I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

ITERATIVE ARRAYS WITH
LIMITED NONDETERMINISTIC
COMMUNICATION CELL

Thomas Buchholz Andreas Klein
Martin Kutrib

IFIG RESEARCH REPORT 9901

JANUARY 1999

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 9901, JANUARY 1999

ITERATIVE ARRAYS WITH LIMITED
NONDETERMINISTIC COMMUNICATION CELL

Thomas Buchholz! Andreas Klein
Martin Kutrib?

Institute of Informatics, University of Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. Iterative arrays with restricted nondeterminism are investigated. Non-
determinism is provided for the distinguished communication cell only. All the other
cells are deterministic ones. Moreover, the number of allowed nondeterministic state
transitions is limited dependent on the length of the input. It is shown that the limit
can be reduced by a constant factor without affecting the language accepting cap-
abilities, but for sublogarithmic limits there exists a infinite hierarchy of properly
included real-time language families. Finally we prove several closure properties of
these families.

CR Subject Classification (1998): F.1, F.4.3, B.6.1, E4

'E-mail: buchholz@informatik.uni-giessen.de
2E-mail: kutrib@informatik.uni-giessen.de

Copyright (© 1999 by the authors

1 Introduction

Linear arrays of finite automata can be regarded as models for massively parallel
computers. Mainly they differ in how the automata are interconnected and in
how the input is supplied. Here we are investigating arrays with a simple
interconnection pattern. Each node is connected to its immediate neighbor
on the right and on the left. The input mode is sequential: One distinguished
communication cell fetches the input symbol by symbol. Such arrays are usually
called iterative arrays (IA).

Especially for practical reasons and for the design of systolic algorithms a se-
quential input mode is more natural than the parallel input mode of so-called
cellular automata. Various other types of acceptors have been investigated
under this aspect (e.g., the iterative tree acceptors in [9]).

In connection with formal language recognition IAs have been introduced in [8]
where it was shown that the language families accepted by real-time IAs form a
Boolean algebra not closed under concatenation and reversal. Moreover, there
exists a context-free language that cannot be accepted by any d-dimensional
TA in real-time. On the other hand, in [6] it is shown that for every context-
free grammar a 2-dimensional linear-time IA parser exists. Compared with e.g.
Turing machines there are essential differences in the recognition power. For
example the language of palindromes needs a lower bound of n? time steps for
Turing machines but is acceptable in real-time by IAs.

Various generalizations of IAs have been considered. In [11] a real-time acceptor
for prime numbers has been constructed. Pattern manipulation is the main
aspect in [1]. A characterization of various types of IAs by restricted Turing
machines and several results, especially speed-up theorems, are given in [12, 13,
14)].

In [16] TAs are studied in which all the finite automata are additionally connec-

ted to the communication cell. Several more results concerning formal languages
can be found e.g. in [17, 18, 19].

In some cases fully nondeterministic arrays have been studied, but up to now
it is not known how the amount of nondeterminism influences the capabilities
of the model. Here we introduce arrays with restricted nondeterminism. We
restrict the ability to perform nondeterministic transformations to the commu-
nication cell, all the other automata are deterministic ones. Moreover, we limit
the number of allowed nondeterministic transitions which additionally have to
appear at the beginning of the computation.

The paper is organized as follows. In section 2 we define the basic notions and
the model in question. The fact that two-way devices can simulate a stack, a
queue or counters in real-time is used in the sequel. Therefore we show the
principles of such simulations. Section 3 is devoted to the possibility to reduce
the number of nondeterministic transitions by a constant factor. In section 4
varying the amount of allowed nondeterminism we prove an infinite hierarchy
of properly included language families. Due to the results in section 3 to obtain
the hierarchy we need sublogarithmic limits for the number of nondeterministic

transformations. Finally, in section 5 several closure properties of the real-time
acceptors with such limits are shown.

2 Model and Notions

2.1 Definitions

We denote the positive rational numbers by Q., the integers by Z, the positive
integers {1,2,...} by N, the set NU {0} by Ny and the powerset of a set S by
29, The empty word is denoted by & and the reversal of a word w by w?.

An iterative array with nondeterministic communication cell is an infinite linear
array of finite automata, sometimes called cells, each of them is connected to
its both nearest neighbors to the left and to the right. For our convenience we
identify the cells by integers. Initially they are in the so-called quiescent state.
The input is supplied sequentially to the distinguished communication cell at
the origin. For this reason we have two local transition functions. The state
transition of all cells but the communication cell depends on the actual state of
the cell itself and the actual states of its both neighbors. The state transition
of the communication cell additionally depends on the actual input symbol (or
if the whole input has been consumed on a special end-of-input symbol). The
finite automata change their states synchronously at discrete time steps. More
formally:

Definition 1 An iterative array with nondeterministic communication cell
(G-TA) is a system (S, 0, 0ng, So, #, A, F'), where
a) S is the finite, nonempty set of states,
b) A is the finite, nonempty set of input symbols,
c¢) F C S is the set of accepting states,
d) sg € S is the quiescent state,
e) #¢ A is the end-of-input symbol,
f) §: 8% — S is the deterministic local transition function for non-communi-
cation cells satisfying 6(sg, S0, S0) = So,
g) g : 8% x (AU {#}) — 2° is the nondeterministic local transition func-
tion for the communication cell satisfying Vsi,s2,s3 € S,a € AU {#} :

Ond(s1, 52, 83,a) # 0.

