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Summary

We consider the rate equation # =rn for the density n of a single species population in a constant
environment. We assume only that there is a positive constant solution »n*, that the rate of increase r
depends on the history of » and that r decreases for great n. The stability properties of the solution
n* depend on the location of the eigenvalues of the linearized functional differential equation. These
eigenvalues are the complex solutions 4 of the equation 4+ af%;exp[ia}ds(a) =0 with o >0 and
s increasing, s(—1) =0, s(0)=1. We give conditions on « and s which ensure that all eigenvalues
have negative real part, or that there are eigenvalues with positive real part. In the case of the
simplest smooth function s (s=id+ 1), we obtain a theorem which describes the distribution of
all eigenvalues in the complex plane for every a>0.

1. A population living in a constant environment cannot increase at constant
rate. In laboratory experiments, the population density n tends to a limit n*,
or it shows undamped oscillations (see e.g. Halbach et al.,, 1972). A simple and
general model in accordance with these observations is the functional differential
equation

at)=r(n)n), t>0 1

for the population density n:[ -1, c0)— Ry . Here the rate of increase is given
by a real-valued mapping r defined on the set of non-negative functions on the
interval [ — 1, 0], with the only properties

7 (n*)=0 for a positive constant function n* (R1)
and
Je>0n*—e<op<y=rY)<r(p). (R2)

The function n, is defined by n,(a):=n(t+a) for —1<a<0 and t>0. — The
dependence of r on the density in the past allows oscillations (see e. g. Wright
1955), and (R 1) and (R2) ensure that high densities result in a decay of the
population size — which is a natural assumption. — The first model of this
type (with  (p)=b (K —¢ (— 1))/K, b and K positive) was proposed by G. E. Hut-
chinson in 1948.



We are interested in the stability of the constant solution defined by n*. (This
solution and its value are called n*, too.) In this paper, we investigate the eigen-
values of the corresponding linearization of equation (1). Suppose in addition that

the Fréchet-derivative Dr (n*) of r in n* exists (R3)

(with respect to the supremum-norm on the continuous functions on [ —1, 07).
With z:=n—n* and H (¢):=n*r (¢ +n*)+¢ (0)r (p +n*), equation (1) implies
z(t)=H (z,), and the linearization near n* is y(t)=DH (0)(y)=n* Dr (n*)(y,)
since the derivative of the second term of H vanishes. By (R1) and (R2),

0
Dr(n*)(¢)<0 for ¢ >0 and continuous. Hence n* Dr (n*) (¢)= —« j' ¢ (a)ds(a)
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for all continuous functions ¢ :[—1,0] - R, with a=n* | Dr(n*)| and seS:=
={o:[—1,0] > R| o increasing. ¢ (—1)=0, ¢ (0)=1}.

The parameter « may serve as a measure of the power of the negative feedback in

our system. The function s indicates how Dr (n*) (9) — or r (@) for ¢ near n* —

depends on the values of ¢ at the different times in the past. For example, let
(4]

r(@)=b—d(p)=b—a | ¢(a)ds(a), where be R* stands for the birth rate and
-1

d for the death rate. Then s concave means that r(n,) is influenced more by
n|[—1, —1/2] than by n| [ — 1/2, 0]. — One might expect that for s concave the
stability of n* is in some way less than for s convex because in the first case
the system takes longer to produce a sufficient reaction to a perturbation of the
equilibrium n*. We shall see below in which way this conjecture turns out to be
right.

The linearized equation becomes .
4]

yO)=—a | y(t+a)ds(a). 0]
-1

The eigenvalues of equation (2) are the complex solutions of the transcendental

equation
0

i+a [ exp[Aalds(a)=0
1

0
or, in other words, the zeros of the entire function f(-,a,5): A|> A+« | exp[Aa]ds(a).
-1

The zero solution of equation (2) and n* are asymptotically stable if all eigen-
values lie in the left half-plane C™:=R™ +iR (see [3], chapter 22, and [5]). If
one eigenvalue is in C*:=R™ +iR then the zero solution of equation (2) is
unstable, and for r (p)=a—¢ (— 1), n* (=«) is unstable too (Wright 1955).

