
I F I G

R e s e a r c h

R e p o r t

Institut für Informatik

JLU Gießen

Arndtstraße 2

35392 Giessen, Germany

Tel: +49-641-99-32141

Fax: +49-641-99-32149

mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

Institut für Informatik

Hierarchy of Subregular

Language Families

Bianca Truthe

IFIG Research Report 1801

February 2018

IFIG Research Report

IFIG Research Report 1801, February 2018

Hierarchy of Subregular Language Families

Bianca Truthe1

Institut für Informatik, Universität Giessen
Arndtstraße 2, 35392 Giessen, Germany

Abstract. In the area of formal languages and automata theory, regular languages and finite
automata are widely studied. Several classes of specific finite automata and their accepted languages
have been investigated, for example, definite automata and non-counting automata. Subfamilies
of the family of the regular languages can also be motivated by their specific representations as
regular expressions, for example, the family of the union-free languages or the family of the star-
free languages. Another line of research is to consider subfamilies of the family of the regular
languages which are based on ressources needed for generating or accepting them (like the number
of non-terminal symbols, production rules, or states).
In this paper, we prove inclusion relations and incomparabilities of subregular language families
which are based on structural properties (like the set of all suffix-closed or commutative regular
languages) or on descriptional complexity measures.

MSC Classification: 68Q45 Formal languages and automata

Additional Key Words and Phrases: Subregular Language Families, Inclusion Relations, Hierarchy

1 E-mail: bianca.truthe@informatik.uni-giessen.de

Copyright c© 2018 by the author

1 Introduction

In the area of formal languages and automata theory, regular languages and finite automata are
widely studied. Several classes of specific finite automata and their accepted languages have been
investigated separately, for example, definite automata by M. Peres, M. O. Rabin, and E. Shamir
in [23], non-counting automata by R. McNaughton and S. Papert in [21], and communicating
automata by R. Laing and J. B. Wright in [17]. Subfamilies of the family of the regular languages
can also be motivated by their specific representations as regular expressions, for example, the
family of the union-free languages which are obtained by concatenation and the Kleene star
operation (but without union) or the family of the star-free languages which are obtained by
concatenation, union, and complement (but without the Kleene star operation) and which are
exactly those languages accepted by non-counting automata ([21]).

In the last years, several papers have been published in which, for different problems, the
decrease of descriptional or computational complexity was studied when going from arbitrary
regular languages to special ones. Especially the effect of subregular control was studied for

– tree controlled grammars with subregular control languages by J. Dassow, R. Stiebe, and
B. Truthe ([10], [9], [7], [8]),

– generating and accepting networks of evolutionary processors with subregular communication
filters by J. Dassow, F. Manea, and B. Truthe ([11], [12], [1], [5] for NEPs and [18], [20], [6]
for ANEPs),

– external and internal contextual grammars with subregular selection by J. Dassow, F. Manea,
and B. Truthe ([26] as well as [2], [3] for the external case and [19], [4] for the internal case),
and

– splicing systems with splicing rules which are taken from a subregular set by J. Dassow and
B. Truthe ([13]).

In these papers above, subfamilies of the family of the regular languages have been considered
independently of each other. Especially, subfamilies based on structural properties (like the set of
all suffix-closed or commutative regular languages) and subfamilies based on ressources needed
for generating or accepting them were not related to each other and, hence, also the various
devices controlled by such languages were not related to each other.

In this paper, we start to fill this gap by proving inclusion relations and incomparabilities of
subfamilies based on different properties.

2 General Definitions and Notation

An alphabet is a finite and non-empty set of symbols (called letters). A word is a finite sequence
of letters; the length of a word w is denoted by |w|. The empty word does not contain any
letter (has the length zero) and is denoted by λ. Let x1, x2, . . . , xn for some natural number n
be letters and w = x1x2 · · ·xn. Then we denote by wR the mirror word of w (where the letters
occur in reversed order): wR = xnxn−1 · · ·x1.

A set of words over some alphabet V is called a language over the alphabet V . Let V be an
alphabet. We use the following notations for sets of words over the alphabet V :

– V ∗ denotes the set of all words over the alphabet V ,
– V + denotes the set of all non-empty words: V + = V ∗ \ {λ},
– V k for a natural number k ≥ 0 denotes the set of all words with the length k,
– V ≤k for a natural number k ≥ 0 denotes the set of all words with a length of at most k.

2

For a word w ∈ V ∗ and a set A ⊆ V , we denote by |w|A the number of all occurrences of
letters a ∈ A in the word w. If such a set A consists of a letter a only, we write simply |w|a. The
cardinality of a set A is denoted by |A|.

The concatenation of two languages U and V is the set of all words obtained by concatenating
a word of the language U with a word of the language V :

U · V = { uv | u ∈ U and v ∈ V }.

For a language L and a natural number i > 1, we denote by Li the concatenation of the
language Li−1 with the language L (note that L1 = L). Furthermore, L0 = {λ}. For a language L,
we use the notations

L∗ =
⋃
i≥0

Li and L+ =
⋃
i≥1

Li

analogously to the same notation as for alphabets.
Let V = {a1, a2, . . . , an} be an alphabet with an order

a1 ≺ a2 ≺ · · · ≺ an.

We define the alphabetical order ≺ of the words over the alphabet V as follows: For any two
numbers n and m and letters x1, x2, . . . , xn, y1, y2, . . . , ym, we say

x1x2 · · ·xn ≺ y1y2 · · · ym

if and only if there is a number k with k ≤ n and k < m such that

x1x2 · · ·xk = y1y2 · · · yk

and if k < n then xk+1 ≺ yk+1.
A phrase structure grammar is a quadruple

G = (N,T, P, S)

where N and T are two disjoint alphabets (the elements of the alphabet N are called non-
terminal symbols; the elements of the alphabet T are called terminal symbols), P is a non-
empty and finite subset of (N ∪T)∗ \T ∗× (N ∪T)∗ (its elements are called rules and are written
as α → β instead of (α, β)), and S ∈ N is the so-called start symbol (also called axiom). A
phrase structure grammar is called right-linear if

P ⊂ N × (T ∗N ∪ T ∗)

and regular if
P ⊂ N × (TN ∪ T).

Let G = (N,T, P, S) be a phrase structure grammar and let V = N ∪ T . A word w ∈ V ∗ is
derived to a word w′ ∈ V ∗ by the grammar G, written as

w ==⇒
G

w′

or w =⇒ w′ if the grammar is known from the context, if there are a decomposition of the
word w into three subwords u, α, v such that w = uαv, α→ β ∈ P , and w′ = uβv (a subword α

3

is replaced by a word β if the grammar contains the rule α → β). For a natural number k, we
say that a word w is derived to a word w′ in k steps, written as

w
k

==⇒
G

w′,

if there exist words w1, w2, . . . , wk−1 such that there is the derivation

w ==⇒
G

w1 ==⇒
G

w2 ==⇒
G
· · · ==⇒

G
wk−1 ==⇒

G
w′.

The reflexive and transitive closure of the relation ==⇒
G

is denoted by

∗
==⇒
G

.

The language L(G) generated by the grammar G is the set of all words that are derivable from
the axiom S:

L(G) =

{
w

∣∣∣∣ S ∗
==⇒
G

w

}
.

It is well known that the family of all languages generated by right-linear grammars coincides
with the family of all languages generated by regular grammars. The languages of this family
are called regular languages.

Regular languages can also be described by regular expressions. Let V be an alphabet. A
regular expression is defined inductively as follows:

1. ∅ is a regular expression;
2. for every element x ∈ V is x a regular expression;
3. if R and S are regular expressions, so are the concatenation R · S, the union R ∪ S, and the

Kleene closure R∗;
4. for every regular expression, there is a natural number n such that the regular expression is

obtained from the atomic elements ∅ and x ∈ V by n operations concatenation, union, or
star.

The language L(R) which is described by a regular expression R is also inductively defined:

1. L(∅) = ∅;
2. for every element x ∈ V , we have L(x) = {x};
3. if R and S are regular expressions, then

L(R · S) = L(R) · L(S),

L(R ∪ S) = L(R) ∪ L(S), and

L(R∗) = L∗(R),

where L∗(R) = (L(R))∗.
The operator sign · is often omitted; instead of the operator sign ∪, the sign + is often used

in the literature.
A finite automaton is a quintuple

A = (V,Z, z0, F, δ)

where V is an alphabet called the input alphabet, Z is a non-empty finite set of elements which
are called states, z0 ∈ Z is the so-called start state, F ⊆ Z is the set of accepting states,

4

and δ : Z × V → P(Z) is a mapping which is also called the transition function. A finite
automaton is called deterministic if every set δ(z, a) for z ∈ Z and a ∈ V is a singleton set. The
transition function δ can be extended to a function δ∗ : Z × V ∗ → P(Z) where δ∗(z, λ) = {z}
and

δ∗(z, va) =
⋃

z′∈δ∗(z,v)

δ(z′, a).

We will use the same symbol δ in both the original and extended version of the transition
function.

Let A = (V,Z, z0, F, δ) be a finite automaton. A word w ∈ V ∗ is accepted by the finite
automaton A if and only if the automaton has reached an accepting state after reading the
input word w:

δ(z0, w) ∩ F 6= ∅.