Let M be a G-TA. A configuration of M at some time ¢ > 0 is a description of
its global state, which is actually a pair (w, ¢;), where w € A* is the remaining
input sequence and ¢; : Z — S is a mapping that gives the actual states of
the single cells. During its course of computation a G-IA steps nondeterminist-
ically through a sequence of configurations. The configuration (w,cp) at time
0 is defined by the input word w and the mapping cy(i) := s, ¢ € Z, while
subsequent configurations are chosen according to the global transition A 4:

Let (w,c) be a configuration then the possible successor configurations (w', ¢’)
are as follows:

(w',d) € Apg((w,€)) = (i) = d(c(i — 1), (i), c(i + 1)), € Z)\ {0},
c'(0) € dpq(c(—1),¢(0),c(+1),a)

where a = # and w' = e if w = ¢, and a = wy and W' = wy---w, if w =
w1 -+ - Wp- Thus, the global transformation A, is induced by ¢ and d,4. The
i-fold composition of A, is defined as follows:

Ana((w,c)) = {(w,¢)}, AL (w,e)) = U Ang((w', "))
(w',c’)EAiLd((w,c))

If the state set is a Cartesian product of some smaller sets S = Sy x.S1 X --- X S,
we will use the notion register for the single parts of a state. The concatenation
of a specific register of all cells forms a track.

A G-IA is deterministic if d,4(s1, 2, 83, a) is a singleton for all states s1, 2,83 €
S and all input symbols a € AU{#}. Deterministic iterative arrays are denoted
by IA.

Definition 2 Let M = (S, 6, 04, S0, #, A, F) be a G-IA.
a) A word w € A" is accepted by M if there exists a time step t,, € N such
that there exists a configuration (w', ¢y,) € Al((w,cp)) where ey, (0) € F.
b) L(M) = {w € A" | w is accepted by M} is the language accepted by
M.
c) Let t : N — N, t(n) > n, be a mapping. If all w € L(M) are accepted
within t,, < t(Jw|) time steps, then L is said to be of time complexity t.

The family of all languages which can be accepted by a G-IA with time com-
plexity ¢ is denoted by .Zj(,)(G-IA). In the sequel we will use a corresponding
notion for other types of acceptors. If ¢ equals the identity function id(n) :=n
acceptance is said to be in real-time and we write .£;4(G-IA). The linear-time
languages .Z};(G-IA) are defined according to

Zu(GTA) = | Zoa(G-IA)
keQ,k>1

There is a natural way to restrict the nondeterminism of the arrays. One
can limit the number of allowed nondeterministic state transitions of the com-
munication cell. For this reason a deterministic local transformation &4 :
S3 x (AU {#}) — S for the communication cell is provided and the global
transformation induced by § and é4 is denoted by Agz. Let g : N — Ng be a
mapping that gives the number of allowed nondeterministic transitions depend-
ent on the length of the input.

The resulting system (S, 9, dnq, 04, S0, #, A, F') is a gG-TA (g guess TA) if starting
with the initial configuration (w,cy) the possible configurations at some time ¢

are given by the global transformations as follows:

{(w, o)} ift=0
AL y((w, c)) it t < g(|wl)
U Afj_ng') ((w',c)) otherwise

(w) €A™V ((w,co))

Observe that all nondeterministic transitions have to be applied before the
deterministic ones. Up to now we have g not required to be effective. Of course
for almost all applications we will have to do so but some of our general results
can be developed without such requirement.

2.2 Algorithmic tools

The fact that two-way devices can simulate a stack, a queue or counters on some
track in real-time is often a useful tool for the modular design of algorithms. In
the sequel we will make extensively use of the ability of IAs to simulate these
data structures. Thereby the communication cell contains the symbol at the top
of the stack or the queue or the least significant bit of the counter. Moreover,
only the right halfline of cells is used (i.e., cells identified by numbers from Ny).
The principles of the simulations are shown in the following.

2.2.1 Stacks

Assume without loss of generality that at every time step at most one symbol
from a nonempty finite stack alphabet is pushed onto or popped from the stack.

Each cell has three registers that can store one stack symbol respectively. They
are numbered 1, 2 and 3 downward the stack. The third register is used as a
buffer. The cells preferably fill two of their registers with symbols. In order to
reach that charge they behave according to the following rules (cf. Figure 1):

e If all three registers of the left (upward) neighbor of a cell are filled then
it stores the symbol from the buffer register of the neighbor in its own first
register. The content of the first and second register is shifted to the second
resp. third one. Otherwise the content of the buffer is deleted.

e If the buffer of the left neighbor of a cell is empty, its own second register
is empty and the first register of its right neighbor is filled then it stores the
symbol from the first register of the right neighbor in its own second register.

e If there is filled just one register of the left neighbor of a cell then the symbol
in its own first register is deleted, whereby the content of the second register is
shifted to the first one.

