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V. SUMMARY 

 

During wound healing, fibroblasts migrate into the wound where they proliferate and 

eventually differentiate to myofibroblasts. The latter produce extracellular matrix 

(ECM) components and thus participate in the formation of a new ECM in the lesion. 

The characteristics of myofibroblasts are the expression of α-smooth muscle actin   

(α-SMA) and high contractile activity. The acquisition of the myofibroblast phenotype 

during wound healing is regulated in a combinatory way by cytokines, e.g. transform-

ing growth factor-β1 (TGF-β1), and matrix rigidity. Low density lipoprotein receptor-

related protein 1 (LRP1) was also found to control fibroblast to myofibroblast transdif-

ferentiation in kidney and liver. Depending on the organ, this endocytic receptor pro-

motes or suppresses α-SMA expression in fibroblasts. In kidney, LRP1 exerts its 

functions by modulating the TGF-β1 response. However, it remains elusive whether 

LRP1 regulates the induction of the myofibroblast phenotype in lung fibroblasts from 

patients with idiopathic pulmonary fibrosis (IPF).   

 

In order to decipher the role of LRP1 in lung fibroblast differentiation, LRP1 was 

knocked-down in IPF and donor lung fibroblasts. The microarray analysis revealed 

that LRP1-deficiency significantly perturbs Kegg pathways which describe processes 

of cytoskeleton modulation in IPF lung fibroblasts but not in donor lung fibroblasts. In 

contrast, Kegg pathways which describe endocytic processes were significantly per-

turbed in donor lung fibroblasts but not in IPF lung fibroblasts following LRP1-

depletion. The α-SMA expression was investigated in the IPF lung fibroblasts which 

were derived from different IPF patients. Levels of LRP1 mRNA and α-SMA mRNA 

negatively correlated in these cells. In addition, knock-down of LRP1 led to the in-

crease of α-SMA protein expression in IPF lung fibroblasts. This effect was not me-

diated by the canonical TGF-β1 pathway. In detail, silencing of SMAD3 did not block 

α-SMA expression after LRP1-knock-down. It was furthermore demonstrated that the 

expression, activation and transcriptional activity of SMAD3 is not affected by silenc-

ing of LRP1. Instead, it was shown that the activity of extracellular signal-regulated 

kinase (ERK) and c-Jun N-terminal kinase (JNK) as well as of the transcription factor 

c-Jun is elevated after LRP1-depletion in IPF lung fibroblasts. Pharmacological 

blockage of ERK or JNK in LRP1-expressing and LRP1-deficient IPF lung fibroblasts
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identified JNK to mediate the suppression of α-SMA by LRP1. Combined knock-down 

of LRP1 and JNK1 confirmed this finding. Moreover, this experiment showed that 

LRP1 suppresses c-Jun, a downstream target of JNK, in IPF lung fibroblasts. c-Jun 

can be a component of the transcription factor AP1.  

Dual-Luciferase Reporter Assay revealed that LRP1 inhibited the transcriptional ac-

tivity of AP1 under basal conditions and in response to TGF-β1.  

Functionally, LRP1 suppressed the contractile activity of IPF lung fibroblasts under 

basal conditions and after TGF-β1 treatment. Proliferation and migration were not 

affected by LRP1-depletion.      

 

Collectively, the present study describes the mechanism by which LRP1 inhibits the 

differentiation of IPF lung fibroblasts to myofibroblasts. In detail, LRP1 limits α-SMA 

expression and the contractile activity of IPF lung fibroblasts by inhibiting the 

JNK/AP1 signaling pathway.   
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VI. ZUSAMMENFASSUNG 

 

Bei der Wundheilung migrieren Fibroblasten in die Wunde, in der sie proliferieren und 

sich schlussendlich zu Myofibroblasten differenzieren. Letztere produzieren Bestand-

teile der ECM und wirken somit bei der Erneuerung der ECM in der Läsion mit. Die 

Charakteristika der Myofibroblasten sind die Expression von α-SMA und die hohe 

kontraktile Aktivität. Das Auftreten des Myofibroblast-Phänotyps während der Wund-

heilung wird durch das Zusammenwirken von Zytokinen, z.B. TGF-β1, und der Mat-

rixfestigkeit reguliert. Es wurde weiterhin demonstriert, dass LRP1 ebenfalls die Diffe-

renzierung von Fibroblasten zu Myofibroblasten in den Nieren und in der Leber kont-

rolliert. In Abhängigkeit vom Organ fördert oder unterdrückt dieser endozytotische 

Rezeptor die Expression von α-SMA in Fibroblasten. In den Nieren erfolgt dies, in-

dem LRP1 den TGF-β1 Signalweg moduliert. Es ist jedoch nicht bekannt, ob LRP1 

die Ausprägung des Myofibroblast-Phänotyps in Lungenfibroblasten von Patienten 

mit der idiopathischen pulmonalen Fibrose reguliert.        

  

Um die Rolle von LRP1 in der Differenzierung von Lungenfibroblasten zu Myofibrob-

lasten aufzuschlüsseln, wurde ein Knock-Down von LRP1 in IPF und Donor Lungen-

fibroblasten durchgeführt. Die Analyse mittels Microarray zeigte, dass LRP1-

Defizienz diejenigen Kegg Signalwege, die Prozesse der Zytoskelettmodulierung be-

schreiben, in IPF Lungenfibroblasten aber nicht in Donor Lungenfibroblasten signifi-

kant stört. Die Kegg Signalwege, die endozytische Prozesse beschreiben, waren 

hingegen nach LRP1-Verlust in Donor Lungenfibroblasten, jedoch nicht in IPF Lun-

genfibroblasten, signifikant gestört. Die α-SMA Expression wurde in den IPF Lungen-

fibroblasten von verschiedenen IPF Patienten untersucht. In diesen Zellen standen 

die Level der LRP1 mRNA und α-SMA mRNA in einer negativen Korrelation zuei-

nander. Des Weiteren führte der Knock-down von LRP1 zu einer erhöhten α-SMA 

Proteinexpression in IPF Lungenfibroblasten. Dieser Effekt wurde nicht von dem ka-

nonischen TGF-β1 Signalweg vermittelt. Das geht daraus hervor, dass Silencing von 

SMAD3 nicht den Anstieg der α-SMA-Expression nach Verlust von LRP1 blockiert 

hat. Es wurde weiterhin gezeigt, dass LRP1 Silencing die Expression, Aktivierung 

und transkriptionale Aktivität von SMAD3 nicht verändert. Stattdessen war die Aktivi-

tät der Kinasen ERK und JNK sowie des Transkriptionsfaktors c-Jun nach LRP1-
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Verlust in IPF Lungenfibroblasten erhöht. Die pharmakologische Inhibition von ERK 

oder JNK in LRP1-exprimierenden und LRP1-defizienten IPF Lungenfibroblasten 

identifizierte JNK als den Vermittler der LRP1-abhängigen Suppression von α-SMA. 

Kombinierter Knock-Down von LRP1 und JNK1 bestätigte dieses Ergebnis. Zusätz-

lich zeigte dieser Versuch, dass LRP1 c-Jun in IPF Lungenfibroblasten unterdrückt. 

Bei diesem Protein handelt es sich um einen nachgeordneten Vermittler von JNK.    

c-Jun kann eine Komponente des Transkriptionsfaktors AP1 sein. Dual-Luciferase 

Reporter Assay zeigte, dass LRP1 die transkriptionale Aktivität von AP1 unter basa-

len Bedingungen und in Reaktion auf TGF-β1 inhibiert. Die Funktion der Myofibrob-

lasten betreffend, reduziert LRP1 die kontraktile Aktivität von IPF Lungenfibroblasten 

unter basalen Bedingungen und nach Behandlung mit TGF-β1. Das Proliferations- 

und Migrationsverhalten wurden durch den Verlust von LRP1 nicht verändert.  

 

Insgesamt wird in dieser Arbeit der Mechanismus beschrieben, mit dem LRP1 die 

Differenzierung von IPF Lungenfibroblasten zu Myofibroblasten inhibiert. LRP1 limi-

tiert die α-SMA Expression und die kontraktile Aktivität von IPF Lungenfibroblasten 

durch Inhibierung des JNK/AP1 Signalwegs.  
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1 Introduction 

1.1 Low density lipoprotein receptor-related protein 1 

 

LRP1 is a member of the low density lipoprotein receptor (LDLR) superfamily which 

encompasses also LDLR, megalin, LRP1B, LRP3, LRP4, LRP5, LRP6, the very low 

density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor 2 (apoER2) 

[1,2].  

 

LRP1 consists of the extracellular heavy α-chain (515 kDa) and the transmem-

brane/cytoplasmic light β-chain (85 kDa) [3]. The α-chain contains four clusters of 

ligand-binding type cysteine-rich repeats of which cluster II and IV mediate ligand-

binding [3,4]. Up to now, more than 100 ligands of LRP1 have been identified, 

amongst them are TGF-β1, platelet-derived growth factor (PDGF), matrix metallopro-

teinases (MMPs), urokinase-type plasminogen activator (uPA), apolipoprotein E, α2-

macroglobulin, thrombospondin 1, calreticulin and lactoferrin [1,5,6]. Six epidermal 

growth factor (EGF) repeats non-covalently connect the α-chain to the β-chain [3]. 

The latter contains the single membrane-spanning segment and the cytoplasmic do-

main [3]. Within the cytoplasmic domain, one YXXL motif and two NPXY motifs [3] 

regulate the two functions of LRP1 which are endocytosis and the modulation of sig-

naling cascades. In detail, the YXXL motif controls LRP1 endocytosis [7], whereas 

the NPXY motifs mediate LRP1-dependent signal transduction by serving as docking 

sites for cytoplasmic adaptor proteins [8–10]. Figure 1 shows the structure of LRP1.  
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Fig. 1: Structure of LRP1. LRP1 consists of the extracellular α- and the transmembrane/cytoplasmic 

β-chain which are non-covalently connected to each other. The α-chain encompasses the four ligand-

binding type cysteine-rich repeats, whereas the β-chain contains the transmembrane domain and the 

cytoplasmic domain with two NPXY motifs and one YXXL motif. The figure was taken from reference 

[11] and modified. CR: cysteine-rich repeat; EGF: epidermal growth factor.  

LRP1 regulates inflammation and tissue remodeling as well as the clearance of 

extracellular molecules, such as amyloid-β peptide, von Willebrand factor and factor 

VIII [12–15]. LRP1 is involved in the pathogenesis of numerous diseases such as 

acute respiratory distress syndrome (ARDS), atherosclerosis, Alzheimer’s disease 

and kidney fibrosis [16–19]. Although LRP1 is ubiquitously expressed, high levels of 

LRP1 are present in the lung, liver and brain [3,20]. Under physiological conditions, 

LRP1 controls the glucose and lipid metabolism. For instance, LRP1 regulates the 

levels of circulating cholesterol-rich remnant proteins [21]. In addition, LRP1 mediates 

intracellular 

extracellular 
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the internalization of postprandial lipids in adipocytes [22]. Mice with adipocyte-

specific LRP1-deficiency are resistant to dietary fat-induced obesity and glucose into-

lerance [22]. In the brain, LRP1 functions as a regulator of the blood-brain barrier 

permeability [23].  

 

Tissue remodeling takes place during wound healing. This process is controlled by 

LRP1. Tissue remodeling is characterized by dynamic changes in the ECM composi-

tion as well as by cell migration, proliferation and differentiation. Wound healing is a 

three-phase process [24]. In the first inflammatory phase, the coagulation cascade is 

activated and culminates in fibrin formation, which upon cross linking by factor XIIIa 

provides a stable matrix [25]. This matrix also contains fibronectin and platelets [26]. 

Throughout the later course of wound healing, the fibrin matrix is degraded and re-

placed by ECM [24]. In pleural mesothelial cells, it was demonstrated that blockage 

of LRP1 results in enhanced fibrin degradation [27]. The mechanisms which underlie 

this observation involve the uPA/uPA receptor (uPAR) system [27]. Urokinase plas-

minogen activator binds the cell-surface receptor uPAR and converts plasminogen to 

plasmin [28]. Plasmin eventually cleaves fibrin [29]. LRP1 regulates uPA levels by 

mediating the internalization and degradation of receptor-bound uPA [27]. Conse-

quentially, loss of LRP1 leads to the accumulation of uPA on the cell surface and to 

enhanced generation of fibrin-degrading plasmin. Here it becomes evident that LRP1 

may be transiently downregulated during wound healing to allow degradation of the 

provisional matrix.  

 

During the first phase of wound healing, chemokines which are released by platelets 

attract macrophages, neutrophils as well as fibroblasts and endothelial cells to the 

provisional matrix [24].  

 

The second, so called proliferative phase, starts with angiogenesis and subsequent 

fibroblast proliferation on the provisional matrix [24]. TGF-β1 which is expressed by 

inflammatory cells during wound healing is a key regulator of cell proliferation and 

can promote or inhibit proliferation, depending on the cell type. Interestingly, LRP1 

controls the effect of TGF-β1 on fibroblast proliferation, as silencing of LRP1 gene 

expression switches the function of TGF-β1 from anti-proliferative to pro-proliferative 

[30]. Besides its effect on fibroblast proliferation, TGF-β1 mediates the differentiation 
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of fibroblasts to myofibroblasts. Myofibroblasts are characterized by α-SMA expres-

sion, high contractile activity and the secretion of large amounts of ECM components, 

such as collagen type I and type III, which rebuild an ECM matrix in the lesion 

[24,31,32]. At this stage, the premature wound matrix is called a granulation tissue. 

The contractile activity of myofibroblasts contributes to the maturation of the granula-

tion tissue [33]. In kidney fibroblasts, it was demonstrated that connective tissue 

growth factor (CTGF) mediates LRP1 phosphorylation and in consequence increases 

the TGF-β1-induced α-SMA expression [34]. Hence, LRP1 may promote CTGF-

induced fibroblast to myofibroblast transdifferentiation. However, this conclusion is 

questioned by other findings. For instance, LRP1 mediates endocytosis and degrada-

tion of CTGF in hepatocytes [35]. To decipher the role of LRP1 in fibroblast to myofi-

broblast transdifferentiation, more investigations are needed. Besides TGF-β1, in-

creasing stiffness of the ECM promotes the differentiation of fibroblasts to myofibrob-

lasts. The ECM stiffness is enhanced both by the deposition and the cross linking of 

ECM components. LRP1 regulates these events in different manners. For instance, 

LRP1 is a catabolic receptor for fibronectin [36]. Hence, fibroblasts which are defi-

cient for LRP1 accumulate fibronectin on the cell surface [36]. Furthermore, as men-

tioned above, downregulation of LRP1 expression leads to the accumulation of uPA 

on the cell surface [27]. It was shown that LRP1 loss in fibroblasts results in en-

hanced plasmin-mediated remodeling of the fibronectin- and collagen matrix [37]. 

After blockage of LRP1 uPA also promoted collagen production as shown in pleural 

mesothelial cells [27]. Transglutaminase 2 (TG2) is a cross linker of many ECM com-

ponents, among them are collagen, fibronectin and elastin [38–40]. Furthermore, 

TG2 promotes the TGF-β1-mediated fibronectin production by lung fibroblasts as well 

as their migration and their contraction on the collagen matrix [41]. In fibroblasts, 

LRP1 limits TG2 activity by mediating the endocytosis and lysosomal degradation of 

this enzyme [42].  

 

In the third phase, the resolution phase, the wound closes and the scar formation 

occurs [24]. This phase is characterized by reduced ECM deposition but enhanced 

remodeling of the granulation tissue, e.g. by MMPs [24]. LRP1 controls the function 

of MMP2 and MMP9 by mediating their endocytosis [43,44]. In ARDS, it was demon-

strated that elevated levels of MMP2 and MMP9 correlate with basement membrane 
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destruction [16]. Shedding of LRP1 on lung fibroblasts was identified to permit the 

increased accumulation of MMP2 and MMP9 [16].  

Wound healing ends when the myofibroblast population strongly decreases due to 

apoptosis of these cells [24]. Here it becomes evident, that tight control of myofibrob-

last acquisition is crucial for sufficient wound healing and that maladaptive tissue re-

pair might lead to aberrant tissue remodeling such as scarring.  

1.2  Transforming growth factor-β 

 

The TGF-β family encompasses the three TGF-β isoforms TGF-β1, TGF-β2 and 

TGF-β3 as well as activins and bone morphogenic proteins in mammals [45]. TGF-β 

regulates cell proliferation, differentiation, ECM synthesis, apoptosis, immune res-

ponses and wound repair [46–51]. Furthermore, TGF-β is involved in embryonic de-

velopment [52]. After secretion, TGF-β is stored in an inactive latent form in the ECM 

[53]. Latent TGF-β associates with latency associated peptide (LAP) and latent TGF-

β-binding protein (LTBP) [53]. Activation of TGF-β requires removal of LAP and 

LTBP, a task that can be performed mechanically, e.g. by integrins [53] or enzymati-

cally, e.g. by MMPs [54]. Active TGF-β initiates intracellular signaling through the se-

rine/threonine kinase receptors, TGF-β receptor type I (TGFBRI) and TGF-β receptor 

type II (TGFBRII) [45]. Binding of TGF-β to TGFBRII results in heterodimerization of 

both receptors and phosphorylation of TGFBRI by the constitutive active kinase of 

TGFBRII [45]. Thereafter, activated TGFBRI phosphorylates the canonical signaling 

mediators of the TGF-β signaling pathway, the receptor-activated SMAD (R-SMAD, 

mothers against decapentaplegic homolog) proteins, namely SMAD2 and SMAD3, 

which are recruited to TGFBRI by the adaptor proteins [45]. The C-termini of SMAD2 

and SMAD3 contain a conserved SS(M/V)S amino acid motif in which two serine re-

sidues are phosphorylated by TGFBRI [45]. Following activation, SMAD2 and 

SMAD3 form a heterocomplex with a co-SMAD, SMAD4, and are subsequently trans-

located to the nucleus where they serve as transcription factors [45]. The protein inte-

ractions between SMAD2, SMAD3 and SMAD4 are mediated by their C-terminal 

MH2-domain [45]. In the nucleus, SMAD3 and SMAD4 can directly bind via their N-

terminal MH1-domain to DNA [55]. Furthermore, R-SMADs can interact with DNA via 

DNA-binding proteins, such as Runx, E2F4, E2F5 and ATF3  [45]. Both MH-domains 

of SMADs are connected by a linker region [45]. This region contains numerous 

phosphorylation sites [45]. Phosphorylation of the linker region was shown to mod-
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ulate the transcriptional activity of SMAD2 and SMAD3 [45]. Upon binding to its re-

ceptor, TGF-β can also mediate activation of non-canonical signaling-mediators (in-

cluding members of the mitogen-activated protein kinase (MAPK) pathway, Rho-like 

GTPases and the PI3K/Akt pathway) which are known to phosphorylate the linker 

region of R-SMADs [56,57]. For instance, phosphorylation of the SMAD3 linker re-

gion by p38 MAPK promotes the plasminogen activator inhibitor-1 (PAI-1) and the 

α2(I)-procollagen gene expression in rat myofibroblasts [58,59]. Interestingly, the 

p38-mediated phosphorylation of the linker region of SMAD3 is enhanced in myofi-

broblasts in a rat model of chronic liver injury [58]. The kinases Rho-associated pro-

tein kinase (ROCK) and JNK also promote the activity of SMAD3 by phosphorylating 

the linker region of this transcription factor [60–62]. Here it becomes evident that the 

interplay between the non-canonical and the canonical TGF-β signaling pathway al-

lows TGF-β to exert a plethora of effects under different biological conditions. The 

canonical and non-canonical TGF-β signaling pathway is illustrated in figure 2.   
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Fig. 2: Canonical and non-canonical TGF-β signaling pathway. In the canonical TGF-β signaling, 

TGF-β induces heterodimerization of TGF-β receptor II and TGF-β receptor I. Thereafter, TGFBRII 

phosphorylates TGFBRI which subsequently activates SMAD2 and SMAD3. In complex with SMAD4, 

these SMADs translocate to the nucleus where they regulate gene transcription. In the non-canonical 

TGF-β signaling, TGF-β induces the activation of members of the MAPK and the PI3K/Akt pathway as 

well as of Rho-like GTPases. These kinases mediate SMAD-independent signaling. In addition, these 

kinases can phosphorylate SMAD2 or SMAD3 in the linker domain. As a consequence, the transcrip-

tional activity of SMAD2 or SMAD3 is promoted or inhibited. TGF-β: transforming growth factor-β; 

TGFBRII: transforming growth factor-β receptor type II; TGFBRI: transforming growth factor-β receptor 

type I; SMAD: mothers against decapentaplegic homolog; Ser: serine; Thr: thronine; MAPK: mitogen-
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activated protein kinase; GTP: guanosine triphosphate; PI3K: phosphatidylinositol 3-kinase; Akt: pro-

tein kinase B.     

