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Abstract

We provide a large class of functions and their respective parameters to transform a
jump-process into a martingale w.r.t. its natural filtration. The proofs are based on
a discrete Doob-decomposition and a limiting procedure to continuous time, in turn
resulting in a time-continuous Doob-Meyer decomposition. Martingale transformations
are then determined by solving the Doob-Meyer decomposition for functions that elim-
inate the compensator. We discuss several related results and single jump filtrations.
The results are provided for single-jump processes and are systematically generalized to
the multi-jump case, highlighting the necessity of dependencies between current jumps
and the processes paths. Eventually we apply the result to branching random walks as
an instructive example.
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Introduction

Ito’s Lemma marks an important and popular result that has experienced several gen-
eralizations and augmentations over the past decades. It is formulated in its present
form for semimartingales in general (c.f. [Bichteler, 2002]) and used broadly among
applicants. The first versions have been formulated for Brownian motions ( [It, 1944]) -
thus a stochastic process with almost sure continuous paths - was generalized to Wiener
processes (e.g. [Kunita and Watanabe, 1967]) and eventually processes with jumps - in
particular general processes with cdlg-paths - before it took nowadays form (a passion-
ate and interesting survey of Ito’s work can be found in [Kunita, 2010]). But this was
not the only direction of evolution for Ito’s formula.
In 1970 J.M.C. Clark connected in [Clark, 1970] martingales of the brownian filtration
to stochastic integrals w.r.t. to the brownian motion itself. This result reflected that
a martingale adapted to the information extracted from the path of a brownian mo-
tion was in fact just a functional of the brownian motion. But what if the integrator
was a right constant jump process? This question and a pivotal work of P. Bremaud
( [Bremaud, 1972]) inspired R.Boel, P. Varaiya and E. Wong to formulate a similar
representation theorem for this kind of stochastic process in [Boel et al., 1975]. M.H.A.
Davis soon after simplified and generalized this result in [Davis, 1976] and concluded
that a process is a local martingale of a jump process x(t) if and only if it is a stochastic
integral w.r.t. a fundamental martingale q that is associated to the jump process. This
was the counterpart for the representation theorem of [Clark, 1970] for jump processes,
i.e. stochastic processes that are fundamentally different to Brownian motion.

Related papers to the representation result for jump processes are [Elliott, 1976], [El-
liott, 1977] where the result is adapted to jump times that have accumulation points of
any order (and in turn processes that may continue after an accumulation time), [Chou,
1975], [Jacod, 1975], [Jacod, 1976] where the authors yield similar results from the per-
spective of (marked) point processes and [Gushchin, 2020] where the objects of analysis
are the filtrations themselves.

In this thesis we want to investigate a different approach to the representation result.
As we’ve talked about the importance of Ito’s lemma in the beginning, we also want to
highlight the connection of Ito’s formula to another very important result in probability
theory: the Doob-Meyer decomposition. This result states that any semimartingale (of
reasonable regularity, namely class D) can be decomposed into a martingale part and
a previsible compensator. The result in [Clark, 1970] connects the Ito formula to the



Doob-Meyer decomposition as it proposes that the stochastic integral in Ito’s formula
is a martingale and the classical integral is a previsible compensator (in this case 0).
Thus the Ito formula describes a Doob-Meyer decomposition quite naturally ( [Kunita
and Watanabe, 1967]). In turn one can find martingales of the Brownian motion
by determining the harmonic functions in an analytic sense, since they eliminate the
compensator in the Doob-Meyer decomposition.

The Doob-Meyer decomposition theorem itself is a time-continuous version of a earlier
result by Doob ( [Doob and Doob, 1953]) for discrete time adapted processes. There
are many proofs of the time-continuous result that apply a limiting procedure to the
discrete time Doob-decomposition, e.g. [Rao, 1969], [Bass, 1996], [Jakubowski, 2005]
and [Beiglboeck et al., 2010], the latter being the most general and simple proof.

In this thesis we want to combine all of the above strategies to determine functions
φ : R+ ×X → R that transform a jump process x = (x(t))t∈R+ with values in a suffi-
ciently nice measurable space (X,S) such that v = (v(t))t∈R+ with v(t) = φ(t, x(t)) is
a martingale w.r.t. the filtration of x. In analogy to the terminology for Brownian mo-
tions we will call functions with this property harmonic functions of the jump process.
Since the general case follows same as in [Davis, 1976] from the single-jump case, we
are going to focus on the single-jump processes first. Here’s an outline of the different
steps:

(I) Define a discrete time version of the process v.

(II) Determine a discrete time Doob decomposition of the jump process.

(III) Try to survive a limiting procedure in the time parameter.

(IV) Eliminate the compensator by a choice of the function φ.

Each one of these steps has an own potential to force assumptions and restrictions on
the function φ, but we made an effort to justify each new condition by the properties
of the function as a martingale transformation. For example the limiting procedure has
to make use of convergence theorems for Lebesgue-Stieltjes integrals which makes it
necessary to bound the supremum of φ1(0,t] for any t ∈ R+. This is in turn reasonable
for all times t ∈ R+ that are strictly less than c - the right endpoint of the distribution
of the jump times.

In section 1 we investigate the single-jump case. We provide the necessary notation and
results that are needed for this case and follow the strategy outlined above. Main results
are the semimartingale representation in theorem 1.14 which is obtained via the dis-
cretization method from [Rao, 1969], [Bass, 1996], [Jakubowski, 2005] and [Beiglboeck
et al., 2010] and theorem 1.19 which describes the harmonic functions of jump process,
i.e. the functions that transform the single-jump process into a martingale w.r.t. its
own filtration. The results are cross-verified with the classical results of [Davis, 1976]
and the contemporary result of [Gushchin, 2020]

Section 2 lifts the result to the general case (i.e. more than one jump). We again
provide further notational tools. The result by [Davis, 1976] can again be reproduced,
as we can provide a large family of martingale-transformations in theorem 2.6 and a
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semimartingale representation in corollary 2.9.

Path-dependent versions and a version of the single-jump case where the process jumps
in a countable/discrete measurable space are discussed and provided in the Appendix.

3



Chapter 1

Single jump

In this section we will work out the first result for the single-jump process. The random
process will not only jump at a random time in R+ but also to a random location in X.
Our interest surrounds the ability to be ”ready” for this event at any given time. In
terms of insurance for example the process might be the first car accident an insured
person is involved in. The crash-time T is completely random and the value of the
damage is the random location Z of the process after T . Any insurance company
needs to be prepared for such a case and it is not unrealistic, that the value of the
case of insurance depends in some way on the time of the accident (seasonal effects,
driving experience, state of the car, etc.). To prepare for such an event one might
be interested in a simple function that accumulates just enough money before the
actual event happens, and as such at any given time t. In real insurance this is way
more complex than advertised in this little example, but it summarizes intuitively the
mathematical problem of this section, of determining a transformation of the single-
jump process x(t) into a martingale.

In this simple case (as in the more general case of more than one jump) M.H.A. Davis
proves in [Davis, 1976] that every local martingale (w.r.t. the augmented natural filtra-
tion Ft of the process (x(t))t≥0) can be written as a stochastic integral of a measurable
enough function g against a basic martingale q:

Mg
t :=

∫
(0,t]×X

gdq

Even more he proves, that every such integral is a local martingale. His main result
for single-jump processes reads as follows (see [Davis, 1976]):

Theorem 1.1. (Mt) is a local martingale of (Ft) if and only if Mt = Mg
t for some

g ∈ L1
loc(p).

The notion ’for some g’ might not be satisfactory and one might be interested in which
g exactly.

The goal of this work is to find a way to systematically determine functions of the jump
process that result in martingales w.r.t. to the jump process. Not only will we be able
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to verify parts of the results of [Davis, 1976], we can add another constructive method
to determine martingales of this form with the following strategy:
we search for functions φ : R+ ×X → R which transform the process x = (x(t))t∈R+

into an (Ft)-martingale via φ(t, x(t)) =: v(t). We follow the strategy for the proofs
of the Doob-Meyer decomposition theorem one can find in [Rao, 1969], [Bass, 1996]
and [Beiglboeck et al., 2010]:

� we take a discrete but arbitrary selection of times t1 < · · · < tK to come up with
a discrete version of the process v = (v(t))t∈R+ , denoted by v(K) = v(tk)k=1,...,K .

� This manageable discrete process is still adapted to the natural augmented filtra-
tion Fk := Ftk . Therefore we can determine the Doob-decomposition to end up

with a previsible compensator part A
(K)
k and a martingale part M

(K)
k .

� Now we increase the number of discrete times K and get (under certain condi-
tions on φ) a time-continuous Doob-Meyer-decomposition. We will see by then
the connection to the already stated result by Davis and the basic family of mar-
tingales.

� The next part of this journey will be dedicated to eliminating the compensator
part of the Doob-Meyer decomposition via the choice of the function φ. The
result by [Gushchin, 2020] can be verified as a related case.

In another approach that is discussed in the Appendix, we want to generalize this
method to functionals φ : R+ × D([0,∞), X) → R that take into account the whole
path of the process. For jump processes the knowledge of the jump times and heights
is equivalent to knowing the whole path, but if one is interested in processes that are
not constant in between different jumps, this might be a good starting point.

1.1 Definitions

We will use the notation from [Davis, 1976]. Though we differ on the notation for the
cumulative distribution function (P(T ≤ t) = Ft).

Spaces and random variables: Let (X,S) be a measurable space, more precicely
a Blackwell space (see [Dellacherie and Meyer, 1979], III, definition 24). This is going
to be the space for the values of our process. Fix z0, z∞ ∈ X as the initial and terminal
values of the process and let us define a proper state space for everything random after
time 0:

(Ω,F0) :=
(
(R+ ×X) ∪ {(∞, z∞)}, σ{B(R+)× S, {(∞, z∞)}}

)
.

To model the jump time and height we take T : Ω → R+ and Z : Ω → X to be the
coordinate mapping, picking out the time and space coordinate of the jump of a general
state ω = (t, z), i.e. ω = (T (ω), Z(ω)).
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The process: The value of the process at time t is

x(t, ω) :=

{
z0 if t < T (ω),

Z(ω) if T (ω) ≤ t.
(1.1.1)

Filtration and probability measure: An increasing sequence of sub-σ-fields (Ft)t∈I
of F0, (where I might be N, Q+ or R+ in our case) is called filtration. Given a stochas-
tic process y = (y(t))t∈I the natural filtration of the process y is the filtration of σ-fields
F0
t = σ{y(s) : s ≤ t, s ∈ I}.

Let F0
t be the natural filtration generated by the process (x(t))t≥0, i.e.

F0
t = σ(x(s) : s ∈ [0, t]) = σ({x−1(s)(B) : s ∈ [0, t], B ∈ S}). (1.1.2)

Let us take the characterisation of a probability measure on (Ω,F0) from [Davis, 1976]:
for Γ ∈ F0 the probability measure P is defined through

P [(T,Z) ∈ Γ] = µ(Γ), (1.1.3)

where µ is a probability measure on (Y,Y) with

µ(({0} ×X) ∪ (R+ × {z0})) = 0 (1.1.4)

i.e. a jump at time 0, as well as an invisible jump are P-nullsets in the following sense:
A P-nullset is a subset A ⊂ Ω s.t. there exists a measurable set B ∈ F0 with A ⊂ B
and P(B) = 0.

Denote by N0 the set of all P-nullsets. By F ,Ft we denote the σ-fields F0,F0
t aug-

mented with all P-null sets, i.e.

Ft = σ(F0
t ,N0) (1.1.5)

According to Lemma 0 in [Davis, 1976] the jump time T is then a stopping time of (Ft)
in the following sense:
Given a filtration (Gt)t∈I a random variable S is called stopping time, if {S ≤ t} ∈ Gt
for all t ∈ I.

Let R be a random variable. We write E[R] =
∫
ΩR(ω)dP(ω) for the expectation of R.

Assume E[|R|] < ∞. The conditional expectation of R with respect to a sub-σ-field
M ⊂ F is the P-a.s. unique M-measurable random variable E[R|M] s.t.∫

A
E[R|M]dP =

∫
A
RdP, ∀A ∈ M.

The conditional probability of A w.r.t. to M will be denoted by P(A|M) := E[1A|M]
for all A ∈ F .

Since we assumed X to be a Blackwell space there exists a regular version of conditional
probability (c.f. [Shiryaev, 2016], definition 2.7.6) which we will also denote by P, i.e.
we can P-a.s. write (see [Shiryaev, 2016], theorem 2.7.3)

E[R|M](ω) =

∫
Ω
R(ω̃)dP(dω̃|M)(ω).
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Distributions: The involved distribution functions will be denoted as

FAt := P(T ∈ [0, t], Z ∈ A) = µ([0, t]×A) (1.1.6)

Ft := FXt = P(T ≤ t) =

∫
Ω
1T≤tdP (1.1.7)

for t ∈ R+ and A ∈ S. The former is the joint distribution function of T and Z,
whereas the latter is the marginal distribution function of the jump time T . Since
µ is a probability measure on R+ × X and T maps into (R+,B(R+)) (i.e. countably
generated σ-field containing all singletons), we will also make use of the disintegration
property with respect to the distribution of T , i.e. for any nonnegative measurable f
on R+ ×X we can disintegrate µ w.r.t. µ ◦ T−1 =: dF in the following fashion:∫

R+×X
f(s, z)dµ(s, z) =

∫
R+

(∫
X
f(s, z)dµs(z)

)
dFs (1.1.8)

where we set µs(A) =: P(Z ∈ A|T = s) = E[1A ◦Z|T = s] for any A ∈ S. For existence
see [Chang and Pollard, 1997] p.293 or the fact, that we assumed X to be a Blackwell
space.
The right endpoint of the distribution of T will be denoted by

c = sup{t ∈ R+ : Ft < 1}. (1.1.9)

There are two different cases for c that are of interest in our discussion and are distin-
guished in [Davis, 1976], [Gushchin, 2020]:

Case (A) c = ∞ or, c <∞ and Fc− = 1. In this case the marginal distribution function of
T is either never exhausted or is continuously exhausted, i.e. the behavior of the
process at the right endpoint can be approximated from the left.

Case (B) c < ∞ and Fc− < 1. This means the exhaustion is itself of positive mass.
Typically this behavior can be found in discrete distributions but also for random
variables like T ∧ t, where e.g. T has continuous distribution and t ∈ R+ is fixed.

Basic martingales: A process y = (y(t))t∈I is called a (Ft)t∈I -martingale, if the
following three properties are satisfied:

(i) y(t) is Ft-measurable for all t ∈ I,

(ii) y(t) ∈ L1(P) for all t ∈ I,

(iii) E[y(t)|Fs] = y(s) for all s ∈ I, s ≤ t.

It is called sub-martingale if the last equality is only ’≥’ and super-martingale if it is a
’≤’. We say a stochastic process y is a local (sub/super-)martingale w.r.t. to a filtration
(Ft)t∈I when there exists a localisation sequence of stopping times - i.e. (σn)n∈N, σn is
an Ft stopping time for all n ∈ N and limn→∞ σn = ∞ P-a.s. - such that (y(t∧ σn))t∈I
is an (sub/super-)martingale w.r.t. Ft for all n ∈ N.
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Let {(q(t, A))t∈R+ : A ∈ S} be the basic family of martingales defined through the
processes

p(t, B) = 1Z∈B1T≤t

p̃(t, B) =

∫
[0,T∧t]

1

1− F (s−)
dFBs

by q(t, B) = p(t, B)− p̃(t, B). Now (q(t, B))t≥0 is an (Ft)-martingale (see [Davis, 1976],
prop. 3) and one can define a Lebesgue-Stieltjes integral for all

g ∈ L1
loc(p) = {g ∈ J :

∫
Y
1(0,t](s)|g(s, z)|dµ(s, z) <∞, ∀t < c} (1.1.10)

by defining:

Mg
t :=

∫
(0,t]×X

g(s, z)q(ds, dz) (1.1.11)

where in particular∫
R+×X

g(s, z)p(ds, dz) = g(T,Z) (1.1.12)∫
R+×X

g(s, z)p̃(ds, dz) =

∫
R+×X

g(s, z)
1s≤T

1− Fs−
dµ(s, z) (1.1.13)

(see for example [Boel et al., 1975] lemma 3.3). For the latter note that

p̃(t, B) =

∫
(0,T∧t]

1

1− F (s−)
dFBs

=

∫
(0,T∧t]

1

1− F (s−)
µ(ds,B). (1.1.14)

Example 1.2.

(a) As a first example let us look at a very simple process. Take Z ≡ 1 and T
exponentially distributed, i.e. Ft = 1− exp(−λt) for some λ > 0. To that end we
set z0 := 0, i.e. X = {0, 1}, S = {∅, X, {1}, {0}} and the single-jump process is
given by

x(t) = 1T≤t.

The respective filtration appears as

F0
t = σ({x−1(s)({k}) : s ∈ [0, t], k ∈ {0, 1}})
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and the probability measure P is given by the following characterization:

P((T,Z) ∈ [0, t]× {1}) = P(T ≤ t, Z = 1)

= P(T ≤ t)

= F
{1}
t ,

P((T,Z) ∈ [0, t]× {0}) = P(T ≤ t, Z = 0)

= F
{0}
t

= 0

P((T,Z) ∈ [0, t]×X) = F
{1}
t

P((T,Z) ∈ [0, t]× ∅) = 0

In this case c = ∞ and Case A applies. The basic martingale of this process is
given by the process itself, since there is no doubt about the value of Z at any
given time t ∈ R+. This yields that for t ∈ R+:

q(t, {1}) = p(t, {1})− p̃(t, {1})

= 1T≤t −
∫
[0,T∧t]

1

1− Fs−
dF {1}

s

= x(t)−
∫
[0,T∧t]

f(t)

1− Fs
ds

= x(t)− [− ln(1− Fs)]
T∧t
0

= x(t) + ln(exp(−λ(T ∧ t)))
= x(t)− λ(T ∧ t)
= q(t,X)

q(t, {0}) = p(t, {0})− p̃(t, {0})
≡ 0

≡ q(t, ∅)

which are Ft-martingales with [Davis, 1976], proposition 3. In this case the ba-
sic process coincides with the actual jump process, so the compensator is readily
determined as p̃. Note that in this case the choice of the distribution of T is only
important for p̃.

(b) Now the other possible simple process would be T ≡ 1, Z standard normal dis-
tributed. Now the space Ω = R+ × R and F = B+ × B but the distribution of T
is set to be a single point mass on {T = 1}, i.e. Ft = 1[1,∞)(t). The single-jump
process is given by

x(t) = Z1[1,∞)(t).

where the respective filtration is

F0
t = σ({x−1(s)(B) : s ∈ [0, t], B ∈ S}).
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The probability measure is characterized for B = (a, b] ⊂ R+ as follows:

P({(T,Z) ∈ [0, 1)×B} ∪ {(T,Z) ∈ (1,∞)×B}) = 0

P((T,Z) ∈ {1},∞)×B) = P(T = 1, Z ∈ (a, b])

= P(Z ∈ (a, b])

= Φ(b)− Φ(a)

In this case c < ∞ and Fc− = 0, thus case B applies. The basic martingale of
this process is given for any (a, b] = A ∈ B by

p(t, A) =

{
0, for t < 1,

1Z∈A, for t ≥ 1

p̃(t, A) =

{
0, for t < 1,

Φ(b)− Φ(a), for t ≥ 1.

and thus

q(t, A) =

{
0, for t < 1

1Z∈A − (Φ(b)− Φ(a)), for t ≥ 1

= [1Z∈A − P(Z ∈ A)] (1− 1[0,1](t)).

In this example we can not directly determine the compensator as the basic process
p(t, A) is not given by the single-jump process itself. Again we note that the choice
of Z’s distribution only impacts the compensator p̃.

(c) The next step would be to combine the above simple examples. So let Z be standard
normal distributed and T exponentially distributed. Note that we assume that Z
and T are independent (something we previously did not have to assume, because
it held true naturally. Then

Ω = R+ × R, F0 = B+ ⋆ B.
The single-jump process is given by

x(t) = Z1T≤t,

the respective filtration

F0
t = σ({x−1(s)(B) : s ∈ [0, t], B ∈ B}).

We can characterize the probability measure for t ∈ R+, (a, b] ∈ B:
P((T,Z) ∈ [0, t]× (a, b]) = P(T ≤ t)P(Z ∈ (a, b])

= (1− exp(λt))(Φ(b)− Φ(a))

In this case c = ∞ and case A applies. The basic process and its compensator is
given for t ∈ R+ and A = (a, b] ∈ B by

p(t, A) = 1Z∈(a,b]1T≤t

p̃(t, A) =

∫
[0,T∧t]

1

1− Fs−
dFAs

=

∫
[0,T∧t]

f(s)

1− Fs
(Φ(b)− Φ(a))ds

= −(Φ(b)− Φ(a))λ(T ∧ t).
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where both processes are unsurprisingly a product of the examples in (a) and (b).
Hence the family of basic martingales is given by processes of the form

q(t, A) = 1Z∈(a,b]1T≤t + (Φ(b)− Φ(a))λ(T ∧ t).

This combination has shown that the basic martingales are still easy to determine.
But we assumed Z and T to be independent.