Eventually, the actions have to be superimposed and it can easily be verified
that the simulation works correctly. Thus, as shown by storing two symbols
into one cell and using a buffer the delay is avoided which is needed by the
lower cells to react to operations applied to the top of the stack.

apapnyEyEPE opaynyEyElE
KapAtIVaEava Iy Rnpam pushc |d| /1&g /1a|/1 | /) /)

e
(o] fel] L1 L1 1] (o] faf fel [[T []
pushb c) /12 /Ha)/ |/ |/ lel/el /il /L /L
af lef [/ L1V LT [Ll B LY L L
=] 4] £ 5] fo] f2]]]
pusha |b|/le|/18|/| |/1 |/] | pop | |/|al/1g]/1a /) /]

c h e
(o] faf fe] fm} [1 1] (<] fal [£] f5] L1 L]
el L E AL pop | /el /L R L
(S N 3 (S (O B B (B N B U 5 S (N B
[a] fe] fz] [n] f5] £ ByHpHyNyRyN
pop /L /LB L el
HyHyNyHyRpE HyHpNpEyRyE
e/ RpAC-IVaEya S VA RRpa

Figure 1: Example for pushdown store simulation by a two-way device.

2.2.2 Queues

By slightly changing the rules two-way devices even can simulate a queue
through which symbols can be piped in a first-in-first-out manner.

Therefore, the third register is considered as pipe register through which the
symbols are moved from left to right. The other two registers are used for
shifting the symbols in the other direction. Similarly, the usage of two registers
avoids a delay in the reaction of the lower cells to operations applied to the top
of the queue. The rules for a cell are as follows (cf. Figure 2):

e If the pipe register of the left neighbor of a cell is filled with a certain symbol
then the cell stores that symbol in its own pipe register if either its own first two
registers are filled or the first register of its right neighbor is filled. Otherwise
the symbol is stored in its own first empty register.

e If neither the first nor the second register of the left neighbor of a cell is filled
then it deletes the content of its own first register. If its own second register
is not empty then the content is moved to the first register. If otherwise the
first register of its right neighbor is not empty then it stores the content of that
register in its own first register.

e If the first and second register of the left neighbor of a cell are filled, its own
second register is empty and the first register of its right neighbor is filled with
a certain symbol then it stores that symbol in its own second register.

[a] A£] An] 4] A1 A] [a] f£] An] L] 4] A]
I =0 e G A G B G inc (e |8 i L[|
s Uy N s S e Py A s I I) s S e I
[a] A£] An] 4] A1 A] ByHyRnyRyRyR

inb (e |87 i |] | | (e 180 |1 |0 L1 |
b—c— H — H Fb—c— H — |
[a] A£] An] f<] 4] A] le] f2] An] f<] 4]]

ina e |BF i |] [| out | B i b [
ar— r—br— — — r —ar— — — — r
le] A&] An] f<] 4] A] HyHDyRyoyRyR
50 S I G A 1L O I (O B out | {h | bl O]
N s S ey I N s A e N s Uy ey N s S e I
le] An] fi] fo] fa] || [e) fi] f<] o] 1] 1]

out | | el | r L L] L5 G G A) (O I
[e] f1] A»] f=] 4] A] HyRyDyRyRyR
hy |cC hy |c} |a

Figure 2: Example for queue simulation by a two-way device.

2.2.3 Dynamic counters

The capability of two-way devices to simulate a stack or queue can easily be
exploited to simulate a binary counter which is attached to the cell that forms
the top of the stack or the queue. The counter is initialized bit by bit. It can
be decremented and incremented by one and be tested for zero.

For the simulation the cells are extended by a forth register through which
signals can be sent that are carrying update information.

The counter is initialized from the most to the least significant bit. The ini-
tialization is done by pushing the bits onto the stack whereby leading zeros
are ignored. If it is more convenient to have a bit stream flowing in the other
direction the stack has simply to be replaced by a queue. In order to handle
leading zeros in such situations the cells have to notice whether or not a digit
one has passed through their pipe register. After the initialization process this
information is used to delete the leading zeros. Furthermore, the cell at the top
of the queue needs the information immediately after the initialization process
in order to test the counter for zero.

For incrementation and decrementation by one the update registers of the cells
are used. Depending on its content, say + resp. -, a cell adds resp. subtracts
one from the 2-bit number stored in its first and second register and deletes
the content of its update register. A cell that recognizes a carry over in its left
neighbor stores the corresponding flag in its update register.

The cell containing the most significant bit behaves slightly different. If the
counter has to be enlarged after an incrementation then the cell stores a one
in its third register. If the counter has to be shortened then it deletes the

corresponding register.

The detection whether or not the counter reading is zero can easily be performed
since it suffices to check whether the last bit of the counter is deleted.

NN ITHHHHF
mito — A /M A/ S it 1 — A S
I 2 I 2 N 2 R 2 R A B 4 I 2 N 2 N 2 I 2 I A B 4
wico A A A A A w1 A A A A
1] Hyamyavau ol /L /L L/
HgRgRaN o
NN =] O
L. 1 /1 / . 0| /0 /
init 1 i77777/ inc ii7777/
of [V [V [V [V [HgEgEananan
nnieneel ol ol S,
e /000007 e /00100
o ol S, ol fol S 11 1,
e /010 e /010
o ol S, ol T 1,
dec ii7777// dec 1] 7777/
, ool neel ol T
e n// a0/ e 1/0/10/0/0/ 0
nneaeel ol A L,
e ol/0)/0/0/10/0 e ol/O/0/0/10/0
AynyEyRyEYEY . ol A A A
dec Liiiii// inc &iiiii//
HgEguananan AgEgEaEanan
nnleneel ol 1,
e 1/0/10/0/0/0 o 1/0/0/0/0/0
ol uiulE =
deC*i*i**// deC******//
/el /L I 2 N 2 N 2 I 2 I A B 4

Figure 3: Example for a dynamic counter initialized with the binary number
(01011)2 which equals (11)19. The leading zero is ignored. The underlying data
structure is a stack.

