On a Transcendental Equation in the Stability Analysis of a Population Growth Model

H.-O. Walther, München

Summary

We consider the rate equation n = rn for the density n of a single species population in a constant environment. We assume only that there is a positive constant solution n^* , that the rate of increase r depends on the history of n and that r decreases for great n. The stability properties of the solution n^* depend on the location of the eigenvalues of the linearized functional differential equation. These eigenvalues are the complex solutions λ of the equation $\lambda + \alpha \int_{-1}^{0} \exp[\lambda a] ds(a) = 0$ with $\alpha > 0$ and s increasing, s(-1) = 0, s(0) = 1. We give conditions on α and s which ensure that all eigenvalues have negative real part, or that there are eigenvalues with positive real part. In the case of the simplest smooth function s(s = id + 1), we obtain a theorem which describes the distribution of all eigenvalues in the complex plane for every $\alpha > 0$.

1. A population living in a constant environment cannot increase at constant rate. In laboratory experiments, the population density n tends to a limit n^* , or it shows undamped oscillations (see e.g. Halbach et al., 1972). A simple and general model in accordance with these observations is the functional differential equation

$$\dot{n}(t) = r(n_t) n(t), \ t > 0 \tag{1}$$

for the population density $n: [-1, \infty) \to R_0^+$. Here the rate of increase is given by a real-valued mapping r defined on the set of non-negative functions on the interval [-1, 0], with the only properties

$$r(n^*)=0$$
 for a positive constant function n^* (R 1)

and

$$\exists \, \varepsilon > 0 \colon n^* - \varepsilon \le \varphi \le \psi \Rightarrow r(\psi) \le r(\varphi). \tag{R 2}$$

The function n_t is defined by $n_t(a) := n(t+a)$ for $-1 \le a \le 0$ and $t \ge 0$. — The dependence of r on the density in the past allows oscillations (see e.g. Wright 1955), and $(R \ 1)$ and $(R \ 2)$ ensure that high densities result in a decay of the population size — which is a natural assumption. — The first model of this type (with $r(\varphi) = b(K - \varphi(-1))/K$, b and K positive) was proposed by G. E. Hutchinson in 1948.

We are interested in the stability of the constant solution defined by n^* . (This solution and its value are called n^* , too.) In this paper, we investigate the eigenvalues of the corresponding linearization of equation (1). Suppose in addition that

the Fréchet-derivative
$$Dr(n^*)$$
 of r in n^* exists (R 3)

(with respect to the supremum-norm on the continuous functions on [-1,0]). With $z:=n-n^*$ and $H(\varphi):=n^*r(\varphi+n^*)+\varphi(0)r(\varphi+n^*)$, equation (1) implies $\dot{z}(t)=H(z_t)$, and the linearization near n^* is $\dot{y}(t)=DH(0)(y_t)=n^*Dr(n^*)(y_t)$ since the derivative of the second term of H vanishes. By $(R \ 1)$ and $(R \ 2)$, $Dr(n^*)(\varphi) \le 0$ for $\varphi \ge 0$ and continuous. Hence $n^*Dr(n^*)(\varphi)=-\alpha\int\limits_{-1}^0 \varphi(a)\,ds(a)$ for all continuous functions $\varphi:[-1,0]\to R$, with $\alpha=n^*\parallel Dr(n^*)\parallel$ and $s\in S:=\{\sigma:[-1,0]\to R\mid \sigma \text{ increasing. }\sigma(-1)=0,\sigma(0)=1\}$.

The parameter α may serve as a measure of the power of the negative feedback in our system. The function s indicates how $Dr(n^*)(\varphi)$ — or $r(\varphi)$ for φ near n^* — depends on the values of φ at the different times in the past. For example, let $r(\varphi) = b - a$ $\int_{-1}^{0} \varphi(a) \, ds(a)$, where $b \in R^+$ stands for the birth rate and d for the death rate. Then s concave means that $r(n_t)$ is influenced more by $n \mid [-1, -1/2]$ than by $n \mid [-1/2, 0]$. — One might expect that for s concave the stability of n^* is in some way less than for s convex because in the first case the system takes longer to produce a sufficient reaction to a perturbation of the equilibrium n^* . We shall see below in which way this conjecture turns out to be right.

The linearized equation becomes

$$\dot{y}(t) = -\alpha \int_{-1}^{0} y(t+a) \, ds(a). \tag{2}$$

The eigenvalues of equation (2) are the complex solutions of the transcendental equation

$$\lambda + \alpha \int_{-1}^{0} \exp \left[\lambda a\right] ds (a) = 0$$

or, in other words, the zeros of the entire function $f(\cdot, \alpha, s): \lambda \mapsto \lambda + \alpha \int_{-1}^{0} \exp[\lambda a] ds(a)$.