1.3 Source of myofibroblasts in the lung 

 

In the lung, different cell types are considered to serve as progenitors for myofibrob-

lasts. Amongst them are resident fibroblasts, such as the perivascular and peribron-

chiolar adventitial fibroblasts [63]. Furthermore, pulmonary epithelial cells contribute 

to the myofibroblast population by undergoing epithelial-mesenchymal transition 

(EMT). For instance, murine primary alveolar epithelial cells undergo EMT when cul-

tivated on fibronectin or fibrin matrices, which mimic the provisional matrix which is 

formed after injury [64]. In this study, it was also observed that activation of latent 

TGF-β1 by integrins promotes EMT [64]. The EMT-inducing function of TGF-β1 was 

furthermore demonstrated in vivo. To this end, β-galactosidase expressing alveolar 

epithelial cells were tested for the presence of the mesenchymal marker in TGF-β1-

overexpressing mice [64]. The majority of mesenchymal cells, as assessed by vimen-

tin expression, was positive for β-galactosidase, suggesting their epithelial origin [64]. 

Also in the rat, exogenous TGF-β1 promotes the expression of mesenchymal cell 

markers in primary alveolar epithelial cells and in the epithelial cell line RLE-6TN [65]. 

Nevertheless, investigations of EMT in bleomycin-induced experimental animal mod-

els of pulmonary fibrosis obtained controversial findings. Although bleomycin trig-

gered EMT in pleural mesothelial cells via the canonical TGF-β pathway in mice [66], 

other authors did not observe EMT in mouse and rat models of bleomycin-induced 

lung fibrosis [67]. However, in the human system, cells expressing both epithelial 

markers and the myofibroblast marker α-SMA were found in lung tissue of patients 

with IPF, a disease characterized by the TGF-β1 overactivation [65].  

 

Circulating fibrocytes were demonstrated to be attracted to injured lung tissue and to 

provide a source of fibroblasts and myofibroblasts in these depleted areas [68,69]. 

For instance, human fibrocytes, which were injected into the tail-vein of bleomycin-

treated mice were found to migrate into the fibrotic lung [69]. These fibrocytes ex-

pressed CD45, collagen I and the chemokine CXCL12 receptor CXCR4 [69]. In vitro 

experiments showed that migration of the fibrocytes is induced by CXCL12 [69]. 

Moreover, it was demonstrated that allergen exposure induces the accumulation of 

CD34-positive fibrocytes in the bronchial mucosa of patients with allergic asthma 
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[70]. The fibrocytes were mainly enriched in subepithelial areas characterized by col-

lagen I deposition [70]. Interestingly, most of these CD34-positive fibrocytes ex-

pressed procollagen I mRNA [70]. Besides this cell population, the bronchial mucosa 

of allergic asthma patients also contained cells that were positive for CD34, α-SMA 

and expressed procollagen I mRNA after allergen exposure [70]. In a mouse model 

of allergic asthma, repeated antigen exposure resulted in the expansion of CD34 and 

procollagen I positive cells in the bronchial wall [70]. In the later time course of re-

peated allergen exposure, CD34 and procollagen I positive cells were localized in 

collagen-rich subepithelial regions [70]. Furthermore, the population of CD34, procol-

lagen I and α-SMA positive cells expanded [70]. On the contrary, only a small num-

ber of blood fibrocytes was positive for α-SMA [70]. Stimulation of human circulating 

fibrocytes with TGF-β1 enhanced the expression of fibronectin, collagen III and α-

SMA in vitro [70]. Nevertheless, another study showed that green fluorescent protein 

(GFP) expressing bone marrow cells that were transplanted into the bone marrow of 

bleomycin-receiving mice migrate to the fibrotic lung and expressed collagen I but do 

not differentiate into α-SMA-expressing myofibroblasts [71]. Here, the heterogeneity 

of fibroblast-like cells which are involved in lung injury and remodeling becomes evi-

dent. Additional research effort in this field is required.  

1.4 Mechanisms of fibroblast to myofibroblast transdifferentiation 

 

The increase in ECM stiffness and cytokine concentration during wound healing 

works in concert to induce the differentiation of fibroblasts to myofibroblasts. The un-

derlying mechanisms are described in the following.       

1.5 Promotion of fibroblast to myofibroblast transdifferentiation by TGF-β1 

 

The role of TGF-β1 in fibroblast to myofibroblast transdifferentiation is summarized in 

figure 3. 
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Fig. 3: Mechanism of TGF-β1-induced fibroblast to myofibroblast transdifferentiation. TGF-β1 

mediates α-SMA expression via SMAD3 in fibroblasts. The incorporation of α-SMA into stress fibers 

enhances the contractile activity of fibroblasts and thus allows the development of suFa. The latter are 

required for the transmission of the high contractile forces of myofibroblasts to the environment. Inte-

grins (αVβ5) within the suFA bind to LAP and transmit the contractile force to latent TGF-β1 complexes 

which are deposited in ECM. As a consequence, these complexes which consists of TGF-β1, LAP and 

LTBP disassemble and active TGF-β1 is liberated. Subsequently, TGF-β1 promotes fibroblast to myo-

fibroblast transdifferentiation in a feed forward loop. TGF-β1 furthermore induces the expression of the 

fibronectin ligands integrin α4, α5 and β1 as well as of ED-A fibronectin. Moreover, TGF-β1 protects 

myofibroblasts from anoikis by activating FAK and Akt. TGF-β1: transforming growth factor-β1; FAK: 

focal adhesion kinase; Akt: protein kinase B; SMAD: mothers against decapentaplegic homolog; α-

SMA: α-smooth muscle actin; suFA: supermature focal adhesion; LTBP: latent TGF-β-binding protein; 

LAP: latency associated peptide. 

1.5.1 Induction of α-SMA expression by TGF-β1 

 

TGF-β1 is the key inducer of α-SMA expression during fibroblast to myofibroblast 

transdifferentiation [72]. In vitro experiments demonstrated that TGF-β1-induced      

α-SMA expression is mediated by the canonical signaling mediator SMAD3 [73]. Inte-

restingly, TGF-β1 also induced the formation of actin stress fibers which are essential 

for the development of supermature focal adhesions during fibroblast to myofibroblast 

transdifferentiation [73,74]. The promoting effect of TGF-β1 on focal adhesion matu-

ration is crucial for the TGF-β1-mediated α-SMA expression [73,75]. TGF-β1 induced 

the expression of fibronectin and the fibronectin receptors integrin α4, α5, and β1 
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which stabilized integrin-mediated cell-matrix connections and provided a feed for-

ward loop of TGF-β1-induced differentiation of fibroblasts to myofibroblasts [76]. 

1.5.2 The antiapoptotic effect of TGF-β1 on myofibroblasts  

 

Besides mediating fibroblast to myofibroblast transdifferentiation TGF-β1 enhances 

survival of myofibroblasts by reducing their susceptibility to cell death. In detail,   

TGF-β1 mediates the combinatorial activation of the focal adhesion kinase (FAK) and 

protein kinase B (Akt) pathways which protect myofibroblasts from anchorage-

dependent apoptosis [77]. This form of apoptosis is referred to as anoikis [78]. Fur-

thermore, TGF-β1 suppresses IL-1β-induced apoptosis of myofibroblasts [79].  

1.5.3 The impact of TGF-β1 on the contractile activity of myofibroblasts  

 

As an inducer of α-SMA expression in fibroblasts, TGF-β1 contributes to the α-SMA-

mediated increase of the contractile activity of myofibroblasts [31]. Treatment of myo-

fibroblasts isolated from fibrotic rat lungs with a blocking anti-TGF-β antibody re-

duced myofibroblast-induced contraction of the collagen gels [80]. The generation of 

contractile forces by stress fibers in myofibroblasts as well as transmission of me-

chanical forces to ECM depend on the number of focal adhesions [81]. Thus, the 

aforementioned upregulation of fibronectin and integrin receptors by TGF-β1 contri-

butes to both processes.  

1.5.4 Induction of ED-A fibronectin expression by TGF-β1 

 

Fibroblasts present in granulation tissue express ED-A fibronectin [82]. This splice 

variant of fibronectin includes the type III segment ED-A [83]. Moreover, it was dem-

onstrated that TGF-β1 induces the expression of the ED-A isoform of fibronectin in 

skin fibroblasts in vitro [84,85]. An accumulating evidence suggests that ED-A fibro-

nectin is essential for the generation of myofibroblasts in the lungs of bleomycin-

treated mice as α-SMA-positive myofibroblasts were not detectable in lungs of ED-A-/- 

animals [86]. Furthermore, these mice did not exhibit elevated collagen deposition 

and did not develop fibrosis [86]. The importance of ED-A fibronectin for myofibrob-

last generation is further supported by in vitro data which demonstrated that cultiva-

tion of fibroblasts from ED-A-/- mice on ED-A fibronectin restores TGF-β1-mediated 

expression of α-SMA and collagen in these cells [86]. In granulation tissue, observed 
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in a mouse model of skin injury, fibronectin is accumulated before collagen appears 

[87]. Hence, expression of ED-A fibronectin might be a prerequisite for the develop-

ment of collagen-producing myofibroblasts. The ED-A isoform of fibronectin is also 

involved in pulmonary fibrosis in humans. For instance, fibroblasts isolated from the 

lungs of IPF patients expressed elevated levels of ED-A fibronectin and α-SMA as 

compared to those isolated from control patients [86]. Furthermore, ED-A fibronectin 

and α-SMA were detected in fibrotic foci in IPF lungs [88]. Interestingly, ED-A fibro-

nectin colocalized with latent TGF-β1 in the ECM produced by primary rat lung myo-

fibroblasts in vitro [89]. It remains to be investigated whether ED-A fibronectin facili-

tates the storage of latent TGF-β1 in ECM. 

1.5.5 Regulation of TGF-β1 expression in wound healing  

 

There is a large body of evidence that highlights granulocyte-macrophage colony-

stimulating factor (GM-CSF) as a key inducer of TGF-β1 expression in wound heal-

ing. As such, GM-CSF is an indirect activator of myofibroblasts. Adenoviral overex-

pression of GM-CSF in the alveolus resulted in elevated TGF-β1 levels in bronchoal-

veolar lavage fluid (BALF) in rats [90]. In addition, the expansion of the macrophage 

population in the lung was observed [90]. Macrophages which were isolated from 

BALF of GM-CSF overexpressing mice showed higher TGF-β1 secretion than ma-

crophages isolated from control animals [90]. Moreover, the GM-CSF levels positively 

correlated with the TGF-β1 expression in alveolar macrophages [91]. Furthermore, 

the increase of TGF-β1 in GM-CSP positive lungs was followed by the appearance of 

α-SMA expressing myofibroblasts [90].  

1.5.6 TGF-β1-activation by myofibroblasts 

 

The permanently increasing matrix stiffness and elevated levels of active TGF-β1 in 

fibrotic tissue support persistent myofibroblast generation and activity. In addition, 

myofibroblasts promote their own maturation in two manners. First, they secrete ECM 

components [32] and thus enhance matrix stiffness and second they activate latent 

TGF-β1 which is deposited in ECM [89]. TGF-β1 which was activated by myofibrob-

lasts induces fibroblast to myofibroblast transdifferentiation in a feed forward loop 

[89]. Mechanistically, the activation of latent TGF-β1 by myofibroblasts requires the 

interaction of integrins which are expressed on myofibroblast surface with LAP, a 
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component of the latent TGF-β1 complex [89]. The integrins transmit the high con-

tractile force which is generated by α-SMA-containing stress fibers within the myofi-

broblast to the latent TGF-β1 complex [89]. Consequently, conformational changes 

are induced in the latent TGF-β1 and the active TGF-β1 is released in a protease-

independent manner [89]. There is evidence that αVβ5 integrin mediates activation of 

latent TGF-β1 by myofibroblasts. For instance, αVβ5 integrin is mainly responsible for 

the generation of active TGF-β1 in primary rat lung myofibroblast [89]. In the human 

system it was demonstrated that αVβ5 integrin is present in fibroblastic foci in the 

lungs of IPF patients [92]. Functionally, myofibroblasts localized in fibroblastic foci of 

IPF lungs show enhanced contractile activity [93,94].  

1.6 Induction of fibroblast to myofibroblast transdifferentiation by ECM 

1.6.1 Development of supermature focal adhesions 

 

In intact connective tissue, fibroblasts are protected from mechanical stress by ECM 

[95]. Fibroblasts exhibit a low number of matrix-cell connections and do not form 

stress fibers [95]. The destruction of ECM followed by the infiltration of thrombocytes 

and immune cells which express a number of cytokines, including TGF-β1, supports 

the formation of immature focal adhesions (FA) in fibroblasts [95]. These immature 

FA not only ensure matrix-cell contact but they also facilitate the migration of fibrob-

lasts into the wound [95]. The increase in the matrix rigidity during wound healing 

promotes the assembly of mature FA and stress fibers in fibroblasts [95]. The stress 

fibers are built from cytoplasmic actins and myosin II, however they do not contain α-

SMA [95,96]. Mature FA and actin stress fibers define proto-myofibroblasts, which 

represent an intermediate form in the process of fibroblast to myofibroblast transdiffe-

rentiation [97]. Stress fibers are anchored to mature FA. The latter are integrin-

containing cell membrane complexes that connect cytosolic stress fibers with ECM 

[95]. In this function, mature FA transmit intracellular contractile forces to the ECM 

and sense ECM properties such as rigidity [95].                                                

A further increase in matrix stiffness and TGF-β1 expression promotes fibroblast to 

myofibroblast transdifferentiation by inducing the formation of supermature FA (suFA) 

from mature FA [95]. As suFA are longer (8 to 30 µm) than mature FA (2 to 6 µm), 

they can transmit a fourfold higher external tension, such as stretch, to fibroblasts 

[75]. The transmission of high tension is essential for the incorporation of α-SMA into 
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suFa-anchored cytoplasmic actin stress fibers [75]. The high contractile activity which 

is generated by α-SMA-containing stress fibers, on the other hand, is crucial for the 

maintenance of suFA [74].  

1.6.2 Formation of osteoblast (OB)-cadherin-type adhesive junctions in 

myofibroblasts 

 

The increasing stiffness of ECM during wound healing also promotes the formation of 

cadherin-type adhesion junctions. These adhesion junctions are connected to stress 

fibers. At the beginning of fibroblast to myofibroblast transdifferentiation neural (N)-

cadherin expression increases but at a later stage it decreases and gets replaced by 

OB-cadherin [98]. Hence, OB-cadherin adhesion junctions are characteristics for the 

myofibroblast phenotype [98]. The OB-cadherin adhesion junction is resistant to 

around twofold higher forces than N-cadherin adhesion junctions [99]. Consequently, 

OB-cadherin-type adhesion junctions permit enhanced intercellular adhesion which 

adapts myofibroblasts to the high mechanical stress which occurs during wound heal-

ing [99].  

1.6.3 α-SMA-mediated stress fiber contraction 

 

The incorporation of α-SMA into stress fibers allows an increase in myofibroblast 

contractile activity. For instance, in vitro experiments demonstrated that α-SMA-

positive lung fibroblasts show remarkable higher contractile activity as compared to 

α-SMA negative cells [31]. In addition, selective removal of α-SMA from actin stress 

fibers by delivery of a fusion peptide containing the N-terminal sequence AcEEED of 

α-SMA resulted in decreased contraction of myofibroblasts [100]. 

  

Stress fibers isolated from human fibroblasts were used to investigate the mecha-

nisms of non-muscle cell contraction in vitro [101]. In the presence of Ca2+ myosin 

light chain kinase (MLCK) phosphorylates the myosin regulatory light chain (MLC) 

and thus mediates stress fiber contraction [101]. In addition, it was demonstrated that 

MLC may also be phosphorylated by Rho-kinase in a Ca2+-independent manner 

[101]. The shortening of stress fibers during MLCK-induced stress fiber contraction 

occurs faster and to a larger extent than during Rho-kinase-mediated stress fiber 

contraction [101]. Due to the slower Rho-kinase-mediated phosphorylation of MLC, 
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Rho-dependent stress fiber shortening occurs over a longer time range than MLCK-

mediated stress fiber contraction. These findings suggest that Ca2+ induces rapid 

contraction, whereas Rho-kinase mediates sustained contraction [101]. As myofi-

broblasts generate continuous contraction [102], the Rho-kinase-dependent mecha-

nism of stress fiber contraction appears to be of higher importance than the rapid 

Ca2+-dependent response [102]. This hypothesis is supported by the findings which 

are presented hereafter. These findings also highlight the importance of a second 

system by which Rho-kinase regulates myofibroblast contraction. To be specific, 

Rho-kinase inhibits myosin phosphatase which dephosphorylates the MLC [103]. In 

granulation tissue, it was observed that inhibition of Rho-kinase-mediated inactivation 

of myosin phosphatase abrogated contraction of myofibroblasts [104]. Furthermore, 

pharmacological blockage of Rho-kinase and MLCK inhibited lysophosphatidic acid 

(LPA)-promoted myofibroblast contraction, respectively [105]. On the other hand, 

blockage of myosin phosphatase induced myofibroblast contraction even in the ab-

sence of LPA and also restored contraction after Rho-kinase inhibition [105]. In con-

trast, increase of intracellular calcium did not promote myofibroblast contraction 

[105]. Hence, the Ca2+-independent Rho-kinase-mediated myofibroblast contraction 

may be necessary for myofibroblast contraction whereas the Ca2+-dependent me-

chanism may be rather supporting but not sufficient to induce myofibroblast contrac-

tion [105].   