The language L(A) accepted by the finite automaton A is the set of all accepted words:

L(A) = { w | w ∈ V and δ(z0, w) ∩ F 6= ∅ } .

The language accepted by a finite automaton is always regular; on the other hand, for every
regular language, there exists a finite automaton which accepts this language.

Let V be an alphabet and L ⊆ V ∗ be a language over this alphabet. By DxL for some
word x ∈ V ∗, we denote the set

DxL = { w | xw ∈ L }.

We define a binary relation ≡L⊆ V ∗ × V ∗ by

x ≡L y if and only if DxL = DyL

for any two words x ∈ V ∗ and y ∈ V ∗. The relation ≡L is an equivalence relation and it is
called the Myhill-Nerode relation of the language L. The number of its equivalence classes is
called the index of the relation. The following results by J. R. Myhill and A. Nerode can be
found in the book [16] by J. E. Hopcroft and J. D. Ullman. A language L is regular if and only
if the index of the relation ≡L is finite. The minimal number of states which are necessary
for accepting a regular language L by a deterministic finite automaton is the index of the
relation ≡L. Up to isomorphism, the deterministic finite automaton generating a language L with
the minimal number of states is unique. It is called the minimal deterministic finite automaton
for the language L.

3 Definition of Subregular Language Families

We now define various subfamilies of the family of the regular languages and investigate relations
between them. Those families are formed by regular languages with certain further properties.
Such properties can be defined with respect to the single words (for instance, that every word has
as a special last letter), with respect to the operations applied to atomic regular languages (the
empty set and sets with a single letter), with respect to dependencies of words (the membership
of a word implies the membership of other words), or with respect to the structure or complexity
of grammars generating or auotmata accepting the languages. We call a subfamily of regular
languages a subregular family of languages.

5

3.1 Subregular Families Defined by Structural Properties

We define and investigate here subregular families of languages which have common structural
properties.

For a language L over an alphabet V , we set

Comm(L) = { ai1 . . . ain | a1 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n} }

as the commutative closure (the set of all permutations of words) of the language L,

Circ(L) = { vu | uv ∈ L, u, v ∈ V ∗ }

as the circular closure (the set of all circular shifts of words) of the language L, and

Suf (L) = { v | uv ∈ L, u, v ∈ V ∗ }

as the suffix closure (the set of all suffixes of words) of the language L.
We consider the following restrictions for regular languages. Let L be a language over an

alphabet V . We say that the language L – with respect to the alphabet V – is

– combinational if and only if it has the form

L = V ∗A

for some subset A ⊆ V ,
– definite if and only if it can be represented in the form

L = A ∪ V ∗B

where A and B are finite subsets of V ∗,
– nilpotent if and only if it is finite or its complement V ∗ \ L is finite,
– commutative if and only if it contains with each word also all permutations of this word or

equivalently,
L = Comm(L),

– circular if and only if it contains with each word also all circular shifts of this word or
equivalently,

L = Circ(L),

– suffix-closed (or fully initial or multiple-entry language) if and only if the relation xy ∈ L
for some words x ∈ V ∗ and y ∈ V ∗ implies the relation y ∈ L or equivalently,

L = Suf (L),

– non-counting (or star-free) if and only if there is a natural number k ≥ 1 such that, for any
words x ∈ V ∗, y ∈ V ∗, and z ∈ V ∗, it holds

xykz ∈ L if and only if xyk+1z ∈ L,

– power-separating if and only if, there is a natural number m ≥ 1 such that for any x ∈ V ∗,
either

Jmx ∩ L = ∅
or

Jmx ⊆ L
where

Jmx = { xn | n ≥ m },

6

– ordered if and only if the language L is accepted by some finite automaton A = (V,Z, z0, F, δ)
where (Z,�) is a totally ordered set and, for any a ∈ V , the relation

z � z′ implies δ(z, a) � δ(z′, a),

– union-free if and only if L can be described by a regular expression which is only built by
product and star,

– monoidal if and only if L = V ∗.

We remark that combinational, definite, nilpotent, ordered, union-free, and monoidal lan-
guages are regular, whereas non-regular languages of the other types mentioned above exist.
Here, we consider among the commutative, circular, suffix-closed, non-counting, and power-
separating languages only those which are also regular. So, we do not necessarily mention the
regularity then.

By COMB , DEF , NIL, COMM , CIRC , SUF , NC , PS , ORD , UF , MON , and REG we
denote the families of all combinational, definite, nilpotent, regular commutative, regular cir-
cular, regular suffix-closed, regular non-counting, regular power-separating, ordered, union-free,
monoidal, and regular languages, respectively. Moreover, we add the family FIN of all finite
languages. We set

F = {MON ,FIN ,COMB ,NIL,DEF ,ORD ,NC ,PS ,SUF ,COMM ,CIRC ,UF}.

Set-theoretic relations between families of the set F are investigated, e. g., in [14], [15], [24], [25],
and [27]. Further relations will be proven in Section 4.

3.2 Subregular Families Defined by the Number of Resources

We now define families of regular languages by restricting the resources needed for generating
or accepting them.

Let G = (N,T, P, S) be a right-linear grammar, A = (V,Z, z0, F, δ) be a deterministic finite
automaton, and L be a regular language. Then we define the following measures of descriptional
complexity:

Var(G) = |N |,
Prod(G) = |P |,
State(A) = |Z|.

The descriptional complexity of a regular language L with respect to the number of non-
terminals, production rules, or states needed for generating or accepting the language L is
the minimal number of the respective resources necessary. For the generating case, we distin-
guish between generating the language L by a regular grammar or by an arbitrary right-linear
grammar:

VarRL(L) = min {Var(G) | G is a right-linear grammar generating L } ,
ProdRL(L) = min { Prod(G) | G is a right-linear grammar generating L } ,

VarREG(L) = min {Var(G) | G is a regular grammar generating L } ,
ProdREG(L) = min { Prod(G) | G is a regular grammar generating L } ,

State(L) = min { State(A) | A is a det. finite automaton accepting L } .

7

For these complexity measures, we define the following families of languages (we abbreviate the
measure Var by V , the measure Prod by P , and the measure State by Z):

RLVn = { L | L is a regular language with VarRL(L) ≤ n } ,
RLPn = { L | L is a regular language with ProdRL(L) ≤ n } ,

REGV
n = { L | L is a regular language with VarREG(L) ≤ n } ,

REGP
n = { L | L is a regular language with ProdREG(L) ≤ n } ,

REGZ
n = { L | L is a regular language with State(L) ≤ n } .

Since every regular grammar is also right-linear, the number of resources needed by a regular
grammar is not smaller (and could be greater) than the number of resources needed by an
arbitrary right-linear grammar. Therefore, the inclusion

REGK
n ⊆ RLKn

holds for every natural number n ≥ 1 and complexity measure K ∈ {V, P}.
Regarding the ressources, we will consider here in this paper the families RLKn for n ≥ 1

and K ∈ {V, P} as well as REGZ
n for n ≥ 1.

4 Hierarchies of Subregular Families

In this section, we relate the subfamilies of regular languages which we have introduced in
the previous section. We prove proper inclusions and incomparabilies between such families.
The hierarchies obtained are presented graphically. We first deduce a hierarchy of subregular
families which are defined by structural properties and then a hierarchy of subregular families
which are defined by restricting the number of resources needed for generating or accepting the
respective languages.

4.1 Structurally Defined Subregular Families

Set-theoretic relations between families of the set

F = {MON ,FIN ,COMB ,NIL,DEF ,ORD ,NC ,PS ,SUF ,COMM ,CIRC ,UF}

are investigated, e. g., in [14], [15], [24], [25], and [27]. In these papers, proper inclusions and
incomparabilities are proven.

It only remains to show the following statement.

Lemma 1. The proper inclusion COMB ⊂ DEF holds.

Proof. The inclusion follows from the definition and was already stated in the paper [14]. By def-
inition, every finite language is also definite but never combinational. This proves the properness
of the inclusion. �

Summarizing, the hierarchy shown in Figure 1 is obtained.

Theorem 2. The inclusion relations presented in Figure 1 hold. An arrow from an entry X to
an entry Y depicts the proper inclusion X ⊂ Y ; if two families are not connected by a directed
path, then they are incomparable.

Proof. The labels at the arrows in Figure 1 refer to the paper or the lemma where the respective
inclusion is proven. The incomparabilities have all been proven in [15]. �

8

REG

PS

NC

ORD

DEF

COMBNIL

FIN

MON

SUF COMM

CIRC

UF

[27]

[15]

[15]
[15]

[15]

[27] 1

[24]

[15]

[25]

[15]

[15]

[15]

[15]

[15]

Figure 1: Hierarchy of subregular families defined by structural properties

4.2 Subregular Families Defined by the Number of Resources

We now state the inclusion relations between the families REGZ
n and RLKn for the complexity

measures K ∈ {V, P} and n ≥ 1. The hierarchy of the families is presented in Figure 2. An
arrow from an entry X to an entry Y denotes the proper inclusion X ⊂ Y . If two families are
not connected by a directed path, then they are incomparable.

We first prove the inclusion relations, then we present witness languages for their properness
and for the incomparabilities, and finally, we prove the properness of every inclusion and each
comparability.