The zero solution of equation (2) and n^* are asymptotically stable if all eigenvalues lie in the left half-plane $C^-:=R^-+iR$ (see [3], chapter 22, and [5]). If one eigenvalue is in $C^+:=R^++iR$ then the zero solution of equation (2) is unstable, and for $r(\varphi)=\alpha-\varphi(-1)$, $n^*(=\alpha)$ is unstable too (Wright 1955).

Due to [5], we have

$$0 < \alpha < \pi/2 \land s \in S \land f(\lambda, \alpha, s) = 0 \Rightarrow \lambda \in C^{-}.$$
 (3)

For the minimal (convex) function s_0 in S (i.e. $s_0(a)=0$ for a<0), the equation for the eigenvalues reduces to $\lambda+\alpha=0$, hence $\lambda\in C^-$ for all $\alpha>0$. In the case of the maximal (concave) functions s_1 in S (i.e. $s_1(a)=1$ for -1<a) there exist $\alpha>0$ such that at least one eigenvalue is in C^+ (in fact, $\alpha>\pi/2$ is sufficient), see (Wright 1955).

Theorem 2 in section 2 shows that this property of s_0 carries over to a class of smooth convex functions in S. In Theorem 3 and Theorem 4 we present a class A of functions s in S with eigenvalues in C^+ for certain α , like s_1 . The class A contains every concave function and all $s \ge i d + 1$ which are continuously differentiable.

The proof that n^* is unstable for $r(\varphi) = \alpha - \varphi(-1)$ and $\alpha > \pi/2$ requires — apart from the existence of an eigenvalue $\lambda = u + iv$ of the linearized equation in C^+ — the estimate $|v| < \pi$. Therefore we examine the boundedness of the branches of the eigenvalues in C^+ for given functions s (Theorem 5).

Section 3 deals with the eigenvalues for the simplest smooth function in S, that is $s=i\,d+1$. Theorem 6 describes the location of the eigenvalues in C for all $\alpha>0$. In particular we see that $|v|>\pi$ for every eigenvalue in C^+ .

2. In the following, we always assume $\alpha > 0$ and $s \in S \setminus \{s_0\}$. For a subset $M \subset C$, $Z(\alpha, s, M)$ denotes the number of zeros of $f(\cdot, \alpha, s)$ in M. For $\lambda \in C$, we write $\lambda = u + iv$ with u and v real. We have

$$f(\lambda, \alpha, s) = 0 \Leftrightarrow u + \alpha \int_{-1}^{0} \exp \left[u a\right] \cos v \, a \, ds \, (a) = 0 \, \land$$

$$v + \alpha \int_{-1}^{0} \exp \left[u a\right] \sin v \, a \, ds \, (a) = 0,$$
(4)

$$f(\lambda, \alpha, s) = 0 \Leftrightarrow f(\bar{\lambda}, \alpha, s) = 0,$$
 (5)

$$f(\lambda, \alpha, s) = 0 \land u \ge 0 \Rightarrow |\lambda| \le \alpha \land v \ne 0 \text{ (in particular } f(0, \alpha, s) \ne 0).$$
 (6)

First, we consider real eigenvalues. Set $g(u, s) := -u/\int_{1}^{0} \exp[u \, a] \, ds(a)$ for $u \le 0$.

Theorem 1: There are real eigenvalues if and only if $\alpha \le \max g(\cdot, s)$. Every real eigenvalue is negative.

Proof:
$$s \in S$$
, $s \neq s_0$ and $u \leq 0$ imply $\int_{-\infty}^{\infty} \exp[u \, a] \, ds(a) \geq \int_{-\infty}^{\infty} \exp[u \, a] \, ds(a) \geq 0$

 $\geq \exp[-\varepsilon u] s(-\varepsilon) > 0$ for small $\varepsilon > 0$, hence $g(u, s) \to 0$ for $u \to -\infty$. By g(0, s) = 0, max $g(\cdot, s)$ exists. By (4), $u \in R \land f(u, \alpha, s) = 0 \Leftrightarrow \alpha = g(u, s) \land u < 0$. This implies Theorem 1.

Theorem 2: Let $s \in C^2$ $[-1,0] \cap C^3$ (-1,0] be given with s'(-1)=0, s''(-1)=0, $s''' \ge 0$, s''' $(a^*)>0$ for a certain $a^* \in (-1,0)$. Then for every $\alpha > 0$, every eigenvalue has negative real part.

