθ‖g′dr ∧ dθ

≤
∫

(0,1)×(0,2π)

C3

2 lengthg′(c)|ċ(θ)|dr ∧ dθ

≤ C3

2 lengthg′(c)
∫

(0,2π)
|ċ(θ)|dθ

≤ C3

2

(
lengthg′(c)

)2
.

This isoperimetric inequality will be extended to more general maps in Section 4.4
and will also be used to prove the monotonicity lemma in Section 4.5.
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CHAPTER 4

Holomorphic Curves

We want to discuss holomorphic curves in in the symplectisation (R×M ′,d(etα)).
This discussion prepares the ground for Chapter 6 and 7. Where we will discuss
compactness for families of holomorphic discs and conclude the existence of closed
characteristics from it. In addition to the usual non-compactness in R-direction we
have to deal with the non-compactness of M ′: Our holomorphic curves can not only
escape to −∞ in R-direction but their projection to M ′ can also get arbitrary far
away from the image of their boundary. To handle these problems we refer to Hofer’s
analysis for holomorphic curves for the R-direction and use the structure of M ′ as
a covering space as well as monotonicity phenomena of holomorphic curves.

4.1. An Almost Complex Structure

For the discussion of holomorphic discs which are maps u : D → R × M ′ that
satisfy the Cauchy–Riemann equation, we need to equip (R × M ′, α, g′) with an
almost complex structure J . We require that J is invariant under the R-action,
maps ∂t to the Reeb vector field R of α and coincides with j on ξ = kerα, where j
is as constructed in Section 3.1. Remember that j defines a bundle metric gj on ξ
by

gj := dα(·, j·).

As we have seen in Lemma 3.1, the norm ‖ · ‖j induced by this metric is equivalent
to the restriction of the norm ‖ · ‖g′ defined by the metric g′ to ξ.

Definition 4.1. A smooth map u : D → R ×M ′ defined on the closed unit disc D

is holomorphic if it satisfies the Cauchy–Riemann equation

Tu ◦ i = Ju ◦ Tu

in the interior of the disc, i.e., for all z ∈ Int(D) and v ∈ TzD holds

Tzu(i · v) = Ju(z) · Tzu(v).
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Usually we want to require a boundary condition for holomorphic discs. The
most common condition in our situation will be u(∂D) ⊂ {0} × M ′. If we want
to emphasise this condition we write u : (D, ∂D) → (R × M ′, {0} × M ′). Writing
u = (a, f) with respect to the splitting R×M ′, the Cauchy–Riemann equation takes
the form

{
−da ◦ i = f∗α,

πξTf ◦ i = jf ◦ πξTf,

where πξ denotes the projection onto ξ along R.

Proof. After writing u as (a, f) the Cauchy–Riemann equation attains the form

(
da
Tf

)
◦ i = Tu ◦ i = Ju ◦ Tu = J(a,f) ◦

(
da
Tf

)
.

Splitting TM ′ into R ·R and ξ and using our conditions on J we get

(da ∂t + πRTf + πξTf) ◦ i(·) = J(a,f)(da(·)∂t + πRTf(·) + πξTf(·))
= J(a,f)(da(·)∂t + α

(
Tf(·))R+ πξTf(·))

= da(·)R− α
(
Tf(·)) ∂t + jfπξTf(·).

Comparing the coefficients gives −da◦ i = α(Tf ·) = f∗α and πξTf ◦ i = jfπξTf .

From this formulation of the Cauchy–Riemann equation we see that a is subhar-
monic, i.e., ∆a ≥ 0. To check this we have to use that (by construction of j) the
symmetric form dα(·, j·) is a bundle metric on ξ. Therefore a satisfies a maximum
principle [14, Section 6.4] and the image u(D) of u lies in (−∞, 0] ×M ′. Indeed,

axx := d (da(∂x)) (∂x) = d
(
−da(i2 · ∂x)

)
(∂x)

= −d(f∗α (i · ∂x)) (∂x) = −f∗dα(i · ∂x, ∂x)

= −dα(Tf i · ∂x, T f∂x) = −dα(πξTf i · ∂x, πξTf ∂x)

= −dα(jf · πξTf ∂x, πξTf ∂x) ≥ 0.

Note that the calculation for ayy is analogous.

Lemma 4.2. Let u = (a, f) : D → R ×M ′ be a holomorphic disc. Then

u∗(dt ∧ α) = (a2
x + a2

y)dx ∧ dy

and

f∗dα = 1
2

(
‖fx‖2

gj
+ ‖fy‖2

gj

)
dx ∧ dy,
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where ax := da(∂x) with respect to the canonical basis (∂x, ∂y) of TD and similarly
for ay, fx and fy.

Proof. We make the computation

u∗(dt ∧ α) = da ∧ f∗α

= da ∧ (−da ◦ i)

= −(axdx+ aydy) ∧ (−axdy + aydx)

= a2
xdx ∧ dy − a2

ydy ∧ dx

= (a2
x + a2

y)dx ∧ dy.

For the second equation we begin with

f∗dα = dα(Tf · , T f · )

= −dα(πξTf · , j ◦ j · πξTf · )

= −gj(πξTf · , jπξ · Tf · )

= −gj(πξTf · , πξTf ◦ i · ).

Evaluating this on the basis (∂x, ∂y) we get

f∗dα(∂x, ∂y) = −gj(πξTf∂x,−πξTf∂x) = ‖πξfx‖gj ,

or, after switching the order of ∂x and ∂y,

f∗dα(∂x, ∂y) = −f∗dα(∂y, ∂x) = −(− gj(πξTf∂y, πξTf∂y)
)

= ‖πξfy‖gj .

We extend gj to TM to a pseudometric on TM ′ by precomposing with the projection
on πξ and omit πξ in the following. Adding these equations and dividing by 2 we
obtain

f∗dα(∂x, ∂y) = 1
2

(
‖fx‖2

gj
+ ‖fy‖2

gj

)
,

which leads to the conclusion

f∗dα = 1
2

(
‖fx‖2

gj
+ ‖fy‖2

gj

)
dx ∧ dy.

4.2. Area Growth

We will investigate how much area of a holomorphic disc is contained in an open
cylinder of radius r centred at a point p ∈ M ′. The radius is measured with respect
to the metric g′.

To be more precise, let

u = (a, f) : (D, ∂D) → (R ×M ′, {0} ×M ′)
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be a holomorphic disc, p ∈ M ′ and 0 < t ≤ i0, where 2i0 is a lower bound for the
injectivity radius of the exponential map with respect to g′. We consider the open
solid cylinder over the open t-ball Bg′

t (p), that is R × Bg′

t (p), and, depending on t,
we define

Gt = u−1(R ×Bt(p)) = f−1(Bt(p)).

We assume that the image of ∂D under f lies outside the geodesic ball Bi0(p), i.e.,
f(∂D) ⊂ M ′ \Bi0(p) and therefore that Gt is disjoint from the boundary of the disc,
Gt ∩ ∂D = ∅.

We denote the radial distance function of g′ at p by

r : Bi0(p) −→ [0, i0)

x 7−→ distg′(p, x),

where, as usual, distg′(p, x) denotes the distance between p and x. It is the infimum
of the length over all paths connecting p and x. By [42, Lemma 12] we can use
Gauss’s lemma to show that the pointwise operator norm of Tr with respect to g′

equals 1. The restriction of r to the image of the holomorphic disc can be understood
as the map

F : Gi0 −→ [0, i0)

z 7−→ r(f(z)).

With this function we can characterise the boundary of Gt as ∂Gt = F−1(t).
We denote the set of regular values of F which are not contained in the image
r({πξTf = 0}) by Reg ⊂ [0, i0). Note that by [23, Proof of Lemma 7] the image
r({πξTf = 0}) is a finite set. Indeed, the set {πξTf = 0} is finite. We remark that
f has no critical points on F−1(Reg).

Assume that h is a metric on F−1(Reg) ⊂ C such that the gradient of F is bounded
from above with respect to the metric h, i.e., there exists a constant c0 > 0 with

‖ gradh F‖h ≤ 1
c0
.

Using the techniques that are presented in [31, pp. 27] we obtain a lower bound for
the derivative of the area of a holomorphic curve contained in a slim cylinder.

Lemma 4.3. For all t ∈ Reg the t-derivative of the area of Gt exists and satisfies

(Areah(Gt))
′ ≥ c0 · lengthh(∂Gt),

where

Areah(Gt) =
∫

Gt

√
det(h) dx ∧ dy.
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4.3. Symplectisation

Note that we did not use the structure of our situation in the previous discussion.
We will use it now to find a metric h on F−1(Reg) that admits a bounded gradient
of F and compute the constant c0 for this case. Let T denote the set of all smooth
strictly increasing functions τ : (−∞, 0] → [0, 1] with τ(0) = 1.

For τ ∈ T we equip (−∞, 0]×M ′ with the symplectic form d(τα) = τ ′dt∧α+τdα.
This symplectic form extends to a symplectic form on R ×M ′ by extending τ to a
strictly increasing function in R. Note that the precise form of the extension is not
important since all our holomorphic discs will have image in (∞, 0] ×M ′.

The most common choice for τ ∈ T and the one that we will use later is τ = et.
We observe that J is compatible with d(τα) for all τ ∈ T . That is we obtain a
metric through

gτ := d(τα)(·, J ·) = τ ′(dt⊗ dt+ α⊗ α) + τgj .

We choose h as the conformal metric u∗gτ |F−1(Reg) and show the existence of a c0

with ‖ gradh F‖h ≤ 1
c0

. Moreover, we give a specific formula for c0 only depending
on the R-coordinate of the holomorphic disc. To this end consider the h-unit vector

v =
gradh F

‖ gradh F‖h
and begin by using the definition of the gradient as the unique vector field with
dF (·) = h(gradh(F ), ·)

‖ gradh F‖h =
‖ gradh F‖2

h

‖ gradh F‖h
=
∣∣∣∣dF

(
gradh F

‖ gradh F‖h

)∣∣∣∣ .

Since F = r ◦ f we can use the chain rule and the equality ‖Tr‖g′ = 1 for the
operator norm of r to obtain

|dF (v)| ≤ ‖Tf(v)‖g′ .

The norm induced by g′ is equivalent to the norm ‖ · ‖α induced by gα = α⊗α+ gj
so

‖Tf(v)‖g′ ≤ c1‖Tf(v)‖α,

with c1 as in Lemma 3.3. Comparing gα with gτ along the image of the holomorphic
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curve u = (a, f) we observe

gα ≤ dt⊗ dt+ α⊗ α+ gj

= 1
τ ′ τ

′ · (dt⊗ dt+ α⊗ α) + 1
τ τ · gj

≤ max
a(D)

(
1
τ ′ ,

1
τ

)
[τ ′(dt⊗ dt+ α⊗ α) + τgj ]

= max
a(D)

(
1
τ ′ ,

1
τ

)
gτ .

Applying this estimate to the induced norms we get ‖ · ‖α ≤
√

maxa(D)

(
1
τ ′ ,

1
τ

)
‖ · ‖τ .

Using this we can continue our estimate for ‖ gradh F‖h.

‖ gradh F‖h ≤ c1‖Tf(v)‖α ≤ c1

√
max
a(D)

(
1
τ ′ ,

1
τ

)
‖Tf(v)‖τ .

Using Tu(v) = (da(v), Tf(v)) and

‖Tf(v)‖2
τ ≤ τ ′ · |da(v)|2 + ‖Tf(v)‖2

τ = ‖Tu(v)‖2
τ

we can estimate ‖Tf(v)‖τ by ‖Tu(v)‖2
τ . Which is nothing else but the norm of v

with respect to the metric u∗gτ = h. Since v is an h-unit vector we obtain

‖ gradh F‖h ≤ c1‖Tf(v)‖α ≤ c1

√
max
a(D)

(
1
τ ′ ,

1
τ

)
.

Thus the constant required in Lemma 4.3 is given by

c0 =
1

c1

√
maxa(D)

(
1
τ ′ ,

1
τ

) .

Observe that this constant depends on the R-coordinate of the holomorphic curve.

Remark 4.4. For each τ ∈ T , τ is less or equal to 1 on the R-coordinate of
the holomorphic disc. Therefore 1

τ is always greater or equal to 1. The same is
true for the maximum that appears in the estimate of ‖ gradh F‖h, this implies
that the square root of said value is less or equal to the value itself. All in all,

c1 maxa(D)

(
1
τ ′ ,

1
τ

)
is also an upper bound for ‖ gradh F‖h as presented in [5].

4.4. An Isoperimetric Inequality

As in the previous discussion, we choose τ ∈ T and estimate the area of the
holomorphic curve with respect to the symplectic form d(τα) inside the solid open
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cylinder Bt(p) × R. The symplectic area A is defined by the formula

A(t) :=
∫

Gt

u∗d(τα)

for t ∈ [0, i0]. The isoperimetric inequality in Corollary 3.5 compares the area of
a single disc fc to the length of its boundary. We can use this to estimate A(t) in
terms of the length of the boundary curves u(∂Gt) measured with respect to the
metric

g0 = dt⊗ dt+ gα.

The precise statement is

Lemma 4.5. There exists a positive constant c3 > 0, which only depends on the
geometry of (M ′, g′) such that

A(t) ≤ c3

(
1 + max

Gt

(
τ ′(a)

))(
lengthg0

(
u(∂Gt)

))2

where lengthg0
(u(∂Gt)) is the sum of the lengths of all boundary components.

Proof. The idea of the proof is to use Stokes’ theorem to reduce the question for the
area to a question about length, then fill each boundary component with a disc as
in Section 3.2 and work out the estimate for these special discs.

Let N be the number of connected components of ∂u(Gt). We parametrise the
l-th boundary component ∂u(Gt)l of u(Gt) as (γa,l, γf,l) with respect to the splitting
R × M ′, where γa,l : S1 → R and γf,l : S1 → M ′. The choice of parametrisation
is not important, since the estimates will ultimately be independent of the chosen
parametrisation. A filling disc fl of γf,l is given as in Section 3.2. Using convex
interpolation the map γa,l extends to a disc map al by

al
(
reiθ

)
= r · γa,l(θ) + (1 − r) · γa,l(0),

Then (al, fl) is a disc map with boundary (γa,l, γf,l). We choose orientations for the
boundary components according to the requirements in Stokes’ theorem. Applying
Stokes’ theorem twice yields

A(t) =
∫

Gt

u∗d(τα) =
∫

∂Gt

u∗(τα) =
N∑

l=1

∫

D

(al, fl)
∗d(τα).

We do not have to worry about the choice of orientations, since we will estimate
the integrals with their absolut value. We will treat each boundary component
separately and take the sum later. The integrand equals

(al, fl)
∗d(τα) = τ ′(al) dal ∧ f∗

l α+ τ(al)f
∗
l dα. (4.1)
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For the second summand we have

|τ(al) · f∗
l dα| ≤ |f∗

l dα| = |dα(Tfl∂r, T fl∂θ)dr ∧ dθ|,

where we used τ(al) ≤ 1. Using that dα(·, j·) = gj is a metric, the Cauchy–Schwarz
inequality, the observation that j is a gj-isometry and the equivalence of metrics in
Lemma 3.1, we obtain

dα(Tfl∂r, T fl∂θ) = dα(πξTf∂r, πξTf∂θ)

= gj(πξTf∂r, −jπξTf∂θ)
≤ ‖Tf∂r‖gj ‖j‖gj ‖Tf∂θ‖gj

≤ c2
2‖Tf∂r‖g′‖Tf∂θ‖g′ .

With the estimate from Lemma 3.4 we conclude
∫

D

τ(al) · f∗
l dα ≤ c2

2C
3

2

∫

(0,1]×[0,2π)
lengthg′(γf,l) · ‖γ̇f,l(θ)‖g′dr ∧ dθ

≤ c2
2C

3

2

(
lengthg′(∂Gt,l)

)2
. (4.2)

Since the length of the boundary curves is non-negative and a2 + b2 ≤ (a + b)2 for
non-negative numbers, the sum of these terms over all boundary components can be
estimated by

c2
2C

3

2

(
lengthg′(∂Gt)

)2
,

where lengthg′(∂Gt) :=
∑
l length(∂Gt,l). The other summand τ ′(al)dal ∧ f∗

l α of
(4.1) equals

τ ′(al) · (al,r · α(fl,θ) − al,θ · α(fl,r)
)
.

For the derivatives of al we have

al,r = γa,l(θ) − γa,l(0) ≤ osc(γa,l) ≤ lengthg0
(∂Gt,l)

al,θ = r · γ̇a,l(θ)

where osc denotes the oscillation, i.e., the difference between the maximum and the
minimum of the function. For the terms including α we use that it is bounded by
the definition of a virtually contact structure (Definition 2.10) and that by Lemma
3.4 we then get

α(fl,r) ≤ K · ‖fl,r‖g′ ≤ KC
2 · lengthg′(γf,l)

α(fl,θ) ≤ K · ‖fl,θ‖g′ ≤ KC2 · ‖γ̇f,l‖g′ ,
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where K is a constant as in the definition of a virtually contact structure. In the
following we will write const. for some constant that only depends on the geometry
that will not specify. Inserting all the above estimates we obtain

∫

D

τ ′(al)dal ∧ f∗
l α

≤
∫

(0,1]×[0,2π)
τ ′(al)

(
|al,r| · |α(fl,θ)| + |al,θ| · |α(fl,r)|

)
dr ∧ dθ

≤ const.
∫

(0,1]×[0,2π)
τ ′(al) · lengthg0

(∂Gt,l) · ‖γ̇f,l‖g′ dr ∧ dθ

+ const.
∫

(0,1]×[0,2π)
τ ′(al) · r · |γ̇a,l(θ)| · lengthg′(γf,l) dr ∧ dθ.

We can use r ≤ 1, lengthg′(γf,l) ≤ lengthg0
(∂Gt,l) and τ ′(al) ≤ maxGt τ(a), where a

denotes the R-coordinate of the holomorphic disc u, to make the further estimate

const. · max
Gt

τ(a) · lengthg0
(∂Gt,l) ·

(∫

[0,2π)
|γ̇a,l(θ)|dθ +

∫

[0,2π)
‖γ̇f,l(θ)‖g′dθ

)
.

In the end this leads to the estimate
∫

D

τ ′(al)dal ∧ f∗
l α

≤ const. · max
Gt

τ(a) ·
(
lengthg0

(∂Gt,l)
)2
. (4.3)

Taking the sum over all boundary components we can argue as above and bound
the sum over all squared lengths with the square of their sum, i.e.,

∑

l

(
lengthg0

(∂Gt,l)
)2

≤
(
lengthg0

(∂Gt)
)2
.

Combing the two estimates (4.2) and (4.3) we get

A(t) =
∑

l

∫

D

(al, fl)
∗d(τα)

≤
∑

l

∫

D

|(al, fl)∗d(τα)|

≤
∑

l

c2
2C

3

2

(
lengthg′(∂Gt,l)

)2
+ const. · max

Gt

τ(a) ·
(
lengthg0

(∂Gt,l)
)2

≤ c3 · (1 + max
Gt

τ(a)) ·
(
lengthg0

(∂Gt)
)2
,

for an appropriate choice of the constant c3.
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4.5. Monotonicity

We go back to the discussion that started in Section 4.2. Recall that h denotes
the metric on Gt induced by u∗gτ .

Proposition 4.6 (Monotonicity Lemma). Let

u = (a, f) : (D, ∂D) −→ (R ×M ′, {0} ×M ′)

be a holomorphic disc. Consider p ∈ f(D) ⊂ M ′ and assume that the g′-geodesic
ball Bi0(p) of radius i0 and the image of the boundary circle f(∂D) have empty
intersection. Then

A(t) ≥ m2t2,

for all t ∈ [0, i0], where

A(t) =
∫

f−1(Bt(p))
u∗d(τα)

is the symplectic area functional and m = m(τ(a)) is a positive constant depending
on the R-coordinate of the holomorphic disc u = (a, f).

Proof. At first we want to see that A(t) = Areah(Gt). For this equation we remind
ourselves that

Areah(Gt) =
∫

Gt

√
det(h) dx ∧ dy =

∫

Gt

√
det(u∗gτ ) dx ∧ dy

and by Lemma 4.2 we conclude

A(t) =
∫

Gt

u∗d(τα) =
∫

Gt

[
τ ′(a)(a2

x + a2
y) + 1

2τ(a)
(
‖fx‖2

gj
+ ‖fy‖2

gj

)]
dx ∧ dy.

To proof the equality we have to calculate u∗gτ . Observe that u∗gτ is given by
(
τ ′(a)(a2

x + a2
y) + τ(a)‖fx‖2

gj
0

0 τ ′(a)(a2
x + a2

y) + τ(a)‖fy‖2
gj

)
.

The desired equation follows once we have noticed that due to holomorphicity of u
we have ‖fx‖gj = ‖fy‖gj .

With Lemma 4.3 we conclude

A′(t) =
(
Areah(Gt)

)′

≥ c0 · lengthh(∂Gt).
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By the definition of h this equals

c0 · lengthgτ
(u(∂Gt)).

For the further estimate we have to compare the length induced by gτ with the one

induced by g0. We have already seen that g0 ≤ maxa(D)

(
1
τ ′ ,

1
τ

)
gτ . Therefore the

according lengths satisfy

lengthgτ
(·) ≥ 1√

maxa(D)

(
1
τ ′ ,

1
τ

) lengthg0
(·).

Hence, we can estimate A′(t) from below by

c0√
maxa(D)

(
1
τ ′ ,

1
τ

) lengthg0
(u(∂Gt)).

With Lemma 4.5 we get

lengthg0

(
u(∂Gt)

) ≥
√√√√

1

c3

(
1 + maxa(D)(τ ′)

)A(t)

and therefore

A′(t) ≥ 2m
√
A(t)

for all t ∈ Reg, where

m = m(τ(a)) :=
1

2c1
√
c3

1

maxa(D)

(
1
τ ′ ,

1
τ

)
√

1

1 + maxa(D)(τ ′)
.

Arguing as in [31, p. 28] the estimate A′ ≥ 2m
√
A implies the monotonicity lemma

in symplectisation.

4.6. A Distance Estimate

For the canonical choice τ(t) = et we can compute the monotonicity constant m
as

m(ea) = c4 e− maxD |a|

for a positive constant c4 only depending on the geometry of (M ′, g′). For this
choice of τ we will estimate the maximal distance between the M ′-coordinate f
of the holomorphic curve u = (a, f) and a maximally J-totally real submanifold
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L ⊂ M ′ with compact closure in M ′, where we assume the boundary condition
f(∂D) ⊂ L. The maximal distance is expressed by

distg′(L, f(D)) := sup
f(D)

distg′(L, ·),

where distg′(L, f(z)) measures the minimal length, with respect to g′, of paths con-
necting a point in L with f(z). To be precise

distg′(L, f(z)) = inf
p∈L

inf
γ

lengthg′(γ),

where the second infimum is taken over all path γ starting in p and ending in f(z).

Proposition 4.7. Let L ⊂ (M ′, g′) be a relative compact, J-maximally totally real
submanifold and denote the symplectic energy

∫

D

u∗d(etα)

of a holomorphic disc u by E(u). Then there exist constants K1,K2 depending only
on the geometry of (M ′, g′) such that for all holomorphic discs

u = (a, f) : (D, ∂D) −→ (R ×M ′, {0} × L)

the estimate

distg′

(
L, f(D)

) ≤ max
{
K1emaxD |a|

√
E(u), K2e2 maxD |a|E(u)

}

holds.

Proof. We write the distance dist(L, f(D)) as 2Ni0 + d0 for a unique N ∈ N0 and
d0 ∈ [0, 2i0). The case N = 0 is covered by Proposition 4.6. Indeed if dist(L, f(D)) =
d0 < 2i0 we can choose a point p0 ∈ f(D) \ L whose ball neighbourhood of radius
d0

2 has empty intersection with L. This yields

E(u) =
∫

D

u∗d(etα) ≥
∫

f−1(Bd0/2(p0))
u∗d(etα).

Since d0

2 < i0 we can apply Proposition 4.6 and see

E(u) ≥
∫

f−1(Bd0/2(p0))
u∗d(etα)

≥ m2 d
2
0

4

= m2

4 distg′

(
L, f(D)

)2
.

We have m = c4e− maxD |a| and obtain the estimate in this case.
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For N ≥ 1 we choose points p1, . . . , pN ∈ f(D) with

distg′(L, pl) = dist
(
L, f(D)

)− 2i0(N − l) + i0.

The triangle inequality shows that

distg′(L, pl) − i0 ≤ distg′(L, q) ≤ distg′(L, pl) + i0

for all q ∈ Bi0(pl), so that the distance function distg′(L, ·) maps Bi0 into the shifted
interval

(
distg′(L, f(D)) − 2i0(N − l) , distg′(L, f(D)) − 2i0(N − l − 1)

)
.

We estimate the symplectic energy of the curve from below

E(u) =
∫

D

u∗d(etα)

≥
∫

f−1(∪lBi0
(pl))

u∗d(etα).

Since the i0-balls around pl and pl′ are disjoint for l 6= l′ we can take the sum over
the individual integrals

E(u) ≥
∑

l

∫

f−1
(
Bi0

(pl)
) u∗d(etα).

By our choice of points pl we have that the Bi0(pl) and the image of the boundary
f(∂D) ⊂ L are disjoint, so we can apply Proposition 4.6 and get

E(u) ≥
∑

l

m2i20 = Nm2i20.

Since d ≤ 2i0 and N is at least 1 we have

2Ni0 + d ≤ (2N + 1)i0 ≤ 4Ni0.

Inserting this in the estimate above we get

E(u) ≥ m2i0
4 (2Ni0 + d) = m2i0

4 distg′

(
L, u(D)

)
.

Inserting m = c4 · e− maxD |a| and rearranging the estimate, we obtain the claimed
statement.

Now consider a family uν = (aν , fν) of holomorphic disc maps which satisfy a
common boundary condition u(∂D) ⊂ {0} × L, have uniformly bounded energy
and uniformly bounded R-component aν , i.e., the family stays above a certain slice
{−R} × M ′ for some R > 0. In this case the preceding Proposition 4.7 tells us
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that the maximal distance distg′(L, f(D)) with respect to g′ is bounded from above.
Accordingly, we can apply Gromov’s compactness theorem presented in [16] and [17,
Theorem 1.1] and obtain:

Corollary 4.8. Let L be a relative compact submanifold in M ′ that is maximally
totally real with respect to J and

uν = (aν , fν) : (D, ∂D) → (R ×M ′, {0} × L)

a sequence of J-holomorphic discs. Assume that their projections to the R-coordinate,
denoted by aν , are uniformly bounded and that the family admits a uniform energy
bound, i.e.,

sup
ν∈N

max
D

|aν | < ∞ and sup
ν∈N

E(uν) < ∞.

Assume further that all boundaries u(∂D) are contained in a compact subset of L.
Then there exists a Gromov convergent subsequence of (uν)ν and the limit is a stable
holomorphic disc.

For the notation of stable holomorphic discs and Gromov convergence consider
the detailed work of Urs Frauenfelder [16].

Remark 4.9. Note that no sphere bubbling can occur in Corollary 4.8. That is be-
cause each holomorphic sphere in a symplectic manifold with exact symplectic form
has vanishing energy and is therefore constant. By the definition of the convergence
there cannot be any constant holomorphic spheres in the limit.
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CHAPTER 5

Higher Order Bounds on Primitives

We discuss a covariant derivative for 1-forms and define the induced Ck-norms.
According to these norms we show C∞

loc-convergence on a covering π : (M ′,dα) →
(M,ω) for a sequence of contact forms αν obtained from α by pull back with a
sequence of deck transformations. That is we show compactness for the action of
the deck transformation group of a virtually contact structure.

5.1. Higher Order Covariant Derivatives

Let (M ′, g′) be a connected Riemannian manifold and denote the Levi–Civita
connection by ∇, see for example [9], [10] or [42] for the basic notion of Riemannian
geometry. We extend the concept of covariant derivatives to (0, k)-tensors τ for
k ∈ N in the same way as explained in [18, p. 73] and [32, p. 52]. Let X be a vector
field on M ′. The covariant derivative of τ in the direction of X evaluated on
test vector fields Y1, . . . , Yk is

(∇Xτ)(Y1, . . . , Yk) = X
(
τ(Y1, . . . , Yk)

)−
k∑

j=1

τ(Y1, . . . , Yj−1,∇XYj , Yj+1, . . . , Yk).