3 Guess Reduction

This section is devoted to the reduction of the number of nondeterministic
transformations.

Theorem 3 Let g : N — Ny be a mapping and k € N be a constant. If
t:N— N, t(n) > n, is a mapping such that t(n) > k- g(n) for almost alln € N
then

Zyn) (9G-1A) = Zyn) ((k - 9)G-TA)

Proof. The crucial point in proving the inclusion %,y (9G-IA) C Zj,,) (kgG-1A)
is that a kgG-TA M’ which is designated to simulate a given gG-TA M with the
same time complexity must not simulate too many nondeterministic transitions
of M. Therefore the communication cell of M’ is equipped with a pushdown
storage. During its nondeterministic transitions M’ either can simulate a non-
deterministic step of M whereby k£ — 1 specific symbols are pushed or can
simulate a deterministic step of M whereby one symbol is popped. Once M’
decided to simulate a deterministic transformation it has to do so for its remain-
ing nondeterministic steps, whereby again one symbol is popped respectively.
To accept the input M’ has to pop the last symbol from the stack exactly at
time step k - g(n) which is its last nondeterministic one.

Let m be the number of time steps in which symbols are pushed. Then we have
m-(k—1)=k-g(n) —m = m = g(n).

To see the other inclusion %) (kgG-TA) C Zj(,,) (9G-IA) we use again a push-
down storage. The communication cell of a gG-IA M’ simulating a kgG-IA M
without any loss of time pushes k — 1 nondeterministically determined functions
d: 8% x (AU {#}) — S satisfying d(s1, 52, 53,a) € 6p4(51, 52, 53,a) (here 6,4 de-
notes the nondeterministic transition function for the communication cell of M)
during each of its nondeterministic transitions. Additionally, it simulates a non-
deterministic transition of M respectively. During the first deterministic tran-
sitions such a function is popped and applied to the states of the communication
cell and its neighbors and the actual input symbol which yields the next state
of the communication cell. Hence a nondeterministic transition in M is simu-
lated deterministically. Altogether M’ performs g(n) + (k —1) - g(n) = k- g(n)
nondeterministic transitions and accepts exactly the same language as M. O

A constant number of nondeterministic transformations does not increase the
power of IAs. The principle of the proof is to simulate all of the finite number
of choices on different tracks.

Theorem 4 Let t : N — N, t(n) > n, be a mapping. If k € N is a constant
then

Proof. By theorem 3 it suffices to prove Zj,)(1G-IA) = Z,)(IA). For
structural reasons it follows Zj(,)(IA) C %) (1G-IA) since the nondetermin-
istic transition function of the communication cell can chosen to be identical to

the deterministic one. So it remains to show that .%j(,)(1G-IA) is contained in
Zin)(IA).

Let therefore M be some 1G-IA. We are going to construct an iterative array
M which simulates M without any loss of time. Denote by r the maximum
number of choices in a nondeterministic transition of the communication cell
of M. M’ now uses r tracks on which it simulates the possible behaviors of
M in parallel. These are completely determined by the transition that the
communication cell might perform during the first time step. If M’ is arranged
to accept its input iff at least in one of these tracks an accepting computation
of M has been simulated it consequently accepts the same language as M with
the same time complexity. O

The next corollary extends the previous results.

Corollary 5 Let g : N — Ng be a mapping and g € Q4+, 0 < ¢ <1, be a
rational constant such that g(n) = |gn| then

Z1(gG-IA) = L4 (idG-TA)

Proof. By using the technique of pushing nondeterministically determined
deterministic transitions for later application that has been introduced in the
proof of Theorem 3 a real-time ¢G-IA can trivially simulate a real-time idG-TA.

On the other hand, since ¢ is a rational number the communication cell of a
real-time idG-IA can determine the time step |gn| of its own by using the
corresponding regularity. Hence, a simulation of a real-time gG-TA by a real-
time 1dG-TA is possible. O

4 Nondeterministic Hierarchy

Definition 6 Let L. C A* be a language over an alphabet A and [€ Ny be a
constant.

1. Two words w and w' are l-equivalent with respect to L if

ww; € L <= w'w; € L for all w; € A

2. N(n,l,L) denotes the number of l-equivalence classes of words of length
n with respect to L (i.e., |lww;| = n).

10

Lemma 7 Let g : N — No, g(n) < n, be a mapping. If L € £,,(gG-IA) then
there exist constants p,q € N such that

N(n,1,L) < pre™

Proof. Let M = (S,0,0,4,04, S0, #, A, F') be a real-time gG-IA which accepts
L. We define

q := max {|0nq(s1, S2, $3,a)||s1, 52,83 € S Aa € A}

In order to determine an upper bound to the number of /-equivalence classes we
consider the possible configurations of M after reading all but [input symbols.
The remaining computation depends on the last [input symbols and the states
of the cells —1,...,0,...,l. For the 2/ + 1 states there are |S|?*! different
possibilities. Let p := |S|? then due to |S|2+! = |§]2 - |8| = (|S]2) - 8] <
(I1512)" - |S|F = (|S)2 - |S])" < p' we have at most p' different possibilities for
at most ¢?™ different computation paths. Since the number of equivalence
classes is not affected by the last [input symbols in total there are at most
(pl)qg(n) :pl.qg(") classes. 0O
The following result does not follow for structural reasons since there might be
accepting computation paths of the fG-IA that cannot appear for the gG-TA.
Therefore, the fG-IA must be able to verify whether or not its communication
cell has performed g(n) nondeterministic transformations.

