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Abstract. Ancient lakes represent key ecosystems for en-
demic freshwater species. This high endemic biodiversity has
been shown to be mainly the result of intra-lacustrine diversi-
fication. Whereas the principle role of this mode of diversifi-
cation is generally acknowledged, actual diversification rates
in ancient lakes remain little understood. At least four types
are conceivable. Diversification rates may be constant over
time, they may fluctuate, rates may be higher in the initial
phase of diversification, or there may be a pronounced lag
phase between colonization and subsequent diversification.
As understanding the tempo of diversification in ancient lake
environments may help reveal the underlying processes that
drive speciation and extinction, we here use the Balkan Lake
Ohrid as a model system and the largest species flock in the
lake, the non-pyrgulinid Hydrobiidae, as a model taxon to
study changes in diversification rates over time together with
the respective drivers.

Based on phylogenetic, molecular-clock, lineage-through-
time plot, and diversification-rate analyses we found that
this potentially monophyletic group is comparatively old and
that it most likely evolved with a constant diversification
rate. Preliminary data of the SCOPSCO (Scientific Collabo-
ration On Past Speciation Conditions in Lake Ohrid) deep-
drilling program do indicate signatures of severe environ-
mental/climatic perturbations in Lake Ohrid. However, so far
there is no evidence for the occurrence of catastrophic envi-
ronmental events. We therefore propose that the constant di-
versification rate observed in endemic gastropods has been
caused by two factors: (i) a potential lack of catastrophic en-
vironmental events in Lake Ohrid and/or (ii) a probably high
ecosystem resilience, buffering environmental changes. Pa-

rameters potentially contributing to the lake’s high ecosys-
tem resilience are its distinct bathymetry, ongoing tectonic
activities, and karst hydrology.

The current study not only contributes to one of the over-
all goals of the SCOPSCO deep-drilling program — infer-
ring the driving forces for biotic evolution in Lake Ohrid.
It might also enhance our understanding of how ecosystem
resilience, in general, may promote relatively constant diver-
sification rates in isolated ecosystems. However, we encour-
age future studies testing hypotheses about the lack of catas-
trophic events in Lake Ohrid. These studies should be based
on high-resolution data for the entire geological history of the
lake, and they should potentially involve information from
the sediment fossil record, not only for gastropods but also
for other groups with a high share of endemic taxa.

1 Introduction

Ancient lakes represent key ecosystems for the world’s en-
demic freshwater biodiversity (Brooks, 1950; Martens et al.,
1994; Martens, 1997; Rossiter and Kawanabe, 2000). Two
hypotheses have been suggested for the underlying processes
generating their often high levels of species richness. Origi-
nally, ancient lakes were considered to be evolutionary refu-
gia that accumulate immigrating elements from extralimi-
tal areas during periods of environmental changes (“reser-
voir function”). Accordingly, distantly related “relic” species
may have colonized a lake at different times and possi-
bly from different geographic areas (e.g., Hauswald et al.,
2008; Wilson et al., 2004). However, with the advance of
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molecular techniques, several researchers noted that many
endemic species are considerably younger than the lake they
inhabit. Hence, they suggested that the high endemic biodi-
versity in ancient lakes is predominantly a result of intra-
lacustrine diversification (“cradle function”) (e.g., Martens,
1997; Salzburger et al., 2005; Sherbakov, 1999).

Though the principle role of the cradle function is hardly
disputed today, rates of diversification in ancient lakes re-
main little understood (e.g., Cristescu et al., 2010; Martens
et al., 1994). As ancient lakes are considered to be compar-
atively stable systems (Martens, 1997), originally diversifi-
cation rates (i.e., speciation minus extinction rates) were as-
sumed to be constant over time. However, in the past decades,
several factors, typically related to environmental change,
have been proposed to alter the tempo of diversification in
species flocks. The most renowned theory, punctuated equi-
librium, suggests little net evolutionary change during peri-
ods of environmental stability (Gould and Eldredge, 1977;
but see, e.g., Pennell et al., 2014; Van Bocxlaer et al., 2008).
This equilibrium might be “punctuated” during phases of
rapid environmental change. Another theory suggests that di-
versification rates can be higher in the initial phase of di-
versification (particularly in groups that diversify through
an adaptive radiation) and may decline once niche spaces
becomes successively occupied (e.g., Purvis et al., 2009;
Schluter, 2000). This may happen after a lake first came
into existence or after the occurrence of major environmental
events such as volcanic ash deposits, severe lake-level drops,
and desiccation or salinization events (Cristescu et al., 2010;
Kroll et al., 2012; Salzburger et al., 2014). A forth theory
proposes the opposite, i.e., the existence of a pronounced lag
phase between colonization and onset of diversification (e.g.,
Cristescu et al., 2010).

However, these scenarios have rarely been tested in an-
cient lake environments due to the lack of appropriate candi-
date lakes and suitable model taxa. Criteria for a candidate
lake would be a long and continuous existence, providing
sufficient time for repetitive cladogenesis, as well as a good
knowledge of its paleo-limnological history, enabling a link
between geological and biotic evolution. The model taxon, in
turn, should be monophyletic, permitting unbiased calcula-
tions of diversification rates; species rich, thus providing suf-
ficient power for evolutionary analyses; and reasonably old,
allowing for studying the effect of environmental changes on
speciation rates over an extended period of time.