Lemma 3. For each number n ≥ 1 and complexity measure K ∈ {V, P}, we have the inclu-
sion RLKn ⊆ RLKn+1 and the inclusion REGZ

n ⊆ REGZ
n+1.

Proof. Every language which is generated by a grammar with a certain number of resources can
also be generated by a grammar with more resources (for instance, a grammar with the same
resources and additional but unused resources). �

9

REG

...

RLV
n

RLV
n−1

...

RLV
3

RLV
2

RLV
1

...

RLP
2n

RLP
2n−1

RLP
2n−2

...

RLP
6

RLP
5

RLP
4

RLP
3

RLP
2

RLP
1

...

REGZ
n

REGZ
n−1

...

REGZ
3

REGZ
2

REGZ
1

Figure 2: Hierarchy of subregular language families with bounded resources

Lemma 4. For each number n ≥ 1, the inclusion

REGZ
n ⊆ RLVn

holds.

Proof. Let n be a natural number with n ≥ 1 and Ln ∈ REGZ
n . Then there is a deterministic

finite automaton An = (V,Z, z0, F, δ) which has at most n states and accepts the language Ln.
We construct a regular grammar Gn = (N,V, P, Sz0) to the automaton An where we assign a
non-terminal to each state:

N = { Sz | z ∈ Z }.
The rules correspond to the transitions:

P = { Sz → xSz′ | δ(z, x) = z′ } ∪ { Sz → λ | z ∈ F }.

The grammar Gn generates the same language which is accepted by the automaton An because
it simulates a transition step by the application of a rule. Since |N | = |Z|, we obtain the
inclusion REGZ

n ⊆ RLVn . �

10

Lemma 5. For each number n ≥ 1, the inclusion

RLP2n ⊆ RLVn

holds.

Proof. Let n be a natural number with n ≥ 1 and Ln ∈ RLP2n. The language Ln is generated by
a right-linear grammar which has not more than 2n rules. Let

Gn = (N,T, P, S)

be such a grammar with the minimal number of rules. Then, for every rule A → w ∈ P
with w ∈ T ∗N ∪ T ∗ and A 6= S, there is also another rule for the non-terminal A. Otherwise,
in every rule where the non-terminal A occurs on the right-hand side, one could replace A by
the word w which makes the rule A → w superflous. But then the grammar Gn would not be
minimal with respect to the number of rules. Hence, for every non-terminal A 6= S (for which a
rule exists), there are two rules in the grammar. Thus, the number of the non-terminal symbols
occurring on the left-hand sides of the rules is at most

|P | − 1

2
+ 1 =

|P |+ 1

2
.

Since |P | ≤ 2n, the number of sufficient non-terminals is at most

2n+ 1

2
.

The number of non-terminals is a natural number, hence, n non-terminals are sufficient for
generating the language Ln. Thus, Ln ∈ RLVn and RLP2n ⊆ RLVn . �

For proving the properness of the inclusions and the incomparabilities, we use several witness
languages for which we state membership properties in the sequel.

Lemma 6. Let n be a natural number with n ≥ 1 and V be an alphabet with n different let-
ters a1, a2, . . . , an. Further, let Ln = V ∗. Then the relation

Ln ∈ (RLPn+1 ∩ RLV1 ∩ REGZ
1) \ RLPn

holds.

Proof. Let n be a natural number with n ≥ 1. The language Ln can be generated by a regular
grammar with n+ 1 rules:

Gn = ({S}, V, { S → aiS | 1 ≤ i ≤ n } ∪ {S → λ}, S).

Hence, Ln ∈ RLPn+1 ∩ RLV1 . In order to generate the language Ln, one needs at least a rule for
every letter ai and the empty word λ. Hence, Ln /∈ RLPn .

The language Ln is accepted by a deterministic finite automaton

An = (V, {z}, z, {z}, δ)

with the transition mapping δ defined by δ(z, x) = z for x ∈ V . Hence, we have the last
result Ln ∈ REGZ

1 . �

11

Lemma 7. Let n be a natural number with n ≥ 1 and V = {a1, a2, . . . , a2n} be an alphabet
with n different letters. Further, let Ln = V ∗. Then Ln ∈ RLV1 \ RLP2n.

Proof. Let n be a natural number with n ≥ 1. The language Ln = V ∗ can be generated by the
regular grammar

Gn = ({S}, V, { S → aiS | 1 ≤ i ≤ 2n } ∪ {S → λ}, S),

hence, with only one non-terminal. In order to generate the language Ln, one needs at least a
rule for every letter ai and the empty word λ. Hence, 2n rules are not sufficient. �

Lemma 8. Let n be a natural number with n ≥ 1 and V = {a, b}. Further, let

Ln = (({b}∗{a})n{b}∗)+.

Then Ln ∈ (RLVn+1 ∩ REGZ
n+1) \ (RLVn ∪ REGZ

n).

Proof. Let n be a natural number with n ≥ 1. The language Ln can be generated by a regular
grammar with n+ 1 non-terminal symbols:

Gn = ({S1, S2, . . . , Sn+1}, V, Pn, S1)

where the set Pn of rules is

Pn = { Si → bSi | 1 ≤ i ≤ n+ 1 } ∪ { Si → aSi+1 | 1 ≤ i ≤ n } ∪ {Sn → aS1, Sn+1 → λ}.

Let us assume that the language Ln can be generated by a grammar with at most n non-
terminals A1, A2, . . . , An where the start symbol is A1. Then there is a derivation

A1
∗

==⇒ b`
′
1Ai1

∗
==⇒ b`1ab`

′
2Ai2

∗
==⇒ b`1ab`2ab`

′
3Ai3

∗
==⇒ b`1ab`2ab`3 · · · ab`′nAin

∗
==⇒ b`1ab`2ab`3 · · · ab`nab`′n+1Ain+1

∗
==⇒ b`1ab`2ab`3 · · · ab`nab`n+1

of a word with exactly n letters a for numbers ij ∈ {1, . . . , n+ 1} with 0 ≤ j ≤ n+ 1 and `′i ≥ 1
and `i > `′i with 1 ≤ i ≤ n+ 1. Since there are only n different non-terminal symbols, there are
two equal indices ir and is with 1 ≤ r < s ≤ n+ 1. If r = 1 and s = n+ 1, then there exists also
the derivation

A1
∗

==⇒ b`
′
1Ai1

∗
==⇒ b`

′
1b`n+1−`′n+1 .

Hence, a word of the set {b}+ is generated which does not belong to the language Ln. Otherwise
(if r > 1 or s ≤ n), there exists also the derivation

A1
∗

==⇒ b`1ab`2ab`3 · · · ab`′sAis
∗

==⇒ b`1ab`2ab`3 · · · ab`′sb`r−`′rab`r+1 · · · ab`′sAis
∗

==⇒ b`1ab`2ab`3 · · · ab`′sb`r−`′rab`r+1 · · · ab`s · · · ab`′n+1Ain+1

∗
==⇒ b`1ab`2ab`3 · · · ab`′sb`r−`′rab`r+1 · · · ab`s · · · ab`n+1

to a word with exactly n + r − s letters a (more than n but less than 2n letters a). Also such
a word does not belong to the language Ln. This contradiction implies that the language Ln
cannot be generated by a right-linear grammar with at most n non-terminal symbols.

12

The language Ln is accepted by a deterministic finite automaton

An = (V, {z1, z2, . . . , zn+1}, z1, {zn+1}, δ)

with the transition mapping δ defined by

δ(zi, a) = zi+1

for 1 ≤ i ≤ n and
δ(zn+1, a) = z2

as well as
δ(zi, b) = zi

for 1 ≤ i ≤ n+ 1. Hence, we have Ln ∈ REGZ
n+1.

Let ci = an−i for 0 ≤ i ≤ n. Then, for 0 ≤ i ≤ n, we have

baici ∈ Ln and bajci /∈ Ln

for 0 ≤ j < i ≤ n. Therefore, the words b, ba, ba2, . . . , ban are pairwise not in the Myhill-Nerode
relation. Thus, the minimal determinsitic finite automaton accepting the language Ln has at
least n+ 1 states and, therefore, Ln /∈ REGZ

n . �

Lemma 9. Let n be a natural number with n ≥ 1 and Vn = {a1, a2, . . . , an, b} be an alphabet
with n different letters. Further, let

Ln = {b}{a1}+{a2}+ · · · {an}+.

Then Ln ∈ (RLVn+1 ∩ RLP2n+1) \ (RLVn ∪ RLP2n).

Proof. Let n be a natural number with n ≥ 1. The language Ln can be generated by a regular
grammar with n+ 1 non-terminal symbols and 2n+ 1 rules:

Gn = ({S0, S1, . . . , Sn}, Vn, Pn, S0)

where the set Pn of rules is

Pn = {S0 → bS1} ∪ { Si → aiSi | 1 ≤ i ≤ n } ∪ { Si → aiSi+1 | 1 ≤ i ≤ n− 1 } ∪ {Sn → an}.