Proof: a) No eigenvalue on iR: By (4), (5) and u = 0, we only have to show $\int_{-1}^{0} \cos v \, a \, ds \, (a) > 0$ for all v > 0. Let v > 0. With s'(-1) = 0, $\int_{-1}^{0} \cos v \, a \, ds \, (a) =$ $= -(1/v) \int_{-1}^{0} s''(a) \sin v \, a \, da. - \int_{-1}^{0} s''(a) \sin v \, a \, da = \lim_{\varepsilon \to 0} - \int_{\varepsilon - 1}^{0} s''(a) \sin v \, a \, da = (1/v)$ $\lim_{\varepsilon \to 0} (s''(0) - s''(\varepsilon - 1) \cos (v \varepsilon - v) - \int_{\varepsilon - 1}^{0} s'''(a) \cos v \, a \, da).$

By s''(-1) = 0 and $s''(0) = \int_{\epsilon-1}^{0} s'''(a) da + s''(\epsilon - 1)$, the last term equals (1/v) $\lim_{\epsilon \to 1} \int_{0}^{0} s'''(a) (1 - \cos v a) da \ge (1/v) \int_{a^*}^{0} s'''(a) (1 - \cos v a) da > 0$.

b) No eigenvalue in $C^+: Z(\alpha, s, \tilde{C}^+) > 0$ for $\alpha > 0$ implies $\tilde{\alpha} := \inf \{\alpha > 0 \mid Z(\alpha, s, C^+) > 0\} \in [\pi/2, \infty)$, see (3). Then there are sequences $\alpha_n \to \tilde{\alpha}$, λ_n in C^+ with $f(\lambda_n, \alpha_n, s) = 0$. By (6), there exist subsequences $\alpha'_n \to \tilde{\alpha}$, $\lambda'_n \to \tilde{\lambda} \in C^+$ with $f(\tilde{\lambda}, \tilde{\alpha}, s) = 0$. a) gives $\tilde{\lambda} \in C^+$. Then $Z(\tilde{\alpha}, s, \partial D) = 0$ for a compact disk D in C^+ with $\tilde{\lambda} \in \tilde{D}$, and Theorem 9.17.4 of [1] guarantees the existence of $\varepsilon > 0$ with $Z(\tilde{\alpha} - \varepsilon, s, D) = Z(\tilde{\alpha}, s, D) > 0$, contradiction.

Examples: Theorem 2 holds for $s: a \mapsto (a+1)^{\beta}$ with $\beta > 2$. The case $\beta = 2$ shows that the theorem is optimal in a certain sense: The function $s: a \mapsto (a+1)^2$ fulfills the hypotheses except of $s'''(a^*) > 0$, and one verifies easily that $f(2\pi ki, (2\pi k)^2/2, s)$ is zero for every integer $k \neq 0$.

A class of discontinuous functions s with $Z(\alpha, s, \overline{C^+}) = 0$ for all $\alpha > 0$ is defined by $\lim_{a \to 0} s(a) < 1/2$.

Proof: Set $s^*(0) := \lim_{\alpha \to 0} s(a)$ and $s^*(a) := s(a)$ for a < 0. Assume $f(\lambda, \alpha, s) = 0$ and

 $u \ge 0$. By (4), $u = -\alpha \int_{-1}^{0} \exp[ua] \cos va \, ds(a) = -\alpha \left(1 - s^*(0) + \int_{-1}^{0} \exp[ua] \cos va \, ds^*(a)\right)$. By $|\int_{-1}^{0} \exp[ua] \cos va \, ds^*(a)| \le s^*(0)$, we obtain $u \le -\left(1 - 2s^*(0)\right)$, contradiction to $u \ge 0$.

Theorem 3: For $s \in A := \{ \sigma \in S \mid \exists v \in [0, \pi] \exists \alpha > 0 : f(iv, \alpha, \sigma) = 0 \}$, there exist eigenvalues with positive real part for certain $\alpha > 0$.

Proof: a) For $s \in S$, define a map $F = {F_1 \choose F_2}$: $R^2 \times R^+ \to R^2$ by $F_1(u, v, \alpha)$: = Re $f(u+iv, \alpha, s)$, $F_2(u, v, \alpha)$: = Im $f(u+iv, \alpha, s)$. If $F(0, v, \alpha) = 0$ (which is equivalent to $f(iv, \alpha, s) = 0$) and if

$$0 < d := \det \begin{pmatrix} \frac{\partial F_1}{\partial u} & \frac{\partial F_1}{\partial v} \\ \frac{\partial F_2}{\partial u} & \frac{\partial F_2}{\partial v} \end{pmatrix} (0, v, \alpha) = (1 + \alpha \int_{-1}^{0} a \cos v \, a \, ds(a))^2 + \alpha^2 \left(\int_{-1}^{0} a \sin v \, a \, ds(a) \right)^2,$$