Of the few ancient lakes in the world, even fewer fulfil
the above criteria. Some lakes, despite being old, have gone
through a series of major environmental events, and the re-
spective endemic species are often comparable young, as ob-
served in Lake Malawi (e.g., Schultheif3 et al., 2009, 2011)
and Lake Titicaca (Kroll et al., 2012). Other lakes such as
Lake Baikal (e.g., Ivanov et al., 2013) and Lake Tanganyika
(e.g., Salzburger et al., 2014; Scholz et al., 2007) might
be sufficiently old but lack a continuous paleo-limnological
record. In fact, one of the very few ancient lakes enabling a
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link between geological and biotic evolution throughout its
existence is the Balkan Lake Ohrid (Wagner et al., 2014).
It is the oldest freshwater lake in Europe and perhaps the
most speciose in the world when considering lake size (Al-
brecht and Wilke, 2008). Though the exact age of the lake
remains controversially discussed, biological data suggest
an age of no older than 2-3 million years (My) (e.g., Al-
brecht et al., 2006; Trajanovski et al., 2010; Wysocka et
al., 2013). Newer sedimentological and seismological data
obtained during the recently conducted SCOPSCO (Scien-
tific Collaboration On Past Speciation Conditions in Lake
Ohrid) deep-drilling project in Lake Ohrid revealed a mini-
mum lake age (deep-water conditions) of ca. 1.2 My (Wagner
et al., 2014), and an age of its oldest sediments of approxi-
mately 2.0 My (Lindhorst et al., 2015). This time frame of
1.2-2.0 My for the origin of extant Lake Ohrid is also con-
sidered in the current study.

Besides its relatively well characterized limnological his-
tory, Lake Ohrid also harbors a high number of endemic ani-
mal species. So far, at least 185 taxa have been described (Al-
brecht and Wilke, 2008; PeSi¢, 2015; Stocchino et al., 2013;
Wysocka et al., 2013). In addition, there is a rich protist flora.
Diatoms alone account for 789 taxa, with 117 of them be-
ing endemic to the lake (Levkov and Williams, 2012). Ac-
cordingly, a number of more than 300 endemic eukaryotic
species for ancient Lake Ohrid is conceivable. The major-
ity of the animal groups form relatively old species flocks
in several higher taxa, including crustaceans (Wysocka et
al., 2008, 2013, 2014), leeches (Trajanovski et al., 2010),
and gastropods (Albrecht et al., 2006; Wilke et al., 2007,
2009). In fact, gastropods represent the most speciose ani-
mal group in Lake Ohrid, with 74 species described, 56 of
which are endemic to the lake and its catchment (Albrecht
and Wilke, 2008; Albrecht et al., 2009, 2014; Hauffe et al.,
2011; Radoman, 1985). The largest share of this diversity is
held by snails of the family Hydrobiidae (Caenogastropoda:
Truncatelloidea), including 13 pyrgulinid and 27 other en-
demic species (Radoman, 1983). The latter group comprises
the nominal genera Dolapia, Gocea, Lyhnidia, Ohrigocea,
Ohridohauffenia, Ohridohoratia, Polinskiola, Pseudohora-
tia, Strugia, and Zaumia (see Fig. 1). Pending a formal clas-
sification of this potentially monophyletic taxon, it is hence-
forth called the “non-pyrgulinid Hydrobiidae”. Given that
this group probably represents the largest species flock in
Lake Ohrid (see also Radoman, 1983), it appears to be a suit-
able candidate taxon to study speciation processes in this an-
cient lake.

Therefore, the major goal of the present study is to test for
changes in diversification rates over time and to assess the
underlying drivers. In order to achieve this objective, three
specific goals are addressed.

i. Based on molecular-clock analyses, we estimate the age

of the most recent common ancestor (MRCA) of this
group as a baseline for our temporal studies.
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Figure 1. Selected representatives of genera belonging to the en-
demic non-pyrgulinid Hydrobiidae from Lake Ohrid. Scale bar:
1mm.

ii. Utilizing lineage-through-time (LTT) plot and
diversification-rate analyses, hereinafter we assess
changes in diversification rates over time.

iii. If deviations from a constant diversification model are
inferred, we finally attempt to link environmental and
climatic fluctuations derived from the SCOPSCO pro-
gram to these biotic changes.

Given that Lake Ohrid has long been considered to be a rel-
atively stable system with considerable ecosystem resilience
(sensu Stankovic, 1960), our working hypothesis is that there
are no significant changes in diversification rates over time in
the lake’s non-pyrgulinid Hydrobiidae.

The current study will complement paleontological evi-
dence of evolutionary processes obtained from the SCOP-
SCO high-resolution sediment record and thus contribute to
one of the overall goals of the deep-drilling program — infer-
ring the driving forces for biotic evolution in this fascinating
ancient lake. It might also enhance our general understanding
of how environmental change alters the tempo of diversifica-
tion in isolated ecosystems and how ecosystem stability may
buffer such changes.