Theorem 8 Let f : N — Ng, f(n) < 5, and g : N = Ny, g(n) < f(n), be two
increasing mappings such that Vm,n,€ N : f(m) = f(n) = g(m) = g(n). If
Ly == {a®™p/(M=9(") | n € N} belongs to the family .%£;(IA) then

Zri(9G-1A) C £ (fG-1A)

Proof. Let M be a real-time gG-IA that accepts the language L. A real-time
fG-TA M’ which simulates M works as follows.

Since f > g M’ can guess the time step g and therefore simulate M directly.
Additionally, M’ has to verify that its guess was correct. Otherwise the com-
putation must not be accepting.

It is known that deterministic linear-time IAs can be sped-up to 2 - id-time
[13]. Thus, L, belongs to Z;4(IA). Now M’ simulates such an acceptor M"
on an additional track where each cell simulates two cells of M"”. Due to
this compressed simulation it can take place at double speed. During the first
g time steps M’ simulates two steps of M at every transformation under
the assumption it fetches input symbols a. From the guessed time step g up
to the last nondeterministic step f M’ simulates two steps of M" under the
assumption it fetches input symbols b respectively, and during the last n— f(n)
time steps M’ simulates M" without input at double speed.

Due to the condition f(n) < % altogether M’ simulates at least 2-id time steps
of M". If M’ guessed g correctly it simulates M” for the input a9(™p/()—9(n)

11

and, hence, an accepting computation. On the other hand, if M’ simulates
an accepting computation then it guessed a time step ¢ such that the input
a'bf (M=t belongs to L,. Tt follows t € {g(m) | f(m) = f(n)} and due to the
assumption Vm,n,€ N : f(m) = f(n) = g(m) = g(n) it holds t = g(n).
Therefore M’ can verify whether its guess was correct and, thus, accept L in
real-time. O

The following situation may clarify the necessity of the condition
Vm,n, € N: f(m) = f(n) = g(m) = g(n).

Let m < n and f(m) = f(n) and g(m) < g(n). Since a9(™p/(")=9(") belongs
to L, the word a9(p/(m)=9(n) does, too. Consequently, for an input of length
m the word a9 p/(M=9(") would lead to an accepting computation but since
g(m) < g(n) the time step g might be guessed wrongly.

Now we are going to extend the previous result to a hierarchy of properly
included language families.

Theorem 9 Let f : N — Ny and g : N — Ny be two mappings which meet the
conditions of Theorem 8. If additionally f € o(log) and g € o(f) then

Zri(9G-1A) C Z4(fG-1A)

Proof. We define a mapping h : N — N by k(n) := 2/ 1 is increasing
h(n)

since f is. Moreover since f € o(log) for all k£ € Q4 it holds lim, —F =
limy, o0 21%;% = 0 and therefore h € o(n¥). Especially for k = 1 it follows that
the mapping m(n) := max{n’ € Ng | (h(n) +1) - (' + 1) < n} is unbounded,
and for large n we obtain m(n) > h(n). Now we define a language L that
belongs to .Z+(fG-IA) but does not belong to .Z+(gG-IA).

L:={$wiSwe$---$wjey¢ | IneN:j=h(n) Aw; € {0, 1y 1 <4<,
Ar=n—(h(n)+1) - (m(n)+1)
AT <i <jrwy =yl}

From the definition it follows that L is not empty (see Example 10). Assume
now L € %,1(gG-IA). Then by Lemma 7 there exist constants p,q € N such
that N(n,m(n) + 1,L) < p(m(")"'l)'qg("). Obviously, there exists a constant
k € Q; for which 2 -log(p) - ¢ - 2F < % holds. Since g € o(f) we can find a
constant ng such that for all n > ng : g(n) < k- f(n) and m(n) > 1. Therefore,
the number of equivalence classes is bounded as follows:

N(n,m(n)+1,L) < pmAD)-¢8 ™ < p2m(n)-gs)
_ 9log(p)-2-m(n)-2'°8(0)-9(n)
< 210g(p)-2.m(n).210g(q)-k-f(n)
= 9m(n)-h(n)-2-log(p)-q-2*

< 2m(n)h(n)%

12

On the other hand let for all n € N and for every subset U := {w1, ..., wpn)}
of {0,1}™™ a word u be defined according to u := $"w1$ - - - $wp ()¢ where
r=mn— (h(n) +1) - (m(n) +1). Then for all y € {0, 1}™™):

yelU <= uwyll¢ e L

Since there exist 2™ different words w; there are (2,:;”))) different subsets U.

For every pair U,V of subsets one can find a w; belonging to U\ V or V' \ U.
It follows uwfi¢ € L <= wvwf¢ ¢ L and, hence,

h(n) h(n)!