This defines a (0, k + 1) tensor ∇τ by

∇τ(X,Y1, . . . , Yk) := (∇Xτ)(Y1, . . . , Yk).

A 1-form α on M ′ can be thought of as a (0, 1)-tensor and we define its k-th co-
variant derivative inductively through

∇kα = ∇(∇k−1α),

where we start with ∇0α = α. It make sense to define the k-th derivative this
way since, as we said, the covariant derivative of a tensor is again a tensor. Let us
illustrate this definition by computing the covariant derivatives of a 1-form α up to
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the second grade:

(∇0α)(Y ) = α(Y )

(∇α)(X,Y ) = ∇(∇0α)(X,Y ) = X
(
α(Y )

)− α(∇XY )

(∇2α)(X1, X2, Y ) = ∇(∇α)(X1, X2, Y ) = (∇X1
∇α)(X2, Y )

= X1
(∇α(X2, Y )

)− ∇α(∇X1
X2, Y ) − ∇α(X2,∇X1

Y )

= X1

(
X2
(
α(Y )

)− α(∇X2
Y )
)

− (∇X1
X2)

(
α(Y )

)
+ α

(
∇∇X1

X2
Y
)

−X2
(
α(∇X1

Y )
)

+ α
(∇X2

(∇X1
Y )
)
.

Using the definition of the k-th covariant derivative we can define a Ck-norm for
1-forms. We begin with the pointwise norm

‖∇kα‖p = sup
∣∣∣∣
(
∇kα

)
p

(v, w1, . . . , wk)
∣∣∣∣

where the supremum is taken over all g′-unit vectors v, w1 . . . , wk ∈ TpM
′. Further

taking the supremum of all pointwise norms over M ′ yields to the C0-norm of ∇kα,
i.e.,

‖∇kα‖C0 := sup
p∈M ′

‖∇kα‖p.

The Ck-norm of α is given by

‖α‖Ck := sup
0≤l≤k

‖∇lα‖C0 .

Remark 5.1. The higher order covariant derivatives we just discussed can naturally
be extended to functions on M ′. For a smooth function f ∈ C∞(M ′) we set ∇0f = f
and ∇kf = ∇k−1df . The Ck-norm extends in the same fashion

‖f‖Ck = sup
0≤l≤k

‖∇lf‖C0 = sup{‖f‖C0 , ‖df‖Ck−1}.

Each Ck-norm establishes a topology on the space of 1-forms on M ′. Considering
the subspace of all 1-forms that are bounded in all Ck-norms we equip it with the
C∞-topology induced by intersecting all Ck-topologies. If we restrict ourselves to
open relatively compact subsets of M ′ this topology leads to the same convergence
as the compact open topology that is discussed in [28, Section 2.1]. The convergence
on these subsets is called C∞

loc-convergence. In the same way we endow the space of
smooth functions that are bounded in each Ck-norm with the C∞-norm inherited
from the Ck-norms. Then C∞

loc-convergence is understood that as for 1-forms.
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Remark 5.2. For an isometry ϕ of (M ′, g′) the generalized theorema egregium as
discussed in [43, Theorem 5.3.1 (ii)] states that

ϕ∗(∇XY ) = ∇ϕ∗Xϕ∗Y

for all smooth vector fields X,Y on M ′.

Lemma 5.3. We can expand the theorema egregium to the covariant derivative for
tensors, i.e.,

ϕ∗(∇τ) = ∇(ϕ∗τ)

for all (0, k)-tensors τ .

Remark 5.4. By an inductive argument we can extend this rule to the k-th covari-
ant derivative of a 1-form α and get

ϕ∗(∇kα) = ∇k(ϕ∗α).

As an isometry ϕ induces a bundle isomorphism on the (k + 1)-fold unit cotangent
bundle ⊕k+1STM ′, i.e.,

‖ϕ∗α‖Ck = ‖α‖Ck .

Proof of Lemma 5.3. Let us begin with the left hand side ϕ∗(∇τ) and evaluate it
on test vector fields X,Y1, . . . , Yk. By definition

ϕ∗(∇τ)(X,Y1, . . . , Yk) = (∇τ)ϕ(·)
(
Tϕ(X), Tϕ(Y1), . . . , Tϕ(Yk)

)
.

Recall that ϕ∗(X) = Tϕ−1(·)ϕ(X ◦ ϕ−1) and therefore Tϕ(X) = (ϕ∗X) ◦ ϕ. This
implies

(∇τ)ϕ(·)
(
Tϕ(X), Tϕ(Y1), . . . , Tϕ(Yk)

)
=
(
(∇τ)(ϕ∗X,ϕ∗Y1, . . . , ϕ∗Yk)

) ◦ ϕ
= ϕ∗((∇τ)(ϕ∗X,ϕ∗Y1, . . . , ϕ∗Yk)

)
.

Taking into account the pulled back function only and using the definition of the
covariant derivative, we have

(∇τ)(ϕ∗X,ϕ∗Y1, . . . , ϕ∗Yk)

= (ϕ∗X)
(
τ(ϕ∗Y1, . . . , ϕ∗Yk)

)

−
∑

j

τ(ϕ∗Y1, . . . , ϕ∗Yj−1,∇ϕ∗Xϕ∗Yj , Yj+1, . . . , ϕ∗Yk).

By the aforementioned theorema egregium we can replace ∇ϕ∗Xϕ∗Yj with ϕ∗∇XYj .
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Putting this back into the equation above gives

ϕ∗((∇τ)(X,Y1, . . . , Yk)
)

= ϕ∗
(
(ϕ∗X)

(
τ(ϕ∗Y1, . . . , ϕ∗Yk)

))

−
∑

j

(
τ(ϕ∗Y1, . . . , ϕ∗Yj−1, ϕ∗∇XYj , Yj+1, . . . , ϕ∗Yk)

) ◦ ϕ

= ϕ∗
(
(ϕ∗X)

(
τ(ϕ∗Y1, . . . , ϕ∗Yk)

))

−
∑

j

(ϕ∗τ)(Y1, . . . Yj−1,∇XYj , Yj+1, . . . , Yk). (5.1)

This finishes the discussion of ϕ∗(∇τ) for the moment. By the definition of the
covariant derivative ∇(ϕ∗τ) satisfies

∇(ϕ∗τ)(X,Y1, . . . , Yk) =
(∇X(ϕ∗τ)

)
(Y1, . . . , Yk)

= X
(
ϕ∗τ(Y1, . . . , Yk)

)

−
∑

j

(ϕ∗τ)(Y1, . . . ,∇XYj , . . . Yk). (5.2)

To show the equality of the expressions (5.1) and (5.2) we take their difference

(
ϕ∗(∇τ) − ∇(ϕ∗τ)

)
(X,Y1, . . . , Yk)

= ϕ∗
(
(ϕ∗X)

(
τ(ϕ∗Y1, . . . , ϕ∗Yk)

))−X
(
ϕ∗τ(Y1, . . . , Yk)

)
.

By the formula for the Lie derivative using the Lie bracket for tensors this equals

ϕ∗((Lϕ∗Xτ)(ϕ∗Y1, . . . , ϕ∗Yk)
)

+


∑

j

τ(ϕ∗Y1, . . . , [ϕ∗X,ϕ∗Yj ], . . . , ϕ∗Yk)


 ◦ ϕ

− (LX(ϕ∗τ)
)
(Y1, . . . , Yk) −

∑

j

ϕ∗τ(Y1, . . . , [X,Yj ], . . . , Yk).

The second and forth term cancel out since [ϕ∗X,ϕ∗Yj ] = ϕ∗[X,Yj ], so we are left
with

(
ϕ∗ (Lϕ∗Xτ) − LX(ϕ∗τ)

)
(Y1, . . . , Yk).

We claim that this term vanishes. Let ψt denote the flow of X, then the local flow
of ϕ∗X is given by ϕ ◦ ψt ◦ ϕ−1. Using the definition of the Lie derivative via flows
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we have

ϕ∗(Lϕ∗Xτ) = ϕ∗
(

d

dt

∣∣∣∣
t=0

(ϕ ◦ ψt ◦ ϕ−1)∗τ
)

=
d

dt

∣∣∣∣
t=0

ψ∗
tϕ

∗τ = LX(ϕ∗τ).

We conclude that ϕ∗(∇τ) = ∇(ϕ∗τ) for all tensors τ and deck transformations ϕ.

5.2. Local Computations

Let x1, . . . , x2n−1 be local coordinates on M ′. Expressing the metric in these
coordinates we obtain g = gij dxi ⊗ dxj and the 1-form α looks like α = αjdxj . In
the following we denote by Γkij the Christoffel symbols of the Levi-Civita connection
∇ with respect to g and use the Einstein summation convention. We can compute
the coefficients (∇α)ij of ∇α as

(∇α)ij = (∇α)(ei, ej)

= ei(α(ej)) − α(∇eiej)

= ei(α(ej)) − α(Γlijel)

= αj,i − Γlijαl,

where αj,i denotes the derivative of the function αj := α(ej) in the direction ei.
With the same reasoning we can express the coefficients of the higher order covariant
derivatives in these local coordinates as

(∇k+1α)ij1...jk+1
= ei(∇kα(ej1 , . . . , ejk+1)) −

k+1∑

l=1

∇kα(ej1 , . . . ,∇eiejl , . . . , ejk+1
)

= (∇kα)j1...jk+1,i −
k+1∑

l=1

Γmijl(∇
kα)j1...m...jk+1

where the m is at the l-th position.

For later discussions it is interesting to have estimates for the Ck-norm of α. We
know that for each tangent space there is an orthogonal matrix A such that (gij)ij =
ATDA with a diagonal matrix D = diag(λ1, . . . , λ2n−1) where λ1 ≤ . . . ≤ λ2n−1 are
the eigenvalues of (gij)ij . Writing v = vi∂i with respect to the local coordinates of
M ′ we obtain ‖v‖2

g′ ≥ λ1|vi|2 for all 1 ≤ i ≤ 2n− 1.
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Evaluating ∇kα on the g′-unit vectors v, w1, . . . , wk we obtain

|∇kα(v, w1, . . . , wk)| =

∣∣∣∣∣∣

2n−1∑

i,j1,...,jk=1

viwj1 . . . wjk(∇kα)ij1...jk

∣∣∣∣∣∣

≤
2n−1∑

i,j1,...,jk=1

|viwj1 . . . wjk | ·
∣∣∣(∇kα)ij1...jk

∣∣∣ (5.3)

≤
2n−1∑

i,j1,...,jk=1

‖v‖g′√
λ1

· ‖w1‖g′√
λ1

· . . . · ‖wk‖g′√
λ1

∣∣∣(∇kα)ij1...jk
∣∣∣ (5.4)

≤
(

2n− 1√
λ1

)k+1

max
i,j1,...,jk

{|(∇kα)ij1...jk |}.

In the last step we used that all vector are of length 1 and that the sum contains
(2n− 1)k+1 summands, each of which is bounded by

(
1√
λ1

)k+1

max
i,j1,...,jk

{|(∇kα)ij1...jk |}.

5.3. Uniform C∞-Bounds – An Example

Let H
+ := {y > 0} be the upper half plane in R

2 and consider M ′ = R × H
+

provided with the metric g′ = dt ⊗ dt + 1
y2 (dx ⊗ dx + dy ⊗ dy). To simplify the

notation we denote the canonical coordinates (t, x, y) ∈ R × H
+ by (x1, x2, x3) in

the differential forms, but keep y as the third component of the base point. The
Christoffel symbols of g′ in these coordinates are

Γkij = 1
y

(
δk3(δi2δj2 − δi3δj3) − δk2(δi2δj3 + δi3δj2)

)
= 1

yγ
k
ij ,

where δij denotes the Kronecker delta and γkij is a constant. Observe that γkij vanishes
if at least one index equals 1. Using the summation convention, the coordinates
(x1, x2, x3) and the Kronecker delta δij we write the 1-form α = dt+ 1

ydx as

(
δi1 + 1

y δi2
)

dxi.

Lemma 5.5. The 1-form α is bounded in all Ck-norms with respect to g′.

Proof. The first covariant derivative of α is

(∇α)ij = 1
y2 δi2δj3 = 1

y2 ∆ij ,

for constants ∆ij that vanish if at least one index equals 1. Inductively we obtain
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the coefficients of the higher order covariant derivatives as

(∇kα)j1...jk+1
= 1

yk+1 ∆j1...jk+1
,

where ∆j1...jk are constants that vanish if at least one index equals 1. Therefore for
all k ∈ N there exists a constant ck > 0 such that for all (k+ 1)-tuples (j1, . . . , jk+1)

|(∇kα)j1...jk+1
| ≤ ck

yk+1 .

Note that the coefficient (∇kα)j1...jk+1
vanishes if at least one index equals 1. This

observation allows us to improve the estimate

‖∇kα‖C0 ≤
(

2n− 1√
λ1

)k+1

max
i,j1,...,jk

{|(∇kα)ij1...jk |},

given in the previous section, to

‖∇kα‖C0 ≤
(

2n− 2√
λ2

)k+1

max
i,j1,...,jk

{|(∇kα)ij1...jk |}.

The reasoning is as follows: In the sum (5.4) each summand that contains an index
equal to 1 vanishes, so only (2n − 2)k+1 not (2n − 1)k+1 terms contribute to the
sum. The same argument shows that only the second and third coefficient of each
vector appear in (5.3). These components satisfy |vi| ≤ 1√

λ2
‖v‖g′ , for i = 2, 3, where

λ2 is the eigenvalue associated to the eigenvalue ∂x2 . Since we consider the explicit
metric g′ = dt⊗ dt+ 1

y (dx⊗ dx+ dy⊗ dy) we have λ2 = 1
y2 . Moreover, we consider

a 3-dimensional manifold and have 2n − 1 = dimM ′ = 3. Combining all these
statements yields

‖∇kα‖C0 ≤
(

2n− 2√
λ2

)k+1

max
i,j1,...,jk

{|(∇kα)ij1...jk |}

=

(
2√
1/y2

)k+1

max
ij1...jk

{|(∇kα)ij1...jk |}

≤ 2k+1 yk+1 ck
yk+1

≤ 2k+1 ck =: Ck.

Since the Ck-norm of α is defined via the C0-norms of the covariant derivatives, we
see that ‖α‖Ck is globally bounded for each k ∈ N0.

Remark 5.6. This example is the universal covering of M = S1 × Σ for a sur-
face Σ with genus greater than 1. Endowing M with the pull-back of the area form
on Σ leads to an odd-symplectic manifold (M,ω) that supports the virtually contact
structure (π : M ′ → M,ω, α, g). Therefore we have found a 3-dimensional virtu-
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ally contact structure whose contact form is Ck-bounded for all k. Taking further
products with hyperbolic surfaces yields higher dimensional examples.

5.4. An Arzelà–Ascoli Argument

Let π : M ′ → M be a covering, g a Riemannian metric and ω an odd-symplectic
form both on M . We lift g and ω to g′ and ω′ via π, respectively and obtain the same
type of structures on M ′. Denote the group of deck transformations of π by G. As
we have seen in Remark 2.18 deck transformations act by odd-symplectomorphisms
on M ′, i.e., ϕ∗ω′ = ω′ for all ϕ ∈ G. The same argument shows that G acts by g′-
isometries, i.e., ϕ∗g′ = g′ for all ϕ ∈ G. Let us assume that the lifted odd-symplectic
form ω′ admits a primitive 1-form α, ω′ = dα.

Now let (ϕν)ν ⊂ G be a sequence of deck transformations and denote the pull-back
of α under ϕν by αν := ϕ∗

να. Since the ϕν are isometries we have ‖αν‖Ck = ‖α‖Ck

by Remark 5.4. By the observation that dαν = ω′ we see that αν − α is closed.

Proposition 5.7. We assume that the base manifold M is closed and that for all
k ∈ N there exist Ck > 0 such that

‖α‖Ck < Ck.

Then αν has a convergent subsequence in C∞
loc(M

′).

Proof. We have already observed that the deck transformation group acts by odd-
symplectomorphisms. Therefore the form αν − α is closed for all ν ∈ N. Let us for
the moment assume that it is also exact for all ν ∈ N, i.e., there exists a sequence
of primitive functions fν with dfν = αν − α and f(o) = 0 where o is any chosen
base point of M ′. We claim that C∞

loc-convergence of fν up to subsequence implies
the same convergence for αν . Indeed if fν converges to f with respect to the C∞

loc-
topology it follows that dfν converges to df and therefore

αν − α = dfν
C∞

loc−→ df,

so αν converges to α + df . To finish the proof in the case that αν − α admits a
global primitive we will show convergence of fν using the Arzelà–Ascoli theorem.
Afterwards we will discuss how to conclude convergence on αν in the general case.

To apply the Arzelà–Ascoli theorem we have to show that the sequence fν is
uniformly bounded and equicontinuous. If the base manifold M is compact, the
cover (M ′, g′) is geodesically complete [10, Theorem I.7.2]. An application of the
Hopf–Rinow theorem [10, Theorem I.7.1] shows that for any point p ∈ M ′ we can
find a g′-unit speed geodesic c : [0, T ] → M ′ with c(0) = o and c(T ) = p realising the
distance between o and p. The mean value theorem applied to fν along the curve c
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yields a tν0 ∈ (0, T ) with

fν(p) − fν(o)

T
= Tc(tν

0
)fν(ċ(t

ν
0)).

By the choice of fν holds fν(o) = 0. This implies that fν(p) is at most dist(o, p) ·
‖Tc(tν

0
)fν‖g′ . So we have

‖fν‖C0(Br(o)) ≤ r · ‖dfν‖C0(Br(o)) ≤ 2rC0.

Since the right hand side does no longer depend on ν, we have found a bound
of fν |Br(o) that is uniform in ν. An analogous argument show equicontinuity for
fν |Br(o) by replacing o with any q ∈ Br(o). By the Hopf–Rinow theorem the ball

Br(o) is compact so we can apply the Arzelà–Ascoli theorem and obtain a subse-
quence of fν that converges on Br(o) with respect to the C0-topology. The balls
Br(o) are a compact exhaustion of M ′ so we deduce

fν
C0

loc−→ f

up to choosing a subsequence.

For the higher order convergence we observe that

‖dfν‖Ck = ‖αν − α‖Ck ≤ ‖αν‖Ck + ‖α‖Ck = 2‖α‖Ck < 2Ck

for all k, where we used the condition that the Ck-norm of α is bounded and that
the deck transformations act by isometries, see Remark 5.4. By our definition of the
Ck-norm in Section 5.1 we have

‖fν‖Ck(Br(o)) ≤ max{2rC0, 2Ck−1}.

If the closure Br(o) of Br(o) is contained in a coordinate chart domain we can think
of Br(o) as a bounded, open subset of R2n−1. In this case, [2, Theorem 8.6] states
that the embedding operator

Ck(Br(o)) →֒ Ck−1(Br(o))

is compact. By the definition of a compact operator this shows that the Ck-bounds
of fν imply convergence of a subsequence on Br(o) in the Ck-topology. Taking
successive subsequences and invoking a diagonal sequence argument shows C∞

loc-
convergence on Br(o) up to subsequence and it turns out that the limit is indeed
smooth.

If Br(o) is not contained in a chart domain, we cover it by finitely many chart
domains say B1, . . . , Bl. Applying the discussion above to these chart domains suc-
cessively, we obtain a subsequence of fν that converges on all Bi and hence on Br(o).
A diagonal sequence argument applied to an exhausting sequence {Br(o)}r∈N of M ′
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shows C∞
loc(M

′)-convergence up to subsequences. This ends the discussion for the
case where αν − α admits a global primitive.

If the 1-form αν−α does not admit a global primitive, we work with an exhaustion
by compact sets covered by chart domains as we did in the end of the argument
above. To be precise on this, let B ⊂ M ′ be a bounded open ball such that B
is contained in a chart domain. By the Poincaré lemma we can select primitive
functions fν of (αν − α)|B on B that vanish at the center of B. Arguing as in the
case above we can select a subsequence of αν that converges on B to a 1-form αB
in C∞. We consider the sequence of open subsets Br(o) for r ∈ N that exhausts M ′

and the closure of each of these subsets is compact by the Hopf–Rinow theorem.
Cover the set Br(o) by finitely many chart domains B1

r , . . . , B
kr
r . As before we can

find a subsequence of αν that converges on B1
r in C∞. Taking a further subsequence

we can achieve convergence on B1
r ∪B2

r . Repeating the finitely many times we obtain
a subsequence of αν that converges on Br in C∞. This can be done for all r ∈ N so
we end up with a sequence of subsequences each of which converges on a set Br(o).
Taking a diagonal sequence we obtain C∞

loc- convergence on M ′ as we wanted.

Corollary 5.8. Assume that the base manifold M is closed and the Ck-norm of α
is finite for some k ≥ 1. Then αν admits a subsequence αµ converging in Ck−1

loc (M ′)
and its limit α0 is a 1-form of class Ck−1.

5.5. Induced Convergence on Complex Structures

We further specify our situation and assume that (π : M ′ → M,ω, α, g) is a
virtually contact structure. Let ϕν be a sequence of deck transformations and use
the notation αν = ϕ∗

να and ξν = kerαν . Note that ω′ = π∗ω equals the exterior
derivative dαν of αν and therefore defines a symplectic form on ξν by restriction.
As discussed before we find endomorphisms Φν : ξν → ξν with

ω′ = g′(Φν(·), ·) on ξν

for all ν ∈ N. These define complex structures jν on (ξν , ω′) by jν := Φν ◦
(√

−Φ2
ν

)−1

which induce a bundle metric gjν on ξν through gjν := ω′(·, jν ·), see Section 3.1 for
details. We extend these structures to the symplectisation R × M ′ as hinted at
in Section 4.1. Let t denote the R-coordinate of the symplectisation and define a
sequence of non-degenerate 2-forms ην by

ην := dt ∧ αν + ω′

whose exterior derivatives

dην = −dt ∧ dαν = −dt ∧ ω′
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coincide for all ν ∈ N. We extend Φν to an endomorphism field Ψν on R × M ′

that is uniquely defined by demanding its invariance under the R-translation, that
it restricts to Φν on ξν and that it maps ∂t to the Reeb vector field Rν of αν as well
as Rν to −∂t. By splitting the tangent space of R ×M ′ into the R-component, the
Reeb direction and the contact plane, i.e., T (R × M ′) = R∂t ⊕ RRν ⊕ ξν , we can
split Ψν into the map i ⊕ Φν . Using this splitting we see that the almost complex

structure Jν induced by Ψν through Jν := Ψν ◦
(√

−Ψ2
ν

)−1
splits as i ⊕ jν . This Jν

is the unique R-invariant almost complex structure that maps ∂t to Rν and restricts
to jν on ξν .

Note that αν = −dt ◦ Jν and therefore

ην(·, Jν ·) = dt⊗ dt+ αν ⊗ αν + gjν .

Using the splitting of the tangent space one checks that ην(·, Jν ·) is positive definite
and hence a metric on R ×M ′. In a similar fashion we define

gν := dt⊗ dt+ αν ⊗ αν + g′|ξν ,

these two metrics only differ on the ξν-component where their behaviour on ξν is
described. The restriction of g′ to ξν is given by

g′|ξν (v, w) = g′(v − αν(v)Rν , w − αν(w)Rν
)

for all v, w ∈ TM ′ since v − αν(v)Rν gives the projection of v to ξν along Rν and
therefore leads to our chosen splitting. The endomorphism field Ψν defined above is
the unique solution to the equation ην = gν(Ψν ·, ·).
Lemma 5.9. Assume that α satisfies the lower bound condition |α(v)| ≥ K‖v‖g′

for all v ∈ ker dα and a positive constant K. Let αν = ϕ∗
να be a sequence of contact

forms converging to α0 in C∞
loc(M

′). Then the limit α0 is a contact form and the
sequence of associated almost complex structures Jν converges to an almost complex
structure J0 in C∞

loc(R × M ′). Moreover, J0 is the almost complex structure that is
associated to α0 by the construction above.

Sketch of Proof. We divide the proof into several parts. First we show that α0 is
indeed a contact form. This part uses that dαν equals ω′ for all ν and by C∞

loc-
convergence the same is true for dα0. Since all ϕν are isometries the lower bound
|αν(v)| ≥ c‖v‖g′ holds for all ν and all v ∈ kerω′ and hence for the limit 1-form α0.
So α0 does not vanish on the kernel of ω′ and therefore α0 ∧ (dα0)n−1 = α0 ∧ (ω′)n−1

is a volume form.
In a second step we show that the Reeb vector fields Rν converge to the Reeb

vector field R0 of α0. To do so we note that the sequence ην converges to η0 :=
dt ∧ α0 + ω′ in C∞

loc(R × M ′) and that Rν is the unique R-invariant vector field
satisfying ιRνην = −dt. Using local coordinates and expressing the coefficients of
Rν and R0 in terms of the coefficients of ην and η0, respectively, we obtain the
convergence of Rν .
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This implies that the sequence g′|ξν → g′|ξ0
converges in C∞

loc(R × M ′). The
reasoning is as follows. Let πξν denote the projection of TM ′ to ξν along Rν . This
projection extends as Pν := 0 ⊕ πξν to T (R × M ′). Ignoring the subscript ν we
express the coefficients of g′|ξν as

(g′|ξν )ij = P ki P
l
j(g

′)kl.

Since πξν (v) = v − αν(v)Rν we obtain have Pi := P (∂i) = ∂i − αiR and the k-
th coordinate of this vector is P ki = δik − αiR

k. The convergence of αν and Rν
imply the convergence of the projection Pν : T (R × M ′) → ξν to the projection
P0 : T (R ×M ′) → ξ0. This implies the convergence of g′|ξν to g′|ξ0

.
The last ingredient in the proof is that the bundle isomorphisms Ψν converge to

Ψ0 in C∞
loc where Ψ0 is induced by α0 as described above. The convergence we just

discussed implies

gν
C∞

loc−→ dt⊗ dt+ α0 ⊗ α0 + g′|ξ0
.

As remarked, Ψν is uniquely defined by ην = gν(Ψν ·, ·) and can therefore be ex-
pressed by η and gν . In local coordinates this is given by Ψj

i = ηilg
lj
ν . Hence, the

convergence of gν and ην gives the convergence Ψν → Ψ0 in C∞
loc.

The convergence of the almost complex structures follows since

Jν = Ψν ◦
(√

−Ψ2
ν

)−1

and all operations on the right hand side are continuous.

Remark 5.10. In a situation as above we write (αν , Jν) → (α0, J0) where Jν and
J0 are the initially constructed almost complex structures associated to αν and
α0, respectively. In the proof of Lemma 5.9 we explicitly used C1

loc-convergence
to conclude that the differentials of the 1-forms αν converge to the differential of
the limit 1-form α0, which then still equals ω′. However, note that we did not use
any higher regularity assumption on the convergence. Consequently we can require
Ckloc-convergence for some k ≥ 1 in the lemma and end up with Ckloc-convergence
for Jν .

Combining this with Corollary 5.8 we get the following statement: Assume that
the Ck-norm of α is finite for some k ≥ 2, then the sequences αν and Jν converge in
Ck−1

loc to α0 and J0, respectively, and the Ck−1-norm of α0 is finite. Additionally, if
α satisfies the lower bound assumption the same is true for α0. That is if we start
with Ck-bounds on α for k ≥ 3 we obtain at least C2-bounds for the limit 1-form α0

and a further application of Corollary 5.8 to αν0 := ϕ∗
να0 for a new sequence of deck

transformations ϕν yields a subsequence of αν0 converging to a 1-form α∞ in Ck−2
loc .

Since we started with k ≥ 3 we also obtain convergence for the associated almost
complex structures Jν → J0 and Jν0 → J∞ in Ck−1 and Ck−2, respectively. The
significance of this Remark lies in the discussion at the end of Section 6.5, where we
pass from C∞-bounds to C3-bounds.