2 Material and methods
2.1 Sampling

Hydrobiid gastropods were collected during field trips to
Lake Ohrid and other waterbodies in the Balkan region be-
tween 2003 and 2011 (Fig. 2; see Table 1 for details). The
collection methods followed those described in Schreiber et
al. (2012) and included hand collecting, snorkeling, sieving,
and dredging from small boats or the research vessel of the
Hydrobiological Institute Ohrid. Samples were preserved in
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Figure 2. Sampling sites for non-pyrgulinid Hydrobiidae in lakes
Ohrid, Prespa, and Mikri Prespa, and their watersheds.

80 % ethanol and determined in the laboratory to species
level based on Radoman (1983).

2.2 DNA isolation, PCR amplification, and DNA
sequencing

Genomic DNA was isolated from whole specimens us-
ing the CTAB protocol described in Wilke et al. (2006).
Voucher specimens and digital images were deposited in the
University of Giessen Systematics and Biodiversity collec-
tion (UGSB). Fragments of the mitochondrial genes for cy-
tochrome oxidase ¢ subunit | (COI) and large subunit rRNA
(LSU rRNA or 16S rRNA) were amplified using the univer-
sal primers LCO1490 (Folmer et al., 1994) and COR722b
(Wilke and Davis, 2000) as well as 16Sar-L and 16Sbr-H
(Palumbi et al., 1991), respectively (for PCR conditions see
Schreiber et al., 2012). Subsequent Sanger sequencing was
conducted either on a Long Read IR2 4200 sequencer (LI-
COR, Lincoln, NE, USA) using the Thermo Sequenase flu-
orescent labelled primer cycle sequencing kit (Amersham
Pharmacia Biotech, Piscataway, NJ, USA) or on a ABI 3730
XL sequencer (Life Technologies, Carlsbad, CA, USA) us-
ing the Big Dye Terminator Kit (Life Technologies, Carls-
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Table 1. Taxa studied including locality information, collection and DNA voucher details, and NCBI GenBank accession numbers.