Let us assume that the language Ln can be generated by a grammar with at most n non-
terminal symbols A1, A2, . . . , An. Then there is a derivation

Ai0
∗

==⇒ ba
`′1
1 Ai1

∗
==⇒ ba`11 a

`′2
2 Ai2

∗
==⇒ ba`11 a

`2
2 a

`′3
3 Ai3

∗
==⇒ ba`11 a

`2
2 a

`3
3 · · · a

`′n
n Ain

∗
==⇒ ba`11 a

`2
2 a

`3
3 · · · a

`n
n

of a word of the language Ln (for certain numbers ij ∈ {1, . . . , n} with 0 ≤ j ≤ n and `′j ≥ 1
and `j > `′j with 1 ≤ j ≤ n). Since there are only n different non-terminal symbols, there are
two equal indices ir and is with 0 ≤ r < s ≤ n. If r = 0, then there exists also the derivation

Ai0 = Air = Ais
∗

==⇒ a`s−`
′
s

s a
`s+1

s+1 · · · a
`n
n .

13

Hence, a word is generated which does not belong to the language Ln. Otherwise (if r > 0),
there exists also the derivation

Ai0
∗

==⇒ ba`11 a
`2
2 a

`3
3 · · · a

`′s
s Ais

∗
==⇒ ba`11 a

`2
2 a

`3
3 · · · a

`′s
s a

`r−`′r
r a

`′r+1

r+1 Air+1

∗
==⇒ ba`11 a

`2
2 a

`3
3 · · · a

`′s
s a

`r−`′r
r a

`r+1

r+1 · · · a
`n
n

to a word which contains asar as a subword but such a word does not belong to the language Ln
because r < s. This contradiction implies that the language Ln cannot be generated by a right-
linear grammar with at most n non-terminal symbols.

From Lemma 5, we know the inclusion

RLP2n ⊆ RLVn .

Since the language Ln does not belong to the class RLVn it does not belong to the class RLP2n
either. �

Lemma 10. Let n be a natural number with n ≥ 1 and V = {a}. Further, let

Ln = {an+1}∗.

Then Ln ∈ (REGZ
n+1 ∩ RLV1 ∩ RLP2) \ REGZ

n .

Proof. Let n be a natural number with n ≥ 1. Let V = {a} and Ln = {an+1}∗. This language
is accepted by a deterministic finite automaton

An = (V, {z0, z1, . . . , zn}, z0, {z0}, δ)

with the transition mapping δ defined by

δ(zi, a) = z(i+1) mod (n+1).

Hence, we have Ln ∈ REGZ
n+1. Let ci = an+1−i for 1 ≤ i ≤ n+ 1. Then

aici ∈ Ln and ajci /∈ Ln

for 1 ≤ j < i ≤ n+1. Therefore, the words a, a2, . . . , an+1 are pairwise not in the Myhill-Nerode
relation. Thus, the minimal determinsitic finite automaton accepting the language Ln has at
least n+ 1 states and, therefore, Ln /∈ REGZ

n .
The language Ln can be generated by the right-linear grammar

Gn = ({S}, V, {S → an+1S, S → λ}, S)

with one non-terminal and two rules. Hence, Ln ∈ RLV1 ∩ RLP2 . �

Lemma 11. Let n be a natural number with n ≥ 1 and let

Ln = {an+1}.

Then Ln ∈ (REGZ
n+2 ∩ RLV1 ∩ RLP1) \ REGZ

n+1.

14

Proof. Let n be a natural number with n ≥ 1. Let V = {a} and Ln = {an+1}. This language is
accepted by a deterministic finite automaton

An = (V, {z0, z1, . . . , zn, zn+1, zn+2}, z0, {zn+1}, δ)

with the transition mapping δ defined by

δ(zi, a) = zi+1

for 0 ≤ i ≤ n and
δ(zn+1, a) = zn+1.

Hence, we have Ln ∈ REGZ
n+2. Let ci = an+1−i for 1 ≤ i ≤ n+ 1. Then

aici ∈ Ln and ajci /∈ Ln

for 0 ≤ j < i ≤ n + 1. Therefore, the words λ, a, a2, . . . , an+1 are pairwise not in the Myhill-
Nerode relation. Thus, the minimal determinsitic finite automaton accepting the language Ln
has at least n+ 2 states and, therefore, Ln /∈ REGZ

n+1.
The language Ln can be generated by the right-linear grammar

Gn = ({S}, V, {S → an+1}, S)

with one non-terminal and one rule. Hence, Ln ∈ RLV1 ∩ RLP1 . �

We now prove the properness of every inclusion depicted in Figure 2.

Lemma 12. For each number n ≥ 1 and complexity measure K ∈ {V, P}, we have the proper
inclusion RLKn ⊂ RLKn+1 and the proper inclusion REGZ

n ⊂ REGZ
n+1.

Proof. The inclusions are shown in Lemma 3.
We now prove that all these inclusions are proper. Let n be a natural number with n ≥ 1.
First, we consider the number of production rules. Let V be an alphabet with n different

letters a1, a2, . . . , an and let
Ln = V ∗.

According to Lemma 6, Ln ∈ RLPn+1 \ RLPn .
Now, we consider the number of non-terminal symbols. Let

Ln = {b}{a1}+{a2}+ · · · {an}+.

According to Lemma 9, Ln ∈ RLVn+1 \ RLVn .
Now, we consider the number of states. Let

Ln = {an+1}∗.

According to Lemma 10, Ln ∈ REGZ
n+1 \ REGZ

n . �

Lemma 13. For each number n ≥ 1, the proper inclusion

REGZ
n ⊂ RLVn

holds.

15

Proof. The inclusion was shown in Lemma 4.
From Lemma 10, we know that the language

Ln = {an+1}∗

does not belong to the family REGZ
n but it can be generated by the grammar with only one

non-terminal symbol. Hence, it holds Ln ∈ RLV1 and, according to Lemma 12, we also have the
relation Ln ∈ RLVn . Thus, Ln ∈ RLVn \ REGZ

n which proves the properness of the inclusion. �

Lemma 14. For each number n ≥ 1, the proper inclusion

RLP2n ⊂ RLVn

holds.

Proof. The inclusion is shown in Lemma 5.
Now, let V = {a1, a2, . . . , a2n} and Ln = V ∗. According to Lemma 7, this language can be

generated by a regular grammar with only one non-terminal but

Ln /∈ RLP2n.

Since Ln ∈ RLV1 , we know from Lemma 12 that also Ln ∈ RLVn holds. Thus,

Ln ∈ RLVn \ RLP2n

which proves the properness of the inclusion. �

We now prove the incomparabilities of the hierarchy.

Lemma 15. For each number n ≥ 1, the family RLVn is incomparable to each family REGZ
m

with m > n.

Proof. Let n and m be two natural numbers with n ≥ 1 and m > n. The language

Lm = {am+1}∗

belongs to the family RLV1 and, according to Lemma 12, also to the family RLVn but not to the
family REGZ

m (Lemma 10).
The language

Kn = (({b}∗{a})n{b}∗)∗

belongs to the family REGZ
n+1 (Lemma 8) and, according to Lemma 12, also to the family REGZ

m

but not to the family RLVn (Lemma 8). �

Lemma 16. For each number n ≥ 1, the family RLVn is incomparable to each of the fami-
lies RLPm with m > 2n.

Proof. Let n and m be two natural numbers with n ≥ 1 and m > 2n. The language

Lm = {a1, a2, . . . , am}∗

belongs to the family RLV1 (Lemma 6) and, according to Lemma 12, also to the family RLVn but
not to the family RLPm (Lemma 6).

The language
Kn = {b}{a1}+{a2}+ · · · {an}+

belongs to the family RLP2n+1 (Lemma 9) and, according to Lemma 12, also to the family RLPm
but not to the family RLVn (Lemma 9). �

16

Lemma 17. For every two numbers n ≥ 1 and m ≥ 1, the families RLPn and REGZ
m are

incomparable.

Proof. Let n and m be two natural numbers with n ≥ 1 and m ≥ 1. The language

Lm = {am+1}

belongs to the family RLP1 (Lemma 11) and, according to Lemma 12, also to the family RLPn
but not to the family REGZ

m+1 (Lemma 11) and, according to Lemma 12, also not to the
family REGZ

m.
The language

Kn = {a1, a2, . . . , an}∗

belongs to the family REGZ
1 (Lemma 6) and, according to Lemma 12, also to the family REGZ

m

but not to the family RLPn (Lemma 6). �

Summarizing, the proper inclusions and incomparabilities shown in Figure 2 are proven.

Theorem 18. The inclusion relations presented in Figure 2 hold. An arrow from an entry X to
an entry Y depicts the proper inclusion X ⊂ Y ; if two families are not connected by a directed
path, then they are incomparable.

Proof. The labels at the arrows in Figure 2 refer to the statement where the respective inclusion
is proven. �

5 Comparing the Families of the Hierarchies

We have defined and investigated subregular families of languages which have common struc-
tural properties and families of regular languages defined by restricting the resources needed for
generating or accepting them. We now relate the families of these two kinds. First, we present
languages which will serve later as witness languages for proper inclusions or incomparabilities.

Lemma 19. Let n be a natural number with n ≥ 1 and let

Ln = {an+1}.

Then Ln ∈ (FIN ∩UF ∩ COMM) \ REGZ
n+1.