42



Remark 5.11. In Section 4.1 we defined the almost complex structure J on R×M ′

as i⊕ j with respect to the splitting T (R×M ′) = (R⊕R ·R)⊕ξ. Note that J equals

J = Ψ ◦
(√

−Ψ2
)−1

,

where Ψ is the bundle endomorphism defined by

η = dt ∧ α+ ω′ =
(
dt⊗ dt+ α⊗ α+ g′|ξ

)(
Ψ(·), ·).

The claimed equality for J follows from the observation Ψ = i ⊕ Φ where Φ was
constructed in Section 4.1.

Let Fν be the diffeomorphism aν × ϕν on R ×M ′, where aν is the translation by
a real number aν and ϕν is a sequence of deck transformations. In Section 6 we will
encounter diffeomorphisms like this again. We claim that

Jν = F ∗
ν J

where Jν is the almost complex structure associated to αν = ϕ∗
να. A quick com-

putation shows F ∗
ν η = dt ∧ αν + ω′ = ην . Recall that the projection to ξ along R

is given by πξ(v) = v − α(v)R and that g′|ξ equals (πξ)∗g′. Using the equation
πξ ◦ Tϕν = Tϕν ◦ πξν we obtain

ϕ∗
ν(g

′|ξ) = ϕ∗
νπ

∗
ξg

′ = π∗
ξν
ϕ∗
νg

′ = π∗
ξν
g′ = g′|ξν .

Therefore we have

F ∗
ν (dt⊗ dt+ α⊗ α+ g′|ξ) = gν .

Adding these result we get

gν
(
Ψν(·), ·

)
= ην = gν

(
F ∗
νΨ(·), ·),

where F ∗
νΨ = (TFν)−1ΨTFν . But since Ψν is uniquely characterized by this equa-

tion we come to the conclusion that Ψν = F ∗
νΨ. Indeed,

(ην)p = (F ∗η)p = ηF (p)(TF ·, TF ·)
= (dt⊗ dt+ α⊗ α+ g′|ξ)F (p)(ΨTF ·, TF ·)

and by the definition of the pull back

(ην)p =
(
F ∗(dt⊗ dt+ α⊗ α+ g′|ξ)

)
)p
(
(TF )−1ΨTF · , ·)

= gν(F
∗Ψ · , ·).

For the second claim we can use that the square root of the conjugate of a matrix A
is the conjugate of the square root of this matrix, i.e.,

√
CAC−1 = C

√
AC−1. We
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use this to observe

Jν = Ψν ◦
(√

−Ψ2
ν

)−1

= (TFν)
−1ΨTFν

(√
−(TFν)−1Ψ2 TFν

)−1

= (TFν)
−1Ψ

(√
−Ψ2

)−1
TFν

= F ∗
ν J.
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CHAPTER 6

Compactness

Let (π : M ′ → M,α, ω, g) be a virtually contact structure and J the almost
complex structure on R × M ′ constructed in Section 3.1 and 4.1. Let o ∈ M ′ be
a base point of the covering. Denote the group of deck transformations by G and
assume that it acts transitively on the fibres of π, that is for every p ∈ M and all
x, y ∈ π−1(p) there exists a ϕ ∈ G with ϕx = y. A covering π with transitive deck
transformation group is called regular. We assume that for any sequence (ϕν)ν∈N

of deck transformations the induced sequence of contact forms αν = ϕ∗
να has a sub-

sequence converging in C∞
loc. As mentioned before, the corresponding subsequence

of Jν also converges in C∞
loc, see Lemma 5.9. Let α0 be an accumulation point of αν .

As pointed out in Remark 5.10, the sequence ψ∗
να0 and the associated sequence of

almost complex structures have converging subsequences for all sequences of deck
transformations ψν . We denote their limits by (α∞, J∞). We consider the metric
g′

0 := dt⊗ dt+ g′ on R ×M ′.
Let uν = (aν , fν) : (D, ∂D) → (R ×M ′, {0} × L) be a sequence of J-holomorphic

discs with boundary in an open relatively compact subset KL of a maximally J-
totally real submanifold L ⊂ M ′. We assume that the Hofer energy

EHofer(u) = sup
τ

∫

D

u∗d(τα)

is uniformly bounded by some positive constant E > 0 for all u = uν . The supremum
is taken over all smooth strictly increasing functions τ : R → [0, 1] with τ(0) = 1.

The aim of this chapter is to prove the following relation between contractible
closed characteristics and the compactness of moduli spaces of holomorphic discs.

Proposition. In the situation described above we assume that the C3-norm of α de-
fined in Section 5.1 is finite. If (M,ω) has no contractible closed characteristic, then
uν has a Gromov converging subsequence that converges to a stable J-holomorphic
disc with boundary on KL ⊂ L whose underlying bubble tree consists of discs only.

As mentioned before, the maximum principle applied to the subharmonic function
a tells us that the image of the holomorphic curve lies in (−∞, 0] × M ′. Moreover
E. Hopfs boundary value lemma, see [14, Section 6.4.2], implies that 0 is a regular
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value of a. By Stokes theorem we have
∫

D

u∗d(τα) =
∫

∂D
f∗α

for all functions τ with τ(0) = 1. The same equation holds for the symplectic energy
E(u) =

∫
D
u∗d(τα), which therefore is also bounded by E for all u = uν .

We will carry out a bubbling off analysis for this situation similar to the one
described in [20,21]. The issue in our setup is the non-compactness of M ′.

The proposition will be used in Section 7.1, where we will examine several condi-
tions on M and M ′, respectively, that lead to non-compactness and in the end to
the existence of closed contractible characteristics on M .

6.1. Strategy of Argument

The idea is to argue by contradiction. We assume that we have a sequence of holo-
morphic discs uν = (aν , fν), subject to the assumptions above, that does not admit
a converging subsequence and want to show that this yields a closed contractible
characteristic of (M,ω).

Recall that Corollary 4.8 said that uniform bounded energy and uniform bounded
R-component of a sequence of holomorphic discs uν : (D, ∂D) → (R×M ′, {0} ×KL)
result in a converging subsequence. Our sequence has uniformly bounded energy by
assumption, so it cannot admit a uniformly bounded R-component, i.e.,

sup
ν

max
z∈D

|a(z)| = ∞.

In Section 6.2 we will show that in this situation the sequence of gradients ∇uν is un-
bounded in the g′

0-norm. We will consider a sequence of points zν with ‖∇uν(zν)‖g′
0

=
maxz∈D ‖∇uν(z)‖g′

0
and rescale the holomorphic disc restricted to a small neighbour-

hood of zν . These rescaled holomorphic disc will either converge to a finite energy
plane v : C → R×M ′ or a finite energy half-plane v : (H, ∂H) → (R×M ′, {0}×KL).

If the limit is a finite energy plane we will reparametrise it to a cylinder and
argue that it yields a closed α∞-Reeb orbit that projects to a closed contractible
characteristic with respect to the covering map π : M ′ → M . See Section 6.3 for
details.

If the limit is a finite energy half-plane we will show that it extends to a holomor-
phic disc, see Section 6.4.

In Section 6.5 we will combine these results to conclude the proposition. By the
assumption of aperiodicity we can rule out that the rescaled maps in Section 6.2
converge to a finite energy plane. The last step in the proof is to argue that we
find a converging subsequence of uν if all rescaled maps in Section 6.2 converge to
finite energy half-planes. Thus, aperiodicity implies the existence of a converging
subsequence.
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6.2. Bubbling Off Analysis

We want to study non-compactness phenomena for families of holomorphic discs.
Let

uν = (aν , fν) : (D, ∂D) → (R ×M ′, {0} ×KL)

be a sequence of holomorphic discs with uniformly bounded energy and boundary
on the open relatively compact set KL ⊂ L inside the maximally J-totally real
submaifold L, as described in the beginning of this chapter. We assume that this
sequence does not admit a Gromov converging subsequence.

In case the sequence of real parts |aν | is uniformly bounded we can apply Corol-
lary 4.8 and obtain a Gromov convergent subsequence of uν whose limit is a stable
holomorphic disc whose underlying bubble tree consists of discs only. Hence, it suf-
fices to discuss the case that |aν | is not bounded. This is the case if and only if
the sequence of maxima max |aν | is not bounded. In this case we find a sequence
of points ζν ∈ D such that aν(ζν) tends to −∞. By the mean value theorem there
exists a sequence of points z′

ν ∈ D on the line segment connecting ζν and 1 in D with

aν(ζν) = Tz′
ν
aν · (ζν − 1).

Actually, the mean value theorem yields a point z′
ν on said line segment with aν(ζν)−

aν(1) = Tz′
ν
aν(ζν − 1), but aν(1) equals 0 by our boundary condition. Since the

diameter of the disc D equals 2 we obtain

|aν(ζν)| ≤ |Tz′
ν
aν | · |ζν − 1| ≤ ‖Tz′

ν
uν‖g′

0
· 2

with respect to the metric g′
0 = dt⊗dt+g′. Hence ‖Tuν‖g′

0
is not uniformly bounded.

By passing to a subsequence, still denoted by uν , and writing

‖∇uν‖g′
0

=
√

‖∂xuν‖2
g′

0

+ ‖∂yuν‖2
g′

0

for ‖Tuν‖g′
0
, we can find a sequence zν ∈ D with

Rν := max
D

‖∇uν‖g′
0

= ‖∇uν(zν)‖g′
0

→ ∞.

By the compactness of the disc we can pass to a converging subsequence zν → z0

again without changing the notation. The points of this sequence are called bubble
points. For the further discussion we distinguish the cases where z0 lies in the
interior B1(0) of the disc D and on the boundary ∂D of the disc.

Before we begin the discussions we need two more terms.

Definition 6.1. A non-constant holomorphic map v defined on C with finite energy
is called finite energy plane.

A non-constant holomorphic map v defined on H with finite energy is called finite
energy half-plane.
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Case 1

We begin with the discussion of z0 ∈ B1(0).

Lemma. Let uν be a sequence of holomorphic discs and zν a sequence of bubble
points with ‖∇uν(zν)‖g′

0
= maxD ‖∇uν‖g′

0
=: Rν . Then there exists an ε > 0 and a

sequence of holomorphic discs

vν : BRνε(0) → R ×M ′,

obtained from uν |Bε(zν) by rescaling and composing with an g′
0-isometry, such that

vν converges to a holomorphic map v : C → R × M ′. Moreover, v is non-constant
and has finite energy, i.e., v is a finite energy plane.

Proof. We assume that all zν lie in the interior B1(0), possibly after passing to
yet another subsequence. Therefore, we can choose an ε > 0 such that Bε(zν) is
contained in B1(0) for all ν ∈ N. Let D ⊂ M ′ be a fundamental domain of the
covering π that contains the base point o ∈ M ′, see [10, §IV.3] for the definition and
properties of a fundamental domain. We choose a sequence ϕν ∈ G of deck trans-
formations whose inverses map fν(zν) into the closure of the fundamental domain,
i.e., ϕ−1

ν (fν(zν)) ∈ D. To obtain uniform gradient bounds for the holomorphic discs
we consider the rescaled sequence vν = (bν , hν) : BRνε(0) → R ×M ′ defined via

bν(z) := aν
(
zν + z

Rν

)
− aν(zν)

and

hν(z) := ϕ−1
ν

(
fν
(
zν + z

Rν

))

for all z ∈ BRνε(0). Observe that the image of vν coincides with the image of uν |Bε(zν)

shifted by the map −aν(zν) × ϕ−1. Each rescaled function satisfies vν(0) ∈ {0} × D
and BRνε(0) is the maximal domain where we can ensure existence. Introducing a
new function Fν = aν(zν) × ϕν , i.e., Fν(t, p) = (t + aν(zν), ϕν(p)), we can express
the rescaled function by vν = F−1

ν ◦ uν ◦ ψ where ψ is the Möbius transformation

z 7→ zν + z
Rν
.

Observe that the function Fν is an isometry with respect to g′
0 = dt ⊗ dt + g′,

since any deck transformation ϕ is a g′-isometry, see Section 5.4. Writing vν in this
way shows that vν is indeed obtained form uν |Bε(zν) by rescaling and composing
with an isometry. Moreover, since Fν is an isometry with respect to g′

0 we obtain
‖∇vν(0)‖g′

0
= 1 and ‖∇vν‖g′

0
≤ 1 on BRνε(0) for all ν ∈ N using the chain rule

and Rν = maxD ‖∇uν‖g′
0
. Further, vν is Jν holomorphic with respect to the almost
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complex structure Jν = F ∗
ν J = TF−1

ν ◦ J ◦ TFν , since

Tv ◦ i = TF−1
ν ◦ Tuν ◦ Tψ ◦ i = TF−1 ◦ Tuν ◦ i ◦ Tψ

= TF−1
ν ◦ J ◦ Tuν ◦ Tψ = TF−1

ν ◦ J ◦ Tuν ◦ Tψ
= JνTvν .

Associated to the sequence ϕν of deck transformations we obtain a sequence of
contact structures αν = ϕ∗

να. Note that by Remark 5.11 the almost complex struc-
ture associated to αν in Section 4.1 equals Jν . Remember that in the beginning
of the chapter, we made the assumption that αν admits a converging subsequence
and therefore the associated sequence of almost complex structures Jν converges,
see Lemma 5.9. We denote the C∞

loc-limit of these subsequences by α0 and Jν , re-
spectively. Finally notice that, by the transformation formula and non-negativity of
u∗
νd(τα), the Hofer energy of the rescaled function

sup
τ

∫

BRν ε(0)
v∗
νd(ταν)

is uniformly bounded by E thanks to the energy bound on uν Again the supremum
is taken over all smooth strictly increasing functions τ : R → [0, 1] with τ(0) = 1.

For k ∈ N choose N0 = N0(k) such that Bk(0) ⊂ BRνε(0) for all ν ≥ N0, this is
possible since Rν tends to infinity. Using the uniform gradient bound ‖∇vν‖g′

0
≤ 1

we obtain that the g′
0-distance between vν(0) and vν(z) is at most k for all z ∈ Bk(0)

and ν ≥ N0, i.e., distg′
0
(vν(0), vν(z)) < k. In other words, for all z ∈ Bk(0) the image

point vν(z) is contained in the compact set Bk(vν(0)) ⊂ R ×M ′.

In [10, p. 117] the notion of cut locus of a covering π : M ′ → M are introduced
and it is explained how a to choose a fundamental domain D of π such that π(D)
equals the complement of the cut locus of π(o) where o ∈ M ′ denotes the base
point of M ′. Naïvely speaking we think of a tangential cut locus C(p) of p as all
the points in TpM where the exponential map at p first fails to be injective and
the cut locus as the image of this set under the exponential map. As explained
in [10, Theorem III.2.2], the domain D(p) bounded by the tangential cut locus has
the property expp(D(p)) = M \ expp(C(p)). The mentioned fundamental domain is
obtained by applying the exponential map of M ′ to the preimage of D(p) under Tπ.
We set

D := expo

(
Tπ−1

(
D
(
π(o)

)))
.

Indeed we can construct a fundamental domain in this fashion since the exponential
map restricts to a diffeomorphism from D(o) to D and C(o) is contained in the
closure of D(o).

In our situation the base manifold (M, g) is compact and hence its diameter d0

is finite. This implies that the g′-distance of o and hν(0) is bounded by d0 as
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hν(0) lies in the closure of the fundamental domain whose diameter is bounded by
the diameter of M , since D is isometric to M \ C(π(o)). Combining this with the
previous observation that vν(Bk(0)) ⊂ Bk(vν(0)) = Bk((0, hν(0))), we achieve

vν
(
Bk(0)

)
⊂ [−k, 0] ×Bd0+k(o).

Note that the last factor is compact by the Hopf–Rinow theorem. By the definition
of C∞

loc-convergence we have that the restriction of (αν , Jν) to [−k, 0] × Bd0+k(o)
converges with all derivatives to the restriction of (α0, J0).

We want to apply the elliptic regularity explained in [37, Theorem B.4.2] to the
sequence vν : BRνε(0) → R ×M ′: To do this we quote the theorem and discuss the
setting therein. In the following statement Σ is an oriented 2-dimensional manifold,
N is a not necessarily compact symplectic manifold and J l(N,N ′) denotes the set
of all almost complex structures of class l on N for which the closed submanifold N ′

is totally real. Otherwise the theorem uses the notation of this chapter.

Theorem 6.2 ([37, Theorem B.4.2]). Fix an l ∈ N≥2 ∪ {∞} and a number p > 2.
Let Jν ∈ J l(N,N ′) be a sequence of almost complex structures on N converging to
J ∈ J l(N,N ′) in the C l-topology and jν be a sequence of complex structures on Σ
converging to j in the C∞-topology. Let Uν ⊂ Σ be an increasing sequence of open
subsets whose union is Σ and uν : Uν → N be a sequence of (jν , Jν)-holomorphic
curves of class W 1,p such that

uν(Uν ∩ ∂Σ) ⊂ N ′.

Assume that for every compact set Q ⊂ Σ (with smooth boundary) there exists a
compact set K ⊂ N and a constant c > 0 such that

‖duν‖Lp(Q) ≤ c, uν(Q) ⊂ K

for ν sufficiently large. Then there exists a subsequence of uν which converges in
C l−1-topology on every compact subset of Σ.

Ideally we would apply this theorem for Σ = C, Uν = BRνε(0), N = R ×M ′ and
the functions vν : BRνε(0) → R×M ′. Unfortunately we have only C∞

loc-convergence
of the almost complex structures on R × M ′. To avoid this problem we perform a
little trick. We will apply the theorem to Σ = Bk(0) and Uν = BRνε(0) ∩ Bk(0)
for each k ∈ N and the functions vν restricted to Uν . This will yield subsequences
vkν : Bk(0) → (−k, 0) ×Bd0+k(o) converging to a J0-holomorphic map vk : Bk(0) →
(−k, k) × Bd0+k(o) in C∞

loc-topology. Taking a diagonal sequence leads to a J0-
holomorphic map v : C → R ×M ′ that is the C∞

loc-limit of the vν .
We give more details on the application of Theorem 6.2. As hinted at above

we consider the 2-manifold Σ = Bk(0) and the exhausting sets Uν = BRνε(0) for
a fixed k. The sequence jν of complex structures on Bk(0) constantly equals the
standard complex structure i. The Jν holomorphic maps vν |Uν have image in the
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relative compact open set (−k, 0)×Bd0+k(o), where the almost complex structures Jν
converge to J0 in C∞-topology. Thus we choose N = (−k, 0) ×Bd0+k(0). Moreover,
the maps vν extend to smooth functions on compact sets and hence they are of class
W 1,p. It remains to show the condition that for every compact subset Q ⊂ Bk(0)
there exists a compact subset K ⊂ (−k, 0) × Bd0+k(0) and a constant c > 0 such
that

‖dvν‖Lp(Q) ≤ c and uν(Q) ⊂ K

for ν sufficiently large. Since we have the uniform gradient bound ‖∇vν‖g′
0

≤ 1 we
can take the constant c in the first estimate to be the area of Q. For the second
statement we can use that Q is contained in some ball BR(0) for an R < k and
therefore its image is contained in [−R, 0] ×Bd0+R(0) =: K which is compact. Now
the theorem gives us a subsequence of vkν that converges on every compact subset
to the restriction of a holomorphic function vk : Bk(0) → (−k, 0) × Bd0+k(0) with
respect to the C∞-norm, i.e., in C∞

loc-topology.

By a variant of Fatou’s lemma [33, VI, Corollary 5.7] for convergent sequences we
obtain an energy estimate for the limit function v. Namely we have for all k ∈ N

and all smooth strictly increasing functions τ : R → [0, 1] with τ(0) = 1 that
∫

Bk(0)
v∗d(τα0) =

∫

Bk(0)
lim
ν→∞

v∗
νd(ταν)

≤ lim inf
ν→∞

∫

Bk(0)
v∗
νd(ταν) ≤ E.

where the last step used the uniform energy bound on vν that carries over from
u, by the transformation theorem. Taking the limit over k and the supremum we
conclude that v has finite Hofer energy

sup
τ

∫

C

v∗d(τα) ≤ E.

Recall that we observed ‖∇vν(0)‖g′
0

= 1, by C∞
loc-convergence the same is true for

the limit function v, so it is non-constant and therefore it is a finite energy plane.

Case 2

We now discuss the case z0 ∈ ∂D. In this situation it is convenient to pass to
the upper half-plane to obtain more useful coordinates. Therefore, we identify the
punctured disc D \ {−z0} with the closed upper half-plane H = {y ≥ 0} ⊂ C where
the points (z0, 0,−z0) correspond to (0, i,∞). Precomposing the function

uν : (D, ∂D) −→ (R ×M ′, {0} × L)
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with the inverse of the identification gives a J-holomorphic map

ûν : (H,R) −→ (R ×M ′, {0} × L).

Ignoring finitely many elements we can assume that the images of the bubble points,
which converge to 0, are contained in D

+ := D ∩ H. In the following we will denote
the images of the bubble points with respect to the coordinate change by zν . Since
the gradient of the identification map is bounded on D

+ ⊂ H with respect to the
standard norms we find a constant c > 0 such that for all ν ∈ N

1
cRν ≤ ‖∇ûν(zν)‖g′

0
and ‖∇ûν(z)‖g′

0
≤ cRν for all z ∈ D

+.

By conformal equivalence, i.e., the transformation theorem, the Hofer energy

sup
τ

∫

D+

û∗
νd(τα)

stays unchanged and is still uniformly bounded by E. As before the supremum is
taken over all smooth strictly increasing functions τ : R → [0, 1] with τ(0) = 1.
After passing to a subsequence there exists an ε > 0 such that for all ν ∈ N

B+
ε (zν) := Bε(zν) ∩ H ⊂ D

+

and

Rνyν → ̺ ∈ [0,∞],

writing zν = xν + iyν . Using the convergence of zν to 0 it is pretty obvious that
the first condition can be satisfied for some subsequence and some ε > 0. For the
second condition either the sequence Rνyν is unbounded in which case we choose a
subsequence of Rνyν that tends to infinity as ν tends to infinity. On the other hand
if the sequence is bounded we can choose a converging subsequence Rνyν → ̺ ∈ R

+

by the Bolzano–Weierstrass theorem.

Lemma. Let ûν be a sequence of holomorphic half-planes and zν = xν + iyν a
sequence of points with ‖∇ûν(zν)‖g′

0
≥ 1

cRν . Further let ̺ ∈ [0,∞] denote the limit
of Rνyν . Then there exists an ε > 0 and

Case 2(a), ̺ = ∞: a sequence of holomorphic maps

vν : BRνε(0) ∩ {y ≥ −yνRν} −→ R ×M

obtained from ûν |B+
ε (zν) by rescaling and composing with an g′

0-isometry, such

that vν converges to a holomorphic map v : C → R × M ′. Moreover, v is
non-constant and has finite energy, i.e., v is a finite energy plane.
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Case 2(b), ̺ < ∞: a sequence of holomorphic maps

vν : B+
Rνε

(iRνyν) −→ R ×M

obtained from ûν |B+
ε (zν) by rescaling, such that vν converges to a holomorphic

map v : H → R ×M ′. Moreover, v is non-constant and has finite energy, i.e.,
v is a finite energy half-plane.

Proof. Case 2(a): Let us begin with the case ̺ = ∞ that is quite similar to Case 1.
We rescale ûν = (âν , f̂ν) to a map vν = (bν , hν) on BRνε(0) ∩ {y ≥ −yνRν} with

bν(z) := âν
(
zν + z

Rν

)
− âν(zν)

and

hν(z) := ϕ−1
ν

(
f̂ν
(
zν + z

Rν

))

where ϕν is a deck transformation with ϕ−1(f̂ν(zν)) ∈ D for the fundamental domain
D. Observe that the image of vν equals the image ûν |B+

ε (zν) up to a shift by the

isometry −âν(zν)×ϕ−1. We define vν on this set, since we can control the derivative
of ûν on B+

ε (zν). Note that vν(0) ∈ {0} × D and by our previous estimates on ûν

1
c ≤ ‖∇vν(0)‖g′

0
and ‖∇vν(z)‖g′

0
≤ c

for all z ∈ BRνε(0) ∩ {y ≥ −yνRν}. Furthermore, vν is Jν-holomorphic with respect
to Jν = (âν(zν), ϕν)∗J and its Hofer energy with respect to αν = ϕ∗

να is less or
equal than E. As before we can choose a subsequence such that (αν , Jν) converges
in C∞

loc with limit (α0, J0). Since BRνε(0)∩{y ≥ −Rνyν} is a sequence of exhausting
subsets of C we can apply elliptic regularity, see Theorem 6.2, as in Case 1 and
obtain a C∞

loc-converging subsequence whose limit is a non-constant J0-holomorphic
finite energy plane with Hofer energy less or equal than E with respect to α0.

Case 2(b): If ̺ < ∞ is finite we rescale ûν to

vν(z) := ûν
(
xν + z

Rν

)

for all z ∈ B+
Rνε

(iRνyν), where yν denotes the imaginary part of zν = xν + iyν .
Note that vν is (i, J)-holomorphic so we do not have to adjust our almost complex
structure on R × M ′ and α stays unchanged, too. Since yνRν converges, the sets
B+
Rνε

(iRνyν) are an exhausting sequence of open subsets of H. Using our estimates
on uν we obtain

1
c ≤ ‖∇vν(iRνyν)‖g′

0
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independent of ν, and

‖∇vν‖g′
0

≤ c

uniformly on B+
Rνε

(iRνyν). Similar to Case 1 we find for each k ∈ N a ν ∈ N

such that B+
k (0) ⊂ B+

Rνε
(iRνyν) and the uniform gradient bound yields the distance

estimate distg′
0
(vν(z), {0} × KL) ≤ ck for all z ∈ Bk(0). Hence, if ν is sufficiently

large the image vν
(
B+
k (0)

)
of B+

k (0) is contained in a ck-neighbourhood of {0}×KL

with compact closure. Furthermore we have vν(B
+
k (0) ∩ ∂H) ⊂ {0} × KL by our

boundary condition on ûν . Again we are in the situation of Theorem 6.2 and obtain
a C∞

loc-converging subsequence vν → v where

v : (H,R) −→ (R ×M ′, {0} ×KL)

is a J-holomorphic half-plane. Note that v satisfies the same boundary condition as
vν . Further observe that the Hofer energy of vν with respect to α is still bounded
by E. Thus, the same is true for the Hofer energy EHofer(v) ≤ E with respect to α.
The lower estimate 1

c ≤ ‖∇vν(iRνyν)‖g′
0

for the gradients of vν imply the same type
of estimate for v. All in all we see that v is a finite energy half-plane.

Summary. We started with a sequence uν of holomorphic disc with uniformly
bounded Hofer energy and assumed that it does not admit a converging subse-
quence. Using Corollary 4.8 we concluded that the sequence of gradients ∇uν is
not bounded with respect to the g′

0-norm. Distinguishing three cases we found se-
quences of holomorphic maps vν that either converge to a finite energy plane or a
finite energy half-plane. These sequences were obtained from uν by restriction to a
neighbourhood of bubble points, rescaling and shift by a g′

0-isometry.
The limit objects, the finite energy planes and the finite energy half-planes, are

studied in Sections 6.3 and 6.4, respectively.

6.3. A Finite Energy Cylinder

Let v̂ = (b̂, ĥ) be a non-constant J0-holomorphic finite energy plane with Hofer
energy EHofer(v̂) ≤ E with respect to α0, for example the finite energy plane obtained
in Cases 1 or 2(a).

The aim of this section is to find a periodic α∞-Reeb orbit. Here α∞ is obtained
as the C∞

loc-limit of αν0 := ϕ∗
να0. To obtain the Reeb orbit we reparametrise a part

of the finite energy plane v̂ to a holomorphic cylinder v.
Let T 1 = R/2πZ be the 1-torus. Precomposing v̂ with the conformal map

R × T 1 −→ C

(s, t) 7−→ es+it

we obtain a finite energy cylinder, denoted by v = (b, h) : R × T 1 → R ×M ′. Since
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the gradient of the coordinate change is bounded neither from below nor from above
we have to consider the gradient of v.