Genus Species Locality Latitude Longitude  UGSB voucher no. DNA voucherno.  GenBank accession no.  Reference
Col 16S rRNA
Albaniana albanica Albania, Ventroku, cave spring 40.67295  20.97403 UGSB 10730 12073 KU170805 KU170882  This study
Belgrandia mariatheresia  Italy, Fonte di S. Cassiano - - UGSB 17130 2332 KU170806 - This study
Daphniola exigua Greece, large spring at Agia Paraskevi, Tembi Valley, N of Larisa - - - - JF916470 - Falniowski and Szarowska (2011)
graeca Greece, Dafne Spring 39.891083 22.607222 UGSB 17132 4238 KU170807 - This study
louisi Greece, Athens, spring at Kessariani 37.960729 23.798555 UGSB 17133 4239 KU170808 - This study
Gocea ohridana 1 Macedonia, Lake Ohrid, lake bank at Veli Dab 40.97324 20.78668 UGSB 10710 10493 KU170809 - This study
ohridana 2 Macedonia, Lake Ohrid, lake bank at Veli Dab 40.97324 20.78668 UGSB 10709 10332 KU170810 KU170883  This study
ohridana 3 Macedonia, Lake Ohrid, Veli Dab 40.97097 20.78604 UGSB 10681 4299 KU170811 - This study
Grossuana codreanui Bulgaria, Jasenovo - - - - EF061920 - Szarowska et al. (2007)
delphica Greece, Delphi, Kastalia Spring 38.483056 22.505278 - - EF061922 - Szarowska et al. (2007)
serbica Serbia, Raska River Spring at Sopocani Monastery 43.115833 20.370833 - - EF061921 - Szarowska et al. (2007)
sp. Greece, E of Volos, Oros Pilion, spring E of Anilion - - - - KC011768 - Falniowski et al. (2012)
vurliana Greece, spring of Louros River - - - - EF061923 - Szarowska et al. (2007)
Islamia hadei Greece, Peloponnese, N Taigetos Mts., W of Sparta, spring at Dhiaselo - - - - JF916473 - Falniowski and Szarowska (2011)
Lyhnidia gjorgjevici 1 Macedonia, feeder springs of Sveti Naum 40.91208 20.74213 UGSB 10746 12499 KU170812 - This study
gjorgjevici 2 Macedonia, feeder springs of Sveti Naum 40.91208 20.74213 UGSB 10747 12500 KU170813 - This study
gjorgjevici 3 Macedonia, Sveti Naum, small lake with springs 40.91029 20.74791 UGSB 10695 10286 KU170814 KU170884  This study
gjorgjevici 4 Macedonia, Sveti Naum, small lake with springs 40.91029 20.74791 UGSB 10696 10287 KU170815 KU170885  This study
stankovici Macedonia, Lake Ohrid, Trpejca 40.95583 20.76396 UGSB 10697 10291 KU170816 KU170886  This study
Malaprespia albanica Albania, Lake Mikri Prespa, spring in the lake 40.67258 20.9892 UGSB 10731 12075 KU170817 KU170887  This study
Ohridohauffenia  depressa 1 Macedonia, Lake Ohrid, in front of Hotel Desaret, village Pestani 41.00927 20.80544 UGSB 10716 10507 KU170818 KU170888  This study
depressa 2 Macedonia, Lake Ohrid, beach at Gorica Hill 41.08105 20.7974 UGSB 10711 10495 KU170819 KU170889  This study
minuta 1 Macedonia, spring Studenicista 41.10251 20.81491 UGSB 10712 10497 KU170820 KU170890  This study
minuta 2 Macedonia, spring Bej Bunar 41.11085 20.81905 UGSB 10714 10501 KU170821 KU170891  This study
minuta 3 Macedonia, spring Bej Bunar 41.11085 20.81905 UGSB 10715 10502 KU170822 KU170892  This study
rotonda Macedonia, Lake Ohrid, at camping site 41.12643 20.64184 UGSB 10713 10500 KU170823 KU170893  This study
sanctinaumi 1 Macedonia, feeder springs of Sveti Naum 40.91414 20.74147 UGSB 10738 12358 KU170824 - This study
sanctinaumi 2 Macedonia, feeder springs of Sveti Naum 40.91061 20.74748 UGSB 10717 10510 KU170825 KU170894  This study
Ohridohoratia carinata 1 Macedonia, Lake Ohrid, Veli Dab 40.97439  20.78746 UGSB 10698 10299 KU170826 KU170895  This study
carinata 2 Macedonia, Lake Ohrid, Trpejca 40.95868  20.77802  UGSB 10699 10305 KU170827 KU170896  This study
pygmaea 1 Albania, feeder springs of Tusemisht 40.89874  20.71325 UGSB 10749 12508 KU170828 - This study
pygmaea 2 Albania, feeder springs of Tusemisht 40.89686  20.7127 UGSB 10748 12507 KU170829 - This study
pygmaea 3 Macedonia, feeder springs of Sveti Naum 40.91019  20.74793 UGSB 10750 12510 KU170830 - This study
pygmaea 4 Macedonia, Sveti Naum, spring lake at island with restaurant 40.91393  20.74226 UGSB 10739 12359 KU170831 - This study
pygmaea 5 Macedonia, Sveti Naum, spring lake at island with restaurant 40.91393  20.74226 UGSB 10740 12360 KU170832 - This study
pygmaea 6 Macedonia, Sveti Naum, springs at pumping station, near chapel 40.9113 20.74744  UGSB 10741 12362 KU170833 - This study
pygmaea 7 Albania, feeder springs of Tushemisht 40.89885 20.7136 UGSB 10755 12863 KU170834 - This study
pygmaea 8 Albania, Lake Ohrid, south of Lin peninsula 41.06055 20.65186 UGSB 10756 12865 KU170835 - This study
pygmaea 9 Macedonia, Lake Ohrid, in bay south of Gorica H 41.07304 20.79991 UGSB 10758 12867 KU170836 - This study
pygmaea 10 Macedonia, Lake Ohrid, in bay south of Gorica H 41.07304 20.79991 UGSB 10757 12866 KU170837 - This study
pygmaea 11 Macedonia, Lake Ohrid, northwestern bay, near Podmolje 41.16183 20.7451 UGSB 10742 12439 KU170838 KU170897  This study
pygmaea 12 Macedonia, Lake Ohrid, Veli Dab 40.97439 20.78747 UGSB 10759 12868 KU170839 - This study
pygmaea 13 Macedonia, Lake Ohrid, northwestern bay, near Podmolje 41.16235 20.74395 UGSB 10718 10689 KU170840 KU170898  This study
pygmaea 14 Macedonia, Lake Ohrid, northwestern bay, near Podmolje 41.16183 20.7451 UGSB 10743 12440 KU170841 KU170899  This study
pygmaea 15 Macedonia, Lake Ohrid, northwestern bay, near Podmolje 41.16183 20.7451 UGSB 10744 12442 KU170842 KU170900  This study
pygmaea 16 Macedonia, Lake Ohrid, northwestern bay, near Podmolje 41.16429 20.7396 UGSB 10745 12444 KU170843 KU170901  This study
Ohrigocea Macedonia, feeder springs of Sveti Naum 40.91287  20.74483  UGSB 10752 12514 KU170844 - This study
Macedonia, Lake Ohrid, south of Pestani 41.09239  20.63361  UGSB 10687 10153 KU170845 KU170902  This study
Macedonia, Lake Ohrid, Veli Dab 40.97439  20.78747  UGSB 10688 10154 KU170846 KU170903  This study
Macedonia, Lake Ohrid, bay south of Gradishte 40.99323  20.79958  UGSB 10689 10156 KU170847 KU170904  This study
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bad, CA, USA). In total, we sequenced 65 specimens of 17
nominal species of the endemic non-pyrgulinid Hydrobiidae.
For comparison, we also analyzed 20 specimens of 15 closely
related species occurring in lakes Prespa and Mikri Prespa as
well as in surrounding waterbodies (Fig. 2; see Table 1 for
locality details, UGSB collection numbers and GenBank ac-
cession numbers).

2.3 Preliminary genetic analyses

The protein-coding COI sequences were unambiguously
aligned in BioEdit 7.0.9.0 (Hall, 1999), resulting in a final
alignment of 638 base pairs (bp). The 16S rRNA sequences
were aligned using the secondary structure model for the Hy-
drobiidae suggested by Wilke et al. (2013), resulting in a fi-
nal alignment of 462 bp including gaps (an internal fragment
of 45bp was removed since no reliable alignment could be
achieved for this region).