then there are neighborhoods U of α and W of (0, v) and a differentiable map $G = (G_1, G_2) : U \to W$ with $G(\alpha) = (0, v)$ and $F \circ (G, id) = 0$. With $G(\alpha) = (0, v)$, we obtain $G_1'(\alpha) = -d^{-1}\left(\frac{\partial F_1}{\partial \alpha} \cdot \frac{\partial F_2}{\partial v} - \frac{\partial F_1}{\partial v} \cdot \frac{\partial F_2}{\partial \alpha}\right)(0, v, \alpha) = d^{-1}\int_{-1}^{0} v \, a \sin v \, a \, ds \, (a)$. Therefore, Theorem 3 will follow from the existence of $\alpha > 0$ and v > 0 with $f(iv, \alpha, s) = 0$ and

$$\int_{-1}^{0} a \sin v a \, ds \, (a) > 0. \tag{7}$$

b) $s \in A$, $f(iv, \alpha, s) = 0$ and $v \in [0, \pi]$ imply v > 0, by (6). Hence $a \sin v a > 0$ for -1 < a < 0. If $v < \pi$, we have in addition $-\sin(-v) > 0$, and $s + s_0$ gives (7). The

case $v = \pi$ and $\int_{-1}^{0} a \sin v \, a \, ds \, (a) = 0$ is impossible because $\int_{-1}^{0} a \sin \pi \, a \, ds \, (a) = 0$ implies $s \mid (-1, 0)$ constant, hence by (4) $-\pi/\alpha = \int_{-1}^{0} \sin \pi \, a \, ds \, (a) = s \, (1/2) \sin (-\pi) + (1-s \, (1/2)) \sin 0 = 0$, contradiction.

Theorem 4: For s in C^1 [-1,0], $s \in A$ is equivalent with $-\int_{-1}^{0} \pi s(a) \sin \pi a \, da \ge 1$. In particular, every function s in C^1 [-1,0] with $s \ge id+1$ is in A. A contains every concave function in S.

Proof: a) Let $s ∈ C^1$ [-1,0], set $h(t) = \int_{-1}^{0} \cos t \, a \, ds$ (a) for t ≥ 0. We have h'(t) ≤ 0 for $0 ≤ t ≤ \pi$ and h(0) = 1, hence $h(\pi) ≤ 0 ⇔ ∃ v ∈ (0, \pi]$: h(v) = 0. For every $v ∈ (0, \pi]$ with h(v) = 0, $\int_{-1}^{0} \sin v \, a \, ds$ (a) < 0 by $s ∈ C^1$. Then $f(iv, -v/\int_{-1}^{0} \sin v \, a \, ds$ (a), s) = 0, by (4). We infer $(s ∈ A ⇔ h(\pi) ≤ 0)$. Obviously, $0 ≥ h(\pi) = \int_{-1}^{0} s'(a) \cos \pi \, a \, da = 1 + \int_{-1}^{0} \pi \, s(a) \sin \pi \, a \, da$.

b)
$$s \ge id + 1 \Rightarrow -\int_{-1}^{0} \pi s(a) \sin \pi a \, da \ge -\int_{-1}^{0} \pi (a+1) \sin \pi a \, da = 1.$$

c) Let s be concave. For $n \in N$, set $a_v := -1 + v/2 n$ for v = 0, 1, ..., 2 n. Then $\cos \pi a_{v-1} = -\cos \pi a_{2n-(v-1)}$ and $s(a_v) - s(a_{v-1}) \ge s(a_{n+\mu}) - s(a_{n+\mu-1})$ for $1 \le v, \mu \le n$. We infer $0 \ge \sum_{k=1}^{2n} (s(a_k) - s(a_{k-1})) \cos a_{k-1} \pi$, hence $h(\pi) \le 0$ and h(v) = 0

for a certain $v \in [0, \pi]$. Obviously, $\int_{-1}^{0} \sin v \, a \, ds \, (a) \le 0$. $\int_{-1}^{0} \sin v \, a \, ds \, (a) = 0$ implies $v = \pi$ (since $s \ge id + 1$) and $s \mid (-1, 0)$ constant, hence $s \mid (-1, 0] = 1$ and $\int_{-1}^{0} \cos v \, a \, ds \, (a) = -1$, contradiction. Now $s \in A$ follows as in a).

For fixed s, let P denote the set of eigenvalues with positive real part, that is $\{\lambda \in C^+ \mid \exists \alpha > 0 : f(\lambda, \alpha, s) = 0\}$. In general, P is unbounded, see Theorem 6 below. But we have

Theorem 5: For $s \in C^3[-1,0]$ with s'(-1)>0 and s'(0)>0, every connected subset of P is bounded.

