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1. Introduction 

1.1. Bronchopulmonary dysplasia 

The lung is the key organ of respiration in air-breathing animals, with the main 

function being oxygen transport from the atmosphere into the bloodstream, and carbon 

dioxide release. This gase exchange takes place in the pulmonary alveoli, which are the 

respiratory tree terminal ends that outcrop from alveolar ducts, with an average diameter 

of 200-300 µm. Alveoli consist of an epithelial cells layer supported by extracellular 

matrix (ECM), and are surrounded by capillaries. Together, these structures form the 

alveolar-capillary barrier, across which gas exchange takes place. It is clearly 

advantageous that this barrier should (1) be as narrow as possible to facilitate optimal 

transit of gas molecules across the barrier, and (2) cover as large a surface area as 

possible to maximize the area over which gas exchange takes place. Any alveolar 

architecture disturbances might have serious consequences for gas exchange. In 

humans, these disturbances can lead to serious diseases such as bronchopulmonary 

dysplasia (BPD). 

Before the 1960s when mechanical ventilation was introduced, premature infants 

with respiratory distress syndrome either died within the first week of life or survived 

without respiratory morbidity. The introduction of mechanical ventilation to neonatal 

intensive care improved infant survival, but resulted in a new form of lung injury. In 

1967 Northway (Northway et al. 1967) for the first time described the development of a 

new chronic lung disease in a group of premature infants who had respiratory distress 

syndrome (RDS) and received prolonged high oxygen ventilation with high inspiratory 

pressure, and named this disease “bronchopulmonary dysplasia”. Later the BPD 

pathophysiology was extensively reviewed (Bancalari et al. 1979, Hislop et al. 1987, 

Margraf et al. 1991, O'Brodovich and Mellins 1985, Sobonya et al. 1982). 

1.1.1. Pathology of bronchopulmonary dysplasia 

Bronchopulmonary dysplasia is a chronic lung disease in infants born extremely 

preterm, occurring typically before 28 weeks of gestation. At this time the human lung 

is in the saccular stage of development, in contrast with the lung of normal babies born 

at 36 weeks of gestation, which is in alveolar stage (Fig. 1 A). Some preterm infants are 

characterized by a prolonged need for supplemental oxygen or positive pressure 

ventilation which might lead to the development of BPD.  



 
 

9 
 

 

 

 

 

 

 

 

 

 

Since first description, there have been remarkable changes in the clinical and 

pathologic phenotype of BPD. This evolution has led researchers and clinicians to use 

terms “Old BPD” and “New BPD” to differentiate between original form and the 

currently most commonly seen phenotype. During the first week after birth, the infants 

with “Old BPD” had typical radiographic findings of respiratory distress syndrome 

(RDS) with severe worsening towards the latter part of the first week. Thereafter, RDS 

evolved into a severe chronic obstructive pulmonary disorder with severe airflow 

limitations and chest radiographs demonstrating multiple cystic areas. Pathologic 

findings of extensive airway and parenchymal damage in the presence of abnormal lung 

structure led to the name of the disease, bronchopulmonary dysplasia. Infants that 

developed BPD and survived often required long periods of assisted ventilation 

followed by months to years of supplemental oxygen therapy in hospital and then at 

home.  

Figure 1│Mouse model of Bronchopulmonary dysplasia.  

A. Stages of human and mouse lung development. Mice are born with lungs in the saccular stage of 

development that mimics the premature human infants who are born at < 32 weeks of gestation. Modified 

from (Warburton et al. 2010). B. Mouse model of BPD. Within 12 h of birth, wild type (WT) litters were 

continuously exposed, with their mothers, to either normoxia (21% oxygen) or hyperoxia (85% oxygen) 

for 10 days. Pups were sacrificed on P10, lungs were plastic-embedded with followed Richardson’s 

staining. Scale bar 100 µm . 
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During the 1970s and 1980s a dramatic improvement in the everyday clinical 

care of prematurely born infants with acute respiratory disease took place. In addition to 

many improvements in general intensive care, such as proper nutrition and fluid 

balance, better understanding of pH, PaCO2 and PaO2 physiological effects and 

recognition that pressures usually used during assisted ventilation were causing lung 

injury, were of critical importance (Gopel et al. 2014, Sun et al. 2015). Since then, 

several preventive and therapeutic strategies have been developed with variable success 

(Rojas et al. 2009, Sandri et al. 2004, Soll and Morley 2001, Stevens et al. 2007, 

Subramaniam et al. 2005, Verder et al. 1999). These include lung protective ventilator 

strategies, surfactant treatment and nutritional interventions. Together with less 

hyperoxia and gentler ventilation this led to a virtual disappearance of “old BPD” in 

infants born at < 32 weeks gestational age (Coalson 2003). Improvements in clinical 

care also led to a dramatic improvement in the survival rate of very low birth weight 

infants with < 1,500 g birth weight (Table 1). These extremely premature infants also 

frequently developed chronic lung disease, however, even though these infants required 

long term ventilation and supplemental oxygen therapy, the resultant chronic lung 

disease had a significantly different clinical phenotype from “Old BPD”. Often these 

infants had minimal or mild RDS during the first days of life; chest radiograph usually 

did not demonstrate cystic areas with interspersed fibrosis and pathologic studies 

revealed profound differences in lungs histopathology of such infants. The major 

abnormality was a marked simplification of the distal lung structure with fewer, larger 

alveoli, reduction in alveolar surface area and thicker septal wall because of a normal 

lung alveolar septation and pulmonary microvascular development failure (Margraf et 

al. 1991). 

Given the significant clinical, radiologic and pathologic differences between this 

new type of chronic lung disease in the prematurely born, it is now commonly referred 

to as “New BPD” (Baraldi and Filippone 2007). In 2000s “New BPD” was 

characterized by severity in infants < 32 weeks gestational age: mild – supplemental 

oxygen need for 28 days and room air at 36 weeks corrected gestational age or at 

discharge; moderate – supplemental oxygen need for 28 days and FiO2 < 0.3 at 36 

weeks corrected gestational age or at discharge; severe – supplemental oxygen need for 

28 days and FiO2 = 0.30 or positive pressure support at 36 weeks corrected gestational 

age or at discharge (Jobe and Bancalari). It has also been suggested to test infants at 36 

weeks gestational age for their need for oxygen (Walsh et al. 2004). 
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Values are presented as mean ± SEM. Categorical variables are presented as number of cases with 

percentages in brackets. ELBW-extremely low birth weight; NCPAP - Nasal continuous positive airway 

pressure. Modified from (Latini et al. 2013). 

 

Even having all these new approaches for treating and preventing BPD, it 

remains to be a major cause of mortality in premature infants (Botet et al. 2012, 

Fanaroff et al. 2003, Horbar et al. 2002, Lemons et al. 2001, Walsh et al.). In addition to 

mortality, there is considerable morbidity associated with BPD including long-term 

effects on pulmonary function and neurodevelopment. Babies with BPD have an 

increased risk for asthma, respiratory-related hospitalizations, and respiratory 

medication usage after hospital discharge. To prevent postnatal BPD a comprehensive 

approach is needed (Li Y. et al. 2014b). Thus it is of critical importance to study 

molecular mechanisms underlying lung growth inhibition and to find key cell types 

involved in the development and progression of BPD. 

1.1.2. Animal models of bronchopulmonary dysplasia 

Everything that is known about pathology and pathophysiology of BPD in 

newborn infants comes from either autopsy material from infants who died with BPD, 

which means that these samples are received from the most severe cases of BPD; or 

Table 1 Comparisons of clinical variables and frequencies of BPD in surviving ELBW infant populations 

at two different time periods at the Brindisi Hospital NICU 
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from tracheal aspirates from living infants who require mechanical ventilation. That 

greatly complicates the BPD investigation and makes animal models extremely useful 

in helping to understand the cause and possible treatment of the disease. 

Since the description of BPD in 1967, various animal models were used for 

studying the disease. One way to induce BPD-like disease in preterm or term animals is 

prolonged exposure to high oxygen concentrations (usually 85-100% O2) (D'Angio and 

Ryan 2014, Li C. et al. 2014a). Hyperoxia-relied animal models of BPD were developed 

for different animals including neonatal lambs (Hazinski et al. 1985), preterm rabbits 

(Mascaretti et al. 2009), neonatal rats (Franco-Montoya et al. 2009) and neonatal mice 

(Tibboel et al. 2013) (Fig. 1 B). All of them demonstrate the BPD-like lung phenotype 

with characteristic fewer larger alveoli.  

Because mechanical ventilation-induced lung injury plays a big role in the 

pathogenesis of BPD, animal models with mechanically introduced volutrauma were 

developed. Studies using a chronically ventilated preterm lamb BPD model (Albertine 

et al. 1999), preterm ventilated baboon model (Coalson et al. 1999, Thomson et al. 

2004), high tidal volume ventilated neonatal rats (Wu et al. 2008) as well as invasive 

ventilated mouse model (Bland et al. , Cannizzaro et al. 2009) demonstrated evidence 

impaired alveolar formation with an abnormal elastin distribution. 

The pre-delivery stimulus to the fetus that induces lung inflammation during 

preterm labor, sometimes with chorioamnionitis or ruptured membranes, is another risk 

factor for developing BPD in human infants. (Eriksson et al. 2014, Kramer et al. 2009). 

To mimic inflammation in animal model, a lipopolysaccharide (LPS) intra-tracheal 

administration models were developed for number of mammals. Lipopolysaccharide 

administration increase inflammatory cells and enhanced the inflammatory cytokines 

expression in preterm lamb model (Polglase et al. 2009), neonate rat model (Franco et 

al. 2002), as well as mouse models of lung injury (Alvira et al. 2007).  

Even though a number of different approaches were developed for studying 

BPD, there is no perfect model to mimic the human disease. However, these models 

have many similarities to lung injury in human preterm infants, including disordered 

lung architecture, alveolar simplification, abnormal pulmonary function, acute 

inflammatory response with the production of cytokines, chemokines, and growth 

factors that have been implicated in human disease, development of fibrosis, and 

abnormal vascular growth factor expression (Berger and Bhandari 2014, Choi et al. 