Prior to the phylogenetic analyses, our data set of non-
pyrgulinid Hydrobiidae was supplemented with sequences
of closely related species. We first performed searches with
BLASTN 2.2.32 (Zhang et al., 2000) against the National
Center for Biotechnology Information (NCBI) nucleotide
database as well as against the nucleotide database of the
Wilke lab, which contains DNA information for more than
300 hydrobiid species. A preliminary phylogenetic analysis
was conducted in order to identify the hydrobiid groups that
are most closely related to our endemic non-pyrgulinid Hy-
drobiidae. These preliminary analyses (details not shown) in-
dicated that endemic species from the sister lakes Prespa and
Mikri Prespa (Fig. 2) as well as from other Balkan waterbod-
ies are the closest relatives to the Ohrid taxa. These taxa were
included in our final data set (see Table 1).

2.4 Phylogenetic inference and molecular-clock
analyses

The main phylogenetic analyses using Bayesian inference
were performed in BEAST v. 1.8.0 (Drummond and Ram-
baut, 2007). Best-fit substitution models were estimated us-
ing jModelTest 0.1.1 (Posada, 2008) based on the Akaike in-
formation criterion. The models suggested for the COI and
16S rRNA fragments were GTR+I+T" and GTR+1, respec-
tively. We tested the COI data set for substitutional satura-
tion using the test by Xia and Xie (2001) as implemented
in DAMBE 5.0.23 (Xia and Xie, 2001). The value for the
proportion of invariant sites (Pinv = 0.46) was obtained from
the jModelTest output. The observed saturation was signifi-
cantly lower than the critical values (p < 0.001), suggesting
that this partition can be used for further (molecular-clock)
analyses. Note that we did not test for saturation in the 16S
data set as, within the family Hydrobiidae, the 16S gene is
more conservative than the COI gene (Wilke et al., 2001,
2013).

Biogeosciences, 12, 7209-7222, 2015

We first ran two unconstrained analyses in BEAST, one
under the strict-clock and one under the relaxed-clock model,
using relative rates for both partitions. These initial runs,
however, revealed an extremely low effectivity sample size
for the prior and posterior distributions, suggesting that the
runs might have been over-parameterized due to the complex
GTR+I4T model (see, e.g., Grummer et al., 2014; Slager et
al., 2014). Hence, the less complex HKY+I1+T" and HKY +1
models were used for the final analyses for the COI and 16S
rRNA partitions, respectively.

For calibrating the molecular clock, an external
trait-specific clock rate of 1.57+0.45%My~1 for the
HKY+14+T" model was utilized for the COI portion of our
data set (Wilke et al., 2009). This rate was established for
small, dioecious, subtropical or tropical Protostomia with
a generation time of approximately 1 year — all of these
criteria apply to our non-pyrgulinid Hydrobiidae.

The final analyses (two strict-clock and two relaxed-
clock runs) with a total of 85 sequences were run for
100000000 generations each, sampling every 5000 gener-
ations. The resulting log and tree files for each strict-clock
and relaxed-clock run were combined using LogCombiner
v. 1.8.0 (BEAST) with a 50 % burn-in. The maximum clade
credibility (MCC) tree was identified based on the poste-
rior distribution (20000 trees). Information from the post-
burn-in posterior distribution including mean node ages and
95 % highest posterior densities (HPDs) was summarized
using TreeAnnotator v. 1.8.0 (BEAST; no additional burn-
in). A Bayes factor (BF) analysis of the likelihoods of both
runs (strict-clock vs. relaxed-clock model) was performed in
Tracer 1.5 (Rambaut and Drummond, 2007; 1000 bootstrap
replicates) in order to determine the best-fitting clock model
(see Newton and Raftery, 1994; Suchard et al., 2001).

The BF analysis, which compares the likelihoods of both
BEAST runs (strict- vs. relaxed-clock model), showed a de-
cisive support for the relaxed-clock model with a BF of 45.61
(In Pretaxed = —5213.40 vs. In Pyyrict = —5318.42).

2.5 Lineage-through-time plot and diversification-rate
analyses

In a first explorative analysis, LTT plot analyses were con-
ducted using the packages ape v. 3.3 (Paradis et al., 2004)
and phytools v. 0.4-56 (Revell, 2012) for the R statistical en-
vironment 3.2.1 (R Core Team, 2015) in order to examine
whether major deviations from a constant diversification rate
can be directly observed over time. In this way, all but the
endemic non-pyrgulinid Hydrobiidae from Lake Ohrid were
pruned. In a second step, a LTT plot was generated for the
MCC tree plus a 95 % confidence interval based on the pos-
terior distribution.