(27 — b))
h(n)h(n)

N(nmn) +1.I) > <2m(”)> _2mm . @mm) — 1) ... (27 — h(n) +1)

>

From m(n) > h(n) for large n it follows 2™ — h(n) > 2m(n)'3 . Thus

(27 — h(n)M™) WW%’ML>2mm%hW
h(n)h(n) =\ h(n) “\ mn)

mn).L \ h(m)
_ (L%_£137> _ o(m(n)-~log(m(n)))-h(n)

log(m(n)

> gm(n)h(n)-%

From the contradiction we obtain L ¢ .£+(¢G-IA).

It remains to show L € .Z,(fG-TA). A fG-IA M which accepts L has to check
whether j = h(n), whether all the w; are of the same length, whether r < h(n)
(from which now follows that |w;| = m(n)), and whether there exists an i’ such
that wy = y®. Accordingly M performs four tasks in parallel.

For the first task M simulates a stack and pushes a symbol 1 at every non-
deterministic transformation. After the last nondeterministic transformation
the pushed string is handled as a counter which is decremented every time step
a new w; appears in the input. The decrementation starts for ws. The number
of w;s is accepted if the counter is 0 after reading the input because 17 is the
binary number 2/(®) —1 = h(n) — 1.

For the second task M uses two more stacks. The subword wy is pushed onto
one of them. When M fetches wo it pushes wy to the second stack and pops

wy from the first stack whereby their lengths are compared symbol by symbol.
This task is repeated up to w;.

The third task uses another stack on which the first 7 symbols $ of the input
are pushed. Subsequently for each subword w; one of them is popped.

The last task is to find an i’ such that wy = y®. Here the nondeterminism is
used. During the first f(n) nondeterministic steps a binary string is guessed bit
by bit and pushed onto a stack. From time f(n) on it is handled as a counter
which is decremented for every subword w;. If it is 0 the next word is pushed

13

onto another stack. It will be popped and compared symbol by symbol when the
word y appears in the input. Thus, the 7’ is guessed during the nondeterministic
transformations. O

On a first glance the witness L for the proper inclusion seems to be rather
complicated. But here is a natural example for a hierarchy:

Example 10 Let 2 > 1 be a constant and
f(n) :=log'(n) and g(n) :=log"*(n)

(log® denotes the i-fold composition).

Then by Theorem 9 we have .%4(gG-IA) C Z.+(fG-TA). Since £, (TA) is
identical to the linear-time cellular automata languages [18] and

{a™b*" ™™ | n e N}
is acceptable by such devices
{a9Mp/(M=9() | p e N} € 4, (IA)
holds. Moreover, from g € log(f) follows
Vm,n €N: f(m) = f(n) = g(m) = g(n).

Thus, the conditions of Theorem 8 are met. Trivially, g is of order o(f).

E.g., for ¢ = 2 we obtain m(4) = 0, m(8) = 1, m(16) = 2, m(32) = 4, and
$01$11$10$00¢11¢ € L. O

5 Closure Properties

Besides closure properties are interesting for its own they are a powerful tool
for relating families of languages. Our first results in this sections deal with
Boolean operations.

Theorem 11 Letg: N — Ng andt: N — N, ¢(n) > n, be two mappings. Then
the family £} (,)(9G-IA) is closed under union and intersection and trivially
contains L) (IA).

Proof. Using the same two channel technique of [10] and [18] the assertion
can easily be seen. Each cell consists of two registers in which acceptors for
both languages are simulated in parallel. O

Now we turn to more language specific closure properties. For some functions
g the families .%;;(gG-IA) are closed under concatenation and for some others
they are not. At first we consider the closure under marked concatenation.

14

Lemma 12 Let g : N — Ny be an increasing mapping such that the language
{a9(mpm=9(m) | m € N} belongs to .%,+(IA). Then the family %;(gG-IA) is
closed under marked concatenation.

Proof. Let L; resp. Ly be formal languages over the alphabets Ay resp. As
which are acceptable in real-time by the gG-IAs M resp. M. Let L denote
the marked concatenation of Li and Ls: i.e.,

L := {wicwy | w1 € L; and wy € Ly}

where ¢ &€ A1 U Ay is a marking symbol.
A gG-TA M that accepts L in real-time works as follows.

jcA% is a regular language and, therefore, belongs trivially to .%+(¢gG-IA).
Since .Z1(gG-TA) is closed under intersection (cf. Lemma 11) it is sufficient
to consider inputs of the form AjcAj only. Let w := wicwy with wy € A7,
wy € A3, and ny 1= |w1|, ng 1= |we|.

Now the idea is as follows: On input w the array M simulates the behavior of
M, (on input wi) until reading the marking symbol ¢ and subsequently the
behavior of My (on input wq). M accepts w iff both simulations are accepting.

The simulation of M; can be performed directly since g is monotonically in-
creasing and therefore g(n) > g(ni). But the time step g(ni) has to be
guessed and verified. In order to perform this task an acceptor for the lan-
guage L' := {a%(™p™=9(m) | m;m € N} is simulated on an additional track in
parallel. Thereby an input symbol a is assumed for each nondeterministic step
(up to the guessed time g(n1)) and an input symbol b for each deterministic
step (up to the end of simulation at time n,).