Proof: a) $f(\lambda, \alpha, s) = 0$ implies $\lambda \neq 0$. Let $s \in C^3$. Integration by parts yields

$$(\lambda^2)/\alpha + s'(0) = s'(-1) \exp[-\lambda] + \int_{-1}^{0} \exp[\lambda a] s''(a) da$$
 (8)

and

$$(\lambda^3)/\alpha + \lambda s'(0) = s'(-1) \exp[-\lambda] + s''(0) - \exp[-\lambda] s''(-1) - \int_{-1}^{0} \exp[\lambda a] s'''(a) da.$$
(9)

b) Assume $P \neq \emptyset$, Re P unbounded and Im P bounded. Then (8) holds for sequences $\lambda_n = u_n + i v_n$ in P and α_n in R^+ , with $u_n \to \infty$. (8) gives

$$(u_n^2 - v_n^2)/\alpha_n + s'(0) = \text{Re}\left(\lambda_n^2/\alpha_n + s'(0)\right) \to 0.$$
 (10)

By (6) and $u_n \to \infty$, $\alpha_n \to \infty$. Hence $v_n^2/\alpha_n \to 0$, $0 < s'(0) \le s'(0) + u_n^2/\alpha_n \to 0$, contradiction.

b) Now let Q be a connected subset of P. By (5) and (6), we may assume $\operatorname{Im} Q \subset R^+$. For $\operatorname{Im} Q$ unbounded, there exist sequences α_n , u_n in R^+ and an integer n_0 with $f(u_n+i(2n\pi+\pi/2), \alpha_n, s)=0$ for $n\geq n_0$. Set $\lambda_n:=u_n+i(2n\pi+\pi/2)$.

We have $\alpha_n \to \infty$ and $\int_{-1}^{0} \exp \left[\lambda_n a\right] s''(a) da \to 0$, $\int_{-1}^{0} \exp \left[\lambda_n a\right] s'''(a) da \to 0$. (Proof:

It is sufficient to show the assertion in the cases $u_n \to \infty$ and $u_n \to u^* \ge 0$. The first case is trivial. In the second case, Theorem 4.6 of [7] gives, for example,

$$\int_{-1}^{0} \exp \left[u^{*} \ a\right] \ s''(a) \cos v_{n} \ a \ da \to 0. \text{ In addition, } |\int_{-1}^{0} \exp \left[u^{*} \ a\right] \ s''(a) \cos v_{n} \ a \ da - \int_{-1}^{0} \exp \left[u_{n} \ a\right] \ s''(a) \cos v_{n} \ a \ da | \le \max |s''| |\exp \left[-u_{n}\right] - \exp \left[-u^{*}\right] | \to 0.) - \frac{1}{2} \exp \left[-u_{n}\right] - \exp \left[-u^{*}\right] | \to 0.$$

Assume u_n bounded. By (8) and $\cos v_n = 0$, (10) holds for λ_n and α_n , if $n \ge n_0$. Hence $v_n^2/\alpha_n \to s'(0)$. Then $v_n/\alpha_n \to 0$ and $2u_n v_n/\alpha_n \to 0$. On the other hand, (8) yields $2u_n v_n/\alpha_n - s'(-1) \exp[-u_n] = \operatorname{Im} (\lambda_n^2/\alpha_n + s'(0) - s'(-1) \exp[-\lambda_n]) \to 0$. We infer $\exp[-u_n] \to 0$, contradiction.

Next, suppose $u_{n_k} \to \infty$ for a subsequence. Set $g_k := u_{n_k}$, $h_k := v_{n_k}$, $\beta_k := \alpha_{n_k}$. Taking real and imaginary parts in (9), we obtain

$$g_k ((g_k^2 - 3 h_k^2)/\beta_k + s'(0)) - s'(-1) \exp[-g_k] h_k - s''(0) \to 0$$
 (11)

and $h_k \left((3 g_k^2 - h_k^2)/\beta_k + s'(0) \right) \rightarrow 0$, therefore

$$(3 g_k^2 - h_k^2)/\beta_k + s'(0) \rightarrow 0.$$
 (12)

We have $-s'(-1) \exp \left[-g_k\right] h_k \to -\infty$. (Proof: For a subsequence $g_k' + i h_k'$ with $s'(-1) \exp \left[-g_k'\right] h_k'$ bounded, (11) and $g_k' \to \infty$ imply $(g_k'^2 - 3 h_k'^2)/\beta_k' + s'(0) \to 0$. By (12), we obtain $(g_k'^2 + h_k'^2)/\beta_k' \to 0$. By (12) again, s'(0) = 0, contradiction.)

Now (11) yields $0 < (g_k^2 - 3h_k^2)/\beta_k + s'(0)$ (for k large) $\le (3g_k^2 - h_k^2)/\beta_k + s'(0) \to 0$, therefore s'(0) = 0, contradiction.