Proof. Each language Ln is finite, commutative, can be represented as a finite concatenation of
letters a, and can be generated by a regular grammar with one rule.

Let n be a natural number with n ≥ 1. According to Lemma 11, the language Ln cannot be
accepted by a finite automaton with at most n+ 1 states. �

Lemma 20. Let n be a natural number with n ≥ 1 and

Ln = { ai | 0 ≤ i ≤ n }.

Then Ln ∈ (SUF ∩NIL ∩ COMM) \ REGZ
n+1.

17

Proof. Let n be a natural number with n ≥ 1 and

Ln = { ai | 0 ≤ i ≤ n }.

The language is finite and, therefore, also nilpotent. For every word of the language Ln, also all
suffixes and permutations of this word belong to the language. Hence,

Ln ∈ SUF ∩NIL ∩ COMM .

Let ci = an+1−i for 0 ≤ i ≤ n + 1. Then aici /∈ Ln and ajci ∈ Ln for 0 ≤ j < i ≤ n + 1.
Therefore, the words λ, a, a2, . . . , an+1 are pairwise not in the Myhill-Nerode relation. Thus, the
minimal determinsitic finite automaton accepting the language Ln has at least n+ 2 states and,
therefore, Ln /∈ REGZ

n+1. �

Lemma 21. Let
L = {aa}∗.

Then L ∈ (REGZ
2 ∩ RLV1 ∩ RLP2) \ PS.

Proof. The language L is accepted by the finite automaton

A = ({a}, {z0, z1}, z0, {z0}, δ)

where the transition function δ is given by the following table (which is illustrated in the diagram
next to it)

z0 z1
a z1 z0

z0start z1
a

a

which shows that the language L can be accepted by a deterministic finite automaton with at
most two states.

The language L is generated by the right-linear grammar

G = ({S}, {a}, P, S)

where the set P consists of the rules S → aaS and S → λ. Hence,

L ∈ RLV1 ∩ RLV2 .

The language L is not power-separating since for every natural number m ≥ 1, it holds

Jma ∩ L 6= ∅ and Jma 6⊆ L

with
Jma = { an | n ≥ m }

(for every natural number m ≥ 1, we have a2m ∈ L and a2m+1 ∈ L).
Thus, L ∈ (REGZ

2 ∩ RLV1 ∩ RLV2) \ PS . �

18

Lemma 22. Let
L = {ab}∗.

Then L ∈ (RLV1 ∩ RLP2) \ (SUF ∪DEF).

Proof. The language L is generated by the right-linear grammar

G = ({S}, {a, b}, P, S)

where the set P consists of the rules S → abS and → λ. Hence,

L ∈ RLV1 ∩ RLV2 .

The language is neither suffix-closed (because b is a suffix of the word ab ∈ L but the word b
does not belong to the language L) nor definite (because otherwise the language L would contain
a sufficiently long word which starts with a letter b which is a contradiction). �

Lemma 23. Let
L = {a} ∪ {a, b}∗{b} ∪ {λ}.

Then L ∈ (SUF ∩DEF) \ (RLV1 ∪ RLP3).

Proof. For every word of the language L, also each of its suffixes is contained. Hence, the
language L is suffix-closed. The language L can be written as L = A ∪ V ∗B with

V = {a, b},
A = {a, λ},
B = {b}.

Hence, the language L is also definite.
Let G = (N, {a, b}, P, S) be a right-linear grammar which generates the language L. Since

the empty word λ and the word a belong to the language, there are derivations

S
∗

==⇒ R =⇒ λ and

S
∗

==⇒ T =⇒ a.

For generating an arbitrarily long word of the set V ∗B (with a length greater than one), a
derivation of the form

S
∗

==⇒ uS1
∗

==⇒ uvS1
∗

==⇒ uvwS2
∗

==⇒ uvwzb

is necessary where {S, S1, S2} ⊆ N (the non-terminal symbols S, S1, S2 are not necessarily
different), uvwz ∈ V +, and v ∈ V +. The non-terminal symbols T and S2 must be different
because otherwise the word uvwa could be derived which does not belong to the language L
(because v ∈ V +). Hence, one non-terminal is not sufficient for generating the language L.

Regarding the number of production rules: One needs terminating rules for the words λ and a
as well as a terminating rule for producing the letter b at the end of every other word. Further,
on needs at least one non-terminating rule for the loop part S1

∗
==⇒ vS1 of the derivation above.

Hence, three rules are not sufficient.
Thus, we obtain L /∈ RLV1 ∪ RLP3 . �

19

Lemma 24. Let n be a natural number with n ≥ 1 and let

Ln = (({b}∗{a})n{b}∗)∗

Then Ln ∈ (COMM ∩UF) \ RLVn .

Proof. Let n be a natural number with n ≥ 1. The representation of the language Ln as

Ln = (({b}∗{a})n{b}∗)∗

shows that the language Ln is union-free. The statement Ln /∈ RLVn is known already from
Lemma 8. Let V = {a, b}. The language Ln can also be represented as

Ln = { w | w ∈ V and |w|a = kn for some natural number k ≥ 0 }.

This representation shows that the language Ln is also commutative. �

Lemma 25. Let n be a natural number with n ≥ 1 and let

Ln = Suf ({ w1aw2aw3 · · ·wnawn+1 | wi ∈ {b}∗, 1 ≤ i ≤ n+ 1 }).

Then Ln ∈ (SUF ∩ORD) \ RLVn .

Proof. We start with the relation Ln /∈ RLVn .
Let us assume that the language Ln can be generated by a grammar with at most n non-

terminals A1, A2, . . . , An where the start symbol is A1. Then there is a derivation

A1
∗

==⇒ b`
′
1Ai1

∗
==⇒ b`1ab`

′
2Ai2

∗
==⇒ b`1ab`2ab`

′
3Ai3

∗
==⇒ b`1ab`2ab`3 · · · ab`′nAin

∗
==⇒ b`1ab`2ab`3 · · · ab`nab`′n+1Ain+1

∗
==⇒ b`1ab`2ab`3 · · · ab`nab`n+1

for certain numbers `′i ≥ 1 and `i > `′i with 1 ≤ i ≤ n + 1. Since there are only n different
non-terminal symbols, there are two equal indices ir and is with 1 ≤ r < s ≤ n+1. Hence, there
exists also the derivation

A1
∗

==⇒ b`1ab`2ab`3 · · · ab`′sAis
∗

==⇒ b`1ab`2ab`3 · · · ab`′sb`r−`′rab`′r+1Air+1

∗
==⇒ b`1ab`2ab`3 · · · ab`′sb`r−`′rab`r+1 · · · ab`′sAis
∗

==⇒ b`1ab`2ab`3 · · · ab`′sb`r−`′rab`r+1 · · · ab`s · · · ab`n+1

to a word which contains more than n letters a because the subderivation

Air
∗

==⇒ b`r−`
′
rab`r+1 · · · ab`′sAis

is carried out twice and produces s−r letters a. This contradiction implies that the language Ln
cannot be generated by a right-linear grammar with at most n non-terminal symbols. Hence,
we have Ln /∈ RLVn .

Since the language Ln is the suffix-closure of some language, it is suffix-closed.
The language Ln is also ordered because it can be accepted by the following deterministic

finite automaton which is ordered.

20

The automaton is defined as

A = (V,Z, z0, Z \ {zn+2}, δ)

with

V = {a, b},
Z = {z1, z2, . . . , zn+2},

and the transition function δ given by

δ(zi, a) = zi+1 for i = 1, 2, . . . , n+ 1,

δ(zn+2, a) = zn+2,

δ(zi, b) = zi for i = 1, 2, . . . , n+ 2

which is also shown in the table (where we see that the order z1 ≺ z2 ≺ · · · ≺ zn+2 is preserved
by the transition mapping)

z1 z2 · · · zn zn+1 zn+2

a z2 z3 · · · zn+1 zn+2 zn+2

b z1 z2 · · · zn zn+1 zn+2

and which is illustrated in the diagram below (where we see that the automaton accepts exactly
the suffixes of a word of the language ({b}∗{a})n{b}∗):

z1start z2 · · · zn zn+1 zn+2

b

a

b

a a

b

a

b

a

a, b

Thus, we have proven that Ln ∈ (SUF ∩ORD) \ RLVn holds. �

Lemma 26. Let
L = {ab}.

Then L ∈ RLP1 \ (COMB ∪ SUF ∪ CIRC).

Proof. The language can be generated by a right-linear grammar with a start symbol S and the
rule S → ab as the only rule.

The language is not combinational because it is neither empty nor infinite. It is not suffix-
closed because it does not contain the suffix b of the word ab ∈ L. The language is also not
circular because it does not contain the circular shift ba of the word ab ∈ L. �

Lemma 27. Let
L = {a}+.

Then L ∈ COMB \ RLP1 .

21

Proof. The language is combinational because it has the form V ∗V with V = {a}.
Since a right-linear grammar with one production rule either generates nothing or exactly

one word and the language L is infinite, one rule is not sufficient for generating the language L.
�

Lemma 28. Let
L = {a}∗.

Then L ∈ MON \ RLP1 .