Due to [5], we have
O<a<m/2AseSAf(Aas)=0=4eC™. (3)

For the minimal (convex) function s, in S (i.e. o (a)=0 for a<0), the equation
for the eigenvalues reduces to A+a=0, hence A C~ for all «>0. In the case
of the maximal (concave) functions s, in S (i.e. s, (@)=1 for —1<a) there
exist a>0 such that at least one eigenvalue is in C* (in fact, a> /2 is sufficient),
see (Wright 1955).



Theorem 2 in section 2 shows that this property of s, carries over to a class
of smooth convex functions in S. In Theorem 3 and Theorem 4 we present a
class A of functions s in S with eigenvalues in C* for certain «, like s,. The
class A contains every concave function and all s>id+ 1 which are continuously
differentiable.

The proof that n* is unstable for r (p)=a—¢ (—1) and a> /2 requires — apart
from the existence of an eigenvalue A =u-+iv of the linearized equation in C* —
the estimate | v | <7#. Therefore we examine the boundedness of the branches of
the eigenvalues in C* for given functions s (Theorem 5).

Section 3 deals with the eigenvalues for the simplest smooth function in S, that
is s=id+1. Theorem 6 describes the location of the eigenvalues in C for all
o>0. In particular we see that | v | > = for every eigenvalue in C™.

2. In the following, we always assume a>0 and se S\{s,}. For a subset M < C,
Z (o, s, M) denotes the number of zeros of f (., o, s) in M. For 1e C, we write
A=u+iv with u and v real. We have

0
fA o s5)=0<>u+a | exp[ualcosvads(a)=0n
-1

(4)
0
v+o | exp[ua]sinvads(a)=0,
-1
fh o s)=0<f(1a5)=0, (5)
fAhoa,s)=0Au=0=|A|<aAv$0 (in particular f(0,«, 5)%0). (6)
0
First, we consider real eigenvalues. Set g (u, s):= —u/ { exp [ua] ds(a) for u<0.
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Theorem 1: There are real eigenvalues if and only if « <max g (-, s). Every real
eigenvalue is negative,

0 -
Proof: seS, s+s, and u<0 imply | explualds(a)= [ exp[ualds(a)=
-1 -1

>exp[—eu] s(—¢)>0 for small £>0, hence g(u,5)-»0 for u——oco. By
g (0,5)=0, max g (-, s) exists. By (4), ue RA f(u,a, 5)=0<a=g (u, s) Au<0. This
implies Theorem 1.

Theorem 2: Let se C*[—1,0]n C3(—1, 0] be given with ' (—1)=0, s” (~1)=0,

s >0, s (a*)>0 for a certain a* € (— 1, 0). Then for every >0, every eigenvalue
has negative real part.

Proof: ay No eigenvalue on iR: By (4), (5) and u=0, we only have to show
0

0
§ cosvads(a)>0 for all v>0. Let v>0. With s'(—1)=0, | cosvads(a)=
-1 -1

0 0 0
=—(1/v) § s"(a)sinvada. — | s’ (a)sin vada=lim— | s"(@)sinvada=(1/v)
-1 -1 e—~0 &—1

0
lim (5 (0)—s” (¢ —1) cos (ve—v)— { s"(a)cosvad a).
g0 e—1



0
By 5" (—=1)=0 and s” (0)= j s (a) da+s" (e—1), the last term equals (1/v)
] g1 4] .
lim | s (a)(1—cosvayda=(1/v) | 5" (a)(1—cosva)da>0.
e—1 a*

b) No eigenvalue in C*:Z (a,5, C*)>0 for >0 implies &:=inf {a>0]|Z (a, s,
C*)>0} e[n/2, ), see (3). Then there are sequences a,—& 4, in C* with
f (A %, 5)=0. By (6), there exist subsequences o, —&, A,—»1e C* with f (, & 5)=0.
a) gives 1€ C*. Then Z (& 5, dD)=0 for a compact disk D in C* with Ze D,
and Theorem 9.17.4 of [1] guarantees the existence of ¢>0 with Z (&—¢, s, D)=
=Z (&, s, D)>0, contradiction.