(d) Consequently we now want to omit the independence assumption. As a simple
example we take that T is again exponentially distributed, but this time assume
that Z given T = t obeys the normal distribution with Variance σ2 = σ2(t) = 1

t ,
i.e. a normal distribution that becomes ’sharper’ the later the jump happens.
In this case we can keep the Ω, F0 and x(t) as in the previous example. The
probability measure becomes more complicated now. Take t ∈ R+ and A = (a, b] ∈
B:

P((T,Z) ∈ [0, t]× (a, b]) =

∫
[0,t]

P(Z ∈ (a, b]|T = u)P(T ∈ du)

=

∫
[0,t]

P(Z ∈ (a, b]|T = u)dFu

=

∫
[0,t]

Φ(b
√
u)− Φ(a

√
u)dFu

and thus the basic process and its compensator are given by

p(t, A) = 1Z∈(a,b]1T≤t

p̃(t, A) =

∫
[0,t]

1

1− Fs−
dFAs

∗
=

∫
[0,t]

f(s)

1− Fs−

(∫
[0,s]

Φ(b
√
u)− Φ(a

√
u)dFu

)
ds

+

∫
[0,t]

f(s)Fs
1− Fs−

(
Φ(b

√
s)− Φ(a

√
s)
)
ds

where in (*) we made use of Fubinis theorem. The family of basic martingales
is thus of more complicated nature. Nonetheless we will determine martingale-
transformations for these processes.

1.2 Filtration results

Since Ft is the natural filtration of the process (x(t))t≥0 one might expect to retrieve
some of the useful properties of the process. For example: if T > t the process should
satisfy x(u) = z0 for all u ≤ t, i.e. no jump occurs until t and the process remains on
its initial value z0. Vice versa the event {x(u) = z0} yields apparently (P-a.s.), that
T > t. Now T has probability 1− P(T ≤ t) = 1− Ft to be bigger than t, which means
that the set {T > t} is an atom in the σ-field Ft, as long as

t ≤ c := sup{s : Fs < 1}. (1.2.1)

As for the generating set of the σ-field Ft for any t ∈ R+ we note the following:



1.2. FILTRATION RESULTS 12

Figure 1.1: Plotted sample paths for example 1.2.

Lemma 1.3. Let B([0, t]) = [0, t] ∩ σ({[0, s] : s ∈ [0, t]}. Then:

Ft = σ (B([0, t]) ⋆ S, {T > t},N0)

Proof. We first prove Ft ⊆ σ (B([0, t]) ⋆ S, {T > t},N0). For this we take w.l.o.g. A ∈
{x(s)−1 : s ∈ [0, t], B ∈ S} which is the generator of F0

t by (1.1.2), i.e. A = x(s)−1(B)
for some s ∈ [0, t], B ∈ S. The case A ∈ N0 is trivial. We make out 3 different cases:

� B = {z0}.

A = x(s)−1({z0}) = {ω ∈ Ω : x(s, ω) = z0}
= {ω ∈ Ω : T (ω) > s}∪̇{ω ∈ Ω : T (ω) ≤ s, Z(ω) = z0}

where we note, that {ω ∈ Ω : T (ω) ≤ s, Z(ω) = z0} ⊂ R+ × {z0} and therefore a
P-null set (see (1.1.4)). Further since s ≤ t

{T > s} = ({T > s} ∩ {T > t}) ∪̇ ({T > s} ∩ {T ≤ t})
= ({T > t}) ∪̇ ({ω ∈ Ω : T (ω) ∈ (s, t], Z(ω) ∈ X})
= ({T > t}) ∪̇ ((s, t]×X) .

Since (s, t]×X ∈ B([0, t]) ⋆ S we get

A ∈ σ ({B([0, t]) ⋆ S, {T > t},N0}) .

� z0 /∈ B. This means x(s) maps away from {z0}, i.e. T ≤ s P-a.s. (see (1.1.4)

A = x(s)−1(B) = {ω ∈ Ω : T (ω) ∈ [0, s], Z(ω) ∈ B}
∈ B([0, t]) ⋆ S,
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so that we get again

A ∈ σ ({B([0, t]) ⋆ S, {T > t},N0}) .

� For any B ∈ S we write
B = B \ {z0}∪̇{z0}

and the above respective cases apply:

A = x(s)−1(B) = {ω ∈ Ω : T (ω) ≤ s, Z(ω) ∈ B \ {z0}}∪̇{ω ∈ Ω : T (ω) > s}
∈ σ{B([0, t]) ⋆ S, {T > t},N0}.

Summarizing:

{x−1(s)(B) : s ∈ [0, t], B ∈ S} ∪ N0 ⊆ σ (B([0, t]) ⋆ S, {T > t},N0)

Using the monotonicity of the σ-operation, we yield

Ft = σ({x−1(s) : s ∈ [0, t], B ∈ S} ∪ N0) ⊆ σ (B([0, t]) ⋆ S, {T > t},N0) .

Next we show the converse: Ft ⊇ σ (B([0, t]) ⋆ S, {T > t},N0). For A = {T > t} we
can easily verify

A = {ω ∈ Ω : T (ω) ∈ (t,∞)} = x−1(t)({z0})

and therefore {T > t} ∈ Ft. The case A ∈ N0 also trivially yields A ∈ Ft. So let
A ∈ {[0, s] : s ∈ [0, t]} × S, e.g. A = [0, s]×B for some s ∈ [0, t] and B ∈ S. Then

A = {ω ∈ Ω : T (ω) ∈ [0, s], Z(ω) ∈ B}
= x−1(s)(B)

∈ Ft

In total we get:
B([0, t]) ⋆ S ∪ {{T > t}} ∪ N0) ⊆ Ft

and by monotonicity we gain the assertion.

Now we ended up with Ft = σ({x(s) : 0 ≤ s ≤ t},N0) = σ (B([0, t]) ⋆ S, {T > t},N0).
We take interest in the fact, that ∀B ∈ B([0, t]) ⋆ S : B ∩ {T > t} = ∅. Particularly
{T > t} is a P-atom of Ft by the following

Definition 1.4. Let (Ω,A, ν) be a measure space. A set A ∈ A is called ν-atom of A,
if

� ν(A) > 0,

� ∀B ∈ A : ν(B ∩A) ∈ {0, ν(A)}.

For any A ∈ Ft we see

P({T > t} ∩A) =

{
P(T > t), if ∅ ≠ A ∩ {T > t} /∈ N0

0, else,

in the proof of the next
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Lemma 1.5. {T > t} is a P-atom of Ft, for all t < c.

Proof. First up we notice, that P(T > t) = 1 − Ft > 0 since t < c (see (1.2.1)). To
prove the second part of the definitions properties, we need to dig a little deeper: Let
B ∈ (B([0, t]) ⋆ S) ∪ {(t,∞)×X} ∪ N0. Then:

B ∩ {T > t} =


{T > t}, if B = {T > t}
N, if B ∈ N0, B ∩ {T > t} ≠ ∅,
∅, else,

where N ⊂ B and thus N ∈ N0 if B ∈ N0 and

{T > t} = (t,∞)×X /∈ B([0, t]) ⋆ S

and (t,∞) ∩ C = ∅ for all C ∈ B([0, t]) by definition. Now that we know how any
member from the generating set intersects with {T > t} we check the intersection of
anything that we can construct inside of the σ-field σ (B([0, t]) ⋆ S, {T > t},N0) from
our generating sets:

� Ω ∩ {T > t} = {T > t} and ∅ ∩ {T > t} = ∅

� Let B ∈ (B([0, t]) ⋆ S) ∪ {(t,∞)×X} ∪ N0. Then

B ∩ {T > t} =


∅, if B = (t,∞)×X

{T > t} \N, if B ∈ N0, B ∩ {T > t} ≠ ∅,
{T > t}, else.

� Let (Bn)n∈N ⊆ (B([0, t]) ⋆ S) ∪ {(t,∞)×X} ∪ N0. Then Bn ∩ {T > t} ∈ {{T >
t}, N, ∅} by the same arguments as above. Hence(⋃

n∈N
Bn

)
∩ {T > t} =

{
N ′, if ∀n ∈ NBn ̸= {T > t}
{T > t} ∪N ′′, else,

where N ′, N ′′ ∈ N0 and thus

P

(⋃
n∈N

Bn ∩ {T > t}

)
∈ {0,P({T > t})}.

Now we note that P(
⋃
k∈I Nk) = 0 end check every possible case of intersection for it’s

P-measure, just to realize, that only P({T > t}) and 0 occur. Summarizing: ∀A ∈
σ(B([0, t]) ⋆ S) ∪ {{T > t}} ∪ N0):

P(A ∩ {T > t}) ∈ {0,P({T > t})}.

The above discussion was not in vain. For σ-algebras of this form one might use the
following lemma - which is a slight modification of Theorem 1 in [Shiryaev, 2016], p.256
- to extract information on a process for it’s conditional expectation:
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Lemma 1.6. Let (Ω,G,P) be a probability space and let F = σ(D,A) be a sub-σ-algebra
of G, where D = {D1, D2, . . . }, A an arbitrary family of sets s.t.

� D ∩A = ∅ ∀D ∈ D, A ∈ A,

� ∀D ∈ D: D is a P-atom of F .

Now take η a random variable on the probabilty space for which E[η] exists.
Then

1DE[η|F ] = 1D

∫
1DηdP
P(D)

on all atoms D ∈ F .

Proof. Let D ∈ F be an atom. The first step is to show, that for ξ : Ω → R F-
measurable

P(D ∩ {ξ ̸= const.}) = 0.

Set K := sup{y ∈ R : P (D ∩ {ξ ≤ y}) = 0}. Then we have

P (D ∩ {ξ < K}) = P

 ⋃
r<K,r∈Q

{ω ∈ D : ξ(ω) < r}


≤

∑
r<K,r∈Q

P ({ω ∈ D : ξ(ω) < r})

= 0

where we used {ξ < r, r < K} ⊂ {ξ < K}. Now take y > K, then we have

P[D ∩ {ξ < y}] > 0.

But we chose D to be an atom, i.e. we get P (D \ {ξ < y}) = P (D ∩ {ξ ≥ y}) = 0 and
this yields:

P (D ∩ {ξ > K}) = P

 ⋃
r>K,r∈Q

{ω ∈ D : ξ(ω) ≥ r}


≤

∑
r>K,r∈Q

P ({ω ∈ D : ξ(ω) ≥ r})

= 0.

We proved so far, that every F-measurable ξ: P (D ∩ {ξ ̸= K}) = 0, i.e. ξ is constant
on atoms D ∈ F P-a.s..
Now let us prove the stated equality:

E[1Dη] =
∫
1DηdP

=

∫
D
E[η|F ]dP

=

∫
D
KdP

= KP(D)
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where we used the first part of the proof, the property, that E[η|F ] is constant on
atoms. For an arbitrary set A ∈ F we start with the defining property of the conditional
expectation (see section 1.1):∫

A
1DE[η|F ]dP =

∫
A
1DηdP

=

∫
A∩D

ηdP

= E[1A∩Dη]. (1.2.2)

Now we start with the right side of the stated equality:∫
A
1D

E[1Dη]
P(D)

dP =

∫
1A∩D

E[η1D]
P(D)

dP

= E[η1D]
P(A ∩D)

P(D)
(1.2.3)

We keep in mind, that D is an atom, so either

P(A ∩D) = 0

which would yield (1.2.2)= 0 =(1.2.3), or

P(D \ (A ∩D)) = P(D \A) = 0

which in turn would yield (see (1.2.2), (1.2.3))

P(A ∩D) = P(D),

E[1A∩Dη] = KP(A ∩D)

= KP(D)

= E[1Dη].

Another result by A.Gushchin approaches the problem from the perspective of the
filtration itself and defines so called single-jump filtrations as σ-algebras of certain
properties:

Definition 1.7. (see [Gushchin, 2020], p.139) Let (Ω,A) be a measurable space, γ a
random variable. A single jump filtration is σ-field defined for t ∈ R+ as

Gt := {A ∈ A : A ∩ {t < γ} = ∅ or A ∩ {t < γ} = {t < γ}} . (1.2.4)

In our notation, where T is the jump time of our single-jump process, the single-jump
filtration of T is

Gt = {A ∈ F : A ∩ {t < T} = ∅ or A ∩ {t < T} = {t < T}} .

We note that Ft ⊃ Gt since for any A ∈ Gt we have that A ∈ F and in case A ∩ {T >
t} = ∅ we can conclude that A ∈ B([0, t]) ⋆ S and in case A ∩ {T > t} = {T > t} we
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can assume A ⊃ {T > t} and thus A ∈ Ft. The other inclusion is in fact in general not
true since Gushchin does not require F to be complete and for a P-nullset N ∈ N0 \F0

with N ∩ {T > t} = N we get N ∈ Ft but N /∈ Gt.
Although he works in a framework of filtrations that are determined by the jump time
T only, the results of Gushchin are nevertheless not far from the result for our natural
filtration of the process. He can conclude, that for a càdlàg process to be a local
martingale w.r.t. to the single-jump filtration it is enough, if it can be represented as
a deterministic function before, and as a function of T and a random variable after
the jump time (see [Gushchin, 2020], theorem 2). We will discuss this result further in
section 1.4.

1.3 Discrete time results

Let φ : R+ ×X → R, be Borel-measurable and set for t ∈ R+

v(t, ω) := φ(t, x(t, ω)), ∀ω ∈ Ω.

Since φ is measurable the new process v := (v(t))t≥0 is still adapted to the natural
filtration {Ft}t≥0. In general this process won’t be an (Ft)-martingale, but - according
to [Davis, 1976], theorem 1, - when it is, it will be an Mg

t for some g, i.e. a stochastic
integral.
We define a discrete version of this process v on the set of dyadic numbers D (see
[Beiglboeck et al., 2010]). To that end take for t ∈ R+ and N ∈ N the set of the N -th
dyadic numbers of the interval [0, t]:

DN
t :=

{
nt

2N
: n ∈ {1, . . . , 2N}

}
(1.3.1)

and set

tk :=

{
kt
2N

for k ≤ 2N

t for k > 2N .
(1.3.2)

Note that DN
t = {t0, . . . , t2N }.

Now (v(tk))k∈N is a discrete version of the process (v(s∧t))s∈R+ (i.e. the process stopped
at time t) and it is adapted to its respective σ-field F0

tk
:= σ{x(tl) : l ∈ {1, . . . , k}}

(respectively the augmented version Ftk) and the above lemmata 1.5 and 1.6 apply.
As an adapted discrete-time process (v(tk))k∈N it qualifies for a Doob-decomposition,
a result which we will quote here for convenience with its instructive proof:

Theorem 1.8. (see for example: [Protter, 2013] p.106) Let (sn)n∈N be an Fn adapted
process. Then there is a decomposition sn =Mn + An for all n ∈ N where (Mn)n∈N is
an Fn-martingale (called martingale part) and (An)n∈N is a previsible process (called
compensator).
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Proof. We set

M0 := s0

Mn :=Mn−1 + sn − E[sn|Fn−1] for n ≥ 1

A0 := 0

An := An−1 + E[sn|Fn−1]− sn−1 for n ≥ 1.

By piecing together sn − sn−1 we can check the decomposition property. Taking the
conditional expectation we verify the martingale property:

E[Mn −Mn−1|Fn−1] = E [sn − E[sn|Fn−1]|Fn−1]

= E[sn|Fn−1]− E[sn|Fn−1]

= 0

for all n ≥ 1. The compensator is obviously previsible, since it only depends on sn−1

which was assumed to be adapted.

In view of this decomposition for the process v(tk) we will need the following

Lemma 1.9.

E[v(tk)|Ftk−1
] = φ(tk, x(tk−1))

+ 1T>tk−1

1

1− Ftk−1

∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)]µ(ds, dz).

Proof. We have

E[φ(tk, x(tk))|Fk−1] = E[φ(tk, x(tk))1T≤tk−1
|Fk−1] + E[φ(tk, x(tk))1T>tk−1

|Fk−1]

= φ(tk, x(tk−1))1T≤tk−1

+ 1T>tk−1

1

P(T > tk−1)

∫
Ω
φ(tk, x(tk))1T>tk−1

dP︸ ︷︷ ︸
=:(I)

where we used

x(tk, ω)1T≤tk−1
(ω) = Z(ω)1T≤tk−1

(ω) = x(tk−1, ω)1T≤tk−1
(ω)

and the equality

φ(tk, x(tk)(ω))1T≤tk−1
(ω) = φ(tk, Z(ω)1T≤tk(ω))1T≤tk−1

(ω)

= φ(tk, Z(ω)1T≤tk−1
(ω))1T≤tk−1

(ω)

= φ(tk, x(tk−1)(ω))1T≤tk−1
(ω)

for the first part of the sum and for the second part we use lemma 1.6 and the fact that
{T > tk−1} is an atom of the σ-field Fk−1 (see lemma 1.5).

In particular:
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(I) =

∫
Ω
φ(tk, x(tk))1T>tk−1

1T≤tk + φ(tk, x(tk))1T>tk−1
1T>tkdP

=

∫
Ω
φ(tk, Z1T≤tk)1tk−1<T≤tkdP+

∫
Ω
φ(tk, z01T>tk)1T>tkdP

=

∫
Ω
φ(tk, Z)1tk−1<T≤tkdP+

∫
Ω
φ(tk, z0)1T>tkdP

=

∫
R+×X

φ(tk, z)1(tk−1,tk](s)dµ(s, z) + φ(tk, z0)

∫
R+×X

1(tk,∞)dµ(s, z)

=

∫
R+×X

φ(tk, z)1(tk−1,tk](s)dµ(s, z) + φ(tk, z0)(1− Ftk)

=

∫
R+×X

[φ(tk, z)− φ(tk, z0)]1(tk−1,tk](s)dµ(s, z) + φ(tk, z0)(1− Ftk−1
),

where we used

φ(tk, z0)(1− Ftk)

=φ(tk, z0)(1− Ftk−1
− (Ftk − Ftk−1

))

=φ(tk, z0)(1− Ftk−1
)− φ(tk, z0)

(∫
Ω
1T≤tkdP−

∫
Ω
1T≤tk−1

dP
)

=φ(tk, z0)(1− Ftk−1
)−

∫
R+×X

φ(tk, z0)1(tk−1,tk](s)dµ(s, z)

in the last equality.

If we insert our findings in the original equation above we get:

E[v(tk)|Fk−1] = φ(tk, x(tk−1))1T≤tk−1
+ 1T>tk−1

1

1− Ftk−1

×

[∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)]µ(ds, dz) + φ(tk, z0)(1− Ftk−1
)

]
= φ(tk, x(tk−1))

+ 1T>tk−1

1

1− Ftk−1

∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)]µ(ds, dz).

In the last equality we’ve combined φ(tk, x(tk−1))1T≤tk−1
and

1T>tk−1

1

1− Ftk−1

φ(tk, z0)(1− Ftk−1
) = 1T>tk−1

φ(tk, z0)

into one φ(tk, x(tk−1)), since on these different indicator functions the values of x(tk−1)
are known:

x(tk−1, ω)1T>tk−1
(ω) = z01T>tk−1

(ω),

x(tk−1, ω)1T≤tk−1
(ω) = Z(ω)1T≤tk−1

(ω)
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Given the form of the conditional expectation from the last lemma we are now fully
prepared to state the Doob decomposition of the transformed process v = (v(tk))k∈N.

Theorem 1.10. Let t ∈ R+, t < c fixed. Let N ∈ N. For DN
t = (tk)k∈N (see (1.3.2)

the Doob decomposition of the process (v(tk))k∈N w.r.t. the filtration (Ftk)k∈N is given
by the martingale part (MN

tk
) and a predictable compensator part (ANtk), each given

respectively by

MN
tk

−MN
tk−1

= [φ(tk, x(tk))− φ(tk, x(tk−1))]

− 1T>tk−1

1

1− Ftk−1

∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)]dµ(s, z),

ANtk −ANtk−1
= [φ(tk, x(tk−1))− φ(tk−1, x(tk−1))]

+ 1T>tk−1

1

1− Ftk−1

∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)]dµ(s, z)

for every k ∈ N and MN
0 := φ(0, z0), A

K
0 := 0.

Proof. The two different parts of the Doob-Meyer decomposition of a given process
(v(k))k∈{1,...,K} are given by

MN
tk

=MN
tk−1

+ v(tk)− E[v(tk)|Ftk−1
]

and
ANtk = ANtk−1

+ E[v(tk)|Ftk−1
]− v(tk−1).

In our case v(tk) = φ(tk, x(tk)) and the conditional expectation is taken from Lemma
1.9. v(t0) = φ(t0, x(t0)) and t0 := 0. (MN

tk
)k∈N is a (Ftk)-martingale by construction

and for any k ∈ N the random variable ANtk is Ftk−1
-measurable, i.e. the process

(ANtk)k∈N predictable.

Remark 1.11. Since dµ(s, z) can be disintegrated with respect to dFs (see (1.1.8)), we
can even write∫

(tk−1,tk]×X
[φ(tk, z)− φ(tk, z0)]dµ(s, z)

=

∫
(tk−1,tk]

∫
X
φ(tk, z)dµs(z)dFs −

∫
(tk−1,tk]×X

φ(tk, z0)]dµ(s, z)

=

∫
(tk−1,tk]

∫
X
φ(tk, z)P[Z ∈ dz|T = s]dFs − φ(tk, z0)[Ftk − Ftk−1

]

=

∫
(tk−1,tk]

∫
X
φ(tk, z)E[1Z∈dz|T = s]dFs − φ(tk, z0)[Ftk − Ftk−1

]. (1.3.3)

This property is useful for the cases, when Z only takes finitely many values. A discus-
sion of this special case can be found in the Appendix.