Lemma. Let v = (b, h) : R × T 1 → R × M ′ be a J0-holomorphic energy cylinder,
obtained from a finite energy plane v̂ by rescaling with the map (s, t) 7→ es+it. Then
the gradient ∇v is globally bounded on R × T 1.

We will argue by contradiction and assume that the gradient is unbounded. As
in the previous Section we will trace the points where the gradient blows up and
perform a rescaling as in Case 1.

Proof. We pass to the universal cover R2 and argue by contradiction analogous to the
proofs of Proposition 27 and 30 in [29]. Note that this passing to the universal cover
is merely for convenience of notation, all arguments can be worked out for R × T 1.
Assuming that ‖∇v‖g′

0
is unbounded, we choose sequences pν ∈ R

2, ε′
ν ∈ (0,∞) with

|pν | → ∞, ε′
ν → 0 and ε′

ν · ‖∇v(pν)‖g′
0

→ ∞. Note that the condition |pν | → ∞ is
superfluous since it follows from ‖∇v(pν)‖g′

0
→ ∞, we just list it for convenience.

Applying the Hofer lemma [29, Lemma 26] to each element (pν , ε′
ν) in this sequence,

we obtain a new sequence (zν , εν) with

(a) εν ≤ ε′
ν and εν · ‖∇v(zν)‖g′

0
≥ ε′

ν · ‖∇v(pν)‖g′
0
,

(b) d(pν , zν) ≤ 2ε′
ν ,

(c) 2‖∇v(zν)‖g′
0

≥ ‖∇v(y)‖g′
0

for all y ∈ Bεν (zν).

Observe that Property (a) implies εν → 0 and Rνεν → ∞ using the abbreviation
Rν := ‖∇v(zν)‖g′

0
. Further, Property (b) implies that |zν | still tends to infinity.

We rescale the function v = (b, h) by a sequence of deck transformations ϕν ∈ G
whose inverses map h(zν) into the closure of the fundamental domain D, i.e., we
define a new sequence of functions uν = (aν , fν) by

aν(z) := b
(
zν + z

Rν

)
− b(zν)

and

fν(z) := ϕ−1
ν

(
h
(
zν + z

Rν

))
.

Similar to Case 1 in Section 6.2 we can write uν = F−1
ν ◦ vν ◦ ψν , for a Möbius

transformation ψν and a g′
0-isometry Fν = b(zν) × ϕν . Moreover, we observe the

following properties of the new sequence. It maps 0 into the closure of the funda-
mental domain uν(0) ∈ {0} × D. The g′

0-norm of its gradient is uniformly bounded
by 2 on BRνεν (0) and equals 1 in 0. In addition, uν is Jν0 -holomorphic with respect
to Jν0 = F ∗

ν J0. At last, the Hofer energy

sup
τ

∫

BRν εν (0)
u∗
νd(ταν0)

with respect to αν0 = ϕ∗
να0 is uniformly bounded by E.
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We also obtain
∫

BRν εν (0)
f∗
νdαν0 =

∫

BRν εν (0)
(ϕ−1

ν ◦ h ◦ ψν)∗d(ϕ∗
να0) =

∫

Bεν (zν)
h∗dα0,

where the last term tends to 0 as ν tends to infinity, since εν tends to 0 and the total
area is bounded by E. By the assumption made in the introduction of this chapter,
we find a subsequence of (αν0 , J

ν
0 ) that converges in C∞

loc to some (α∞, J∞).
Arguing as in Case 1 and using Theorem 6.2 we find a C∞

loc(C)-converging sub-
sequence uν whose limit is a non-constant J∞-holomorphic finite energy plane with
Hofer energy

sup
τ

∫

C

u∗d(τα∞) ≤ E.

On the other hand we claim that the contact area
∫
C
f∗dα∞ of u = (a, f) vanishes.

That is because
∫

Bk(0)
f∗dα∞ =

∫

Bk(0)
lim
ν→∞

f∗
νdαν0

≤ lim inf
ν→∞

∫

BRν εν (0)
f∗
νdαν0 = 0.

Where we used Fatou’s lemma to obtain the estimate and that the contact area
tends to 0 for the last term. Concerning [29, Lemma 28] in the case of non-compact
manifolds a non-constant finite energy plane cannot have vanishing contact area.
Therefore the g′

0-norm of ∇v is globally bounded on R × T 1.

The next step is to shift the cylinder v = (b, h) and to obtain a limit cylinder
u = (a, f). Finally we will show that the map f : R × T 1 is independent of the R-
variable and a reparametrisation of the α∞-Reeb flow. Naïvely speaking this means
that the maps ϕ−1

ν (h(ν, ·)) : T 1 → M ′ converge to a closed α∞-Reeb orbit, where
ϕ−1
ν is a deck transformation that maps h(ν, 0) into the closure of the fundamental

domain and α∞ is the limit 1-form of ϕ∗
να0. This argument is a modification of [29,

Theorem 31].
We choose a sequence ϕν ∈ G of deck transformations such that ϕ−1

ν

(
h(ν, 0)

) ∈ D
for the fundamental domain D and define a shifted sequence of holomorphic cylinders
uν = (aν , fν) via

aν(s, t) := b(s+ ν, t) − b(ν, 0)

and

fν(s, t) := ϕ−1
ν

(
h(s+ ν, t)

)
.

In other words, we define uν to be the map F−1
ν ◦ v ◦ (ν, 0), where Fν = b(ν, 0) ×ϕν

is a g′
0-isometry and (ν, 0) denotes the shift on the cylinder R×T 1. Let us list some
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properties of the new sequence uν . First of all uν(0, 0) ∈ {0} × D and uν is Jν0
holomorphic with respect to F ∗

ν J
ν
0 . Further the gradient ∇uν is globally bounded

with respect to the g′
0-norm because Fν is a g′

0-isometry and the gradient of v is
globally bounded. Since Jν0 is associated to αν0 the αν0-Hofer energy of uν satisfies

sup
τ

∫

R×T 1

u∗
νd(ταν0) ≤ E

for all ν ∈ N. For any given k ∈ N, the transformation formula shows
∫

[−k,k]×T 1

f∗
νdαν0 =

∫

[−k+ν,k+ν]×T 1

h∗dα0
ν→∞−→ 0, (6.1)

the convergence follows since the contact area is non-negative and the total integral∫
C
h∗dα0 is bounded by E. Similarly we obtain

∫

{0}×T 1

f∗
να

ν
0 =

∫

{ν}×T 1

h∗α0 =
∫

(−∞,ν]×T 1

h∗dα0 →
∫

C

h∗dα0

where the last expression is the contact area. Assuming that (αν0 , J
ν
0 ) converges

in C∞
loc to (α∞, J∞) as explained in the introduction to this chapter we can argue

analogous to Case 1 and find a C∞
loc(C)-converging subsequence uν → u whose limit

is a non-constant J∞-holomorphic finite energy cylinder u = (a, f) : R×T 1 → R×M ′

of Hofer energy

sup
τ

∫

R×T 1

u∗d(τα∞) ≤ E.

Further we can apply Fatou’s lemma to show that u has vanishing contact area.
Indeed,

∫

R×T 1

u∗dα∞ = lim
k→∞

∫

[−k,k]×T 1

u∗dα∞

= lim
k→∞

∫

[−k,k]×T 1

lim
ν→∞

u∗
νdα

ν
0

≤ lim
k→∞

lim inf
ν→∞

∫

[−k,k]×T 1

u∗
νdα

ν
0

= 0, (6.2)

in the last step we used the computation in (6.1). Note that this does not contradict
[29, Lemma 28] since the lemma does not apply to the cylinder. The symplectic
action

∫

{0}×T 1

f∗α∞ =
∫

C

h∗dα0 6= 0 (6.3)

is non vanishing by [29, Lemma 28] since otherwise v would be constant. For the
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computation of the symplectic energy we have used that h extends to a map on
C, because it was defined as a rescaling of a map defined on C. Furthermore the
gradient ∇u is globally bounded on R×T 1 with respect to g′

0 since the same is true
for the gradient of v.

Lemma. Let u : R×T 1 → R×M ′ be a finite energy holomorphic cylinder obtained
from the finite energy cylinder v with uniformly bounded gradient as above. Then
f(s, t) is independent of the R-variable and f(s, ·) : T 1 → M ′ is a reparametrisation
of a contractible periodic α∞-Reeb orbit. Moreover, the α∞-action of this orbit equals
the contact area

∫
C
ĥ∗dα0 of the initial finite energy plane v̂ up to multiplication by

2π.

The argument follows the last part of [29, Theorem 31].

Proof. We consider the M ′-component f of the limit cylinder u = (a, f). Since

0 =
∫

R×T 1

u∗dα∞ =
∫

R×T 1

f∗dα∞ (6.4)

by our previous computation, see (6.2), we obtain π ◦ Tf = 0 where π denotes the
projection to ξ∞ = kerα∞ along the Reeb vector field R∞ associated to α∞. This
is because the integrand of contact area f∗dα∞ is non-negative and therefore has to
vanish but also measures the length of (π ◦ Tpf)(∂s) and (π ◦ Tpf)(∂t) with respect
to the metric dα∞(·, j∞·) constructed analogous to Section 3.1. Let τ 7→ x(τ) be
the Reeb flow of R∞ starting at any point in the image of f , say x(0) = f(0, 0). Our
result about Tf tells us that we find a smooth function γ : R × R → R with

f(s, t) = x
(
γ(s, t)

)

and

∂
∂sγ = − ∂

∂ta , ∂
∂tγ = ∂

∂sa, (6.5)

where we lift a : R× T 1 to a map on R×R, still denoted by a. The map γ does not
descent to a map on the cylinder R × T 1 that is γ(s, 0) 6= γ(s, 2π), since this would
imply vanishing symplectic action for u. Accurately, if γ(s, 0) = γ(s, 2π) we have

∫

{0}×T 1

f∗α∞ =
∫

{s}×S1

f∗α∞ −
∫

[0,s]×S1

u∗dα∞,

the second term vanishes since the integrand is non-negative and the total integral
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vanishes, see (6.4). Thus,
∫

{0}×T 1

f∗α∞ =
∫

{s}×T 1

f∗α∞

=
∫

{s}×[0,2π]
x
(
γ(s, t)

)∗
α∞

=
∫

{s}×[0,2π]
∂tγ(s, t)dt

= 0,

contradicting our previous observation (6.3). Since f is defined on the cylinder, we
obtain

x
(
γ(s, 0)

)
= f(s, 0) = f(s, 2π) = x

(
γ(s, 2π)

)

and hence x is periodic because γ(s, 0) 6= γ(s, 2π). Let T be the minimal period of
x. Then there exists a number n such that γ(s, 0) +nT = γ(s, 2π), since x does not
have any double points. Observe that γ(s, t) + nT and γ(s, t + 2π) solve the same
differential equation

∂t
(
γ(s, t) + nT

)
= ∂ta(s, t) = ∂ta(s, t+ 2π) = ∂t

(
γ(s, t+ 2π)

)

γ(s, 0) + nT = γ(s, 0 + 2π)

and therefore agree for all t. Using this rule iteratively we obtain

γ(s, 2πk) = γ(s, 2πl) + (k − l) · nT. (6.6)

for all integers k, l. We consider the function γ− ia : C → C, where we identified R
2

with C in the canonical way. By our remarks about the partial derivatives of γ in
(6.5) this map is holomorphic. Furthermore its growth, i.e., its gradient, is globally
bounded and therefore it is polynomial of degree 1, i.e., it takes the form

(γ − ia)(s+ it) = κ · (s+ it) + µ

for some complex numbers κ, µ ∈ C. By the definition of γ − ia we have

i · κ · 2π(k − l) =(γ − ia)(s+ i2πk) − (γ − ia)(s+ i2πl)

(6.6)
= (k − l) · nT − i

(
a(s, 2πk) − a(s, 2πl)

)

=(k − l) · nT,

since a is the lift of a map defined on R × T 1. As we see κ = −inT2π = −ic is purely

59



imaginary and γ has the form

γ(s, t) = Re
(
(γ − ia)(s+ it)

)

= Re
(− ic · (s+ it) + µ

)

= ct+ Re(µ) = ct+ d

for a suitable real coefficients c, d and c 6= 0. The same reasoning leads to a = cs+e.
Combining the equations we get

u(s, t) = (a, f)(s, t) =
(
cs+ e, x ◦ γ(s, t)

)
= (cs+ e, x(ct+ d)).

We end this discussion by computing the α∞-action of the closed orbit. We have

∫

T 1

x(c · +d)∗α∞ =
∫ 2π

0
α∞ ((Ttx)(ct+ d)) dt

=
∫ 2π

0
α∞

(
c (R∞)x(ct+d)

)
dt = 2π c

On the other hand we already computed, see (6.3), that
∫

T 1

x(c · +d)∗α∞ =
∫

C

h∗dα0.

In particular we observe that the action and the constant c are positive.

6.4. Removal of Boundary Singularity

Let {0} ×L ⊂ R×M ′ be a maximally totally real submanifold with respect to J .
We consider the non-constant J-holomorphic half-plane

v̂ : (H,R) −→ (R ×M ′, {0} ×KL)

with finite Hofer energy EHofer(v̂) ≤ E with respect to α, where KL is an open
relatively compact subset of L. Recall that the limit maps obtained in Case 2(b)
fall in these class.

The aim of this section is to show that this finite energy half-plane extends to a
smooth map on the disc D with similar properties.

We reparametrise a restriction of v̂ as a map on the strip S := R × [0, π] by
precomposing with the conformal map

R × [0, π] −→ H \ {0}
(s, t) 7−→ es+it
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and obtain a finite energy strip

v : (S, ∂S) −→ (R ×M ′, {0} ×KL).

Observe that the map v extends to a smooth map on {−∞} ∪ S. Note further that
the gradient of the coordinate change is not bounded from below or from above.
Nonetheless we obtain the following statement.

Lemma. Let v : (S, ∂S) → (R × M ′, {0} × KL) be a non-constant finite energy
strip obtained from a finite energy half-plane v̂ by precomposing with the coordinate
change (s, t) 7→ es+it. Then the gradient of v is globally bounded on S.

Note that this does not follow form the gradient bounds for the initial function
defined on H, since the gradient of the coordinate change is unbounded.

Proof. We argue by contradiction. Assuming that the the gradient is unbounded
we can argue as in [29, Theorem 32]. As in the previous discussion, see Section
6.3, we apply the Hofer lemma [29, Lemma 26] to obtain sequences εν ∈ (0,∞) and
zν = xν + iyν ∈ S with εν → 0, |xν | → ∞ and Rν := ‖∇v(zν)‖g′

0
→ ∞ such that

Rνεν → ∞ and ‖∇v‖g′
0

≤ 2Rν on Bεν (zν) at least for a subsequence. After passing
to a further subsequence we assume that Rνyν and Rν(π− yν) converge in [0,∞] to
̺0 and ̺π, respectively. We distinguish the case where ̺0 = ̺π = ∞ and the cases
where one of the limits is finite. Observe that not both limits can be finite, since if
limν→∞Rνyν = ̺0 is finite, then limν→∞Rν(π − yν) cannot be finite, because Rν
tends to infinity. The other case can be excluded with a similar argument.

If ̺0 = ̺π = ∞ we argue as in the first half of Section 6.3. That is we rescale
v = (b, h) to a sequence of maps uν = (aν , fν) given by

aν(z) := b
(
zν + z

Rν

)
− b(zν)

and

fν(z) := ϕ−1
ν

(
h
(
zν + z

Rν

))

with domain BRνεν (0) ∩ (R × [−Rνyν , Rν(π − yν)]), where ϕν is a deck transforma-
tion whose inverse maps h(zν) into the closure of the fundamental domain D. Invok-
ing Theorem 6.2 we repeat said argument and obtain a non-constant J0-holomorphic
finite energy plane with respect to α0 with vanishing contact area, contradicting [29,
Lemma 28].

If at least one of the limits is finite we can assume it is ̺0 after precomposing with
z 7→ −(z − iπ) if necessary. In this case we have yν → 0 and therefore we find an
ε > 0 such that B+

ε (zν) := Bε(zν) ∩ H
+ is contained in S. Let ϕν be a sequence of

deck transformations whose inverses map h(zν) into the closure of the fundamental
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domain D. We define a rescaled sequence uν = (aν , fν) by

aν(z) := b
(
xν + z

Rν

)
− b(zν)

and

fν(z) := ϕ−1
ν

(
h
(
xν + z

Rν

))

with domain B+
Rνε

(Rνyν). Arguing as in Section 6.2, Case 2(b), we obtain a subse-
quence whose limit is a non-constant J0-holomorphic finite energy half-plane with
respect to α0. Computing the contact area as in the first half of Section 6.3 we see∫
H
u∗dα0 = 0. We imitate the argument in the first half of [29, Theorem 32] to show

that there are no non-constant finite energy half-planes with vanishing contact area.
Note that this case is not covered by [29, Theorem 28].

Combining these cases we conclude that ‖∇v‖g′
0

is globally bounded on S.

As we have seen in similar situations before the bounded gradient implies that
the point v(s, t) can not get arbitrary far away from the point v(s, 0). In fact,

distg′
0

(
v(s, 0), v(s, t)

) ≤ C · π,

where C is an upper bound for the norm ‖∇v‖g′
0

of the gradient of v.The situation,

where the image of the boundary ∂S is contained in the compact set {0} × KL.
Hence, the distance estimate combined with the triangle inequality shows that the
image v(S) of the strip is contained in a ball of finite radius around the point v(0, 0).
The closure of this ball is compact by the Hopf–Rinow theorem. On this set we have
bounds on the curvature of g′

0 and can compare the geometry with the euclidean
one. This allows us to apply [37, Theorem 4.1.2(ii)], which says that the finite energy
strip extends to a smooth map from S ∪ {+∞} to R ×M ′. The quoted theorem is
only formulated for compact manifolds and for maps from D

+ \ {0} to M . We will
explain why our preparation allows use to use the theorem nonetheless. A conformal
change of coordinates that maps [0 × ∞) × [0, π] onto D

+ \ {0}, similar to the one in
the beginning of this section, yields a holomorphic map defined on D

+ \ {0} of finite
energy whose image is still contained in a compact set. Actually, the proof of the
theorem only uses local arguments which go through in our situation. Therefore,
the considered holomorphic map on S ∪ {∞} ∼= D

+ \ {0} extends to a smooth map
on D

+. Inverting the coordinate changes we see that the finite energy half-plane v̂
we started with extends to a smooth disc

v : (D, ∂D) ∼= (H ∪ {∞},R ∪ {∞}) −→ (R ×M ′, {0} ×KL).

Observe that v is holomorphic.

Remark 6.3. The result [37, Theorem 4.1.2] is formulated for closed symplec-
tic manifolds. It can be applied in the present situation because the discussed
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phenomena are contained in a compact subset so that we can ignore the non-
compactness. In fact the proof takes place in R

2n. Therefore the bounded geometry
of virtually contact structures discussed in Chapter 3 allows us to adapt the result.

Remark. We recapitulate what we have achieved in Case 2(b) and this section. We
started with a sequence of holomorphic discs uν : D → R × M ′ and a sequence of
points zν ∈ interior(D) for which the sequence of gradients ∇ν(zν) blows up and
that converged to a point on the boundary ∂D. In Case 2(b) we rescaled the maps
uν on a neighbourhood of the limit point. We argued that this sequence converges
to a finite energy half-plane v up to subsequence. In this section we saw that v
extends to a disc map with the same boundary condition v(∂D) ⊂ {0} ×KL as uν .
This is called the bubbling of a disc. Observe that the R-coordinate in this case is
not unbounded even if the gradients blow up.

6.5. Aperiodicity and Gromov Convergence

Let us summarise the discussion in the preceding sections. Let (π : M ′ →
M,ω, α, g) be a virtually contact structure with closed base manifold M . Denote
by J the associated almost complex structure on R×M ′ constructed in Section 4.1.
Consider a submanifold L ⊂ M such that {0} × L is maximally J-totally real in
R ×M ′. Further, consider a sequence

uν = (aν , fν) : (D, ∂D) −→ (R ×M ′, {0} × L)

of J-holomorphic discs whose boundaries lie in an open relatively compact subset
KL of L and whose Hofer energies EHofer(uν) are uniformly bounded by a positive
constant E.

In analogy to the Weinstein conjecture in contact geometry we are interested in
finding closed characteristics on M . A closed characteristic is a compact leaf of
the 1-dimensional foliation kerω. To be more precise, a closed characteristic is an
embedded copy of S1 whose tangent space is contained in kerω. After choosing any
orientation on a closed characteristic it represents a homotopy class. We say a closed
characteristic is contractible if there is a non-trivial multiple of this characteristic
that is nullhomotopic.

Proposition 6.4. In the situation described above we assume that the covering π is
regular and that the C3-norm of α defined in Section 5.1 is finite. If (M,ω) has no
contractible closed characteristic, then uν has a Gromov converging subsequence that
converges to a stable J-holomorphic disc with boundary on KL ⊂ L whose underlying
bubble tree consists of discs only.

Proof. Let us first assume that not only the C3-norm but all Ck-norms of α are
finite. In this situation Proposition 5.7 tells us that for all sequences (ϕν)ν∈N ⊂ G
of deck transformations there exists a C∞

loc-converging subsequence of αν := ϕ∗
να.

As observed in Lemma 5.9, the associated sequence of almost complex structures Jν
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on R ×M ′ converges as well. By Remark 5.10 we can replace (α, J) with the limit
(α0, J0) and obtain an analogous convergence statement. We call the resulting limit
(α∞, J∞).

Since the kernel of ω′ = dα∞ is spanned by the Reeb vector field R∞, any periodic
α∞ Reeb orbit, possibly obtained as in Section 6.3, is a closed characteristic of ω′.
Further, it projects down to a closed characteristic of ω via π, of which there are
none by assumption. This means that only Case 2(b) can occur, because Cases 1
and 2(a) imply the existence of a closed Reeb orbit. As observed in Section 6.4,
any finite energy half-plane resulting form Case 2(b) extends to a J-holomorphic
disc with Hofer energy less or equal to E. In this case the Hofer energy equals the
contact area, since we are considering holomorphic discs. Adapting the bubbling off
analysis in [29, Lemma 35] as in the Sections 6.2, 6.3 and 6.4 we conclude that the
contact area of the finite energy disc obtained by bubbling, i.e., by a convergence as
in Section 6.4, is uniformly bounded from below.

After these preliminary notes we come to the actual proof of the proposition. As
argued in the beginning of Section 6.2 it suffices to show that |aν | is bounded. That
is, we have to rule out the existence of a sequence ζν ∈ D with aν(ζν) = max |aν | for
all ν and aν(ζν) → −∞ for a subsequence as ν tends to infinity. By the maximum
principle we have that ζν lies in the interior B1(0) of D. After precomposing uν with
a Möbius transformation ψν we may assume that ζν equals 0 for all ν ∈ N.

As discussed before, only Case 2(b) can occur and therefore all limits of bubbling
points lie on the boundary ∂D. Each resulting bubbled disc comes with a contact
area that is bounded from below, see [29, Lemma 35]. The contact area is additive
and the sum of all these areas is bounded from above by the Hofer energy and hence
by E. Therefore there are only finitely many limit points of bubbling points.

Using [17, Section 2.5], [29, pp. 542] and [37, Theorem 4.6.1] yields finitely many
boundary points {z1

0 , . . . , z
N
0 } of D such that for all ε > 0 the gradient ‖∇uν‖g′

0
is

uniformly bounded when restricted to

D \
N⋃

j=1

Bε(z
j
0).

Using a mean value argument as in Section 6.2 leads to bounds for the distance
between the image of uν and the boundary condition {0} × KL. Combining this
with Theorem 6.2 we find a C∞

loc-converging subsequence of uν on D \ {z1
0 , . . . , z

N
0 }.

But since all limit points of bubbling points are contained in the boundary, this
convergence contradicts the divergence aν(0) → −∞. This proves the proposition
with the assumption of C∞-bounds instead of C3-bounds.

In the next step we argue why the argument above works with the weaker as-
sumption of C3-bounds. As in the C∞-case we will rule out the Cases 1 and 2(a)
and extend the limit obtained in Case 2(b) to a holomorphic disc. That is we have
to repeat the bubbling off argument with weaker assumptions. To do this we use
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Corollary 5.8 and Remark 5.10. By these statements we have

αν −→ α0, Jν −→ J0

in C2
loc and that α0 admits C2-bounds. Applying the results to the limit form α0 we

have that

αν0 −→ α∞, Jν0 −→ J∞

in C1
loc.

In Section 6.2 we make the following changes. In Case 1 and 2(a) we refer to [37,
Remark B.4.3] instead of Theorem 6.2 to see that the rescaled sequence vν converges
to v in C2

loc. In Case 2(b) we do not change the almost complex structure and can
still obtain C∞

loc-convergence of vν .
In Section 6.3 we repeat the rescaling procedure with the C2-bounded form α0.

Referring to [37, Remark B.4.3] we obtain C1
loc-converging subsequences of uν . The

arguments in [29, Theorem 31] hold for C1-regular finite energy planes and we end
up with a periodic C1-Reeb orbit in the Cases 1 and 2(a). This yields a closed
characteristic of (M,ω) which is excluded by assumption. In Section 6.4 the only
change occures in the argument for the gradient bounds. Instead of C∞

loc-convergence
for a subsequence of uν , we have C2

loc-convergence. The rest of the argument remains
unchanged.
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CHAPTER 7

Contractible Closed Characteristics

In view of Chapter 6 especially Proposition 6.4 we look for conditions that con-
tradict compactness for some moduli space of holomorphic curves on M ′. Finding
these conditions implies the existence of contractible closed characteristics in the
discussed cases.

7.1. Germs of Holomorphic Discs

Since [29] holomorphic curves have been used to prove the existence of periodic
Reeb orbits in compact contact manifolds, see [20,22,26]. We extend the techniques
therein to our situation. That is we want to conclude the existence of closed Reeb
orbits in the covering spaces of virtually contact structures. The existence of such
orbits implies that the base manifold carries a closed characteristic. For the most of
this section we will only explain the changes that are necessary to adjust the proofs.

Let (π : M ′ → M,ω, α, g) be a virtually contact structure whose base manifold
M is closed and connected. We endow R × M ′ with the almost complex structure
associated to α and g′ constructed in Section 3.1 and 4.1. As usual we denote the
contact structure kerα on M ′ by ξ.

Theorem 7.1. If the C3-norm of α is finite and if (M ′, ξ) is a 3-dimensional
overtwisted contact manifold, then (M,ω) admits a contractible closed characteristic.

See [19, Section 4.5] for the notation of overtwisted discs.
This statement extends a result in [29] from compact manifolds to virtually contact

structures. The argument adapts the methods and arguments from [20].

Proof. After passing to the universal covering if necessary we can assume that
π : M ′ → M is regular.

Let D ⊂ (M ′, ξ) be an overtwisted disc such that the characteristic foliation

Dξ := (TD ∩ ξ|D)⊥ω′ = TD ∩ ξ|D

has a unique singularity e in the interior of D and ∂D is the unique closed leaf of the
foliation. By [29, Section 5.1 and Theorem 45] we can perturb a given overtwisted
disc to obtain one that has the requested properties. We use ⊥ω′ to indicate the
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symplectic orthogonal complement with respect to ω′. In our situation of a surface
in a 3-dimensional manifold, taking the symplectic complement has no effect in
regular points. Let U ⊂ M ′ be a open relatively compact ball neighbourhood of e.
We replace the almost complex structure J on the symplectisation R ×M ′ with an
almost complex structure JU that allows a local JU -holomorphic Bishop disc family
emerging from e, see [29, Section 4.2]. Further let JU be translation invariant under
the R-action given by translation, send the vector field ∂t spanning the R-coordinate
of T (R × M ′) to the Reeb vector field R of α and restrict to a complex structure
on (ξ, ω′). Note that JU |ξ does not necessarily coincide with the complex structure
j = J |ξ constructed in Chapter 3 and 4. Finally, we assume that JU agrees with
J on a neighbourhood of R × (M ′ \ U). The existence of such an almost complex
structure JU is discussed in the begining of [29, Section 4.2]. This choice of JU turns
the punctured disc D\{e} into a totally real submanifold. Remember that a Bishop
disc family is a continuous map Φ : [0, ε) × D → R ×M ′ with Φ(0, z) = e for z ∈ D

and

Φ(τ, z) ∈ D \ ({e} ∪ ∂D) for τ ∈ (0, ε), z ∈ ∂D

such that Φ : (0, ε) × D → R ×M ′ is an embedding and

TΦ(τ, ·) ◦ i − (JU )Φ(τ,·) ◦ TΦ(τ, ·) = 0 for τ ∈ (0, ε).