2009, D'Angio and Ryan 2014, O'Reilly and Thebaud 2014). 
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1.1.3. Inflammation in bronchopulmonary dysplasia 

Since the late 1960s, an intensive investigation of BPD pathophysiology took 

place and soon it became clear that BPD in very premature infants is strongly associated 

with inflammation. An early study detailing the inflammatory cells influx in ventilated 

premature infants revealed that patients that develop BPD had influx of both neutrophils 

and alveolar macrophages to the lung (Ogden et al. 1984). Extensive studies of tracheal 

aspirates from mechanically ventilated preterm infants that developed BPD showed 

elevated levels of inflammatory mediators such as interleukin-6 (IL-6) and IL-8 and 

influx of neutrophils (Bagchi et al. 1994, Groneck et al. 1994, Groneck and Speer 1995, 

Kotecha et al. 1995, Pierce and Bancalari 1995) (Fig. 2). It is interesting that release of 

IL-8, a neutrophil chemoattractant, starts as soon as on the third day of oxygen 

supplementation and mechanical ventilation in preterm infants (Munshi et al. 1997). In 

later studies of  “New BPD”  the release of inflammatory mediators and neutrophil 

influx was also observed (Kim et al. 2004, Papoff et al. 2001). In general, infants that go 

on to progress to BPD have a persistence of leukocytes in tracheal lavages (Jobe and 

Ikegami 1998, Ogden et al. 1983).  

It also has become evident that a lack of anti-inflammatory mediators in lungs of 

premature infants may perpetuate the inflammatory response and contribute to the 

development of BPD (Jones C. A. et al. 1996). Further trials with early administration 

of anti-inflammatory agent (dexamethasone) to the preterm infants revealed that 

dexamethasone may slow the progression of BPD (Doyle et al. 2014, Mammel et al. 

1983, Rastogi et al. 1996). Thus, influx of inflammatory cells was felt to be related to 

the pathology of BPD, such as bronchiolar necrosis and loss of appropriate alveolar 

septation. 
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Together with understanding that inflammation contributes greatly to the 

progression of BPD, other risk factors besides the duration of exposure to oxygen and 

pressure were discovered, such as chorioamnionitis, postnatal infection and the internal 

host response (Bhandari V. and Gruen 2006, Hayes et al. 2010, Ryan et al. 2008, Speer 

2001, 2006, 2009). A number of human studies that attempted to predict BPD from pro-

inflammatory factors have been performed (Aghai et al. 2013, Bhandari A. and 

Bhandari 2009, Bose et al. 2008, Paananen et al. 2009, Schneibel et al. 2013). 

Ambavalan et al. (Ambalavanan et al. 2009) examined 1067 preterm infants, of which 

606 infants developed BPD and found that marked increase in serum levels of IL-8 as 

early as at 3 days of life and later increases in the level of IL-6 predicted BPD. Another 

study by Aghai et al. (Aghai et al. 2013) demonstrated correlation between high levels 

of IFN-γ and interferon-induced protein 10 (IP-10) in tracheal aspirates of mechanically 

ventilated preterm infant and further BPD development.  

 

Figure 2│Levels of neutrophils and inflammatory mediators are up-regulated in preterm infants 

with BPD. 

Tracheal aspirates of preterm infants receiving supplemental oxygen and mechanical ventilation were 

collected and analyzed for neutrophil number (A) using hemocytometer and IL-6 concentration (B) using 

ELISA. Later all infants were divided into two groups: the ones that did not develop BPD (non-BPD 

infants) and the ones that did (BPD infants). Bronchopulmonary dysplasia was defined as the need for 

supplemental oxygen at 36 weeks postconceptional age. Median values are represented by bars. 

Significant up-regulation of neutrophil numbers in BPD infants (P < 0.05) was observed on postnatal day 

5 (PN5) and IL-6 up-regulation on postnatal day 3. Modified from (Munshi et al. 1997). 
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Unfortunately most of the human studies are too small and need to be expanded, 

but they clearly show that BPD is strongly associated with inflammation and that 

inflammation can greatly contribute to the development of the disease (Fig. 3). 

Intensive studies on inflammation in BPD using various animal models also 

showed that inflammatory cells and pro-inflammatory mediators play a tremendous role 

Figure 3│Inflammation and BPD. 

Inflammation plays an important role in the development of BPD. Preterm infants 

with chorioamnionitis or initial lung injury such as respiratory distress syndrome 

or with ventilator-induced lung injury, demonstrate an early onset of inflammation 

with increased levels of pro-inflammatory cytokines and polymorphonuclear cells 

and macrophages influx. By producing cytokines, proteases and toxic reactive 

oxygen species (ROS), inflammatory cells can alter the lung’s ability to repair, 

contribute to fibrosis, inhibit secondary septation, alveolarization and normal 

vascular development and therefore contribute greatly to the progression of BPD 

(Ryan et al. 2008). 
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in BPD. There is a large body of data describing pro-inflammatory mediators up-

regulation and leukocytes influx into the lung in response to hyperoxia exposure or to 

mechanical ventilation using different animal models (Albertine et al. 1999, D'Angio et 

al. 1999, Sun et al. 2013, Syed and Bhandari 2013, Wagenaar et al. 2004, Wolkoff et al. 

2002). For example, there is an increase in both neutrophil and macrophage numbers in 

neonatal rabbits exposed to 100% oxygen for 9 days (D'Angio et al. 1999). Ten days 

after hyperoxia exposure, neonatal rats show a massive inflammatory response with a 

large number of macrophages and neutrophils in air spaces, edema and up-regulation of 

a number of pro-inflammatory cytokines (Wagenaar et al. 2004) (Fig. 4).  

 

 

There have now been a large number of animal studies demonstrating that 

inflammation attenuation improves lung outcome, including specifically improving 

alveolarization (Anyanwu et al. 2014, Nold et al. 2013, Wagenaar et al. 2014, Wang X. 

L. and Xue 2009, Weichelt et al. 2013). For example, it was demonstrated that neonatal 

rats exposed to a combination of caffeine and hyperoxia are less susceptible to lung 

injury than those exposed to hyperoxia alone and that caffeine blocked the up-regulation 

of chemokines and pro-inflammatory cytokines and the influx of myeloid leukocytes 

seen with high oxygen (Weichelt et al. 2013). Another study demonstrated that adding 

Figure 4│Macrophages are recruited to the lung in the hyperoxia model of BPD. 

A. Macrophage-specific monoclonal antibody (ED1) staining on a formaldehyde-fixed paraffin section of 

a rat lung on day 10 after oxygen treatment. All pictures were taken at 400× magnification.  

B. Quantification of ED1-positive monocytes and macrophages on paraffin sections in oxygen-exposed 

rat pups (gray bars) and room air–exposed littermates (white bars) as controls. PN – postnatal. Modified 

from (Wagenaar et al. 2004). 
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inhaled nitric oxide (NO) to hyperoxia alters the hyperoxia-induced recruitment of 

leukocytes into the lung of newborn mice and results in the numbers of alveoli, 

macrophages and neutrophils approximating those found in room air exposed controls. 

Addition of inhaled NO to the hyperoxic exposure prevented the hyperoxia-induced up-

regulation of ICAM and MCP-1, two factors responsible for leukocyte recruitment 

(Rose et al. 2010). 

Nowadays it is known that inflammation and lung growth arrest observed in 

BPD are connected; that early inflammatory cytokines up-regulation in tracheal 

aspirates of preterm infants may be predictive of BPD; that some anti-inflammatory 

therapies using corticosteroids proved to be beneficial. But, with the knowledge 

acquired in the past 50 years, unfortunately there is still no existing therapy for BPD, 

which makes it of critical importance to continue investigations on  inflammation and 

lung alveolarization arrest associated with BPD (Bhandari V. 2014). 

1.2. Inflammation 

Inflammation is a protective immune response that involves molecular 

mediators, blood vessels and immune cells such as neutrophils and macrophages. 

Inflammation purpose is to eliminate the initial cause of cell injury, clear out necrotic 

cells and debris, and to initiate tissue repair. Too little inflammation could lead to 

progressive tissue destruction by the harmful stimulus and, in contrast, chronic 

inflammation may lead to development of diseases, such as hay fever, periodontitis, 

atherosclerosis, and even cancer. Therefore, inflammation has to be tightly regulated. 

1.2.1. Neutrophils 

Neutrophils are the most abundant type of white blood cells in mammals formed 

from stem cells in the bone marrow and represent an essential part of the innate immune 

system. Neutrophils are phagocytic granulocytes, short-lived and highly motile. 

Lymphocyte antigen 6 complex, locus G (Ly6G) together with Ly6C is a component of 

the myeloid differentiation antigen Gr-1 that predominantly present on neutrophils, 

making it a good lineage marker. 

During the acute phase of inflammation, for example as a result of bacterial 

infection or environmental exposure, neutrophils are one of the first-responders of 

inflammatory cells to migrate towards the site of inflammation. Following chemical 

signals such as IL-8, neutrophils migrate through the blood vessels and then through 
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interstitial tissue to the site of injury. Neutrophils are massively recruited to the lung in 

response to hyperoxia in preterm and term animal models of BPD and a study using 

targeted neutrophil depletion in neonate rat BPD model suggest the role of this cell in 

inflammatory lung injury (Auten et al. 2001). 

Several investigators have shown that neutrophils of neonatal mice appear to 

have decreased apoptosis and prolonged survival compared to neutrophils of adult mice, 

and this may also increase the neutrophil contribution to the inflammatory process and 

lung injury in preterm infants. Specific factors involved are decreased expression of 

pro-apoptotic proteins Bax, Bad and Bak, and Fas receptor and decreased activity of 

caspase 3 in neonatal neutrophils compared with adult neutrophils (Hanna et al. 2005). 

Kotecha et al. (Kotecha et al. 2003) performed pulmonary lavage on 32 babies with 

RDS who later fully recovered (RDS group), with RDS who later developed BPD (BPD 

group), and control infants without RDS who did not receive high oxygen ventilation. 

They found that neutrophil apoptotic activity in lavage samples on day 1 of age was 

much lower in BPD group than in control group, and there was a significant correlation 

between higher apoptotic activity and increasing gestational age which shows that 

inappropriate suppression of neutrophil apoptosis and their longer survival may be 

associated with a poor outcome in newborn infants with respiratory failure. 