Example 1.12. This continues the investigation of the examples defined in example
1.2:
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(a) In the situation of example 1.2 (a) let α, β ∈ R \ {0}. Take φ(t, y) = exp(αt(1−
y) + βty). Then the process

v(t) := φ(t, x(t)) = exp (αt(1− 1T≤t) + βt1T≤t)

has a discrete version (v(tk))k∈N. In this case we got

µ(t, {1}) = Ft, µ(t, {0}) ≡ 0

and thus ∫
(tk−1,tk]×X

dµ(u, z) =

∫
(tk−1,tk]

dFt

We note that

[φ(tk, x(tk))− φ(tk, x(tk−1))] = [exp(βtk)− exp(αtk)]1T∈(tk−1,tk]

and end up with the following Doob decomposition:

MN
t =

2N∑
k=1

[φ(tk, 1)− φ(tk, 0)]1T∈(tk−1,tk]

−
2N∑
k=1

1T>tk−1

exp(−λt)

∫
(tk−1,tk]×X

[φ(tk, 1)− φ(tk, 0)]dµ(u, z)

=
2N∑
k=1

{
[exp(βtk)− exp(αtk)]1T∈(tk−1,tk]

− 1T>tk−1
(1− exp(−λ(tk − tk−1))) [exp(βtk)− exp(αtk)]

}
ANt =

2N∑
k=1

{ [
exp(αtk1T>tk−1

+ βtk1T≤tk−1
)− exp(αtk−11T>tk−1

+ βtk−11T≤tk−1
)
]

+ 1T>tk−1
(1− exp(−λ(tk − tk−1))) [exp(βtk)− exp(αtk)]

}
.

(b) In the situation of example 1.2 (b) take

φ(t, y) = sin(ty).

The measure dµ(u, z) is given in this case as

dµ(u, z) = δ1(u)dΦ(z)

and the increments of φ due to change of x(t) are

[φ(tk, x(tk))− φ(tk, x(tk−1))] = [sin(Ztk)]1T∈(tk−1,tk].

Then the Doob-decomposition of (v(tk)) is given by the increments:

MN
tk

−MN
tk−1

=

(
sin(Ztk)−

∫
(tk−1,tk]

sin(ztk)dΦ(z)

)
1(tk−1,tk](1)

ANtk −ANtk−1
= [sin(Ztk)− sin(Ztk−1)]1[0,tk−1](1)

+

∫
(tk−1,tk]

sin(ztk)dΦ(z)1(tk−1,tk](1).
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(c) In the situation of example 1.2 (c) we have the measure

dµ(u, z) = dPT (u)dPZ(z)

where PT , PZ are the respective distributions of T and Z. Take φ(t, y) = y The
increments of a function φ again reduce to the case where the process has just
jumped:

[φ(tk, x(tk))− φ(tk, x(tk−1))] = [x(tk)− x(tk−1)]1T∈(tk−1,tk].

The Doob decomposition is given by:

MN
tk

−MN
tk−1

= Z1T∈(tk−1,tk]

ANtk −ANtk−1
= 0.

Thus this simple process already is a martingale, which we also see by computing:

E[Z1T≤t] = E[Z]P(T ≤ t) = 0.

But let us now assume, that Z is not centered around our chosen z0 = 0. Let
E[Z] = ξ. Then we get from theorem 1.10 that

MN
tk

−MN
tk−1

= Z1T∈(tk−1,tk] − 1T>tk−1

1

1− Ftk−1

∫
(tk−1,tk]

∫
X
zdPZ(z)dFu

= Z1T∈(tk−1,tk] − 1T>tk−1

Ftk − Ftk−1

1− Ftk−1

ξ

ANtk −ANtk−1
= 1T>tk−1

Ftk − Ftk−1

1− Ftk−1

ξ.

In the case where we assume T ∼ Exp(λ) we then get:

MN
tk

−MN
tk−1

= Z1T∈(tk−1,tk] − 1T>tk−1
[1− exp(−λ(tk − tk−1)] ξ

ANtk −ANtk−1
= 1T>tk−1

[1− exp(−λ(tk − tk−1)] ξ.

(d) In the situation of example 1.2 (d) we are left with the cryptic measure

dµ(u, z) = P(Z ∈ dz|T = u)P(T ∈ du) = Φ(udz)dFu

Take again φ(t, y) = y. Note that

[φ(tk, x(tk))− φ(tk, x(tk−1))] = Z1tk−1<T≤tk

and compute the Doob-decomposition:

MN
tk

−MN
tk−1

= x(tk)− x(tk−1)

ANtk −ANtk−1
= 0
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again. Let us assume, that Z ∼ N (ξ, 1t ) given T = t. Then theorem 1.10 gives
us:

MN
tk

−MN
tk−1

= Z1T∈(tk−1,tk] − 1T>tk−1

1

1− Ftk−1

∫
(tk−1,tk]

∫
X
zdµu(z)dFu

= Z1T∈(tk−1,tk] − 1T>tk−1

Ftk − Ftk−1

1− Ftk−1

ξ

ANtk −ANtk−1
= 1T>tk−1

Ftk − Ftk−1

1− Ftk−1

ξ.

This is the same result as in the independent case.

1.4 Limiting procedure

Similar to [Beiglboeck et al., 2010] we now turn to increasing the frequency of our
discrete dyadic times (tk)k∈N ⊆ DN

t (see (1.3.2)) and by that achieving a decomposition
of the time-continuous process into an (Ft)-martingale (Mt) and a predictable part (At).

Let us state the time continuous version of theorem 1.10. We will realize in its proof,
why we will need a few more assumptions on φ now:

Definition 1.13. We say a function φ : R+ ×X → R satisfies the condition (C), if

(i) φ(·, z) ∈ C1 for all z ∈ X,

(ii) sups∈[0,t] |φ(s, ·)| ∈ L1
loc(µ), for all t < c.

(iii) φ ∈ L1
loc(µ).

Theorem 1.14. Under the assumption that φ satisfies the condition (C) the process
(v(t))t∈R+, where v(t)(ω) = φ(t, x(t)(ω)) can be written as

v(t) =Mt +At.

Mt is a local (Ft) martingale on [0, c) and At is an (Ft)-previsible process. Both pro-
cesses are given respectively by:

Mt = φ(t0, z0) +

∫
(0,t]

(φ(u, z)− φ(u, z0))dq(u, z),

At =

∫
(0,t]

∂φ

∂t
(u, x(u−))du+

∫
(0,t]

1T≥u
1− Fu−

(m(u)− φ(u, z0))F (du),

where m(u) = E[φ(T,Z)|T = u].

Proof. We prove the theorem in 4 different parts:
Construction of M :
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We take the result from theorem 1.10 and write (t0 = 0, t2N = t):

MN
t −MN

0 =
2N∑
k=1

[
MN
tk

−MN
tk−1

]

=

2N∑
k=1

[
[φ(tk, x(tk))− φ(tk, x(tk−1))] (1.4.1)

− 1T>tk−1

1

1− Ftk−1

∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)]dµ(s, z)
]

Note that

φ(tk, x(tk))− φ(tk, x(tk−1)) = [φ(tk, Z)− φ(tk, z0))]1tk−1<T≤tk .

and make use of (1.1.12) to write

2N∑
k=1

[φ(tk, x(tk))− φ(tk, x(tk−1))] =

∫
R+×X

2N∑
k=1

[φ(tk, z)− φ(tk, z0)]1(tk−1,tk](u)dp(u, z)

(1.4.2)
and rearrange

2N∑
k=1

1T>tk−1
(ω)

1

1− Ftk−1

∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)] dµ(u, z)

=

∫
R+×X

2N∑
k=1

[φ(tk, z)− φ(tk, z0)]1T>tk−1
(ω)

1

1− Ftk−1

1(tk−1,tk](u)dµ(u, z) (1.4.3)

We explore the limiting behavior of these integrals separately. In (1.4.2) we note that
for fixed u ∈ R+, z ∈ X:

2N∑
k=1

[φ(tk, z)− φ(tk, z0)]1(tk−1,tk](u) → [φ(u, z)− φ(u, z0)]1(0,t](u)

as N → ∞. Thus for a fixed ω ∈ Ω we get that

2N∑
k=1

[φ(tk, Z(ω))− φ(tk, z0)]1(tk−1,tk](T (ω)) (1.4.4)

→ [φ(T (ω), Z(ω))− φ(T (ω), z0)]1(0,t](T (ω))

=

∫
(0,t]×X

[φ(u, z)− φ(u, z0)] dp(u, z) (1.4.5)

where we’ve used (1.1.12).

For the other limit in (1.4.3) we note that for fixed u ∈ R+, z ∈ X,ω ∈ Ω:

2N∑
k=1

[φ(tk, z)− φ(tk, z0)]1T>tk−1
(ω)

1

1− Ftk−1

1(tk−1,tk](u)

→ [φ(u, z)− φ(u, z0)]1T≥u
1

1− Fu−
1(0,t](u)
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as N → ∞. They are also bounded by an integrable function since

|
2N∑
k=1

φ(tk, z)− φ(tk, z0)1T>tk−1
(ω)

1

1− Ftk−1

1(tk−1,tk](u)|

≤
2N∑
k=1

|φ(tk, z)− φ(tk, z0)1T>tk−1
(ω)

1

1− Ftk−1

1(tk−1,tk](u)|

≤ sup
k∈{1,...,2N}

|φ(tk, z)− φ(tk, z0)|
1− Ftk−1

≤Rt

(
sup

k∈{1,...,2N}
|φ(tk, z)|+ sup

k∈{1,...,2N}
|φ(tk, z0)|

)
.

where we used that for any t < c there is a Rt ∈ R+, such that

sup
k∈{1,...,2N}

1

1− Ftk−1

≤ sup
s∈[0,t]

1

1− Fs−
=

1

1− Ft−
= Rt <∞.

We use the dominated convergence theorem to get for any ω ∈ Ω:

K∑
k=1

1T>tk−1
(ω)

1

1− Ftk−1

∫
(tk−1,tk]×X

φ(tk, z)− φ(tk, z0)dµ(u, z)

→
∫
(0,t]×X

[φ(u, z)− φ(u, z0)]1T≥u
1

1− Fu−
dµ(u, z) (1.4.6)

(1.1.13)
=

∫
R+×X

[φ(u, z)− φ(u, z0)]1(0,t](u)dp̃(u, z, ω) (1.4.7)

for N → ∞.

We set M0 := φ(0, z0) and get in (1.4.1) with the help of (1.4.4) and (1.4.7) for any
fixed ω ∈ Ω:

MN
t (ω)−MN

0 (ω) =MN
t (ω)− φ(0, z0)

→
∫
R+×X

[φ(u, z)− φ(u, z0)]1(0,t](u)dp(u, z, ω)

−
∫
R+×X

[φ(u, z)− φ(u, z0)]1(0,t](u)dp̃(u, z, ω)

=

∫
R+×X

[φ(u, z)− φ(u, z0)]1(0,t](u)dq(u, z, ω)

=:Mt(ω)− φ(0, z0).

Construction of A:
The second part is the limiting behaviour in the compensator. We use the results of
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theorem 1.10 to write (t0 = 0, t2N = t):

ANt −AN0 =

2N∑
k=1

[
ANtk −ANtk−1

]

=

2N∑
k=1

[
[φ(tk, x(tk−1))− φ(tk−1, x(tk−1))] (1.4.8)

+ 1T>tk−1

1

1− Ftk−1

∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)]dµ(s, z)
]
.

Note that since φ(·, z) ∈ C1 for all z ∈ X we can write

φ(tk, x(tk−1))− φ(tk−1, x(tk−1) =

∫
(tk−1,tk]

dφ

du
(u, x(tk−1))du (1.4.9)

and thus:

2N∑
k=1

[φ(tk, x(tk−1))− φ(tk−1, x(tk−1))] =

∫
R+

2N∑
k=1

dφ

dt
(u, x(tk−1))1(tk−1,tk](u)du.

(1.4.10)

The second sum of (1.4.8) can again be written as:

2N∑
k=1

1T>tk−1
(ω)

1

1− Ftk−1

∫
(tk−1,tk]×X

φ(tk, z)− φ(tk, z0)dµ(u, z)

=

∫
R+×X

2N∑
k=1

φ(tk, z)− φ(tk, z0)1T>tk−1
(ω)

1

1− Ftk−1

1(tk−1,tk](u)dµ(u, z) (1.4.11)

Since the limit of this integral has been discussed in (1.4.7) we focus on the limit of
(1.4.10). Take ω ∈ Ω and set KN (ω) := max{k : tk−1 < T (ω)}. For fixed u ∈ [0, t], z ∈
X:

2N∑
k=1

dφ

dt
(u, x(tk−1, ω))1(tk−1,tk](u)

=

KN (ω)∑
k=1

dφ

dt
(u, z0)1(tk−1,tk](u) +

2N∑
k=KN (ω)

dφ

dt
(u, Z(ω))1(tk−1,tk](u)

→ dφ

dt
(u, z0)1(0,T (ω)](u) +

dφ

dt
(u, z0)1(T (ω),t](u)

=
dφ

dt
(u, x(u−, ω))1(0,t](u)

where we used that for fixed ω ∈ Ω : tKN (ω) ↘ T (ω) asN → ∞ and thus 1(0,t
KN (ω)

](u) →
1(0,T (ω)](u) and 1(KN (ω),t](u) → 1(T (ω),t](u) for all u ∈ R+. In the last equation we iden-
tified

z01(0,T (ω)](u) = x(u−, ω)1(0,T (ω)](u) and Z(ω)1(T (ω),t](u) = x(u−, ω)1(T (ω),t](u).
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Further we have

|
2N∑
k=1

dφ

dt
(u, x(tk−1, ω))1(tk−1,tk](u)|

≤
KN (ω)∑
k=1

|dφ
dt

(u, z0)1(tk−1,tk](u)|+
2N∑

k=KN (ω)+1

|dφ
dt

(u, Z(ω))1(tk−1,tk](u)|

≤ |dφ
dt

(u, z0)|1(0,t](u) + |dφ
dt

(u, Z(ω))|1(0,t](u)

∈ L1
loc(P).

Thus we can use dominated convergence to get

2N∑
k=1

dφ

dt
(u, x(tk−1, ω))1(tk−1,tk](u) →

∫
(0,t]

dφ

dt
(u, x(u−, ω))du. (1.4.12)

Returning to (1.4.8) we combine (1.4.12) and (1.4.7) to achieve for any ω ∈ Ω and any
t < c:

ANt (ω)−AN0 (ω) →
∫
(0,t]

dφ

dt
(u, x(u−, ω))du

+

∫
(0,t]×X

[φ(u, z)− φ(u, z0)]1T≥u(ω)
1

1− Fu−
dµ(u, z)

for N → ∞. Setting AN0 ≡ 0 and using the disintegration property of µ (see (1.1.8))
we finally get

At :=

∫
(0,t]×X

[φ(u, z)− φ(u, z0)]1T≥u(ω)
1

1− Fu−
dµ(u, z)

=

∫
(0,t]

∫
X
[φ(u, z)− φ(u, z0)]1T≥u

1

1− Fu−
dµu(dz)dFu

=

∫
(0,t]

[∫
X
φ(u, z)dµu(dz)− φ(u, z0)

]
1T≥u

1

1− Fu−
dFu

=

∫
(0,t]

[E[φ(T,Z)|T = u]− φ(u, z0)]1T≥u
1

1− Fu−
dFu. (1.4.13)

M is a martingale:
Now we have to check that (Mt) is a local (Ft)-martingale and (At) is predictable. The
former follows from [Davis, 1976], theorem 1 since φ ∈ L1

loc(µ) by condition (C), (iii)
and

Mt = φ(0, z0) +

∫
(0,t]

φ(u, z)− φ(u, z0)dq(u, z) =Mg
t

for g(u, z) = φ(u, z)− φ(u, z0).

A is predictable:
The predictability of (At) can be verified by decomposing the compensator into pre-
dictable parts. Clearly the first integral

∫
(0,t]

dφ
du (u, x(u−, ω))du is continuous in t for all
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ω ∈ Ω and as such is predictable as a left-continuous process. Now for the remaining
part of At:∫

(0,t]

1T≥u
1− Fu−

(m(u)− φ(u, z0))F (du) = 1T≥t

∫
(0,t]

1

1− Fu−
(m(u)− φ(u, z0))F (du)

+ 1T<t

∫
(0,T ]

1

1− Fu−
(m(u)− φ(u, z0))F (du).

Now

� 1T<t(ω) and 1T≥t(ω) are left-continuous in t for all ω ∈ Ω,

�

∫
(0,t]

1
1−Fu−

(m(u)− φ(u, z0))F (du) is continuous in t (and deterministic)

� and
∫
(0,T ]

1
1−Fu−

(m(u)−φ(u, z0))F (du) is a random variable which is FT measur-
able.

Thus 1T<t(ω)
∫
(0,T (ω)]

1
1−Fu−

(m(u) − φ(u, z0))F (du) and 1T≥t(ω)(
∫
(0,t]

1
1−Fu−

(m(u) −
φ(u, z0))F (du) are left-continuous for all ω ∈ Ω.
Hence At has left-continuous paths and is predictable in turn.

The above theorem has shown, that under relatively strong conditions the process
(v(t))t∈R+ can be decomposed in a Doob-Meyer manner. Since the ultimate goal of
φ is to eliminate the compensator At we start looking for ways to simplify the actual
representation of At. If we assume F to be differentiable (especially no jumps) surely
F would provide a density f = F ′ and we would write:

At =

∫
(0,t]

∂φ

∂t
(u, x(u−)) +

1T≥u
1− Fu

(m(u)− φ(u, z0)) f(u)du.

Determining the right φ is now a matter of solving

∂φ

∂t
(u, x(u−)) +

1T≥u
1− Fu

(m(u)− φ(u, z0)) f(u) = 0. (1.4.14)

It is instructive to note that assuming F to be continuous implies that it is of Case A
(see section 1.1).

Thus demanding F to be differentiable and even φ(·, z) ∈ C1 for all z ∈ X is already
quite restrictive. Also we require these regularities w.r.t. the Lebesgue measure, which
acts almost like a consultant here and generally would not be involved if T were to
have discrete jump times and in turn a noncontinuous distribution function F .
So let us assume something more intrinsic. We take the following notation from

[Gushchin, 2020]: for any function ψ : [0, c) → R we write ψ
loc
≪ G if there exists a

function f ∈ L1
loc(dF ) s.t.

ψ(t) = Z(0) +

∫
(0,t]

f(s)dFs, ∀t < c (1.4.15)

and denote f(s) =: dψdF (s) for s ∈ (0, c).
This notion leads us to another more general set of requirements:
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Definition 1.15. We say a function φ : R+ ×X → R satisfies the condition (C’), if

(i) φ(·, z)
loc
≪ F for all z ∈ X,

(ii) sups∈[0,t] |φ(s, ·)| ∈ L1
loc(µ), for all t < c,

(iii) sups∈[0,t] |φ(s, z0)| <∞ for all t < c.

(iv) φ ∈ L1
loc(µ).

A slight modification of the above proof yields then:

Corollary 1.16. Under the assumption that φ satisfies the condition (C’) the process
(v(t))t∈R+, where v(ω, t) = φ(t, x(ω, t) can be written as

v(t) =Mt +At.

Mt is a local (Ft) martingale and At is an (Ft)-previsible process. Both processes are
given respectively by:

Mt = φ(t0, z0) +

∫
(0,t]

(φ(u, z)− φ(u, z0))dq(u, z),

At =

∫
(0,t]

dφ

dF
(u, x(u−)) +

1T≥u
1− Fu−

(m(u)− φ(u, z0))dFu,

where m(u) = E[φ(T,Z)|T = u].

Proof. The proof is similar to the proof of theorem 1.14, with the following adjustments:
In (1.4.9) we instead write for a fixed ω

φ(tk, x(tk−1, ω))− φ(tk−1, x(tk−1, ω)) =

∫
(tk−1,tk]

dφ

dF
(u, x(tk−1, ω))dFu (1.4.16)

where dφ
dF (·, z) is the function that exists since φ(·, z)

loc
≪ F for all z ∈ X. Thus we get

for fixed u ∈ R+, u < c and ω ∈ Ω

2N∑
k=1

φ(tk, x(tk−1, ω))− φ(tk−1, x(tk−1, ω)) →
∫
(0,t]

dφ

dF
(u, x(u−, ω))dFu

for N → ∞.
The property (iii) of the condition set (C’) ensures that the dominated convergence
theorem can still be applied in the following sense:
In the situation of (1.4.2) we are again bounded by

|
N∑
k=1

[φ(tk, z)− φ(tk, z0)]1(tk−1,tk](u)| ≤ sup
s∈(0,t]

|φ(s, z)|+ sup
s∈(0,t]

|φ(s, z0)|.

for all t < c, z ∈ X and any N ∈ N (the level of the dyadic partition DN
t of the interval

[0, t]). Now the first supremum is assumed to be in L1
loc(µ) by condition (ii) of (C’).