See [29, Section 4.2] and [30, Section 3.1] for more informations on Bishop disc
families and the inspiration for this choice.

We consider the moduli space M of all JU -holomorphic discs with three marked
points pi geometrically fixed by three mutually distinct leaves li of Dξ other than ∂D
for i = 0, 1, 2, i.e., the marked point pi ∈ ∂D is mapped to li for each map u ∈ M.
Moreover each u ∈ M is homologous relative D \ {e} to one of the Bishop discs,
see [27, p. 115] for an introduction to relative homology. Automatic transversality,
positivity of intersection and the relative adjunction inequality as discussed in [20,
Sections 7–9] imply that the evaluation map to one of the distinguished leaves is a
local diffeomorphism

evi : M −→ li ⊂ R ×M ′

u 7−→ u(pi),

where pi are the marked points and the Bishop discs have unique preimages, see [20,
Proposition 5.1]. The maximum principle by E. Hopf in its formulation for boundary
values, see [14, Section 6.4], implies that all holomorphic discs with boundary on the
totally real punctured disc D \ {e} are transverse to Dξ, i.e., TD = Dξ ⊕ Tu(∂D).
Further we conclude that no holomrphic disc can touch the boundary ∂D. If we
assume the moduli space to be compact then the evaluation maps evi are surjective
to li, see [20, Proposition 5.1]. This is a contradiction since either a disc touches the
boundary circle ∂D or the image is contained in the interior of the overtwisted disc.
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But in the second case we would have that li = im(evi) is compact which is not the
case, since the leaves of the characteristic distribution are not compact.

In the next step we want to show that the moduli space above is compact if there
are no closed characteristics. Using [29, Lemma 33] we achieve that all curves ũ in
M satisfy

∫

D

ũ∗(d(ϕ∗α)
) ≤ 1

2

∫

D
‖dλ‖g′ .

To achieve compactness we use Proposition 6.4 modified as follows. The modification
is necessary since the results in Section 4.6, 5.5 and Chapter 6 are only valid for
the almost complex structure J constructed in Section 4.1. In Proposition 4.7 we
compare the distance to D∪U instead of L = D, this is necessary to assure that we
can still apply Proposition 4.6 which only holds for the almost complex structure J .
After these adjustment Corollary 4.8 still holds. We modify the bubbling off that
we discussed in Section 6.2. If the distance dist

(
fν(zν), U

)
in the Cases 1 and 2(a)

is boundedand thus we may have to work with JU instead of J , we can pretend that
M ′ is compact and argue as in [29, 30]. If dist

(
fν(zν), U

)
is unbounded we replace

Rνε by R′
ν where

R′
ν = max

{
R ≤ Rνε | fν

(
BR(0)

) ⊂ M ′ \ U} .

Then the images of the rescaled holomorphic discs do not intersect the region where
we changed the almost complex structure and we can precede with the argument as
before. In Case 2(b) we can also argue as in [29, 30]. In the bubbling off analysis
of finite energy cylinders as in Section 6.3 we make similar changes. That is, if the
distance between h(zν) and U is bounded we argue as in [29, 30]. If the distance is
unbounded we change Rνεν to

R′
ν := max{R ≤ Rνεν | fν

(
BR(0)

) ⊂ M ′ \ U}.

Again these changes are necessary because the previous discussions are only valid
for J . After these modifications the proof of Proposition 6.4 goes through, that is
we can argue with JU instead of J .

Theorem 7.2. If the C3-norm of α is finite and if M is a 3-dimensional manifold
with non-trivial π2(M), then (M,ω) admits a contractible closed characteristic.

In the proof we use results from [20].

Proof. First note that π2(M ′) is also non-trivial since π2(M ′) ∼= π2(M), see [27,
Proposition 4.1]. In this situation the 3-dimensional sphere theorem [41] says that
there exists a non-zero element in π2(M ′) represented by an embedding ι : S2 → M ′.
We choose such a non-zero element and denote the image of the embedded sphere
by S := ι(S2). Note that S is not contractible in M ′. The case that the contact
structure is overtwisted is covered by 7.1, so we can assume that (M ′, ξ) is tight. We
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can further assume that the characteristic foliation (TS∩ξ)⊥dα of S has precisely two
singular points e+ and e−, and both are elliptic, see [19, Section 4.6]. Additionally,
there is no limit cycle of the characteristic foliation. We argue by a filling with
holomorphic discs. To do so, we consider the Bishop disc families emerging from
e+ respectively e−. Arguing as in [20, Section 5], compactness of the corresponding
moduli spaces would imply that there exists a 3-ball in M ′ filling S. This is a
contradiction to our assumption that S represents a non-trivial homotopy class.
Therefore said moduli spaces can not be compact. By Proposition 6.4 this show the
existence of a contractible closed characteristic.

Definition 7.3. An embedded (2n − 2)-sphere S in (M ′, ξ) is called standard,
provided that the restriction of the contact form α to TS equals the restriction of
1
2(xdy − ydx) to TS, where we identify S with the unit-sphere S2n−2 in R×R

n−1 ×
R
n−1 equipped with coordinates (w,x,y).

Theorem 7.4. Let n ≥ 3. If the C3-norm of α is finite and if (M ′, ξ) is a (2n− 1)-
dimensional contact manifold that contains a standard sphere S whose class [S] in
π2n−2(M ′) is non-trivial, then (M,ω) admits a contractible closed characteristic.

This theorem is based on [22].

Proof. We equip R × S2n−2 with the standard contact structure ξst, that is the
contact structure that one uses on R × S2n−2 as the upper boundary of the index
1-handle, see [22, p. 329]. That is the contact structure induced by the contact form
αst = wdv+ 1

2(xdy−ydx), where we use the coordinates (v, w,x,y) on R×S2n−2 ⊂
R×(R×R

n−1 ×R
n−1). Consulting [13, Proposition 6.4] we find a contact embedding

of (−2, 2)×S2n−2 into (M ′, ξ) mapping {0}×S2n−2 onto S, i.e., there is an embedding
ι :
(
(−2, 2) ×S2n−2, ξst

) → (M ′, ξ = kerα) with Tι(ξst) = ξ and ι({0} ×S2n−2) = S.
We use this embedding to identify (−2, 2) × S2n−2 with its image U and introduce
a new contact form α1 by requiring that it agrees with the given contact form α on
a neighbourhood of M ′ \U and with the push forward of αst on a neighbourhood of
[−1, 1] × S2n−2. On the remaining subset of (−2, 2) × S2n−2 we consider a convex
interpolation of the two contact forms. The interpolation is possible since both forms
are positive contact forms defining the same contact structure. A reversed contact
surgery shows that M ′ is the result of an index 1 surgery on some contact manifold
(N, η). By reverse contact surgery we mean a surgery that removes the handle
(−2, 2) × S2n−2 and undoes an index 1 surgery [19, Section 6]. The complement of
the surgery equals M ′ \U and η admits a defining contact form that coincides with
α on M ′ \ U .

Now we are in the situation of [22, Chapter 2]. To perform the index 1 surgery on
N we choose disjoint Darboux charts in the region where N differs from M ′. In local
coordinates on this charts the contact form has the form dw+ 1

2(xdy − ydx). Since
the contact structure induced by this form is invariant under the map (w,x,y) 7→
(λ2w, λx, λy) we can assume that a ball of radius 1 is contained in each of the
Darboux charts. We consider the map (w,x,y) 7→ (w,x,y)/R defined on the ball
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of radius R in R
2n−1, the pull back of standard contact form with this map is

(Rdw + 1
2(xdy − ydx))/R2. So we may think of the Darboux charts as two balls

of large radius R with a contact structure induced by ±Rdw + 1
2(xdy − ydx). We

choose R large enough such that [22, Lemma 6] holds. We perform the contact
surgery on the Darboux charts using the thin handle described in [22, Section 2.1]
and assume that the contact from obtained from surgery equals α1. Here a thin
handle is a cylinder with a small radius. This maybe requires a contactomorphism
on U along which α is pulled back. Since we used balls of radius R as Darboux
charts we can also perform a contact surgery with a thick handle, i.e., a cylinder
with a large radius close to R. The resulting contact form is called αR and coincides
with α on a neighbourhood of M ′ \U . Note that the rescaling of the Darboux chart
and the requirement that α on these sets pulls back to ±Rdw+ 1

2(xdy − ydx) leads
to a multiplication of α with a large constant. This global change does not change
the following argument, so we will ignore it for the rest of the proof.

As in [22, Section 2.2] we define W as the 2n-dimensional manifold obtained by
gluing the region between the thin and the thick handle to (−∞, 0] × M ′ along
{0} ×U . This gluing uses that both, the thin and the thick handle are contained in
R

2n. Similar to [22, Section 2.2] we consider the symplectic form dλ on W , where λ
on the model region, i.e., the region between the thin and the thick handle in R

2n,
is the dual of the Liouville vector field Y defined on [22, p. 330] with respect to
the standard symplectic form ω0 = dv ∧ dw + dx ∧ dy. The contact forms α and
α1 define the same contact structure on M ′ and they agree outside of U . Hence we
can find a function h on M ′ with α = ehα1 and h has compact support in U . At
(t, p) ∈ (−∞, 0] × M ′ we define λ as λ = et+b(t)·hα1 for a smooth function b on R.
We choose b to vanish on [0,∞), to equal 1 on (−∞, t0] for a suitable t0 < 0 and
such that b′(t) · h > −1 on M ′ for all t. This constructions interpolates between α
and α1 on the half-symplectisation (−∞, 0]×M ′, i.e., the upper boundary looks like
(M ′, α1) and the negative end looks like the negative end of ((−∞, 0] ×M ′,d(etα)).
Moreover, the construction glues a cobordism that thickens the handle to the upper
boundary (M ′, α1).

We remove the neighbourhood Int
(
(t0, 0) ×U

)
of the support of b · h from W and

obtain two connected components. On the unbounded component, λ equals etα.
Indeed for (t, p) ∈ [t0, 0] ×M \ U we have

λ = et+b(t)h(p)α1

= et+b(t)·0α1

= etα,

since α and α1 coincide outside of U For (t, p) ∈ (−∞, t0] × M ′ the form λ also

71



amounts to

λ = et+b(t)h(p)α1

= et+h(p)α1

= etα.

On the unbounded component of W \Int
(
(t0, 0)×U) we consider the almost complex

structure J defined in Section 3.1 and 4.1. We extend J to a dλ-compatible almost
complex structure JU on (W, dλ) that

• equals the standard complex structure on the model region, see [22, Sec-
tion 2.3],

• is generic on (t0, 0) × U in the sense of [22, Section 3.5],

• is such that the boundary ∂W ∼= M ′ of W with λ|T∂W = αR, is JU -convex in
the sense of [37, Definition 9.2.5]

This leaves us in the situation of [22, Chapter 3] except that the manifold (M ′, ξ) is
non-compact.

We will consider holomorphic discs with boundary on a family of Lagrangian sub-
manifolds. These submanifolds are Lagrangian cylinders Lt ⊂ C

n intersected with
the region between the thin and the thick handle as described in [22, Section 3.1].
On the complex space C

n we use the coordinates (v + iw; h; zn) with h ∈ C
n−2 and

zn ∈ C. For any t ∈ R
n−2 we consider the cylinder

Lt := ({0} × Rw) × (Rn−2
Re(h) × {it}) × ∂D2

zn
⊂ C × C

n−2 × C,

here R
n−2
Re(h) ⊂ C

n−2 denote the real part of the complex coordinate h. Note the

these Lagrangians are filled by standard discs ut
w,s given by

D −→ C
n

z 7−→ ut
w,s(z) = (0, w; s + it; z),

with w ∈ R and s ∈ R
n−1.

We consider the moduli space W of holomorphic discs as in [22, Section 3.2], that is
W consists of all holomorphic discs u : D → W that are smooth up to the boundary
and map the boundary circle to one of the Lagrangian cylinders, u(∂D) ⊂ Lt ∩ W
for some t ∈ R

n−2. The intersection makes sense for the model region between the
thin and the thick handle contained in W . Further we require that

• the relative homology class [u] ∈ H2(W,Lt ∩W ) equals that of some standard
disc ut

s in W .

• the parametrisation of u is fixed by the requirement u(ik) ∈ Lt ∩ {zn−1 = ik}
for k = 0, 1, 2.
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Note the by our choice of the radius R each Lagrangian cylinder will contain the
boundary of a standard disc.

The properties stated in [22, Chapter 3] transfer to the present situation with the
following modification in the proof of compactness. We assume that the Reeb flow
on the universal cover M ′ does not admit a closed orbit. We prove compactness for
all JU holomorphic discs belonging to W that have uniform bounded projections to
M ′ as in [21, Chapter 6] and [22, Section 3.4]. We exclude the existence of a sequence
of holomorphic discs with unbounded projection to M ′ as in the end of the proof to
Theorem 7.1, i.e., by a modifications of Proposition 4.7 and the bubbling off analysis.
After these modification we can use energy bounds obtained as in [22, Proposition 5]
and the bounded R-component obtained by a bubbling off analysis to conclude that
all discs in W have bounded projection to M ′ and therefore W is compact. We see
as in [22] that W is a (2n− 3)-dimensional compact manifold with boundary.

If W is not connected, we consider the connected component of W with a boundary
that consists of standard holomorphic discs that is still denoted W. A deformation
of the evaluation map as in [22, Chapter 4 and Section 5.1] yields a continuous map

f :
(W × D, ∂(W × D)

) −→ (M ′, S)

that is transverse to the sphere S, restricts to a map of degree 1 on the boundary of
W×D and maps W×{1} to a (2n−3)-dimensional cell in S. Therefore the homology
class defined by S in M ′ vanishes. Indeed, a triangulation of W × D yields a cell
structure whose boundary is contained in S and since the map f has degree 1 it is
surjective on the boundary. Therefore we have found a cell complex with boundary
S. Since S is homologically trivial it separates M ′. Indeed, if it would not separate
M ′ then M ′\S would be connected and therefore path connected. For a base point in
S we consider the path γ in the closure of M ′ \S that connects this base point in one
boundary component with its copy in the other boundary component of M ′ \S. We
consider the homological intersection number of S and the path γ. On the one hand
the intersection number of S and the path corresponding to γ in M ′ is 1, because
they have exactly one intersection point. On the other hand this intersection number
is a bilinear form and S is homologically trivial, so the intersection number vanishes.
This contradiction shows that S has to be separating. We denote by M1 and M2 the
closures of the connected components of M ′\S. Since the virtually contact structure
is assumed to be non-trivial we know that M ′ is not compact, so the same must be
true for at least one of the components Mi. We denote by Vi ⊂ W ×D the preimage
of Mi with respect to the deformed evaluation f . As argued in [22, Section 5.2] the
mapping degree of f is well-defined, when restricted to Vi. Counting the number
of preimages of generic points near S of different components of M \ S with signs
yields to

degf1 − degf2 = ±1

as in [22, Lemma 8], where fi = f |Vi . We can conclude that one component of M \S,
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say M1, is compact and that degf1 = ±1. Using [22, Proposition 11] and the fact
that W × {1} is mapped to a cell by construction, we conclude that M1 is simply
connected. In fact, we choose a base point of M1 on its boundary S and consider a
loop in M1 that starts and ends in this base point. Since the map f1 has degree ±1,
this loop lifts to a loop in W × D. Contracting the disc D to the point {1} gives a
homotopy of the lift to a loop in W × {1}. This deformation yields a deformation of
the loop in M1 whose result is a loop that is contained in the image of W × D with
respect to f . As noted before, the image of W × {1} with respect to f is a cell and
hence it is contractible. Therefore, the considered loop is homotopic to a point. Thus
M1 is simply connected. An application of [22, Proposition 12] shows that M1 has
the homology of a ball. Moreover, M1 is bounded by a (2n − 2)-sphere for n ≥ 3.
For n ≥ 4 we can use the h-cobordism theorem and conclude that M1 is a ball,
see [38, Proposition A on p. 108]. The case n = 3 is covered by [38, Proposition C
on p. 110]. Therefore the sphere S is contractible in M ′ which contradicts the
assumption that the class [S] in π2n−2(M ′) defined by S is non-trivial. Hence the
α-Reeb flow must admit a closed orbit.

Remark 7.5. Let (π : M ′ → M,ω, α, g) be a virtually contact structure whose
base manifold (M,ω) is closed and connected. Assume that (M,ω) is the connected
sum of two odd-symplectic manifolds admitting virtually contact structures and
that (π : M ′ → M,ω, α, g) is obtained by a covering connected sum as defined
in [48, Section 2.2] and recalled in Construction 8.1, up to the rescaling of α with a
positive function that equals 1 outside the attached handles. This rescaling gets rid
of periodic orbits that where contained in the handles. We assume that the C3-norm
of α is bounded. For example this is given if the virtually contact forms of both
summands are C3-finite, see Remark 7.12. If none of the summands is a homotopy
sphere, the base manifold (M,ω) admits a contractible closed characteristic. The
connected sum of manifolds different from homotopy spheres is called non-trivial.

If M is 3-dimensional we can apply Theorem 7.2, since the belt sphere represents
a non-trivial element in the homotopy group π2(M) because otherwise one of the
summands would be a 3-dimensional sphere, see [22, Theorem 1]. For the higher
dimensional case we are in the situation described in the beginning of the proof
of Theorem 7.4. We assume that the α-Reeb flow does not admit a closed orbit.
We argue as in that proof and see that the lift of the belt sphere bounds a ball
B of the same dimension as M . This ball may contain several copies of the belt
sphere. If this is the case we argue as in [38, Proposition 3.10] and consider an
innermost belt sphere, i.e., a copy S of the belt sphere in M ′ such that the interior
connected component of B\S does not contain another copies of the belt sphere. The
existence of an innermost sphere is guaranteed by the compactness of B. Repeating
the topological argument in the proof of Theorem 7.4 shows that S bounds a ball.
We restrict the covering map to this ball and obtain a covering map again. This
covering is one-to-one on the boundary and therefore the same is true in the interior.
Therefore, the belt sphere in M also bounds a ball and the sum is trivial.
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Definition 7.6. The standard contact handle of index k is the upper boundary
Dk × S2n−1−k of a symplectic handle Dk ×D2n−k.

The sphere {0} ×S2n−1−k and its image are referred to as the belt sphere of the
handle.

The index k is subcritical if k ≤ n− 1.

The following theorem and the remarks thereafter are inspired by [26].

Theorem 7.7. Let n ≥ 3. If the C3-norm of α is finite and if (M ′, ξ) is a (2n− 1)-
dimensional contact manifold that admits an contact embedding of the standard con-
tact handle of subcritical index k with belt sphere S whose class [S] in the oriented
bordism group ΩSO

2n−1−k(M
′) is non-trivial, then (M,ω) admits a contractible closed

characteristic.

Proof. In the given situation we can begin to argue as in Theorem 7.4 and get
the description of (M ′, ξ) as the result of a surgery. We add a thickened handle and
consider the modified symplectisation. This allows us to modify the handle as in [26,
Section 3]. Note that this modification has compact support. We assume that the
α-Reeb flow on M ′ does not admit a closed Reeb orbit and argue as in [26, Section 7].
To be a little bit more precise, we consider the moduli space of holomorphic discs with
boundary on a family of Legendrian open books. A deformation of the evaluation
map on the surgered moduli space of holomorphic discs as in [26, Section 6] leads
to a null-bordism of S which contradicts the assumptions of this theorem. Note
that we have to adapt the analysis to a non-compact manifold M ′, we do this as in
Chapter 6 and Theorem 7.1.

Remark 7.8. Assume the situation described in Theorem 7.7 except that the
class [S] of the belts sphere S2n−1−k is non-trivial in π3(M ′) if n = 3 and k = 2 or
in π4(M ′) if n = 4 and k = 3. Then (M,ω) carries a contractible closed orbit. For
this statement we can argue as in [26, Section 5] and modify it as indicated in the
proof of Theorem 7.7.

Remark 7.9. Theorem 7.7 uses moduli spaces of holomorphic discs with boundary
on a family of Legendrian open books in (M ′, ξ). Replacing the boundary condition
by Legendrian open books with boundary, the analysis for holomorphic curves in the
symplectisation of M ′ is modifed as in Chapter 6. Similar to [1,26,35,39] modified as
in the proof of Theorem 7.1 we obtain: If (M ′ξ) admits a Legendrian open book with
boundary and the C3-norm of α is finite, then (M,ω) admits a contractible closed
characteristic. See [48, Proposition 2.6.1 and Proposition 2.6.2] for constructions
that yield examples.
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7.2. Magnetic Energy Surfaces

The following discussion is motivated by the examples in [12] that were expanded
and studied in [48], by Zehmisch in collaboration with the author.

Let (Q, h) be a closed oriented n-dimensional Riemannian manifold and τ : T ∗Q →
Q its cotangent bundle. Denote by DQ the Levi-Civita connection of h and by
h♭ the dual metric of h. As explained in Appendix A we split the tangent space
TT ∗Q = H ⊕ V of T ∗Q into a horizontal distribution H and a vertical distribution
V. This splitting yields a metric m on T ∗Q that is defined as

m
(
(v, a), (w, b)

)
= h

(
Tτ(v), T τ(w)

)
+ h♭(a, b)

for (v, a), (w, b) ∈ H⊕V. Denote the Levi–Civita connection of m by D. This metric
turns τ into a Riemannian submersion as defined in [6, Chapter 9.B]. Moreover the
fibres of τ are totally geodesic with respect to m.

The twisted symplectic form ωσ on T ∗Q is ωσ = dλ + τ∗σ, where λ denotes
the Liouville 1-form of τ and σ is a magnetic, i.e., closed, 2-form on Q. Consider
the Hamiltonian function

H = 1
2‖ · ‖2

h♭ + V ◦ τ : T ∗Q −→ R

where V : Q → R is a so-called potential function on Q. Pick an energy e >
maxQ(V ) and regard the energy surface M := {H = e} ⊂ T ∗Q. It turns out to
be a regular level set. We restrict the geometry of T ∗Q to M and obtain an odd-
symplectic form ω := ωσ|TM and a metric g := m|TM . Moreover, let ∇ be the
Levi-Civita connection on (M, g).

Continuing our discussion from [48] we have the following situation that we will
explain after the diagram.

(M ′, ω′, λ̃+ τ̃∗ϑ|TM ′ , g̃) (T ∗Q̃, ω̃σ, λ̃+ τ̃∗ϑ, m̃, H̃) (Q̃, σ̃, ϑ, h̃)

(M,ω, g) (T ∗Q,ωσ,m,H) (Q, σ, h)

π

{H̃=e} τ̃

T ∗µ µ

{H=e} τ

We assume that there exists a 1-form ϑ on the universal cover µ : Q̃ → Q such that
µ∗σ = dϑ. Choosing the metric h̃ = µ∗h on Q̃ turns µ into a local isometry. Denote
the induced Levi-Civita connection of h̃ on Q̃ by D̃Q. The universal cover µ : Q̃ → Q
induces the universal cover T ∗µ : T ∗Q̃ → T ∗Q. We lift the Hamiltonian function H
along T ∗µ to a Hamiltonian function H̃ on T ∗Q̃. Restricting T ∗µ to the hypersurface
M ′ := {H̃ = e} gives a cover π := T ∗µ|M ′ . Lifting the geometry (T ∗Q,m,D) to
(T ∗Q̃, m̃, D̃) turns T ∗µ into a local isometry. We denote the restriction of m̃ to M ′

by g′ := m̃|TM ′ . It turns out that g′ coincides with the lift of the metric g on M
and hence π is a local isometry, too.

The 1-form α := (λ̃+ τ̃∗ϑ)|TM ′ is a primitive for the lifted twisted odd-symplectic
form ω′ = π∗(ω|TM ), where λ̃ is the Liouville 1-form of τ̃ : T ∗Q̃ → Q̃. By [48,
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Proposition 2.4.1] this defines a virtually contact structure (π : M ′ → M,α, ω, g) for
all e > sup

Q̃
H̃(ϑ), provided ‖ϑ‖C0 is finite.

Proposition 7.10. Let k ∈ N be a natural number. Assume that the Ck-norm
of ϑ with respect to (Q̃, h̃, D̃Q) is finite. Then the Ck-norm of α with respect to
(M ′, g′,∇′) is also finite.

The proof is technical and was published in [5, Proposition 6.2.1].

7.3. Truncating the Magnetic Field

We continue the discussion from Section 7.2 and keep the notation. Let us recap
the truncation we explained in [48, Proposition 2.5.1] before we look at its effect
on Ck-bounds. Consider a closed disc U embedded into Q and denote the image
of the origin by q. We assume that the preimage of U under µ decomposes into
closed sets Up, p ∈ µ−1(q) diffeomorphic to U where the diffeomorphism is µ|Up .
This can be achieved by choosing U sufficiently small. In fact, the diffeomorphisms
are isometries by our choice of metrics. We further consider a cut off function χ on
Q that is identically 1 on Q \ U and vanishes on an open disc neighbourhood W of
q whose closure is contained in the interior of U . We define a perturbed magnetic
form σ̂ on Q by demanding that it agrees with σ on Q \ U and equals d(χϑU ) on
U , where ϑU is a primitive of σ|U obtained by the Poincaré lemma [34, Corollary
17.15]. Note that σ̂ vanishes on W and that σ̂ and σ are cohomologous. Indeed
σ̂ − σ = d

(
(χ − 1)ϑU

)
. We define a primitive ϑ′ of µ∗σ̂ on Q̃ by adding a lift of

(χ− 1)ϑU to the primitive ϑ of µ∗σ. This results in the 1-form

ϑ′ := ϑ+ (χ̃− 1)µ∗ϑU .

Note that ϑ′|W p is closed for all p ∈ µ−1(q) and hence exact, where W p denotes
the connected component of µ−1(W ) containing p ∈ µ−1(q). As in the proof of [48,
Proposition 2.5.1] we select a primitive fp of ϑ′|W p = dfp via the Poincaré lemma.
Let χW be a cut off function that is equals 1 on Q \W and vanishes near q, i.e., on
a disc neighbourhood of q whose closure is contained in W . We define a primitive
ϑ̂ of µ∗σ̂ that also vanishes near µ−1(q) by setting ϑ̂ = ϑ′ on Q̃ \ µ−1(W ) and
ϑ̂ = d(χ̃W fp) on W p, here χ̃W is the lift of χW to Q̃ with respect to µ. The pair
(ϑ̂, σ̂) is called a truncation of (ϑ, σ).

Lemma 7.11. Let k ∈ N be a natural number. If the Ck-norm ‖ϑ‖Ck of ϑ with
respect to (Q̃, h̃, D̃Q) is finite, then the same is true for the Ck-norm ‖ϑ̂‖Ck of ϑ̂
with respect to (Q̃, h̃, D̃Q).

Proof. First note that ϑ′ is Ck-finite, since ϑ′ = ϑ + µ∗((χ − 1)ϑU
)

where ϑ is
Ck-finite by assumption and µ∗((χ − 1)ϑU

)
is the lift of a 1-form with compact

support by a local isometry. The C0-norm of ϑ̂ is finite as we showed in [48, Propo-
sition 2.5.1]. Therefore, for the l-th covariant derivative of ϑ̂ it suffices to consider
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d(χ̃W fp) = ϑ|W p for p ∈ µ−1(q). By Remark 5.1 the l-th covariant derivative of ϑ̂
is given by the (l + 1)-th covariant derivative of χ̃W fp. Applying the Leibniz rule
we obtain

(D̃Q)l+1(χ̃W f
p) =

l+1∑

j=0

(D̃Q)jχ̃W ⊗ (D̃Q)l+1−jfp.