1.2.2. Macrophages 

Macrophages are professional phagocytic cells, often long lived, that are present 

in all organs to maintain tissue integrity, clear debris and respond rapidly to initiate 

repair after injury or innate immunity after infection (Hume 2008). Macrophages 

develop from hematopoietic stem cells originating in both fetal and bone marrow 

hematopoiesis. During the development, coincident with the postnatal bone formation, 

fetal liver haematopoiesis declines and is completely replaced by bone marrow 

haematopoiesis. This definitive haematopoiesis is the source of circulating monocytes 

and from which it has been considered that all resident macrophages in tissues are 

derived. Contrary to this idea some fate-mapping models suggest that several types of 

tissue macrophages such as Kupffer cells, epidermal Langerhans cells, and microglia 

arise from primitive hematopoietic progenitors present in the yolk sac of the fetus 

independently of the monocyte lineage (Ginhoux et al. 2010, Schulz et al. 2012). It was 

also suggested that maintenance and local expansion of microglia are solely dependent 

on the self-renewal of central nervous system resident macrophages in 



 
 

19 
 

neurodegenerative disease (Ajami et al. 2007). Another study demonstrated that local 

macrophage proliferation, rather than recruitment from the blood, occurred during T 

helper 2 (TH2)-related pathologies (Jenkins et al. 2011). These data suggest that 

circulating monocytes do not give rise to all resident macrophages in the organism and 

that different populations of tissue macrophages can have different precursors. 

To be differentiated into macrophages or other related cell types, hematopoietic 

stem cells require a secreted cytokine colony stimulating factor 1 (CSF1 or M-CSF). 

Colony stimulating factor 1 is produced constitutively by a wide variety of 

mesenchymal and epithelial cells and acts on target cells by binding to CSF1R, a 

member of the type III protein tyrosine kinase receptor family. Although most bone 

marrow-derived populations depend primarily on CSF1 signaling via CSF1R for their 

development and survival, some self-renewing tissue macrophages like microglia, 

require tissue-restricted signals derived from IL-34, the alternate ligand of CSF1R 

(Wang Y. et al. 2012). Hematopoietic stem cells differentiate into monoblasts, bipotent 

cells that are monocyte precursors in the bone marrow. After monoblasts differentiate 

into monocytes, they circulate in the bloodstream for about one to three days and then 

move into tissues to either replenish resident macrophages under normal states or to 

move quickly to sites of infection in response to inflammation signals and differentiate 

into macrophages and dendritic cells to elicit an immune response. There are two major 

monocyte subsets expressing different chemokine receptor patterns: CCR2+; CX3CR1lo; 

Ly6Chi and CCR2-; CX3CR1hi; Ly6Clo monocytes. Chemokine signaling in the tissues 

leads to recruitment of all subsets of monocytes and is primarily mediated by the 

chemokine receptors CCR2 and CX3CR1, and their ligands CCL2 (monocyte 

chemotactic protein-1, MCP-1) and CX3CL1 (fractalkine), respectively (Ancuta et al. 

2003, Shantsila et al. 2011). The monocyte subset that is recruited to tissues in response 

to inflammation and differentiates into inflammatory exudate macrophages is known to 

be the CCR2+; CX3CR1lo; Ly6Chi subset. 

Among tissue resident macrophages, alveolar macrophages have a unique 

phenotype. Unlike resident macrophages of other tissues, they are highly 

autofluorescent, express high integrin CD11c levels and low phagocytic receptor 

CD11b levels, and high lectin SiglecF levels, that makes alveolar resident macrophages 

to be easily recognized among other myeloid cells of the lung and other organs (Gautier 

et al. 2012, Misharin et al. 2013). Resident alveolar macrophages (rAM) start 

accumulating in the lung only after the mouse is born and rAM number is increasing 
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during alveolarization. Resident alveolar macrophages are derived from fetal monocytes 

that differentiate into long-lived cells in the first week of life via GM-CSF (Guilliams et 

al. 2013).  

The role of macrophages in disease development is of particular interest because 

macrophages can exhibit distinctly different functional phenotypes, broadly 

characterized as classically activated pro-inflammatory (M1) and alternatively activated 

tissue-reparative anti-inflammatory (M2) phenotypes. M1 and M2 polarization of 

macrophages have largely been defined through in vitro stimulation experiments (Stein 

et al. 1992). Derivation of macrophages from bone marrow in the presence of M-CSF 

and TH1-type cytokine IFN-γ treatment results in M1-polarized macrophages; and in 

the presence of GM-CSF and TH2-type cytokines IL-4 and IL-13 treatment results in 

M2-polarized macrophages. M1-polarized macrophages demonstrate increased 

secretion of pro-inflammatory cytokines such as IL-6, IL-8 and TNF-α, increased 

expression of activation receptors such as CD40 and CD80,high production of reactive 

nitrogen and oxygen intermediates, promotion of TH1 response, and express tumor-

suppressive activities and strong microbicidal activities. Macrophage polarization 

towards classically activated M1 phenotype is associated with NF-κB and STAT1 

pathway activity (Gordon and Taylor 2005). Macrophage switch toward alternatively 

activated M2-macrophages that produce IL-10 and TGF-β and express mannose 

receptor CD206, induce resolution of inflammation and tissue regeneration (Gordon 

2003). Distinctly different roles for these macrophages subtypes have been reported in 

injury and recovery in different organs (Arnold et al. 2007, Duffield et al. 2005, 

Nahrendorf et al. 2007) and it was demonstrated that M1 macrophages can themselves 

convert into anti-inflammatory macrophages with an M2 wound-healing phenotype 

(Arnold et al. 2007, Biswas and Mantovani 2010). During alveolarization rAM polarize 

to a M2 anti-inflammatory phenotype, localize to sites of branching morphogenesis and 

increase in number during the alveolarization stage of normal lung development(Jones 

C. V. et al. 2013). A study done by Rozycki et al. (Rozycki et al. 2002) demonstrated 

that when alveolar macrophages obtained from preterm and term rabbits were incubated 

in 95% oxygen overnight, only “preterm” macrophages showed a significant increase in 

IL-1β and IL-8 mRNA expression and an intracellular oxygen radical content, depicting 

that “preterm” alveolar macrophages switch phenotype from M2 to M1 pro-

inflammatory phenotype under hyperoxia conditions. Such enhanced inflammatory 
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cytokine response to oxygen may be one mechanism involved in the early development 

of chronic lung disease in premature infants.  

Another study done by Jankov et al. (Jankov et al. 2003) demonstrated that 

abrogated macrophage influx in newborn rat hyperoxia model by means of 

intraperitoneal gadoliniumchloride (GdCl3) completely abrogates hyperoxia-induced 

increased macrophage numbers and increased ROS, suggesting that increased 

macrophage numbers in the lungs of newborn hyperoxia-exposed rats strongly 

contributes to ROS-mediated injury. 

All these findings suggest a possible role of macrophages in the development of 

chronic lung diseases of premature infants and, in particular, BPD. Therefore, the 

inflammation impact on lung organogenic populations of macrophages should be 

considered when investigating the neonatal lung damage and dysregulation, associated 

with preterm birth. 
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2. Hypothesis and aims of study 

Bronchopulamonary dysplasia is a severe disease of extremely preterm infants 

that remains a main major cause of mortality in premature infants (Fanaroff et al. 2003, 

Horbar et al. 2002, Lemons et al. 2001, Walsh et al.). In addition to mortality, there is 

considerable morbidity associated with BPD including long-term effects on pulmonary 

function and neurodevelopment. Several preventive and therapeutic therapies were 

introduced in the last years, including preventive ventilation and better nutrition, early 

surfactant administration and corticosteroid treatment (Doyle et al. 2014, Rojas et al. 

2009, Sandri et al. 2004, Soll and Morley 2001, Stevens et al. 2007, Subramaniam et al. 

2005, Verder et al. 1999). However, even though the pathology of BPD became milder 

since its first description in 1967 and introduction of surfactant and dexamethasone 

therapies, there is still no potential treatment for BPD. 

There is a growing body of evidence that BPD is strongly associated with 

inflammation. Massive inflammatory cells influx together with inflammatory cytokines 

release is observed in patients that developed BPD (Kim et al. 2004). A number of 

human studies attempted to predict BPD from pro-inflammatory factors have been 

performed (Aghai et al. 2013, Bhandari A. and Bhandari 2009, Bose et al. 2008, 

Paananen et al. 2009, Schneibel et al. 2013). Therefore it was hypothesized that 

inflammatory cells, in particular neutrophils and macrophages, might play an important 

role in the development of BPD and might contribute to BPD progression.  

 

 The aim of this study was:  

 To deplete different types of inflammatory cells and study macrophage- and 

neutrophil-specific roles in the arrested lung development associated with BPD. To 

deplete different types of macrophages, CCR2 knockout (CCR2 KO) and Macrophage 

Fas-Induced Apoptosis (MAFIA) transgenic mice were used. To specifically deplete 

neutrophils, anti-Ly6G monoclonal antibody was used. 
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3. Material and methods 

3.1. Materials 

3.1.1. Technical equipment 

Autoclave; Systec, Germany  

BD LSRII flow cytometers with DIVA software, BD Biosciences, USA 

BD FACSAriaIII with DIVA Software, BD Biosciences, USA 

Cell culture sterile working bench; Thermo Scientific, USA  

Cell strainers: 100, 40 µm; BD Falcon™, USA  

Countess® cell counter; Invitrogen, UK 

Cytospin™ 4 Cytocentrifuge, Thermo Scientific, USA 

Espresso personal microcentrifuge; VWR, USA  

InoLab® pH meter; WTW, Germany  

Isoplate™ B&W 96-well plate; PerkinElmer, USA  

Leica microscope DM4000B, Leica, Germany 

MicroAmp® FAST 96-well reaction plate; Applied Biosystems, USA  

Microcentrifuge tubes: 0.5, 1.5, 2 ml; Eppendorf, Germany  

Minispin® centrifuge; Eppendorf, Germany  

Multifuge 3 S-R centrifuge; Heraeus, Germany  

NanoZoomer XR C12000 Digital slide scanner, Hamamatsu, Japan 

NanoDrop® ND 1000; PeqLab, Germany  

Pipetboy; Eppendorf, Germany  

Pipetmans: P10, P20, P100, P200, P1000; Gilson, France  

Pipetman filter tips: 10, 20, 100, 200 and 1000 µl; Greiner Bio-One, Germany  

Refrigerated microcentrifuge CT15RE; VWR, USA  

Serological pipettes: 2, 5, 10, 25, 50 ml; Falcon, USA  

StepOnePlus™ Real-Time PCR system; Applied Biosystems, USA 

Test tubes: 15, 50 ml; Greiner Bio-One, Germany  

Vasofix® Safety intravenous catheter; B. Braun, Germany  

Vortex mixer; VWR, USA 

MicrotomeLEICA SM 2500, Leica, Germany 
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3.1.2. Chemical and reagents 