The other supremum in turn is in (iii) of (C’) assumed to be bounded and thus is of
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L1
loc(µ) on [0, c). With proposition 4, (ii) in [Davis, 1976] we get L1

loc(µ) = L1
loc(p) and

thus use the dominated convergence theorem to yield∫
R+×X

N∑
k=1

[φ(tk, z)−φ(tk, z0)]1(tk−1,tk](u)dp(u, z) =

∫
(0,t]×X

[φ(u, z)−φ(u, z0)]dp(u, z).

Remark 1.17. The assumptions made under (C’) may seem constructed, but they obey
quite realistic circumstances. Heuristically we want to determine a function φ that takes
the current value of our single-jump process x(t) and ’bends’ the graph of its path s.t.
the mean deviation from the initial value is zero. After the process has jumped, the
function has no task anymore: the graph of the path should stay constant. But before
the jump it bends actively to prepare for the expected jump at any given time.
Now think of a jump time, that is discrete. Then the distribution function is constant
inbetween two atomic values - say a, b ∈ R+. The probability to jump in the interval
(a, b) is zero and thus (a, b) is a dF -nullset. On this interval the function φ still prepares
for the possible incoming jump, but there is dF -a.s. no jump happening inbetween a
and b. Thus the function can confidently stay constant inside of the interval, i.e. the
signed measure induced by φ(·, z0) gives the interval (a, b) also a value of zero. Hence
the function φ(·, z) is locally absolutely continuous to dF .
One can see that the other requirements are also well motivated:

(ii) The sups∈(0,t] should be locally integrable which is implied, would it be finite (which
it doesn’t have to be). This ensures, that the integral of φ does not explode on
any important (i.e. dµ-massive) set.
Note: due to this property we can conclude, that φ ∈ L1

loc(µ), since for any
t ∈ R+, t < c:∫

(0,t]×X
|φ(s, z)|dµ(s, z) ≤

∫
(0,t]×X

sup
u∈(0,t]

|φ(u, z)|dµ(s, z) <∞.

(iii) Especially for the location z0 the supremum must be bounded for any t < c. This
makes sense, if we remember that the function is supposed to compensate the jump
of the process. A value of ∞ would be an overreaction.
For t↗ c the function can and will in some cases diverge, but for any fixed t < c
the value of the supremum should still be finite.

Example 1.18. This is a sequel to the investigations in examples 1.2 and 1.12. Note
that all of these examples satisfy condition (C). Thus we made an effort to adjust the
distribution in the setting of (d) to not be continuous anymore.

(a) The situation in example 1.2 and the choice of φ in example 1.12 can be directly
applied to theorem 1.14. Note that

∂φ

∂t
(t, y) = (α(1− y) + βy)φ(t, y)

and thus
∂φ

∂t
(u, x(u−)) = α exp(αu)1T≥u + β exp(βu)1T<u.
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The function m(u) is in this case:

m(u) = E[φ(T,Z)|T = u] = exp(βu)

The Doob-Meyer decomposition is given by

Mt = 1 +

∫
(0,t]×X

[exp(βu)− exp(αu)] dq(u, z)

= 1 +

∫
(0,t]×X

[exp(βu)− exp(αu)] dp(u, z)

−
∫
(0,t]×X

[exp(βu)− exp(αu)] dp̃(u, z)

= 1 +
[
eβT − eαT

]
1T≤t

−
[
λ

β
eβ(t∧T ) − λ

β
− λ

α
eα(t∧T ) +

λ

α

]
= 1 + λ

(
1

β
− 1

α)

)
− λ

[
1

β
eβt − 1

α
eαt
]
1t<T

+

[(
1− λ

β

)
eβT −

(
1− λ

α

)
eαT
]
1T≤t

At =

∫
(0,t∧T ]

α exp(αu) +
f(u)

1− Fu
[exp(βu)− exp(αu)] du

+

∫
(T,t∨T ]

β exp(βu)du.

= eα(t∧T ) − 1 + eβ(t∨T ) − eβT

+

[
λ

β
eβ(t∧T ) − λ

β
− λ

α
eα(t∧T ) +

λ

α

]
= −1− λ

(
1

β
− 1

α

)
+ φ(t, x(t))

+ λ

[
1

β
eβt − 1

α
eαt
]
1t<T

−
[(

1− λ

β

)
eβT −

(
1− λ

α

)
eαT
]
1T≤t.

(b) Same procedure for the (b)-example. First

∂φ

∂t
(t, y) = y cos(ty)

thus
∂φ

∂t
(u, x(u−)) = Z cos(uZ)11<u

and m(1) = E[sin(TZ)|T = 1] = E[sinZ|T = 1] and the Doob-Meyer decomposi-
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tion reads as:

Mt =

∫
(0,t]×X

sin(uz)dq(u, z)

= sin(Z)11≤t − E[sin(Z)]11≤t

At =

∫
(1,t]×X

Z cos(uZ)du+ E[sinZ]11≤t

= [sin(tZ)− sin(Z)]11≤t + E[sinZ]11≤t.

(c) In the situation of example (c) from before we can determine the Doob-Meyer-
decomposition again pretty easily:

∂φ

∂t
= 0

and m(u) = E[x(T )|T = u] = E[Z]. This yields

Mt =

∫
(0,t]×X

zdq(u, z)

= Z1T≤tAt =

∫
(0,t∧T ]

E[Z]dFu

= 0

Since this process is pretty uninteresting, we now assume that E[Z] = µ > 0.
Then we have

Mt = Z1T≤t − µλt

At = µλt

A sample path can be found in figure 1.2 for µ = 6.

(d) Take T ∼ Exp(λ) and set Z := 6 sin(πT ). Choose φ(t, y) := y,∀(t, y) ∈ R+ ×X.
Then ∂φ

∂t (t, y) ≡ 0 and the Doob-Meyer decomposition is given by

Mt = φ(0, x(0)) +

∫
(0,t]×X

φ(u, z)− φ(u, 0)dq(u, z)

=

∫
(0,t]×X

zdp(u, z)−
∫
(0,t]×X

zdp̃(u, z)

= Z1T≤t −
∫
(0,t∧T ]

6 sin(πu)
f(u)

1− Fu−

∫
X
dµu(z)du

= Z1T≤t −
∫
(0,t∧T ]

6 sin(πu)λdu

= Z1T≤t − 6λ (1− cos(π(t ∧ T )))

At =

∫
(0,t]

∂φ

∂t
(u, x(u−))du+

∫
(0,t]×X

zdp̃(u, z)

= 6λ (1− cos(π(t ∧ T )))
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Figure 1.2: Sample paths to the respective cases in example 1.18.

From corollary 1.16 we obtain an equation to eliminate the compensator by the right
choice of φ:

dφ

dF
(u, x(u−)) +

1T≥u
1− Fu−

(m(u)− φ(u, z0)) = 0. (1.4.17)

This condition on φ could be generalised to only hold true on R+ \NT , where NT :=
{[a, b) ∈ R+ : F ([a, b)) = 0}. We keep this technicality in mind, but revert to the case,
where we want to solve (1.4.17) for all times t < c.

1.5 Martingale transformations

Before we state our main result in a few lines, we want to take the special case that F
defines a measure absolutely continuous to the Lebesgue-measure λ on R+ (we write:
F ≪ λ) as a guide to a possible solution of (1.4.17), i.e. in the upcoming segment we
assume that F yields a density with respect to the Lebesgue measure λ. In addition
let φ satisfy the condition (C).

Per assumption φ(·, z) ∈ C1 for all z ∈ X and F ≪ λ. Then we have to solve (1.4.14):

∂φ

∂t
(u, x(u−)) +

1T≥u
1− Fu

(m(u)− φ(u, z0)) f(u) = 0.
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Due to our experience with the process we write

φ(t, x(t)) = φ(t, x(t))1T≤t + φ(t, x(t))1T>t

= φ(t, Z)1T≤t + φ(t, z0) (1− 1T≤t)

= (φ(t, Z)− φ(t, z0))1T≤t + φ(t, z0)

leading to our first justified assumption:

φ(t, y) = a1(t, y)(1− δz0(y)) + a0(t) (1.5.1)

where we’ve defined

a1(t, y) := φ(t, y)− φ(t, z0), a0(t) := φ(t, z0).

The structure of φ yields

• ∂φ

∂t
(u, y) =

∂a1
∂t

(u, y)(1− δz0(y)) +
∂a0
∂t

(u) (1.5.2)

• m(u) = E[a1(T,Z)|T = u] + a0(u) (1.5.3)

• φ(u, z0) = a0(u). (1.5.4)

We insert these new findings into (1.4.14)

0 =
∂φ

∂t
(u, y) +

δz0(y)

1− Fu
(m(u)− φ(u, z0)) f(u)

=
(∂a1
∂t

(u, y)(1− δz0(y)) +
∂a0
∂t

(u)
)

+
δz0(y)

1− Fu
(E[a1(T,Z)|T = u] + a0(u)− a0(u)) f(u)

=

(
∂a1
∂t

(u, y)− E[a1(T,Z)|T = u]

1− Fu
f(u)

)
(1− δz0(y))

+

(
∂a0
∂t

(u) +
E[a1(T,Z)|T = u]

1− Fu
f(u)

)
which has to hold true for any y ∈ X, so especially for y = z0 (first term vanishes as
δz0(z0) = 1) and y ̸= z0 (second term does not depend on the change of y so it has to
be universally 0). This yields two new equations to solve:

• ∂a1
∂t

(u, y)− E[a1(T,Z)|T = u]

1− Fu
f(u) = 0 (1.5.5)

• ∂a0
∂t

(u) +
E[a1(T,Z)|T = u]

1− Fu
f(u) = 0 (1.5.6)

Apparently (1.5.5) tells us, that the partial derivative has overcome the dependency on
y. This lets us conclude for a1:

a1(u, y) = b1(u) + b2(y), (1.5.7)
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where b1 and b2 are placeholder functions here to illustrate the structural conclusions.
One can check this by integrating (1.5.5). For fixed y ∈ X:

∂a1
∂t

(u, y) =
f(u)

1− Fu
E[a1(T,Z)|T = u]

⇔
∫
[0,t]

∂a1
∂t

(u, y)du =

∫
[0,t]

f(u)

1− Fu
E[a1(T,Z)|T = u]du

⇔ a1(t, y) =

∫
[0,t]

f(u)

1− Fu
E[a1(T,Z)|T = u]du+ a1(0, y).

So b1(u) :=
∫
[0,t]

f(u)
1−Fu

E[a1(T,Z)|T = u]du and b2(y) := a1(0, y).

Inserting this new result (1.5.7) into (1.5.5):

0 =
∂a1
∂t

(u, y)− E[a1(T,Z)|T = u]

1− Fu
f(u)

=

(
∂b1
∂t

(u) +
∂b2
∂t

(y)

)
− E[b1(T )|T = u] + E[b2(Z)|T = u]

1− Fu
f(u)

=
∂b1
∂t

(u)− f(u)

1− Fu
b1(u) +

S(u)f(u)

1− Fu

where we’ve set S(u) := E[b2(Z)|T = u]. Now we are left to solve the inhomogenous
ODE

∂b1
∂t

(u) =
f(u)

1− Fu
b1(u) +

S(u)f(u)

1− Fu
(1.5.8)

by variation of constants. First we solve the homogenous equation

∂b1
∂t

(u) =
f(u)

1− Fu
b1(u).

The solutions are given by the family

{k 1

1− Fu
: k ∈ R}.

The particular solution is given by

B1(u) =
1

1− Fu

∫
[0,u]

S(v)f(v)

1− Fv

(
1

1− Fv

)−1

dv

=
1

1− Fu

∫
[0,u]

S(v)f(v)dv

=
1

1− Fu

∫
[0,u]

S(v)dFv.

Eventually we get a general solution to (1.5.8) with

b1(u) :=
1

1− Fu

(∫
[0,u]

S(v)dFv + k

)
. (1.5.9)
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We can insert (1.5.9) into (1.5.7):

a1(u, y) =
1

1− Fu

(∫
[0,u]

S(v)dFv + k

)
+ b2(y) (1.5.10)

where k ∈ R and get with (1.5.6)

a0(u) = − 1

1− Fu

(∫
[0,u]

S(v)dFv + k

)
+ l (1.5.11)

where k, l ∈ R. Set b(y) := b2(y) + l and r := k − l. The final form of φ, obtained by
inserting (1.5.10) and (1.5.11) into (1.5.1) then sums up to

φ(u, y) =

(
1

1− Fu

(∫
[0,u]

S(v)dFv + k

)
+ b2(y)

)
(1− δz0(y))

− 1

1− Fu

(∫
[0,u]

S(v)dFv + k

)
+ l

= l + b2(y)(1− δz0(y))−
1

1− Fu

(∫
[0,u]

S(v)dFv + k

)
δz0(y)

= (b2(y) + l)(1− δz0(y))

− 1

1− Fu

(∫
[0,u]

E[b2(Z)|T = v]dFv + k − l(1− Fu)

)
δz0(y)

= b(y)(1− δz0(y))

− 1

1− Fu

(∫
[0,u]

E[b2(Z)|T = v]dFv + k − l

(
1−

∫
(0,u]×X

µ(dv, dz)

))
δz0(y)

= b(y)(1− δz0(y))− δz0(y)
1

1− Fu

(∫
[0,u]×X

b2(z) + lµ(dv, dz) + k − l

)

= b(y)(1− δz0(y))− δz0(y)
1

1− Fu

(∫
[0,u]×X

b(z)µ(dv, dz) + r

)
.

The final solution to our initial equation (1.4.14) thus reads as:

φ(t, y) = b(y)(1− δz0(y))− δz0(y)
1

1− Ft

(∫
[0,t]×X

b(z)µ(du, dz) + r

)
. (1.5.12)

For softer requirements on F and φ the martingale-property still holds as the proof of
our main result shows:

Theorem 1.19. For φ defined as in (1.5.12) the process v = (v(t))t∈R+ with v(t) =
φ(t, x(t)) is a local (Ft)-martingale, where b : X → R, b ∈ L1

loc(µ) and r ∈ R arbitrary.
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Proof. Set

σk :=


k, c = ∞
∞, c <∞, Fc− < 1

k1T≤tk + tk1T>tk , c <∞, Fc− = 0,

(1.5.13)

where (tk)n∈N ⊂ R+ increasing with tk ↗ c. This localization sequence is taken from
[Davis, 1976], proof of proposition 4. We note that σk ↗ ∞ a.s. For every k ∈ N the
process v(t ∧ σk)t∈R+ is naturally adapted and in L1(µ) by choice of b ∈ L1

loc(µ), and
for any s ≤ t ∈ R+ we validate the martingale property:

E[φ(t ∧ σk, x(t ∧ σk))|Fs]

=E

[
b(x(t ∧ σk))1x(t∧σk )̸=z0 − 1x(t∧σk)=z0

1

1− Ft∧σk

(∫
(0,t∧σk]×X

b(z)dµ(s, z) + r

)
|Fs

]
(a)
=E[b(Z)1T≤t∧σk |Fs]−

1

1− Ft∧σk

(∫
(0,t∧σk]×X

b(z)dµ(s, z) + r

)
E[1T>t∧σk |Fs]

(b)
=b(Z)1T≤s∧σk + 1T>s∧σk

1

1− Fs∧σk

∫
(s,t]×X

b(z)µ(du, dz)

− 1

1− Ft∧σk

(∫
(0,t∧σk]×X

b(z)dµ(s, z) + r

)[
1σk<T≤s + 1T>s

1

1− Fs

(
1− Fs∨(t∧σk)

)]
(c)
=b(x(s ∧ σk))1T≤s∧σk − 1T>s∧σk

1

1− Fs∧σk

(∫
(0,s∧σk]×X

b(z)µ(du, dz) + r

)
=φ(s ∧ σk, x(s ∧ σk))

where we used in particular:

(a) We use the equivalence of the sets {x(t ∧ σk) ̸= z0} and {T ≤ t ∧ σk} as well as
{x(t) = z0} and {T > t} and use the knowledge on these sets to set the value of
b(x(t)) = b(Z) on {T ≤ t}.

(b) We seperate

E[b(Z)1T≤t∧σk |Fs]
=E[b(Z)1T≤t∧σk1T≤s|Fs] + E[b(Z)1T≤t∧σk1T>s|Fs]

Now we note that

{T ≤ t ∧ σk} ∩ {T ≤ s} =

{
{T ≤ σk}, σk ≤ s

{T ≤ s}, σk > s
(1.5.14)

and thus

E[b(Z)1T≤t∧σk1T≤s|Fs] = E[b(Z)1T≤s∧σk |Fs] = b(Z)1T≤s∧σk .

The second term makes use of {T > s} being an atom:

E[b(Z)1T≤t∧σk1T>s|Fs] = 1T>s
1

1− Fs

∫
(s,∞)×X

b(z)1(0,t∧σk](u)dµ(u, z)

= 1T>s
1

1− Fs

∫
(s∧σk,t∧σk)×X

b(z)dµ(u, z)
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where we’ve used that (s, t ∧ σk] = (s ∧ σk, t ∧ σk.

Further we evaluate the last term as

E[1T>t∧σk |Fs] = E[1T>t∧σk1T≤s|Fs] + E[1T>t∧σk1T>s|Fs].

Now {T > t ∧ σk} ∩ {T ≤ s} = {σk < T ≤ s} - which is empty for σk ≥ s,
Fs-measurable either way. For the second term:

{T > t ∧ σk} ∩ {T > s} =


{T > t}, s ≤ t < σk

{T > σk}, s ≤ σk ≤ t

{T > s}, σk < s ≤ t.

(1.5.15)

Thus

E[1T>t∧σk |Fs] = 1σk<T≤s + 1T>s
1

1− Fs

∫
(s,∞)×X

1(t∧σk,∞)(u)dµ(u, z)

= 1σk<T≤s + 1T>s
1

1− Fs

(
1− Fs∨(t∧σk)

)
(c) On the set {T ≤ s ∧ σk} we can substitute Z with x(s ∧ σk). For the remaining

terms we consider 3 different cases:

s ≤ t < σk In this case we have s ∧ σk = s and t ∧ σk = t. Thus the remaining terms
are

1T>s
1

1− Fs

∫
(s∧σk,t∧σk]×X

b(z)µ(du, dz)

=1T>s
1

1− Fs

∫
(s,t]×X

b(z)µ(du, dz)

=:I1

and

− 1

1− Ft∧σk

(∫
(0,t∧σk]×X

b(z)dµ(s, z) + r

)

×
[
1σk<T≤s + 1T>s

1

1− Fs

(
1− Fs∨(t∧σk)

)]
=− 1

1− Ft

(∫
(0,t]×X

b(z)dµ(s, z) + r

)[
1T>s

1

1− Fs
(1− Ft)

]

=− 1T>s
1

−Fs

(∫
(0,t]×X

b(z)dµ(s, z) + r

)
=:I2.
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The sum of these two terms is

I1 + I2 = 1T>s
1

1− Fs

(∫
(s,t]×X

b(z)µ(du, dz)−
∫
(0,t]×X

b(z)dµ(s, z) + r

)

= 1T>s
1

1− Fs

(
−
∫
(0,s]×X

b(z)dµ(s, z) + r

)

= 1T>s∧σk
1

1− Fs∧σk

(
−
∫
(0,s∧σk]×X

b(z)dµ(s, z) + r

)
.

s ≤ σk ≤ t Now s ∧ σk = s and t ∧ σk = σk and thus

I1 := 1T>s
1

1− Fs

∫
(s,σk]×X

b(z)µ(du, dz)

and

I2 := − 1

1− Ft∧σk

(∫
(0,t∧σk]×X

b(z)dµ(s, z) + r

)

×
[
1σk<T≤s + 1T>s

1

1− Fs

(
1− Fs∨(t∧σk)

)]
= − 1

1− Fσk

(∫
(0,σk]×X

b(z)dµ(s, z) + r

)[
1T>s

1

1− Fs

(
1− Fσk)

)]

= −1T>s
1

1− Fs

(∫
(0,σk]×X

b(z)dµ(s, z) + r

)
.

Hence the sum is

I1 + I2 = 1T>s
1

1− Fs

(∫
(s,σk]×X

b(z)µ(du, dz)−
∫
(0,σk]×X

b(z)dµ(s, z) + r

)

= 1T>s
1

1− Fs

(
−
∫
(0,s]×X

b(z)dµ(s, z) + r

)

= 1T>s∧σk
1

1− Fs ∧ σk

(
−
∫
(0,s∧σk]×X

b(z)dµ(s, z) + r

)
.

σk < s ≤ t Both times are past the localizing stopping time, we note s∧σk = σk = t∧σk
and

I1 := 1T>s
1

1− Fs

∫
(σk,σk]×X

b(z)µ(du, dz)

= 0
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as well as

I2 := − 1

1− Ft∧σk

(∫
(0,t∧σk]×X

b(z)dµ(s, z) + r

)

×
[
1σk<T≤s + 1T>s

1

1− Fs

(
1− Fs∨(t∧σk)

)]
= − 1

1− Fσk

(∫
(0,σk]×X

b(z)dµ(s, z) + r

)

×
[
1σk<T≤s + 1T>s

1

1− Fs
(1− Fs)

]
= − 1

1− Fσk

(∫
(0,σk]×X

b(z)dµ(s, z) + r

)
[1σk<T ] .