Here ⊗ denotes the product of two tensors and for a k-tensor A, an l-tensor B and
test vector fields X1, . . . , Xk+l it is defined as

A⊗B (X1, . . . , Xk+l) :=
∑

τ

A
(
Xτ(1), . . . , Xτ(k)

)
B
(
Xτ(k+1), . . . , Xτ(k+l)

)

where the sum is taken over all permutations τ : {1, . . . , k+ l} → {1, . . . , k+ l} with

τ(1) < τ(2) < · · · < τ(k)

and

τ(k + 1) < τ(k + 2) < · · · < τ(k + l).

According to Remark 5.4 all covariant derivatives of χ̃W are finite since this is the
case for χW . Further it we showed in [48, Proposition 2.5.1] that the C0-norm of fp

is finite. For all higher derivatives we refer to Remark 5.1 again to conclude

(D̃Q)l+1−jfp = (D̃Q)l−jϑ′|W p .

As we noted at the beginning of the proof the Ck-norm of ϑ′ is finite.

Remark 7.12. If ‖ϑ‖Ck is finite we combine [48, Proposition 2.5.1] with Lemma 7.11
to obtain a virtually contact structure (π : M ′ → M, ω̂, α̂, g) with a Ck-finite contact
form α̂ that is somewhere contact in the sense of Definition 2.15. Given two Ck-finite
somewhere contact virtually contact structures, performing a covering connected
sum in the sense of [48, Section 2.5] and Construction 8.1 results in a virtually
contact structure supported by the connected sum that is also Ck-finite.

7.4. Classical Hamiltonians and Magnetic Fields

We consider the setup introduced in Section 7.2 and assume additionally that Q
is the product of closed hyperbolic surfaces. We consider an R-linear combination of
the area forms corresponding to the factors. The lift of this 2-form to the universal
cover µ : Q̃ → Q has a primitive ϑ that is the corresponding linear combination
of 1

ydx for (x, y) ∈ H
+, this primitive is Ck-finite for all k ∈ N as we discussed in

Section 5.3. We choose σ to be a 2-form whose cohomology class lies in the span
of the area forms of the factors. Indeed we can lift the primitive of the difference
between the sum of the area forms and σ. Adding it to the sum of the primitives
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1
ydx we obtain a primitive for the lift of σ. Applying the results of Section 7.2 we
obtain a rich class of examples of virtually contact type energy surfaces in classical
mechanics with magnetic fields.

We describe a particular class of Hamiltonian systems (Q, h), where σ and ϑ are
chosen as above and the Hamiltonian function equals 1

2‖ · ‖2
h♭ + V ◦ τ . Further we

assume that the potential V is a Morse function on Q with the following properties:

1. V has a unique local maximum, which we assume to be positive.

2. All critical values of V corresponding to critical points of index n − 1 are
strictly smaller than −1

2 t
2
0, where t0 := max

Q̃
‖ϑ‖

(̃h)♭ .

3. Let cn−1 be the largest critical value of V distinguished from the maximum

of V . We require there exists a regular value −v0 < 0 with −v0 ∈
(
cn−1,−1

2 t
2
0

)

such that σ and ϑ vanish on the disc {V ≥ −v0} ⊂ Q and {Ṽ ≥ −v0} ⊂ Q̃,
respectively, where Ṽ denotes the lift of V to Q̃ along µ.

Note that the truncation construction in Section 7.3 allows us to achieve the third
condition for a given Morse function V . The second condition can be obtained by
composing V with a strictly increasing function.

Theorem 7.13. Let Q be a closed hyperbolic surface. Let V be a Morse function
on Q that has a unique local maximum which is required to be positive. Let v0 > 0
be a positive real number such that {V ≥ −v0} contains no critical value of V other
than the maximum. Let σ be a 2-form on Q that vanishes on the disc {V ≥ −v0}.
If

v0 > inf
ϑ

sup
Q̃

1
2‖ϑ‖2,

where the infimum is taken over all C3-bounded primitive 1-forms ϑ of the lift of σ to
the universal cover Q̃ that vanish on {Ṽ ≥ −v0} for the lifted potential Ṽ , then the
equations of motion of a charged particle on Q under the influence of the magnetic
field σ and the presence of the potential V have a non-constant periodic solution of
energy H = 0 that is contractible in {V ≤ 0}.

Proof. We assume the situation described in the proceeding section for n = 2. By
[48, Section 3.2] the second homotopy class π2(M) of M = {H = 0} is non-trivial.
Therefore we are in the situation of Theorem 7.2 and obtain a closed contractible
characteristic of XH on M whose projection to Q via τ is contractible in {V ≤ 0}
since τ(M) = {V ≤ 0} and the characteristic is already contractible in M . We have
to make sure that the solution is not constant after application of the projection.
We take a look at the equation of motion

γ̇ = XH
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where XH is the Haimitonian vector field defined by

ιXH
(dλ+ τ∗σ) = ιXH

ωσ = −dH = −d
(

1
2‖ · ‖2

h♭ + V ◦ τ
)
.

The Hamiltonian vector field spans the kernel of ωσ|T{H=0}, so any closed charac-
teristic satisfies the equation of motion. A computation in local coordinates shows

XH = (XH)q∂q + (XH)p∂p = p∂q + (XH)p∂p.

Therefore the projection of a closed characteristic can only be constant if the fibre
coordinate of the initial solution vanishes. By the choice of our hypersurface, this
is only the case if 0 = H(γ) = V ◦ τ(γ). By construction of M = {H = 0} the
projection τ is trivial at {V = 0}, so the initial characteristic has to be constant,
but this contradicts the fact that XH is nowhere vanishing.

Example 7.14. We remark that the solution we obtained for the magnetic system
does in general not stay in the zero set of the magnetic form. In the following we will
discuss the phenomenon in an example. Let Q be a surface and V a Morse function
on Q satisfying the requirements above. By [Hirsch, p. 157] we can integrate the
gradient flow lines of V to obtain a diffeomorphism [−v0, 0] × S1 ∼= {−v0 ≤ V ≤ 0}
such that the metric tensor on [−v0, 0] × S1 is diagonal with respect to the natural
(r, θ)-coordinates and the level sets of V are mapped to the circles of constant r-
coordinate, i.e., {V (r, θ) = r}. In addition we assume that h11 = 1, perhaps after
applying a conformal change, that is we consider the metric f · h with f |−v0≤V≤0 =
‖gradV ‖2

h. Now we choose a magnetic field σ on Q according to the requirements
of Theorem 7.13.

Let γ̂ be a non-constant periodic solution of the Hamiltonian system with zero
energy that is contractible in {V ≤ 0}. We claim that the trace of γ̂ has to leave the
set {−v0 ≤ V ≤ 0}. We argue by contradiction. If the trace of γ̂ is contained in said
set we can use the gradient flow to homotope it into the upper boundary {V = 0}
which is diffeomorphic to a circle. Therefore we can consider the mapping degree
of γ̂. But since Q is not the 2-sphere no multiple of the boundary circle {V = 0}
is contractible in V ≤ 0, so the mapping degree of γ̂ has to vanish. Therefore γ̂ is
contractible in {−v0 ≤ V ≤ 0} and it lifts to a closed curve γ(t) = (r(t), θ(t)) on
the universal cover [−v0, 0] × R with (r, θ)-coordinates, where the lifted metric h is
diagonal and h11 = 1. Further the gradient grad(V ) of the lifted potential equals
∂r. The θ-coordinate of the curve attains an extremum, say at t0. For this critical

point we have (ṙ(t0), θ̇(t0)) =
(
±
√

−2r(t0), 0
)
, since

(ṙ(t), θ̇(t)) = γ̇(t) = TτXH = p∂q,

where p denotes the fibre coordinates of the closed characteristic γ̃ that projects

80



to γ. The closed characteristic satisfies

0 = H(γ̃(t)) = 1
2‖p‖2 + V ◦ τ(γ̃)

= 1
2

(
p1(t)2 + p2(t)2)+ r(t).

At the critical point t0 of θ we have 0 = θ̇(t0) = p2(t0) and therefore

ṙ(t0) = p1(t0) =
√

−2r(t0).

Note that the Christoffel symbols Γ1
11,Γ

2
11 vanish since the metric is diagonal. We

consider the curve β(t) = (b(t), θ(t0)) with a quadratic polynomial b(t) of the form
−1

2 t
2 + a1t + a0 with b(t0) = r(t0) and ḃ(t0) =

√
−2r(t0), this curve β satisfies the

equation DQ

β̇
β̇ = (−1, 0) and has energy H(β, β̇) = 0. The considered solution γ

satisfies the same differential equation with the same initial values and therefore
the curves agree where they are defined. Therefore γ either connects the lower
boundary {V = −v0} with the upper boundary {V = 0} along a gradient flow line
of V or the r-coordinate attempts a minimum. In the first case the velocity of γ
has to vanish at the lower boundary since the trace of γ is contained in the cylinder
{−v0 ≤ V ≤ 0} by our assumption. In either case we obtain a point t1 with γ̇(t1) = 0
and V (γ(t1)) 6= 0. This is a contradiction to the equation of motion, see the proof
of Theorem 7.13.

Theorem 7.15. Let Q be a product of closed hyperbolic surfaces. Assume that Q
admits a potential function V together with a choice of regular value −v0 < 0 and
a closed magnetic 2-form σ satisfying the conditions described in Theorem 7.13.
In addition, assume that σ is cohomologous to a R-linear combination of the area
forms corresponding to the factors of Q. Then the magnetic flow of the Hamilto-
nian H carries a non-constant periodic solution of zero energy that is contractible
in {V ≤ 0}.

Proof. The statement for n = dimQ = 2 is covered by Theorem 7.13 so we can
assume n ≥ 3. The idea is to find a contact embedding of the standard (n − 1)-
handle Dn−1 × Dn+1 into (M ′, kerα) such that the belt sphere represents a non-
trivial homology class of degree n in M ′, where M = {H = 0} is supports a virtually
contact structure. In the following we will verify the contact type property for M ′,
explain how to find such an embedding and how to derive the existence of a closed
characteristic.

We begin by checking the contact type property for M ′. Let X be the gradient
vector field of τ∗V with respect to the metric m in T ∗Q and denote by F the function

F : T ∗Q −→ R

u 7−→ λu(X).

Observe that F (u) = u ◦ TτX = h♭(u, dV ) for all covectors u on Q, since TτX =
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gradh V . We lift F to a Function F̃ on T ∗Q̃ and for ε > 0 and ũ ∈ T ∗Q̃ we consider

(λ̃+ τ̃∗ϑ− εdF̃ )ũ(X
H̃

)ũ

where X
H̃

is the Hamiltonian vector field of the system (ω̃dϑ, H̃) defined by dH̃ =
−ω̃dϑ(X

H̃
, ·). By the considerations in Appendix B this equals the sum of

‖ũ‖2
(h̃)♭ + (h̃)♭(ũ, ϑ)

and

ε · ((−Hessh̃Ṽ )(ũ#, ũ#) + ‖ gradh̃ Ṽ ‖2
h̃

+ (τ∗µ∗σ)(ũ#, gradh̃ Ṽ )
)

where ũ# ∈ TQ̃ is dual vector of ũ with respect to h̃ and Hess = D̃QdṼ denotes the
Hessian of Ṽ .

By our assumptions in the theorem we can assume that we are in the situation
discussed in the beginning of Section 7.4. Distinguishing the cases 1

2‖ũ‖2
(h̃)♭ ≥ v0

and 1
2‖ũ‖2

(h̃)♭ < v0 we conclude that the sum above is uniformly positive along

{
1
2‖u‖2

(h̃)♭ = −Ṽ (τ̃(ũ))
}

= {H̃ = 0}

for some ε > 0, as explained in Appendix B. Therefore M ′ is of contact type. Indeed,
we can define a Liouville vector field Y by ιY ω̃dϑ = λ̃+ τ∗ϑ− εdF̃ and obtain

dH̃(Y ) = ω̃dϑ(Y,XH̃) = (λ̃+ τ∗ϑ− εdF̃ )(XH̃)

which is uniformly positive along {H̃ = 0}, so Y is transversal to M ′ and by [19,
Lemma/Definition 1.4.5] it is of contact type.

Moreover, considering the family tϑ of 1-forms for t ∈ [0, 1] that corresponds to
the family tσ of magnetic forms, we obtain a family of contact forms

αt = (λ̃+ tτ̃∗ϑ− εdF̃ )|TM ′

on M ′ that connects α0 with α = α1. See Appendix B for the reasoning of this
statement. Note that α0 descents to the contact form αW := (λ − εdF )|TM on M .
We would like to apply the Gray stability argument as in [19, Theorem 2.2.2] to show
that the corresponding contact structures ξt = kerαt are contactomorphic, but as
M ′ is non-compact we have to ensure that the flow obtained by the Moser trick
exists for a sufficiently long time. Indeed, the concerned time-dependent vector field
on M ′ is bounded with respect to the complete metric g′ because αt is C1-bounded,
see Sections 7.2 and 7.3, and we can use local computations as in Section 5.5. Hence
the contact structure kerα0 and kerα are contactomorphic.

As argued in [11, Example 11.12(2)], the hypersurface (M, kerαW ) is the con-
tact type boundary of the Weinstein domain {H ≤ 0} ⊂ (T ∗Q,dλ) with Morse
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function H and Liouville vector field p∂p + εXF . Observe that

dH(p∂p + εXF ) = − ω(XH ,p∂p + εXF )

=(λ− εdF )(XH),

where XF denotes the gradient vector field of F , is positive along M , so the Liouville
field is transverse to the hypersurface. By the exhaustion argument in the end of [11,
Section 11.4], the set {H ≤ 0} is even a Weinstein handle body. As we discussed
in [48, Section 3.1], the Morse property of V implies the Morse property for H. In
addition u is a critical point of H if and only if u is contained in Q ⊂ T ∗Q and
a critical point of V . Moreover, the Morse indices with respect to these functions
coincide. By our assumptions on V we have that the Weinstein handle body is
subcritical, that is, all critical points of H on this sublevel set have index ≤ n− 1.

According to Morse–Smale theory for Weinstein structures we can assume that
there exists a critical point of index n − 1, see the Creation Theorem [11, Theo-
rem 10.11]. By a further manipulation of the Morse function we can achieve that
the largest critical value is attained at exactly one critical point p0, see [11, Propo-
sition 10.10]. These deformations of the Morse function correspond to Weinstein
handle moves. These handle moves yield a smooth family of deformations of the
contact structure on the boundary. By Gray stability the change of the contact
structure can be obtained from a smooth contact isotopy. By Morse theory there
exists a neighbourhood of the critical point p0 diffeomorphic to Dn−1 ×Dn+1. The
standard handle in contact surgery as described in [19, Section 6.2] carries a We-
instein structure and we obtain a local Weinstein structure in a neighbourhood of
p0. By [11, Proposition 12.12] we can perturb the given Weinstein structure by a
Weinstein isotopy supported near p0 such that resulting Weinstein structure equals
the one obtained from the standard model handle near p0. Flowing along the Liou-
ville flow we can deform ∂W to a regular level set with regular value slightly bigger
than the critical value of p0. This results in a further contact isotopy. If the level
set is close enough to the critical point p0 we can assume that it contains the upper
boundary Dn−1 ×Sn of the standard handle. Reversing all the contact isotopies that
we performed we obtain a contact embedding of the upper boundary Dn−1 × Sn of
the standard handle into (M, kerαW ). By [48, Section 3.2] the belt sphere of the
embedded handle is non-trivial in the homology of M , i.e., it represents a non-zero
element. It also lifts to a contact handle in (M ′, kerπ∗αW ) and hence to a contact
handle in (M ′, kerα). The image of the belt-sphere Sn is non-trivial in the homology
of M ′. Combining this with Theorem 7.7 we obtain the theorem.

7.5. Summary of Results

We quote the statements about the existence of virtually contact structures, that
we published in [48] in collaboration with Zehmisch and the results about the ex-
istences of contractible closed characteristics as discussed in [5], by Bae–Zehmisch
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and the author. Some of these were discussed before, in these cases we give the
reference to the corresponding sections.

The following theorem summarises the existence results for closed contractible
characteristics in odd-symplectic manifolds that support a virtually contact struc-
ture. The theorem was published as Theorem 1.1 in [5], in the same formulation.

Theorem. Let (M ′, ξ = kerα) be the total space of a virtually contact structure on
a closed odd-dimensional symplectic manifold (M,ω). Assume that the contact form
α is C3-bounded. Then the Reeb vector field of α on M ′ admits a contractible peri-
odic orbit provided that one of the following conditions for the (2n− 1)-dimensional
contact manifold (M ′, ξ) is satisfied:

1. n = 2 and ξ is overtwisted,

2. n = 2 and π2(M ′) 6= 0,

3. n ≥ 3 and (M ′, ξ) contains a Legendrian open book with boundary,

4. n ≥ 3 and (M ′, ξ) contains the upper boundary of the standard symplectic
handle of index 1 ≤ k ≤ n − 1 whose belt sphere S2n−1−k ⊂ M ′ represents a
non-trivial element in

a) in π2n−2(M ′) if k = 1,

b) in π3(M ′) if n = 3 and k = 2,

c) in π4(M ′) if n = 4 and k = 3,

d) in the oriented bordism group ΩSO
2n−1−kM

′ if k ≥ 2,

5. n ≥ 3 and (M ′, ξ) is obtained by covering contact connected sum as introduced
in [48] such that the underlying connected sum decomposition of M is non-
trivial and ω is not the exterior differential of a contact form on M .

References. The first statement about virtually contact structures with overtwisted
covering (M, ξ) is explained in Theorem 7.1. The second case in which the second
homotopy group π2(M ′) does not vanish is covered by Theorem 7.2. The arguments
follow [29, 30] and [20]. The third point where (M ′, ξ) contains a Legendrian open
book with boundary is discussed in Remark 7.9. The reasoning is as in [1,26,35,39].
The situation in 4.a) is described in Theorem 7.4. The discussion is similar to
[22]. The conditions b) to d) in the fourth instance are presented in Remark 7.8
and Theorem 7.7. The proofs are inspired by [26]. The last point is explored in
Theorem 7.5.

In [48], we describe classes of examples that fall in various categories of the previ-
ous theorem. These examples are results of the following theorems. Moreover, they
are interesting in their own right since they show that there are virtually contact
manifolds with rich topology. We pulished them as Theorem 1.1 and Theorem 1.2
in [48].
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Theorem. For all n ≥ 2 there exist non-trivial closed virtually contact manifolds M
of dimension 2n−1 that are topologically connected sums such that the corresponding
belt spheres represents a non-trivial homotopy class in π2n−2(M). The involved
covering spaces M ′ are obtained by covering contact connected sums.

Theorem. For any n ≥ 2 and given b ∈ N there exists a closed virtually contact
manifold M of dimension 2n−1 such that πn(M) and the image in Hn(M) under the
Hurewicz homomorphism, respectively, contain a subgroup isomorphic to Z

b. The
virtually contact manifold M appears as the energy surface of a classical Hamiltonian
function in a twisted cotangent bundle T ∗Q. The rank b of the subgroup Z

b is the first
Betti number of the configuration space Q. If n ≥ 3 the virtually contact structure
on M is non-trivial.

The initial motivation to study virtually contact structures are hypersurfaces in
magnetic cotangent bundles as in [12]. The examples in second theorem are of
this form, some of their properties are recalled in Section 7.2. With some additional
assumptions we were able to prove the existence of contractible closed characteristics,
see Theorem 7.13 and Theorem 7.15. These statements were already published in [5]
as Theorem 1.2 and Theorem 1.3.

Theorem. Let Q be a closed hyperbolic surface. Let V be a Morse function on Q
that has a unique local maximum which is required to be positive. Let v0 > 0 be a
positive real number such that {V ≥ −v0} contains no critical point of V other than
the maximum. Let σ be a 2-form on Q that vanishes on the disc {V ≥ −v0}. If

v0 > inf
θ

sup
Q̃

1
2‖ϑ‖2 ,

where the infimum is taken over all C3-bounded primitive 1-forms ϑ of the lift of
σ to the universal cover Q̃ that vanish on {Ṽ ≥ −v0} for the lifted potential Ṽ ,
then the equations of motion of a charged particle on Q under the influence of the
magnetic field σ and the presence of the potential V have a non-constant periodic
solution of energy H = 0 that is contractible in {V ≤ 0}.

Theorem. Let Q be a product of closed hyperbolic surfaces. Assume that Q admits
a potential function V together with a choice of regular value −v0 < 0 and a closed
magnetic 2-form σ satisfying the conditions described in Theorem 7.5. In addition,
assume that σ is cohomologous to a R-linear combination of the area forms corre-
sponding to the factors of Q. Then the magnetic flow of the Hamiltonian H carries
a non-constant periodic solution of zero energy that is contractible in {V ≤ 0}.
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CHAPTER 8

Surgery

Surgery operations, handle attachments and the corresponding symplectic cobor-
dimsms have been useful in the obstruction theory for holomorphic curves and the
study of periodic orbits in contact manifolds, see [22, 26, 29, 35, 40]. In this chapter
we want to study these concepts for odd-symplectic manifolds.

8.1. Two Surgery Constructions

We discuss two ways to perform surgery for virtually contact structures. First
we take a look at the connected sum construction as presented and used in [5, 48].
Then we present a higher index handle attachments that takes place in a Darboux
neighbourhood of a point.

Construction 8.1. We introduce the contact connected sum. This is a useful
tool to create examples of virtually contact structures with non-trivial homotopy
group π2n−2, see [48, Theorem 1.1]. As stated in Remark 7.5 we can find peri-
odic orbits in the covering contact manifolds obtained by this construction if the
connected sum in non-trivial. Later we will give a generalization to higher index
virtually contact surgery.

Let (πi : M ′
i → Mi, ωi, αi, gi), i = 1, 2, be two somewhere contact virtually contact

structures and b a bijection between the fibres of the coverings πi. After shrinking
the open sets Ui where (Mi, ωi) is somewhere contact in the sense of Definition 2.15,
we may assume that the sets carry Darboux coordinates for the contact forms αUi .
Inside the open sets Ui we choose closed embedded discs D2n−1 which now also
carry Darboux coordinates. We identify the boundaries ∂D2n−1

i with the upper
boundaries {i} × S2n−2 of the 1-handle [1, 2] ×D2n−1. As explained in [19, Section
6] we can perform an index-1 surgery that yields the connected sum M1#M2 and
is such that U1#U2 carries a contact form αU1

#αU2
. Given this form we can equip

M1#M2 with the odd-symplectic form

ω =

{
d(αU1

#αU2
) on U1#U2,

ωi on Mi \ Ui.
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In a similar fashion we extend the metric over the handle such that it agrees with
the old metrics on Mi \ Ui.

For (M1#M2, ω) to be virtually contact we need to specify a covering and make
sure that the boundedness conditions are satisfied. To do so we assume, after shrink-
ing Ui again, that the preimage of Ui under πi decomposes into disjoint open sets
Uyi , where y runs through the preimages of the basepoint xi ∈ Ui of Mi. Using the

bijection b between the fibres we can define a family of connected sums Uy1 #U b(y)
2 .

Since αi coincides with the lift of αUi on π−1
i (Ui) we can choose the contact form

αU1
#αU2

on each Uy1 #U b(y)
2 equivariantly. Gluing M ′

1 \ π−1
1 (U1) ∪ M ′

2 \ π−1
2 (U2)

with Uy1 #U b(y)
2 along their boundaries leads to a manifold denoted by M ′

1#bM
′
2.

We obtain a cover

π : M ′
1#bM

′
2 −→ M1#M2

that restricts to πi on M ′
i \ π−1

i (Ui) and is the obvious cover on

U1#bU2 :=
⋃

y∈π−1(x)

Uy1 #U b(y)
2 .

The manifold M ′
1#M ′

2 carries a contact form α given by

α :=

{
π∗(αU1

#αU2
) on U1#bU2,

αi on M ′
i \ π−1

i (Ui).

As mentioned above it does not suffice to give a covering, we also need to check the
boundedness conditions. Remember that (πi : M ′

i → Mi, ωi, αi, gi) are assumed to
be virtually contact, so the bounds descent to (M ′

1#bM
′
2) \ (U1#bU2). On the other

hand the part U1#bU2 is a trivial cover of a compact set, so all bounds concerning
the contact form α|U1#bU2

= π∗(α1#α2) are satisfied as long as they are satisfied
on U1#U2. Therefore we indeed obtain a virtually contact structure (π : M ′ →
M,ω, α, g) on M := M1#M2 covered by M ′ := M ′

1#bM
′
2 via π.

Construction 8.2. Now we come to the general case of a virtually contact surgery.
In many concerns it is similar to the construction of connected sum above. Let
(π : M ′ → M,ω, α, g) be a virtually contact structure and assume that (M,ω)
is somewhere contact. To be precise say that we have base point p ∈ M and a
neighbourhood U of p such that ω|U = dαU for some 1-form αU on U with π∗αU = α
on π−1(U). Assume additionally that π−1(U) decomposes in disjoint open subsets
of M ′ diffeomorphic to U . Further assume that there exists an embedding of Sk−1

into U such that the image of Sk−1 has trivial symplectic normal bundle. This
is always possible for subcritical indices k ≤ n − 1, see [19, Examples 2.5.6]. We
perform contact surgery as usual. To be really precise one performs contact surgery
for (U,αU ) and glues the result of the surgery into M \ U . The surgered manifold
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has the form

N := M \ (Sk−1 × Int(D2n−k)) ∪Sk−1×S2n−k−1 (Dk−1 × S2n−k−1).

A neighbourhood of the surgery is given by

V := U \ (Sk−1 × Int(D2n−k)) ∪Sk−1×S2n−k−1 (Dk−1 × S2n−k−1).

We define an odd-symplectic form ωN on N by

ωN :=

{
ω on N \ V ∼= M \ U,
dαV on V,

where αV denotes the contact form obtained from αU through surgery. Let ψ be
the diffeomorphism used to identify the boundaries of M \ Sk−1 × Int(D2n−k) and
Dk × S2n−k−1 and define a covering of N by

N ′ := M ′ \
(
π−1(Sk−1 × Int(D2n−k)

)) ∪ψ
π−1(Sk−1×S2n−k−1)

⊔

y∈π−1(p)

(Dk × S2n−k−1),

where the ψ indicates that we always use the same identification for the boundaries.
The covering map πN is given by π on M ′ \ π−1(V ) and the trivial covering on the
neighbourhood V of the surgery. We specify a contact form on N ′ by

αN ′ :=

{
α on N ′ \ π−1(V ) ∼= M ′ \ π−1(U),

π∗
NαV on π−1

N (V ).

Choosing the metric gN similar to the metric in the case of the connected sum we
can repeat the argument given in that case to verify that the constructed tuple
(πN : N ′ → N,ωN , αN ′ , gN ) is indeed virtually contact, i.e., that it satisfies the
boundedness conditions.

Questions. These construction can be used as a starting point for further research.
The constructions above take place in a Darboux chart, but as explained in the
following discussion this assumption is not necessary. The question whether the
connected sum is non-trivial was discussed in [48]. Finally, one asks if the belt
spheres can serve as germs of holomorphic curves. This is of interest in view of the
discussion in Chapter 7 and the references therein.

8.2. An Odd-Symplectic Neighbourhood Theorem

We begin our study of a more general surgery theory with a neighbourhood theo-
rem for odd-isotropic submanifolds which states that a neighbourhood of an isotropic
submanifold is characterized by the isomorphism type of the symplectic normal bun-
dle. The analogue result in the contact case is essential for performing contact
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surgery. See [19, Chapter 2.5 and 6] for a detailed discussion of the contact case.
Let (M2n−1, ω) be an oriented odd-symplectic manifold. We begin with the nec-

essary notations.

Definition 8.3. A submanifold L ⊂ (M,ω) is called isotropic if TL ∩ kerω = {0}
and i∗ω = 0, where i denotes the embedding of L into M .

A Legendrian submanifold is an isotropic submanifold of dimension n− 1 in a
(2n− 1)-dimensional odd-symplectic manifold.

There is an alternative description of isotropic manifolds that uses the existence
of a specific framing.