1.6.4 Mechanical force-induced α-SMA gene expression  

 

Mechanical forces that affect fibroblasts activate signaling pathways which mediate 

gene transcription. Hence, application of mechanical forces to fibroblasts results in 

phosphorylation of p38, which subsequently induces α-SMA gene expression in Rat-

2 cells [106]. Interestingly, mechanical force-induced upregulation of α-SMA expres-

sion also requires binding of p38 to stress fiber-associated α-SMA in these cells 

[106]. Thus, α-SMA promotes its own expression in a feed forward loop. The mecha-

nistic details however remain to be investigated. Intriguingly, in cardiac fibroblasts 

force-induced α-SMA expression requires intact actin filaments and activation of ERK 

[107]. The kinase p38, however, was demonstrated to mediate force-induced inhibi-

tion of α-SMA expression in this study [107]. Other authors propose that upon force-

application FAK gets activated and regulates actin assembly via gelsolin and Type-I 

phosphatidylinositol 4-phosphate 5 kinase-gamma in NIH3T3 cells [108]. Subse-
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quently, the actin-filament-regulated transcription co-activator MRTF-A promotes     

α-SMA expression in NIH3T3 cells [108].  
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2 Aim of the study 

 

Several studies demonstrated that LRP1 is a modulator of the TGF-β1 signaling 

pathway. Transforming growth factor-β1 is a well established key inducer of fibroblast 

to myofibroblast transdifferentiation, a process which occurs during wound healing. 

The link between LRP1, TGFβ1 signaling and the acquisition of the myofibroblast 

phenotype becomes evident in kidney fibroblasts, in which CTGF-induced phospho-

rylation of LRP1 results in an increase of the TGF-β1-induced expression of the myo-

fibroblast marker α-SMA. The mechanisms by which LRP1 regulates the differentia-

tion of fibroblasts to myofibroblasts are cell-type specific and remain elusive in the 

lung.    

 

In this context, the aim of the study was threefold: 

1. to investigate whether LRP1 regulates the expression of α-SMA in lung fibrob-

lasts 

2. to elucidate the signaling pathway by which LRP1 regulates α-SMA expres-

sion  

3. to decipher whether LRP1 influences myofibroblast functions, such as contrac-

tion, proliferation and migration  
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3 Material and methods 

3.1 Materials 

3.1.1 Equipment 

 

Name       Company 

accuri C6 Flow Cytometer    BD Biosciences, Heidelberg, Germany 

Cell culture incubator    Heraeus, Hanau, Germany 

ChemiDocTM Touch Imaging System   Bio-Rad Laboratories, Wiesbaden, 

       Germany 

Culture insert 2 well     ibidi, Planegg, Germany 

Electrophoresis chambers    Bio-Rad, Wiesbaden, Germany 

Falcon tubes      Greiner Bio-One, Frickenhausen, 

       Germany 

Filter tips: 10; 100; 1000 μl    Eppendorf, Wesseling, Germany 

Gel blotting paper      GE Healthcare, München, Germany 

LA-EA1 objective adapter    Sony, Berlin, Germany 

Leica DM IL LED microscope    Leica, Wetzlar, Germany 

Nex-3 camera     Sony, Berlin, Germany 

Petri dishes      Greiner Bio-One, Frickenhausen, 

       Germany 

Pipetboy      Eppendorf, Wesseling, Germany 

Pipets       Eppendorf, Wesseling, Germany 

Power supply      Bio-Rad, Wiesbaden, Germany 

StepOnePlus Real-Time PCR Machine   Applied Biosystems, Darmstadt,  

       Germany 

Spectra MAX190 microplate reader  Molecular Devices, Biberach an der 

       Riß, Germany 

TGradient Thermocycler    Biometra, Göttingen, Germany 

Tissue culture dishes     Greiner Bio-One, Frickenhausen, 

       Germany 

TriStar2 S LB 942 Multimode Reader   Berthold Technologies, Bad Wildbad, 

       Germany 

Water bath for cell culture    Medingen, Arnsdorf, Germany 
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Western blot chambers     Bio-Rad, Wiesbaden, Germany 

Vortex machine      Scientific Industries, New York, USA 

3.1.2 Reagents 

 

Product name     Company 

Adenosine triphosphate (ATP)   Roth, Karlsruhe, Germany 

bovine serum albumin (BSA)   Roth, Karlsruhe, Germany 

Coelenterazine      Cayman Chemical, Biomol, Hamburg, 

       Germany 

Coenzyme A trilithium salt    Sigma Aldrich, München, Germany 

Corning® Collagen I, Rat Tail   Corning, Wiesbaden, Germany 

cOmpleteTM, EDTA-free Protease   Roche, Karlsruhe, Germany                                  

Inhibitor Cocktail 

Deoxynucleotide (dNTP) Mix   Thermo Scientific, Schwerte, Germany 

Dithiothreitol      Sigma Aldrich, München, Germany 

D-luciferin potassium salt    Cayman Chemical, Biomol, Hamburg, 

       Germany 

DNA ladder (100 bp, 1 kb)    Thermo Fisher Scientific, Darmstadt, 

       Germany 

Dulbecco's Modified Eagle Medium (DMEM) Gibco, Darmstadt, Germany 

DMEM: NutrientMixture F-12    Gibco, Darmstadt, Germany                                    

Ethanol       Roth, Karlsruhe, Germany 

Ethidium bromide     Sigma Aldrich, München, Germany 

Ethylenediaminetetraacetic acid (EDTA)  Roth, Karlsruhe, Germany 

Ethylene glycol tetraacetic acid              Roth, Karlsruhe, Germany                                          

(EGTA) 

Fetal calf serum (FCS)             Gibco, Darmstadt, Germany  

Glycerol      Roth, Karlsruhe, Germany 

Glycylglycine      Roth, Karlsruhe, Germany 

4-(2-Hydroxyethyl)-piperazine-1-    Roth, Karlsruhe, Germany 

ethanesulfonic acid (HEPES) 

Lipofectamine
TM

 2000 transfection         Invitrogen, Darmstadt, Germany                                                                   

reagent          
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LipofectamineTM 3000 transfection    Invitrogen, Darmstadt, Germany          

reagent       

Magnesium sulfate      Roth, Karlsruhe, Germany 

Methanol      Roth, Karlsruhe, Germany 

Milk powder (fat reduced)    Roth, Karlsruhe, Germany 

MultiScribe Reverse transcriptase  Applied Biosystems, Darmstadt,  

       Germany 

NP-40       Roth, Karlsruhe, Germany 

Opti-Minimal Essential Medium I   Gibco, Darmstadt, Germany                              

(Opti-MEMTM I) reduced-serum medium             

5x passive lysis buffer     Promega, Mannheim, Germany 

Penicillin/streptomycin             Gibco, Darmstadt, Germany   

Phenylmethylsulfonyl fluoride (PMSF)   Roth, Karlsruhe, Germany 

Platinum® SYBR® Green     Invitrogen, Darmstadt, Germany 

Potassium chloride      Roth, Karlsruhe, Germany 

Potassium dihydrogen phosphate   Roth, Karlsruhe, Germany 

Propidium iodide     Roth, Karlsruhe, Germany 

10x reverse transcriptase (RT) buffer  Applied Biosystems, Darmstadt,  

       Germany 

RiboLock RNase Inhibitor    Thermo Scientific, Schwerte, Germany 

RNase A      Thermo Scientific, Schwerte, Germany 

10x RT Random Primers    Applied Biosystems, Darmstadt,  

       Germany 

siLentFectTM Lipid transfection     Bio-Rad Laboratories, Wiesbaden,     

reagent       Germany     

Sodium azide     Roth, Karlsruhe, Germany 

Sodium chloride      Roth, Karlsruhe, Germany 

Sodium deoxycholate     Sigma Aldrich, München, Germany 

Sodium dodecyl sulfate (SDS)   Roth, Karlsruhe, Germany 

Sodium hydroxide (NaOH)    Roth, Karlsruhe, Germany 

Sodium orthovanadate     Roth, Karlsruhe, Germany 

Tris(hydroxymethyl)aminomethane  Roth, Karlsruhe, Germany                                                                    

(TRIS)     

Triton-X-100       Roth, Karlsruhe, Germany 

http://www.chemspider.com/Chemical-Structure.6257.html
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Trypsin      Gibco, Darmstadt, Germany  

Tween 20       Roth, Karlsruhe, Germany 

3.2 Methods 

3.2.1 Cell culture 

 

Mouse embryonic fibroblasts (MEF) were cultured in Dulbecco's Modified Eagle Me-

dium (DMEM) (Gibco, Darmstadt, Germany) supplemented with 10% heat-inactivated 

fetal calf serum (FCS) and 1% penicillin/streptomycin (both from Gibco). Human   

fibroblasts were derived from the lung parenchyma of patients with IPF or donors. 

They were maintained in DMEM: NutrientMixture F-12 (Gibco) supplemented with 

10% heat-inactivated FCS and 1% penicillin/streptomycin and applied in experiments 

between the 2nd – 6th passage. Cell culture was performed at 37 °C in humidified air 

with 5% CO2.  

3.2.2 Cell treatment 

 

Mouse embryonic fibroblasts (2x105 cells/well) were maintained in culture medium 

with 10% FCS on a 12-well plate for 24 h and then treated with 10 ng/ml TGF-β1 

(R&D Systems, Wiesbaden, Germany) for 0, 0.5, 1, 4, 8, 10 or 14 h in serum-free 

medium or with 50 µM of the JNK1/2/3 inhibitor SP600125 or 20 µM of MAPK/ERK 

kinase 1/2 (MEK1/2) inhibitor PD98059 (both from Millipore, Darmstadt, Germany) in 

serum-free medium for 24 h. 

 

Seventy-two hours after the transfection with siRNA directed against LRP1 or nega-

tive control siRNA, IPF lung fibroblasts were treated with 1 ng/ml TGF-β1 and/or 

50 μM JNK 1/2/3 inhibitor SP600125 (Millipore, Darmstadt, Germany), 20 μM 

MEK1/2 inhibitor PD98059 (Merck, Darmstadt, Germany) and 10 µM p38 inhibitor 

SB203580 (InvivoGen, Toulouse, France) for 24 h. Aforementioned reagents were 

added directly to the culture medium containing the transfection solution. For time-

dependent TGF-β1 stimulation (0, 8, 10, 12, 16 h), the culture medium with transfec-

tion solution was aspirated and 1 ng/ml TGF-β1 was administered in serum-free me-

dium.  
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3.2.3 Protein isolation  

 

Mouse embryonic fibroblasts and IPF lung fibroblasts were lysed in radioimmunopre-

cipitation assay buffer (RIPA). In this mixture of 50 mM Tris-HCl (pH 7.4), 150 mM 

NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 1% Triton-X-100, 1% sodium 

deoxycholate, 0.1% sodium dodecyl sulfate (SDS), supplemented with 1 mM phe-

nylmethylsulfonyl fluoride (PMSF), 1 mM sodium orthovanadate and an EDTA-free 

Protease Inhibitor Cocktail (Roche, Mannheim, Germany) the cells were incubated on 

ice for 30 min. The samples were vortexed every 5 min. Subsequently, the lysates 

were centrifuged at 9,300 g for 10 min at 4 °C. The supernatants were transferred to 

a fresh tube. The protein concentration was measured using the PierceTM BCA Pro-

tein Assay Kit (Thermo ScientificTM, Schwerte, Germany) according to the manufac-

turer's instruction. Briefly, 20 µl of the diluted protein lysate (dilution 1:5; diluent 

phosphate-buffered saline (PBS)) and of the bovine serum albumin (BSA) standard 

were plated in duplicates into a microtiter plate. Furthermore, BCA Reagent A and 

BCA Reagent B were mixed in a ratio 50:1 and 40 µl of this mixture was added to 

each test sample and to the BSA standard. The microtiter plate was incubated at 

37 °C for 30 min. Ultimately, the absorbance was measured at 562 nm in a Spectra 

MAX190 microplate reader (Molecular Devices, Biberach an der Riß, Germany). 

3.2.4 Western blotting 

 

Ten or 20 µg cell lysates were subjected to SDS-polyacrylamide-gel electrophorese 

(PAGE) under reducing conditions, using β-mercaptoethanol as a reducing agent. 

Afterwards, the proteins were electrotransferred to a polyvinylidene fluoride (PVDF) 

membrane. Nitrocellulose membranes were used exclusively for the adhesion of 

phosphorylated proteins. Blocking of both types of membranes was performed with 

5% non-fat milk (Roth, Karlsruhe, Germany) in Tris-buffered saline with Tween20 

buffer (TBS-T; 5 mM Tris-Cl, 150 mM NaCl, 0.1% Tween 20 (pH 7.5)) for 1 h at room 

temperature. Membranes were incubated with the following primary antibodies: 

mouse anti-α-SMA (1:5,000; Chemicon international, Temecula, CA; catalog number: 

CBL171), rabbit anti-LRP1 (1:1,000; Abcam, Cambridge, UK; catalog number: 

ab92544), rabbit anti-SAPK/JNK (1:1,000; Cell Signaling Technology, Frankfurt am 

Main, Germany; catalog number: 9252), rabbit anti-phospho-JNK (T183/Y185) 

(1:500; R&D Systems; catalog number: AF1205), rabbit anti-c-Jun (1:1,000; Cell Sig-
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naling Technology; catalog number: 9165), mouse anti-SMAD2/3 (1:1,000; BD 

Transduction Laboratories, Heidelberg, Germany; catalog number 610843), rabbit 

anti-phospho-SMAD2 (Ser465/467) (1:500; Cell Signaling Technology; catalog num-

ber: 3108), rabbit anti-phospho-SMAD2 (Ser245/250/255) (1:500; Cell Signaling 

Technology; catalog number: 3104), rabbit anti-phospho-SMAD3 (Ser423/425) 

(C25A9) (1:500; Cell Signaling Technology; catalog number: 9520), rabbit anti-

p44/42 (ERK1/2) (1:1,000; Cell Signaling Technology; catalog number: 4695), mouse 

anti-phospho-p44/42 (1:1,000; Cell Signaling Technology; catalog number: 9106), 

rabbit anti-p38 (1:1,000; Cell Signaling Technology; catalog number: 9212), rabbit 

phospho-p38 (Thr180/Tyr182) (1:1,000; Cell Signaling Technology; catalog number: 

4511). Thereafter, the membrane was probed with a peroxidase-labeled secondary 

antibody (1:5,000; all from Dako, Glostrup, Denmark; catalog number: P044701-2 

(mouse) and P021702-02 (rabbit)). AmershamTM ECL SelectTM Western Blotting De-

tection Reagent (GE Healthcare, München, Deutschland) was employed to induce 

the peroxidase reaction. The detection of proteins was performed with a ChemiDocTM 

Touch Imaging System (Bio-Rad Laboratories, Wiesbaden, Germany). The mem-

branes were stripped and reprobed with a mouse anti-β-actin antibody (1:10,000; 

Sigma Aldrich, München, Germany; catalog number: A1978) to determine the 

amount of proteins on the membrane.  

3.2.5 RNA isolation and reverse transcriptase reaction 

 

Isolation of RNA from MEF and IPF lung fibroblasts was executed with a peqGOLD 

Total RNA Kit (Peqlab, Erlangen, Germany) according to the manufacturer's instruc-

tion. One ng of RNA served as template in a cDNA synthesis reaction which also 

contained 2 μl 10x reverse transcriptase (RT) buffer (Applied Biosystems, Darmstadt, 

Germany), 0.8 μl deoxynucleotide (dNTP) Mix (25 mM; Thermo Scientific), 2 μl 10x 

RT Random Primers (25 μM; Applied Biosystems), 1 μl MultiScribe Reverse tran-

scriptase (200 U/μl; Applied Biosystems), 1 μl of RiboLock RNase Inhibitor (40 U/μl; 

Thermo Scientific) and 3.2 μl nuclease-free water. The samples were initially incu-

bated at 25 °C for 10 min, then at 37 °C for 2 h and finally heated at 85 °C for 5 min 

in a Tgradient Thermocycler (Biometra, Göttingen, Germany). 
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3.2.6 Real-time PCR 

 

Real-time PCR (qPCR) was performed using a StepOnePlus Real-Time PCR Ma-

chine (Applied Biosystems) using the cycling conditions 95 °C for 6 min, followed by 

45 cycles of 95 °C for 20 s, 55 °C for 30 s and 73 °C for 30 s. The qPCR reaction 

reagent contained 1 µl forward primer (400 nM), 1 µl reverse primer (400 nM), 12.5 µl 

Platinum® SYBR® Green (Invitrogen), 1 µl cDNA and 9.5 µl nuclease-free water. The 

primers which were employed in qPCR to amplify target gene transcripts are listed in 

table 1. Porphobilinogen deaminase (PBGD) served as a reference gene. Changes 

in the target gene expression are presented as ∆Ct calculated with the equation 

∆Ct=(CtReference gene- CtTarget gene). The efficiency of the qPCR reaction was assessed by 

dynamic range qPCR. To this end, qPCR was performed with four serial cDNA con-

centrations (undiluted, diluted 1:10, 1:100 and 1:1,000). Plotting of the Ct values over 

the logarithmic values of the cDNA dilution factor was used to assess qPCR efficien-

cy (slope of the graph of 2.0 = 100% efficiency). The exclusive amplification of the 

correct qPCR product was analyzed by agarose gel electrophoresis. In addition, a 

Reverse Transcription-qPCR control (RNA which had not been transcribed to cDNA 

was used as a template) was included in the qPCR to evaluate whether the amplifica-

tion may occur from DNA contaminating the sample. Furthermore, a water control 

(sample does not contain cDNA) was included in the qPCR to assure that contamina-

tion of the reaction reagents did not contribute to the amplification signal. 
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Table 1. List of primers used for qPCR 

Gene Spe-

cies 

Accession 

number 

Nucleotide sequence (5' → 3') Amplicon 

size (nt1) 

LRP1 human NM_002332.2 F: TCT ACT TTG CCG ACA CCA 

CC 

R: TGT CTT TTT GGG CCC ATC 

GT 

160 

α-SMA human NM_001613.3 F: TCC CTG AAC ACC ACC CAG 

TG 

R: AGC CCA GAG CCA TTG TCA 

C 

124 

SMAD3  human NM_005902.3 F: CCG ATG TCC CCA GCA CAT 

AA 

R: CTG GTT CAG CTC GTA GTA 

96 

PBGD human NM_000190.3 

 

F: ACC CTA GAA ACC CTG CCA 

GAG AA 

R: GCC GGG TGT TGA GGT TTC 

CCC 

124 

α-SMA mouse NM_007392.3 F: GAT CAC CAT TGG AAA CGA 

ACG 

R: 

AGC ATA GAG ATC CTT CCT GAT 

GTC 

125 

SMAD3 mouse NM_016769.4 F: ACG CAG AAC GTG AAC ACC 

AA 

R: GCG GCA GTA GAT AAC GTG 

AGG 

83 

PBGD mouse NM_013551.2 F: TCC GGA GGC GGG TGT TGA 

GG 

R: GCC AGA GAA AAG TGC CGT 

GGG 

116 

1nt, nucleotide; 2F, forward; 3R, reverse 

 

https://www.ncbi.nlm.nih.gov/nuccore/NM_001613.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_005902.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_000190.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_007392.3
https://www.ncbi.nlm.nih.gov/nucleotide/NM_016769?report=genbank&log$=nuclalign&blast_rank=1&RID=6KANXRX8014
https://www.ncbi.nlm.nih.gov/nuccore/NM_013551.2
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3.2.7 Subcellular fractionation 

 

Mouse embryonic fibroblasts (3x106 cells/plate) were grown in 10 cm plates for 24 h 

and then washed twice with cold PBS and scraped into 2 ml PBS. Thereafter, a cen-

trifugation at 3000 g for 3 min was performed and the pellet was resuspended in 

500 µl cold hypotonic lysis buffer (20 mM 4-(2-Hydroxyethyl)-piperazine-1-

ethanesulfonic acid (HEPES) (pH 7.9), 10 mM potassium chloride, 1 mM EDTA, 

1 mM EGTA, 0,2% NP-40, 10% glycerol, 2 mM sodium orthovanadate and an EDTA-

free Protease Inhibitor Cocktail). An incubation on ice for 10 min followed. The sam-

ples were centrifuged at 5,000 g for 5 min. The supernatant represented the cytosolic 

fraction and was frozen at -20 °C for further analysis. The pellet was resuspended in 

100 µl hypertonic lysis buffer (20 mM HEPES (pH 7.9), 10 mM potassium chloride, 

420 mM sodium chloride, 1 mM EDTA, 1 mM EGTA, 20% glycerol, 2 mM sodium 

orthovanadate and an EDTA-free Protease Inhibitor Cocktail) and incubated on ice 

for 45 min. Subsequently, the samples were centrifuged at 12,000 g for 10 min at 

4 °C. The supernatant represented the nuclear fraction. It was stored at -20 °C for 

further investigation.    