Examples: Theorem 2 holds for s:a > (a+1)® with $>2. The case f=2 shows
that the theorem is optimal in a certain sense: The function s: a | (a+ 1)? fulfills
the hypotheses except of s (a*) >0, and one verifies easily that f(2nki, (2nk)?/2,s)
is zero for every integer k+0.

A class of discontinuous functions s with Z (a, s, E"—)=0 for all >0 is defined by
lim s (a)< 1/2.

a—0

Proof . Set s* (0):=£i_{1(1) 5(a) and s* (a):=s(a) for a<0. Assume f(4, o, s)=0 and

)] 0]
u>0. By (4), u=—a | exp[ua]cosvads(a)=—a(l—s*(0)+ [ exp[ua]cosvads*
0 -1 -1
(@))- By | | exp [ua] cos va ds* (a)| <s* (0), we obtain u< —(1—2 s*(0)), contra-
-1
diction to u=>0.

Theorem 3: For seA:={6eS|3vel0,n]3 a>0:f(iv,a 6)=0}, there exist

eigenvalues with positive real part for certain «>0.

F -

Fl :R2xR*->R*by F, (u,v,a):=Re f
2

(u+iv, a, 5), F3 (4, v,0):=Im f (u+iv,a, s). If F(0,v,®)=0 (which is equivalent to

f(iv, 2, 5)=0) and if

oF, an

du 0dv 0 0
0<d:=det J 0,0,0)=(1+a | acosvads(a))*+ao?({ asinvads(a))?
-1 -1

Proof: a) For se S, define a map F =(

0F, 0F,
du Ov

then there are neighborhoods U of « and W of (0, v) and a differentiable map
G=(G,,G,): U— W with G (2)=(0,v) and F o (G,id)=0. With G (x)=(0, v), we

obtain G (0)= —d~* oF, 0F, 0OF, 6F2> 0
()=

—_— . =d! i
5% v 30 da 0,v,0)=d __flvasmvads(a).

Therefore, Theorem 3 will follow from the existence of a>0 and v>0 with
f(@iv,a, 5)=0and

0
{ asinvads(a)>0. (D
-1
b) se A, f(iv,a s)=0 and ve[0, =] imply v>0, by (6). Hence asinva>0 for
—1<a<0. If v<n, we have in addition —sin(—v)>0, and s<s, gives (7). The



case v== and —'?1 asinvads(a)=0 is impossi(l):)le because __\91 asinrads(a)=0
implies s | (— 1, 0) constant, hence by (4) —n/a= { sin rads(a)=s(1/2)sin (—n)+
+(1—5(1/2)) sin 0=0, contradiction. - 0

Theorem 4: For sin C' [—1, 0], s€ A4 is equivalent with —_jl ns(a)sinwada>1.

In particular, every function s in C! [~1,0] with s>id+1 is in A. A contains
every concave function in S.

Proof . a) Let se C' [—1,0], set h(?) =? costads(a) for t>0. We have 1" ()<0
forO<t<n and h{0)=1, hence h(n)<0«>ave(0 m]: h(u) 0. For every ve (0, n]
with h(v)=0, j-smvads(a)<0byseC1 Then f(iv, —w_[smvads(a) 5)=0,by (4).
We infer (seA¢>h(7:)<O) Obviously, 0>k (n) -fl s (a) cosmada= 1+:f)11cs(a)

sin tada.

(4] 0
b) s>id+1=— | =ns(a)sinnada>— | n(a+1)sinnada=1.