Proof. The language is monoidal because it can be represented as V ∗ with V = {a}.
Since a right-linear grammar with one production rule either generates nothing or exactly

one word and the language L is infinite, one rule is not sufficient for generating the language L.
�

Lemma 29. Let n be a natural number with n ≥ 2 and let

Vn = {a1, a2, . . . , an}

be an alphabet with n letters. Then the relations

V ∗n ∈ MON \ RLPn ,

Vn+1 ∈ FIN \ RLPn ,

V +
n ∈ COMB \ RLPn

hold.

Proof. Let n be a natural number with n ≥ 2.
The language V ∗n is monoidal, the language Vn+1 is finite, and the language V +

n is combina-
tional.

For generating each of the languages V ∗n , Vn+1, and V +
n , a grammar needs at least, for every

letter x of its alphabet, a rule where the first letter of its right-hand side is this letter x. For
generating the infinite languages V ∗n and V +

n , such rules are necessary which do not terminate
and at least one terminating rule is needed. Hence, in all three cases, n+ 1 rules are necessary
for generating the language. �

Lemma 30. Let
L = {ab, bb}.

Then L ∈ RLP2 \ (CIRC ∪UF).

Proof. The language can be generated by a right-linear grammar with a start symbol S and the
rules S → ab and S → bb as the only two rules.

The language is not circular because it does not contain the circular shift ba of the word ab.
The language is neither union-free because it contains two words of minimal length ([22]). �

We now consider the relations between the families defined by structural properties and those
defined by the number of resources.

The state of a deterministic finite automaton with exactly one state is either accepting or
not accepting. If it is accepting, the automaton accepts every word over the input alphabet of
the automaton, otherwise is does not accept any word. This yields the following equality.

22

Lemma 31. It holds REGZ
1 = MON ∪ {∅}.

From Lemma 31, we obtain the following statements.

Lemma 32. For the family REGZ
1 , the relations

MON ⊂ REGZ
1

as well as

REGZ
1 ⊂ SUF , REGZ

1 ⊂ NIL, REGZ
1 ⊂ COMM , and REGZ

1 ⊂ UF

hold.

Proof. According to Lemma 31, we have MON ⊂ REGZ
1 .

Every language of the family REGZ
1 is suffix-closed, nil-potent, commutative, and union-free

(for the empty set, this is obvious; the other languages are monoidal and, therefore, it follows
from the inclusions of the set MON (Theorem 2)). The families SUF , NIL, COMM , and UF also
contain non-empty finite languages which are not contained in the family REGZ

1 . This proves
the properness of each inclusion considered here. �

Lemma 33. The family COMB is incomparable to the family REGZ
1 and strictly included in

the family REGZ
2 . Furthermore, COMB ∩ REGZ

1 = {∅}.

Proof. According to Theorem 2, the families COMB and SUF are disjoint. Since MON ⊂ SUF ,
the families COMB and MON are disjoint. The family COMB contains languages which are not
empty and not monoidal. Since the family MON is not empty, the families COMB and REGZ

1

are incomparable. Furthermore,

COMB ∩ REGZ
1 ⊆ {∅}.

The empty set belongs to the family COMB since it can be given as ∅∗∅. Hence, the equality
holds.

Every combinational language can be represented in the form V ∗A for an alphabet V and a
subset A ⊆ V . Such a language is accepted by the finite automaton

A = (V, {z0, z1}, z0, {z1}, δ)

where the transition function δ is given by the following table (which is illustrated in the diagram
next to it)

z0 z1

x ∈ V \A z0 z0

a ∈ A z1 z1 z0start z1

V \A
A

A

V \A

which shows that every combinational language can be accepted by a deterministic finite au-
tomaton with at most two states. Hence, COMB ⊆ REGZ

2 . Since

{λ} ∈ REGZ
1 \ COMB and REGZ

1 ⊂ REGZ
2 ,

we obtain the proper inclusion COMB ⊂ REGZ
2 . �

23

Lemma 34. The family FIN is incomparable to each family REGZ
n for n ≥ 1.

Proof. Let n be a natural number with n ≥ 1 and V = {a}. Further, let

Ln = {an+1}.

According to Lemma 19, we have Ln ∈ FIN \REGZ
n+1. Hence, for every natural number n ≥ 1,

there is a finite language which cannot be accepted by a deterministic finite automaton with at
most n states.

The language V ∗, however, can be accepted with one state but is not finite. �

Besides the Lemma 33, we obtain the following results for the families REGZ
n for every

natural number n ≥ 2.

Lemma 35. Each of the families SUF , NIL, DEF , ORD, NC , and PS is incomparable to
every family REGZ

n for n ≥ 2.

Proof. The family NIL is a subset of each of the families DEF , ORD , NC , and PS . The fam-
ily REGZ

2 is a subset of each of the families REGZ
n with n ≥ 3. According to Theorem 2, it

suffices to show for the mentioned incomparabilities that, for every number n ≥ 2, there is a
language which is suffix-closed and nilpotent but cannot be accepted by a deterministic finite
automaton with n states and that there is a language which is accepted by a deterministic finite
automaton with two states but which is not power-separating.

Let n be a natural number with n ≥ 1 and

Ln = { ai | 0 ≤ i ≤ n }.

According to Lemma 20, we have Ln ∈ SUF ∩NIL \ REGZ
n+1.

Let
L = {aa}∗.

According to Lemma 21, we have L ∈ REGZ
2 \ PS .

Thus, each of the families SUF , NIL, DEF , ORD , NC , and PS is incomparable to each
family REGZ

n for n ≥ 2. �

Lemma 36. Each of the families COMM , CIRC , and UF is incomparable to every fam-
ily REGZ

n for n ≥ 2.

Proof. Since the family COMM is a subset of the family CIRC , it suffices to show that, for
every number n ≥ 2, there is a commutative and union-free language which is not accepted by a
deterministic finite automaton with n states and that there is a language which is accepted by
a deterministic finite automaton with two states but which is neither circular nor union-free.

Let n be a natural number with n ≥ 1 and let

Ln = {an+1}.

From Lemma 19, we know that Ln ∈ (COMM ∩UF) \ REGZ
n+1.

According to Theorem 2, there exists a combinational language which is neither circular nor
union-free. By Lemma 33, this language is accepted by a deterministic finite automaton with
two states.

Thus, each of the families COMM , CIRC , and UF is incomparable to each of the fami-
lies REGZ

n for n ≥ 2. �

24

We now consider the sugregular families defined by restricting the number of non-terminals.

Lemma 37. The proper inclusions

COMB ⊂ RLV1 and NIL ⊂ RLV1

hold.

Proof. Let L be a combinational language. Then L = V ∗A for an alphabet V and a subsetA ⊆ V .
This language is generated by the regular grammar

GCOMB = ({S}, V, P, S)

where the set P consists of the rules S → xS for every letter x ∈ V and S → a for every
letter a ∈ A. Since the grammar contains only one non-terminal, we obtain the inclusion

COMB ⊆ RLV1 .

The family RLV1 contains non-empty finite languages which are not combinational. This proves
the properness of the inclusion.

Let L be a nilpotent language over some alphabet V . Then the language L is finite or its
complement V ∗ \ L is finite. If the language L is finite, it can be generated by the right-linear
grammar

GNIL = ({S}, V, P, S)

where the set P consists of the rules S → w for every word w ∈ L. If the language L is infinite,
then its complement V ∗ \ L is finite. Let

m = max{ |w| | w ∈ V ∗ \ L }

be the maximal length of the words of the complement set. Then all words with a length of more
than m belong to the language L (and possibly further words). Hence, the language L can be
represented in the form

L = A ∪ V ∗V m+1

for a finite subset A ⊆ V ≤ m. Any natural number n ≥ m+ 1 (any length of a word w ∈ L \A)
is the sum n = k(m+ 1) + r for natural numbers k and r with k ≥ 1 and 0 ≤ r < m+ 1. Hence,
the number n is also the sum

n = (k − 1)(m+ 1) + (m+ 1) + r

and, with k′ = k − 1 and r′ = m + 1 + r, we obtain n = k′(m + 1) + r′ and k′ ≥ 0
and m+ 1 ≤ r < 2(m+ 1). The language L can be generated by the right-linear grammar

GNIL∞ = ({S}, V, P, S)

where the set P consists of the rules
– S → w for every word w ∈ A,
– S → w for every word w ∈ V ∗ with m+ 1 ≤ |w| < 2(m+ 1), and
– S → wS for every word w ∈ V m+1.

By the rules of the first kind, exactly the words of the set A are generated. By the rules of the
second and third kind, exactly the words of the set V ∗V m+1 are generated. By the rules of the
second kind alone, a finite subset of the set V ∗V m+1 is generated. By the rules of the first and
third kind together, an infinite subset of the set V ∗V m+1 is generated.

Since the grammar GNIL∞ contains only one non-terminal symbol, we obtain the inclu-
sion NIL ⊆ RLV1 .

This proves the properness of the inclusion. �

25

Lemma 38. The family DEF is incomparable to the family RLV1 and strictly included in the
family RLV2 .

Proof. Let
L = {aa}∗.

According to Lemma 21, we have L ∈ RLV1 \ PS and, therefore, also L ∈ RLV1 \DEF .
Let

L = {a} ∪ {a, b}∗{b} ∪ {λ}.