3. Location of the eigenvalues for s=id+1. We set $f_{\alpha}:=f(\cdot,\alpha,id+1)$ and $Z(\alpha,M):=Z(\alpha,id+1,M)$ for $\alpha>0$, $v_k:=2k\pi+\pi$ and $\alpha_k:=v_k^2/2$ for $k\in N_0$, $G_k:=R+iI_k$ with $I_0:=(-2\pi,2\pi)$ and $I_k:=(2k\pi,2k\pi+2\pi)$ for $k\in N$, $g:=g(\cdot,id+1)$, $\alpha^*:=\max g$. u^* is defined by $g(u^*)=\alpha^*$. Because of (5), we only consider eigenvalues with $v\geq 0$.

Theorem 6:

- i) Every zero $\lambda = u + iv$ of f_{α} , $\alpha > 0$, with $v \ge 0$ lies in the set $\bigcup_{k \in \mathbb{N}_0} G_k$.
- ii) For $k \in N$ and $\alpha > 0$, f_{α} has exactly one zero $\lambda_k(\alpha)$ in G_k . We have $\lambda_k(\alpha_k) = i \ v_k$, $\lambda_k(\alpha) \in R^- + i \ (2 \ k \ \pi, 2 \ k \ \pi + \pi)$ for $\alpha < \alpha_k$ and $\lambda_k(\alpha) \in R^+ + i \ (2 \ k \ \pi + \pi, 2 \ k \ \pi + 2 \ \pi)$ for $\alpha > \alpha_k$.
- iii) For every $\alpha > 0$, f_{α} has exactly two zeros in G_0 . These zeros are real and simple, if $\alpha < \alpha^*$. If we denote them by $u_1(\alpha) < u_2(\alpha)$, then $u_1(\alpha) < u^* < u_2(\alpha)$ and $u_1(\alpha) \to -\infty$, $u_2(\alpha) \to 0$ for $\alpha \to 0$. For $\alpha = \alpha^*$, u^* is a double zero. For $\alpha^* < \alpha$, f_{α} has one zero $\lambda_0(\alpha)$ in G_0 with positive imaginary part. We have $\lambda_0(\alpha) \in R^- + i(0, \pi)$, if $\alpha^* < \alpha < \alpha_0$, $\lambda_0(\alpha_0) = iv_0$ and $\lambda_0(\alpha) \in R^+ + i(\pi, 2\pi)$, if $\alpha > \alpha_0$.

Fig. 1. The arrows indicate the direction of increasing α

Proof of Theorem 6: We have $f_{\alpha}(\lambda) = 0 \Leftrightarrow \lambda \neq 0 \land$

$$(\lambda^2 + \alpha) \exp \left[\lambda\right] = \alpha. \tag{13}$$

Assertion i) is a consequence of

a) Let $f_{\alpha}(\lambda) = 0$, $v \ge 0$. Then $v \notin 2 \pi N$, and we have

$$k \in N_0 \land \lambda \in G_k \land \begin{cases} u < 0 \Rightarrow v < 2 k\pi + \pi \\ u > 0 \Rightarrow v > 2 k\pi + \pi. \end{cases}$$

Proof: By (13), $\lambda^2 + \alpha = \alpha \exp [-\lambda]$. Hence

$$2 u v = \alpha \exp \left[-u\right] \sin \left(-v\right). \tag{14}$$

Therefore, $u \neq 0$ and $v \in 2 \pi N$ would imply v = 0. u = 0 yields $v \in \pi N_0$. By (13), u = 0 and $v \in 2 \pi N_0$ would imply $\lambda^2 = 0$, contradiction to (6). Together, we obtain $v \notin 2 \pi N$. The implication in a) is obvious from (14).

b)
$$f_{\alpha}(iv) = 0 \land v \ge 0 \Leftrightarrow \exists k \in N_0: \alpha = \alpha_k \land v = v_k$$
.

Proof: Clearly $f_{\alpha_k}(iv_k) = 0$ for $k \in N_0$. As in the preceding proof, we have $(f_{\alpha}(iv) = 0 \land v \ge 0 \Rightarrow \exists k \in N_0: v = 2 \ k \pi + \pi = v_k)$. Then (13) gives $\alpha = v^2/2 = v_k^2/2 = \alpha_k$.

c)
$$\alpha \leq \alpha_k \Rightarrow Z(\alpha, G_k \cap C^+) = 0$$
.