-1 -1
¢) Let s be concave. For ne N, set a,:=—1+v/2n for v=0,1,...,2n. Then
COS Ma,_ | =—COS My y~1) aNd 5 (@,)—5 (ay- )25 (@ys,)—S (@ys,—,) for

1<v,u<n Weinfer0>) (s (a,)—s(a,_,))cos a,_, m, hence h(r)<0 and h(v)=0

0 0
for a certain ve [0, n]. Obviously, | sinvads(a)<O0. j sinvads(a)=0 implies
-1 -1

v=m (since s>id+1) and s|(—1,0) constant, hence s|(—1,0]=1 and
[}

| cosvads(a)= —1, contradiction. Now s e A4 follows as in a).
-1

For fixed s, let P denote the set of eigenvalues with positive real part, that is
{AeC*|3a>0: f(4,a,s)=0}. In general, P is unbounded, see Theorem 6 below.
But we have

Theorem S: For se C*[—1,0] with s'(—1)>0 and s (0)>0, every connected
subset of P is bounded.
Proof: a) f (4, «, s)=0 implies A+0. Let s € C>. Integration by parts yields

(A a+5 (0)=5 (—Dexp[-A]+ _(f exp [Aa]s" (a)da {8)

and
(A°Ya+is 0)=5 (—1)exp[—A]+5" (0)—exp [~ A]s" (= 1)— ] exp [Aals” (a)da
(9)
b) Assume P+, Re P unbounded and Im P bounded. Then (8) holds for
sequences A, =u,+iv,in P and o, in R*, with u,—co. (8) gives
(w2 —v})/a,+5 (0)=Re (A /o, +5 (0)) > 0. (10

By (6) and u,—o0, a,—00. Hence vZ/a,—0, 0<s (0)<s' (0)+u2/a,—0, contra-
diction.



b) Now let @ be a connected subset of P. By (5) and (6), we may assume

Im Q<=R*. For Im Q unbounded, there exist sequences o, u, in R* and an

integer n, with f (u,+i(2nn+n/2), &, s)=0 for n>n,. Set A,:=u,+i(2nn+m/2).
o} 0

We have a,— o0 and | exp [4,a]s” (a) da—0, j exp [4, a} 5" (@) da—0. (Proof:
-1 -1

It is sufficient to show the assertion in the cases u,— o0 and u,—u*>0. The first

case is trivial. In the second case, Theorem 4.6 of [ 7] gives, for example,
V] 0

{ exp [u* a] s” (a) cos v, a da—0. In addition, | | exp [u* a] s” (a) cos v, ada—
-1 -1
[¢]
- .[ exp [u, a] s” (a) cos v, a da|<max | s" | | exp [—u,]—exp [—u*]|-0) —
-1

Assume u, bounded. By (8) and cos v,=0, (10) holds for 4, and «,, if n>n,. Hence
v2/o,—5 (0). Then v,/a,—»0 and 2u,v,/a,—0. On the other hand, (8) yields
2u, v, /0, — (— 1) exp [ —u,]=1Im (42/o,+ (0)— 5 (—1) exp [ — 4,])—0. We infer
exp [ —u,] — 0, contradiction.

Next, suppose u, — o for a subsequence. Set g,:=u,, b:=v,, fi:=a,, Taking
real and imaginary parts in (9), we obtain

gx (g7 =3 )/ Bi+5 (0) =5 (=) exp [~ gi] b —5" (0)—0 (11)
and hy ((3 g7 — h#)/Bi +5 (0))—0, therefore
(3 gi = hd)/Bi+5 (0)—0. (12)

We have —5' (—1) exp [—g,] b— — . (Proof: For a subsequence g +ihj with
s’ (—1) exp [ —g;] #, bounded, (11) and g,— o0 imply (g;>—3 k2)/B+5 (0)— 0.
By (12), we obtain (g}2 +h;2)/B,—0. By (12) again, s’ (0)=0, contradiction.)

Now (11) yields 0<(g?—3 h2)/B,+5 (0) (for k large) <(3 g7 —h?)/px+s (0)—0,
therefore s’ (0) =0, contradiction.