Again the sum reduces to

I1 + I2 = I2

= −1σk<T
1

1− Fσk

(∫
(0,σk]×X

b(z)dµ(s, z) + r

)

= −1s∧σk<T
1

1− Fs∧σk

(∫
(0,s∧σk]×X

b(z)dµ(s, z) + r

)

Remark 1.20. We can also validate the above result by comparing it with [Davis, 1976]
prop. 5. We have:

φ(t, x(t)) = b(x(t))1x(t)̸=z0 − 1y=z0
1

1− Ft

(∫
(0,t]×X

b(z)dµ(s, z) + r

)
(a)
= b(Z)1T≤t − 1T>t

1

1− Ft

(∫
(0,t]×X

b(z)dµ(s, z) + r

∫
(0,c)×X

dµ(s, z)

)
(b)
= −r + (b(Z) + r)1T≤t − 1T>t

1

1− Ft

(∫
(0,t]×X

b(z) + rdµ(s, z)

)

where we’ve used in particular:

(a) We’ve seen before that µ-a.s. {x(t) ̸= z0} = {T ≤ t} and {x(t) = z0} = {T > t}.
We then inserted b(x(t))1T≤t = b(Z)1T≤t and multiplied c1 behind the µ-integral
with a fancy 1 =

∫
(0,c)×X dµ(s, z) (note that c = sup{t : Ft < 1} hence the exotic

upper bound).
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(b) Separate

− 1T>t
1

1− Ft
r

∫
(0,c)×X

dµ(u, z)

=− 1T>t
1

1− Ft
r

(∫
(0,t]×X

dµ(u, z) +

∫
(t,c)×X

dµ(u, z)

)

=1T>t
1

1− Ft
r

(∫
(0,t]×X

dµ(u, z) + 1− Ft

)

=1T>t
r

1− Ft

∫
(0,t]×X

dµ(u, z) + 1T>tr

=1T>t
r

1− Ft

∫
(0,t]×X

dµ(u, z) + (1− 1T≤t)r

In this form we can now easily determine the function h prophesized by Davis’ result:

h(t, z) = b(z) + r.

This function also satisfies the required measurability by Davis’ result, since we have
chosen b ∈ L1

loc(P). So the function h does not really depend on the jump time T . Only
the jump height Z seems to be important and yet this is what we felt during the above
discussion all along. The characteristic indicator functions can reduce the dependence
on x to the current location (z0 or not-z0).

Remark 1.21. As mentioned earlier another related result is given by Gushchin in:

Theorem 1.22. (see [Gushchin, 2020], theorem 2) In order that a right-continuous
process M = (Mt)t∈R+ be a local martingale it is necessary and sufficient that there be
a pair (G,H) satisfying conditions M and a random variable L′ satisfying

E
[
|L′|1T≤t

]
<∞, t < c, and E[L′|T ] = 0,

such that up to P-indistinguishability

Mt = (H(T ) + L′)1T≥t +G(t)1t<T .

where the conditions M required in the theorem are the following set of conditions:

(i) G : [0, c) → R, G
loc
≪ F ,

(ii) H : [0, c) → R, H ∈ L1
loc(dF ),

(iii) G(t)−G(0) = −1
1−F (t)

∫
(0,t]H(s)dFs, t < c.

and additionaly in case B:

(iv) limt↗cG(t) = H(c).

In our case

G(t) = − 1

1− Ft

(∫
(0,t]×X

b(z)dµ(u, z) + r

)
,

H(T ) + L′ = b(x(T )) ⇔ H(T ) = b(x(T ))− L′
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For G we have

G(t)−G(0) = − 1

1− Ft

(∫
(0,t]×X

b(z)dµ(u, z) + r

)
+ r

=
−1

1− Ft

(∫
(0,t]×X

b(z)dµ(u, z) + rFt − F0

)

=
−1

1− Ft

(∫
(0,t]×X

b(z) + rdµ(u, z)

)

and G
loc
≪ F quite naturally. In turn for H we have that b ∈ L1

loc(µ) ⊂ L1
loc(dF ) and

thus H ∈ L1
loc(dF ).

With the above blueprint function φ we can now construct many martingales from the
process x(t) and can choose a particular starting point by simply choosing an arbitrary
L1(P) function b : X → R and an arbitrary constant r ∈ X.

Example 1.23.

(a) In the situation of example 1.2 (a) we can choose b : R → R arbitrarily, since
b(Z) ≡ b(1). Take b ≡ 5 and r = 0 then

51T≤t − 5(exp(λt)− 1)1T>t

is a martingale of the single-jump process x(t) = 1T≤t.

(b) In the situation of example 1.2 (b) choose b = sin(y) then

φ(t, x(t)) = sin(Z)11≤t

is a martingale of Z11≤t.

(c) In the situation of example 1.2 (c) choose b(y) = y. Then

φ(t, x(t)) = x(t)

is a martingale of itself.

(d) Set Z := 6 sin(πT ) and let T ∼ Exp(λ) for some λ > 0. Take b(y) := y for all
y ∈ X = R+. Then we get from theorem 1.19 that the process

vt = Z1T≤t −
1T>t

exp(−λt)

(∫
(0,t]×X

zdµ(u, z) + r

)

= Z1T≤t − 1T>t exp(λt)

[
6
λ exp(−λt)
λ2 − π2

(π
λ
(1− cos(πt) exp(−λt))− sin(πt)

)
+ r

]
is a martingale w.r.t. to the single-jump process x(t) (see also figure 1.3).
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Figure 1.3: A single-jump path and the respective martingales path, constructed as in
example 1.23 (d). See also figure 2.1 for a multi-jump version.

While the special first case served as a guide to the more general case, one might be
interested in solving the more general equation (1.4.17) analogously to the outline from
above. To do that we have to discuss some differences first:

almost all the equations and requirements in the more general case φ
loc
≪ F (see notation

(1.4.15)) can be deduced by the same arguments as the special case, but only µF -a.s.
We mean by that, that the density in the sense of (1.4.15) of φ w.r.t. F is only µF -a.s.
a partial derivative like ∂φ

∂t is. The upcoming lemmata will shed some more light on
this exotic notion.

Lemma 1.24. We define 0
0 = 1. Let ψ : R+ → R, ψ

loc
≪ F where F is a distribution

function. Then for t < c := inf{s : F (s) = 1} and any dyadic sequence of partitions
DN
t = {t1, . . . , t2N } of the interval [0, t] it holds:

lim
N→∞

2N∑
k=1

ψ(tk)− ψ(tk−1)

Ftk − Ftk−1

[
Ftk − Ftk−1

]
=

∫
(0,t]

fdF

where f is the density of ψ w.r.t. F in the sense of (1.4.15).
Notation: we will denote f(t) = dψ

dF (t).

Proof. First we have by the property ψ
loc
≪ F that there exists a function f ∈ L1

loc(dF )
such that:

ψ(tk)− ψ(tk−1)

Ftk − Ftk−1

[
Ftk − Ftk−1

]
= ψ(tk)− ψ(tk−1)

=

∫
(tk−1,tk]

fdF
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Summing over k we get:

2N∑
k=1

ψ(tk)− ψ(tk−1)

Ftk − Ftk−1

[
Ftk − Ftk−1

]
=

2N∑
k=1

∫
(tk−1,tk]

fdF

=

∫
(0,t]

fdν

Under N → ∞ we yield the assertion.

In our previous discussion the convergence also needed to happen in the time argument
of the process x(·) (in particular slightly in the past). In the case that x has not yet
jumped, i.e. T > t, this is no problem at all, since x(u) = z0 for all u ∈ [0, t] After
the jump the situation will be similar since x(u) = Z for u ≥ T . We take note of the
following

Lemma 1.25. Let ψ : R+ × X → R, ψ(·, z)
loc
≪ F for all z ∈ X. Then for t < c :=

inf{s : F (s) = 1} and any dyadic sequence of partitions DN
t = {t1, . . . , t2N } of the

interval [0, t] it holds:

lim
N→∞

2N∑
k=1

ψ(tk, x(tk−1))− ψ(tk−1, x(tk−1))

Ftk − Ftk−1

[
Ftk − Ftk−1

]
=

∫
(0,t]

fx(u−)(u)dFu

where fz is the density of ψ(·, z) w.r.t. F in the sense of (1.4.15).

Proof. For k ∈ {1, . . . , 2N} we decompose Ω in two exclusive sets {T > tk−1} and
{T ≤ tk−1} and get:

[ψ(tk, x(tk−1))− ψ(tk, x(tk−1))] = [ψ(tk, x(tk−1))− ψ(tk, x(tk−1))]1T>tk−1

+ [ψ(tk, x(tk−1))− ψ(tk, x(tk−1))]1T≤tk−1

= [ψ(tk, z0))− ψ(tk, z0))]1T>tk−1

+ [ψ(tk, Z))− ψ(tk, Z))]1T≤tk−1

For these two differences we use - after summation over k - lemma 1.24 over the intervals
(0, t ∧ T ] and (T ∧ t, t] respectively and end up with:

lim
N→∞

2N∑
k=1

ψ(tk, x(tk−1))− ψ(tk−1, x(tk−1))

Ftk − Ftk−1

[
Ftk − Ftk−1

]
(i)
= lim
N→∞

KN (ω)∑
k=1

ψ(tk, z0)− ψ(tk−1, z0)

Ftk − Ftk−1

[
Ftk − Ftk−1

]
+ lim
N→∞

2N∑
k=KN (ω)

ψ(tk, Z(ω))− ψ(tk−1, Z)

Ftk − Ftk−1

[
Ftk − Ftk−1

]
(ii)
=

∫
(0,T (ω)∧t]

fz0dF +

∫
(T (ω)∧t,t]

fZ(ω)dν

(iii)
=

∫
(0,t]

fx(u−,ω)(u)dν(u)

where we’ve used in particular:
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(i) For ω ∈ Ω set KN (ω) := inf{k ∈ {1, . . . , 2N} : tk ≥ T (ω)∧ t}, then we decompose
the sum. Note that for all k ≤ KN (ω) we can confidently state x(tk−1, ω) = z0
and for all k > KN (ω) we have x(tk−1, ω) = Z(ω).

(ii) We write

KN (ω)∑
k=1

ψ(tk, z0)− ψ(tk−1, z0)

Ftk − Ftk−1

[
Ftk − Ftk−1

]
=

KN (ω)∑
k=1

ψ(tk, z0)− ψ(tk−1, z0)

Ftk − Ftk−1

∫
(tk−1,tk]

dFu

=

∫
R+

KN (ω)∑
k=1

ψ(tk, z0)− ψ(tk−1, z0)

Ftk − Ftk−1

1(tk−1,tk](u)dFu.

The integrand is a pointwise approximation of dψ
dF (u, z0)1(0,T∧t] since K

N (ω) ↘
T (ω) ∧ t. We procede the same way with the second sum.

(iii) In the interval (0, T∧t] x(u−) = z0 and in the interval (T∧t, t] we have x(u−) = Z.
We combine this property in the function

fx(u−)

{
fz0(u), on (0, T ∧ t],
fZ(u), on (T ∧ t, t].

Remark 1.26. So the differential quotients converge µF -a.e. to the Radon-Nikodym
densities. This strengthens our interpretation of the Radon-Nikodym density as a kind
of derivative. Still it may not be unique, but it is at least µF -a.s. unique.



Chapter 2

General case

So far we only worked with single-jump processes. But in general one is interested
in jump processes with multiple jumps possibly depending on each other. While this
situation seems to be more complex, the result from the single-jump case can easily be
adapted to the multi-jump case.
Take a single-jump process with random jump time S1 and random jump height Z1

which starts in z0 ∈ X. Intuitively one thinks of a second random jump as another
single-jump process that is born at time S1 at the position Z1 and that jumps after time
S2 (i.e. after total time S1 +S2) to the location Z2, where in turn another single-jump
process will be born and so on. The resulting process might have finite or countably
infinite random jumps but acts as a single-jump process in between two jump times.
The complexity is not lost under this intuition, it merely hides inside the distributional
information of each jump.

2.1 Definitions and assumptions

Spaces and random variables In this section we would like to allow the process to
have more than one random jump. To that end we take copies (Yn,Yn) of the template
statespace (Y,Y) = ((R+ ×X) ∪ {(∞, z∞)}, σ{B(R+) ∗ S, {(∞, z∞)}}), and define

Ω :=
∏
n∈N

Yn,

F0 := σ{
∏
n∈N

Yn}.

(Ω,F0) is again a Blackwell space (see [Davis, 1976], p. 624).

Let (Sn, Zn) : Ω → Yn be the coordinate mappings, picking out the time and space
coordinates of the n-th jump of a general state ω = (y1, y2, . . . ) with yi ∈ Yi for i ∈ N.
This means Sn will be the random life time of the n-th single-jump process and Zn
marks the birthplace of the next single-jump process.
Let ωk : Ω → Ωk :=

∏k
n=1 Yn denote the restriction to the first k jumps, i.e.

ωk(ω) = (S1(ω), Z1(ω), . . . , Sk(ω), Zk(ω)).
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It carries the information of the first k jumps. We will say ’For fixed ωk...’ but won’t
forget, that we mean for some v ∈ Ωk, {ωk = v} = {ω ∈ Ω : ωk(ω) = v} which is in
fact a set. But fixing ωk in this sense is in a way defining the past of any time after the
k-th jump and this is well reflected in our notion above.
For some notational convenience we also set T0 := 0. Note that for ω ∈ {ωk = η} we
get Zj(ω) = η(2j) for any j ≤ k, we thus take Zj(η) to deliver the information of the
j-th jump location of any given past η ∈ Ωk, although Z was initially defined on Ω
instead of Ωk for k ∈ N.

The process: Currently any ω only carries the individual jump times and locations.
But to properly connect the single-jump processes at their jump times we will need to
run them in a global time frame. We define

Tn(ω) :=

n∑
k=1

Sk(ω)

T∞(ω) := lim
n→∞

Tn(ω)

thus making Tn the (global) random time of the n-th jump and naturally T1 ≤ T2 ≤ . . . .
The terminal jump time T∞ marks the exhaustion of the jump processes and will stop
the overall process in a graveyard location z∞. The value of the process at a time
t ∈ R+ is given by:

x(t, ω) =


z0, t < T1(ω);

Zi(ω), t ∈ [Ti(ω), Ti+1(ω));

z∞, t ≥ T∞(ω).

Additionally set

x̄1(s) := x(t ∧ T1),
x̄k(s) := x((Tk−1 + s) ∧ Tk), for k ≥ 2. (2.1.1)

For k ∈ N every (x̄k(t))t∈R+ is a single-jump process but for k ≥ 2 it starts in a random
location Zk−1. Each x̄

k has a random life time Sk and the respective jump location Zk:

x̄1(t, ω) =

{
z0, for t < S1(ω),

Z1(ω), for t ≥ S1(ω),
x̄k(t, ω) =

{
Zk−1(ω), for t < Sk(ω),

Zk(ω), for t ≥ Sk(ω).

Further we observe that consecutively indexed x̄-processes are connected at the jump
location of the former and the starting location of the latter process:

x̄k(0) = x(Tk−1 ∧ Tk) = x(Tk−1) = x((Tk−2 + Sk−1) ∧ Tk−1) = x̄k−1(Sk−1).

Thus the different cases for t in the next equality, can be read as t ∈ [Tk−1, Tk) or
t ∈ (Tk−1, Tk] arbitrarily. The connection between the multi-jump process (x(t))t∈R+

and the family of single-jump processes {(x̄k(t))t∈R+ : k ∈ R} is the following:

x(t, ω) =


x̄1(t, ω), for t ∈ [0, T1),

x̄k(t− Tk−1(ω), ω), for t ∈ [Tk−1(ω), Tk(ω)),

z∞, for t ≥ T∞

(2.1.2)
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Inspired by this connection, we will refer to the processes (x̄k(t))t∈R+ as single-jump
sections of the process (x(t))t∈R+

Filtration and probability measure: As before let F0
t denote the natural filtra-

tion, generated by the process (x(t))t≥0.

From [Davis, 1976] we adopt the characterization of the probability measure through
the conditional distributions: for 2 ≤ i ∈ N and Γ ∈ Yi and η ∈ Ωi−1 the probability
measure P is defined through

P [(T1, Z1) ∈ Γ] = µ1(Γ), (2.1.3)

P [(Si, Zi) ∈ Γ|ωi−1 = η] = µi(η; Γ),

where µ1 is a probability measure on (Y1,Y1) with

µ1(({0} ×X) ∪ (R+ × {z0})) = 0

and for i = 2, 3, . . .
µi : Ωi−1 × Y → [0, 1]

are functions which satisfy

(i) µi(·; Γ) : Ωi−1 → [0, 1] is measurable for each Γ ∈ Y fixed.

(ii) µi(ωi−1(ω); ·) : Y → [0, 1] is a probability measure for each ω ∈ Ω fixed.

(iii) µi(ωi−1(ω); ({0} ×X) ∪ (R+ × {Zi−1(ω)})) = 0 for all ω ∈ Ω.

(iv) µi(ωi−1(ω); {(∞, z∞)}) = 1 if Si−1(ω) = ∞.

µ1 is in fact the same measure as in section 2. The second requirement (ii) makes sure
that for i ≥ 2 and fixed ωi−1 the measure µi(ωi−1; ·) acts as a version of µ1 for the
i-th jump process, i.e. is a conditional probability measure. Condition (iii) excludes
the possibility of two jumps happening at the same time and consecutive jumps to the
same location respectively and the last condition (iv) assigns z∞ to be a final resting
place, once the previous jump-time has been infinite.

More particular, µ1 is the joint distribution of T1 and Z1 whereas for i ≥ 2, η ∈ Ωi−1

the probability measure µi(η; ·) is the joint distribution of Ti and Zi given η.

In relation to the previously defined single-jump sections of the process (x(t))t∈R+ they
act as

P(x̄1(t) ∈ {z0}) = P(S1 > t) = µ1((t,∞)×X), (2.1.4)

P(x̄i(t) ∈ {z}|ωi−1 = η) = P(Sk > t|ωi−1 = η) = µ1(η; (t,∞)×X).

Thus they are (given ωi−1) involved in the distribution of single-jump segments.

Denote by N0 the set of all P-nullsets. By F ,Ft we denote the σ-fields F0,F0
t aug-

mented with all P-null sets, i.e.

Ft = σ(F0
t ,N0) (2.1.5)
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According to Lemma 0 in [Davis, 1976] the jump times Tk are stopping times of (Ft).

Let (Gt)t∈I be a filtration and S a stopping time. We define the past up to time S as

GS := {A ∈ H : A ∩ {S ≤ t} ∈ Gt, ∀t ∈ I}. (2.1.6)

Another important family of stopping times is the following: for k ∈ N and s ∈ R+

Uks := (Tk−1 + s) ∧ Tk. (2.1.7)

For fixed s ∈ R+ every Uks is a stopping time of the filtration (Ft)t≥0 and yields the
following useful property (see [Davis, 1976], Lemma 1):

FUk
s
= σ

(
FTk−1

, {x((Tk−1 + u) ∧ Tk) : u ∈ [0, s]}
)
, (2.1.8)

i.e. the information of the process (x(t))t≥0 between two consecutive jumps - say the
k − 1-st and k-th jumps - can be decomposed into information of the first k − 1 jumps
and the path of the process since the k − 1-st jump.

Note that - given a past ωk−1 = η - the natural filtration of the single-jump sections of
the process (x(t))t∈R+ is given by

{ωk−1 = η} ∩ σ{x((Tk + s) ∧ Tk+1) : s ∈ [0, t]} =: {ωk−1 = η} ∩ F̄k
t . (2.1.9)

The above equation (2.1.8) can be seen as the collection of natural filtrations of (x̄k(t))t∈R+

for any ωk−1 (which is FTk−1
-measurable).

Let (Ω,A) be a measurable space. Then we define the trace-σ-field of a set A ∈ A with
any sub-σ-field A ⊂ G as

A ∩ A := {A ∩B : B ∈ A}. (2.1.10)

The next result comes in handy in the proof of our main result:

Lemma 2.1. For k ∈ N, s ∈ R+.

(i)
{s ≤ Tk−1} ∩ Fs ⊆ {s ≤ Tk−1} ∩ FUk

0
, (2.1.11)

(ii)
{Tk−1 ≤ s ≤ Tk} ∩ Fs = {Tk−1 ≤ s ≤ Tk} ∩ FUk

s−Tk−1

, (2.1.12)

(iii)
{Tk ≤ s} ∩ Fs ⊇ {Tk ≤ s} ∩ FUk

Sk

= {Tk ≤ s} ∩ FUk+1
0

. (2.1.13)

(iv) For η ∈ Ωk−1:
{ωk−1 = η} ∩ Hk

s = {ωk−1 = η} ∩ F̄k
s (2.1.14)

Proof. (i) Note that with [Davis, 1976], Lemma 1 we have

FUk
0
= σ(FTk−1

) = FTk−1
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Take B ∈ Fs. Then {s ≤ Tk−1} ∩B ∈ F∞ and

{s ≤ Tk−1} ∩B ∩ {Tk−1 ≤ t} = {s ≤ Tk−1 ≤ t} ∩B

=

{
∅, if t < s,

{s ≤ Tk−1 ≤ t} ∩B, if t ≥ s,

and since

� {s ≤ Tk−1} ∈ Fs ⊆ Ft for t ≥ s,

� B ∈ Fs ⊆ Ft for t ≥ s and

� {Tk−1 ≤ t} ∈ Ft

we get:
{s ≤ Tk−1 ≤ t} ∩B ∈ Ft

for all t ∈ R+ an thus {s ≤ Tk1} ∩B ∈ FTk−1
= FUk

0
.