So the number z resp. y of simulated nondeterministic resp. deterministic tran-
sitions corresponds to a word a®b¥ belonging to L’ iff there exists an m € N such
that z = g(m) and y = m—g(m). Thus, iff ny = z+y = g(m)+m—g(m) = m.
The simulation of M5 is performed similarly. However, a problem would arise
with the nondeterministic transitions if g(n) < ny + 1 + g(ne). Therefore,
during its nondeterministic transitions M uses a queue into which it pipes non-
deterministically chosen local transition functions corresponing to a possible
nondeterministic transition of My (cf. the proof of Theorem 3). During the
simulation of the nondeterministic transitions of My these functions are suc-
cessively extracted from the queue and applied to the communication cell. O

The preconditions of the Lemma can essentially be weakened. Let h be a
homomorphism such that h(z) = a for £ # b and h(b) = b. Then instead of
requiring L := {a9(™p™ 9(™) | ;i € N} to be acceptable in real-time by some
iterative array it is sufficient to require that some language L' with h(L') = L
belongs to Z+(IA).

By ¢ we denote the set of functions g : N — Np, g(n) < n, such that there exists
a language L' € %;(IA) the image of which under h is {a9(b"9(") | n € N}.

So in fact any family .%,,(gG-IA) where g € ¢ is closed under marked concat-
enation.

15

For the following we need, furthermore, the notion of time constructibility that
has been investigated e.g. in [2, 3, 4].

A strictly increasing function f : N — N is said to be time-constructible iff there
exists an iterative array such that on input € its communication cell enters an
accepting state exactly at each time step f(n), n € N. The set of all time-
constructible functions is denoted by %.

Let f : N — N be a strictly increasing function. Its complement function
f~1:N = Np is defined by f~!(m) = max({n € N| f(n) < m} U {0}).

The next lemma shows that the family ¢ is very rich since % is.
Lemma 13 fc ¥ = f lc9.

Proof. It suffices to show that L = {a/” b"~/7'() | n, € N} belongs to
Z4(TA). W.lo.g. we may assume that the input to an iterative array M which
accepts L in real-time is of the form w = a®b¥. Further let n := |w|.

One task of M is now simply to simulate a time constructor of f at one of its
tracks. Using a pushdown storage which is attached to the communication cell
M can check whether or not f(z) < n. Time step n occurs at the end of the
input. For recognizing time step f(z) M has to push all its input symbols a
and to pop one symbol at each time step an accepting state is entered in the
time construction of f (here always f(0) is assumed to be 0).

Similarly M can check whether or not n < f(z + 1) holds.

Together we have z < f~i(n) < z+1,ie. 2z = f7!(n)andy =n—z =
n— f1(n). O

At the proof of the closure under marked concatenation the necessity of a mark-
ing symbol can be relaxed if the mapping g allows a gG-IA to determine a
possible concatenation point by its own (for instance nondeterministically by
using a b-ary counter). Hence we obtain the following corollary.

Corollary 14 Let g : N — Ny, g € Q(log) be a mapping. If £(9G-IA) is
closed under marked concatenation then it is closed under concatenation.

On the other hand there exist functions g for which gG-IA is not closed under
concatenation. The proof follows essentially an idea presented in [7] to show
that the family .%,,(TA) is not closed under concatenation.

Theorem 15 Let g : N — Ny, g € o(loglog), be a mapping. Then .£,;(gG-IA)
is not closed under concatenation.

Proof. Let A be the alphabet consisting of the four symbols 0, 1, a, and b.
Further let L; := A* and denote by Loy the language of palindromes over A, i.e.
the set of all words w over A which are identical to their reversals w¥. As it
has been shown in [7] L; as well as Ly are belonging to .%+(IA) and thus to
iﬁ«t (gG—IA).

16

Consider now the concatenation L = LjLs and assume contrarily that L belongs
to Zr+(9G-IA), too. Then let W, := {Owl | w € {a,b}"} for n € N and define
for each subset U = {wy,...wy} of W,, the word u as

{e if U=
u =

up otherwise
where the u1,...,u, are recursively defined by

Uy = €, ui+1:wﬁ_1wzﬁwi, 1<i:<m-—1.

One easily sees that |u| = n(2¥ — 1) and that for all w € W,, it holds w € U iff
uw € L. Therefore (choosing k = n) there are especially at least (22) different
n-equivalence classes with respect to L in the set of words of length n2™ over A.
Hence using the assumption on g we can work out a contradiction to Lemma
7 for a sufficiently large n. So L is not acceptable in real-time by a gG-IA, i.e.
Z+(9gG-IA) is not closed under concatenation. O

Note that one can additionally show that for g € o(loglog) the corresponding
family Z,4(gG-IA) is not closed under marked iteration although it might be
closed under marked concatenation.

Theorem 16 Let g : N — Ng, g € o(log), be a mapping. Then the family
Z+(9gG-IA) is not closed under reversal.

Proof. Consider the language L consisting of all marked concatenations of
binary sequences of equal length where the first sequence occurs at least twice,
ie

L:={w$...up$| k>2ATmeN:w; € {0,1}™1<i<Fk,
ANI2<j<k:w =w,;}.

We are going to show that I belongs to .%;(IA) C Zn(gG-TA), but LE ¢
Zri(9G-1A).

An iterative array M that accepts L in real-time works as follows. The com-
munication cell is equipped with a queue through which symbols can be piped
in a first-in-first-out manner. At the beginning of the computation M stores
its input symbols to the queue until the first symbol $ appears.