3.2.8 Inhibition of γ-secretase  

 

Mouse embryonic fibroblasts (10,000 cells/well) were seeded into a 12-well plate. 

After 24 h, cells were treated with 0, 11.5, 23 and 46 µM of the γ-secretase inhibitor 

N-[N-(3,5-Difluorophenylacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT; Sigma 

Aldrich) in culture medium containing 10% FCS for 72 h. The control cells received 

the vehicle control dimethyl sulfoxide (DMSO) in the same volume as corresponding 

to 46 µM DAPT. The analysis of LRP1 shedding was performed by western blotting. 

For analysis by qPCR, cells received 23 µM DAPT or the same volume of the vehicle 

control DMSO in culture medium with 10% FCS for 72 h.  

3.2.9 Gene silencing by siRNA technology 

 

Small interfering RNA (siRNA) directed against human LRP1 (sense sequence: 5‘-

CCU GUA ACC UGC AGU GCU UTT-3‘) was designed with GeneAssist Custom 

siRNA Builder (Thermo Fisher Scientific, Darmstadt, Germany) and purchased from 

Microsynth (Balgach, Swiss). Commercially available siRNA directed against human 
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SMAD3 (Santa Cruz Biotechnology, Heidelberg, Germany, catalog number: Sc-

38376) or human JNK1 (Invitrogen; catalog number: 10620318/10620319) and nega-

tive control siRNA (Invitrogen; catalog number: AM4637) were purchased. IPF lung 

fibroblasts (2x105 cells/well) were seeded onto a 12-well plate and cultivated for 24 h. 

Thereafter, cells were starved in serum-free DMEM: NutrientMixture F-12 for 24 h. 

Hundred nM siRNA directed against LRP1 or JNK1, 200 nM siRNA directed against 

SMAD3 or the same amount of negative control siRNA were diluted in 50 µl of Opti-

Minimal Essential Medium I (Opti-MEM I) reduced-serum medium (Gibco). For the 

double knock-down experiments, two different siRNAs (100 nM siRNA directed 

against LRP1 + 100 nM siRNA directed against SMAD3 or 100 nM siRNA directed 

against LRP1 + 100 nM siRNA directed against JNK1) were combined in one sample 

in this step. Furthermore, 2.5 µl siLentFectTM Lipid transfection reagent (Bio-Rad La-

boratories) were added to 47.5 µl of Opti-MEMTM I reduced serum medium and incu-

bated for 5 min at room temperature. Afterwards, this sample was mixed with the 

siRNA-containing sample and subsequently incubated for 20 min at room tempera-

ture. Thereafter, 200 µl of Opti-MEMTM I reduced-serum medium were added. Cells 

were washed once with PBS and maintained in this transfection solution for 6 h.   

Afterwards, 1 ml of culture medium with 10% FCS was added. Eventually, the cells 

were further cultivated for 96 h. The efficiency of LRP1, SMAD3 and JNK1 gene   

silencing was assessed by western blotting and/or qPCR.  

3.2.10 Membrane-based antibody array for the assessment of protein kinase 

phosphorylation 

 

A Proteome Profiler Human Phospho-Kinase Array Kit (R&D Systems, catalog num-

ber: ARY003B) was used according to the manufacturer's instruction. Lysates of IPF 

lung fibroblasts which had been transfected with negative control siRNA or siRNA 

directed against LRP1 and had been either treated or untreated with TGF-β1 were 

employed. 

3.2.11 Microarray  

 

IPF or donor lung fibroblasts which had been derived from two different patients, re-

spectively, were transfected with negative control siRNA or siRNA directed against 

LRP1. The efficacy of the silencing of LRP1 gene expression was assessed by 
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qPCR. Two hundred ng of the total RNA were purified, amplified and Cy3-labeled 

using a LIRAK kit (Agilent, Santa Clara, USA) according to the manufacturer's in-

struction. Thereafter, the Cy3-labeled aRNA was hybridized to 8x60K 60mer oligo-

nucleotide spotted microarray slides (Human Whole Genome V3 agilent design ID 

072363, Agilent) overnight and subsequently washed and dried according to the Agi-

lent hybridization protocol. The dried slides were scanned at 2 µm/pixel resolution 

with a InnoScan is900 (Innopsys, Carbonne, France) and image analysis was under-

taken using the Mapix 6.5.0 software (Innopsys). The calculated values for all spots 

were saved as GenePix results files. Analysis of the stored data was performed using 

the R software and the limma package (BioConductor). Mean spot signals were 

background corrected with an offset of 1 using the NormExp procedure on the nega-

tive control spots and the logarithms of the background-corrected values were quan-

tile-normalized. These values were averaged for replicate spots per array. From dif-

ferent probes which were specific for the same NCBI gene ID, the probe with the 

maximum average signal intensity over the samples was chosen for subsequent ana-

lyses. Genes were ranked for differential expression with a moderated t-statistic. 

Pathway analyses were performed with gene set tests on the ranks of the t-values. 

All was performed by Dr. Jochen Wilhelm in the microarray core facility of the 

UGMLC in Giessen.  

3.2.12 Dual-Luciferase Reporter Assay 

 

Mouse embryonic fibroblasts (51,300 cells/well) were seeded onto a 48-well plate 

and starved in serum-free medium for 1 h on the next day. The transfection of pGL3-

Basic-pCAGA firefly reporter and pRL-SV40 renilla reporter was performed using Li-

pofectamineTM 2000 transfection reagent (Life Technologies). To this end, 300 ng 

pGL3-Basic-pCAGA firefly reporter and 7 ng pRL-SV40 renilla reporter were diluted 

in 50 µl serum-free medium. Furthermore, 0.75 µl of LipofectamineTM 2000 reagent 

were added to 49.25 µl serum-free medium. This mixture was incubated for 5 min at 

room temperature. Thereafter it was combined with the vector containing sample and 

incubated for 20 min at room temperature. Afterwards, the serum-free medium was 

removed from the cells and the aforementioned transfection solution was added. Af-

ter 5 h of incubation, the transfection solution was replaced by culture medium with 

10% FCS and the cells were incubated herein for 48 h.   
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IPF lung fibroblasts (7x104 cells/well) were seeded onto a 48-well plate. After attach-

ment for 24 h, cells were starved in Opti-MEMTM I reduced-serum medium for 1 h and 

then transfected with pGL3-Basic-pCAGA firefly reporter and pRL-SV40 renilla re-

porter using LipofectamineTM 3000 transfection reagent (Invitrogen). First, 140 ng of 

pGL3-Basic-pCAGA firefly reporter and 20 ng of pRL-SV40 renilla reporter were di-

luted in 12.80 µl of Opti-MEMTM I reduced-serum medium, second, 0.37 µl of p3000 

reagent were added. In addition, 0.78 µl of LipofectamineTM 3000 were incubated in 

12.80 µl of Opti-MEMTM reduced-serum medium for 5 min at room temperature.    

Afterwards, 12.80 µl of this sample were mixed with the sample which contained the 

vectors and subsequently incubated for 10 min at room temperature. Thereafter, Op-

ti-MEMTM I reduced-serum medium was removed from the cells and 24.40 µl of the 

transfection solution and 76.90 µl of Opti-MEMTM I reduced-serum medium were add-

ed to the cells. After 5 h of incubation, the transfection solution was removed and the 

cells were washed once with PBS. Thereafter, the cells were cultivated in culture 

medium with 10% FCS for 24 h, starved in serum-free medium for 5 h and then trans-

fected with siRNA directed against LRP1 or with negative control siRNA. Cells were 

subsequently lysed by shaking in 100 µl/well 1x passive lysis buffer (Promega, 

Mannheim, Germany) for 10 min at room temperature. Thereafter, the activities of 

firefly and renilla luciferase in 10 µl of the cell lysate were measured in a white 96-

well microplate (Berthold Technologies, Bad Wildbad, Germany) using a TriStar2 S 

LB 942 Multimode Reader (Berthold Technologies). In the machine, 50 µl of firefly 

luciferase buffer (25 mM glycylglycine, 15 mM potassium dihydrogen phosphate 

(pH 8), 4 mM ethylene glycol tetraacetic acid (EGTA), 2 mM adenosine triphosphate 

(ATP), 1 mM dithiothreitol, 15 mM magnesium sulfate, 0.1 mM coenzyme A trilithium 

salt, 0.24 mM D-luciferin potassium salt) were added to the sample and the firefly 

luciferase activity was assessed by measurement of the generated luminescence for 

7 s. After that, 50 µl of renilla luciferase buffer (1.1 mM sodium chloride, 2.2 mM ED-

TA, 0.22 mM potassium dihydrogen  phosphate (pH 5.1), 0.44 mg/ml BSA, 1.3 mM 

sodium azide, 6.4 µM coelenterazine), which contains an inhibitor for firefly lucife-

rase, were dispersed in the sample. Subsequently, renilla luciferase activity was 

measured by detecting the arising luminescence for 7 s. The transcriptional activity of 

SMAD3 was presented as the ratio of firefly luciferase-to-renilla luciferase lumines-

cence values.  
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For Dual-Luciferase Reporter Assay with a vector containing AP1-binding consensus 

elements, IPF lung fibroblasts were seeded onto a 48-well plate. After attachment for 

24 h, cells were transfected with siRNA directed against LRP1 or with negative con-

trol siRNA. After 24 h, cells were transfected with 140 ng of pGL4.44-AP1 firefly re-

porter and 20 ng of pRL-SV40 renilla reporter as described for the transfection of 

pGL3-Basic-pCAGA firefly reporter and pRL-SV40 renilla reporter in IPF lung fibrob-

lasts. The collected transfection solution containing siRNA against LRP1 or control 

siRNA in culture medium with 10% FCS was added to the cells. An incubation for 

48 h followed. Thereafter, the cells were prepared for measurement as described 

above.   

3.2.13 Collagen gel contraction assay 

 

The wells of a 24-well plate were precoated with 0.5 ml/well of 1% BSA in PBS 

(pH 7.4) for 2 - 3.5 h at 37 °C and rinsed twice with PBS. IPF lung fibroblasts were 

harvested 48 h after transfection with siRNA directed against LRP1 or negative con-

trol siRNA and 24 h after stimulation with 10 ng/ml TGF-β1. They were resuspended 

to reach a density of 2x105 cells/ml in culture medium with 10% FCS. Rat tail collagen 

type I (0.78 mg/ml) in 0.02 M acetic acid (Corning, Wiesbaden, Germany) was added 

to the cells, followed by instant neutralization with 5.85 µl of 0.5 M sodium hydroxide 

(NaOH) per 0.5 ml sample. Subsequently, 243.9 µl/well of the solution were trans-

ferred to BSA-coated wells. Polymerization of collagen gels occurred during incuba-

tion at 37 °C for 1 h. Afterwards, collagen gels were detached from the well wall and 

bottom by gently canting the 24-well plate. Thereafter, 634 µl/well of the collected 

siRNA transfection solutions (siRNA directed against LRP1 or negative control    

siRNA) in culture medium (with 10% FCS) were added to the respective collagen 

gels. Further incubation therein for 48 h followed. Collagen gel contraction was do-

cumented after 3 and 24 h by taking photos with the ChemidocTM Touch Imaging 

System (Bio-Rad) and collagen gel surface area was calculated using ImageJ. 

3.2.14 Flow cytometry 

 

Ninety-six hours after IPF lung fibroblasts had been transfected with control siRNA or 

siRNA directed against LRP1 in a 6-well plate, they were harvested and centrifuged 

at 160 g for 5 min. The pellet was resuspended in 5 ml PBS and centrifuged at 160 g 
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for 5 min. Three hundred µl PBS were added to the cell pellet and subsequently 1 ml 

70% ethanol was given drop by drop to the cells under vortexing conditions. There-

after, the cells were fixed for 1 h at 4 °C. Then, the samples were centrifuged at 

160 g for 5 min and the cells were resuspended in 5 ml PBS. Centrifugation at 160 g 

for 5 min followed and cells were resuspended in 500 µl propidium iodide mix 

(20 µg/ml propidium iodide (Roth), 0.1% Triton X-100, 200 µg/ml RNase A (Thermo 

Scientific) in PBS). Subsequently, the samples were incubated at 37 °C for 15 min in 

the dark. The reaction was stopped by placing the samples on ice. An accuri C6 Flow 

Cytometer (BD Biosciences, Heidelberg, Germany) was used to measure the amount 

of DNA-bound propidium iodide. Data were analyzed with the accuri CFlow Plus (BD 

Biosciences) software.   

3.2.15 Gap closure assay 

 

IPF lung fibroblasts were transfected with siRNA directed against LRP1 or control 

siRNA. Forty-eight h after transfection and 24 h after stimulation with 10 ng/ml    

TGF-β1, cells were harvested and seeded (50,000 cells/pocket) in culture medium 

with 10% FCS into the two pockets of a culture insert (ibidi, Planegg, Germany) 

which had been placed into a 12-well plate. After 4 h, cells had attached to the well 

bottom and the culture insert was removed. Subsequently, 1.3 ml of the collected 

siRNA transfection solutions (containing siRNA directed against LRP1 or control  

siRNA) in culture medium (with 10% FCS) were added to respective cells. The migra-

tion of the cells into the gap between the two cell patches was documented after 0 h 

and 19 h using a Leica DM IL LED microscope (Leica, Wetzlar, Germany), a LA-EA1 

objective adapter (Sony, Berlin, Germany) and a Nex-3 camera (Sony). 

3.2.16 Statistics 

 

Data are presented as mean values ± S.E.M. unless otherwise stated. Differences 

between two groups were calculated by using a Student's t-test, whereas differences 

between a larger number of groups were determined by analysis of variance (ANO-

VA) and Tukey's post hoc test. A value of p<0.05 was defined to be statistically signif-

icant. The aforementioned statistical analyses were executed in GraphPad Prism 

version 5.02 for Windows (GraphPad Software, La Jolla, CA).   
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4 Results 

4.1 Microarray analysis of IPF and donor lung fibroblasts following LRP1-

depletion 

 

In order to identify genes regulated by LRP1 in IPF and donor lung fibroblasts, LRP1 

was depleted in these cells and a microarray was performed. A pathway analysis of 

the microarray data was undertaken to identify Kegg pathways which are perturbed in 

IPF and donor lung fibroblasts following LRP1-knock-down. The Kegg pathways   

Lysosome, Protein processing in endoplasmic reticulum, Metabolic pathways, Glyco-

sylphosphatidylinositol (GPI)-anchor biosynthesis, Valine, leucine and isoleucine de-

gradation and N-Glycan biosynthesis were perturbed with high significance in both, 

IPF and donor lung fibroblasts after LRP1-depletion (Fig. 4 (not all labeled), Tab. 2, 

3). However, only the perturbations of the Kegg pathways Lysosome and Protein 

processing in endoplasmic reticulum were with high significance different in IPF and 

donor lung fibroblasts after knock-down of LRP1 (Fig. 4). This can be seen in figure 4 

because the larger the dot is, the higher is the significance for a different perturbation 

of the Kegg pathway in IPF and donor lung fibroblasts after LRP1-depletion. 

Five Kegg pathways were perturbed with high significance in IPF lung fibroblasts but 

not in donor lung fibroblasts following LRP1-depletion (Fig. 4). Namely, they were 

Axon guidance, Regulation of actin cytoskeleton, Focal adhesion, Vascular smooth 

muscle contraction and Rap1 signaling pathway (Fig. 4). Interestingly, all of these 

Kegg pathways describe processes which are involved in the modulation of the cy-

toskeleton. The Kegg pathways which were perturbed with high significance in LRP1-

deficient donor lung fibroblasts but not in LRP1-deficient IPF lung fibroblasts were 

Phagosome and Vibrio cholerae infection (Fig. 4). These Kegg pathways describe 

endocytic processes. Altogether, these results give a hint that the function of LRP1 

may be switched from endocytic to signal transducing in IPF lung fibroblasts. By 

modulating signal transduction, LRP1 may regulate cytoskeleton remodeling in these 

cells. The 15 Kegg pathways which were most significantly perturbed following LRP1-

depletion in IPF and donor lung fibroblasts are listed in table 2 and 3.  
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Fig. 4: Microarray analysis of IPF and donor lung fibroblasts following LRP1-knock-down. IPF 

and donor lung fibroblasts were transfected with siLRP1 or siCtrl and a microarray was performed. 

Scatter plot showing Kegg pathways which were perturbed in IPF and donor lung fibroblasts following 

LRP1-depletion (siLRP1 - siCtrl). The Kegg pathways are ranked according to the significance of per-

turbation [-log10 P]. Large dots indicate that the perturbation of the Kegg pathway is with high signifi-

cance different in IPF and donor lung fibroblasts following LRP1-depletion. The experiment shows that 

depletion of LRP1 in IPF lung fibroblasts results in the significant perturbation of Kegg pathways which 

describe processes of cytoskeleton remodeling. In detail, the Kegg pathways Axon guidance, Regula-

tion of actin cytoskeleton, Focal adhesion, Vascular smooth muscle contraction and Rap1 signaling 

pathway are significantly perturbed in IPF lung fibroblasts after LRP1-depletion. In contrast, knock-

down of LRP1 in donor lung fibroblasts results in the significant perturbation of Kegg pathways which 

describe endocytic processes. The Kegg pathways Phagosome and Vibrio cholerae infection are sig-

nificantly perturbed in LRP1-deficient donor lung fibroblasts. The Kegg pathways lysosome and protein 

processing in endoplasmic reticulum are significantly perturbed following LRP1-depletion in IPF and 

donor lung fibroblasts. In addition, the perturbation of these Kegg pathways is significantly different  in 

these cell types after knock-down of LRP1.   
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Table 2. Top 15 Kegg pathways perturbed with highest significance by LRP1-depletion in IPF 
lung fibroblasts. The Kegg pathways Axon guidance, Regulation of actin cytoskeleton, Focal adhe-
sion, Vascular smooth muscle contraction and Rap1 signaling pathway were perturbed with high signi-
ficance in IPF lung fibroblasts but not in donor lung fibroblasts following LRP1-depletion. The afore-
mentioned pathways are presented in bold font.  