Proof: Suppose $\alpha' \leq \alpha_k$ and $Z(\alpha', G_k \cap C^+) > 0$. We may assume $\alpha' < \alpha_k (Z(\alpha_k, G_k \cap C^+) > 0)$ implies $Z(\alpha', G_k \cap C^+) > 0$ for certain $\alpha' < \alpha_k$, compare part b) in the proof of Theorem 2). By (3), $\alpha' \geq \pi/2$. Set $B := (0, \alpha' + 1) + iI_k$. We have $Z(\alpha', B) > 0$, by (6), and $Z(\alpha, \partial B) = 0$ for $1 \leq \alpha \leq \alpha'$. This follows from a) together with (6), $\alpha < \alpha_k$ and with

$$f_{\alpha}(iv) = 0 \land iv \in G_k \Rightarrow \alpha = \alpha_k. \tag{15}$$

With the aid of Theorem 9.17.4 of [1], we derive $Z(1, B) = Z(\alpha', B) > 0$ which contradicts (3).

d) Let $k \in N_0$ and $\alpha > 0$. There exists a negative constant $T(\alpha, k)$ with

$$\alpha' \ge \alpha \land \lambda \in G_k \cap C^- \land f_{\alpha'}(\lambda) = 0 \Rightarrow T(\alpha, k) < u.$$

Proof: By (13), we have

$$1 + (u^2 + v^2)/\alpha \ge |1 + \lambda^2/\alpha'| = |\exp[-\lambda]| = \exp[-u],$$

therefore $u^2/\alpha \ge \exp[-u] - 1 - (2k\pi + 2\pi)^2/\alpha$. This estimate and u < 0 yield the proposition.

e)
$$\forall k \in N_0 \exists \alpha_k^* > \alpha_k : \alpha \ge \alpha_k^* \land f_\alpha(\lambda) = 0 \land \lambda \in G_k \Rightarrow u > 0.$$

Proof: Suppose there are sequences $\alpha(n)$, λ_n with $f_{\alpha(n)}(\lambda_n) = 0$, $\alpha_k < \alpha(n) \to \infty$, $\lambda_n \in G_k$, $u_n \le 0$. By (15) and $\alpha_k < \alpha(n)$, $u_n < 0$. Proposition d), (13), $u_n < 0$ and $\alpha(n) > \alpha_k > 1$ give

$$((2k\pi+2\pi)^2+T(1,k)^2)/\alpha(n) \ge |\lambda_n|^2/\alpha(n) \ge \exp[-u_n]-1>0.$$

Therefore $\exp[-u_n] \to 1$, $u_n \to 0$. Together with $v_n \to 0$, this would imply $\int_{-1}^{0} \exp[\lambda_n a] da \to 1$, hence $|f_{\alpha(n)}(\lambda_n)| \to \infty$, contradiction. — We obtain $|v_n| \ge \delta$ for a certain $\delta > 0$ and for $n \in N^*$ with $N^* \subset N$ unbounded. By (13) and $u_n < 0$, $\alpha(n)^2 \le |\lambda_n^2 + \alpha(n)|^2 = \alpha(n)^2 + 2\alpha(n)(u_n^2 - v_n^2) + |\lambda_n|^4$. Because of $u_n \to 0$, $\alpha(n) \le |\lambda_n|^4/2(v_n^2 - u_n^2)$ for large $n \in N^*$, in contradiction to $\alpha(n) \to \infty$.

f)
$$Z(\alpha_0, G_0) = 2. \forall k \in \mathbb{N} : Z(\alpha_k, G_k) = 1.$$

Proof: Let $k \in N_0$. The zeros iv_k , $-iv_k$ of f_{α_k} are simple $(\lambda \neq 0 \Rightarrow f_{\alpha}(\lambda) = \lambda + \alpha(1 - \exp[-\lambda])/\lambda \Rightarrow (df_{\alpha}/d\lambda)(\lambda) = 1 + \alpha\exp[-\lambda]/\lambda - \alpha/\lambda^2 + \alpha\exp[-\lambda]/\lambda^2 \Rightarrow (df_{\alpha_k}/d\lambda)(\pm iv_k) = 2 \pm iv_k/2$. Therefore, i) and b) and c) imply $Z(\alpha_k, \overline{G_k} \cap C^+) = 1$, if $k \in N$, and ... = 2 for k = 0. Suppose $Z(\alpha_k, G_k \cap C^-) > 0$. Then $Z(\alpha', G_k \cap C^-) > 0$ for certain $\alpha' \in (\alpha_k, \alpha_k^*)$, compare the proof of c). Set $B := (T(\alpha_k, k), 0) + iI_k$. We have $Z(\alpha', B) > 0$ and $Z(\alpha, \partial B) = 0$ for $\alpha' \leq \alpha \leq \alpha_k^*$, by d), a) and (15). Hence $Z(\alpha_k^*, B) = Z(\alpha', B) > 0$, in contradiction to e).

g) For every $k \in N_0$ and every $\alpha > 0$, $Z(\alpha, G_k) = Z(\alpha_k, G_k)$.

Proof: Let $k \in N_0$, $\alpha > \alpha_k$ (the proof for $\alpha < \alpha_k$ is similar). There exists T > 0 with

$$\lambda \in G_k \land \alpha_k \le \alpha' \le \alpha \land f_{\alpha'}(\lambda) = 0 \Rightarrow |u| < T. \tag{16}$$

(Proof: The zeros with u > 0 and u < 0 are bounded by (6) and by d) respectively.) Set $B := (-T, T) + iI_k$. For $\alpha_k \le \alpha' \le \alpha$, $Z(\alpha', \partial B) = 0$. Hence $Z(\alpha, B) = Z(\alpha_k, B)$, and (16) implies g).