(ii) This is a refined combination of the other two cases. With (iii) we roughly locate

{Tk−1 ≤ s} ∩ Fs ⊇ {Tk−1 ≤ s} ∩ FUk
0
,

The intersection of this set inequality with the corresponding ’other side’ of s (i.e.
{s ≤ Tk}) does not change this relation. Note that for ω ∈ {Tk−1 ≤ s ≤ Tk} we
have 0 ≤ s− Tk−1(ω) and thus Uk0 (ω) ⊂ Uks−Tk−1(ω)

(ω) hence we end up with

{Tk−1 ≤ s ≤ Tk} ∩ FUk
0
⊆ {Tk−1 ≤ s < Tk} ∩ FUk

s−Tk−1

⊆ {Tk−1 ≤ s ≤ Tk} ∩ Fs

where we see the last relation by taking any B ∈ {Tk−1 ≤ s < Tk} ∩ FUk
s−Tk−1

.

For such a set we know B = {Tk−1 ≤ s < Tk} ∩ A (see (2.1.10)), where the set
A ∈ FUk

s−Tk−1

and for which we know (by the definition of FUk
s−Tk−1

, see (2.1.6))

that A ∩ {Uks−Tk−1
≤ t} ∈ Ft for all t ∈ R+ - especially for t = s, but note that

{Uks−Tk−1
≤ s} = {(Tk−1 + s− Tk−1) ∧ Tk ≤ s} = {s ∧ Tk ≤ s} = Ω

and thus
Fs ∋ A ∩ {Uks−Tk−1

≤ s} = A ∩ Ω = A

i.e. B ∈ {Tk−1 ≤ s ≤ Tk} ∩ Fs.
For the other inclusion in (2.1.12) we first locate with (i)

{s ≤ Tk} ∩ Fs ⊆ {s ≤ Tk} ∩ FUk+1
0

.

and note that on the intersection with {Tk−1 ≤ s ≤ Tk} the time
Uks−Tk−1

≤ Uk+1
0 = Tk, i.e.

{Tk−1 ≤ s ≤ Tk} ∩ FUk
s−Tk−1

⊂ {Tk−1 ≤ s ≤ Tk} ∩ FUk+1
0
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and we end up with

{Tk−1 ≤ s ≤ Tk} ∩ FUk+1
0

⊇ {Tk−1 ≤ s < Tk} ∩ FUk
s−Tk−1

⊇ {Tk−1 ≤ s ≤ Tk} ∩ Fs.

To justify the last relation we take B ∈ Fs. For ω ∈ {Tk−1 ≤ s ≤ Tk} we conclude
Uks−Tk−1(ω)

(ω) = (Tk−1(ω) + s− Tk−1(ω)) ∧ Tk(ω) = s. Then for any t ∈ R+

{Tk−1 ≤ s ≤ Tk} ∩B ∩ {Uks−Tk−1
≤ t} = {Tk−1 ≤ s ≤ Tk} ∩B ∩ {s ≤ t} ∈ Ft

where we used that {s ≤ t} = ∅ for t < s and {s ≤ t} = Ω for s ≤ t. Hence

{Tk−1 ≤ s ≤ Tk} ∩B ∈ {Tk−1 ≤ s ≤ Tk} ∩ FUk
s−Tk−1

by definition.

(iii) Note that
UkSk

= (Tk−1 + Sk) ∧ Tk = Tk = Tk ∧ Tk+1 = Uk+1
0 .

Hence
FUk

Sk

= FTk = FUk+1
0

.

Take B ∈ FTk . Then by definition of the σ-field FTk we know that

{Tk ≤ t} ∩B ∈ Ft, ∀t ∈ R+

especially for t = s. Thus {Tk ≤ s} ∩B ∈ Fs and by definition of

{Tk ≤ s} ∩ Fs = {{Tk ≤ s} ∩A : A ∈ Fs}

we note that {Tk ≤ s} ∩ {Tk ≤ s} ∩B ∈ {Tk ≤ s} ∩ Fs.

(iv) Take B ∈ F̄k
s (see (2.1.9)), then {ωk−1 = η} ∩B ∈ {ωk−1 = η} ∩ F̄k

s by definition
of trace-σ-algebras. But note that F̄k

s ⊆ Hk
s and thus B is a set of Hk

s , hence

{ωk−1 = η} ∩B ∈ {ωk−1 = η} ∩ Hk
s .

For the other inclusion we take a general set A ∈ Hk
s . Since Hk

s = σ{FTk−1
, F̄k

s }
we can assume that there exist two sets B ∈ FTk−1

and C ∈ F̄k
s such that either

A = B ∩ C or A = B ∪ C. Either way we have

{ωk−1 = η} ∩B ∈ {∅, {ωk−1 = η}} ⊂ {ωk−1 = η} ∩ F̄k
s

and thus

({ωk−1 = η} ∩B) ∪ ({ωk−1 = η} ∩ C) ∈ {ωk−1 = η} ∩ F̄k
s ,

(similar for the case A = B ∩ C) which yields

{ωk−1 = η} ∩A ∈ {ωk−1 = η} ∩ F̄k
s .
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The next lemma is a technical tool we will need in a subsequent proof. We state it here
for reference:

Lemma 2.2. Let (Ω,A,P) be a probability space. For a sub-σ-algebra G ⊆ A, C ∈ G
and a random variable X ∈ L1(P) it holds

E[X|G]1C = E[X|C ∩ G]1C .

Proof. Take any A ∈ G. Then C ∩A ⊂ C ∈ G and∫
A
E[X|G]1CdP =

∫
A∩C

XdP

=

∫
A∩C

E[X|C ∩ G]dP.

Basic martingales and applicable integrands We take from [Davis, 1976], page
632-633 the notation for the basic martingale. Let t ∈ R+, A ∈ S and ω ∈ {t ∈
(Tj−1, Tj ]}. Then the family of basic martingales q(t, A) := p(t, A)− p̃(t, A) is defined
by

p(t, A) :=

j∑
i=1

1Zi∈A1Ti≤t

and
p̃(t, A) := ΦA1 (T1) + ΦA2 (ω1;S2) + · · ·+ΦAj (ωj−1; t− Tj−1)

where

ΦA1 (s) :=

∫
(0,s]

1

1− Fu−
dFAu

ΦAi (ωi−1; s) :=

∫
(0,s]

1

1− F iu−
dF iAu ,

and

F 1A
u := FAu ,

F iAu (ωi−1) := µi(ωi−1; [0, u]×A).

For any η ∈ Ωk−1 and in analogy to the first chapter we denote the right endpoint of
the distribution of each jump time Sk as

ck(η) := sup{t ∈ R+ : F kt (η) < 1} (2.1.15)

We also follow [Davis, 1976] along the definition of a Lebesgue-Stieltjes integral w.r.t.
q. For a function g : Ω×Y → R and functions g1 : Y1 → R and gk : Ωk−1×Yk → R for
k = 2, 3, . . . such that

g(ω, t, z) =


g1(t, z), t ≤ T1(ω),

gk(ωk−1(ω); t, z), t ∈ (Tk−1(ω), Tk(ω)],

0, t ≥ T∞(ω),
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and
g1(∞, z) = gk(ωk−1;∞, z) = 0

we define the integral as

Igt (ω) :=

∫
(0,t]×X

g(ω, s, z)dq(s, z)(ω).

The nature of q lets us decompose this integral then as follows:

Igt (ω) =

∫
(0,t]×X

g(ω, s, z)dp(s, z)(ω)−
∫
(0,t]×X

g(ω, s, z)dp̃(s, z)(ω)

and each of these integrals is given for t ∈ [Tk−1, Tk) by∫
(0,t]×X

g(s, z)dp(s, z) =
k−1∑
n=1

gn(ωn−1;T1, Z1), (2.1.16)

∫
(0,t]×X

g(s, z)dp̃(s, z) =

k−1∑
n=1

∫
(Tn−1,Tn]×X

gn(ωn−1; s, z)
1

1− Fns−
dµn(ωn−1; s, z)

+

∫
(Tk−1,t]×X

gk(ωk−1; s, z)
1

1− F ks−
dµk(ωk−1; s, z). (2.1.17)

2.2 Martingale transformations

Again we approach the transformation problem from the perspective of a function of
the process. Guided by the results from the previous chapter we set for a measurable
function φ : R+ ×X → R

v(t) := φ(t, x(t)). (2.2.1)

The function φ that we want to determine will be a function as before, but this time
the process x(t) has more than two different values in his lifetime (or at least might
jump back and forth). We start with φ(t, z0) as long as t < T1(ω). Then the first
jump happens at T1(ω) and we jump to the value φ(T1(ω), Z1(ω)). Now the function
will already have to prepare for the next jump at T2(ω) so we follow φ(t, Z1(ω)) for
t ∈ [T1(ω), T2(ω)) and so on.
This structure leads us to the idea, that φ must be defined piecewise. But this means
also, that the function φ will depend on the processes path (at least up until the current
time t) and thus might not be determined generally for all paths.

The discussion at the beginning of this chapter lets us approach the problem of deter-
mining martingale transformations from the familiar scenario of single-jump processes.
Since the process seems to be a ’glued together’ version of dependent single-jump pro-
cesses (see (2.1.2)), we are going to apply the results from the previous chapter to these
particular single-jump sections.
The previously defined processes (x̄k(t))t≥0 (see (2.1.1)) are themselves single-jump
processes in X but for k ≥ 2 they start in a random location Zk−1, live a random
life-time Sk and eventually jump to a random location Zk in X where they remain for
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eternity. This is in fact no problem as long as the respective filtration contains enough
information about the processes predecessors: for t ∈ R+ set Ukt = (Tk−1 + t)∧ Tk and
note the property in (2.1.8). Set

Hk
t := FUk

t
,

The next goal is to determine a function φk s.t. φk(t, x̄k(t)) is a martingale w.r.t. the
filtration (Hk

t )t≥0. To this end we note that x̄k is of single-jump character given the
information of the first k − 1 jumps, consequently we will determine φk depending
on ωk−1. Further we note that given ωk−1 the distribution of the k-th jump-time
and location is given by the conditional measure µk(ωk−1; ·), thus we concentrate on
determining φk(ωk−1; t, y) such that v̄k(t) = φk(ωk−1; t, x̄

k(t)) is an (Hk
t )-martingale

under the measure µk(ωk−1; ·).

Corollary 2.3. For φ1 : R+ ×X → R and φk : Ωk−1 × R+ ×X → R set

v̄1(t) := φ1(t, x̄
1(t)),

v̄k(ωk−1; t) := φk(ωk−1; t, x̄
k(t)), for k ≥ 2.

Then v̄1(t) is a local H1
t -martingale, resp. v̄k(ωk−1; t) is a local Hk

t -martingale if for
t ∈ R+, y ∈ X, η ∈ Ωk−1 for k ≥ 2:

φ1(t, y) = b1(y)(1− δz0(y))−
δz0(y)

1− F 1
t

(∫
(0,t]×X

b1(z)µ1(du, dz) + r1

)
(2.2.2)

φk(η; t, y) = bk(η; y)(1− δZk−1(η)(y))

−
δZk−1(η)(y)

1− F kt (η)

(∫
(0,t]×X

bk(η; z)µk(η; du, dz) + rk(η)

)
(2.2.3)

with b1 : X → R, b1 ∈ L1
loc(µ

1) and arbitrary constant r1 ∈ R, as well as bk(η; ·) : X →
R, bk(η) ∈ L1

loc(µ
k(η; ·)) and rk(η) ∈ R for all k ≥ 2, η ∈ Ωk−1.

Proof. First of all (v̄k(t))t∈R+ is adapted to (Hk
t )t∈R+ since it is a measurable function

of ωk−1 and x̄k(t) which are both Hk
t -measurable. The same holds true for k = 1 where

v̄1 which is even only a function of x̄1(t).

For the local martingale property let s < t ∈ R+, k ≥ 2 and A ∈ Hk
s . Take for η ∈ Ωk:

σkm(η) :=


m, ck(η) = ∞
∞, ck(η) <∞, F k

ck−(η) < 1

k1
Tk≤t

(k)
m

+ t
(k)
m 1

T>t
(k)
m
, ck(η) <∞, F k

ck−(η) = 1,

where tk ↗ ck(η) (see (2.1.15)).

Then we have to show for all m ∈ N, s ≤ t ∈ R+

E[v̄k(ωk−1; s ∧ σkm(ωk−1))1A] = E[v̄k(ωk−1; t ∧ σkm(ωk−1)1A].
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We start with the right side:

E[v̄k(ωk−1; t ∧ σkm(ωk−1))1A]

=

∫
Ω
v̄(ωk−1(ω); t ∧ σkm(ωk−1), ω)1A(ω)dP(ω)

(a)
=

∫
Ωk−1

∫
{ωk−1=η}

v̄k(η; t ∧ σkm(ωk−1), ω
′)1A(ω

′)dP(ω′|η)dν(η)

(b)
=

∫
Ωk−1

∫
{ωk−1=η}

E[v̄k(η; t ∧ σkm(ωk−1))1A|Hk
s ](ω

′)dP(ω′|η)dν(η)

(c)
=

∫
Ωk−1

∫
A
E[v̄k(η; t ∧ σkm(ωk−1))|Hk

s ](ω
′)1{ωk−1=η}(ω

′)dP(ω′|η)dν(η)

(d)
=

∫
Ωk−1

∫
A
E[v̄k(η; t ∧ σkm(ωk−1))|{ωk−1 = η} ∩ Hk

s ](ω
′)1{ωk−1=η}(ω

′)dP(ω′|η)dν(η)

(e)
=

∫
Ωk−1

∫
A
E[v̄k(η; t ∧ σkm(ωk−1))|{ωk−1 = η} ∩ F̄k

s ](ω
′)dP(ω′|η)dν(η)

(f)
=

∫
Ωk−1

∫
A
v̄k(η; s ∧ σkm(ωk−1), ω

′)dP(ω′|η)dν(η)

(a)
=

∫
Ω
1A(ω)v̄

k(ωk−1(ω); s ∧ σkm(ωk−1), ω)dP(ω)

=E[v̄k(ωk−1; s ∧ σkm(ωk−1))1A]

where we’ve used in particular:

(a) (Ω,F) is a Blackwell space and thus enables disintegration. We disintegrate
up until the k − 1-first jump, i.e. we integrate over all pasts η ∈ Ωk−1 in the
outer integral and integrate over all possible futures (and presents) from the set
{ω′ ∈ Ω : ωk−1(ω

′) = η} in the inner integral. ν denotes the marginal disrtribution
of ωk−1 and P(·|η) is the conditional measure defined in (2.1.3).

(b) Since {ωk−1 = η} ∈ Hk
s (see (2.1.8)) we can insert the conditional expectation

here.

(c) A ∈ Hk
s and thus 1A is Hk

s -measurable and can be pulled outside the conditional
expectation. The set of the inner integral is taking its place for the next step.

(d) See lemma 2.2.

(e) See lemma 2.1, (2.1.14).

(f) Use theorem 1.19 on the process v̄k(η) = (v̄k(η; t))t∈R+ and its natural filtration(
{ωk−1 = η} ∩ F̄k

t

)
t∈R+ . Then there exists a φk(η) s.t. v̄(η; t) = φk(η; t, x̄k(t)) is

a local {ωk−1 = η} ∩ F̄k
t -martingale. We use the sequence (σkm)m∈N to make use

of the martingale property of the stopped process to get rid of the conditional
expectation.

For k = 1 the process v̄1(t) is even more directly an application of the single-jump case.
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Remark 2.4. The processes v̄k stay constant after their respective jump time: let
t ∈ R+:

v̄k(ωk−1; t)1Sk≤t = φ(t, x̄k(t))1Sk≤t

= φk(ωk−1; t, x((Tk−1 + t) ∧ Tk))1Sk≤t

= φk(ωk−1; t, x(Tk))1Sk≤t

= φk(ωk−1; t, Zk)1Sk≤t

= bk(ωk−1;Zk)1Sk≤t

(the same is true for k = 1 but the calculations are without the ωk−1 of course). Hence

v̄k(t ∧ Tk) = v̄k(t) (2.2.4)

We started this journey with the goal to determine a function of the multi-jump process,
that transforms it into a Fs-martingale. So far we’ve determined a set of functions, that
bend each single-jump section of the multi-jump process into a martingale w.r.t. to the
intermediate filtrations Hk

s . In equation (2.1.2) we’ve seen the connection between the
process and its single-jump sections and in lemma 2.1 we’ve explored the relations of
the natural filtration Fs to its intermediate filtrations Hk

(s−Tk−1)∨0. Inspired by these

results we now reconstruct a general function φ : Ω×R+×X → R from the martingale
transformations of corollary 2.3. Set

v(t, ω) :=


v̄1(t, ω), for t < T1(ω)

v̄k(t− Tk−1), for t ∈ (Tk−1(ω), Tk(ω)]

v̄∞, for t ≥ T∞

(2.2.5)

where v̄∞ ∈ R is an arbitrary graveyard location.

Lemma 2.5. For convenience set v∞ = 0. We have

v(t) = v(t ∧ T1) +
∞∑
k=2

[v(t ∧ Tk)− v(Tk−1)]1Tk−1<t (2.2.6)

= v̄1(t) +
∞∑
k=2

[
(v̄k((t− Tk−1)− v̄k−1(Sk−1)

]
1Tk−1<t. (2.2.7)

Proof. We wirst prove the equality of (2.2.6) by evaluating both sides on the disjoint
sets {Tn−1 < t ≤ Tn} for all n ∈ N. For n = 1 we see:(

v(t ∧ T1) +
∞∑
k=2

[v(t ∧ Tk)− v(Tk−1)]1Tk−1<t

)
1t∈[0,T1]

=v(t ∧ T1)1t∈[0,T1] +
∞∑
k=2

[v(t ∧ Tk)− v(Tk−1)]1{Tk−1<t}∩{t∈[0,T1]}

=v(t)1t∈[0,T1]
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since t ∧ T1 = t on {t ∈ [0, T1]} and {Tk−1 < t} ∩ {t ∈ [0, T1]} = ∅ for all k ≥ 2. Now
for any n ≥ 2:(

v(t ∧ T1) +
∞∑
k=2

[v(t ∧ Tk)− v(Tk−1)]1Tk−1<t

)
1Tn−1<t≤Tn

=v(t ∧ T1)1Tn−1<t≤Tn +
∞∑
k=2

[v(t ∧ Tk)− v(Tk−1)]1{Tk−1<t}∩{Tn−1<t≤Tn}

=v(T1)1Tn−1<t≤Tn +

(
n∑
k=2

[v(t ∧ Tk)− v(Tk−1)]

)
1Tn−1<t≤Tn

=

(
v(T1) +

n−1∑
k=2

[v(Tk)− v(Tk−1)] + v(t)− v(Tn−1)

)
1Tn−1<t≤Tn

=v(t)1Tn−1<t≤Tn .

where we used that

v(t ∧ Tk)1Tn−1<t≤Tn =

{
v(Tk)1Tn−1<t≤Tn , for k ≤ n− 1

v(t)1Tn−1<t≤Tn , else

and

{Tk−1 < t} ∩ {Tn−1 < t ≤ Tn} =

{
{Tn−1 < t ≤ Tn}, for k ≤ n

∅, else.

Thus

v(t) =
∑
n∈N

v(t)1Tn−1<t≤Tn

=
∑
n∈N

(
v(t ∧ T1) +

∞∑
k=2

[v(t ∧ Tk)− v(Tk−1)]1Tk−1<t

)
1Tn−1<t≤Tn

= v(t ∧ T1) +
∞∑
k=2

[v(t ∧ Tk)− v(Tk−1)]1Tk−1<t.

The second equality (2.2.7) is a direct application of the definition in (2.2.5):

v(t ∧ T1) = v̄1(t ∧ T1)
(a)
= v̄1(t)

and

v(t ∧ Tk)1Tk−1<t = v̄k((t ∧ Tk)− Tk−1)1Tk−1<t

(b)
= v̄k(t− Tk−1 ∧ Tk)1Tk−1<t

(a)
= v̄k(t− Tk−1)1Tk−1<t

where we’ve used:

(a) See (2.2.4).
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(b) We have

(t ∧ Tk)− Tk−1 =

{
t− Tk−1, if t ≤ Tk

Tk − Tk−1, else.

and

(t− Tk−1) ∧ Sk =

{
t− Tk−1, if t− Tk−1 ≤ Sk

Sk, else.