 
         
 

 

 

 

 

 

 

 

 

 

Kegg pathway ID Significance [-log10 P] 

Lysosome 04142 8.12 

Metabolic pathways 01100 7.37 

Axon guidance 04360 5.22 

Valine, leucine and isoleu-

cine degradation 

00280 5.21 

Regulation of actin cy-

toskeleton 

04810 4.71 

Proteasome 03050 4.68 

Focal adhesion 04510 4.61 

Glycosylphosphatidylinosi-

tol (GPI)-anchor biosynthe-

sis 

00563 4.51 

Vascular smooth muscle 

contraction 

04270 4.13 

N-Glycan biosynthesis 00510 3.97 

Protein processing in en-

doplasmic reticulum 

04141 3.81 

Oxidative phosphorylation 00190 3.39 

Rap1 signaling pathway 04015 3.33 

Steroid biosynthesis 00100 3.19 

Type II diabetes mellitus 04930 2.98 
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Table 3. Top 15 Kegg pathways perturbed with highest significance by LRP1-depletion in donor 
lung fibroblasts. The Kegg pathways Phagosome and Vibrio cholerae infection were perturbed with 
high significance in donor lung fibroblasts but not in IPF lung fibroblasts following LRP1-depletion. The 
aforementioned pathways are presented in bold font. 

Kegg pathway ID Significance [-log10 P] 

Lysosome 04142 12.75 

Protein processing in en-

doplasmic reticulum 

04141 9.12 

Phagosome 04145 6.65 

Metabolic pathways 01100 5.96 

Vibrio cholerae infection 05110 3.95 

Glycosylphosphatidylinosi-

tol (GPI)-anchor biosynthe-

sis 

00563 3.85 

Valine, leucine and isoleu-

cine degradation 

00280 3.33 

N-Glycan biosynthesis 00510 3.28 

Type II diabetes mellitus 04930 2.90 

Collecting duct acid secre-

tion 

04966 2.56 

Glycosaminoglycan biosyn-

thesis - chondroitin sulfate / 

dermatan sulfate 

00532 2.43 

Nicotinate and nicotinamide 

metabolism 

00760 2.43 

Glycosaminoglycan degra-

dation 

00531 2.39 

Cell adhesion molecules 

(CAMs) 

04514 2.38 

Proteasome 03050 2.31 

               

As described previously, LRP1 may regulate cytoskeleton remodeling in IPF lung 

fibroblasts. In the literature, remodeling of the cytoskeleton is described to be a main 

process during fibroblast to myofibroblast transdifferentiation [73–75]. An important 

example is the enhanced expression and incorporation of α-SMA into stress fibers 

[73–75]. Hence, it was next investigated in the present study whether LRP1 regulates 

α-SMA expression in IPF lung fibroblasts.  
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4.2 LRP1 suppresses α-SMA expression in IPF lung fibroblasts 

 

The relationship between LRP1 and α-SMA expression was investigated. To this 

end, the gene expression of LRP1 and α-SMA in the IPF lung fibroblasts from fifteen 

IPF patients was analyzed by qPCR (Fig. 5 A). The ∆Ct values of α-SMA were plot-

ted against corresponding ∆Ct values of LRP1 and a linear regression was performed 

(Fig. 5 A). Thereby, it was shown that LRP1 gene expression negatively correlates 

with the α-SMA mRNA level in IPF lung fibroblasts. Moreover, it was investigated 

whether LRP1 expression regulates α-SMA gene expression in MEF. To this end, the 

α-SMA mRNA levels were assessed by qPCR in LRP1-expressing and LRP1-knock-

out MEF. This experiment revealed that the α-SMA gene expression is enhanced in 

LRP1-depleted MEF (Fig. 5 B).  

Collectively, these data indicate that LRP1 suppresses α-SMA gene expression in 

IPF lung fibroblasts and MEF.  

It was furthermore analyzed whether LRP1 also suppresses α-SMA on the protein 

level in IPF lung fibroblasts and MEF. For that purpose, LRP1 gene expression was 

silenced in IPF lung fibroblasts and western blotting was performed (Fig. 5 C). Deple-

tion of LRP1 resulted in the increase of α-SMA protein levels in IPF lung fibroblasts. 

In MEF, the knock-out of LRP1 elevated α-SMA protein expression as well (Fig. 5 D). 

Hence, LRP1 suppresses α-SMA expression on the gene and protein level in IPF 

lung fibroblasts and MEF.  
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Fig. 5: LRP1 suppresses α-SMA expression in IPF lung fibroblasts and mouse embryonic      

fibroblasts. (A) The mRNA levels of LRP1 and α-SMA in the IPF lung fibroblasts from fifteen IPF   

patients were assessed by qPCR. PBGD was used as a reference gene. The ∆Ct of α-SMA were plot-

ted against the ∆Ct values of LRP1. A linear regression was performed to describe the correlation of 

LRP1 and α-SMA gene expression. (B) α-SMA gene expression was analyzed in LRP1-expressing 

and LRP1-knock-out MEF by qPCR. n=3. Data are expressed as ∆Ct, using PBGD as a reference 

gene. LRP1 and α-SMA protein expression was investigated by western blotting in (C) LRP1-

expressing and LRP1-deficient IPF lung fibroblasts (n=3) as well as in (D) LRP1-expressing and 

LRP1-knock-out MEF (n=3). β-actin served as a loading control. Representative western blots are 

shown. Panel (A) shows that LRP1 negatively correlates with the gene expression of α-SMA in IPF 

lung fibroblasts. Panel (C) shows that LRP1 suppresses α-SMA protein levels in these cells. Moreo-

ver, panels (B) and (D) show that LRP1 suppresses α-SMA gene and protein expression also in MEF.   

4.3 LRP1 ICD does not serve as transcription factor to regulate α-SMA        

expression 

 

The next step of the study was to decipher the mechanism by which LRP1 regulates 

the expression of α-SMA in IPF lung fibroblasts. It has been reported that LRP1 un-

dergoes regulated proteolytic shedding [109,110]. During this process, metallo-

proteinases first mediate the shedding of the extracellular domain of LRP1 [109,110].   

Thereby, a membrane-bound 25 kDa LRP1 fragment is generated [109,110]. When 

this fragment is further processed by γ-secretase, the carboxyterminal 12 kDa frag-

4 5 6 7 8

-4

-2

0

2

4

6

8

1 0 IP F  lu n g  f ib ro b la s ts

R
2

=  0 .3 1 0 7

p  =  0 .0 3 0 9

 C t (C tP B G D -C T L R P 1 )


C

t 
(C

t P
B

G
D

-C
t 

-S
M

A
)

- 3

-2

-1

0

1

2 *

L R P 1 - /-+ /+


C

t 
(C

t P
B

G
D

-C
t 

-S
M

A
)

LRP1

α-SMA

β-actin

siCtrl

siLRP1

-+

+-

100

42

40

Mr (kDa)

LRP1

LRP1

α-SMA

β-actin

+/+ -/-

100

42

40

Mr (kDa)

A B

C D



Results 
___________________________________________________________________________ 

38 

 

ment of LRP1 is liberated from the membrane [109,110]. This fragment is the intra-

cellular domain (ICD) of LRP1 [110]. It was demonstrated that the ICD of LRP1 

serves as a transcription factor and regulates interferon γ expression [109]. In the 

present study, LRP1-expressing MEF were used as a model system to investigate 

whether the ICD of LRP1 can regulate the gene expression of α-SMA and SMAD3. 

The latter is a major mediator of the canonical TGF-β1 pathway. SMAD3 was investi-

gated as it had been demonstrated to regulate α-SMA expression [73]. LRP1-positive 

MEF were treated with the γ-secretase inhibitor DAPT. The efficiency of the inhibition 

of the γ-secretase-mediated processing of LRP1 was assessed by western blotting. 

Whereas the 25 kDa membrane-bound LRP1 fragment was absent in cells which 

were not treated with DAPT, this fragment was detectable after treatment of cells with 

11.5, 23 or 46 µM DAPT for 72 h (Fig. 6 A). This indicated that the inhibition of         

γ-secretase by DAPT was efficient. Next, MEF were treated with 23 µM DAPT for 

72 h and qPCR was performed. The α-SMA and SMAD3 mRNA levels were not al-

tered by the inhibition of γ-secretase (Fig. 6 B, C). Hence, the ICD of LRP1 is not in-

volved in the regulation of α-SMA and SMAD3 in MEF. 

 

Fig. 6: The intracellular domain of LRP1 does not regulate the expression of α-SMA and SMAD3 

as a transcription factor. (A) LRP1-expressing MEF were treated with 0, 11.5, 23 and 46 µM of the 

γ-secretase inhibitor DAPT for 72 h. Thereafter, the protein expression of the membrane-bound LRP1 

fragment (m.-b. LRP1) was determined by western blotting. β-actin was used as a loading control. 

n=3. Representative western blots are displayed. LRP1-expressing MEF were treated with 23 µM 

DAPT for 72 h and the mRNA levels of (B) α-SMA and (C) SMAD3 were assessed by qPCR. n=3. 

Data are presented as ∆Ct, using PBGD as a reference gene. Collectively, these data reveal that libe-

ration of LRP1 ICD by γ-secretase does not regulate α-SMA and SMAD3 gene expression in MEF.  
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4.4 The regulation of α-SMA expression by LRP1 is independent of the canon-

ical TGF-β1 pathway in IPF lung fibroblasts  

 

Since LRP1 ICD is not a transcription factor in the regulation of α-SMA expression, it 

was next analyzed whether LRP1 regulates α-SMA expression by modulating signal-

ing pathways in IPF lung fibroblasts. For instance, it has been reported that LRP1 

can modulate the TGF-β1 signaling pathway [111,112]. As SMAD3, a major mediator 

of the canonical TGF-β1 signaling pathway, is known to promote α-SMA expression 

[73], it was investigated whether LRP1 modulates the expression or activation of 

SMAD3 in IPF lung fibroblasts. In addition, the effect of LRP1 on SMAD2, another 

major mediator of the canonical TGF-β1 signaling pathway, was analyzed.  

LRP1-depletion did not affect the gene (Fig 7 A) and protein (Fig. 7 B) expression of 

SMAD3 in IPF lung fibroblasts as assessed by qPCR and western blotting. In con-

trast, the protein levels of SMAD2 were enhanced after silencing of LRP1 in these 

cells (Fig. 7 B). Furthermore, time-dependent treatment of LRP1-expressing and 

LRP1-depleted IPF lung fibroblasts with TGF-β1 revealed no changes in the activa-

tion of SMAD3 and SMAD2 as assessed by SMAD2/SMAD3 phosphorylation be-

tween these cells (Fig. 7 C).  

Hence, these data reveal that LRP1 does not modulate the TGF-β1 signaling path-

way by regulating SMAD3 and SMAD2 in IPF lung fibroblasts.  

In MEF, however, knock-out of LRP1 resulted in enhanced SMAD3 mRNA (Fig. 7 D) 

and protein levels (Fig. 7 F). In order to determine the localization of SMAD3 in the 

cell, subcellular fractionation with LRP1-expressing and LRP1-deficient MEF was 

performed. Western blotting revealed higher amounts of SMAD3 in the nuclear frac-

tion (NF) than in the cytosolic fraction (CF) when LRP1 is expressed in MEF (Fig. 7 

E). After LRP1-depletion, the amounts of SMAD3 increased in both the cytosolic and 

the nuclear compartment in MEF (Fig. 7 E). These findings demonstrate that LRP1 

may modulate the TGF-β1 signaling pathway by increasing SMAD3 protein expres-

sion and by promoting its translocation to the nucleus in MEF.  

In order to investigate whether LRP1 modulates the activation of SMAD2 in MEF, 

LRP1-expressing and LRP1-deficient cells were time-dependently treated with     

TGF-β1. LRP1-knock-out shortened the duration of SMAD2 phosphorylation in the   

C-terminus (Ser465/467) and in the linker region (Ser245/250/255) in MEF (Fig. 7 F). 

Whereas phosphorylation in the C-terminus is required for the nuclear translocation 
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of SMAD2 [113–115], phosphorylation in the linker region can either promote or inhi-

bit the translocation of SMAD2 to the nucleus [116,117]. Thus, the result demon-

strates that LRP1 modulates the TGF-β1 signaling pathway by regulating the nuclear 

translocation of SMAD2 in MEF.  

Interestingly, the findings made in MEF are contradictory to those made in IPF lung 

fibroblasts. Whereas LRP1 modulates SMAD2 and SMAD3 in MEF, LRP1 does not 

modulate the TGF-β1 signaling pathway in IPF lung fibroblasts.  

 

Fig. 7: LRP1 does not regulate SMAD3 expression and activation in IPF lung fibroblasts. LRP1 

was depleted in IPF lung fibroblasts by siRNA. (A) SMAD3 mRNA levels were assessed by qPCR. 

Data are presented as ∆Ct, using PBGD as a reference gene. n=3. SMAD3 gene expression is not 

affected by LRP1-depletion in IPF lung fibroblasts. (B) The protein expression of SMAD2 and SMAD3 
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was determined by western blotting. β-actin served as a loading control. n=3. Representative western 

blots are shown. LRP1-deficiency results in increased SMAD2 protein expression in IPF lung fibrob-

lasts. SMAD3 protein expression is not affected. (C) LRP1-expressing and LRP1-depleted IPF lung 

fibroblasts were treated with 1 ng/ml TGF-β1 for different time points. The protein expression of         

α-SMA, SMAD2, SMAD3 and LRP1 was analyzed. In addition, the activation of SMAD2 and SMAD3 

was investigated by assessing the levels of P-SMAD2 (Ser465/467) and P-SMAD3 (Ser423/425).       

β-actin served as a loading control. n=1. Representative western blots are shown. LRP1 does not 

regulate SMAD3 and SMAD2 phosphorylation in IPF lung fibroblasts. (D) SMAD3 mRNA levels in 

LRP1-expressing and -knock-out MEF were assessed by qPCR. Data are presented as ∆Ct, using 

PBGD as a reference gene. n=3. Knock-out of LRP1 enhances SMAD3 gene expression in MEF. (E) 

Subcellular fractionation of LRP1-expressing and -deficient MEF was performed and the nuclear (NF) 

and cytosolic (CF) fractions were analyzed for the presence of SMAD3 by western blotting. Integrin β1 

(ITGB1) served as a marker for the cytosolic fraction whereas lamin A/C was the marker for the nuc-

lear compartment. n=3. Representative western blots are shown. LRP1-deficiency enhances the 

amounts of SMAD3 in both the cytosolic and nuclear fraction in MEF. (F) LRP1-expressing and LRP1-

deficient MEF were treated with 10 ng/ml TGF-β1 for 0, 0.5, 1, 4, 8, 10 and 14 h. The protein levels of 

α-SMA, SMAD2, SMAD3 and LRP1 were analyzed by western blotting. In addition, the activation of 

SMAD2 was investigated by assessing the levels of P-SMAD2 (Ser465/467). Moreover, the phospho-

rylation of the linker region of SMAD2 was analyzed by assessing the levels of P-SMAD2 

(Ser245/250/255). β-actin served as a loading control. n=3. Representative western blots are shown. 

Knock-out of LRP1 results in shortened phosphorylation in the C-terminus and linker region of 

SMAD2. Panels (A) - (C) indicate that LRP1 does not modulate the TGF-β1 signaling pathway by re-

gulating SMAD2 and SMAD3 in IPF lung fibroblasts. However, panels (D) - (F) demonstrate that LRP1 

regulates the TGF-β1 signaling pathway in MEF. In detail, LRP1 suppresses the expression of SMAD3 

and its translocation to the nucleus in these cells. In addition, LRP1 may modulate the translocation of 

SMAD2 to the nucleus in MEF (panel (F)).   

Although SMAD3 expression and activation were not affected by LRP1-depletion in 

IPF lung fibroblasts, further experiments were performed to analyze the effect of 

LRP1 knock-down on SMAD3. First, a Dual-Luciferase Reporter Assay with the 

SMAD3-binding consensus sequence CAGA [118] was executed with LRP1-

expressing and LRP1-deficient IPF lung fibroblasts in order to measure the transcrip-

tional activity of SMAD3. After LRP1-depletion, no change in the transcriptional activi-

ty of SMAD3 was observed under basal conditions in IPF lung fibroblasts (Fig. 8 A). 

In addition, knock-down of LRP1 did not affect SMAD3 transcriptional activity after 

treatment with TGF-β1 in these cells (Fig. 8 A). These data indicate that LRP1 does 

not regulate the transcriptional activity of SMAD3 in IPF lung fibroblasts. The afore-

mentioned experiment was also performed with LRP1-expressing and LRP1-deficient 

MEF. The findings obtained in MEF are partially different than those obtained in IPF 
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lung fibroblasts. In detail, LRP1-depletion did not affect the transcriptional activity of 

SMAD3 under basal conditions. However, LRP1-depletion potentiated the transcrip-

tional activity of SMAD3 in response to TGF-β1 in MEF (Fig. 8 B). These data indi-

cate that LRP1 suppresses the TGF-β1-dependent transcriptional activity of SMAD3 

in MEF.   