However, generating LTT plots and detecting changes in
the slope is an explorative approach and might lead to mis-
interpretations (see Stadler, 2011). Therefore, potential shifts
in diversification rates over time were analyzed using the R
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K. Foller et al.: Constant diversification rates of endemic gastropods in ancient Lake Ohrid 7215

package TreePar v. 3.3 (Stadler, 2015) by testing a maximum
of three shifts for 10 trees randomly sampled from the pos-
terior distribution. This package implements a birth—death-
shift model (Stadler, 2011), which allows changes in spe-
ciation and extinction rates along a phylogeny for a given
time frame and for pre-defined time intervals. Shifts were
analyzed along the pruned tree with default settings and a
time interval of 0.1 My. The sampling fraction was set to
17/27 = 0.63 according to the actual number of species in-
cluded divided by the number of nominal species described.
Results (log likelihoods of different runs, i.e., constant diver-
sification rate vs. 1 shift, 1 shift vs. 2 shifts, and 2 shifts vs.
3 shifts) were compared by applying likelihood ratio tests in
order to examine whether shifts in rates explain the tree sig-
nificantly better than a constant diversification rate (indicated
by p values > 0.95; see Stadler, 2011, 2015).

3 Results

3.1 Phylogenetic inference and molecular-clock
analyses

The relaxed-clock MCC tree (Fig. 3) shows that the en-
demic non-pyrgulinid Hydrobiidae from Lake Ohrid likely
form a monophyletic group (Bayesian posterior probability
(BPP) =0.87). The potential sister to the Lake Ohrid group
is a monophyletic group containing endemic non-pyrgulinid
Hydrobiidae species from its sister lakes, lakes Prespa and
Mikri Prespa, and their catchments. The split from a MRCA
for these two groups is supported by a BPP of 1.0. The closest
relatives to the Ohrid/(Mikri) Prespa group are other Balkan
hydrobiids (BPP = 1.0) previously classified into the nomi-
nal subfamilies Belgrandiellinae, Belgrandiinae, and Horati-
inae (see Wilke et al., 2014).

The molecular-clock analyses indicates an age for the
MRCA of the endemic non-pyrgulinid Hydrobiidae from
Lake Ohrid (i.e., the onset of diversification within this
group) under the favored relaxed-clock model of 1.75-
3.76 My (95% HPD; see Fig. 3). Under the inferior strict-
clock model, the upper value is slightly lower at 1.75—
2.68 My.

3.2 Diversification-rate analysis

The 95% LTT plot does not suggest major deviations from
a constant diversification rate (Fig. 4a). This finding is sup-
ported by the TreePar (birth—death-shift) diversification-rate
analysis. Accordingly, the likelihood ratio tests suggest for
8 out of 10 random trees a constant rate over time. Only in
two of the random trees is a single shift at an age of 0.1 My
detected (Fig. 4b and Table 2).

www.biogeosciences.net/12/7209/2015/

4 Discussion

4.1 The Ohrid non-pyrgulinid Hydrobiidae: an old
species flock

Our phylogenetic analyses indicate that the non-pyrgulinid
Hydrobiidae form a potential monophyletic, speciose, and
endemic clade, and thus, by definition, represent a species
flock (Greenwood et al., 1984; Schon and Martens, 2004).
Therefore, in situ diversification appears to be a main pro-
cess in this group. The latter conclusion even holds under the
assumption of a non-monophyly of the Ohrid taxa.

The age estimates obtained from the molecular-clock anal-
ysis revealed that the Lake Ohrid flock potentially started to
diversify before extant Lake Ohrid came into existence (i.e.,
in a pre-lake/paleo-lake phase or in other waterbodies of the
Ohrid Graben system such as rivers or springs; see Figs. 3
and 4a). In fact, karst springs have previously been proposed
as potential ancestral habitats for other invertebrate flocks
inhabiting Lake Ohrid such as the pulmonate snail genus
Ancylus (Albrecht et al., 2006), leeches of the genus Dina
(Trajanovski et al., 2010), and the isopod genus Proasellus
(Kilikowska et al., 2013). This may also be the case for the
species flock studied here, given that karst springs are the
dominant habitat of its closest relatives outside lakes Ohrid,
Prespa, and Mikri Prespa. However, testing this hypothesis
is beyond the scope of the current study and probably would
require a denser sampling, more precise limnological infor-
mation about the early stage of Lake Ohrid, and more specific
approaches such as the reconstruction of ancestral waterbod-
ies as well as better calibration points for molecular-clock
analyses.

4.2 The Ohrid non-pyrgulinid Hydrobiidae: constant
rate of diversification over time

As mentioned in the Introduction, at least four modes of
tempo of speciation in ancient lake species flocks are con-
ceivable. Diversification rates may (1) be constant over time,
(2) fluctuate (“punctuated equilibrium”), (3) be higher in the
initial phase of diversification, or (4) show a pronounced lag
phase between colonization and subsequent diversification.

As understanding the temporal frame of speciation in Lake
Ohrid is of considerable importance for reaching one of the
main goals of the Ohrid scientific deep-drilling program —
inferring the driving forces for biotic evolution — the second
specific goal of the current study is to estimate diversifica-
tion rates over time. Given that Lake Ohrid has long been
regarded as a relatively stable system (Stankovic, 1960), our
working hypothesis assumes no significant changes in diver-
sification rates over time in the lake’s non-pyrgulinid Hydro-
biidae.