Note that the first equation is true for any real-valued process adapted to (Ft), regard-
less of the exact definition of v in (2.2.5). Nevertheless we can now construct a general
function φ, s.t. φ(ω, t, x(t)) is a local Ft martingale. For a sequence of stopping times
(σn)n∈N such that v(t ∧ σn) is an Ft martingale for all n ∈ N, the local martingale
property only follows from the upcoming proof, if we assume that T∞ = ∞. Take
the construction of a sequence of stopping times (τn)n∈N from [Davis, 1976], proof of
theorem 2. With a similar argument we can show that φ(ω; t, x(t)) ∈ L1

loc(p) = L1
loc(µ)

and thus we are now in a position to state our main result:

Theorem 2.6. For all n ∈ N the process defined by

v(t) := φ(t, x(t))

is a local (Ft)-martingale for any

φ(ω, t, y) =


φ1(t, y), for t ≤ T1(ω)

φk(ωk−1(ω); t− Tk−1(ω), y), for t ∈ (Tk−1(ω), Tk(ω)], k ≥ 2

v∞, t ≥ T∞(ω)

(2.2.8)

where v∞ ∈ R arbitrary and for any t ∈ R+, y ∈ X, η ∈ Ωk−1 for k ≥ 2:

φ1(t, y) = b1(y)(1− δz0(y))

− δz0(y)
1

1− F 1
t

(∫
(0,t]×X

b1(z)µ1(ds, dz) + r1

)
φk(η; t, y) = bk(η; y)(1− δZk−1(η)(y))

− δZk−1(η)(y)
1

1− F kt (η)

(∫
(0,t]×X

bk(η; z)µk(η; ds, dz) + rk(η)

)
.

with b1 : X → R, b1 ∈ L1
loc(µ

1) and arbitrary constant r1 ∈ R, as well as bk(η; ·) : X →
R, bK(η; ·) ∈ L1

loc(µ
k(η; ·)) and rk(η) ∈ R for all k ≥ 2, η ∈ Ωk−1 such that:

rk(ωk−1(ω)) = bk−1(ωk−2(ω);Zk−1(ω)). (2.2.9)

Proof. We check the local martingale-property first. To that end set for k ∈ N, η ∈
Ωk−1:

skn(η) :=


inf{t : F kt (η) ≥ 1− 1

n3 }, if ck(η) = ∞
or ck(η) <∞, F k

ck(η)− > 1− 1
n3

ck(η), else.
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Since we possibly deal with jump times that jump at the very last second, we define
an emergency break for the term 1

1−Fk
t (η)

:

τn := Tj−1 + sjn

where j := min{k ∈ N : Tk−1 + skn ≤ Tk} as the localizing sequence of stopping times.
Note that, τn is the first time a jump occurs in a tail of its marginal distribution with
probability 1

n3 . Thus the factor 1

1−F j
t

is in danger of exploding. τn stops the process

before this factor gets too large.

Claim 1. τn are stopping times and τn ↗ ∞.

The former is due to

{τn ≤ t} =
∞⋃
j=1

{Tj−1 + sjn ≤ Tj} ∩ {Tj ≤ t}

which is a countable union of Ft-measurable sets. The sequence of stopping times
diverges a.s. since

P(τn ≤ Tn) ≤ P

 n⋃
j=1

{sjn ≤ Sj}

 ≤
n∑
j=1

P(sjn ≤ Sj)

and P(sjn ≤ Sj) = 1−F j
sjn

≤ 1−1+ 1
n3 . We conclude

∑∞
n=1 P(τn < Tn) =

∑
n∈N

1
n2 <∞

and with Borel-Cantelli we get

P(lim inf
n→∞

(τn > Tn) = 1

and thus τn → T∞ = ∞ per assumption.

Now let s, t ∈ R+, s ≤ t. In case that τn ≤ s we can easily verify the martingale
property, since the process is stopped and hence constant:

E[v(t ∧ τn)|Fs] = E[v(τn)|Fs] = v(τn) = v(s ∧ τn).

Therefor we assume τn > s from now on:

E[v(t ∧ τn)|Fs] =
∞∑
k=1

E[v(t ∧ τn)|Fs]1Tk−1≤s<Tk . (2.2.10)

For each summand we ’translate’ Fs to the local single jump filtration Hk
s−Tk−1

belong-
ing to the respective indicator function:

E[v(t ∧ τn)|Fs]1Tk−1≤s<Tk
(a)
= E[v(t ∧ τn)|{Tk−1 ≤ s < Tk} ∩ Fs]1Tk−1≤s<Tk
(b)
= E[v(t ∧ τn)|{Tk−1 ≤ s < Tk} ∩ Hk

s−Tk−1
]1Tk−1≤s<Tk

(a)
= E[v(t ∧ τn)|Hk

s−Tk−1
]1Tk−1≤s<Tk

where we used in detail:
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(a) See lemma 2.2.

(b) See lemma 2.1.

We decompose v(t ∧ τm) with the help of lemma 2.2.7:

E[v(t ∧ τm)|Hk
s−Tk−1

]1Tk−1≤s<Tk

=E
[
v̄1(t ∧ τm ∧ T1) (2.2.11)

+
∞∑
n=1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

]
1Tk−1≤s<Tk

=
(
E[v̄1(t ∧ τm ∧ T1)|Hk

s−Tk−1
] (2.2.12)

+ E

[ ∞∑
n=1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

])
1Tk−1≤s<Tk .

(2.2.13)

For k = 1 the first summand is a martingale with respect to the filtration H1
s according

to corollary 2.3, i.e.

E[v̄1(t ∧ τm)|H1
s ]10≤s<T1 = v̄1(s ∧ τm)10≤s<T1 .

For k ≥ 2 the value of v̄1(t) is known at time s, i.e.:

E[v̄1(t ∧ τm)|Hk
s−Tk−1

]1Tk−1≤s<Tk = v̄1(T1)1Tk−1≤s<Tk .

For the second conditional expectation in (2.2.13) we adopt these insights and decom-
pose the sum into already known values (the jumps that already occured until s), the
currently happening single-jump process (the jump right after s) and future single-jump
processes, i.e. for k > 1:

E

[ ∞∑
n=1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

]
1Tk−1≤s<Tk

=E

[
k−1∑
n=1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

]
1Tk−1≤s<Tk

+ E
[
[v̄k(t ∧ τm − Tk−1)− v̄k−1(Sk−1]1Tk−1<t∧τm |H

k
s−Tk−1

]
1Tk−1≤s<Tk

+ E

[ ∞∑
n=k+1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

]
1Tk−1≤s<Tk .

Now the known sections can easily leave the conditional expectation:

E

[
k−1∑
n=1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

]
1Tk−1≤s<Tk

=

k−1∑
n=1

[v̄n(Sn)− v̄n−1(Sn−1)]1Tk−1≤s<Tk
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where we made use of the fact, that t ∧ Tn = Tn for all n ∈ {1, . . . , k − 1} on the set
{Tk−1 ≤ s < Tk} and the processes v̄n stay constant after their respective jump.
For the current single-jump section we use the martingale property of v̄k from corollary
2.3:

E
[
[v̄k(t ∧ τm − Tk−1)− v̄k−1(Sk−1)]1Tk−1<t∧τm |H

k
s−Tk−1

]
1Tk−1≤s<Tk

=[v̄k(s ∧ τm − Tk−1)− v̄k−1(Sk−1)]1Tk−1≤s<Tk .

The future jumps can also be determined sectionwise, and as each section is a martingale
w.r.t. its current single-jump filtration (see corollary 2.3) we aim to insert the larger
σ-field Hm

0 for m ≥ k+1 via the tower property of conditional expectation. We observe
two different cases:

On the set {s < τn < ∞} there exists an integer j ∈ N such that τn = Tj−1 + sjn. We
can further assume that on the intersection with the set {Tk−1 ≤ s < Tk} the value of
j must be larger than k − 1. In case of j = k we have 1Tk<t∧τn = 1Tk<t∧(Tk−1+skn)

= 0
by definition of τn (i.e. the process had to be stopped prior to the time Tk). Thus

E

[ ∞∑
n=k+1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

]
1Tk−1≤s<Tk = 0

as all terms are 0.
In case of j > k there are still some indicator function 1Tl<t∧τn that possibly contribute
to the sum (i.e. there might be jumps that could happen in between s and t∧ τn. But:

E

[ ∞∑
n=k+1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

]
1Tk−1≤s<Tk

=E

[
j∑

n=k+1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

]
1Tk−1≤s<Tk

E

 ∞∑
n=j+1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

1Tk−1≤s<Tk ,

where the latter sum is again 0 by the same argument as in the case j = k (no contri-
bution from jumps after the emergency shutdown τn). To see that the former sum also
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vanishes, we use the tower property with the σ-fields Hk
s−Tk−1

⊂ Hk+1
0 ⊂ · · · ⊂ Hj

0:

E

[
j∑

n=k+1

[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk
s−Tk−1

]
1Tk−1≤s<Tk

=

j∑
n=k+1

E
[
[v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)]1Tn−1<t∧τm |Hk

s−Tk−1

]
1Tk−1≤s<Tk

=

j∑
n=k+1

E
[
E
[(
v̄n(t ∧ τm − Tn−1)− v̄n−1(Sn−1)

)
|Hn

0

]
1Tn−1<t∧τm |Hk

s−Tk−1

]
1Tk−1≤s<Tk

=

j∑
n=k+1

E
[(
v̄n(0)− v̄n−1(Sn−1)

)
1Tn−1<t∧τm |Hk

s−Tk−1

]
1Tk−1≤s<Tk

=0

by assumption of condition (2.2.9).

To summarize we get for k > 1 (under ∞ > τm > s):

E[v(t ∧ τm)|Fs]1Tk−1≤s<Tk

=

(
v̄1(T1) +

k−1∑
n=1

[v̄n(Sn)− v̄n−1(Sn−1)] + [v̄k(s ∧ τm − Tk−1)− v̄k−1(Sk−1)]

)
1Tk−1≤s<Tk

=v̄k(s ∧ τm − Tk−1)1Tk−1≤s<Tk

and for k = 1:

E[v(t ∧ τm)|Fs]10≤s<T1 = v̄1(s ∧ τm)10≤s<T1

and thus after summing over k and using the definition of v we get:

E[v(t ∧ τm)|Fs] = v(s ∧ τm).

Measurability follows directly from the definition of φ. Every section φk is adapted to
the filtration (Hk

t ). Given the result of lemma 2.1 the σ-field Fs coincides with Hk
s−Tk−1

as well as the function φ(ω, s, x(s, ω))) does coincide with the section φk(ωk−1(ω); s−
Tk−1(ω), x(s ∧ Tk(ω)))) as long as s ∈ (Tk−1(ω, Tk(ω)].

Remark 2.7. The glue-condition in (2.2.9) makes sure, that every function φk starts
at the jump-location of the previous function φk−1. We’ve seen in the proof of the local
martingale-property of v(t), that this is in fact a sufficient condition to guarantee local
martingales. The process might otherwise be set off by the value of the series

E

[ ∞∑
k=2

(
rk(ωk−1)− bk−1(ωk−2;Zk−1)

)
1Tk−1<t|Fs

]
1Tk−1>s.

But this offset might also be eliminated by assuming that the expected offset may vanish
for each jump.
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Figure 2.1: Sample path of martingale w.r.t. to the multi-jump process, where each
jump is constructed as in example 1.23 (d).

The sequence of stopping times τn stops at the first time that the process jumped near
or at a right endpoint of a distribution of the jump times. Thus it avoids explosions in
the term 1

1−Fk
t (η)

and acts as an emergency break.

2.3 Semi-martingale representation and verification

The result from the last section was a blueprint for functions φ that transform the
multi-jump process x into a local martingale w.r.t. to its own natural (augmented)
filtration. During the proof we used the result for single-jump processes to determine
φ on each section [Tk−1, Tk) respectively. But this is not the only result we can adopt
for our multi-jump process.
In the first chapter we came up with a semi-martingale representation for the single-
jump process. The multi-jump process is a combination of single-jump processes and
so is the process v(t) a combination of v̄k processes (see lemma 2.5 and (2.2.5)). These
processes can be decomposed into a martingale part and a previsible compensator:

Corollary 2.8. Let 1 < k ∈ N, let φk : Ωk−1 × R+ × X → R s.t. φk(η; ·, ·) satisfies
condition (C’) w.r.t. to the measure µk(η; ·) for all η ∈ Ωk−1. Let t < ck(η). For
all η ∈ Ωk−1 each v̄k(η; t) = φk(η; t, x̄k(η; t)) can be decomposed into a Hk

t -martingale
Mk(η) and a previsible compensator Ak(η) w.r.t. µk(η; ·) which are given by

Mk
t (η) = φk(η; 0, Zk−1(η)) +

∫
(0,t]×X

[
φk(η; s, z)− φk(η; s, Zk−1(η))

]
dqk(s, z)

Akt (η) =

∫
(0,t]

dφk

dF k
(η; s, Zk−1(η)) +

1Tk≥s

1− F ks−

[
mk(η; s)− φk(η; s, Zk−1(η))

]
dF ks .

Proof. We use corollary 1.16 on the process v̄k(ωk−1; t) and the natural filtration of
x̄k(ωk−1; t) which is {ωk−1 = η} ∩ F̄k

t .

This yields the following interesting result for the process v:
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Corollary 2.9. The process v(t) = φ(t, x(t)) can be decomposed as follows:

v(t) =M1
t∧T1 +

∞∑
k=2

[
Mk

(t−Tk−1)∧Sk
(ωk−1)−Mk−1

Sk−1
(ωk−1)

]
1Tk−1≤t

+A1
t∧T1 +

∞∑
k=2

[
Ak(t−Tk−1)∧Sk

(ωk−1)−Ak−1
Sk−1

(ωk−1)
]
1Tk−1≤t.

Proof. We use the representation from lemma 2.5 and the decomposition from corollary
2.8.

We take this oppurtunity to verify our result with [Davis, 1976], theorem 2. Davis notes
here, that any local martingale w.r.t. Ft is a stochastic integral of a piecewise defined
function g ∈ L1

loc(p) against the basic martingale process q. In combination with the
choice of φ from theorem 2.6 our semi-martingale representation in corollary 2.9 states
that

φ(t, x(t)) =M1
t∧T1 +

∞∑
k=2

[
Mk

(t−Tk−1)∧Tk(ωk−1)−Mk−1
Sk−1

(ωk−2)
]
1Tk−1≤t.

Now let g ∈ L1
loc(p) with

g(ω, t, z) :=


g1(t, z), for t ≤ T1(ω),

gk(ωk−1; t, z), for t ∈ (Tk−1(ω), Tk(ω)],

0, for t ≥ T∞(ω).

(2.3.1)

From Davis’ result we deduce the existence of g for the process (v(t))t∈N. The following
choice connects both results:

Corollary 2.10. For φ defined as in theorem 2.6 we set for t ∈ R+, z ∈ X and ω ∈ Ω:

g1(t, z) := φ1(t, z)− φ1(t, z0)

gk(ωk−1; t, z) := φk(ωk−1(ω); t− Tk−1(ω), z)− φk(ωk−1(ω); t− Tk−1(ω);Zk−1(ω)),

and define g : Ω× R+ ×X → R as in (2.3.1). Then it holds that

v(t) =

∫
(0,t]×X

g(s, z)dq(s, z).

Proof. We prove the equation by induction over the single-jump sections of the process.
Let t ∈ R+, z ∈ X. For ω ∈ {t ∈ (0, T1]} we have

g(ω, t, z) = g1(t, z)

= φ1(t, z)− φ1(t, z0)

= b1(z) +
1

1− F 1
t

(∫
(0,t]×X

b1(y)dµ1(s, y) + r1

)
.
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By definition of dq(s, z)-integration we have∫
(0,t]×X

g(s, z)dq(s, z)(ω)

=

∫
(0,t]×X

g(s, z)dp(s, z)(ω)−
∫
(0,t]×X

g(s, z)dp̃(s, z)(ω)

=g1(T1(ω), Z1(ω))1T1≤t(ω)−
∫
(0,t]×X

g1(s, z)
1

1− F 1
s−
dµ1(s, z). (2.3.2)

The definition of g1 thus yields

g1(T1(ω), Z1(ω)) = b1(Z1(ω)) +
1

1− F 1
T1(ω)

(∫
(0,T1(ω)]×X

b1(z)dµ1(s, z) + r1

)
(2.3.3)

and ∫
(0,t]×X

g1(s, z)
1

1− F 1
s−
dµ1(s, z)

=

∫
(0,t]×X

[
b1(z) +

1

1− F 1
s

(∫
(0,s]×X

b1(y)dµ1(u, y) + r1

)]
1

1− F 1
s−
dµ1(s, z)

=

∫
(0,t]×X

b1(z)
1

1− F 1
s−
dµ1(u, y)

+

∫
(0,t]×X

1

1− F 1
s

1

1− F 1
s−

∫
(0,s]×X

b1(y)dµ1(u, y)µ1(s, z)

+

∫
(0,t]×X

r1
1

1− F 1
s

1

1− F 1
s−
dµ1(s, z)

(a)
=

1

1− F 1
t

∫
(0,t]×X

b1(z)dµ1(s, z) + r1
(

1

1− F 1
t

− 1

)
(2.3.4)

where we’ve used

(a) We can compute the second integral with the help of Fubini’s theorem:∫
(0,t]×X

1

1− F 1
s

1

1− F 1
s−

∫
(0,s]×X

b1(y)dµ1(u, y)dµ1(s, z)

=

∫
(0,t]

1

1− F 1
s

1

1− F 1
s−

∫
(0,s]×X

b1(y)dµ1(u, y)dF 1
s

=

∫
(0,t]×X

b1(y)

(∫
[u,t]

1

1− F 1
s

1

1− F 1
s−
dF 1

s

)
dµ1(u, y)

=

∫
(0,t]×X

b1(y)

(
1

1− F 1
t

− 1

1− F 1
u−

)
dµ1(u, y)

=
1

1− F 1
t

∫
(0,t]×X

b1(z)dµ1(s, z)−
∫
(0,t]×X

b1(z)
1

1− F 1
u−
dµ1(s, z)
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and the third integral with∫
(0,t]×X

r1
1

1− F 1
s

1

1− F 1
s−
dµ1(s, z) = r1

∫
(0,t]×X

1

1− F 1
s

1

1− F 1
s−
dF 1

s

= r1
(

1

1− F 1
t

− 1

1− F 1
0

)
= r1

(
1

1− F 1
t

− 1

)
.

Inserting (2.3.3) und (2.3.4) into (2.3.2) yields∫
(0,t]×X

g(s, z)dq(s, z)

=

[
b1(Z1(ω)) +

1

1− F 1
T1(ω)

(∫
(0,T1(ω)]×X

b1(z)dµ1(s, z) + r1

)]
1T1≤t

− 1

1− F 1
t

∫
(0,t]×X

b1(z)dµ1(s, z) + r1
(

1

1− F 1
t

− 1

)

more precisely for t = T1:∫
(0,T1]×X

g(s, z)dq(s, z) = b1(Z1) + r1 (2.3.5)

and for t < T1:∫
(0,t]×X

g(ω, s, z)dq(s, z)(ω) = − 1

1− F 1
t

∫
(0,t]×X

b1(z)dµ1(s, z) + r1
(

1

1− F 1
t

− 1

)
.

(2.3.6)
We also note that for t = T1

v(t)− v(0) = v(T1)− v(0) = φ(T1, x(T1))− φ(0, x(0))

= φ1(T1, Z1)− φ1(0, z0)

= b1(Z1) + r1

and for t < T1 we have that x(t) = z0, hence

v(t)− v(0) = φ1(t, z0)− φ1(0, z0) = − 1

1− F 1
t

(∫
(0,t]×X

b1(z)dµ1(s, z) + r1

)
+ r1

which proves the assertion for n = 1.
Now assume that the assertion holds for some n ∈ N. Take ω ∈ {t ∈ (Tn, Tn+1]}. Then
by definition of g:

g(t, z)

=gn+1(ωn; t, z)

=φn+1(ωn; t, z)− φn+1(ωn; t, Zn)

=bn+1(ωn; z) +
1

1− Fn+1
t (ωn)

(∫
0,t−Tn]×X

bn+1(ωn; y)dµ
n+1(ωn;u, y) + rn+1(ωn)

)
.
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Now by definition of dq(s, z)-integration we have∫
(0,t]×X

g(s, z)dq(s, z)

=
∑
k=1

∫
(Tk−1,Tk]×X

gk(ωk−1; s, z)dq(s, z) +

∫
(Tn,t]×X

gn+1(ωn; s, z)dq(s, z).

For each k ∈ {1, . . . , n} we now by the induction assumption that:∫
(Tk−1,Tk]×X

gk(ωk−1; s, z)dq(s, z) = bk(ωk−1;Zk) + rk(ωk−1)

thus the first n integrals reduce under the ’glue-condition’ (2.2.9) to

n∑
k=1

∫
(Tk−1,Tk]×X

gk(ωk−1; s, z)dq(s, z) =

n∑
k=1

[
bk(ωk−1;Zk) + rk(ωk−1)

]
=

n∑
k=1

[
−rk+1(ωk) + rk(ωk−1)

]
= −rn+1(ωn) + r1. (2.3.7)

For the last integral we note:∫
(Tn,t]×X

gn+1(ωn; s, z)dq(s, z)

=

∫
(Tn,t]×X

gn+1(ωn; s, z)dp(s, z)−
∫
(Tn,t]×X

gn+1(ωn; s, z)dp̃(s, z)

where∫
(Tn,t]×X

gn+1(ωn; s, z)dp(s, z)

=gn+1(ωn;Tn+1, Zn+1)1Tn+1≤t

=
[
φn+1(ωn;Sn+1, Zn+1)− φn+1(ωn;Sn+1, Zn)

]
1Tn+1≤t

=
[
bn+1(ωn;Zn+1)

+
1

1− Fn+1
Tn+1

(ωn)

(∫
(0,t−Tn]×X

bn+1(ωn; y)dµ
n+1(ωn;u, y) + rn+1(ωn)

)]
1Tn+1≤t
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and (under omission of ωn-dependencies for better readability)∫
(Tn,t]×X

gn+1(s, z)dp̃(s, z)

=

∫
(0,t−Tn]×X

[
φn+1(s, z)− φn+1(s, Zn)

] 1

1− Fn+1
s−

dµn+1(s, z)

=

∫
(0,t−Tn]×X

[
bn+1(z) +

1

1− Fn+1
s

×

(∫
(0,s]×X

bn+1(y)dµn+1(u, y) + rn+1

)] 1

1− Fn+1
s−

dµn+1(s, z)

=

∫
(0,t−Tn]×X

bn+1(z)
1

1− Fn+1
s−

dµn+1(s, z)

+

∫
(0,t−Tn]×X

∫
(0,s]×X

bn+1(y)dµn+1(u, y)
1

1− Fn+1
s

1

1− Fn+1
s−

dµn+1(s, z)

+

∫
(0,t−Tn]×X

rn+1 1

1− Fn+1
s

1

1− Fn+1
s−

dµn+1(s, z)

(b)
=

1

1− Fn+1
t

∫
(0,t−Tn]×X

bn+1(z)dµn+1(s, z) + rn+1

(
1

1− Fn+1
t

− 1

)
where we’ve used in particular:

(b) Both - the second and the third - integral can again be computed as before in (a)
with the help of Fubini’s theorem.