3. Location of the eigenvalues for s=id+1. We set f:=f(.,aid+1) and
Z (0, M):=Z (o, id+1, M) for a>0, v,:=2 kn+n and o :=v%/2 for k € N,,
G,:=R+il, with I,:=(—2=2n) and I;:=Q2 kn, 2 kn+2 m) for k € N,
g:=g(-,id+1), a*:=max g. u* is defined by g (u*)=a*. Because of (5), we only
consider eigenvalues with v>0.

Theorem 6:

i) Every zero A=u+iv of f,, >0, with v>0 lies in the set UN G,.
keNg

ii) For ke N and o> 0, f, has exactly one zero 4, (@) in G,. We have 4, (o) =i v,
M(@eR +iQRkm2kn+m)fora<o and A (@) eR* +iQkn+m, 2kn+27)
for a> o

iii) For every a>0, f, has exactly two zeros in G,. These zeros are real and simple,
if a<a* If we denote them by u, (a)<u, (o), then u, (&) <u*<u,(x) and
u, (0)— — o0, u, (0)—0 for a—0. For a=a*, u* is a double zero. For a* <«,
f. has one zero Ao(x) in G, with positive imaginary part. We have
Ao (@) € R™+i (0, ), if o* <a<ag, Ag(do)=ive and Ay (x)e R™ +i(m, 2 m), if
o> ot



b

Fig. 1. The arrows indicate the direction of increasing o

Proof of Theorem 6: We have f, (1)=0<>140A

(A*+a)exp [A] =a. 13)
Assertion i) is a consequence of
a)Let f,(A)=0,v>0. Then v¢ 2 N, and we have

u<0=v<2kn+n

kENOAAEGkA{u>O=>v>2 kn+m.
Proof: By (13), A*> +a=a exp [ — A]. Hence
2uv=aexp[—u]sin(—v). (14)

Therefore, 440 and ve2nN would imply v=0. u=0 yields ven N,. By (13),
u=0and ve 2 7N, would imply 12 =0, contradiction to (6). Together, we obtain
v ¢ 27 N. The implication'in a) is obvious from (14).

b) f,(iv)=0Av>0<«Tke Ny a=q Av=u,

Proof: Clearly f, (ivg=0 for ke N, As in the preceding proof, we have
(fa((v)=0Av=0=3 ke Ny:v=2kn+n=v,). Then (13) gives a=1?/2=1}/2=0.
Ja<o=Z(x G, C)=0.
Proof: Suppose «' <oy and Z (¢, G, C*)>0. We may assume o' <o, (Z (o
Gy~ C*)>0 implies Z («, G, n C*)>0 for certain o’ <a,, compare part b) in the
proof of Theorem 2). By (3), ' >n/2. Set B:=(0, & + 1) +iI,. We have Z (&', B)>0,
by (6), and Z(«, 0B)=0 for 1<a<«'. This follows from a) together with (6),
a <oy and with

Li()=0AiveG,=n=uq,. (15)

With the aid of Theorem 9.17.4 of [1], we derive Z (1, B)=Z («', B)>0 which
contradicts (3).
d) Let ke N, and a>0. There exists a negative constant T («, k) with

A 2aALeGN CT A f, (A)=0=>T(x, k)<u.



Proof': By (13), we have
14+ @ +0v?)ja>| 1+ A%/ |=|exp [—A]|=exp [~u],

therefore w?/a>exp [ —u]—1—(2 kn+2 n)*/a. This estimate and u<0 yield the
proposition.

e)VkeNydaf>a:azaf A f,()=0A1eG,=u>0.

Proof: Suppose there are sequences «(n), 4, with f,, (4,)=0, o, <o (n)—0,
A€ Gy, u,<0. By (15) and o,<a(n), u,<0. Proposition d), (13), 4,<0 and
a(n)>o,>1 give

(@km+2m)?+ T (1, kY a(m)=| A, |*/a (n)zexp [—u,]—1>0.
Therefore exp[—u,]—1, u,—0. Together with v,—0, this would imply
0
| exp [4,a]da—1, hence | f, (4,)] =0, contradiction. — We obtain |v,|>0
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for a certain 6>0 and for ne N* with N*< N unbounded. By (13) and u, <0,
a (n?<| A2+a M)P=a ?+2 a (n) @i—v})+| 4, |*. Because of u,—0,
a(m)<| 4, |*/2 (v2 —u?) for large n e N*, in contradiction to a (n) — 0.