From Lemma 23, we know that L ∈ DEF \ RLV1 .
Thus, the family DEF is incomparable to the family RLV1 .
Now, let L be an arbitrary definite language L = A ∪ V ∗B for some alphabet V and two

finite subsets A and B of V ∗. This language can be generated by the right-linear grammar

G = ({S, S∞}, V, P, S)

where the set P consists of the rules
– S → w for every word w ∈ A,
– S → S∞,
– S∞ → xS∞ for every letter x ∈ V , and
– S∞ → w for every word w ∈ B.

Hence, every definite language can be generated by a right-linear grammar with two non-terminal
symbols.

The properness of the inclusion follows from Lemma 21 with the witness language L = {aa}∗
mentioned above. �

Lemma 39. Each of the families SUF , ORD, NC , and PS is incomparable to every family RLVn
for n ≥ 1.

Proof. Due to the inclusions SUF ⊆ PS and ORD ⊆ NC ⊆ PS , it suffices to show that for every
number n ≥ 1, there is a suffix-closed and ordered language which is not generated by a right-
linear grammar with n non-terminal symbols and that there is a language which is generated
by a right-linear grammar with one non-terminal symbol but which is not power-separating.

For the second case, let
L = {aa}∗.

According to Lemma 21, we have L ∈ RLV1 \ PS .
For the first case, let n be a natural number with n ≥ 1 and let

Ln = Suf ({ w1aw2aw3 · · ·wnawn+1 | wi ∈ {b}∗, 1 ≤ i ≤ n+ 1 }).

According to Lemma 25, we have Ln ∈ (SUF ∩ORD) \ RLVn .
Hence, each of the families SUF , ORD , NC , and PS is incomparable to every family RLVn

for n ≥ 1. �

Lemma 40 ([15]). Let
L = {a, b, c}∗{a, b}.

Then the relation L ∈ COMB \ (NIL ∪ CIRC ∪UF) holds.

26

Proof. The language L can be represented as V ∗A for the alphabet V = {a, b, c} and its sub-
set A = {a, b}. Hence, the language is combinational.

This language is infinite. Its complement is also infinite with respect to every alphabet V
which is a superset of the alphabet {a, b, c} (the complement contains in every case infinitely
many words which have c as the last letter). Hence, the language L is not nilpotent.

The word cb belongs to the language L but not its circular shift bc. Hence, the language L
is not circular.

In a union-free language, there are no two different words of the minimal length ([22]). But
the minimal length of words in the language L is one and the language contains two words of
this length (a and b). Hence, the language L is not union-free. �

Lemma 41. Each of the families COMM , CIRC , and UF is incomparable to every family RLVn
for n ≥ 1.

Proof. Due to the inclusion COMM ⊆ CIRC , it suffices to show that for every number n ≥ 1,
there is a commutative and union-free language which cannot be generated by a right-linear
grammar with n non-terminal symbols and that there is a language which is generated by a
right-linear grammar with one non-terminal symbol but which is neither circular nor union-free.

For the first case, let n be a natural number with n ≥ 1 and

Ln = (({b}∗{a})n{b}∗)∗.

According to Lemma 24, it holds

Ln ∈ (COMM ∩UF) \ RLVn .

For the second case, let
L = {a, b, c}∗{a, b}.

From Lemma 40, we know the relation

L ∈ COMB \ (CIRC ∪UF),

which implies the relation
L ∈ RLV1 \ (CIRC ∪UF)

by Lemma 37. �

We now consider the subregular families defined by restricting the number of production
rules.

Lemma 42. The proper inclusions

RLP1 ⊂ FIN and RLP1 ⊂ UF

hold.

Proof. A right-linear grammar with one production rule either generates nothing or exactly one
word. The properness of the inclusions hold because there exist a finite language and a union-free
language with more than one word. �

27

Lemma 43. The family RLP1 is incomparable to the family COMB. Furthermore, the relation

RLP1 ∩ COMB = {∅}

holds.

Proof. From Lemma 26, we know

{ab} ∈ RLP1 \ COMB .

According to Lemma 27, we have

{a}+ ∈ COMB \ RLP1 .

These two witness languages prove the incomparability of the family RLP1 to the family COMB .
Since a right-linear grammar with one production rule either generates nothing or exactly

one word and all the combinational languages are either empty or infinite, the empty set is the
only common language of the two families. �

Lemma 44. The family RLP1 is incomparable to the families MON , SUF , COMM , and CIRC .

Proof. According to Theorem 2, it suffices to show for these incomparabilities that there are a
monoidal language which cannot be generated by a right-linear grammar with one production
rule only and a language which is generated by a right-linear grammar with one production rule
only but which is not suffix-closed nor circular.

According to Lemma 28, we have

{a}∗ ∈ MON \ RLP1 .

From Lemma 26, we know
{ab} ∈ RLP1 \ (SUF ∪ CIRC).

These two witness languages prove the incomparability of the family RLP1 with each of the
families MON , SUF , COMM , and CIRC . �

Lemma 45. Each family RLPn for n ≥ 2 is incomparable to each of the families of the set

F = {MON ,FIN ,COMB ,NIL,DEF ,ORD ,NC ,PS ,SUF ,COMM ,CIRC ,UF}.

Proof. According to Theorem 2, it suffices to show for these incomparabilities that, for any
natural number n ≥ 2, there are a monoidal language, a finite language, and a combinational
language which cannot be generated by a right-linear grammar with at most n rules and that
there are a language which is not power-separating and a language which is not circular nor
union-free but which can be generated by a right-linear grammar with at most two rules.

Let n be a natural number with n ≥ 2 and let

Vn = {a1, a2, . . . , an}

be an alphabet with n letters. The relations

V ∗n ∈ MON \ RLPn ,

Vn+1 ∈ FIN \ RLPn ,

V +
n ∈ COMB \ RLPn

28

hold according to Lemma 29. Hence, there are a monoidal language, a finite language, and a
combinational language which cannot be generated by a right-linear grammar with at most n
rules.

From Lemma 21, we know that

{aa}∗ ∈ RLP2 \ PS .

From Lemma 30, we know that

{ab, bb} ∈ RLP2 \ (CIRC ∪UF).

Hence, there are a language which is not power-separating and a language which is not circular
nor union-free but which can be generated by a right-linear grammar with at most two rules.

These witness languages prove the incomparabilities. �

The results of this section are illustrated in Figure 3.

REG

PS

NC

ORD

DEF

COMBNIL

FIN

SUFCOMM

CIRC

RLV
1

RLV
2

...

REGZ
2

...

UF

RLP
1

...

REGZ
1

MON

32

32

32

32
32

42

42

37
37 33

38

Figure 3: Hierarchy of subregular language families

29

Theorem 46. The inclusion relations presented in Figure 3 hold. An arrow from an entry X to
an entry Y depicts the proper inclusion X ⊂ Y ; if two families are not connected by a directed
path, then they are incomparable.

Proof. The inclusions which correspond to arrows without a label were proven in the previous
sections (Theorems 2 and 18). A label at an arrow in Figure 3 refers to the Lemma where the
respective inclusion is proven. �

References

1. J. Dassow, F. Manea, B. Truthe, Networks of Evolutionary Processors with Subregular Filters. In: A. H.
Dediu, S. Inenaga, C. Mart́ın-Vide (eds.), Language and Automata Theory and Applications. Fifth Inter-
national Conference, LATA 2011, Tarragona, Spain, May 26 – 31, 2011 . LNCS 6638, Springer-Verlag, 2011,
262–273.

2. J. Dassow, F. Manea, B. Truthe, On Contextual Grammars with Subregular Selection Languages. In:
M. Holzer, M. Kutrib, G. Pighizzini (eds.), Descriptional Complexity of Formal Systems – 13th Inter-
national Workshop, DCFS 2011, Gießen/Limburg, Germany, July 25 – 27, 2011. Proceedings. LNCS 6808,
Springer-Verlag, 2011, 135–146.

3. J. Dassow, F. Manea, B. Truthe, On External Contextual Grammars with Subregular Selection Languages.
Theoretical Computer Science 449 (2012) 1, 64–73.

4. J. Dassow, F. Manea, B. Truthe, On Subregular Selection Languages in Internal Contextual Grammars.
Journal of Automata, Languages, and Combinatorics 17 (2012) 2–4, 145–164.

5. J. Dassow, F. Manea, B. Truthe, Networks of Evolutionary Processors: The Power of Subregular Filters.
Acta Informatica 50 (2013) 1, 41–75.
http://link.springer.com/article/10.1007/s00236-012-0172-0

6. J. Dassow, F. Manea, B. Truthe, On the Power of Accepting Networks of Evolutionary Processors with
Special Topologies and Random Context Filters. Fundamenta Informaticae 136 (2015) 1–2, 1–35.
http://content.iospress.com/articles/fundamenta-informaticae/fi136-1-2-02

7. J. Dassow, R. Stiebe, B. Truthe, Two Collapsing Hierarchies of Subregularly Tree Controlled Languages.
Theoretical Computer Science 410 (2009) 35, 3261–3271.
http://dx.doi.org/10.1016/j.tcs.2009.03.005

8. J. Dassow, R. Stiebe, B. Truthe, Generative Capacity of Subregularly Tree Controlled Grammars. Inter-
national Journal of Foundations of Computer Science 21 (2010), 723–740.