Corollary 8.4. A submanifold L of an orientable odd-symplectic manifold (M,ω)
is isotropic if and only if there exists a framing γ of (M,ω) such that

1. TL ⊂ ker γ,

2. TpL ⊂ (ker γ)p is isotropic with respect to ω|ker γp for all p ∈ L.

Proof. Let us assume that L is isotropic in the sense of Definition 8.3. We choose a
Riemannian metric g on M with the property that TL is perpendicular to the kernel
of ω, TL ⊥ kerω, which is possible since TL ∩ kerω = {0}. Let X be a vector field
generating the kernel of ω, see Lemma 2.5, and define the 1-form

γ := ιXg.

It satisfies γ|TL = 0, i.e., TL ⊂ ker γ. As said in the proof of Lemma 2.5 γ is
a framing and therefore ω|ker γ is symplectic. The condition i∗ω = 0 implies that
TpL ⊂ (ker γ)p is isotropic with respect to ω|ker γp for all p ∈ L.

On the other hand if the conditions in the corollary are satisfied we know that
ω|ker γ is a symplectic form by the definition of a framing. So it makes sense to
say that TpL ⊂ (ker γ)p is isotropic with respect to ω. This implies that ω|TL = 0
which is the same as saying i∗ω = 0 for the embedding i of L into M . The property
TL ∩ kerω = {0} follows from

TL ∩ kerω ⊂ ker γ ∩ kerω = {0}

where the last equation is a consequence of γ being a framing.

The symplectic normal bundle is defined coherently with the definiton in the
contact case [19, Definition 6.2.1].

Definition 8.5. Let (M,ω) be a odd-symplectic manifold with framing γ and L an
isotropic submanifold. The quotient bundle

SNM (L) = (TL)⊥/TL
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with the symplectic structure induced by ω is called symplectic normal bun-
dle of L in M with respect to γ. Here (TL)⊥ denotes the symplectic orthogonal
complement of TL in ker γ with respect to the symplectic form ω|ker γ .

For the following discussion let L be an isotropic submanifold and γ a framing
with TL ⊂ ker γ.

Our first aim is a neighbourhood theorem that describes a neighbourhood of an
isotropic submanifold up to odd-symplectomorphism depending on the isomorphism
type of SNM (L) as a symplectic bundle. We consider the normal bundle NL :=
TM/TL of L in M . It splits as

NL ∼= kerω|L ⊕ (ker γ|L)/(TL)⊥ ⊕ SNM (L). (8.1)

For dimM = 2n − 1 and dimL = k ≤ n − 1 the dimension of the vector spaces on
the right hand side are 1, k, and 2(n− k − 1), respectively.

By Lemma 2.5 the kernel kerω is a trivial line bundle spanned by the global vector
field X defined by ιXvolM = ωn−1. Therefore we identify kerω with the line bundle
spanned by X.

The following statements are the odd-symplectic counterparts of the results in
the contact setting found in [19, pp. 69–71]. The following lemma tells us that the
isomorphism type of the second summand only depends on the topology of L. Thus
the isomorphism type of NL is completely determined by the isomorphism type of
SNM (L).

Lemma 8.6. The map

Ψ : (ker γ|L)/(TL)⊥ −→ T ∗L

[Y ] 7−→ ιY ω|TL.

is a well defined bundle isomorphism between (ker γ|L)/(TL)⊥ and T ∗L.

Proof. The proof is analogue to the proof of [19, Lemma 2.5.4] replacing dα with ω.

Lemma 8.7 ([19, Lemma 2.5.7]). Combining the isomorphism Ψ with the identity
on TL we obtain a symplectic isomorphism

idTL ⊕Ψ : (TL⊕ J(TL), ω) → (TL⊕ T ∗L,ΩL),

where ΩL

(
(v, α), (w, β)

)
= α(w) − β(v).

Sometimes it is convenient to think of all summands in (8.1) as subbundles of
TM . For the first one we take the subbundle 〈X〉 spanned by X. For the other two
we use the following proposition.

Proposition 8.8 ([19, Proposition 2.5.5]). Denote the complex bundle structure on
ker γ constructed in [19, Proposition 2.4.5] by J : ker γ → ker γ. By construction J
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is compatible with the symplectic bundle structure ω|ker γ. Then there exist (abstract)
isomorphisms between (ker γ|L)/(TL)⊥ and J(TL) and between the symplectic nor-
mal bundle SNM (L) and (TL⊕J(TL))⊥. Moreover the second isomorphism respects
the symplectic bundle structure.

With these result we can describe the normal bundle

NL ∼= 〈X〉 ⊕ J(TL) ⊕ (TL⊕ J(TL))⊥

as a subbundle of TM as desired. To avoid confusion we will stay with the notation
SNM (L) but keep in mind that we can think of it as a subbundle of TM if convenient.

Theorem 8.9 (Odd-symplectic neighbourhood theorem). Let Li be closed isotropic
submanifolds of the odd-symplectic manifolds (Mi, ωi), i = 0, 1. Assume there is
an isomorphism of the symplectic normal bundles Φ : SNM0

(L0) → SNM1
(L1) that

respects the symplectic structures and covers a diffeomorphism φ : L0 → L1. Then
there exists an odd-symplectomorphism ψ : N (L0) → N (L1) defined on suitable
neighbourhoods N (Li) that restricts to φ on L0 and satisfies Tψ|SNM0

(L0) = Φ.

The proof is strongly inspired by the proofs of [19, Theorems 2.5.8, 6.2.2].

Proof. We identify kerωi with the trivial line bundle spanned by Xi. In total, this
identifies

NLi = 〈Xi〉 ⊕ J(TLi) ⊕ SNMi(Li)

as a subbundle of TMi|Li .
Mapping X0(p) to X1(φ(p)) yields the obvious line bundle isomorphism ΦX :

〈X0〉|L0
→ 〈X1〉|L1

.
We denote the isomorphism defined by the interior product with ωi by Ψi :

Ji(TLi) → T ∗Li, see Lemma 8.6 and Proposition 8.8. We have the symplectic
bundle isomorphism

Tφ⊕ (φ∗)−1 : (TL0 ⊕ T ∗L0,ΩL0
) → (TL1 ⊕ T ∗L1,ΩL1

).

Combining this with Lemma 8.7 gives us the symlectic vector bundle isomorphism

Tφ⊕ (Ψ−1
1 ◦ (φ∗)−1 ◦ Ψ0) : (TL0 ⊕ J0(TL0), ω0) → (TL1 ⊕ J1(TL1), ω1).

We combine these maps to a bundle isomorphism covering φ

Φ̃ : NL0 → NL1

defined by

Φ̃ := ΦX ⊕ (
Ψ−1

1 ◦ (φ∗)−1 ◦ Ψ0
)⊕ Φ.
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Take tubular neighbourhoods τi : NLi → Mi. Recall that the τi are embeddings
with the following properties:

• with respect to the identification of Li with the zero section of NLi, τi restricts
to the inclusion.

• the differential Tτi induces the identity on NLi along Li, where we us the
splitting T (NLi)|L = TLi ⊕NLi.

The concatenation τ1 ◦ Φ̃ ◦ τ−1
0 of the tubular maps with Φ̃ is a diffeomorphism of

suitable neighbourhoods N (Li) of Li that induces the bundle map

Tφ⊕ Φ̃ : TM0|L0
−→ TM1|L1

.

This bundle map pulls ω1 back to ω0 by construction.
Summarising what we have achieved and abbreviating the notation we may assume

the following situation:

• M0 = M1 =: M , L0 = L1 =: L, φ = idL

• ω0 = ω1 on TM |L and Φ = id |SNM (L).

Since the odd-symplectic forms coincide along L we can assume that the vector fields
X0 and X1 that span the kernels of ω0 and ω1, respectively, also coincide along L.
Therefore we can choose framings γi that agree along L and satisfy TL ⊂ ker γi.
Now consider an open neighbourhood N (L) and a hypersurface Σ in N (L) with

• L ⊂ Σ,

• Σ is transverse to X0 and X1, and each integral curve of X0 or X1 in N (L)
intersects Σ exactly once,

• ker γ0|L = ker γ1|L = TΣ|L.

With these conditions we obtain that the restrictions of ω0 and ω1 induce symplectic
forms on Σ, since Σ is transverse to the kernels of the odd-symplectic forms. Note
that these forms satisfy ω0 = ω1 on TΣ|L. Denote the inclusion of Σ into M by
j : Σ →֒ M and the convex interpolation between the forms by ω̃t := (1− t)ω0 + tω1.
Further, define the restriction to Σ as ω̂t := j∗ω̃t and note that ω̂t agrees with ω0

on TΣ|L for all t. Therefore, ω̂t is a symplectic form on Σ for all t ∈ [0, 1], after
shrinking N (L) and Σ if necessary, since the symplectic condition is open.

We are looking for an isotopy ψt of a neighbourhood of L ⊂ Σ with ψ∗
t ω̂t = ω̂0,

and furthermore ψt|L = idL and Tψt = id on TΣ|L. We do so by applying the
symplectic Moser trick to the family ω̂t of symplectic forms.

We apply the generalised Poincaré lemma [19, Corollary A.4] to the 2-form

η := ω̂1 − ω̂0 = ˙̂ωt,

which yields a 1-form ζ in a neighbourhood of L ⊂ Σ, vanishing to second order
on L, such that η = dζ.
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We assume the ψt is the flow of a time-dependent vector field Yt and differentiate
the desired equation ψ∗

t ω̂t = ω̂0, which yields the equation

ψ∗
t (dζ + d(ιYtω̂t)) = 0.

To solve this equation it suffices to solve

ζ + ιYtω̂t = 0,

which is uniquely possible because ω̂t is a symplectic form in a neighbourhood of
L ⊂ Σ for all t ∈ [0, 1]. The vector field Yt vanishes to second order on L since the
same is true for ζ. Hence the local flow of Yt fixes L, and therefore exists up to
time 1 in a neighbourhood of L. The vanishing of Yt along L implies that

d

dt
(ψ∗

tZ) = ψ∗
tLYtZ = ψ∗

t ([Yt, Z]) = 0

on L for all vector fields Z on L, where ψ∗
t is defined as T (ψ−1

t ) on vector fields.
Together with the initial condition ψ0 = idΣ we have Tψt = id on TΣ|L for all
t ∈ [0, 1]. We extend the diffeomorphism ψ1 : Σ → Σ to a diffeomorphism ψ :
N (L) → N1(L) of the neighbourhood N (L) of L in M , again after shrinking N (L)
and Σ, if necessary, to another neighbourhood N1(L) by requiring that ψ sends flow
lines of the vector field X0 to these of X1. Since X0 = X1 along L, this gives Tψ = id
on TM |L. This implies ψ∗ω̂1 = ω̂0 on N1(L), since ιXω = 0 and LXω = 0 for a
vector field spanning the kernel of any ω.

Question. In view of the aforementioned surgery, see Construction 8.2, it is inter-
esting to classify neighbourhoods an isotropic sphere up to odd-symplectomorphism.
In view of the neighbourhood theorem this is the same as understanding the sym-
plectic bundle isomorphisms of the symplectic normal bundle.

Corollary 8.10. Let L0 ⊂ (M0, ω) be a closed Legendrian submanifold and L1 ⊂
(M1, α) be a closed Legendrian submanifold in a strict contact manifold (M1, α)
diffeomorphic to L0. Then there exist a neighbourhood N (L0) of L0 and a contact
form α0 on N (L0) with dα0 = ω.

Proof. The symplectic normal bundle of a Legendrian submanifold is the zero-bundle
so the only non-empty condition in the odd-symplectic neighbourhood theorem is
the existence of a diffeomorphism between the isotropic submanifolds. Therefore,
we have a diffeomorphism ψ : (N (L0), ω) → (N (L1),dα). The pullback of α with ψ
gives a contact form on N (L0) whose exterior derivative equals ω, indeed

dψ∗α = ψ∗dα = ω.

With a similar argument we obtain

Corollary 8.11. Let Li ⊂ (Mi, ωi) be diffeomorphic (closed) Legendrian submani-
folds. Then they admit odd-symplectomorphic neighbourhoods.
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Corollary 8.12. Let L0 ⊂ (M0, ω) be a closed isotropic submanifold and L1 ⊂
(M1, α) be a closed isotropic submanifold in a strict contact manifold (M1, α) diffeo-
morphic to L0. Assume further that the symplectic normal bundles SNM0

(L0) and
SNM1

(L1) are isomorphic as symplectic bundles. Then there exist a neighbourhood
N (L0) of L0 and a contact form α0 on N (L0) with dα0 = ω.

Questions. Corollary 8.12 leads to odd-symplectic surgery as explained in the next
section. For a better understanding of this surgery it can be interesting to have
a better understanding of the contact neighbourhoods given by the corollary. For
example one asks how rigid the assumptions in Corollary 8.10 and 8.12 are. That is,
given a Legendrian submanifold L in (M0, ω), are there conditions that enable us to
find a contact manifold (M1, α) that contains L as a Legendrian submanifold. The
same question is valid for isotropic submanifolds. That is, given a symplectic normal
bundle over an isotropic submanifold L, can we find a contact manifold (M,α) that
contains L as an isotropic submanifold such that SNM (L) is isomorphic to the given
bundle?

8.3. Odd-Symplectic Surgery and Symplectic Cobordisms

Based on the neighbourhood theorem (Theorem 8.9) for odd-symplectic mani-
folds in the previous section we will construct a symplectic cobordism whose lower
boundary is a given odd-symplectic manifold and whose upper boundary is diffeo-
morphic to the result of a surgery: Let (M0, ω0) be an oriented, odd-symplectic
manifold and S ⊂ M0 an isotropic (k − 1)-sphere with trivial symplectic normal
bundle. Additionally, we assume that there exists a contact manifold (N,α) that
contains a (k − 1)-sphere S′ such that the symplectic normal bundles SNM (S) of
S ⊂ M0 and SNN (S′) of S′ ⊂ N are isomorphic as symplectic bundles. Surgery
along this sphere yields a manifold M1. Note that this is possible since triviality of
the symplectic normal bundle implies that the normal bundle is also trivial by the
discussion in Section 8.2. The aim of the following argument is to find a symplectic
manifold (W,Ω) with ∂W = M1 ⊔ −M0 and Ω|TM0

= ω. This procedure gives an
odd-symplectic structure on M1 by restriction of Ω. In contrast to the situation in
contact geometry, the dynamics on the upper boundary of the cobordism differ from
those on the lower boundary even away from the surgery region.

Question. For a full understanding of the odd-symplectic surgery it is interesting
how restrictive it is to assume the existence of S′, i.e., how many k-spheres with
trivial symplectic normal bundle are there up to an isomorphism covering a diffeo-
morphism. For a answer one should understand the situation in contact geometry.

Let us give a precise definition of the subjects mentioned above.

Definition 8.13. Let M0, M1 be oriented manifolds. A symplectic cobordism
from M0 to M1 is a compact, connected, symplectic manifold (W,Ω), oriented by
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Ω, with oriented boundary

∂W = M1 ⊔ −M0,

where −M0 denotes M0 with the opposite orientation.

Definition 8.14. An odd-symplectic manifold (M0, ω0) is symplectically cobor-
dant to (M1, ω1) provided there exists a connected symplectic cobordism (W,Ω)
from M0 to M1 such that Ω|TM0

= ω0 and Ω|TM1
= ω1.

Remark 8.15. Note that the neighbourhood theorem (Theorem 8.9) allows us to
glue arbitrary odd-symplectic manifolds of the same dimension with diffeomorphic
isotropic submanifolds that satisfy conditions along neighbourhoods of these sub-
manifolds. But it turns out that it is helpful for further applications to have some
control or understanding about one of the summands. In practice it is useful to
work with handles, i.e., disc products, that admit a contact structure on the lower
boundary, see [47]. In the following we will discuss the attachment of such a handle.

The construction uses a symplectisation and a symplectic model handle. The
symplectic model handle is a modification of the one used in the contact case. We
shall only discuss our changes and refer to [19, Section 6.2] for more details. The
difference to the contact case is that the symplectisation does not always admit a
global Liouville vector field.

For the symplectisation of an odd-symplectic manifold (M,ω) we consider R×M
together with the 2-form

Ωγ = d(tγ) + ω

= dt ∧ γ + tdγ + ω,

where t denotes the R-coordinate and γ is a framing. Note that Ωγ is a closed 2-form
with Ωγ |T ({0}×M) = ω. We compute

Ωn
γ = n · dt ∧ γ ∧ ωn−1 + O(t).

Therefore we find an ε > 0, depending on ω and γ, such that Ωγ is non-degenerated
on [−ε, ε]×M , i.e., ([−ε, ε]×M,Ωγ) is a symplectic manifold with boundary ({−ε}×
M) ∪ ({ε} ×M). The orientation on the lower boundary differs from the orientation
of M and the orientation on the upper boundary coincides with the one of M . For
the handle attachment we restrict ourselves to [0, ε] ×M .

For a handle attachment as described in [19, Section 6.2] we need a Liouville
vector field of Ωγ , at least in a neighbourhood of [0, ε] × Sk−1, where Sk−1 is the
odd-isotropic sphere along which we perform surgery. By Corollary 8.12 we find a
neighbourhood U of Sk−1 ⊂ M and a contact form α on U with dα = ω. Using the
next lemma we extend α to a framing γ on M . Note that this extension may fail to
be contact and even if it is contact we can not ensure that dγ = ω.
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Lemma 8.16. Let (M,ω) be an oriented, odd-symplectic manifold, U ⊂ M open
and assume there is a contact form α on U with dα = ω. Then for any open subset
V with V ⊂ U there exists a framing γ on M with γ|V = α.

Proof. After shrinking U we can assume that there exists a volume form volM on M
with volM |U = α ∧ (dα)n−1 = α ∧ ωn−1. Let V ⊂ V ⊂ U be an open subset of M
and choose a cut-off function χ with

χ =

{
0 on M \ U,
1 on V.

By Lemma 2.5 we find a framing γ with γ ∧ ωn−1 = volM . We claim that γ̃ :=
(1 − χ)γ + χα is a framing as desired. First note that γ̃|V = (1 − 1)γ + 1 · α = α by
definition of χ and it is indeed a framing since

(
(1 − χ)γ + χ · α) ∧ ωn−1 = (1 − χ)volM + χvolM = volM .

Note that γ̃ is well defined since χ vanishes where α is not defined.

We replace the framing γ with one that is contact in a neighbourhood N (Sk−1)
of Sk−1, still denoted by γ. In our situation this means that Ωγ takes the form

Ωγ = d(tα) + dα = d
(
(1 + t)α

)

on [0, ε] × N (Sk−1)

Φs0(0, p) = (ε, p)

for s0 = −1+
√

1 + 2ε, i.e., the flow of boundary points (0, p) exists for at most time
s0. Note that Ωγ |T ({ε}×M) = εdγ + ω will differ from ω in general.

The symplectic model handle is described in [19, pp. 296] as a subset of (R2n,dx∧
dy). We would like to use [19, Lemma 5.2.4] to glue the model handle to the
symplectisation. This lemma translates to

Lemma 8.17 ([19, Lemma 5.2.4]). For i = 0, 1 let Mi ⊂ (Wi, ωi) be a hypersurface
in a symplectic manifold and Yi a Liouville vector field defined in a neighbourhood
of and transversal to Mi. Denote the induced contact form ιYiωi by αi. Assume that
φ : (M0, α0) → (M1, α1) is a contactomorphism, extended to a diffeomorphism φ̃ on
suitable neighbourhoods via the Liouville flow. Then φ̃ is a symplectomorphism.

The reason we cannot glue the standard model handle to our symplectistion is
that the Liouville flow on the boundary component {0} × M of the symplectisa-
tion only exist for a short time s0. Hence the image of [0, ε] × N (Sk−1) under
the symplectomorphism given in the preceding lemma may has empty intersection
with the upper boundary. We replace the standard model handle with a pancake
handle, see Figure 8.1. Given a symplectomorphism as in the lemma defined on
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Figure 8.1.: Two types of handles

On the left: The standard handle with Liouville flow
On the right: The pancake handle with shortened Liouville flow

[0, ε] × N (Sk−1) with image in R
2n such that {0} × N (Sk−1) is mapped into the

lower boundary of the standard model handle. We replace the upper boundary of the
standard handle with a hypersurface diffeomorphic to Dk×S2n−k−1 and transversal
to the Liouville vector field such that (D\D1−δ)×S2n−k−1 is contained in the image
of [0, ε] × N (Sk−1) for some δ > 0.

8.4. An Abstract Point of View

For a closed (2n − 1)-dimensional odd-symplectic manifold (M,ω) with framing
γ the symplectisation is given by

(
(−ε, ε) ×M, d(tγ) + ω)

)

for an appropriate ε > 0.
We take a closer look at the definition of a symplectic cobordism. Let (W,Ω) be

a compact connected symplectic manifold with boundary

∂W = M1 ∪ −M0,

and oriented by Ωn, where n is half the dimension of W . The boundary of W is
oriented with respect to the outward pointing normal vector field ν. Suppose that
each boundary component carries its own orientation. We denote by M1 the union
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of all boundary components whose orientation coincides with the given one and by
M0 the union of all components where the orientations differ.

By the symplectic neighbourhood theorem for hypersurfaces, see [36, Example 3.36],
there exist collar neighbourhoods of the boundaries M0 and M1 of the form

(
[0, ε) ×M0,d(tγ0) + ω0

)

and

(
(−ε, 0] ×M1,d(tγ1) + ω1

)
,

where ωi = Ω|TMi is an odd-symplectic form on Mi and γi is a framing of ωi inducing
the given orientation of Mi, for i = 0, 1.

In general the relation of being symplectically cobordant described in Definition
8.14 is neither reflexive nor symmetric. We redefine the term symplectically cobor-
dant to achieve reflexivity. The disadvantage of this new definition is that transitivity
is no longer obvious. We discuss the properties of the relation after the definition.

Definition 8.18. Two odd-symplectic manifolds (M0, ω0) and (M1, ω1) are sym-
plectically cobordant directed from (M0, ω0) to (M1, ω1) if there exists an s0 > 0
and a framing γ1 of (M1, ω1) such that for all s ∈ (0, s0) there exists a symplectic
cobordism (Ws,Ωs) with

∂(Ws,Ωs) = (M1, ω1 + sdγ1) − (M0, ω0).

The odd-symplectic cobordism relation is defined as

(M0, ω0) 4 (M1, ω1) :⇔ (M0, ω0) is symplectically cobordant to (M1, ω1)

directed from (M0, ω0) to (M1, ω1).

We will now discuss properties of this relation. It turns out that it is reflexive and
transitive on odd-symplectic manifolds, but results by Geiges–Zehmisch [25] show
that it is not symmetric in general.

Lemma 8.19. The relation 4 is reflexive.

Proof. Let (M,ω) be an odd-symplectic manifold and γ a corresponding framing.
There exists a ε0 > 0 such that

(
[0, s] × M, d(tγ) + ω

)
is a symplectic cobordism

from (M,ω) to (M, sdt + ω) for all s ∈ (0, ε0). See also the discussion about the
symplectisation of an odd-symplectic manifold in Section 8.3.

Lemma 8.20. The relation 4 is transitive.

Proof. Assume the situation

(M0, ω0) 4 (M,ω) 4 (M1, ω1)
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with all necessary requirements on the odd-symplectic manifolds. We need to show
(M0, ω0) 4 (M1, ω1), i.e., we want to find a symplectic cobordism from (M0, ω0) to
(M1, ω1 + rdγ1) for all r ∈ (0, r0) and an appropriate r0 > 0. The idea is to glue a
cobordism (W0,Ω0) from (M0, ω0) to (M,ω + sdγ) and a cobordism (W1,Ω1) from
(M,ω) to (M1, ω1 + rε1dγ1) along (M,ω).

Let γ be a framing on (M,ω). Pick s0 as in Definition 8.18 and s ∈ (0, s0). Con-
sider the collar neighbourhood of the upper boundary (M,ω+sdγ) in the cobordism
(W0,Ω0). By the symplectic neighbourhood theorem [36, Exercise 3.36] we have a
collar neighbourhood

Collar(M,ω + sdγ) =
(
(−ε, 0] ×M,d(tγ) + ω + sdγ

)
,

where t is the coordinate on the interval. The collar of (M,ω) in (W1,Ω1) looks like

Collar(M,ω) =
(
[0, ε1) ×M, d(tγ) + ω

)
.

We change the symplectic form on W1 to

Ω′
1 = Ω1 + sd(χγ)

where χ is a cut-off function supported in Collar(M,ω) that only depends on the
interval coordinate t with

χ ≡ 1 near {0} ×M and χ ≡ 0 near {ε1} ×M.

For s sufficiently small Ω′
1 is a symplectic form on W1 that coincides with Ω1 near the

upper boundary. Therefore there exists an s > 0 such that (W0,Ω0) and (W1,Ω′
1)

can be glued along (M,ω + sdγ) resulting in a cobordism (W,Ω) with

∂(W,Ω) = (M1, ω1 + rdγ1) ⊔ (−M0, ω0)

for all r ∈ (0, r0) and r0 as in Definition 8.18.

Remark 8.21. The easiest way to achieve symmetry for the odd-symplectic cobor-
dism relation would be an operation that “flips” the cobordism, interchanging the
lower and upper boundary. But due to our orientation requirement and the con-
dition Ω|TM±

= ω± such an operation cannot exist. Nonetheless, symmetry holds
for the subclass of odd-symplectic manifolds that admit an orientation reversing
odd-symplectic diffeomorphism.

One class of examples admitting such diffeomorphisms are symplectic surface bun-
dles over S1. These examples are classified in [24]. It turns out that such a manifold
is cobordant to exactly one of the following (symplecticaly fillable) odd-symplectic
manifolds:

i) (S1 × S2, adϕ ∧ dz) for some a ∈ R
+,

ii) (S1 × T 2,dy ∧ dx).
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We emphasize that these cobordisms can be turned around to cobordisms from
S1 ×Σ to the given surface bundle. Hence all closed symplectic surface bundles over
S1 can be represented by one of these examples.

On the other hand there exists an exotic odd-symplectic form on S3 constructed
in [25] such that (S3, ω) is symplectically fillable and not cobordant to (S3, ξst).
However, (S3, ξst) is symplectic cobordant to (S3, ω). In fact, let (W,Ω) be a sym-
plectic filling of (S, ω). The symplectic Darboux theorem [36, Theorem 3.15] applied
to an interior point of W yields an embedding of (S3, ξst). Removing the interior of
this standard sphere results in a cobordism from (S3, ξst) to (S, ω). Therefore, the
relation can not be symmetric in general.

Remark 8.22. This relation allows us to consider a category where the objects are
odd-symplectic manifolds and the morphisms are symplectic cobordisms. This is
the largest category with symplectic cobordisms as relation since the boundaries of
symplectic cobordisms are always be odd-symplectic. There are two notable sub-
categories, the category of odd-symplectic manifolds admitting a virtually contect
structure, discussed in the next section, and the category of contact manifolds. The
second is contained in the first.

8.5. Cobordisms for Virtually Contact Manifolds

Let (M,ω) be a connected odd-symplectic manifold that supports a virtually
contact structure (π : M ′ → M,ω, α, g). We take a look at the previously defined
cobordisms in this situation. For the beginning we talk about fillings, i.e., cobordisms
to the empty set.

Definition 8.23. A pair (Π : W ′ → W,Ω) consisting of a compact connected
symplectic manifold (W,Ω) and a covering Π : W ′ → W is called strong (sym-
plectic) filling of the virtually contact structure (π : M ′ → M,ω, α, g) if ∂W = M ,
∂W ′ = M ′, Π|∂W ′ = π and there exists an outward pointing Liouville vector field Y
defined on a neighbourhood of ∂W ′ with kerα = ker ιY Ω′, where Ω′ = Π∗Ω.

Remark 8.24. In general the Liouville vector field Y will not be invariant under
deck transformations, because Ω′ is invariant, but the contact structure ξ = kerα is
not. Indeed, if Y is invariant, the same is true for ker ιY Ω′ = kerα. In this case we
can conclude that α is invariant under the action of the deck transformation group.
Thus α descends to a contact form on M and the virtually contact structure is
trivial. Summarised we have seen that a non-trivial virtually contact structure will
not admit a Liouville vector field that is invariant under the deck transformation
group.