Next, it was investigated whether SMAD3 is required for the suppression of α-SMA 

expression by LRP1 in IPF lung fibroblasts. To this end, SMAD3 and LRP1 were dep-

leted either in combination or separately in these cells and α-SMA expression was 

assessed by qPCR and western blotting. On the mRNA level, LRP1-depletion in-

creased α-SMA expression (Fig. 8 C). Additional knock-down of SMAD3 in LRP1-

deficient IPF lung fibroblasts did not abolish the induction of α-SMA gene expression 

(Fig. 8 C). Thus, SMAD3 does not mediate LRP1-dependent suppression of α-SMA 

gene expression in IPF lung fibroblasts. After treatment of IPF lung fibroblasts with 

TGF-β1, the expected elevation of α-SMA mRNA levels after LRP1-depletion was not 

observed (Fig. 8 C). This may be explained by the reaching of a mRNA expression 

limit after TGF-β1-mediated increase of the α-SMA gene expression (Fig. 8 C). The 

efficiency of the knock-down of LRP1 and SMAD3 in this experiment was assessed 

by qPCR. Figure 8 D shows that silencing of LRP1 gene expression efficiently de-

creased LRP1 mRNA levels. Knock-down of SMAD3 also efficiently diminished 

SMAD3 gene expression (Fig. 8 E). The effect of LRP1- and SMAD3-depletion on the 

α-SMA protein levels in IPF lung fibroblasts is illustrated in figure 8 F and G. Knock-

down of LRP1 increased the α-SMA protein expression in IPF lung fibroblasts under 

basal conditions and after treatment with TGF-β1 (Fig. 8 F, G). Under both condi-

tions, the additional depletion of SMAD3 did not block the elevation of α-SMA protein 

expression after knock-down of LRP1 (Fig. 8 F, G). From this result it can be con-

cluded that SMAD3 is not involved in the regulation of α-SMA protein expression by 

LRP1 in IPF lung fibroblasts. As visible in figure 8 F, silencing of LRP1 efficiently re-

duced the LRP1 protein levels in IPF lung fibroblasts. Knock-down of SMAD3 also 

efficiently reduced the SMAD3 protein levels in these cells (Fig. 8 F). Hence, the   

depletion of LRP1 and SMAD3 was efficient in this experiment.   
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Fig. 8: LRP1 does not regulate α-SMA expression via SMAD3 in IPF lung fibroblasts. (A) IPF 

lung fibroblasts were transfected with siCtrl or siLRP1 as well as with pGL3-Basic-pCAGA firefly re-

porter and pRL-SV40 renilla reporter. Treatment with 1 ng/ml TGF-β1 was performed for 24 h. The 

transcriptional activity of SMAD3 was determined by Dual-Luciferase Reporter Assay. Data are ex-

pressed as mean values ± S.E.M. n=6. (B) LRP1-expressing and LRP1-deficient MEF were trans-

fected with pGL3-Basic-pCAGA firefly reporter and pRL-SV40 renilla reporter and Dual-Luciferase 

Reporter Assay was executed after treatment with 10 ng/ml TGF-β1 for 24 h. Data are expressed as 

mean values ± S.E.M. n=3. IPF lung fibroblasts were transfected with siCtrl or siLRP1 and/or        

siSMAD3. The cells were either treated or untreated with 1 ng/ml TGF-β1 for 24 h. Measurement of 

(C) α-SMA, (D) LRP1 and (E) SMAD3 gene expression by qPCR. Data are expressed as ∆Ct, using 
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PBGD as a reference gene. n=3. (F) Analysis of α-SMA, LRP1, SMAD2 and SMAD3 protein expres-

sion by western blotting, using β-actin as a loading control. n=4. Representative blots are shown. (G) 

Densitometric analysis of the α-SMA protein expression normalized to β-actin. n=4. Data are ex-

pressed as mean values ± S.E.M. Panel B shows that LRP1 suppresses the transcriptional activity of 

SMAD3 after TGF-β1-stimulation in MEF. However, panel A shows that LRP1 does not regulate the 

transcriptional activity of SMAD3 in IPF lung fibroblasts. Panels A, C and F indicate that SMAD3 does 

not mediate the increase of α-SMA gene and protein expression after LRP1-knock-down in IPF lung 

fibroblasts.  

4.5 Analysis of kinase phosphorylation in IPF lung fibroblasts following 

LRP1-depletion 

 

As demonstrated above, the control of α-SMA expression by LRP1 is not mediated 

by the canonical TGF-β1 pathway in IPF lung fibroblasts. In the literature, it was re-

ported that LRP1-dependent gene expression can be mediated by numerous kinas-

es, such as mitogen-activated protein kinases [119–121]. To identify kinases which 

activity is regulated by LRP1, a membrane-based antibody array which detects acti-

vating phosphorylations in kinases was performed. In this experimental system, anti-

bodies which are specific for a distinct kinase are immobilized in duplicate on a nitro-

cellulose membrane. By incubation of protein lysates on the membrane, kinases are 

captured by these antibodies. In the present study, the protein lysates of LRP1-

expressing and LRP1-deficient IPF lung fibroblasts either treated or untreated with 

TGF-β1 were analyzed (Fig. 9 A). The detection of phosphorylated kinases requires 

the incubation of the membrane with a mixture of biotinylated antibodies which are 

specific for the different phosphorylation sites of interest. In order to visualize phos-

phorylated kinases, chemiluminescent detection reagents are used. The intensity of 

the detected signal dots is proportional to the amount of the captured phosphorylated 

kinases (Fig. 9 A). Figure 9 A shows that the kinases JNK1/2/3 and ERK1/2 as well 

as c-Jun are phosphorylated in LRP1-expressing IPF lung fibroblasts under basal 

condition. Treatment of these cells with TGF-β1 increased the levels of these phos-

phorylated proteins (Fig. 9 A). In LRP1-depleted IPF lung fibroblasts, the basal 

amounts of phosphorylated JNK1/2/3, ERK1/2 and c-Jun were elevated in compari-

son to LRP1-expressing IPF lung fibroblasts (Fig. 9 A). In addition, higher levels of 

phosphorylated JNK1/2/3, ERK1/2 and c-Jun were detectable in LRP1-deficient than 

in LRP1-expressing IPF lung fibroblasts after treatment with TGF-β1. Collectively, 

these findings indicate that LRP1 may inhibit the phosphorylation of JNK1/2/3, 
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ERK1/2 and/or c-Jun in IPF lung fibroblasts under basal conditions and in response 

to TGF-β1. Thereby, LRP1 may suppress α-SMA expression in these cells. 

       

The effect of LRP1 on the phosphorylation of all tested kinases was analyzed by 

densitometry. To this end, the pixel density of each signal dot which had been de-

tected on the nitrocellulose membrane was assessed. Mean pixel densities were cal-

culated from the duplicates. In order to highlight the effect of LRP1-depletion on the 

phosphorylation of the tested kinases, the densitometric data were not presented for 

all four conditions which are described in figure 9 A. Instead, the mean pixel densities 

obtained from LRP1-expressing IPF lung fibroblasts were subtracted from their coun-

terparts obtained from LRP1-depleted IPF lung fibroblasts (siLRP1 - siCtrl). This dif-

ference describes the change of kinase phosphorylation after LRP1-depletion under 

basal conditions in IPF lung fibroblasts. In the same way, the difference of the mean 

pixel densities obtained from LRP1-expressing and LRP1-depleted IPF lung fibrob-

lasts after treatment with TGF-β1 was calculated ((siLRP1 + TGF-β1) - (siCtrl + TGF-

β1)). This difference describes the change of kinase phosphorylation after knock-

down of LRP1 in IPF lung fibroblasts and treatment with TGF-β1. In figure 9 B, the 

change of kinase phosphorylation after LRP1-knock-down and TGF-β1-treatment 

((siLRP1 + TGF-β1) - (siCtrl + TGF-β1)) was plotted against the change in kinase 

phosphorylation after LRP1-depletion under basal conditions (siLRP1 - siCtrl).  

 

The first and fourth quadrant of the graph contain values which describe an increase 

of the kinase phosphorylation after LRP1-depletion. In contrast, the second and third 

quadrant contain values which describe a decrease of the phospho-kinase levels 

when LRP1 is depleted. The majority of values is concentrated around zero and thus 

is not affected by depletion of LRP1 in IPF lung fibroblasts. However, the values of  

P-ERK1/2, P-JNK1/2/3 and P-c-Jun are located in the first quadrant and hence their 

phosphorylation was increased following LRP1-depletion. In comparison to all inves-

tigated kinases, the phosphorylation of ERK1/2 was promoted to the most in LRP1-

deficient IPF lung fibroblasts under basal conditions. Figure 9 B furthermore shows 

the effect of TGF-β1 on the phosphorylation of the investigated kinases after LRP1-

depletion. In detail, the first and second quadrant contain values which describe a 

TGF-β1-mediated increase of the kinase phosphorylation after knock-down of LRP1. 

Values in the third and fourth quadrant indicate a TGF-β1-mediated decrease of the 
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kinase phosphorylation when LRP1 is absent. Since the values of ERK1/2, JNK1/2/3 

and c-Jun are located in the first quadrant, TGF-β1 promoted their phosphorylation in 

LRP1-depleted IPF lung fibroblasts. This experiment highlights ERK1/2, JNK1/2/3 

and c-Jun as potential mediators of LRP1-dependent signal transduction in IPF lung 

fibroblasts. It is imaginable that LRP1 may inhibit the phosphorylation of ERK1/2, 

JNK1/2/3 and/or c-Jun to suppress α-SMA expression in these cells. This may be 

observed under basal conditions and in response to TGF-β1.  

 

Fig. 9: Analysis of kinase phosphorylation in LRP1-deficient IPF lung fibroblasts under basal 

conditions and after treatment with TGF-β1. (A) A Proteome Profiler Human Phospho-Kinase Array 

was performed with protein lysates of LRP1-expressing and LRP1-depleted IPF lung fibroblasts either 

treated or untreated with 1 ng/ml TGF-β1 for 24 h. The signals of P-ERK1/2 (red), P-JNK1/2/3 (blue) 

and P-c-Jun (green) which occur in duplicate on the array membranes are highlighted. In the (B) den-

sitometric analysis of the Proteome Profiler Human Phospho-Kinase Array, the difference ((siLRP1 + 

TGF-β1) - (siCtrl + TGF-β1)) of the mean pixel densities is plotted against the difference (siLRP1 - 

siCtrl) of the mean pixel densities. P-ERK1/2 (red), P-JNK1/2/3 (blue) and P-c-Jun (green) are high-

lighted. This experiment demonstrates that LRP1 may regulate the phosphorylation of ERK1/2, 

JNK1/2/3 and/or c-Jun in order to modulate signaling cascades in IPF lung fibroblasts. First quadrant: 

top right; second quadrant: top left; third quadrant: bottom left; fourth quadrant: bottom right.  
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4.6 LRP1 suppresses α-SMA expression by inhibiting the JNK signaling 

pathway in IPF lung fibroblasts 

 

In chapter 4.5, it was described that LRP1 inhibits the phosphorylation of the kinases 

ERK1/2 and JNK1/2/3 as well as of the transcription factor c-Jun in IPF lung fibrob-

lasts. In the present chapter, it is investigated whether these proteins mediate the 

LRP1-dependent regulation of α-SMA expression in IPF lung fibroblasts.  

The most promising candidate among the aforementioned proteins is ERK1/2. In 

comparison to all investigated kinases, the phosphorylation of ERK1/2 was enhanced 

to the most following LRP1 silencing under basal conditions. In addition, TGF-β1 ele-

vated ERK1/2 phosphorylation in LRP1-deficient IPF lung fibroblasts. In the literature, 

it was demonstrated that LRP1 activates ERK in order to potentiate TGF-β1-induced   

α-SMA expression in kidney fibroblasts [34].  

The kinase MEK1/2 is the upstream activator of ERK1/2. Hence, blockage of MEK1/2 

results in the inhibition of ERK1/2 activity. In order to determine whether ERK1/2 me-

diates LRP1-dependent α-SMA expression, MEK1/2 was blocked in LRP1-

expressing and LRP1-deficient IPF lung fibroblasts by using the MEK1/2-specific in-

hibitor PD98059. The knock-down of LRP1 increased α-SMA expression in IPF lung 

fibroblasts as assessed by western blotting (Fig. 10 A, B). Treatment of cells with 

TGF-β1 elevated the α-SMA protein expression in both LRP1-expressing and LRP1-

deficient IPF lung fibroblasts (Fig. 10 A, B). However, inhibition of MEK1/2 did not 

abrogate the induction of α-SMA expression following LRP1-depletion under basal 

conditions and after TGF-β1-stimulation (Fig. 10 A, B). Hence, LRP1 does not control 

ERK1/2 activation to suppress α-SMA expression in IPF lung fibroblasts.  

It was furthermore investigated whether ERK1/2 mediates LRP1-dependent regula-

tion of α-SMA expression in MEF. Knock-out of LRP1 led to the increase of α-SMA 

protein expression in these cells (Fig. 10 C). Pharmacological blockage of MEK1/2 in 

LRP1-expressing and -deficient MEF, however, had no effect on α-SMA expression 

(Fig. 10 C). This experiment demonstrates that ERK1/2 activation does not mediate 

the suppression of α-SMA by LRP1 in MEF.  
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Fig. 10: ERK1/2 has no effect on α-SMA expression following LRP1-depletion in IPF lung fibrob-

lasts and MEF. IPF lung fibroblasts were transfected with siLRP1 or siCtrl and treated with 1 ng/ml 

TGF-β1 and/or 20 µM MEK1/2 inhibitor PD98059 for 24 h. (A) The protein expression of α-SMA, 

ERK1/2 and LRP1 was assessed by western blotting. In addition, the activation of ERK1/2 was inves-

tigated by assessing the levels of P-ERK1/2. β-actin served as a loading control. n=3. Representative 

western blots are shown. (B) Densitometric analysis of α-SMA protein expression normalized to         

β-actin. n=3. (C) LRP1-expressing or -deficient MEF were treated with 20 µM MEK1/2 inhibitor 

PD98059 for 24 h. The protein expression of α-SMA and ERK1/2 was measured by western blotting. 

In addition, the activation of ERK1/2 was analyzed by assessing the levels of P-ERK1/2. β-actin 

served as a loading control. n=3. Representative western blots are displayed. Collectively, these data 

demonstrate that LRP1 does not suppress α-SMA by regulating ERK1/2 activation in IPF lung fibrob-

lasts (panels (A) and (B)) and MEF (panel (C)).   

As ERK1/2 did not mediate the suppression of α-SMA expression by LRP1 in IPF 

lung fibroblasts, JNK1/2/3 and its target c-Jun were investigated. The phosphoryla-

tion of both, JNK1/2/3 and c-Jun, was elevated following LRP1-depletion under basal 

conditions and after stimulation with TGF-β1 in IPF lung fibroblasts (Fig. 9 A, B). In 
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order to investigate whether JNK1/2/3 mediates LRP1-dependent suppression of     

α-SMA expression, JNK1/2/3 was inhibited with the JNK1/2/3 inhibitor SP600125 in 

LRP1-expressing and -deficient IPF lung fibroblasts. Knock-down of LRP1 enhanced 

α-SMA protein expression under basal conditions and after TGF-β1-stimulation in IPF 

lung fibroblasts (Fig. 11 A). Inhibition of JNK1/2/3 abrogated the increase of α-SMA 

following LRP1-depletion under both conditions (Fig. 11 A). In order to validate this 

result, the gene expression of LRP1 and JNK1 was silenced separately and in com-

bination in IPF lung fibroblasts (Fig. 11 B). Thereafter, α-SMA protein expression was 

assessed by western blotting. LRP1-depletion increased α-SMA protein expression 

whereas JNK1-depletion did not affect α-SMA expression (Fig. 11 B). However, 

knock-down of JNK1 and LRP1 in combination abolished the induction of α-SMA ex-

pression which is observed following LRP1-depletion (Fig. 11 B). Collectively, these 

findings demonstrate that LRP1 inhibits JNK to suppress α-SMA expression in IPF 

lung fibroblasts. This was observed under basal conditions and following stimulation 

of IPF lung fibroblasts with TGF-β1.  

In figure 11 B, also the relationship between LRP1, c-Jun and α-SMA is shown. To 

be specific, it is demonstrated that LRP1-depletion increases c-Jun protein levels in 

IPF lung fibroblasts (Fig. 11 B). Additional knock-down of JNK1 abrogated this in-

crease of c-Jun protein expression (Fig. 11 B). Hence, JNK may mediate the LRP1-

dependent suppression of α-SMA expression via c-Jun in IPF lung fibroblasts.      

The role of JNK in the α-SMA regulation by LRP1 was also investigated in MEF. To 

this end, LRP1-expressing and -LRP1-defiecient MEF were treated with the JNK1/2/3 

inhibitor SP600125 and the α-SMA expression was analyzed by western blotting. 

Whereas LRP1-depletion induced α-SMA protein expression, inhibition of JNK1/2/3 

abolished this effect (Fig. 11 C). Thus, JNK1/2/3 mediates the LRP1-dependent sup-

pression of α-SMA in MEF.    
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Fig. 11: LRP1 suppresses α-SMA expression via JNK in IPF lung fibroblasts and MEF. (A) IPF 

lung fibroblasts were transfected with siLRP1 or siCtrl and treated with 1 ng/ml TGF-β1 and/or 50 µM 

JNK1/2/3 inhibitor SP600125 for 24 h. The protein expression of α-SMA, t-JNK and LRP1 was ana-

lyzed by western blotting. Moreover, the activation of JNK was investigated by assessing the levels of 

P-JNK. β-actin served as a loading control. Representative western blots are shown. n=3. (B) Protein 

expression of α-SMA, LRP1, t-JNK and c-Jun in IPF lung fibroblasts after knock-down of LRP1 and/or 

JNK1 as assessed by western blotting. β-actin served as a loading control. n=3. Representative west-

ern blots are shown. (C) LRP1-expressing and LRP1-knock-out MEF were treated with 50 µM 

JNK1/2/3 inhibitor SP600125 for 24 h. Analysis of the protein expression of α-SMA and t-JNK was 

performed by western blotting. β-actin served as a loading control. n=2. Representative western blots 

are shown. Panels (A) and (B) indicate that LRP1-dependent suppression of α-SMA expression is 

mediated by JNK in IPF lung fibroblasts. JNK may mediate LRP1-dependent inhibition of α-SMA via   

c-Jun in these cells (panel B). Panel (C) shows that JNK mediates LRP1-dependent suppression of   

α-SMA in MEF. 

In the present study, the role of the kinase p38 in the LRP1-dependent regulation of 

α-SMA expression was investigated in IPF lung fibroblasts. The interest in this kinase 

was based on its well descried role in the regulation of α-SMA expression during fi-

broblast to myofibroblast transdifferentiation. In detail, it has been demonstrated that 
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application of mechanical forces to fibroblasts results in the phosphorylation of p38 

[106]. As a consequence, p38 promotes α-SMA expression in these cells [106].   

However, it must be emphasized that the phosphorylation of p38 was only slightly 

affected by LRP1-depletion in IPF lung fibroblasts. Membrane-based antibody array 

revealed that knock-down of LRP1 slightly decreased the phosphorylation of p38 un-

der basal conditions (siLRP1 - siCtrl: -60,703) and after TGF-β1-stimulation ((siLRP1 

+ TGF-β1) - (siCtrl + TGF-β1): -91,036). Hence, the results of the present study do 

not suggest p38 as a mediator of the LRP1-dependent suppression of α-SMA ex-

pression in IPF lung fibroblasts. Nonetheless, the effect of p38 on the LRP1-

dependent regulation of α-SMA expression was investigated in these cells. To this 

end, LRP1-expressing and LRP1-depleted IPF lung fibroblasts were treated with the 

p38 inhibitor SB203580 and/or TGF-β1. Whereas TGF-β1 induced α-SMA protein 

expression in LRP1-expressing and LRP1-deficient IPF lung fibroblasts, inhibition of 

p38 had no effect on α-SMA protein expression in these both cell types (Fig. 12). Al-

together, the data show that LRP1 does not regulate p38 to suppress α-SMA expres-

sion in IPF lung fibroblasts.    