9. J. Dassow, B. Truthe, On Two Hierarchies of Subregularly Tree Controlled Languages. In: C. Câmpeanu,
G. Pighizzini (eds.), 10th International Workshop on Descriptional Complexity of Formal Systems, DCFS
2008, Charlottetown, Prince Edward Island, Canada, July 16–18, 2008, Proceedings. University of Prince
Edward Island, 2008, 145–156.
http://theo.cs.uni-magdeburg.de/pubs/papers/dastru-subreg-dcfs08.pdf

10. J. Dassow, B. Truthe, Subregularly Tree Controlled Grammars and Languages. In: E. Csuhaj-Varjú,
Z. Ésik (eds.), Automata and Formal Languages – 12th International Conference AFL 2008, Balatonfüred,
Hungary, May 27–30, 2008, Proceedings. Computer and Automation Research Institute of the Hungarian
Academy of Sciences, 2008, 158–169.

11. J. Dassow, B. Truthe, On Networks of Evolutionary Processors with State Limited Filters. In: H. Bordihn,
R. Freund, T. Hinze, M. Holzer, M. Kutrib, F. Otto (eds.), Second Workshop on Non-Classical Models
of Automata and Applications (NCMA), Jena, Germany, August 23–24, 2010, Proceedings. books@ocg.at
263, Österreichische Computer Gesellschaft, Austria, 2010, 57–70.

12. J. Dassow, B. Truthe, On Networks of Evolutionary Processors with Filters Accepted by Two-State-
Automata. Fundamenta Informaticae 112 (2011) 2–3, 157–170.

13. J. Dassow, B. Truthe, Extended Splicing Systems with Subregular Sets of Splicing Rules. In: R. Fre-
und, M. Holzer, B. Truthe, U. Ultes-Nitsche (eds.), Fourth Workshop on Non-Classical Models of
Automata and Applications (NCMA), Fribourg, Switzerland, August 23–24, 2012, Proceedings. books@ocg.at
290, Österreichische Computer Gesellschaft, Austria, 2012, 65–78.

14. I. M. Havel, The theory of regular events ii. Kybernetika 5 (1969) 6, 520–544.
15. M. Holzer, B. Truthe, On Relations Between Some Subregular Language Families. In: R. Freund,

M. Holzer, N. Moreira, R. Reis (eds.), Seventh Workshop on Non-Classical Models of Automata and
Applications (NCMA), Porto, Portugal, August 31 – September 1, 2015, Proceedings. books@ocg.at 318,
Österreichische Computer Gesellschaft, Austria, 2015, 109–124.

30

16. J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley, Reading, 1979.

17. R. Laing, J. Wright, Commutative machines. Technical Report 04422/0310525-T, University of Michigan,
Ann Arbor, Michigan, 1962.

18. F. Manea, B. Truthe, Accepting Networks of Evolutionary Processors with Subregular Filters. In:
P. Dömösi, S. Iván (eds.), Automata and Formal Languages – 13th International Conference AFL 2011,
Debrecen, Hungary, August 17–22, 2011, Proceedings. College of Nýıregyháza, 2011, 300–314.

19. F. Manea, B. Truthe, On Internal Contextual Grammars with Subregular Selection Languages. In:
M. Kutrib, N. Moreira, R. Reis (eds.), Descriptional Complexity of Formal Systems – 14th Interna-
tional Workshop, DCFS 2012, Braga, Portugal, July 23 – 25, 2012. Proceedings. LNCS 7386, Springer-Verlag,
2012, 222–235.

20. F. Manea, B. Truthe, Accepting Networks of Evolutionary Processors with Subregular Filters. Theory of
Computing Systems 55 (2014) 1, 84–109.
http://alerts.springer.com/re?l=D0In5r6cdI6h4nom7Iy

21. R. McNaughton, S. Papert, Counter-Free Automata. The M.I.T. Press, Cambridge, Massachusetts, 1971.
22. B. Nagy, A Normal Form for Regular Expressions. In: C. S. Calude, E. Calude, M. J. Dinneen (eds.), Sup-

plemental Papers for DLT’04 . CDMTCS Research Report Series 252, University of Auckland, New Zealand,
2004, 53–62.

23. M. Peres, M. Rabin, E. Shamir, The theory of definite automata. IEEE Transactions on Electronic Com-
puters 12 (1963) 3, 233–243.

24. H. Shyr, G. Thierrin, Ordered Automata and Associated Languages. Tankang Journal of Mathematics 5
(1974) 1, 9–20.

25. H. Shyr, G. Thierrin, Power-Separating Regular Languages. Mathematical Systems Theory 8 (1974) 1,
90–95.

26. B. Truthe, A Relation Between Definite and Ordered Finite Automata. In: S. Bensch, R. Freund, F. Otto
(eds.), Sixth Workshop on Non-Classical Models of Automata and Applications (NCMA), Kassel, Germany,
July 28–29, 2014, Proceedings. books@ocg.at 304, Österreichische Computer Gesellschaft, Austria, 2014, 235–
247.

27. B. Wiedemann, Vergleich der Leistungsfähigkeit endlicher determinierter Automaten. Diplomarbeit, Univer-
sität Rostock, 1978.

31

Institut für Informatik
Justus-Liebig-Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

Recent Reports

(Further reports are available at www.informatik.uni-giessen.de.)

M. Holzer, M. Hospodár, On the Magic Number Problem of the Cut Operation, Report 1703, October 2017.

M. Holzer, S. Jakobi, A Note on the Computational Complexity of Some Problems for Self-Verifying Finite Au-
tomata, Report 1702, April 2017.

S. Beier, M. Holzer, M. Kutrib, On the Descriptional Complexity of Operations on Semilinear Sets, Report 1701,
April 2017.

M. Holzer, S. Jakobi, M. Wendlandt, On the Computational Complexity of Partial Word Automata Problems,
Report 1404, May 2014.

H. Gruber, M. Holzer, Regular Expressions From Deterministic Finite Automata, Revisited, Report 1403, May
2014.

M. Kutrib, A. Malcher, M. Wendlandt, Deterministic Set Automata, Report 1402, April 2014.

M. Holzer, S. Jakobi, Minimal and Hyper-Minimal Biautomata, Report 1401, March 2014.

J. Kari, M. Kutrib, A. Malcher (Eds.), 19th International Workshop on Cellular Automata and Discrete Complex
Systems AUTOMATA 2013 Exploratory Papers, Report 1302, September 2013.

M. Holzer, S. Jakobi, Minimization, Characterizations, and Nondeterminism for Biautomata, Report 1301, April
2013.

A. Malcher, K. Meckel, C. Mereghetti, B. Palano, Descriptional Complexity of Pushdown Store Languages, Re-
port 1203, May 2012.

M. Holzer, S. Jakobi, On the Complexity of Rolling Block and Alice Mazes, Report 1202, March 2012.

M. Holzer, S. Jakobi, Grid Graphs with Diagonal Edges and the Complexity of Xmas Mazes, Report 1201, January
2012.

H. Gruber, S. Gulan, Simplifying Regular Expressions: A Quantitative Perspective, Report 0904, August 2009.

M. Kutrib, A. Malcher, Cellular Automata with Sparse Communication, Report 0903, May 2009.

M. Holzer, A. Maletti, An n logn Algorithm for Hyper-Minimizing States in a (Minimized) Deterministic Au-
tomaton, Report 0902, April 2009.

H. Gruber, M. Holzer, Tight Bounds on the Descriptional Complexity of Regular Expressions, Report 0901, Febru-
ary 2009.

M. Holzer, M. Kutrib, and A. Malcher (Eds.), 18. Theorietag Automaten und Formale Sprachen, Report 0801,
September 2008.

M. Holzer, M. Kutrib, Flip-Pushdown Automata: Nondeterminism is Better than Determinism, Report 0301,
February 2003

M. Holzer, M. Kutrib, Flip-Pushdown Automata: k + 1 Pushdown Reversals are Better Than k, Report 0206,
November 2002

M. Holzer, M. Kutrib, Nondeterministic Descriptional Complexity of Regular Languages, Report 0205, September
2002

H. Bordihn, M. Holzer, M. Kutrib, Economy of Description for Basic Constructions on Rational Transductions,
Report 0204, July 2002

M. Kutrib, J.-T. Löwe, String Transformation for n-dimensional Image Compression, Report 0203, May 2002

A. Klein, M. Kutrib, Grammars with Scattered Nonterminals, Report 0202, February 2002

A. Klein, M. Kutrib, Self-Assembling Finite Automata, Report 0201, January 2002

M. Holzer, M. Kutrib, Unary Language Operations and its Nondeterministic State Complexity, Report 0107,
November 2001

A. Klein, M. Kutrib, Fast One-Way Cellular Automata, Report 0106, September 2001

M. Holzer, M. Kutrib, Improving Raster Image Run-Length Encoding Using Data Order, Report 0105, July 2001

M. Kutrib, Refining Nondeterminism Below Linear-Time, Report 0104, June 2001

M. Holzer, M. Kutrib, State Complexity of Basic Operations on Nondeterministic Finite Automata, Report 0103,
April 2001