- h) Let $k \in N_0$ and $\alpha < \alpha_k$. By c), $u \le 0$ for the zeros of f_α in G_k . (15) yields u < 0. By a), $2 k \pi < v < 2 k \pi + \pi$ for $k \in N$ and $|v| < \pi$ for k = 0.
- j) For $k \in N_0$ and $\alpha > \alpha_k$, set $B := (T(\alpha, k), 0) + iI_k$. e) implies the existence of $\alpha_k^{**} \ge \alpha$ with $Z(\alpha_k^{**}, B) = 0$. By d) and (15), $Z(\alpha', \partial B) = 0$ for $\alpha \le \alpha' \le \alpha_k^{**}$. Hence $Z(\alpha, B) = Z(\alpha_k^{**}, B) = 0$. d) gives $(f_a(\lambda) = 0 \land \lambda \in G_k \cap C^- \Rightarrow \lambda \in B)$, therefore $Z(\alpha, G_k \cap C^-) = 0$. $Z(\alpha, G_k \cap iR) = 0$ because of (15) and $\alpha > \alpha_k$. With a), we obtain u > 0 and $2k\pi + \pi < v < 2k\pi + 2\pi$ for the zero of f_α in G_k , $k \in N$, and u > 0 and $\pi < |v| < 2\pi$ for the two zeros of f_α in G_0 .
- k) By Theorem 1, f_{α} has real zeros if and only if $\alpha \le \alpha^*$, and the real zeros are negative. The assertion concerning the real zeros for $\alpha < \alpha^*$ follows from

 $Z(\alpha, G_0) = 2$ and from the relations $u \in R \land f_\alpha(u) = 0 \Leftrightarrow \alpha = g(u)$, $u < u^* \Rightarrow g'(u) > 0$, $u > u^* \Rightarrow g'(u) < 0$, g(0) = 0, $g(u) \to 0$ for $u \to -\infty$, $g \mid R^- > 0$. u^* must be a double zero of f_{α^*} since by $g(u^*) = \alpha^* = \max g$, there is no other real zero of f_{α^*} , and the existence of a zero of f_{α^*} in $G_0 \setminus R$ would imply the existence of a third zero in G_0 , in contradiction to $Z(\alpha^*, G_0) = 2$.

Notation:

 N, R, R^+, R^- and C denote the natural, real, positive real, negative real and the complex numbers respectively. We set $N_0 := N \cup \{0\}$, $R_0^+ := R \setminus R^-$, $R_0^- := R \setminus R^+$. For $A \subset C$, $B \subset C$ and $z \in C$, we define

$$A+zB:=\{\lambda\in C\mid \exists\ a\in A\ \exists\ b\in B: \lambda=a+zb\}.$$

Re z (Im z) is the real part (imaginary part) of z,

Re
$$A := \{u \in R \mid \exists z \in A : u = \text{Re } z\}, \text{ Im } A := \{u \in R \mid \exists z \in A : u = \text{Im } z\}.$$

 ∂A , \mathring{A} and \overline{A} are the boundary, the interior and the closure of the set $A \subset C$. A dot — like in \mathring{n} — and a prime — like in s' — indicate differentiation. $C^k[-1,0]$ and $C^k(-1,0]$ are the sets of functions on [-1,0] which have continuous derivatives up to order k in [-1,0] and (-1,0] respectively. $f \mid A$ denotes the restriction of a given mapping $f: B \to D$ to a subset $A \subset B$.

References

- [1] Dieudonne, J.: Foundations of modern analysis. New York: Academic Press 1960.
- [2] Halbach, U., Burkhardt, H. J.: Sind einfache Zeitverzögerungen die Ursachen für periodische Populationsschwankungen? Oecologia (Berlin) 9, 215—222 (1972).
- [3] Hutchinson, G. E.: Circular causal systems in ecology. Annals of the New York Academy of Sciences 50, 221—246 (1948).
- [4] Hale, J. K.: Functional differential equations. Berlin-Heidelberg-New York: Springer 1971.
- [5] Walther, H. O.: Asymptotic stability for some functional differential equations. Proceedings of the Royal Society of Edinburgh 74 A (1974/75).
- [6] Wright, E. M.: A non-linear differential-difference equation. Jour. Reine Angewandte Math. 194, 66—87 (1955).
- [7] Zygmund, A.: Trigonometric series I, Second edition. Cambridge: University Press 1959.

Dr. H.-O. Walther Mathematisches Institut Universität München Theresienstraße 39 D-8000 München 2 Federal Republic of Germany