 

 

Fig. 12: p38 is not involved in LRP1-dependent regulation of α-SMA expression in IPF lung  

fibroblasts. LRP1-expressing and -deficient IPF lung fibroblasts were treated with 1 ng/ml TGF-β1 

and/or 10 µM p38 inhibitor SB203580 for 24 h. The protein expression of α-SMA, LRP1 and t-p38 was 

measured by western blotting. In addition, the activation of p38 was investigated by assessing the 

levels of P-p38. β-actin served as a loading control. n=1. This experiment shows that p38 is not a me-

diator of LRP1-dependent suppression of α-SMA expression in IPF lung fibroblasts.  

The transcription factor AP1, which exists as a number of dimeric complexes formed 

by members of the Jun (including c-Jun), Fos and ATF families, is a well described 
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downstream target of JNK1/2/3 [122]. As shown in figure 11 B, LRP1-depletion en-

hanced the protein level of c-Jun in a JNK1-dependent manner in IPF lung fibrob-

lasts. In order to identify whether LRP1 regulates the transcriptional activity of AP1, 

LRP1-expressing and LRP1-deficient IPF lung fibroblasts were transfected with 

pGL4.44-AP1 firefly reporter and pRL-SV40 renilla reporter. The pGL4.44-AP1 firefly 

reporter contains six copies of an AP1-binding consensus element. Moreover, the 

cells were either treated or untreated with TGF-β1. Dual-Luciferase Reporter Assay 

demonstrated that LRP1-deficiency results in the increase of AP1 transcriptional ac-

tivity (Fig. 13). In addition, TGF-β1 elevated the transcriptional activity of AP1 further 

and to a stronger extend in LRP1-depleted IPF lung fibroblasts than in control cells 

(Fig. 13). Altogether, these data indicate that LRP1 suppresses the transcriptional 

activity of AP1 under basal conditions in IPF lung fibroblasts. Furthermore, LRP1 lim-

its the TGF-β1-induced increase of the AP1 transcriptional activity in these cells.   

 

 

 

 

 

 

 

 

 

Fig. 13: LRP1 suppresses the transcriptional activity of AP1 in IPF lung fibroblasts. IPF lung 

fibroblasts were transfected with siLRP1 or siCtrl as well as with pGL4.44-AP1 firefly reporter and 

pRL-SV40 renilla reporter and treated with 1 ng/ml TGF-β1 for 24 h. Dual-Luciferase Reporter Assay 

was performed to determine the transcriptional activity of AP1. n=3. The results of all three experi-

ments are presented separately. Per experiment, the measurement was performed in triplicate. Data 

are expressed as mean values ± S.E.M. This experiment reveals that LRP1 suppresses the transcrip-

tional activity of AP1 under basal conditions in IPF lung fibroblasts. In addition, LRP1 limits the TGF-

β1-mediated increase of AP1 transcriptional activity in these cells.   

4.7 LRP1-deficiency enhances the contractile activity of IPF lung fibroblasts  

 

As LRP1-depletion upregulated the myofibroblast marker α-SMA in IPF lung fibrob-

lasts, it was further analyzed if loss of LRP1 also promotes the generation of the con-

tractile myofibroblast phenotype. To this end, the contraction of floating collagen gels 
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by LRP1-expressing and LRP1-deficient IPF lung fibroblasts was assessed under 

basal conditions or in response to TGF-β1. The reduction of the collagen gel surface 

area during contraction negatively correlates with the contractile activity of the cells. 

Hence, the more the surface area of a collagen gel is reduced, the higher is the con-

tractile activity of the cells in this collagen gel.  

After 3 h, IPF lung fibroblasts had contracted the collagen gels (Fig. 14 A). However, 

the surface area of the collagen gels was similar under all conditions (Fig. 14 A, B). 

Thus, knock-down of LRP1 did not modulate the contractile activity of IPF lung fibrob-

lasts at this time point (Fig. 14 A, B). In addition, TGF-β1 did not affect the contractile 

activity of IPF lung fibroblasts at the 3 h time point (Fig. 14 A, B). After 24 h, IPF lung 

fibroblasts further contracted the collagen gels (Fig. 14 A). LRP1-deficient IPF lung 

fibroblasts contracted the collagen gel more than LRP1-expressing IPF lung fibrob-

lasts (Fig. 14 A). Accordingly, the surface area of the collagen gel containing LRP1-

deficient IPF lung fibroblasts was smaller than the surface area of the collagen gel 

containing LRP1-expressing IPF lung fibroblasts (Fig. 14 C).  

Moreover, stimulation with TGF-β1 potentiated the contraction of the collagen gels by 

LRP1-expressing and LRP1-depleted IPF lung fibroblasts (Fig. 14 A). Interestingly, 

this effect was stronger in LRP1-deficient than in LRP1-expressing IPF lung fibro-

blasts (Fig. 14 A). Accordingly, the surface area of the collagen gel containing LRP1-

deficient, TGF-β1-stimulated IPF lung fibroblasts was the smallest in comparison to 

the surface area of the other collagen gels (Fig. 14 C). Altogether, these results dem-

onstrate that LRP1 suppresses the contraction of IPF lung fibroblasts. Furthermore, 

LRP1 limits the TGF-β1-induced increase of the contractile activity of these cells.  
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Fig. 14: LRP1-deficiency increases the contractile activity of IPF lung fibroblasts. (A) IPF lung 

fibroblasts were transfected with siLRP1 or siCtrl and embedded into floating collagen gels 48 h after 

siRNA transfection and 24 h after treatment with 10 ng/ml TGF-β1. The contraction of the collagen 

gels was documented after 0 h, 3 h and 24 h. n=5. Representative pictures are shown. The surface 

area of the collagen gels after (B) 3 h and (C) 24 h is presented in arbitrary units. n=5. Data are ex-

pressed as mean values ± S.E.M. Collectively, these data show that LRP1 inhibits the contractile ac-

tivity of IPF lung fibroblasts. In addition, LRP1 limits the TGF-β1-mediated elevation of the contractile 

activity of these cells.  

As there is evidence that myofibroblasts may show enhanced proliferation [123–125], 

it was analyzed whether LRP1 is involved in the proliferation of IPF lung fibroblasts. 

To this end, the DNA of LRP1-expressing and LRP1-deficient IPF lung fibroblasts 

was stained by propidium iodide. Subsequent analysis by flow cytometry revealed 

that the majority of IPF lung fibroblasts (around 80%) were in the G1 phase of the cell 
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cycle (Fig. 15 A). Ten percent of the cells were in the S phase and other ten percent 

of the cells were in the G2/M phase of the cell cycle (Fig 15 B, C). The knock-down of 

LRP1 had no effect on the proliferation of IPF lung fibroblasts as the amount of cells 

in the G2/M phase remained unaffected (Fig. 15 C). These data indicate that LRP1 

does not regulate the proliferation of IPF lung fibroblasts.  

 

Fig. 15: LRP1 does not regulate the proliferation of IPF lung fibroblasts. IPF lung fibroblasts were 

transfected with siLRP1 or siCtrl for 96 h and cell proliferation was assessed by propidium iodide stain-

ing of the DNA. The detection of DNA-bound propidium iodide was performed by flow cytometry. Per-

centage of cells in the (A) G1, (B) S and (C) G2/M phase of the cell cycle. n=3. Data are expressed as 

mean values ± S.E.M. This experiment demonstrates that LRP1 does not regulate the proliferation of 

IPF lung fibroblasts.  

Furthermore, the role of LRP1 in the migration of IPF lung fibroblasts was investi-

gated. Therefore, LRP1-expressing and LRP1-deficient IPF lung fibroblasts were 

seeded into the two chambers of culture inserts and allowed to migrate into the gap 

between these two chambers after removal of the silicone insert. After 19 h, cells had 

migrated into the gap (Fig. 16 A) but LRP1-expressing and -deficient IPF lung fibrob-

lasts showed no difference in the migratory potential (Fig. 16 A). In addition, TGF-β1 

had no effect on the migration of IPF lung fibroblasts (Fig. 16 A). Hence, neither 

LRP1 nor TGF-β1 regulate the migratory potential of IPF lung fibroblasts. Figure 16 B 

shows the surface area of the cell layers which were formed after 19 h of migration 

under the four conditions. Here, it becomes also apparent that neither LRP1-

depletion nor treatment with TGF-β1 affected the migratory potential of IPF lung fi-

broblasts.    
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Fig. 16: LRP1 does not regulate the migration of IPF lung fibroblasts. After transfection of IPF 

lung fibroblasts with siLRP1 or siCtrl for 48 h and treatment with 10 ng/ml TGF-β1 for 24 h, cells were 

seeded into the chambers of a silicone insert. After removal of the silicone insert, cells migrated into 

the gap between the cell patches. (A) The cell migration was documented after 0 h and 19 h. n=4. 

Representative pictures are displayed. (B) The surface area of the cell layer in the gap after 19 h of 

migration is presented in arbitrary units for all four conditions. n=4. Data are expressed as mean val-

ues ± S.E.M. The experiment shows that neither LRP1 nor TGF-β1 regulate the migratory potential of 

IPF lung fibroblasts.    
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5 Discussion 

5.1 LRP1 suppresses α-SMA expression in IPF lung fibroblasts 

 

Wound healing is a process of tightly controlled tissue remodeling events. Dynamic 

changes in the ECM, cell migration, proliferation and differentiation belong to these 

events. Fibroblasts are of central importance during tissue remodeling. These cells 

first migrate into the lesion where they proliferate and form a large population [24]. 

Secondly, fibroblasts in this population differentiate to myofibroblasts, the key media-

tors of wound repair [24]. These α-SMA expressing, high contractile cells strongly 

secrete ECM components which rebuild an ECM matrix in the lesion [31,32]. Here, it 

becomes apparent that dysregulated acquisition and persistence of myofibroblasts 

lead to imbalanced tissue repair, such as scarring. Fibroblast to myofibroblast trans-

differentiation is controlled in several manners, e.g. by cytokine expression and ma-

trix rigidity. Interestingly, LRP1 was described to regulate fibroblast to myofibroblast 

transdifferentiation as well [34,126,127]. LRP1 is an endocytic receptor which is 

known to be involved in tissue remodeling, e.g. by regulating the catabolism of fibro-

nectin and by modulating ECM-crosslinking or -degrading enzymes [7,16,36,42–44]. 

The functions of LRP1 in fibroblast to myofibroblast transdifferentiation are described 

hereafter. In kidney fibroblasts, CTGF mediates the phosphorylation of LRP1 which 

subsequently enhances the TGF-β1-induced α-SMA expression and thus the diffe-

rentiation of fibroblasts to myofibroblasts [34]. In a similar manner, tissue plasmino-

gen activator (tPA) promotes the TGF-β1-dependent induction of α-SMA and colla-

gen I via LRP1 in kidney fibroblasts [126]. In detail, binding of tPA to LRP1 induces 

the phosphorylation of the latter [126]. As a consequence, LRP1 recruits β1 integrin 

and thus permits activation of integrin-linked kinase [126]. This kinase mediates a 

signaling which results in enhanced α-SMA and collagen I expression in kidney fi-

broblasts [126]. Hence, tPA promotes fibroblast to myofibroblast transdifferentiation 

in a LRP1-dependent manner in kidney fibroblasts [126]. Besides, tPA protects kid-

ney fibroblasts from apoptosis via LRP1 [128]. In hepatic stellate cells, however, tPA-

mediated phosphorylation of LRP1 results in the Akt activation and in the decreased  

α-SMA protein and collagen I gene expression [127]. Thus, LRP1 protects hepatic 

stellate cells from differentiation to myofibroblasts [127]. These findings indicate that 

the functions of LRP1 are cell type-specific. The role of LRP1 in the differentiation of 
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pulmonary fibroblasts to myofibroblast has not been described yet. In the present 

work, a microarray analysis was performed and demonstrated that the Kegg path-

ways which describe cytoskeleton remodeling processes are significantly perturbed 

in IPF lung fibroblasts but not in donor lung fibroblasts following LRP1-depletion. The 

finding that LRP1 affects pathways which are responsible for cytoskeleton re-

arrangements gives a hint that LRP1 may indeed be involved in the generation of the 

myofibroblast phenotype in IPF lung fibroblasts. Changes in the cytoskeleton adopt 

myofibroblasts to the enhanced mechanical stress which occurs during wound heal-

ing. In this process, the formation of stress fibers as well as the expression and in-

corporation of α-SMA into stress fibers are fundamental [73–75]. For instance, the 

incorporation of α-SMA into stress fibers permits the formation and maintenance of 

suFa [74,75]. suFa can transmit a fourfold higher external tension than mature Fa 

[75]. Moreover, α-SMA expression is a prerequisite for the expression of collagen by 

myofibroblasts [63]. Therewith, uncontrolled fibroblast to myofibroblast transdifferen-

tiation leads to uncontrolled collagen deposition which results in scar formation. The 

fact that silencing of LRP1 gene expression affects cytoskeleton-related Kegg path-

ways in IPF lung fibroblasts but not in donor lung fibroblasts indicates that this effect 

depends on the pathological condition. It is imaginable that the pathological constitu-

tion primes IPF lung fibroblasts. According to the Two-Hit Hypothesis, primed cells 

show an exaggerated reaction to a second hit. Hence, the myofibroblast phenotype 

may be easier induced in IPF lung fibroblasts than in donor lung fibroblasts. Indeed, it 

is observed that fibroblast-like cells which are located in fibroblastic foci of IPF lungs 

express α-SMA [123–125]. Thus, these cells are considered to represent the myofi-

broblast phenotype whereas donor lung fibroblasts rather represent the fibroblast 

phenotype without traits of myofibroblasts. The present study indicates that loss of 

LRP1 may be a second hit which triggers the uncontrolled differentiation of IPF lung 

fibroblasts to myofibroblasts. The consequence of this event may be scar formation. 

An explanation why LRP1 may be a second hit trigger in IPF lung fibroblasts is given 

hereafter.  

The microarray revealed that knock-down of LRP1 significantly perturbed Kegg 

pathways which describe endocytic processes in donor lung fibroblasts but not in IPF 

lung fibroblasts. Therefore, priming of IPF lung fibroblasts may switch the function of 

LRP1 from endocytic to signal transducing in IPF lung fibroblasts. As a consequence, 

LRP1 becomes a regulator of fibroblast to myofibroblast transdifferentiation in these 
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cells. As mentioned above, α-SMA is expressed and incorporated into stress fibers 

during fibroblast to myofibroblast transdifferentiation [73–75]. Below, experiments 

which were performed to show whether LRP1 regulates α-SMA expression in IPF 

lung fibroblasts, are described. Analysis of LRP1 and α-SMA mRNA levels in IPF 

lung fibroblasts which were derived from different IPF patients revealed that lower 

levels of LRP1 correlate with higher α-SMA levels. Knock-out of LRP1 in MEF re-

sulted in elevated α-SMA gene expression. In addition, LRP1-depletion enhanced    

α-SMA protein expression in IPF lung fibroblasts and MEF. Thus, LRP1 suppresses 

the generation of the myofibroblast phenotype in these cell types. Since fibroblast to 

myofibroblast transdifferentiation is crucial for wound healing, the expression of LRP1 

may be transiently downregulated in order to induce α-SMA expression in fibroblasts 

after injury. Reexpression of LRP1 may occur in the resolution phase of wound heal-

ing and limit fibroblast to myofibroblast transdifferentiation. In contrast, permanently 

reduced LRP1 expression may promote the exaggerated acquisition of myofibro-

blasts in fibrosis. As the accumulation of α-SMA-positive myofibroblasts drives the 

progression of pulmonary fibrosis [63], loss of LRP1 in lung fibroblasts may accele-

rate the disease progression.  

5.2 LRP1 ICD does not serve as transcription factor to regulate α-SMA        

expression  

 

Besides its endocytic function, LRP1 can regulate the expression of genes by either 

modulating signaling cascades or via its ICD which can act as a transcription factor 

[110]. The liberation of the ICD requires the shedding of the extracellular domain of 

LRP1 by metalloproteinases and the subsequent processing of the membrane-bound 

fraction by γ-secretase [109,110]. LRP1 ICD as a transcription factor is known in the 

context of inflammation [109]. Therein, lipopolysaccharide (LPS) promotes LRP1  

ectodomain shedding and thus the subsequent release of ICD [109]. LRP1 ICD limits 

the expression of interferon γ during the LPS-dependent inflammatory response 

[109]. The results of the present study, however, demonstrate that the ICD of LRP1 

does not suppress α-SMA gene expression in MEF. This experiment was performed 

with MEF as a model system because it could not be conducted with IPF lung fibrob-

lasts due to technical reasons.    
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5.3 The regulation of α-SMA expression by LRP1 is independent of the canon-

ical TGF-β1 pathway in IPF lung fibroblasts 

 

TGF-β1 is a key mediator of fibroblast to myofibroblast transdifferentiation [72]. This 

cytokine was found to induce α-SMA expression via the canonical mediator SMAD3 

[73]. LRP1 was found to suppress the canonical TGF-β1 signaling in vascular smooth 

muscle cells [129]. Hence, it was investigated in the present study whether LRP1 

modulates α-SMA expression in a SMAD3-dependent manner in IPF lung fibroblasts. 

The data of the present study indicate that neither the SMAD3 expression nor the 

SMAD3 activation are regulated by LRP1 in IPF lung fibroblasts. Furthermore, Dual-

Luciferase Reporter Assay with the SMAD3-binding consensus sequence CAGA 

showed that LRP1 does not modulate the transcriptional activity of SMAD3 in these 

cells. Finally, it was also demonstrated that SMAD3 does not mediate LRP1-

dependent suppression of α-SMA expression in IPF lung fibroblasts as knock-down 

of SMAD3 did not block the increase of α-SMA expression after LRP1-depletion.  

Intriguingly, an increase of the SMAD2 protein expression was observed in IPF lung   

fibroblasts following LRP1-depletion. However, this increase did not affect the activa-

tion of SMAD2 in LRP1-deficient IPF lung fibroblasts. The role of LRP1-dependent 

induction of SMAD2 in IPF lung fibroblasts remains to be investigated. Altogether, the 

data show that LRP1 does not modulate the canonical TGF-β1 signaling pathway in 

IPF lung fibroblasts.  

It has to be emphasized that LRP1 has an opposite effect on SMAD3 expression in 

IPF lung fibroblasts and MEF. Whereas SMAD3 expression remained unaffected by 

LRP1-depletion in IPF lung fibroblasts, knock-out of LRP1 elevated the gene and 

protein expression of SMAD3 in MEF. In addition, subcellular fractionation revealed 

that SMAD3 levels in both, the cytoplasm and the nucleus are elevated when LRP1 is 

absent in MEF. Since knock-out of LRP1 in MEF elevated the SMAD3 levels in the 

nucleus, an increase of the transcriptional activity of SMAD3 was expected. However, 

the transcriptional activity of SMAD3 was not affected in LRP1-deficient MEF under 

basal conditions. Instead, LRP1-depletion enhanced the transcriptional activity of 

SMAD3 only in response to TGF-β1 in MEF. The finding that LRP1 suppresses the 

TGF-β1-dependent transcriptional activity of SMAD3 in MEF is opposed to the finding 

obtained in IPF. Whether the inhibition of SMAD3 transcriptional activity by LRP1 re-

gulates TGF-β1-induced α-SMA expression in MEF remains to be investigated.  
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In the present study it was furthermore demonstrated that knock-out of LRP1 short-

ened the duration of phosphorylation in the C-terminus and the linker region of 

SMAD2 in MEF. Whereas phosphorylation of the SMAD2 C-terminus is required for 

the translocation of SMAD2 to the nucleus [113–115], phosphorylation in the linker 

region can either promote or block this process [116,117]. Further investigation is 

needed to assess whether LRP1 affects the transcriptional activity of SMAD2 and if 

so, whether LRP1 regulates α-SMA expression via SMAD2 in MEF.  