2-Propanol; Merck, Germany  

Agarose; Promega, Germany  

Anti-Ly6G and Ly6C monoclonal antibody; BD Pharmingen, USA 

Anti-CD45; BioLegend, USA 

Anti-Gr-1; BioLegend, USA 

Anti-CD11c; BioLegend, USA 

Anti-CD11b; BioLegend, USA 

Anti-SiglecF; BD Pharmingen, USA  

Anti-MHCII; eBioscience, USA 

Anti-CD40; BioLegend, USA 

Anti-CD206; BioLegend, USA 

Bovine serum albumin; Sigma-Aldrich, Germany 

Bromophenol blue; Sigma-Aldrich, Germany  

Cacodylate; Sigma-Aldrich, Germany 

Calcium chloride; Sigma-Aldrich, Germany  

Dispase; BD Biosciences, USA  

DMSO; Sigma-Aldrich, Germany  

DNase I; Serva, Germany  

dNTP mix; Promega, USA  

Dulbecco’s modified Eagle's medium; Gibco BRL, Germany  

Dulbecco’s phosphate buffered saline, 10×; PAA Laboratories, Austria  

Dulbecco’s phosphate buffered saline, 1×; PAA Laboratories, Austria  

EDTA; Sigma-Aldrich, Germany  

Eosin; Sigma-Aldrich, Germany 

Ethanol 70%; SAV-LP, Germany  

Ethanol 99%; J.T. Baker Mallinckrodt Baker B.V., Netherlands  

Ethanol absolute; Riedel-de Hëan, Germany  

Ethidium bromide; Promega, USA  

FACS buffer, eBioscience, USA 

Formaldehyde, 37%; Sigma-Aldrich, Germany  

Formamide; Fluka, Germany  

Giemsa’s azur eosin methylene blue solution; Merck, Germany  
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Glutaraldehyde; Sigma-Aldrich, Germany 

Glycol methacrylate (Technovit7100), Heareus Kulzer 

HEPES; PAA Laboratories, Austria  

Hydrochloric acid; Sigma-Aldrich, Germany  

Isoflurane; CP-Pharma, Germany  

Magnesium chloride; Sigma-Aldrich, Germany  

Magnesium chloride, 25 mM; Applied Biosystems, USA  

May-Grünwald’s eosin-methylene blue solution; Merck, Germany  

Methanol; Fluka, Germany  

MuLV reverse transcriptase; Applied Biosystems, USA  

Normal rabbit IgG; Santa Cruz Biotechnology, USA  

Nuclease-free water; Ambion, USA  

Osmium tetroxide; Sigma-Aldrich, Germany  

Paraformaldehyde; Sigma-Aldrich, Germany 

PCR buffer II, 10×; Applied Biosystems, USA  

Platinum® SYBR® Green qPCR SuperMix UDG kit; Invitrogen, USA  

Proteinase K; Promega, USA  

RNeasy Mini Kit; Qiagen, Netherlands 

Random hexamers; Applied Biosystems, USA  

RNase inhibitor; Applied Biosystems, USA  

Sandoglobulin; Novartis, Switzerland 

Select agar; Sigma-Aldrich, Germany  

Sodium azide; Sigma-Aldrich, Germany  

Sodium chloride; Merck, Germany  

Trypan blue; Fluka, Germany  

Uranyl acetate; Sigma-Aldrich, Germany 
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3.2. Methods 

3.2.1. Animal experiments 

All animal experiments were approved by local authorities, the 

Regierungspräsidium Darmstadt (approval B2/358).  

3.2.1.1. CCR2 KO mice 

C-C chemokine receptor type 2knockout mice (B6.129S4-Ccr2tm1Ifc/J) have a 

C57/Bl6/J background and were obtained from the Jackson Laboratory (Boring et al. 

1997). Double KO mice are viable, fertile, normal in size and do not display any 

physical or behavioral abnormalities. It has been demonstrated that CCR2 KO mice 

have impaired monocyte migration and reduced TH1 cytokine responses (Boring et al. 

1997). 

3.2.1.2. Macrophage Fas-Induced Apoptosis (MAFIA) 

transgenic mice 

Macrophage Fas-Induced Apoptosis (MAFIA) (C57BL/6-Tg(Csf1r-EGFP-

NGFR/FKBP1A/TNFRSF6)2Bck/J) mice have a mixed background between C57/Bl6/J 

and C57/Bl6/N mice and were obtained from the Jackson Laboratory. An FKBP-Fas 

suicide construct (containing an IRES sequence, human low affinity nerve growth factor 

receptor, two copies of the 12kDa human FK506 binding protein 1A (FKBP12), and the 

intracellular domain region of the Fas gene) was inserted immediately downstream of 

the Enhanced Green Fluorescent Protein (EGFP, Clonetech) gene. This entire construct 

was placed under the control of the mouse colony stimulating factor 1 receptor (CSF1R) 

promoter. The mutant human FKBP12 preferentially binds the dimerization drug 

AP20187, thus resulting in apoptosis of CSF1R-positive cells. Homozygous mutant 

mice are viable, fertile, normal in size and do not display any physical or behavioral 

abnormalities. MAFIA mice are well described in the literature and dosage of AP20187 

ligand is well established for adult mice (Burnett et al. 2004). In our studies we used 

same dosage for neonate pups. Three introperitoneal (IP) injections of AP20187 ligand 

(10 mg / kg body weight) in 20 µl vehicle (4% ethanol, 10% PEG 400, 2% Tween 20) 

volume were performed on postnatal day 1 (P1), P2 and P3 and one additional on P7 in 

treated groups; control vehicle injections were performed in control groups.  
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3.2.1.3. Neutrophil depletion in neonate WT mice 

Neutrophils were depleted using neutrophil-specific anti-Ly6G and Ly6C 

monoclonal antibody (clone RB6-8C5, BD Pharmingen). Such method is well described 

in the literature and dosage is established for adult mice (Daley et al. 2008, Dhaliwal et 

al. 2012). In our study the same dosage for neonate mice was used. C57/Bl6/J pups 

received introperitoneal injections of antibody (1 mg / kg body weight) in 20 µl of 

sterile saline on every second day (on P1, P3, P5, P7 and P9) as depletion is very rapid 

and it lasts for 48 h. Control pups receive vehicle injections on same days.  

3.2.1.4. Mouse model of bronchopulmonary dysplasia 

Alveolarization arrest was induced by exposing pups to normobaric hyperoxia 

(85% O2) as previously described. This model is well described and characterized 

(Berger and Bhandari 2014). Within 12 h of birth, litters were randomized and 

continuously exposed, with their mothers, to either normoxia (21% O2) or hyperoxia 

(85% O2) for 10 days. Nursing dams were rotated between normoxia and hyperoxia 

every day to minimize oxygen toxicity. Dams and pups received food ab libitum and 

were kept on 12 h light-dark day-cycle. Pups were sacrificed on P10 with an isofluoran 

overdose followed by thoracotomy and lung extraction. 

3.2.2. Design-based stereology 

3.2.2.1. Lung fixation and embedding 

Lungs were fixed by intratracheal instillation of 1.5% paraformaldehyde, 1.5% 

glutaraldehyde in 150 mM HEPES, pH 7.4 at hydrostatic pressure of 20 cmH2O at 4 °C. 

Tissue blocks were collected according to systematic uniform random (URS) sampling 

and total volume of the lung (V(lung)) was measured by Cavalieri’s principle using 

Stepanizer software. Lungs were embedded in agar and cut into 2 mm slices, treated 

with sodium cacodylate, osmium tetroxide, uranyl acetate and embedded in glycol 

methacrylate. Sections of 2 µm were cut and each 1st and 3rd continuous sections were 

stained with Richardson’s stain. Slides were scanned with NanoZoomer slide scanner 

and lung structure parameters counts were performed using Visiopharm NewCast 

computer-assisted stereology system (VIS 4.5.3). Structural analysis included 

determination of mean linear intercept (lm), alveolar septal wall thickness (τ(sep)) and 

alveolar number (N(alv/par)). 
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3.2.2.2. Stereological measurements 

First, all lung pieces on the slide were masked and fields of views (FOV) were 

defined (Fig. 5 A, B). Using a dot grid each FOV was first analyzed for 

parenchyma/non-parenchyma by counting numbers of points that hit parenchyma or 

non-parenchyma, and a final volume of the lung parenchyma was calculated using 

formula  

V(par/lung)[cm3] = V(lung)[cm3] × Vv(par/lung)[%], where Vv is volume density. 

 

 

 

 

 

 

 

 

Figure 5│Stereological analysis of lung structure. 

2 µm sections of plastic embedded mouse lungs stained with Richardson’s stain and scanned with 

NanoZoomer slide scanner, were analyzed with Visiopharm NewCast computer-assisted stereology 

system. First all lung sections were masked (A) and fields of views were defined (B). For counting septal 

wall thickness and MLI a dot grid and an intersection line were used for each FOV (C) and number of 

dots that hit septa (S) and alveolar space (A) as well as intersections (I) and parenchyma (P) were 

counted. D. To count alveolar number a physical dissector was used. 1st and 3rd continuous sections were 

used and a number of bridges (B) were counted using counting frame (M).  
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After that each FOV was analyzed for alveolar and septal volumes by counting 

dots that fall on either alveolar and duct space (A) or septa (S) (Fig. 5 C). To count 

intersect density (IL), the intersection counting was performed and number of 

intersections (I) and parenchyma points (P) were counted for each intersection line for 

each FOV (Fig. 5 C). The intersection density was calculated using the formula             

IL = I / (l(p) × P), where l(p) is length per point [µm]. The surface density Sv = 2IL and 

finally surface density of parenchyma S(sept/par) = Sv× V(par/lung). Knowing this parameter, 

septal wall thickness can be estimated: τ(sep)[µm] = 2V(sept/par) / S(sept/par). Mean linear 

intercept (lm) can also be calculated using the formula lm = 4V(alv/lung) / S(sept/par). 

Alveolar number was estimated using a physical dissector with 4 µm hight (h) 

(Fig. 5 D). Three continuous 2 µm sections of the lung were cut and 1st and 3rd sections 

were used for the physical dissector. On each two matching FOV a counting frame was 

put and numbers of bridges (B) and frames (M) were counted. Number of alveoli was 

calculated using the following formula:  

N(alv/par) = B × V(par/lung)[cm3] / (2M × h[cm] × A[cm2]),  

where A is the counting frame surface. For each parameter coefficient of error (CE), 

coefficient of variation (CV) and ratio between squared (CE2/CV2) were measured to be 

< 0.5 to ensure the precision of the measurements. 