Interestingly, our LTT plot suggests that the species flock
most likely evolved with a constant diversification rate. This
finding is supported by our diversification-rate analysis, in-
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Figure 3. MCC tree based on a relaxed-clock BEAST analysis for non-pyrgulinid Hydrobiidae from the Balkans. Posterior probabilities > 0.5
are shown at the respective branches. The grey bar indicates the 95 % HPD for the age of the MRCA of the Ohrid endemics. The blue bar in
the timescale ranging from 1.2 to 2.0 My shows the assumed age of Lake Ohrid.

dicating a single recent shift (drop of rates) at 0.1 Ma for 2
out of 10 random trees (i.e., a time frame in which incom-
plete lineage sorting may play a role; Fig. 4b and Table 2).
Therefore, our initial working hypothesis — a constant diver-
sification rate — cannot be rejected. However, we cannot rule
out a type Il error here due to poorly resolved phylogenetic
trees or insufficient sampling size. As for the quality of the
phylogenetic tree used for the LTT plot and the subsequent

Biogeosciences, 12, 7209-7222, 2015

diversification-rate analyses, our analyses, indeed, revealed
some poorly supported (especially recent) nodes (Fig. 3).
However, timetree studies are relatively robust against phy-
logenetic uncertainties (see, e.g., Morvan et al., 2013) as a
poorly supported topology does not necessarily affect the
timing of rapid speciation events (e.g., Pagel, 1999). We are
therefore confident that the low BPP support of some nodes
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Figure 4. (a) LTT plot for the endemic non-pyrgulinid Hydrobiidae in Lake Ohrid. The plot is based on a relaxed-clock BEAST analysis,
with the black line showing the BEAST MCC and the shaded area indicating the 95% confidence interval based on 20000 post-burn-in
BEAST trees. The blue bar ranging from 1.2 to 2.0 My shows the assumed age of Lake Ohrid. (b) Diversification rates obtained from the
diversification-rate analyses (TreePar); trees with a single shift in diversification rates at 0.1 My (trees nos. 3 and 8) are highlighted in red

and yellow.

Table 2. Reduced output of the diversification-rate analyses (TreePar). P values > 0.95 indicate that a single shift in rates explains the tree
significantly better than constant diversification rates, that two shifts explain the tree significantly better than a single shift, or that three shifts
explain the tree significantly better than two shifts (see main text for details).

Random tree  Max. age Rate Log likelihood P Shift
no. (My) shifts value (Ma)

1 329 O0vs.1 45882vs.42.043 0.947
1vs.2 42.043vs.38.749 0.914
2vs.3 38.749vs. 37.060 0.663
2 306 Ovs.1 46.292vs.45.073 0.514
1vs.2 45.073vs.43.192 0.712
2vs.3 43.192vs.42.478 0.301

3 277 Ovs.1 36.879vs.32.362 0.971 1shift: 0.1
1vs.2 32.362vs.30.577 0.688
2vs.3 30.577vs. 28505 0.754
4 240 Ovs.1 28.083vs.26.171 0.712
1vs.2 26.171vs.25.507 0.278
2vs.3 25.507vs.23.337 0.773
5 232 0Ovs.1 18.364vs.14.942 0.923
1vs.2 14.942vs.12.978 0.731
2vs.3 12978vs.10.751 0.784
6 242 Ovs.1 31.850vs.29.342 0.829
1vs.2 29.342vs.27.932 0.580
2vs.3 27.932vs.26.219 0.670
7 264 Ovs.1 31.770vs.29.237 0.833
1vs.2 29.237vs.28.266 0.415
2vs.3 28.266vs.27.571 0.292

8 296 Ovs.1 34.733vs.30.793 0.951 1shift: 0.1
1vs.2 30.793vs.28.986 0.694
2vs.3 28.986vs.27.431 0.625
9 285 O0vs.1 34.152vs.31.644 0.829
1vs.2 31.644vs.29.433 0.781
2vs.3 29.433vs.27.109 0.801
10 213 0Ovs.1 31.492vs.28.169 0.916
lvs.2 28.169vs.25.885 0.794
2vs.3 25.885vs.23.883 0.739
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in our tree had no significant influence on the outcome of our
hypothesis testing.

Moreover, we also think that our conclusions are not af-
fected by a non-monophyly of the Ohrid group (see random
tree no. 2) as the split between Prespa and Ohrid taxa is, in
any event, older than 2 My and thus does not affect intra-
lacustrine diversification rates within the Lake Ohrid clade.

As for the sampling size (i.e., 17 out of 27 nominal species
studied), the high diversity of evolutionary lineages found in
our phylogenetic analyses indicates that our sampling design
likely recovered most major evolutionary lineages within this
group. Our sampling includes the majority of genera de-
scribed except for Dolapia (which some authors included in
the genus Ohrigocea) and Zaumia. We also included a variety
of specimens collected at various types of habitats and type
localities across the lake and its surroundings (see Fig. 2).
Moreover, the diversification-rate analysis does account for
incomplete sampling, and we did infer a single rate shift in
two of the random trees tested in the present study. Thus, the
method used seems to have enough power to detect devia-
tions from a constant diversification rate in our data set.

4.3 Ecosystem resilience of Lake Ohrid

If we assume that the rate of diversification in the non-
pyrgulinid Hydrobiidae from Lake Ohrid is constant, linking
environmental/climatic fluctuations to changes in tempo of
diversification becomes impossible (see specific goal iii).