Afterwards at every time step one symbol is extracted from the queue and
compared to the actual input symbol. At the same time step it is stored in the
queue again. Thus, the symbols of wy circulate through the queue and w; is
compared with all the w;, 2 <1 < k serially.

It remains to show that L® does not belong to .%,;(gG-IA). Let us assume that
L is acceptable by some gG-IA in real-time. Let us consider the equivalence
classes N ((m+1)2, (m+1), L®). For every pair of different subsets {z1, ...,z }
and {y1,...,ym} of the set {0,1}™ there are words $z1 - - - $z,, and $y1 - - - $ym,
which belong to different such (m + 1)-equivalence classes. W.lo.g. let 1 ¢

17

{y1,..-,Ym}. Then $z; --- $z,,$z1 belongs to LT whereas $y; - - - y,nz1 does
not. Hence there are at least (2;:) such (m + 1)-equivalence classes. Since
f € o(log) we obtain a contradiction to Lemma 7 for a sufficiently large m
which concludes the proof. O

The last two results deal with the closure under homomorphisms.

Theorem 17 Let g : N — No be a mapping.
If £.4(gG-TA) C %4+(1dG-IA) then £+(9G-IA) is closed under e-free homo-
morphism if and only if £,1(9G-IA) = £4(idG-IA).

Proof. One can show that the family .%;(idG-TIA) coincides with the closure
of Z,1(IA) under e-free homomorphisms and forms an AFL which is closed
under intersection and reversal. Consequently .Z;(idG-IA) is closed under
e-free homomorphisms, too, implying the closure of .Z;;(gG-IA) under e-free
homomorphism if Z+(¢G-IA) = Z+(idG-IA) holds.

On the other hand, since .%+(IA) C .%+(gG-IA) it follows that the closure of
Z;+(IA) under e-free homomorphisms (which is %4 (idG-IA)) is contained in the
closure of Z+(gG-IA). If the latter family is .Z+(gG-IA) itself then it follows
Zn(1dG-IA) C Z1(gG-IA) C £ (1dG-1A), i.e Z1(gG-1IA) = £,(1dG-IA) O

Corollary 18 Let g : N — Ny be a mapping. If £.(gG-IA) C .Z(idG-IA)
then .Z,1(9G-IA) is not closed under e-free homomorphism, homomorphism and
e-free substitution and substitution.

By Theorem 9 such functions exist.

References

[1] Beyer, W. T. Recognition of topological invariants by iterative arrays.
Technical Report TR-66, MIT, Cambridge, Proj. MAC, 1969.

[2] Buchholz, Th. and Kutrib, M. On the power of one-way bounded cellular
time computers. Developments in Language Theory III, 1997, pp. 365-375.

[3] Buchholz, Th. and Kutrib, M. Some relations between massively parallel
arrays. Parallel Computing 23 (1997), 1643-1662.

[4] Buchholz, Th. and Kutrib, M. On time computability of functions in one-
way cellular automata. Acta Informatica 35 (1998), 329-352.

[5] Buchholz, Th., Klein, A., and Kutrib, M. One guess one-way cellular
arrays. Mathematical Foundations in Computer Science 1998, LNCS 1450,
1998, pp- 807-815.

[6] Chang, J. H., Ibarra, O. H., and Palis, M. A. Parallel parsing on a one-
way array of finite-state machines. IEEE Transactions on Computers C-36
(1987), 64-75.

18

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Cole, S. N. Real-time computation by n-dimensional iterative arrays of
finite-state machines. 7" Ann. IEEE Symposium on Switching and Auto-
mata Theory, 1966, pp. 53-77.

Cole, S. N. Real-time computation by n-dimensional iterative arrays of
finite-state machines. IEEE Transactions on Computers C-18 (1969), 349—
365.

Culik II, K. and Yu, S. Iterative tree automata. Theoretical Computer
Science 32 (1984), 227-247.

Dyer, C. R. One-way bounded cellular automata. Information and Control
44 (1980), 261-281.

Fischer, P. C. Generation of primes by a one-dimensional real-time itera-
tive array. Journal of the ACM 12 (1965), 388-394.

Ibarra, O. H. and Jiang, T. On one-way cellular arrays. STAM Journal on
Computing 16 (1987), 1135-1154.

Ibarra, O. H. and Palis, M. A. Some results concerning linear iterative
(systolic) arrays. Journal of Parallel and Distributed Computing 2 (1985),
182-218.

Ibarra, O. H. and Palis, M. A. Two-dimensional iterative arrays: Char-
acterizations and applications. Theoretical Computer Science 57 (1988),
47-86.

Mazoyer, J. and Terrier, V. Signals in one dimensional cellular automata.
Research Report RR 94-50, Ecole Normale Supérieure de Lyon, Lyon, 1994.

Seiferas, J. I. Iterative arrays with direct central control. Acta Informatica
8 (1977), 177-192.

Seiferas, J. I. Linear-time computation by nondeterministic multidimen-
sional iterative arrays. STAM Journal on Computing 6 (1977), 487-504.

Smith ITI, A. R. Real-time language recognition by one-dimensional cellular
automata. Journal of Computer and System Sciences 6 (1972), 233-253.

Terrier, V. On real time one-way cellular array. Theoretical Computer
Science 141 (1995), 331-335.

19