3.2.3. Flow cytometry analysis and sorting 

Multiparameter flow cytometry was performed using LSRII flow cytometer 

equipped with DIVA software. Cell sorting was performed using a FACSAriaIII 

equipped DIVA Software. Gates were set according to unstained controls and isotype 

controls for CD40 and CD206 antibodies. 

3.2.3.1. Whole lung single cell suspension preparation 

Lungs of 10 days old pups were instilled with 37 °C Dispase through trachea, 

isolated and incubated in 37 °C Dispase for 30 minutes. Then, they were cut into fine 

pieces in 5 ml DMEM media with 2.5% HEPES and 0.01% DNAse I and single-cell 

suspensions were obtained by passing lung homogenates through 24G syringes before 

being passed through 100 and 40 µm cell strainers and centrifuged 1400 rpm for 10 min 

at 4 °C. Supernatant was trashed and cell pellets were resuspended in 5 ml FACS buffer 
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(PBS, 1% BSA, 0.05% NaN3). Viable cell count was determined using Trypan Blue 

stain. 

3.2.3.2. Peripheral blood single cell suspension preparation 

Mouse pups were anesthetized with isoflurane; 1 ml syringes and 30G needles 

were prepared for blood collection by flushing with 4% citrate-solution and 300 µl of 

total blood was drawn by cardiac puncture and collected in tubes with 1/10 of citrate 

solution and kept on ice. Samples were centrifuged for 20 min at 4 °C. Plasma was 

removed and the remaining blood cells were washed with FACS buffer (PBS, 1% BSA, 

0.05% NaN3) and fixed with 0.1% PFA. 

3.2.3.3. Staining for FACS analysis and sorting 

For staining cells were incubated with blocking reagent and antibodies against 

CD45, Gr-1, CD11c, CD11b, SiglecF, MHCII and CD40 and CD206 or their isotype 

controls in the dark for 15 min at 4 °C and were then washed with FACS buffer.  

3.2.4. Gene expression analysis 

3.2.4.1. mRNA isolation from sorted cell populations 

At least 100 000 cells were FACS sorted for each experimental group, total 

RNA from cells was isolated using a QiagenRNeasy Mini Kit according to the 

manufacturer’s instructions. The quantification and purity of isolated RNA was 

determined with a NanoDrop® ND 1000 and cDNA synthesize was performed from 

RNA preparations with A260/280 absorbance ratio above 1.90. 

3.2.4.2. cDNA synthesis 

Reverse transcription was performed on total RNA using MuLV reverse 

transcriptase and random hexamer oligodeoxyribonucleotides. To perform cDNA 

synthesis, 20 µl of RNA was denatured at 70 °C for 10 min, transferred onto ice, and 

supplemented with 20 µl of reverse transcription mixture. The mixture was incubated at 

21 °C for 10 min, followed by an RNA synthesis step at 43 °C for 1 h 15 min. The final 

incubation at 99 °C for 5 min was performed to inactivate MuLV reverse transcriptase. 
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Reverse transcription mixture 

10×PCR buffer II 4 µl  

25 mM MgCl2 8 µl  

H2O 1 µl  

Random hexamers 2 µl  

RNase inhibitor 1 µl  

10 nM dNTP mix 2 µl  

MuLV reverse transcriptase 2 µl  

Total volume  20 µl  

 

 

 

3.2.4.3. Real time quantitative PCR 

Analysis of the gene expression at the mRNA level was performed by real-time 

quantitative polymerase chain reaction (rtPCR) using a Platinum® SYBR® Green 

rtPCR SuperMix UDG kit and a StepOnePlus™ Real-Time PCR System. Primers used 

in the gene expression analyses are listed in Table 2. 

 

 

 

 

Conditions of the thermal cycling reaction were as follows: 50 °C for 2 min,     

95 °C for 5 min, 40 cycles of 95 °C for 5 s, 59 °C for 5 s, 72 °C for 30 s. The samples 

were subjected to melting curve analysis to exclude the possibility of primer-dimer 

formation. A constitutively expressed mouse PolR2A reference gene was used as a 

Table 2 List of primers used for genes expression levels assessment 
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reference gene for rtPCR reactions. Target gene expression was assessed with the 

comparative Ct method (∆Ct method) and calculated with the equation:  

∆Ct = Ct (reference) – Ct (target). 

3.2.5. Cytospin 

Cells obtained by sorting were transferred on the microscopic slides using 

Thermo Scientific™ Cytospin™ 4 Cytocentrifuge followed by hematoxylin and eosin 

staining. Pictures were taken with Leica microscope DM4000B. 

3.2.6. Statistical analysis 

Values are presented as mean ± SEM. Statistical comparisons between means of 

two groups were performed using unpaired Student’s t-tests. For multiple comparisons, 

statistical analysis was performed using one-way ANOVA followed by a Tukey’s post-

hoc test. P values less than 0.05 were considered significant. 
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4. Results 

4.1. Inflammation in the neonate hyperoxia mouse model of 

BPD 

Neonate wild type (WT) mouse pups from the first day of life (P1) were 

exposed, with their mothers, to either 21% oxygen (normoxia group) or 85% oxygen 

(hyperoxia group) for 10 days (until P10) and inflammation was assessed by flow 

cytometry analysis. As expected, neutrophils (CD45+; Gr-1+) were massively recruited 

to the lung under hyperoxic conditionsre; the population of rAM (CD11c+; SiglecF+; 

CD11b-) was found to be eliminated in hyperoxia group and ExAM (CD11c+; CD11b+; 

MHCIIinterm) were recruited to the lung in response to hyperoxia exposure (Fig. 6).  

 

Figure 6│Neutrophils and ExAM are recruited and rAM are eliminated in mouse pups exposed to 

hyperoxia. 

Whole lung homogenates of P10 WT mouse pups exposed to normoxia versus hyperoxia (5 pups in each 

group) were assessed for inflammatory cell populations using flow cytometry. Neutrophils were defined 

as CD45+; Gr-1+ cells; rAM as CD11c+; SiglecF+; CD11b-; ExAM as CD11c+; CD11b+; MHCIIinterm; 

dendritic cells (DCs) as CD11c+; CD11b+; MHCIIhi. Representative flow cytometry plots are illustrated. 

 

These results demonstrate that there is a massive inflammation in response to 

hyperoxia exposure and raze a possibility that inflammatory cells such as neutrophils 

and ExAM can contribute to the arrested lung development associated with BPD. 
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4.2. CCR2 KO mice reveal abrogated ExAM recruitment to the 

lung in response to hyperoxia compared with WT controls 

To assess the role of ExAM in the arrested lung development, CCR2 KO mice 

were exposed to hyperoxia for 10 days. First, the inflammatory response was examined 

by flow cytometry analysis that revealed, as expected, a pronounced abrogation of 

ExAM recruitment to the lung in response to hyperoxia exposure compared with WT 

control pups exposed to hyperoxia (Fig. 7, 9). Neutrophils were recruited to the lung to 

the same extent as it was observed in WT controls and rAM population was eliminated 

in the hyperoxia exposed group (Fig. 7, 9). 

 

 

Figure 7│ExAM recruitment to the lung is abrogated in CCR2 KO pups exposed to hyperoxia. 

Whole-lung homogenates of P10 CCR2 KO mouse pups exposed to normoxia versus hyperoxia (4 pups 

per group) were assessed for inflammatory cell populations using flow cytometry analysis. Neutrophils 

were defined as CD45+; Gr-1+ cells; rAM as CD11c+; SiglecF+; CD11b-; ExAM as CD11c+; CD11b+; 

MHCIIinterm; dendritic cells (DCs) as CD11c+; CD11b+; MHCIIhi. Representative flow cytometry plots are 

illustrated. 

4.3. MAFIA mice demonstrate rAM depletion and no 

neutrophil recruitment in response to hyperoxia with clear 

ExAM populations both in normoxia and hyperoxia exposed 

groups 

To assess the role of CSF1R-expressing cells in the arrested lung development 

associated with BPD, MAFIA transgenic mice were used. Neonate MAFIA pups 

received four intraperitoneal (IP) injections of AP20187 ligand on P1, P2, P3 and P7 to 

deplete all CSF1R-expressing cells and were exposed from P1 to normoxia versus 
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hyperoxia until P10. Depletion efficiency was controlled with flow cytometry analysis 

by checking GFP reporter (Fig. 8 A) and appeared to be more than 85%.  

 

 

Figure 8│ MAFIA mice demonstrate rAM depletion and no neutrophil recruitment in response to 

hyperoxia with clear ExAM populations both in normoxia- and hyperoxia- exposed groups. 

MAFIA mouse neonates received IP injections of AP20187 ligand on P1, P2, P3 and P7 and were 

exposed to normoxia versus hyperoxia for 10 days starting on P1. Whole lung homogenates were 

analyzed by flow cytometry. A. CSF1R-expressing cells depletion efficiency was assessed using flow 

cytometry with FITC-A laser to check for GFP reporter. GFP-positive cells were counted as a percentage 

in all cells (right graph). Data are presented as mean ± SEM (n = 3 in each group, P value was determined 

by t-test). B. Inflammatory cell populations were assessed using FACS analysis. Neutrophils were defined 

as CD45+; Gr-1+ cells; rAM as CD11c+; SiglecF+; CD11b-; ExAM as CD11c+; CD11b+; MHCIIinterm; 

dendritic cells (DCs) as CD11c+; CD11b+; MHCIIhi. C. Peripheral blood of hyperoxia exposed MAFIA 

pups was assessed for the presence of neutrophils (CD45+; Gr-1+). Representative flow cytometry plots 

are illustrated. 
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As expected, MAFIA pups exhibited a complete depletion of the rAM 

population in the normoxia-exposed group and no rAM in hyperoxia-exposed group 

(Fig. 8 B). Interestingly, there were clear populations of ExAM both in normoxia and 

hyperoxia-exposed groups and no neutrophil recruitment in response to hyperoxia. To 

examine whether neutrophils were depleted or their recruitment from the blood was 

abrogated, we check the peripheral blood of hyperoxia-exposed MAFIA pups for the 

presence of neutrophils and found that they were clearly present in the blood (Fig. 8 C). 