£) Z (otg, Go)=2.Y k& N: Z (,, G)=1.

Proof: Let ke N, The zeros iv, —iv, of f, are simple (A+0=f, (1=

=A+a(l—exp[—AY/A=(df/dA)(A)=1+aexp[ —A}/A—a/A* +aexp[—A)/A*=

=(df, /A (Liv)=2+ iv,/2). Therefore, i) and b) and ¢) imply Z (%, G, C™)=1,

if ke N, and ... =2 for k=0. Suppose Z (&, G, C)>0. Then Z(«,G, nC7)>0

for certain o € (o4, of), compare the proof of c). Set B:=(T (o4, k), 0} +il,. We

have Z (¢, B)>0 and Z (o, 0B)=0 for o' <a<of, by d), a) and (15). Hence

Z («f, By=Z («, B)>0, in contradiction to €). '

g) For every ke Ny and every a>0, Z (&, G))=Z (4, Gy).

Proof: Let k € Ng, a> o (the proof for a <o is similar). There exists 7> 0 with
AeGro <o <aA fp(A)=0=]u|<T. (16)

(Proof: The zeros with u>>0 and u <0 are bounded by (6) and by d) respectively.)
Set B:=(—T, T)+il,. For o, <«' <o, Z (¢, 3 B)=0. Hence Z («, B)=Z («, B), and
{16) implies g).

h) Let ke N, and a<ay. By c), u<0 for the zeros of f, in G,. (15) yields u<0.
Bya),2kn<v<2kn+nforke N and|v|<nfor k=0.

j) For ke Ny and a>aq,, set B:=(T(x, k),0)+il,. e) implies the existence of
af*>o with Z (aF*, B)=0. By d) and (15), Z («, d B)=0 for a<a’<o*. Hence
Z (a0, B)=Z (o*, B)=0. d) gives (f, (A)=0 A 1€ G,n C™ = A e B), therefore
Z (@, Gy C7)=0. Z (¢, G, " i R)=0 because of (15) and a>a,. With a), we obtain
u>0 and 2kn+n<v<2kn+2n for the zero of f, in Gy, ke N, and ¥>0 and
n<|v|<2 r for the two zeros of f, in G,.

k) By Theorem 1, f, has real zeros if and only if a<a*, and the real zeros are
negative. The assertion concerning the real zeros for a<a* follows from



Z (¢, Gg)=2 and from the relations ue R A f, (w)=0<>a=g ), u<u*=g' (4)>0,
u>u* = g (u)<0, g (0)=0, g (u)— 0 for u— — o0, g{ R~ >0. u* must be a double
zero of f,. since by g (u*)=a*=max g, there is no other real zero of f,., and
the existence of a zero of f,. in Gy\R would imply the existence of a third zero
in Gy, in contradiction to Z (a*, Go)=2.

Notation:

N,R,R*, R and C denote the natural, real, positive real, negative real and the
complex numbers respectively. We set No:=Nu {0}, R§ :=R\R", R; :=R\R".
For AcC, B=C and z € C, we define

A+zB:={AeC|JaceAIbeB:A=a+zb}.
Re z (Im z) is the real part (imaginary part) of z,
Red:={ueR|3zeA:u=Rez},ImA:={ueR|3ze A:u=Im z}.

dA, A and 4 are the boundary, the interior and the closure of the set AcC.
A dot — like in 7 — and a prime — like in 5 — indicate differentiation.
C*[—-1,0] and C*(—1,0] are the sets of functions on [—1,0] which have
continuous derivatives up to order k in [—1,0] and (—1, 0] respectively. f| A
denotes the restriction of a given mapping f: B— D to a subset AcB.
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