Note that we do not require that Ω restricted to TM equals ω. But if this is the
case we obtain that ιY Ω′ restricted to TM ′ equals α.

Example 8.25. The hypersurfaces introduced in [12] and studied in Section 7.2 are
fillable in the sense of our definition. We have the commutative diagram
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{H ′ = c} {H ′ ≤ c} T ∗Q′ Q′

{H = c} {H ≤ c} T ∗Q Q.

π Π

τ ′

T ∗ρ ρ

τ

It remains to show the existence of a Liouville vector field with the required prop-
erties. We can define a Liouville vector field Y by

ιY d
(
λ+ (τ ′)∗ϑ

)
= λ+ (τ ′)∗ϑ,

where λ is the canonical 1-form on the cotangent bundle and ϑ is a primitive of the
lifted magnetic form ρ∗σ. As in [12, Lemma 5.1] we can show that the vector field
Y is outward pointing by showing that dH(Y ) > 0. Also consider Section 7.3 and
7.4 for a discussion of this situation but note that in this example c is larger than
the Mañé critical value, especially c > max V .

This example is part of a more general situation. Let (W,Ω) be a compact sym-
plectic manifold with boundary (M,ω = Ω|TM ). Assume there exists a covering
Π : W ′ → W of W by the symplectic manifold (W ′,Ω′ = Π∗Ω) such that the cov-
ering restricted to the boundary ∂W ′ = M ′ defines a virtually contact structure
(π = Π|M ′ : M ′ → M,ω, α, g). We summarise the situation in a commutative
diagram

(M ′,dα = Ω′|TM ′) (W ′,Ω′ = Π∗Ω)

(M,ω = Ω|TM ) (W,Ω).

π Π

Finally assume that W and W ′ are oriented by Ω and Ω′, respectively, and that the
orientation of M ′ as boundary of W ′ and as a contact manifold coincide.

Lemma 8.26. In the situation above, (Π : W ′ → W,Ω) is a filling of (π : M ′ →
M,ω, α, g).

Proof. It only remains to find a Liouville vector field Y . As observed in Remark
8.24 the vector field Y will satisfy ιY Ω′|TM ′ = α. We can extend α to a 1-form on a
neighbourhood of the boundary and define Y as the unique vector field solving the
equation ιY Ω = α. Then we get ker(ιY Ω′)|TM ′ = kerα for free. We have to show
that Y is pointing outwards. Note that

(
ιY (Ωn)

)|TM ′ = n
(
(ιY Ω) ∧ Ωn−1)|TM ′

= n(ιY Ω)|TM ′ ∧ (Ω|TM ′)n−1

= nα ∧ (dα)n−1.

This shows that Y is transversal to M ′. Since the orientation induced on M ′ by ιY Ω
coincides with the one given by the contact form, we conclude that Y is pointing
outwards.
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We end the discussion of virtual fillings with an observation about a type of filling
that is not allowed for a simple reason.

Lemma 8.27. A non-trivial virtual contact structure (π : M ′ → M,α, ω, g) with
connected base manifold M cannot be filled by a simply connected manifold.

Proof. By [27] there is a one-to-one correspondence between coverings of a manifold
and subgroups of the fundamental group of that manifold. Let (Π : W ′ → W,Ω)
be a filling of the virtually contact structure (π : M ′ → M,ω, α, g) and denote by
H < π1(W ) and G < π1(M) the subgroups of the fundamental groups of W and M
corresponding to Π and π, respectively. Since M and W are connected the number
of leaves above a point is constant and coincides for both coverings, because the
covering Π equals π when restricted to M ′ = ∂W ′. With [27, Proposition 1.32] we
obtain

[π1(W ) : H] = number of leaves of Π

= number of leaves of π = [π1(M) : G].

If W is simply connected we have [π1(W ) : H] = 1, but π : M ′ → M has to be an
infinite cover for the virtually contact structure to be non-trivial, see Remark 2.18.
Therefore the filling of a non-trivial virtually contact structure cannot be simply
connected.

We generalise the definition of a symplectic filling of a virtually contact manifold
to a symplectic cobordism between virtually contact manifolds. This definition is
compatible with the usual convention that a filling is a cobordims whose lower
boundary equals the empty set.

Definition 8.28. A pair (Π : W ′ → W,Ω) consisting of a compact connected
symplectic manifold (W,Ω) and a covering Π : W ′ → W is a cobordism be-
tween the virtually contact structures (πi : M ′

i → Mi, ωi, αi, gi), i = 0, 1, if ∂W =
M1 ⊔ −M0, ∂W

′ = M ′
1 ⊔ M ′

0, Π|M ′
i

= πi and there exist Liouville vector fields Yi
defined near Mi, satisfying ker ιYiΩ

′|TMi = kerαi and pointing inwards along M0

and outwards along M1.
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CHAPTER 9

Further Studies

Starting from this thesis there are several aspects for further studies that result
in a better understanding of the field. As hinted at in Chapter 8 there are some
points that can be improved. The most general way to phrase this is to ask for
consequences of the surgery construction. This requires one to take a closer look
at the surgery construction in contact geometry and to understand the structure of
statements that are proved with this technique. One question that is of particular
interest in this situation is the structure of odd-symplectic cobordisms. To be even
more precise one may ask for all odd-symplectic manifolds that admit a symplectic
cobordism whose upper boundary is either overtwisted or has a connected component
contactomorphic to the standard tight contact 3-sphere.

In view of the recent results by Fish–Hofer [15] concerning feral curves and non-
dense orbits, it is interesting to study how these methods can be used for odd-
symplectic manifolds. Inspired by results in contact geometry one asks for conditions
on the upper boundary of a symplectic cobordism between odd-symplectic manifolds
that yield conclusions about non-dense orbits in the lower boundary.

For virtually contact manifolds a deeper understanding of Bae’s Lutz twist con-
struction in [4] could yield further understanding of these examples. Moreover, one
can ask if a similar construction is possible for odd-symplectic manifolds in general.
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APPENDIX A

Splitting the Tangent Bundle TT ∗Q

Throughout this chapter we will use the sum convention as in the rest of this
dissertation.

Let Q be an n-dimensional manifold and ∇ a torsion-free connection of TQ → Q,
see [9, 10, 18, 42] for the properties of a connection. As in Section 5.1 we define the
induced connection ∇∗ of τ : T ∗Q → Q as

(∇∗β) (X,Y ) := (∇∗
Xβ) (Y ) := X

(
β(Y )

)− β
(∇XY

)

for a 1-form β and vector fields X,Y on Q. Observe that ∇∗ is indeed a connection
with image in the 1-forms on Q.

The Christoffel symbols of ∇∗ with respect to local coordinates q1, . . . , qn are
denoted Γ∗ and given by

∇∗
∂qi

dqj =
∑

k

(Γ∗)kijdq
k.

They can be expressed in terms of the Christoffel symbols Γ of ∇ as follows:

(Γ∗)kij =
(
∇∗
∂qi

dqj
)

(∂qk)

= ∂qi(dqj(∂qk)) − dqj(∇∂qi
∂qk)

= −dqj(Γlik∂ql)

= −Γjik.

That is we have ∇∗
∂qi

dqj = −Γjikdq
k. The symmetry Γkij = Γkji implies (Γ∗)kij = (Γ∗)ikj

and therefore
(
∇∗
∂qi

dqj
)

(∂qk) =
(
∇∗
∂

qk
dqj
)

(∂qi).

Let p1, . . . , pn be the local coordinates on T ∗Q dual to q1, . . . , qn, i.e., (q,p) =
pjdqj |q. In these local coordinates the tangent vectors on T ∗Q have the form

q̇∂q + ṗ∂p = (q,p, q̇, ṗ).
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For q ∈ Q we consider the bilinear map Γq on TqQ× T ∗
qQ defined by

Γq(q̇,p) = Γq(q̇i∂qi , pjdq
j)

:= q̇ipj(Γ
∗)kij(q)dqk

with image in T ∗
qQ and set

K(q,p, q̇, ṗ) =
(
q, ṗ + Γq(q̇,p)

)
.

Observe that the derivative of the 1-form pjdqj (more precise of q 7→ (q, pj(q)dqj))
in the direction q̇i∂qi in q is

(Tqpjdq
j)(q̇i∂qi) = dpj(q̇

i∂qi)dqj |q
=
(
q, pjdq

j , q̇i∂qi ,dpj(q̇
i∂qi)∂pj

)
.

Applying K to the last term yields

K
((

q, pjdq
j , q̇i∂qi ,dpj(q̇

i∂qi)∂pj

))
=
(
q,dpj(q̇

i∂qi)∂pj + Γq(q̇i∂qi , pjdq
j)
)

= q̇i(∂qipj)dq
j + pj∇∗

q̇i∂qi
dqj

= ∇∗
q̇i∂qi

(pjdq
j)

where we used the Leibniz rule for connections. Hence, in local coordinates

K ◦ T = ∇∗.

Definition A.1. A smooth map K : TT ∗Q → T ∗Q is called a connection map
on τ : T ∗Q → Q, provided that K is given by

(q,p, q̇, ṗ) 7→ (
q, ṗ + Γq(q̇,p)

)

in local coordinates, where Γq is a bilinear map.

Given a connection map K, a covariant derivative is defined via D := K ◦ T , i.e.,
DXβ = K

(
(Tβ)(X)

)
is a connection.

Lemma A.2. The Christoffel symbols Γ∗ of ∇∗ define a connection map K :
TT ∗Q → T ∗Q such that ∇∗ = K ◦ T .

Idea of Proof. Take the local description of K given above and show that it is inde-
pendent of the chosen local coordinates. This yields a smooth map K that satisfies
the requested property by the above computation.
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We use the connection map K associated to ∇∗ to construct the splitting used in
Section 7.2. We define distributions on T ∗Q by

H := ker(K : TT ∗Q → T ∗Q),

V := ker(Tτ : TT ∗Q → TQ).

Locally we have

K(q,p, q̇, ṗ) = (q, ṗ + Γq(q̇,p)),

(Tτ)(q,p, q̇, ṗ) = (q, q̇)

so that in local coordinates

H(q,p) = {(q,p, q̇,−Γq(q̇,p)) | q̇ ∈ R
n},

V(q,p) = {(q,p, 0, ṗ) | ṗ ∈ R
n}.

We obtain a splitting

TT ∗Q = H ⊕ V

into the horizontal and the vertical distribution. Observe that for u ∈ T ∗Q

Vu = kerTuτ = TuT
∗
τ(u)Q = T ∗

τ(u)Q

can be identified with the fibre τ−1(τ(u)) canonically.
The natural symplectic form ω = dλ on T ∗Q is defined as the exterior derivative

of the Liouville form λ that is given as

λu = u ◦ Tuτ.

This turns V 6 TT ∗Q into a Lagrangian distribution. Indeed, let v, w ∈ Vu be
tangent vectors and X,Y vector fields on T ∗Q that are constant along the fibres of
τ , everywhere tangent to V and with Xu = v, Yu = w. Then

ωu(v, w) = dλ(X,Y )u = Xλ(Y )u − Y λ(X)u − λ([X,Y ])u

= 0,

because λ(X) = 0 = λ(Y ) and by integrability of V (obtained using Frobenius’
theorem), [X,Y ] is tangent to V, so that λ([X,Y ]) = 0. Note that we used [34,
Proposition 14.29] in the first line. This can also be obtained using local coordinates
where λ(q,p) = pdq and ω(q,p) = dp ∧ dq.

By choosing a torsion free connection ∇ the horizontal distribution H 6 TT ∗Q
becomes Lagrangian, too. In local coordinates we write

H(q,pjdqj) = span{∂qi − γki ∂pk | i = 1, . . . , n},
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where γki := pj(Γ∗)kij . Applying the natural symplectic form yields

dp ∧ dq(∂qi − γki ∂pk , ∂qs − γts∂pt) = −γki δks + γtsδit

= γis − γsi

= pj(Γ
∗)isj − pj(Γ

∗)sij

= pj((Γ
∗)isj − (Γ∗)sij)

= 0,

since (Γ∗)ksj = (Γ∗)skj by the symmetry we observed at the beginning of this chapter.
Therefore H is Lagrangian in the torsion free case. Similarly we evaluate the natural
symplectic form with respect to the splitting H ⊕ V in local coordinates. Both
distributions are Lagrangian, hence

dp ∧ dq
(
vj(∂qj − γkj ∂pk) ⊕ ai∂pi , wm(∂qm − γsm∂ps) ⊕ bl∂pl

)

= dp ∧ dq
(
vj(∂qj − γkj ∂pk), bl∂pl

)
+ dp ∧ dq

(
ai∂pi , wm(∂qm − γsm∂ps)

)

= − blvjδjl + aiwmδim

= aiwi − blvl

= aidqi(wm∂qm) − bldql(vj∂qj ).

We use local coordinates to express v⊕ a ∈ H ⊕ V as v = vj(∂qj − γkj ∂pk), a = ai∂pi

and define α by α := ιaω = aidqi and similar for w⊕ b and β. Then the formula for
ω reads

ω(v ⊕ a,w ⊕ b) = α(Tτ(w)) − β(Tτ(v)).

We end this discussion by relating the splitting to the Whitney sum of TQ and
T ∗Q pulled back along τ , see [7, Definitions 3.9 and 4.1] for basic information about
induced bundles and the Whitney sum.

τ∗(TQ) ⊕ τ∗(T ∗Q) TQ⊕ T ∗Q

TT ∗Q

T ∗Q Q

Ψ

τ

Where the bundle (iso-)morphism Ψ is defined as

Ψ : TT ∗Q = H ⊕ V −→ τ∗(TQ) ⊕ τ∗(T ∗Q)

(v, a) 7−→ (Tτ(v), α),

112



using the splitting into the horizontal and vertical distribution. Here v ∈ Hu is
mapped to Tuτ(v) ∈ Tτ(u)Q = (τ∗(TQ))u and α = ιaω under the identification

a ∈ Vu ∼= TuT
∗
τ(u)Q

∼= T ∗
τ(u)Q =

(
τ∗(T ∗Q)

)
u

∋ α.
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APPENDIX B

Classical Hamiltonians and Magnetic Fields

In this chapter we explain the calculations in the proof of Theorem 7.15. Let
us recall the setting in Section 7.4. We consider an n-dimensional Riemannian
manifold (Q, h) and its cotangent bundle τ : T ∗Q → Q. The cotangent bundle
carries the canonical 1-form λ. We consider the metric m on T ∗Q and the splitting
TT ∗Q = H⊕V, both introduced in Section 7.2 and explained in Appendix A. Recall
that

m(v ⊕ a,w ⊕ b) = h
(
Tτ(v), T τ(w)

)
+ h♭(a, b)

with respect to the splitting H ⊕ V, where h♭ denotes the dual metric of h. The
covering µ : Q̃ → Q of Q induces a covering of T ∗Q which we denote by

T ∗µ : T ∗Q̃ −→ T ∗Q,

where τ̃ : T ∗Q̃ → Q̃ denotes the cotangent bundle of Q̃. The canonical 1-form on
T ∗Q̃ is denoted by λ̃ and satisfies λ̃ = (T ∗µ)∗λ. Further, consider the Hamiltonian
function

H : T ∗Q −→ R

u 7−→ 1
2‖u‖2

h♭ + V
(
τ(u)

)
,

where V is a smooth function on Q. The lift of H to T ∗Q̃ is denoted by H̃ and its
Hamiltonian vector field X

H̃
is given by

ιXH̃
(dλ+ τ̃∗σ̃) = −dH̃,

where σ̃ = τ∗σ is the lift of a closed 2-form σ on Q. Denote the gradient gradm(τ∗V )
of τ∗V with respect to m by X, then X is given by

m(X, ·) = d(τ∗V ).

Note that X is a horizontal vector field, because for all U ∈ V = ker(Tτ) we have

0 = d(τ∗V )(U) = m(X,U).
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So X is orthogonal to V and we have

d(τ∗V ) = m(X, ·) = (τ∗h)(X, ·),

which yields to

Tuτ(Xu) = (gradhV )τ(u).

We define a function F by

F : T ∗Q −→ R

u 7−→ λu(Xu).

With the coordinate free description λu = u ◦ Tτ we obtain

F (u) = u ◦ Tuτ(Xu)

= u
(
(gradhV )τ(u)

)

= h♭(u, dV ).

Finally, let ϑ be a 1-form on Q̃ with dϑ = σ̃.

Lemma B.1. It holds that

(λ̃+ τ̃∗ϑ− εdF̃ )(X
H̃

)(ũ)

equals the sum of

‖ũ‖2

(̃h)♭
+ (h̃)♭(ũ, ϑ)

and

ε · ((−Hessh̃Ṽ )(ũ#, ũ#) + ‖ gradh̃ Ṽ ‖2
h̃

+ (τ∗µ∗σ)(ũ#, gradh̃ Ṽ )
)

for all ũ ∈ T ∗Q̃.

Proof. In local coordinates (q,p) the Hamiltonian vector field X
H̃

has the form

(X
H̃

)q,p =
∂H̃

∂pi
∂qi − ∂H̃

∂qi
∂pi − ∂H̃

∂pj
σ̃ji∂pi

= (hij(q)pj)∂qi − ∂H̃

∂qi
∂pi − ∂H̃

∂pj
σ̃ji∂pi .

Hence,

T(q,p)τ(X
H̃

) = hij(q)pj∂qi
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and therefore

λ̃(X
X̃

) = pih
ijpj = ‖p‖2

h = ‖ũ‖2

(̃h)♭
.

We write ϑ = ϑidqi and obtain

τ∗ϑ
(
X
H̃

(q,p)
)

= ϑq

(
Tτ(X

H̃
)
)

= (h̃)♭(ũ, ϑ).

Adding these we obtain the first summand. Note that using the Cauchy-Schwarz
inequality as in [48, Proposition 2.4.1] we obtain

(λ̃+ τ̃∗ϑ)(X
H̃

)(ũ) ≥ ‖ũ‖
(̃h)♭

(
‖ũ‖

(̃h)♭ − ‖ϑ‖
(̃h)♭

)
. (B.1)

For the last term we consider dF̃ (X
H̃

). Observe that

T (T ∗µ)(X
H̃

) = XH

and since F̃ = F ◦ T ∗µ = (T ∗µ)∗F it holds that

dF̃ = (Tµ)∗dF.

This implies

dF̃ (X
H̃

) ◦ T ∗µ = dF (XH),

so it suffices to compute dF (XH) = XH(F ). As above we have H = 1
2h

ijpipj + V
and therefore

XH = hijpi∂qj − 1
2(hkl)jpkpl∂pj − Vqj∂pj − hilplσij∂pj .

Combining this with F (u) = h♭(u, dV ) = hstpsVqt we can make the computation in
local coordinates.

XHF = hijpi∂qj (hstpsVqt)

− 1
2(hkl)jpkpl∂pj (hstpsVqt)

− Vqj∂pj (hstpsVqt)

− hilplσij∂pj (hstpsVqt)

= hijpi
(
(hst)jpsVqt + hstpsVqjqt

)

− 1
2(hkl)jpkplh

jtVqt

− VqjhjtVqt

− hilplσijh
jtVqt .
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For a better overview note that

VqjhjtVqt = h♭(dV, dV ) = ‖gradhV ‖2
h. (B.2)

The dual vector field u# of u is defined by

u = h(u#, ·).

Using local coordinates u = pjdqj and u# = vi∂qi we see that

pjdq
j = hijv

idqj

and hence pj = hijv
i. Using this we get

hklpl = hklhilv
i = vk.

This allows us to rewrite the last line in our calculation as

hilplσijh
jtVqt = viσij(gradh(V ))j = σ(u#, gradhV ). (B.3)

It remains to take care of the term

hijpi
(
(hst)jpsVqt + hstpsVqjqt

)− 1
2(hkl)jpkplh

jtVqt

= vjvtVqjqt +
(
vj(hst)jhksv

k − 1
2(hkl)jhmkv

mhslv
shjt

)
Vqt ,

where we used pj = hijv
i and vj = hijpi. By the Leibniz rule, it holds that

(hst)jhks = ∂qj (hsthks) − hst(hks)j = ∂qj (δtk) − hst(hks)j = −hst(hks)j .

Using this in the computation we have

vjvtVqjqt +
(
vj(hst)jhksv

k − 1
2(hkl)jhmkv

mhslv
shjt

)
Vqt

= vjvtVqjqt +
(− vjvkhst(hks)j + 1

2v
mvshkl(hmk)jhslh

jt)Vqt .

Splitting −vjvkhst(hks)j = −1
2v

jvkhst(hks)j − 1
2v

jvkhst(hks)j and renaming some
indices we get

vjvtVqjqt +
(− vjvkhst(hks)j + 1

2v
mvshkl(hmk)jhslh

jt)Vqt

= vjvtVqjqt +
(− 1

2v
jvkhst(hks)j − 1

2v
kvjhst(hjs)k + 1

2v
jvk(hjk)sh

st)Vqt

= vjvtVqjqt − vjvk ·
(

1
2h

st ((hks)j + (hjs)k − (hjk)s)
)
Vqt

= vjvtVqjqt − vjvkΓtjkVqt

= vivjVqiqj − vivjΓtijVqt .
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Using the formula for the covariant derivative of 1-forms in Section 5.2 we get that

vivjVqiqj − vivjΓtijVqt = vivj(∇dV )ij

= ∇dV (u#, u#). (B.4)

Adding the partial results (B.1) to (B.4) yields the claimed equality.

In the following we will assume that the primitive ϑ of µ∗σ is bounded and that
V is a Morse function. Further we require the following properties for ϑ, σ and V .

1. The function V has a unique maximum and the maximum value is positive.

2. For all critical points other than the maximum the critical values are less than
−1

2 t
2
0, where

t0 := sup
Q̃

‖ϑ‖
(̃h)♭ .

3. Let cn−1 be the largest critical value other than the maximum and choose a
regular value v0 >

1
2 t

2
0 of V such that −v0 ∈ (cn−1,−1

2 t
2
0). We require that σ

vanishes on the disc

Dn
−v0

= {V ≥ −v0} ⊂ Q

and ϑ vanishes on

{Ṽ ≥ −v0} ⊂ Q̃.

Lemma B.2. The hypersurface

M ′ = {H̃ = 0} =
{

1
2‖u‖2

(̃h)♭
= −Ṽ

}

is of contact type.

Proof. As explained in the proof of Theorem 7.15 it suffices to show that the function

(λ̃+ τ̃∗ϑ− εdF̃ )(X
H̃

)

is uniformly positive on M ′ for a sufficiently small ε > 0. More precise we will show
that there exists an ε0 > 0 such that for all ε ∈ (0, ε0) there exists a δ > 0 with

(λ̃+ τ̃∗ϑ− εdF̃ )(X
H̃

)(ũ) ≥ δ

for all ũ ∈ M ′. In view of Lemma B.1 we distinguish the cases ũ ∈ {Ṽ ≤ −v0} and
{ũ ∈ Ṽ > −v0}.
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Case 1: Since we consider the set M ′ = {H̃ = 0} it holds that ũ is contained in
{Ṽ ≤ −v0} if and only if 1

2‖ũ‖2 ≥ v0. We introduce the constants

V0 := max
Q̃

‖Hessh̃Ṽ ‖h̃ = max
Q

‖HesshV ‖h

g0 := max
Q̃

‖gradh̃Ṽ ‖h̃ = max
Q

‖gradhV ‖h

s0 := max
Q̃

‖σ̃‖h̃ = max
Q

‖σ‖h.

Using the formula in Lemma B.1 we obtain

(λ̃+ τ̃∗ϑ− εdF̃ )(X
H̃

)(ũ)

≥ ‖ũ‖2
(h̃)♭ − t0‖ũ‖(h̃)♭ − εH0‖ũ‖ − εs0g0‖ũ‖

= ‖ũ‖(h̃)♭

(
‖ũ‖(h̃)♭(1 − εH0) − t0 − εs0g0

)
.

Choosing ε′
0 sufficiently small we can achieve that 1 − εH0 > 0 for all ε ∈ (0, ε′

0) and
estimating ‖ũ‖(h̃)♭ by

√
2v0 from below we get

‖ũ‖(h̃)♭

(
‖ũ‖(h̃)♭(1 − εH0) − t0 − εs0g0

)

≥
√

2v0

(√
2v0(1 − εH0) − t0 − εs0g0

)

Since
√

2v0 > t0 we can ensure
√

2v0(1 − εH0) − t0 > 0, possibly after choosing a
smaller constant ε′

0, e.g., εH0 < 1 − t0√
2v0

. Taking an ε1 > 0 such that

√
2v0(1 − ε1H0) − t0 > 0

we find an ε̂0 such that

εs0g0 <
1
2(

√
2v0(1 − ε1H0) − t0)

for all ε ∈ (0, ε̂0). For ε0 = min{ε′
0, ε̂} we end up with

(λ̃+ τ̃∗ϑ− εdF̃ )(X
H̃

)(ũ) ≥
√

2v0

2

(√
2v0(1 − ε1H0) − t0

)
=: δ.

Case 2: For ũ ∈ {Ṽ > −v0} we have ‖ũ‖2 < v0 and ϑ and σ vanish by assumption.
Using the formula in Lemma B.1 we obtain

(λ̃+ τ̃∗ϑ− εdF̃ )(X
H̃

)(ũ)

= ‖ũ‖2
(h̃)♭ − ε(HessṼ )(ũ#, ũ#) + ε‖gradṼ ‖2

≥ ‖ũ‖2
(h̃)♭(1 − εH0) + ε‖gradṼ ‖2

As in Case 1 we find an ε0 such that 1 − εH0 is positive. Therefore the first term is
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uniformly positive on {|ũ| > u0} for all u0 ∈ (0, v0). Since {0 ≥ Ṽ > −v0} does not
contain any critical points of Ṽ , the gradient does not vanish and

δ0 = min
{−v0<Ṽ≤0}

|grad Ṽ |2 = min
{−v0<V≤0}

|gradV |2 > 0

and hence,

(λ̃+ τ̃∗ϑ− εdF̃ )(X
H̃

)(ũ) ≥ εδ0 =: δ.

Always choosing the minimum between Case 1 and 2 for ε0 and δ ends the proof of
the lemma.

Remark B.3. For t ∈ [0, 1] the family

αt = (λ̃+ tτ̃∗ϑ− εdF̃ )|TM ′

of 1-forms on M ′ is a family of contact forms. Indeed for fixed t the proofs of Lemma
B.1 and Lemma B.2 go through with the obvious changes for the new 1-form and
we can use the same constants.
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APPENDIX C

List of Terms

M (closed) manifold
M ′ manifold, usually non-compact

π : M ′ → M covering of M by M ′ via the covering map π
ϕ deck transformation of π
g Riemannian metric
ω closed (maximally) non-degenerate 2-form

g′, ω′ lift of the corresponding structures to a cover via π
α contact form on M ′

ξ contact structure, kernel of α
(π : M ′ → M,ω, α, g) virtually contact structure, see Definition 2.10

α0 contact form obtained as the limit of ϕ∗
να, for a

sequence of deck transformations ϕν , up to subsequence
α∞ contact form obtained as the limit of ϕ∗

να0, for a
sequence of deck transformations ϕν , up to subsequence

R,R0, R∞ Reeb vector field of α, α0 and α∞, respectively
Φ skew adjoint bundle isomorphism ξ → ξ with

dα = g′(Φ·, ·), see Section 3.1
j complex structure on ξ, j = Φ ◦ (

√
−Φ2)−1,

see Section 3.1
J almost complex structure on R ×M ′, translation

invariant, restricts to j on ξ, maps ∂t to R, Section 4.1
T the set of all smooth, strictly increasing functions

τ : (−∞, 0] → [0, 1] with τ(0) = 1
d(τα) symplectic form on (−∞, 0] ×M ′

gj metric on ξ, gj = dα(·, j·)
gα metric on M ′, gα = α⊗ α+ gj
gτ metric on (−∞, 0] ×M ′, gτ = d(τα)(·, J ·), Section 4.3
g0 metric on R ×M ′, g0 = dt⊗ dt+ gα, Section 4.4
g′

0 metric on R ×M ′, g′
0 = dt⊗ dt+ g′, Chapter 6

u = (a, f), v = (b, h) holomorphic maps with image in R ×M ′
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