This finding demonstrates that in MAFIA mice neutrophil recruitment to the lung in 

response to hyperoxia injury was blocked. 

 

 

Figure 9│Neutrophil, rAM and ExAM population analysis by flow cytometry. 

Populations of neutriphils, rAM and ExAM were counted as a percentage it CD45+ cells and as total 

numbers of cells for WT, CCR2 KO and MAFIA mice. Data are presented as mean ± SEM (n = 3-5 in 

each group, P values were determined by t-test). 

 

4.4. ExAM of WT pups exposed to hyperoxia demonstrate a 

mixed population of M1- and M2-polarized cells, whereas 

MAFIA mice ExAM represent M2-polarized populations both in 

normoxia and hyperoxia exposed groups 

Exudate alveolar macrophage populations of WT and MAFIA mice were 

analyzed for M1 and M2 polarization using flow cytometry analysis with CD40 and 

CD206, M1 and M2 polarization specific markers, respectively. It was found that 

ExAM population recruited to the lung of WT pups upon hyperoxia exposure represent 

a mixed population of M1- and M2-polarized macrophages (Fig. 10 A). Unlike WT, 



 
 

37 
 

MAFIA pups ExAM were found to be polarized to M2 anti-inflammatory phenotype 

both in normoxia and hyperoxia exposed groups (Fig. 10 B). 

 

 

Figure 10│Unlike WT, MAFIA pups ExAM are polarized to an M2 anti-inflammatory phenotype 

both in normoxia- and hyperoxia- exposed groups. 

Whole-lung homogenates of WT and MAFIA pups exposed to normoxia or hyperoxia for 10 days were 

used for flow cytometry analysis and populations of ExAM (CD45+; CD11c+; CD11b+; MHCIIinterm) were 

analyzed for M1 and M2 polarization. M1-polarized macrophages were defined as CD40+ and M2- as 

CD206+. M1 and M2 populations are shown as total numbers and as percentages in CD45+ cells (right 

panels) A. Wild type ExAM analyzed for CD40 and CD206 markers with flow cytometry analysis.  

B. MAFIA pups ExAM analyzed for CD40 and CD206 markers with FACS analysis. Data are presented 

as mean ± SEM (n = 3-5 in each group, P values were determined by t-test). ns – not significant. 

Representative flow cytometry plots are illustrated. 

 

Polarization of ExAM towards an M2 anti-inflammatory phenotype in MAFIA 

mice can be due to lack of neutrophils in the hyperoxia exposed pups. 

4.5. MAFIA pups exposed to hyperoxia demonstrate a 

remarkable improvement of the lung structure 

To check what effects CCR2 knockout and depletion of CSF1R-expressing cells 

have on the lung structure, stereological analysis was performed. Lungs of WT, CCR2 

KO and MAFIA pups exposed to normoxia versus hyperoxia for 10 days were plastic 

embedded and analyzed using Visiopharm NewCast computer-assisted stereology 

system. In the hyperoxia-exposed group, CCR2 KO did not have an improvement of 

lung structure by visual examination, unlike MAFIA mice that had a clear 
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alveolarization improvement visual from the lung pictures (Fig. 11 A). Stereological 

analysis revealed that hyperoxia exposure leads to alveolarization arrest with fewer 

larger alveoli and thicker septa in WT pups, as it was expected. CCR2 KO pups had 

thicker septa in both normoxia and hyperoxia exposed groups and slight improvement 

in alveolar number in hyperoxia group as compared to WT normoxia (control) group. 

After analyzing the MAFIA groups, it was found that both septal wall thickness and 

alveolar numbers were improved and not statistically different from WT normoxia 

group (Fig. 11, Table 2). 

 

 

Figure 11 │ Unlike CCR2 KO, MAFIA mice demonstrate a dramatic improvement of the lung 

structure in hyperoxia-exposed pups as compared with WT controls. 

A. Representing pictures of WT, CCR2 KO and MAFIA pups lung structures. Lungs were plastic 

embedded, 2 µm sections were cut and stained with Richardson’s stain. Scale bar 100 µm. B. Alveolar 

numbers and septal wall thickness counted on plastic embedded lungs using stereological analysis. Data 

are presented as mean ± SEM (n = 5 in each group, P values were determined by one-way ANOVA with 

a Tukey’s post hoc test).  ns – not significant. 

 

These data demonstrate that the ExAM population does not play a crucial role in 

the arrested lung development observed in the BPD mouse model, and ExAM depletion 

alone does not lead to the significant improvement in lung structure. Depletion of 

CSF1R-expressing cells led to an almost full recovery of the lung structure in the 

hyperoxia treated group. 
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These findings demonstrate a pronounced role of CSF1R expressing cells and/or 

neutrophils in the arrested lung alveolarization and thickening of the septa observed in 

BPD. 

 

Table 3 Structural parameters of WT, CCR2 KO and MAFIA pups exposed to normoxia or hyperoxia for 

10 days 

 

 

4.6. Neutrophil depletion leads to a mild improvement of the 

lung structure in hyperoxia-exposed WT pups 

To determine whether neutrophil depletion alone can lead to an improved lung 

phenotype observed in MAFIA pups exposed to hyperoxia, neutrophils were depleted in 

WT pups by giving intraperitoneal injections of anti-Ly6G monoclonal antibody every 

second day starting on P1. Pups were exposed to normoxia or hyperoxia until P10 and 

depletion efficiency was controlled by flow cytometry. Flow cytometry analysis 

revealed that neutrophils were sufficiently depleted, rAM population was present in 

normoxia group and eliminated in hyperoxia group; and ExAM were recruited upon 

hyperoxia exposure (Fig. 12 A, B). 

Exudate alveolar macrophages of neutrophil depleted pups were further analyzed 

for their M1/M2 polarization and it was found that in both groups (normoxia and 

hypeoxia) macrophages were polarized towards an M2 anti-inflammatory phenotype in 

the absence of neutrophils (Fig. 12 C) which goes along with the finding that ExAM are 

polarized to M2 phenotype in MAFIA pups (Fig. 10 B). 
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Figure 12│Neutrophil depletion in mouse pups with an anti-Ly6G antibody demonstrates high 

depletion efficiency with ExAM polarization to M2 anti-inflammatory phenotype. 

Neutrophils were depleted by giving intraperitoneal anti-Ly6G monoclonal antibody injections to WT 

pups every second day starting on P1. Pups were exposed to normoxia versus hyperoxia for 10 days and 

whole lung homogenates were used for flow cytometry. A. Flow cytometry analysis of inflammatory cell 

populations. Neutrophils were defined as CD45+; Gr-1+ cells; rAM as CD11c+; SiglecF+; CD11b-; ExAM 

as CD11c+; CD11b+; MHCIIinterm; dendritic cells (DCs) as CD11c+; CD11b+; MHCIIhi. B. Populations of 

neutriphils were counted as a percentage it CD45+ cells and as total numbers of cells. C. ExAM 

populations were analyzed for M1 and M2 polarization using flow cytometry. M1-polarized macrophages 

were defined as CD40+ and M2- as CD206+. M1 and M2 populations are shown as total numbers and as 

percentages in CD45+ cells (right panels). Data are presented as mean ± SEM (n = 3-5 in each group, P 

values were determined by t-test). ns – not significant. Representative flow cytometry plots are illustrated. 

 

Analysis of the lung structure, however, revealed no obvious improvement of 

alveolarization with improved septal wall thickness (Fig. 13 A). Further precise 

stereological analysis of lung parameters revealed no significant alveolarization 

improvement in hyperoxia-exposed pups as compared with hyperoxia WT controls with 
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completely normal septal wall thickness (Fig. 13 B, Table 3). These data suggest that 

neutrophils may play a role in the thickening of alveolar wall in the progression of BPD, 

but neutrophil depletion alone is not enough to get a full lung structure improvement as 

it was observed in MAFIA mice.  

 

 

Figure 13│Neutrophil depletion does not lead to improvement in alveolarization and improved 

alveolar septal thickness. 

A. Lung structures of pups with neutrophil depletion 10 days after normoxia or hyperoxia exposure. 

Lungs were plastic embedded, 2 µm sections were cut and stained with Richardson’s stain.                  

Scale bar 100 µm. B. Septal wall thickness and alveolar numbers counted on plastic-embedded lungs 

using stereological analysis. Data are presented as mean ± SEM (n = 5 in each group, P values were 

determined by one-way ANOVA with a Tukey’s post hoc test). ns – not significant. 

 

This finding suggests that a population of CSF1R-expressing cells might play an 

important role in the arrested alveolarization associated with BPD. 
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Table 4 Structural parameters of wild type and neutrophil-depleted (anti-Ly6G) pups exposed to 

normoxia or hyperoxia for 10 days 

 

 

 

4.7. Cell population (Pop3) might play a role in the 

development of BPD 

As long as MAFIA mice exposed to hyperoxia demonstrate such a clear lung 

structure improvement; and neutrophil depletion alone did not lead to any improvement 

in alveolarization, some other cell population that was depleted in MAFIA mice must 

play an important role in the alveolarization block. 

To examine whether another cell population that was depleted in MAFIA mice 

could play a role in the great lung improvement observed in hyperoxia group, three 

populations of cells that were not included in the initial analysis were examined.           

In Fig. 14 A representative flow cytometry plots of WT pups exposed to normoxia and 

hyperoxia are illustrated and these three populations are marked as Pop1, Pop2 and 

Pop3. Already from the flow cytometry plots it is clear that Pop3 is significantly 

increased in size in hyperoxia-exposed group. Examination of all three populations on 

side and forward scatter revealed that, unlike Pop1 and Pop2, Pop3, clearly represents 

granulocytes (Fig. 14 B). 
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Figure 14│Pop3 consists of granulocytes, is increased upon hyperoxia exposure both in wild type 

and neutrophil depleted pups, and is completely depleted in MAFIA pups. 

A. Representative flow cytometry plots of wild type pups exposed to normoxia versus hyperoxia for 10 

days illustrating three populations of cells (Pop1, Pop2 and Pop3) initially not included in the analysis.    

B. Side- and forward-scatter plots of Pop1, Pop2 and Pop3 in normoxia and hyperoxia exposed WT pups. 

C. Pop1, Pop2 and Pop3 cell populations were counted as total numbers and as a percentage in CD45+ 

cells in WT, MAFIA and neutrophil depleted pups exposed to normoxia versus hyperoxia for 10 days. 