The different effects of LRP1 on SMAD2 and SMAD3 in IPF lung fibroblasts and MEF 

may be explained by the properties of these cells. Whereas MEF are embryonic cells, 

IPF lung fibroblasts are terminally differentiated cells. The embryonic MEF have cha-

racteristics of fibroblasts but can also develop into tissues from all three germ layers 

[130]. This feature is called pluripotency and is a characteristic of embryonic stem 

cells. Terminally differentiated fibroblasts, such as IPF lung fibroblasts, are not pluri-

potent. Hence, IPF lung fibroblasts may differentiate to myofibroblasts by transdiffe-

rentiation. In this process, a differentiated cell type converts to another differentiated 

cell type without going through a pluripotent cell state. MEF, however, may rather 

undergo transdetermination in order to differentiate to myofibroblasts. In transdeter-

mination, a progenitor cell switches lineage commitment in order to develop to a re-

lated cell type. Here, it becomes evident that several mechanisms may mediate the 

differentiation of fibroblasts to myofibroblasts, depending on the developmental state 

of the cell. Similarly, priming of IPF lung fibroblasts may modify the mechanisms by 

which IPF lung fibroblasts differentiate to myofibroblasts. These suggestions may 

explain the inconsistencies which were obtained concerning the effect of LRP1-

depletion on SMAD2 and SMAD3 in IPF lung fibroblasts and MEF.  

5.4 LRP1 suppresses α-SMA expression by inhibiting the JNK signaling 

pathway in IPF lung fibroblasts 

 

LRP1 participates in signal transduction by regulating the activity of various kinases, 

such as mitogen-activated kinases, phosphatidylinositol 3-kinase/Akt and Rho-like 

GTPases [119–121,131,132]. As LRP1 does not have enzymatic functions, it serves 

as docking site for scaffolding and adaptor proteins which bring kinases and their 

substrates in close proximity [3,8–10]. In many cases, tyrosine phosphorylation of the 

cytoplasmic domain of LRP1 is required for the binding of scaffolding and adaptor 

proteins [8–10]. Also in fibroblast to myofibroblast transdifferentiation, LRP1 was de-
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scribed to modulate signaling cascades. For instance, the previously mentioned tPA-

mediated suppression of the myofibroblast phenotype in hepatic stellate cells re-

quires the activation of Akt in a LRP1-dependent manner [127]. However, the promo-

tion of the TGF-β1-induced differentiation of kidney fibroblasts to myofibroblasts by 

CTGF is mediated by LRP1-dependent activation of ERK1/2 [34]. The results of the 

present study demonstrate that the levels of activated ERK1/2 are increased after 

LRP1-depletion in IPF lung fibroblasts and MEF but that ERK1/2 is not involved in the 

LRP1-dependent regulation of α-SMA expression in these cell types. The kinase p38 

was found to promote α-SMA expression following the application of mechanical 

forces to fibroblasts [106]. Since mechanical forces increase after injury, p38 may 

regulate fibroblast to myofibroblast transdifferentiation during wound healing. In the 

literature, p38 was demonstrated to be activated in a LRP1-associated manner dur-

ing LRP1-dependent internalization of β-amyloid protein in neurons and astrocytes in 

the mouse brain [121]. However, a link between LRP1 and p38 in fibroblasts has not 

been described yet. In the present study, it was demonstrated that LRP1-depletion 

results only in the slight decrease of p38 activity under basal conditions and in re-

sponse to TGF-β1 in IPF lung fibroblasts. Furthermore, pharmacological inhibition of 

p38 did also not affect α-SMA expression in LRP1-deficient IPF lung fibroblasts. 

From these findings it is concluded that LRP1 does not affect p38 activation to sup-

press α-SMA expression in IPF lung fibroblasts.  

Since the present study demonstrated that P-JNK is increased after LRP1-depletion 

under basal conditions and following TGF-β1-stimulation in IPF lung fibroblasts it was 

investigated whether LRP1 regulates α-SMA via JNK. To this end, JNK was pharma-

cologically blocked in LRP1-deficient IPF lung fibroblasts and MEF and also a simul-

taneous knock-down of LRP1 and JNK1 was performed in IPF lung fibroblasts. Both, 

blocking of JNK and silencing of JNK1, abrogated α-SMA increase after LRP1-

depletion. Thus, these experiments indicate that LRP1 suppresses α-SMA expres-

sion by inhibiting JNK in IPF lung fibroblasts. The present study describes for the first 

time that LRP1 regulates JNK activity in the context of fibroblast to myofibroblast 

transdifferentiation. In the literature, regulation of JNK by LRP1 has been described 

in other biological contexts. For instance, it was observed that LRP1 supports the 

invasion of follicular thyroid carcinoma cells by suppressing JNK and promoting ERK 

[120]. Another example is that LRP1 suppresses the JNK and NF-κB pathways in 
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microglia and thus limits the expression of pro-inflammatory cytokines in response to 

LPS [133].  

The data of the present study furthermore revealed that the levels of active and total 

c-Jun, a downstream-target of JNK, are enhanced by LRP1 knock-down in IPF lung 

fibroblasts. In addition, the knock-down of JNK1 partially reversed the LRP1-

mediated increase of total c-Jun. Depending on the biological context, c-Jun can 

serve as a component of the transcription factor AP1 [122]. In general, AP1 occurs as 

dimeric complexes which are formed by members of the Jun, Fos and ATF families 

[122]. In the present study, Dual-Luciferase Reporter Assay with a vector containing 

AP1-binding consensus elements revealed that the transcriptional activity of AP1 is 

enhanced after LRP1 gene silencing under basal conditions in IPF lung fibroblasts. 

Depletion of LRP1 also enhances the TGF-β1-dependent transcriptional activity of 

AP1. Altogether, the data indicate that LRP1 suppresses α-SMA expression and the-

rewith the generation of the myofibroblast phenotype by limiting the JNK/AP1 signal-

ing pathway in IPF lung fibroblasts (Fig. 17). By inhibiting this signaling pathway, 

LRP1 can regulate α-SMA expression in two different manners in these cells (Fig. 

17). First, LRP1 can suppress α-SMA expression independent of TGF-β1 (Fig. 17). 

Second, LRP1 can limit the TGF-β1-induced α-SMA expression in IPF lung fibrob-

lasts (Fig. 17). In the literature, it had already been demonstrated that TGF-β1 can 

mediate α-SMA expression in human lung fibroblasts in a JNK-dependent manner 

[134]. TGF-β1 is a key inducer of fibroblast to myofibroblast transdifferentiation and 

its expression is tightly regulated during wound healing [72,135]. The capability of 

LRP1 to regulate α-SMA expression in the absence of TGF-β1 may implicate poten-

tial dangers. For instance, uncontrolled loss of LRP1 during wound healing may re-

sult in the ongoing differentiation of fibroblasts to myofibroblasts even when the  

TGF-β1 levels are declining in the later stage of wound healing. The potentiation of 

the TGF-β1-induced α-SMA expression following LRP1 loss may also prolong the 

phase of fibroblast to myofibroblast transdifferentiation during wound healing. The 

consequence of these scenarios would be the uncontrolled deposition of ECM com-

ponents by myofibroblasts which leads to pathological tissue scarring.  
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Fig. 17: LRP1 suppresses α-SMA expression by inhibiting the TGF-β1-dependent and                 
-independent JNK/AP1 signaling in IPF lung fibroblasts. LRP1 suppresses α-SMA expression in 

IPF lung fibroblasts by inhibiting JNK which subsequently limits the transcriptional activity of AP1. By 
inhibiting the JNK/AP1 signaling pathway, LRP1 can suppress α-SMA expression independent of 
TGF-β1 in these cells. In addition, LRP1 can limit the TGF-β1-mediated induction of α-SMA by block-
ing the JNK/AP1 signaling in IPF lung fibroblasts. TGF-β1: transforming growth factor-β1; TGFBRII/I: 
transforming growth factor-β receptor type II/I; LRP1: low density lipoprotein receptor-related protein 1; 
JNK: c-Jun N-terminal kinase; α-SMA: α-smooth muscle actin.  

Since LRP1 was demonstrated to suppress fibroblast to myofibroblast transdifferen-

tiation by inhibiting the JNK/AP1 pathway, the latter is another potential therapeutic 

target to counteract uncontrolled acquisition of myofibroblasts after LRP1 loss in IPF 

lung fibroblasts. The orally active JNK inhibitor CC-930 blocks phosphorylation of     

c-Jun [136]. It was tested as anti-fibrotic drug in the house dust mite (HDM)-induced 

mouse model of airway fibrosis [137]. Therein, CC-930 reduced the levels of phos-

phorylated c-Jun in the lungs of HDM-treated mice. In addition, CC-930 inhibited the 

levels of MMP7, which is also an IPF marker, and collagen deposition after HSM-

treatment [137]. CC-930 was tested in a phase II multicenter study of mild/moderate 

IPF [137]. In this study, a trend of decrease of MMP7 and SP-D in the plasma was 

described after treatment with CC-930 [137]. However, no conclusions about the  

effect of CC-930 on pulmonary function could be withdrawn [137]. In addition, the 

study was terminated early because of adverse events [137]. The most common   

adverse events were the increase of alanine aminotransferase (ALT), the increase of 
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aspartate aminotransferase (AST) and infection of the upper respiratory tract [137]. 

Since the increase of ALT and AST in the blood indicates liver damage, these ad-

verse events showed that CC-930 exhibits liver toxicity. Hence, further development 

of JNK inhibiting drugs is needed.  

5.5 LRP1-deficiency enhances the contractile activity of IPF lung fibroblasts  

 

Myofibroblasts are characterized by high contractile activity [31]. This function re-

quires the incorporation of α-SMA into stress fibers [73–75]. For instance, it was 

demonstrated that delivery of a fusion protein containing the N-terminal sequence 

AcEEED of α-SMA results in the selective removal of α-SMA from stress fibers [99]. 

As a consequence, the contractile activity of myofibroblasts decreased [100]. By con-

tracting granulation tissue myofibroblasts support wound healing [33]. In addition, the 

contractile activity of myofibroblasts was described to promote their own maturation 

in a feed forward loop by activating latent TGF-β1 [89]. In this process integrins on 

the myofibroblast surface bind LAP in the latent TGF-β1 [89]. Thereafter, myofibro-

blast contraction induces conformational changes in the latent TGF-β1 and thus per-

mits the liberation of active TGF-β1 [89]. The present study indicates that LRP1    

suppresses α-SMA expression by inhibiting the JNK/AP1 pathway in IPF lung fibro-

blasts. It is furthermore demonstrated that LRP1-depletion results in increased con-

tractile activity of these cells. Interestingly, this effect is even stronger in response to 

TGF-β1. Therewith, transient reduction of LRP1 expression in lung fibroblasts may 

contribute to the acquisition and persistence of the α-SMA-positive, high contractile 

myofibroblast phenotype during wound healing. In the literature, however, LRP1 was 

described to mediate the lactoferrin-induced increase in the contractile activity of   

WI-38 fibroblasts [138]. Lactoferrin is a ligand of LRP1 [139] and exerts multiple func-

tions in wound healing, such as regulation of the inflammatory phase as well as    

fibroblast migration and proliferation [140]. In the lung, bronchial glands secrete lacto-

ferrin into the airway lumen [141] where it protects the lung from antioxidants [142]. A 

change in the levels of lactoferrin has not yet been described in IPF. Hence, further 

research is required to investigate whether lactoferrin regulates the contraction of 

fibroblasts in IPF. 

As a regulator of fibroblast to myofibroblast transdifferentiation, LRP1 may also be 

involved in the development of IPF. This chronic progressive disease is considered to 

result from repeated epithelial injury which is accompanied by expansion of the     
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fibroblast population [143]. A characteristic of IPF is the accumulation of myofibro-

blasts in the interstitial space and in the alveolar spaces where they excessively pro-

duce ECM and thus mediate scarring of the lung [143]. It is imaginable that LRP1 

may be permanently lost in fibroblasts in IPF. The mechanisms by which LRP1 ex-

pression is regulated in IPF remain elusive. However, restoration of LRP1 expression 

in IPF lung fibroblasts may provide a therapeutic approach against IPF. In human 

retinal pigment epithelial cells, the LRP1 expression was elevated by TGF-β1 and 

TGF-β2 [144]. In the IPF lung, TGF-β1 levels are increased [145]. Hence, it would be 

interesting to investigate whether LRP1 expression may also be regulated by TGF-β1 

in IPF lung fibroblasts. It is imaginable that this cytokine has a different effect in IPF 

lung fibroblasts than in human retinal pigment epithel cells. Thus, the enhanced    

levels of TGF-β1 in the IPF lung may suppress LRP1 expression in IPF lung fibro-

blasts. The expression of TGF-β2 is not changed in the IPF lung [145]. Therefore, 

TGF-β2 may not regulate LRP1 expression in IPF lung fibroblasts.   

 

There is evidence that myofibroblasts may have enhanced proliferative properties in 

the fibrotic foci of IPF patients. For instance, inactivation of the transcription factor 

forkhead box O3a (FoxO3a) was identified to promote IPF lung fibroblast proliferation 

on polymerized type I collagen [123]. Polymerized type I collagen had been shown to 

suppress fibroblast proliferation [146]. Interestingly, immunostaining of lung tissue 

from IPF patients and controls identified inactive FoxO3a to localize mainly in the IPF 

fibroblastic foci [123]. As the majority of fibroblasts in fibroblastic foci are α-SMA-

positive and hence represent the myofibroblast phenotype, inactivation of FoxO3a 

may indeed increase myofibroblast proliferation [123]. Another study identified low 

levels of the collagen receptor α2β1 integrin in IPF lung fibroblasts and showed proli-

feration of these cells on polymerized type I collagen [124]. Moreover, cells in IPF 

fibroblastic foci were found to express low levels of α2β1 integrin [124]. Hence, a de-

crease of α2β1 integrin expression may promote myofibroblast proliferation in IPF. 

Other authors demonstrated that low levels of caveolin-1 enhance proliferation of 

primary mouse lung fibroblasts on polymerized type I collagen [125]. Furthermore, 

low expression of caveolin-1 was seen in IPF lung fibroblasts in vitro and in IPF    

fibroblastic foci in vivo [125]. These findings indicate that reduced caveolin-1 express-

ion may promote myofibroblast proliferation in IPF. Intriguingly, LRP1 was described 

to modulate fibroblast proliferation. For example, LRP1-depletion switches the    
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TGF-β1 function from anti- to proproliferative [30]. In human hepatic stellate cells, 

LRP1 suppresses proliferation by inhibiting ERK1/2 activation and reducing extracel-

lular levels of TGF-β [147]. However, in rat kidney interstitial fibroblasts, tPA pro-

motes proliferation by LRP1 [148]. In detail, after phosphorylation in the C-terminus, 

LRP1 mediates phosphorylation of ERK1/2, p90RSK and GSK3β [148]. Ultimately, 

cyclin D1 is induced [148]. Cyclin D1 promotes proliferation by mediating G1-S-phase 

transition [149]. Despite the described role of LRP1 in fibroblast proliferation, the data 

of the present study indicate that LRP1 does not regulate the proliferative potential of 

IPF lung fibroblasts.  

 

Besides the aforementioned enhanced proliferation of IPF lung fibroblasts in vitro, it 

was demonstrated that fibroblasts isolated from IPF patients show higher migratory 

activity than control cells [150]. In the literature, it was described that LRP1 regulates 

the migratory potential of fibroblasts. For instance, PAI-1 promotes migration of MEF 

by activating the β-catenin pathway and ERK1/2 in a LRP1-dependent manner [151]. 

Furthermore, LRP1 mediates activation, endocytosis and degradation of β1-integrin 

and thus facilitates migration of MEF on fibronectin [152]. LRP1 also suppresses mi-

gration of human hepatic stellate cells by regulating ERK1/2 activation and extracellu-

lar TGF-β levels [147]. The present study, however, reveals that LRP1 does not regu-

late the migratory potential of IPF lung fibroblasts.  

 

Collectively, the present study demonstrates that LRP1 suppresses α-SMA expres-

sion and the generation of high contractile activity in IPF lung fibroblasts by inhibiting 

the JNK/AP1 pathway. By limiting the JNK/AP1 signaling, LRP1 regulates α-SMA 

expression in two manners in IPF lung fibroblasts. First, LRP1 suppresses α-SMA 

expression independent of TGF-β1. Second, LRP1 limits the TGF-β1-induced α-SMA 

expression. Hence, loss of LRP1 may prolong the phase of TGF-β1-induced differen-

tiation of fibroblast to myofibroblast during wound healing. In addition, uncontrolled 

reduction of LRP1 levels may permit ongoing fibroblast to myofibroblast transdifferen-

tiation even when TGF-β1 levels decline in the later stage of wound healing. As a 

consequence, exaggerated ECM deposition by myofibroblasts may occur and lead to 

pathological tissue scarring.     
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6 Conclusions 

 

The differentiation of fibroblasts to myofibroblasts is a key event in wound healing. 

Myofibroblasts are characterized by α-SMA expression and high contractile activity. 

This cell type produces large amounts of ECM components which rebuild an ECM in 

the lesion. Hence, uncontrolled acquisition of myofibroblasts results in imbalanced 

wound repair, such as scarring. Fibroblast to myofibroblast transdifferentiation is re-

gulated both by cytokines, such as TGF-β1, and by matrix rigidity. In addition, the 

endocytic receptor LRP1 was demonstrated to be involved in this process. Mostly, 

LRP1 was found to promote or suppress α-SMA expression by modulating the    

TGF-β1 responses. However, its role in the regulation of α-SMA expression in lung 

fibroblasts remained elusive.  

 

In the present study, it was demonstrated that LRP1 suppresses α-SMA expression 

on the mRNA and protein level in IPF lung fibroblasts. Moreover, LRP1 suppressed 

the contractile activity of IPF lung fibroblasts. In order to regulate α-SMA expression, 

LRP1 inhibited the activity of JNK. As a consequence, the transcriptional activity of 

AP1 was reduced. Altogether, the present study proposes for the first time a mecha-

nism by which LRP1 limits the differentiation of IPF lung fibroblasts to myofibroblasts. 

Therewith, it is assumed that LRP1 may protect the lung from scar formation after 

injury. However, further research effort is needed in order to prove this suggestion. 

Since scarring of the lung parenchyma occurs in IPF, future studies may investigate 

whether LRP1 expression is downregulated in the lung fibroblasts of IPF patients and 

whether LRP1 expression correlates with scarring and disease progression.   
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