However, an important question is whether a non-constant
diversification rate could not be demonstrated because Lake
Ohrid never experienced massive environmental and/or cli-
matic changes or whether the lake has a high ecosystem
resilience that might buffer such perturbations. Preliminary
data of the SCOPSCO deep-drilling program based on core
catcher data for the last 1.2 My and high-resolution data for
the last 640 thousand years (ky) so far do not indicate the
occurrence of catastrophic environmental events (Francke et
al., 2015; Wagner et al., 2014), i.e., events that lead to sudden
drastic regime shifts (sensu Scheffer and Carpenter, 2003;
Scheffer et al., 2001) and thus potentially to mass extinc-
tion. By comparison, such events have been observed in other
ancient lakes, including Lake Titicaca (Kroll et al., 2012;
Lavenu, 1992) and Lake Malawi (Cohen et al., 2007; Scholz
et al., 2007; Schultheil et al., 2009, 2011). We do, how-
ever, see signatures of severe environmental/climatic pertur-
bations in Lake Ohrid, including significant lake-level drops
(Lindhorst et al., 2010), volcanic ash deposits (Sulpizio et
al., 2010; Wagner et al., 2014), and glacial-interglacial cy-
cles (Lézine et al., 2010; Reed et al., 2010; Wagner et al.,
2014).

Therefore, we think that the lack of changes in tempo of
diversification of Lake Ohrid’s non-pyrgulinid Hydrobiidae
might potentially be a result of two factors: (i) either Lake
Ohrid never experienced catastrophic environmental events
that resulted in the extinction of all or most of its endemic

Biogeosciences, 12, 7209-7222, 2015

taxa and thus caused a “reset” of diversification processes
or (ii) Lake Ohrid possibly has a high ecosystem resilience
that buffers environmental changes and potentially mitigates
extinction events. Note that the two factors might not be mu-
tually exclusive as it has been shown that a loss of resilience
may set the scene for a catastrophic-event-induced switch to
an alternative state (reviewed in Scheffer et al., 2001).

The second scenario is supported by the mollusk (Albrecht
et al., 2010) and diatom fossil records (Cvetkovska et al.,
2015; Jovanovska et al., 2015) for the past ~ 100 ky. For in-
stance, the Campanian Ignimbrite Y5 tephra influx 39.6 ky
ago (see Leicher et al., 2015) altered the water chemistry of
Lake Ohrid and increased the content of silica, which in turn
amplified diatom growth rates. However, it did not cause se-
vere changes in diatom community structures or even extinc-
tion events (Jovanovska et al., 2015).

The suggested high ecosystem resilience of Lake Ohrid
might be sustained by several factors, including the lake’s
bathymetry (deep lake with steep flanks, allowing habitats
to move vertically with lake-level changes; Lindhorst et al.,
2010), ongoing moderate tectonic activities (compensating
sedimentation; Hinderer and Einsele, 2001), and its peculiar
limnology (the lake is fed by numerous karstic sublacustrine
springs, locally buffering environmental changes; Matzinger
et al., 2006).

Although we think that the patterns inferred from mtDNA
sequencing data of extant taxa are highly informative, fu-
ture analyses utilizing additional (nuclear) markers may help
better resolve some of the basal relationships of Ohrid taxa.
Moreover, the temporal resolution is still limited, the error
rate for time estimates is relatively high, and some impor-
tant processes such as extinction events are difficult to infer
from extant organisms (see also Rabosky, 2010, for a discus-
sion). Therefore, we encourage future paleontological stud-
ies on endemic species using the sediment cores gained dur-
ing the SCOPSCO deep-drilling campaign. This concerns,
for example, diatoms and ostracods. Moreover, besides the
main core “DEEP”, obtained from the deepest part of Lake
Ohrid, several other cores were retrieved in shallower parts
of Lake Ohrid. The latter appears to be relatively rich in mol-
lusk fossils (see Wagner et al., 2014), which could potentially
be used to directly study extinction and speciation events (for
a proof of principle see Albrecht et al., 2010).

5 Conclusions

Our molecular-clock analyses indicate that the non-
pyrgulinid Hydrobiidae of ancient Lake Ohrid represent an
old endemic group, which is characterized by a constant rate
of diversification. We propose that this constant rate has been
caused by two factors: (i) a possible lack of catastrophic envi-
ronmental events in Lake Ohrid and/or (ii) a high ecosystem
resilience, buffering environmental changes. Parameters po-
tentially contributing to Lake Ohrid’s ecosystem resilience

www.biogeosciences.net/12/7209/2015/
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are its distinct bathymetry, ongoing tectonic activities, and
karst hydrology. These findings are not only of interest for
one of the overall goals of the SCOPSCO deep-drilling pro-
gram — inferring the driving forces for biotic evolution in
Lake Ohrid. They might also enhance our understanding of
how ecosystem resilience, in general, may promote a rela-
tively constant diversification in highly isolated ecosystems.

However, high-resolution sedimentological data are cur-
rently only available for the last 640 ky. Therefore, we en-
courage future studies specifically testing hypotheses about
the lack of catastrophic events in Lake Ohrid based on high-
resolution data for the entire geological history of the lake,
and potentially involving information from the sediment fos-
sil record not only for gastropods but also for other groups
with a high share of endemic taxa.
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