Data are presented as mean ± SEM (n = 3-5 in each group, P values were determined by t-test). ns – not 

significant. 

 

To determine which population is expanded upon hyperoxia exposure, cell 

numbers of Pop1, Pop2 and Pop3 were calculated for WT and neutrophil-depleted mice 

and compared with MAFIA pups (Fig. 14 C). It became clear that Pop3 is the only 

population completely depleted in MAFIA mice and in the same time significantly 
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increased in size in both WT and neutrophil depleted pups upon hyperoxia exposure 

(Fig. 14 C). These observations suggest that Pop3 might play an important role in the 

lung alveolarization arrest observed in both WT and neutrophil depleted pups exposed 

to hyperoxia. 

To further analyze Pop1, Pop2 and Pop3, all three populations were FACS 

sorted and cytospin followed by H&E staining was performed. It was found that Pop1 

and Pop2 consist of small round cells with large nuclei characteristic of lymphocytes 

and monocytes, whereas Pop3 appeared to be a population of cells with macrophage-

like charachteristics (Fig. 15).  

 

Figure 15│Pop3 represents a population of macrophage-like cells, unlike Pop1 and Pop2. 

FACS sorting of Pop1, Pop2 and Pop3 was performed followed by cytospin and H&E staining for WT 

and neutrophils depleted pups exposed to hyperoxia for 10 days. Representative pictures are illustrated. 

Scale bar 50 µm. 

 

Pop3 was further examined for the level of MHCII expression using FACS 

analysis and it was found that Pop3 is highly MHCII enriched (Fig. 16 A). This finding 

together with macrophage-like phenotype of Pop3 led us to an idea that Pop3 can be in 

fact population of resident alveolar macrophages (rAM) that changed phenotype upon 

hyperoxia exposure and became CD11b+ and MHCIIhigh. 

4.8. rAM change phenotype upon hyperoxia exposure 

To verify if Pop3 can be a population of resident alveolar macrophages (rAM) 

that changed its phenotype upon hyperoxia exposure, we compared total numbers of 

these two populations summaries (rAM + Pop3) in normoxia and hyperoxia exposed 
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pups of WT and neutrophil depleted groups and found that these numbers are exactly 

the same (Fig. 16 B).  

 

 

 

Figure 16│rAM change phenotype upon hyperoxia exposure. 

A. Flow cytometry analysis of Pop3 from P10 WT pups exposed to normoxia or hyperoxia demonstrating 

that Pop3 cells are highly MHCII expressing. B. Total cell numbers summary of rAM and Pop3 

populations was counted for WT and neutrophil depleted (anti-Ly6G) pups exposed to normoxia or 

hyperoxia for 10 days. Data are presented as mean ± SEM (n = 4-5 in each group, P values were 

determined by t-test), ns – not significant. 

To make sure that Pop3 represents a population of macrophages, Pop3 and rAM 

populations were FACS sorted, total mRNA was isolated and a real-time quantitative 

PCR analysis was performed with CD68 macrophage-specific primers. Two reference 

genes were used (HSPA8 and PolR2A). Total mRNA of mouse alveolar macrophages 

cell line (MH-S) was used as positive control and total mRNA of primary type two cells 

Figure 17│Pop3 represents population ofmacrophages. 

Resident alveolar macrophages population of normoxia-exposed pups and Pop3 of hyperoxia-exposed 

pups were FACS sorted and rtPCR analysis with CD68 macrophage-specific marker was performed. 

PolR2A and HSPA8 were used as reference genes. Primary type II cells (AECII) and MH-S cell line 

mRNA were used as negative and positive controls, respectively. Data are presented as mean ± SEM  

(n = 4 in each group). 
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(AECII) as negative control (Fig. 17). It was found that Pop3 expresses high levels of 

CD68, comparable with rAM population and MH-S cell line, which clearly proves that 

Pop3 represents a population of macrophages.  

 

 

 

 

 

 

 

 

 

Resident alveolar macrophages of WT normoxia groups were analyzed for 

polarization and it was found that resident macrophages have a tendency to polarize 

towards M2 anti-inflammatory phenotype with however vast majority of macrophages 

not polarized at all (Fig. 18 A, C). After exposing pups to hyperoxia for 10 days, Pop3 

was also analyzed for polarization and revealed a mixed population of M1- and M2- 

polarized macrophages (Fig. 18 B, C). 

All these findings suggest that a population of resident alveolar macrophages 

(rAM) changes phenotype upon hyperoxia exposure and starts expressing CD11b and 

MHCII receptors that are characteristic of activated immune cells. Resident 

macrophages also represent a mixed popupation of M1- and M2-polarized cells like 

exudate macrophages in hyperoxia group. This population of activated rAM together 

Figure 18│In normoxia-exposed mouse pups rAM polarize towards an M2 phenotype while 

hyperoxia-exposed group represent a mixed population of M1- and M2-polarized cells (Pop3). 

A. Resident alveolar macrophage population of WT normoxia-exposed mice was analyzed for M1/M2 

polarization using CD40 and CD106 markers. M1-polarized macrophages were defined as CD40+ and 

M2- as CD206+. B. WT Pop3 population in hyperoxia group was analyzed for M1/M2 polarization using 

CD40 and CD206 markers. M1-polarized macrophages were defined as CD40+ and M2- as CD206+. 

C. M1 and M2 populations are counted as total numbers and as percentages in CD45+ cells. Data are 

presented as mean ± SEM (n = 5 in each group, P values were determined by t-test). Representative flow 

cytometry plots are illustrated. 
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with recruited neutrophils can harm the lung and lead to arrested alveolarization with 

thicker alveolar wall. 
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5. Discussion 

Macrophages are present in large numbers in all developing organs and key 

periods of organogenesis correlate with maximum macrophage numbers (Cecchini et al. 

1994). In normal organ development, tissue remodeling is achieved through cells 

apoptosis followed by cellular debris phagocytic clearance performed by macrophages 

that are in the same time potent effector cells producing a range of growth factors that 

regulate cellular differentiation and promote angiogenesis (Stefater et al. 2011).Tissue 

macrophage-deficient mice have a range of developmental abnormalities, including 

impaired growth and fertility (Dai et al. 2002, Wiktor-Jedrzejczak et al. 1990, Yoshida 

et al. 1990). It is known that macrophages are essential in the normal pancreas, 

mammary gland and kidney development, organs that like the lung develop through 

branching morphogenesis. In normal development macrophages are localized around 

developing terminal buds and their absence leads to branching abnormalities with 

poorly branched terminal buds in the mammary gland (Gouon-Evans et al. 2000, 

Ingman et al. 2006),and abnormal islet cell morphology in the pancreas (Banaei-

Bouchareb et al. 2004, Banaei-Bouchareb et al. 2006). However, less is known about 

the role of macrophages in the developing of the lung. 

Macrophages are abundant in developing embryonic lung and are localized in 

mesenchymal tissue surrounding alveolar buds, in particular within branch points     

(Fig. 18 A). Macrophages seeding of the lung tissue starts shortly after birth, as was 

demonstrated with SiglecF alveolar macrophages specific marker staining (Fig. 18 B). 

Alveolar macrophage number is increased during alveolarization and display an M2 

anti-inflammatory polarization phenotype (Jones C. V. et al. 2013). As long as alveolar 

macrophages play an important role in lung development, any change in their phenotype 

and expression profile may have a serious impact on the lung structure. 

In this study we were aimed to investigate the roles of different inflammatory 

cell populations in the arrested lung development and thickening of the septal wall 

observed in BPD. In WT pups exposed to hyperoxia for 10 days neutrophils (Gr-1+) and 

ExAM (CD11b+) are massively recruited to the lung and rAM population (Siglec+, 

CD11b-) is eliminated. First, to check the role of ExAM (inflammatory CCR2hi 

macrophages recruited to the sites of inflammation) we used CCR2 KO mouse to 

abrogate the ExAM recruitment to the lung upon hyperoxia exposure. Lung structure 

analysis revealed that abrogation of ExAM recruitment to the lung leads to a mild 
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improvement in alveolarization and no septal wall improvement of the lung, 

demonstrating that other cell types must play a crucial role in the arrested lung 

development and septal thickening of the lung associated with BPD (Fig. 11, Table 2).  

 

 

Figure 19│Alveolar macrophages are localized in mesenchymal tissue in the developing embryonic 

mouse lung and start seeding alveolar spaces only after the birth. 

A. Immunofluorescence labelling of the E12.5 embryonic mouse lung epithelium (anti-E-cadherin; blue) 

and macrophages (anti-F4/80; green). Modified from (Jones C. V. et al. 2013). B. Cryosection of mouse 

lungs stained with DAPI (blue) and SiglecF (red). Modified from (Guilliams et al. 2013). PND-postnatal 

day 

 

To assess the role of CSF1R-expressing cells in the development of BPD-like 

phenotype, we exposed MAFIA pups that have a suicide gene under control of CSF1R, 

to hyperoxia for 10 days and found that population of rAM was completely depleted in 

these pups and recruitment of neutrophils from the blood was completely blocked, but 

ExAM were present in the lung of both normoxia and hyperoxia groups. Further 

analysis of ExAM polarization revealed that exudate macrophages had M2 anti-

inflammatory phenotype. It is not known if the origin of these ExAM populations, but it 

can be that these are the cells that avoided depletion as its efficiency is not more than 

85%. Lung structure analysis of MAFIA pups demonstrated almost normal lung 

structure in hyperoxia exposed group with normal septal wall thickness and greatly 

improved alveolarization (Fig. 11, Table 2). These data suggest that either neutrophils 
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or some CSF1Rhi population of inflammatory cells must play a role in the 

alveolarization arrest and septal wall thickening. 

To examine the role of neutrophils in the development of a BPD-like phenotype, 

neutrophils were depleted by giving intraperitoneal injection of anti-Ly6G antibody to 

the neonate WT pups and it was found that in the absence of neutrophils, ExAM were 

recruited to the lung and had M2 phenotype. But, analysis of the lung structures did not 

reveal any significant alveolarization improvement in hyperoxia-exposed group with yet 

completely improved septal wall thickness. From these findings it was concluded that 

neutrophils play a role in the thickening of the septal wall, but almost do not contribute 

to the disrupted alveolarization. 

Altogether these findings demonstrate that some CSF1Rhi population depleted in 

MAFIA mice has a great effect on alveolarization. After examination of WT controls, 

neutrophils depleted pups and MAFIA pups exposed to normoxia versus hyperoxia, it 

was found that there is a distinct SiglecFhi, CD11bhi, MHCIIhi population (Pop3) that 

increases in size in hyperoxia groups of WT and neutrophil-depleted mice, whereas it is 

completely depleted in MAFIA pups. Examination of Pop3 population using cytospin 

revealed macrophage-like phenotype of these cells that led to an idea that this 

population can be in fact rAM population that changes phenotype upon hyperoxia 

exposure (Fig. 14, 15). Absolute numbers comparison of rAM+Pop3 of hyperoxia- and 

normoxia-exposed WT and neutrophil-depleted pups revealed that rAM+Pop3 numbers 

are the same in normoxia- and hyperoxia-exposed mice (Fig. 16). Further, rAM and 

Pop3 populations were FACS sorted, total mRNA was isolated followed by real time 

quantitative PCR with CD68 macrophage-specific primers and it was found that Pop3 

expresses similar levels of CD68 as rAM population that proves macrophage nature of 

Pop3 (Fig. 17). These findings support the idea that rAM change phenotype upon 

hyperoxia exposure and shift to CD11b+ side on the flow cytometry plot.  

If that is the case, Pop3 cells can be polarized towards M1 or M2 phenotype. 

Resident macrophages of WT normoxia group were compared with Pop3 cells of WT 

hyperoxia group and it was found that in normoxia group rAM polarize towards M2 

anti-inflammatory phenotype, as described in the literature (Jones C. V. et al. 2013) and 

Pop3 represents a mixed population of M1- and M2-polarized cells in hyperoxia group 

(Fig. 18) and can therefore certainly contribute to the disruption of the lung structure. 

When studying the damage and deregulation of the neonatal lung associated with 

preterm birth, the impact of inflammation on macrophage populations should be 
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considered. Diversity and plasticity are hallmarks of monocyte-macrophage lineage 

cells and M1 or M2 activation states represent extremes of a continuum of activation 

states. In tissues macrophages respond to environmental signals such as damaged cells 

or activated lymphocytes with the acquisition of distinct functional phenotypes. 

Pathology is frequently associated with dynamic changes in macrophage activation, 

with classically M1-polarizedmacrophages implicated in initiating and sustaining 

inflammation and M2-polarized macrophages associated with chronic inflammation 

resolution (Gordon and Martinez 2010, Martinez et al. 2009). Macrophages 

responsiveness to exogenous stimulus such as hyperoxia can also depend on the 

developmental stage of macrophages. For example, preterm rabbit alveolar 

macrophages exposed to hyperoxia overnight start expressing inflammatory cytokines 

such as IL-1β and IL-8, unlike term alveolar macrophages exposed to hyperoxia 

(Rozycki et al. 2002).  

We believe that under normal physiological conditions without any external 

stimulus resident alveolar macrophages (SiglecF+; CD11b-) maintain tissue 

homeostasis, remove aged or dead cells and toxic molecules. After hyperoxia exposure, 

activated M1-polarized resident alveolar macrophages produce high reactive oxygen 

and nitrogen intermediates and secrete many pro-inflammatory cytokines which 

promote other phagocytic cells recruitment, such as neutrophils and dendritic cells to 

exaggerate the killing capabilities of pathogens; and such resident macrophage 

activation and subsequent massive neutrophil recruitment leads to an arrested 

alveolarization and normal lung development disruption in neonates.  
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Summary 

 Bronchopulmonary dysplasia (BPD) is a chronic lung disease of infants born 

extremely preterm and characterized by inflammation and simplification of the distal 

lung structure with fewer, larger alveoli. A number of studies have demonstrated 

elevated macrophage and neutrophil numbers in the diseased lung, and it is becoming 

apparent that there is a connection between impaired alveolarization and the preceding 

inflammatory process. As macrophages play key role in tissue remodeling, lung injury 

and repair, we focused on the role of macrophages in the pathogenesis of BPD.  

 Using a mouse model of BPD that relies on hyperoxia (HYX) and two 

transgenic mouse lines (CCR2 KO and MAFIA (Macrophage Fas-Induced Apoptosis)) 

functional roles of different alveolar macrophages (AM), namely resident (rAM) and 

exudate (ExAM) were studied. It was found that WT mice had a population of rAM 

(CD11c+/SiglecF+/CD11b-) in NOX group which was gone in HYX-exposed mice; and 

recruitment of neutrophils (Gr-1+) and ExAM (CD11c+/CD11b+/MHCIIinterm) upon 

HYX exposure. CCR2 KO mice had neutrophil recruited upon HYX exposure, but no 

ExAM recruitment. MAFIA mice lacked rAM populations in NOX, had no influx of 

neutrophils in HYX, but had clear populations of ExAM both in NOX and HYX groups. 

Lung structures analysis revealed that WT mice had 2.1 ± 0.067 million alveoli and a 

septa of 9.53 ± 0.2 µm in NOX group and reduced alveolar number (1.07 ± 0.056 

million) and thicker septa (10.90 ± 1.0 µm)  in HYX-exposed mice. CCR2 KO mice had 

a small alveolarization improvement (1.48 ± 0.95 million) in HYX group and no septal 

thickness improvement, whereas MAFIA mice had a great improvement in the lung 

structure of HYX exposed pups (1.8 ± 0.11 million alveoli and 8.66 ± 0.27 µm septa). 

No alveolar number improvement after depleting neutrophils alone in HYX-exposed 

WT mice, was observed. Further analysis showed that a population of 

CD11c+/SiglecF+/CD11b+/MHCIIhigh cells (Pop3) was significantly increased in WT 

and neutrophil-depleted mice upon HYX exposure and completely depleted in MAFIA 

mice. Pop3 sorting followed by cytospin and H&E staining and rtPCR analysis with 

CD68-specific primers demonstrated that Pop3 is a population of macrophages.  

 These data suggest a novel role of rAM in the development of BPD and 

demonstrates that rAM might change phenotype upon HYX exposure and this 

population of activated macrophages (SiglecF+/CD11b+/MHCIIhigh) might contribute 

greatly to the alveolarization arrest observed in BPD. 
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Zusammenfassung 

 Die Bronchopulmonale Dysplasie (BPD) ist eine chronische Lungenerkrankung 

bei extrem frühgeborenen Kindern. Sie ist durch Inflammation und Rarefizierung der 

distalen Lungenstrukturen mit verminderten und vergrößerten Alveoli gekennzeichnet. 

Zahlreiche Studien haben gezeigt, dass eine erhöhte Anzahl von Makrophagen und 

Neutrophilen in der erkrankten Lunge vorliegt. Ausserdem besteht offensichtlich eine 

Verbindung zwischen der eingeschränkten Alveolarisation und dem ihr vorangehenden 

Inflammationsprozess. In unserer Studie fokussieren wir uns auf die Rolle der 

Makrophagen in der Pathogenese der BPD, da Makrophagen eine Schlüsselrolle im 

Gewebe-Remodelling, bei der Lungenschädigung und der Regeneration spielen. 

 Unter Verwendung eines BPD-Mausmodells mit Hilfe von Hyperoxie (HYX) 

und zwei transgenen Mauslinien (CCR2 KO und MAFIA (Makrophage FAS-induzierte 

Apoptose)) haben wir die funktionelle Bedeutung verschiedener Populationen von 

residenten (rAM) und exsudaten Alveolarmakrophagen (ExAM) untersucht. Wir 

zeigten, dass WT Kontrollmäuse der Normoxiegruppe (NOX) eine Population von rAM 

(CD11c+/SiglecF+/CD11b-) aufweisen, die in der Hyperoxiegruppe nicht mehr 

nachweisbar ist. Ausserdem war eine Rekrutierung von Neutrophilen (CD45+/Gr-1+) 

und ExAM (CD11c+/CD11b+/MHCIIinterm) unter Hyperoxie zu verzeichnen. CCR2 KO 

Mäuse rekrutieren Neutrophile unter Hyperoxie, jedoch rekrutieren sie keine ExAM. Im 

Vergleich dazu fehlte bei den MAFIA Mäusen die rAM Population in Normoxie sowie 

der Influx von Neutrophilen in Hyperoxie, aber es zeigte sich eine eindeutige 

Population von ExAM sowohl in der Normoxie- als auch in der Hyperoxiegruppe. Die 

Analysen der Lungenstruktur zeigten, dass WT Mäuse der Normoxiegruppe 2,1 ± 0,067 

Mio. Alveoli und eine Septendicke von 9,53 ± 0,2 µm aufweisen, während in der 

Hyperoxiegruppe eine reduzierte Anzahl von Alveoli (1,07 ± 0,056 Mio.) und dickere 

Septen (10,9 ± 1,0 µm) zu beobachten war. CCR2 KO Mäuse weisen eine geringe 

Verbesserung der Alveolarisation (1,48 ± 0,95 Mio.) in der Hyperoxiegruppe auf, 

zeigten jedoch keine Verbesserung der Septendicke. Im Gegensatz dazu war eine 

enorme Verbesserung der Lungenstruktur bei den MAFIA Mäusen der 

Hyperoxiegruppe festzustellen (1,8 ± 0,11 Mio. Alveoli und 8,66 ± 0,27 µm Septen). 

Nach der Depletion von Neutrophilen in WT Mäusen der Hyperoxiegruppe war keine 

Verbesserung der Alveolenanzahl zu verzeichnen. Weitere Analysen zeigten eine 



 
 

54 
 

signifikant erhöhte CD11c+/SiglecF+/CD11b+/MHCIIhigh Population (Pop3) sowohl in 

WT Mäusen als auch in den Neutrophilen-depletierten Mäusen der Hyperoxiegruppe; 

bei den MAFIA Mäusen war im Gegensatz dazu keine zu verzeichnen. Das Sortieren 

von Pop3 mit anschließendem Cytospin, H&E Färbung und rtPCR Analyse mit CD68 

spezifischen Primern ergab, dass es sich bei Pop3 wie bei rAM um eine 

Makrophagenpopulation handelt. 

Die vorliegenden Daten legen nahe, dass rAM eine Rolle in der Entwicklung 

von BPD spielen könnte. Desweiteren deuten sie darauf hin, dass rAM unter Hyperoxie 

ihren Phänotyp ändern könnte und dass diese Population von aktivierten Makrophagen 

(SiglecF+/CD11b+/MHCIIhigh) möglicherweise entscheidend zum Stillstand der 

Alveolarisation, wie sie bei der BPD zu verzeichnen ist, beitragen könnte.  
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