We combine the above p- and p̃-integrals again to yield∫
(Tn,t]×X

gn+1(ωn; s, z)dq(s, z)

=
[
bn+1(ωn;Zn+1)

+
1

1− Fn+1
Tn+1

(ωn)

(∫
(0,Tn+1]×X

bn+1(ωn; y)dµ
n+1(ωn;u, y) + rn+1(ωn)

)]
1Tn+1≤t

− 1

1− Fn+1
t (ωn)

(∫
(0,t−Tn]×X

bn+1(z)dµn+1(ωn; s, z) + rn+1(ωn)

)
+ rn+1(ωn).

In particular for t = Tn+1:∫
(Tn,t]×X

gn+1(ωn; s, z)dq(s, z) = bn+1(ωn, Zn+1) + rn+1

= φn+1(ωn; t− Tn, Zn+1) + rn+1 (2.3.8)

and for t ∈ (Tn, Tn+1):∫
(Tn,t]×X

gn+1(ωn; s, z)dq(s, z) (2.3.9)

=− 1

1− Fn+1
t (ωn)

(∫
(0,t−Tn]×X

bn+1(z)dµn+1(ωn; s, z) + rn+1(ωn)

)
+ rn+1(ωn)

=φn+1(ωn; t− Tn, Zn) + rn+1(ωn). (2.3.10)
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Together with (2.3.7) and the results in (2.3.8) and (2.3.9) we conclude:∫
(0,t]×X

g(s, z)dq(s, z) = −rn+1(ωn) + r1 +

∫
(Tn,t]×X

gn+1(ωn; s, z)dq(s, z)

= −rn+1(ωn)φ
n+1(ωn; t− Tn, x(t)) + rn+1(ωn)− φ(0, z0)

= v(t)− v(0).



Chapter 3

Application example

As a complement to the first two chapters we now discuss an application that has not
yet been covered by the examples during the first 2 chapters. We want to investigate
the branching random walk, i.e. a process that describes an ensemble of particles that
at random times T1, T2, . . . either branch into 2 particles or die. The 2 possibly born
particles may choose randomly and independent of each other a location in Z and are
able to branch themselves in the future. The notational framework of the previous
chapters combined with the construction of a multi-jump process from single-jump
sections allow us to describe a branching process with very flexible assumptions on
branching times, -mechanisms and birth distributions. Some examples will be provided
where the particles are independent and non interacting, as well as an example of a
generalization to path dependent particle systems.

3.1 Single-branch random walk

3.1.1 Definitions

The individuals of our branching random walk may take values in Z, i.e. a particle may
reside at 0 and then either randomly branches (or reproduces) into two new particles,
each at a random location ’around’ zero (i.e. in our case {−1, 1}) or the particle dies
and leaves no descendents behind. Take Ω̃1 :=

⋃
n∈N Zn the set of all vectors of integer

valued coordinates, and let any vector y = (y1, . . . , yn) describe a population where n
individuals are alive and at the locations y1, . . . , yn. We want to describe the branching
process as a measure valued process, i.e. let us describe the associated discrete measure
w.r.t. a particle distribution (y1, . . . , yn) as:

ŷ =
n∑
i=1

δyi .

The set of measures of this form may be denoted byX := {
∑n

i=1 δyi : n ∈ N, y1, . . . , yn ∈
Z}. We choose the Prochorow metric dP to define a topology on X (Note that (Z, | · |)
is trivially separable and thus (X, dP ) is separable. Hence the topology is equivalent
to the weak topology). Take S := B(X) to be the Borel-σ-algebra w.r.t. this topology.
(X,S) is thus a Blackwell space, since (X,S) is separable.
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Next we combine the set X with a time-frame. Set

Ω := R+ ×X,A := B(R+) ⋆ S.

Our branching random walk will take its values in X whereas the time of value-changes
(i.e. the jump time or branch time) will take its values in R+. A member ω ∈ Ω thus
looks like:

ω = (t, z)

where z is a linear combination of Dirac-measures on Z and t is a nonnegative time. Let
Z : Ω → X and T : Ω → R+ be the coordinate mappings s.t. ω = (T (ω), Z(ω)). Fix an
initial value z0 ∈ X (where we explore z0 = δ0 as a simple example and z0 =

∑K
n=1 anδyn

as a more general case below). We define the single-branch random walk at time t as

x(t, ω) =

{
z0, t < T (ω)

Z(ω), T (ω) ≤ t.

Thus the process remains on its initial measure z0 until the random time T happens
and the process changes its value to the random measure Z.
The natural filtration of the above process will be denoted by F0

t := σ{x(s) : s ∈ [0, t]}.
Note that for any t ∈ R+ this σ-algebra is not yet complete. We want to exclude cases
of invisible branches and jumps at time zero and thus augment the filtration with the
respective events of measure zero in a few lines. We define a probability measure on
(Ω,A) by the definition

P((Z, T ) ∈ γ) = µ(γ)

where µ is a probability measure (the joint distribution of T and Z) and γ ∈ A.
Additionally µ may have the property µ({z0} × R+) = µ(X × {0}) = 0. Let Ft :=
P((Z, T ) ∈ X × [0, t]) denote the marginal distribution function of T .
Denote by N 0 the set of all P-nullsets and augment the natural filtration with these
sets:

Ft := σ(Ft,N 0).

Now let us take a function ψ : X → R. We denote the space of locally integrable
functions by

L1
loc(µ) := {ψ : X → R :

∫
(0,t]×X

|ψ(z)|dµ(u, z) <∞, ∀t < c}.

3.1.2 Martingales of the Single-branch random walk

While the single-branch case might seem uninteresting it yields the key to a general
multi-branch random walk. The initial measure z0 can be chosen arbitrary in X, in
particular it can be chosen to be the measure one ends up with after another single-
branch process has branched, which will be the approach for our generalization to
multi-branch processes. But before we start constructing a multi-branch random walk,
we first assert the results from the previous chapters to this particular single-jump
process.

Let φ : R+×X → R be a measurable function. For t ∈ R+ define v(t) = φ(t, x(t)). The
process v = (v(t))t∈R+ is adapted to the filtration (Ft)t∈R+ as long as φ is measurable,
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but can we pose additional conditions on φ s.t. v is even a Ft-martingale? The answer
is given in theorem 1.14, but the application to the branching process is in itself an
interesting topic.

We can choose an arbitrary function b ∈ L1
loc(µ) and construct a martingale with respect

to the augmented natural filtration of the branching random walk by setting

φ(t, y) := b(y)(1− δz0)− δz0
1

1− Ft

(∫
(0,t]×X

b(z)dµ(u, z) + r

)
.

The Dirac-measure δz0 : X → {0, 1} for some distribition z0 =
∑K

n=1 δyn ∈ X is to be
read as

δz0(ν) =

n∏
i=1

∫
{yi}

dν =

{
1, y = z0

0, y ̸= z0.

Let µ be a measure on a measurable space (Ω,A). For any µ-integrable function
f : Ω → R we write

⟨f, µ⟩ :=
∫
Ω
f(ω)dµ(ω).

Note that all assumptions on branching time and distribution of descendents are located
in µ (and F ). We will explore some combinations of these assumptions now.

One initial particle Let z0 = δ0, i.e. we assume that the initial distribution is
just one particle. The situation after the first branching-time is given by the possible
populations (and their measure-valued description) {0, z1, . . . }, where zi ∈ X. So far
we can assert that the state space is discrete. Given any time t ∈ R+ the situation the
single-branch random walk is currently in can be described by the following sets:

{T > t}, {T ≤ t, Z = 0}, {T ≤ t, Z = z1}, . . .

Noting that these sets are pairwise disjoint we can decompose the integral w.r.t. µ in
the following series:∫

(0,t]×X
b(z)dµ(u, z) =

∫
(0,t]×{0}

b(0)dµ(u, z) +

∞∑
i=1

∫
(0,t]×{z1}

b(z1)dµ(u, z).

We now assume further, that the particle either dies or splits in two. Then the set of
possible populations is given by

{0} ∪ {z ∈ X : z = δy1 + δy2 , y1, y2 ∈ Z} =: {0} ∪X [2]

The above integral becomes∫
(0,t]×X

b(z)dµ(u, z) =

∫
(0,t]×{0}

b(0)dµ(u, z) +
∑
ν∈X[2]

∫
(0,t]×ν

b(ν)dµ(u, z).

Another assumption on the possible locations of birth might be, that y1, y2 ∈ {−1, 1},
i.e. that the particle branches either up or down of its current location. Under these
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circumstances the set of possible populations after the reproductions time is given
explicitly by:

{0, 2δ−1, δ−1 + δ1, 2δ1}

and thus the situation at time t can be described by the following partition:

{T > t}, {T ≤ t, Z = 0}, {T ≤ t, Z = 2δ−1}, {T ≤ t, Z = δ−1 + δ1}, {T ≤ t, T = 2δ1}.

The probability measure µ can be uniquely described by the values on each of these
generating sets at any time and we can now decompose the integral in our martingale
paradigm as follows:∫

(0,t]×X
b(z)dµ(u, z) =

∫
(0,t]×{0}

b(z)dµ(u, z) (3.1.1)

+

∫
(0,t]×{2δ−1}

b(z)dµ(u, z)

+

∫
(0,t]×{δ−1+δ1}

b(z)dµ(u, z)

+

∫
(0,t]×{2δ1}

b(z)dµ(u, z)

Each of these integrals can be computed, given the explicit description of the measure
µ.
We assume now that the branching mechanism is independent of the branching time
and thus are able to describe them even more precisely because

µ((0, t]× {z}) = µ((0, t]×X)µ(R+ × {z}).

For example one of the above integrals is then computed as∫
(0,t]×{0}

b(z)dµ(u, z) =

∫
(0,t]

b(0)dFu · P(Z = 0).

The marginal distributions of reproduction and branching time now play a major role
in the construction of martingales. More assumptions on the branching probability
and/or the locations of the descendants target the marginal distribution of Z. For
example we might assume that the particle has a certain probability of branching
denoted by r ∈ (0, 1). Then the probability of dying is given by 1− r. Further we may
assume that in the event of branching the two descendents choose their place of birth
independently of each other from {−1, 1} and let us denote the probability of choosing
1 as birthplace with u ∈ (0, 1). Then the marginal distribution of Z is given by the
following characterizing values:

P(Z = 0) = 1− r

P(Z = 2δ−1) = r(1− u)2

P(Z = 2δ1) = ru2

P(Z = δ−1 + δ1) = ru(1− u) + r(1− u)u = 2ru(1− u).



3.1. SINGLE-BRANCH RANDOM WALK 74

The integral in (3.1.1) then becomes:∫
(0,t]×X

b(z)dµ(u, z) = (1− e−λt)
[
(1− r)b(0)

+ r(1− u)2b(2δ−1)

+ ru2b(2δ1)

+ 2ru(1− u)b(δ−1 + δ1)Big].

So far we’ve tried to illuminate the impact of assumptions on the result from chapter
1. Next we turn to further explore the applications by explicit models:

Example 3.1. Take a single-branch random walk that starts with one individual at
location 0. Assume that T and Z are independent. Let T ∼ Exp(λ) and P(Z = 0) =
1
2 = P(Z = δ1 + δ−1|Z ̸= 0) and P(Z = 2δ1|Z ̸= 0) = 1

4 = P(Z = δ−1|Z ̸= 0). Now
choose b(ν) = ⟨1, ν⟩ =

∑
n∈Z ν(n) and r = 0. Then

v(t) =
∑
n∈Z

Z(ω)(n)1T≤t − 1T>t exp(λt)

[∫
(0,t]×X

(∑
n∈Z

ν(n)

)
dµ(u, ν) + r

]
.

is a martingale w.r.t Ft. The sum
∑

n∈Z ν(n) can be evaluated at the finite values of Z
that have a positive probability, i.e. {Z = 0}, {Z = δ1 + δ−1}, {Z = 2δ1}, {Z = 2δ−1}.
Thus we end up with∑

n∈Z
(δ1 + δ−1)(n) =

∑
n∈Z

(2δ1)(n) =
∑
n∈Z

(2δ−1)(n) = 2

and the trivial
∑

n∈Z 0(n) = 0.
Further we can represent the first term of the process v(t) as

b(x(t, ω))1T≤t(ω) =
∑
n∈Z

Z(ω)(n)1T≤t(ω) = 21{Z ̸=0}∩{T≤t}.

The second term of v(t) is given by

exp(λt)

[∫
(0,t]×X

b(z)dµ(u, z)

]
= exp(λt)

[
2

∫
(0,t]

2dFuP(Z ̸= 0)

]
=

2

2
exp(λt) [1− exp(−λt)]

= exp(λt)− 1.

For the above martingale this yields:

v(t) = 21T≤t,Z ̸=0 − 1T>1(exp(λt)− 1). (3.1.2)

The first term is a process that counts the members of the population at time t, given
that the process branched already. The second term states the compensator for this
event.
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Example 3.2. Under the assumption that the behaviour of the particles descendents
depend in some way on the time of reproduction, the model is less explicit:

v(t) = b(x(t))1T≤t − 1T>t
1

1− Ft

(∫
(0,t]×X

b(z)dµ(u, z) + r

)
(3.1.3)

is a local martingale w.r.t. Ft. Take for example b ∈ L1
loc(µ) defined by

b(0) = 0

b(2δ−1) = −1

b(δ−1 + δ1) = 0

b(2δ1) = 1

The measurable space R+ ×X decomposes into 5 disjoint subsets:

R+ ×X = R+ × {0} ∪ R+ × {2δ−1} ∪ R+ × {δ−1 + δ1} ∪ R+ × {2δ1} ∪ R+ ×N

where N = X\{0, 2δ−1, δ−1+δ1, 2δ1} is a µ-nullset. Denote by µs(z) = P(Z = z|T = s)
the conditional distribution of Z given the value of T . The above martingale then
becomes:

v(t) = b(Z)1T≤t − 1T>t
1

1− Ft

(∫
(0,t]

[µs(2δ1)− µs(2δ−1)]dFs + r

)
.

As the single-branch random walk is only of very limited use and most of the interesting
features of such a process appear in the multi-branch case, we take the opportunity to
analyze the features and information involved in a single-branch. If we would know the
location of our first ancestor, we are able to deduce a martingale w.r.t. to this single
ancestors lifetime. The time of branching (the life-time) and the behavior at it’s death
are directly depending on this information (and not on any other individuals life). Thus
we can very locally compensate for each of these ancestor-dependent information.

A set of initial particles: Were we to analyze a single-branch process for a set of
ancestors, one problem would be to choose, which ancestor is randomly the first to
branch. As an illustrating example we think of two particles at two arbitrary positions
y1, y2 ∈ Z. Each of these particles may branch independent of the other particle, and let
us assume that each particle has its own lifetime T (1), T (2) with marginal distributions

F
(1)
t and F

(2)
t respectively. The time of the first branch is given by T := min(T (1), T (2))

and its distribution is given by

P(T ≤ t) = 1− (1− F
(1)
t )(1− F

(2)
t ).

Now there is one difficulty that could arise in this simple example. Let us assume
that the two particles start in the same location, say 0. After the first branching the
population is described by one of the following measures:

{δ0, 2δ−1 + δ0, δ−1 + δ0 + δ1, δ0 + 2δ1}
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and the probability of each of these populations is composed of two different situations:
either the particle y1 branches first, or the other particle y2 branches first. As a result
the population after the branching consists of descendents of either particle y1 or of
particle y2, but the respective other not-yet-branched particle lives on. In the single-
branch random walk case this is no problem at all. We can compute the transition
probabilities for each possible population post-branch and hence describe the probabil-
ity measure µ same as before on each of the different populations. But keep in mind
that we want to generalize the model to multi-branch random walks. And our strat-
egy to fuze single-branch random walks together relies on information about the initial
populations at each intermediate branching-time. In the situation described above we
could not tell from the population after the first branching, which of the particles y1, y2
reproduced and thus cannot describe the distribution of the particles lifetimes. There
are two ways to overcome this obstacle, one of which involves using more information
to describe the processes history (for example the age of each particle), the other is to
impose that each particle has the same exponential lifetime (thus a constant branching
rate).

Let us assume that for 2 ≤ K ∈ N the initial measure z0 =
∑K

n=1 anδzn where an ∈
N and zn ∈ Z for all n ∈ {1, . . . ,K}. The total initial population size is given by
N :=

∑K
n=1 an. Now the probability involved in branching is also a question of who is

branching. To get the idea for the distributional assumptions we think of the process
right before and right after the branching:

x(T )− x(T−) =

{
−δl, if a particle at l died

δl+r1 + δzl+r2 − δzl , if a particle at l branched, r1, r2 ∈ {−1, 1}.

Let us denote X as the set of all possible populations after the first branch. Choose
b ∈ L1

loc(µ), then we get that for T ∼ Exp(λ)

v(t) = b(Z)1T≤t − 1T>t
1

exp(−λNt)

[∫
(0,t]×X

b(z)dµ(u, z) + r

]

is a local Ft-martingale. We further decompose the integral:∫
(0,t]×X

b(z)dµ(u, z) =

∫
(0,t]

∫
X
b(z)dµu(z)dFu

=

∫
(0,t]

∑
z∈X

b(z)µu(z)dFu (3.1.4)

We have N particles, each with an exponential branching rate. Thus the branching time
occurs at T = min{S(1), . . . , S(N)} where S(i) are i.i.d. Exp(λ) random variables. Then
a random particle location is chosen from the initial particle distribution {z1, . . . , zK}
where each particle is equally likely to branch (under the i.i.d. assumptions of their
lifetimes). The probability to choose a particle in the location l ∈ Z is given by
al
N . Eventually the type of branching is decided randomly, so either the particle dies
(probability 1 − r) or branches (probability r), and if so how the descendents choose
their locations of birth, where u denotes the probability that a born particle is located
at l + 1.
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Each of these random events is assumed to be independent from the others and then
the probability measure µ is characterized as follows:

P(x(t) = z0 − δzl + 2δzl+1) = (1− exp(−λNt))al
N
ru2

P(x(t) = z0 − δzl + 2δzl−1) = (1− exp(−λNt))al
N
r(1− u)2

P(x(t) = z0 − δzl + δzl+1 + δzl−1) = (1− exp(−λNt))al
N

2ru(1− u)

P(x(t) = z0 − δzl) = (1− exp(−λNt))al
N

(1− r)

P(x(t) = z0) = exp(−λNt).

Hence the sum in (3.1.4) becomes∑
z∈X

b(z)µu(z) =
∑
l∈Z

[
b(z0 − δl)

al
N

(1− r) (3.1.5)

+ b(z0 − δl + 2δl−1)
al
N
r(1− u)2

+ b(z0 − δl + 2δl+1)
al
N
ru2

+ b(z0 − δl + δl−1 + δl+1)
2al
N
ru(1− u)

]
.

Remark 3.3. (i) In the above discussion the values N and al are defined beforehand,
but they can also be computed from the initial population by

N = ⟨1, z0⟩, al = ⟨δ{zl}, z0⟩.

(ii) While the i.i.d. assumptions on the particles lifetimes is explored here for Exp(λ)
distributions, the result also holds true for other lifetime distributions with non-
constant rates. But as mentioned before the constant branching rate is mandatory
for the description of multi-branch random walks in this simple setting.

Example 3.4. Let r = 1
2 = u = 1− u and let z0 = δ−1 + δ1. Take b(ν) := ⟨1, ν⟩. Then

v(t) = ⟨1, Z⟩1T≤t − 1T>t
1

1− Ft

∫
(0,t]×X

b(z)dµ(u, z)

is a local Ft martingale, where∫
(0,t]×X

b(z)dµ(u, z) = (1− e−λ2t)2

[
1

4
+

3

16
+

3

16
+

6

16

]
= 2(1− e−λ2t)

and

⟨1, Z⟩1T≤t = 1{T≤t,Z=δ−1}∪{T≤t,Z=δ1} + 31{T≤t,Z ̸=δ−1}∪{T≤t,Z ̸=δ1}



3.2. MULTI-BRANCH 78

3.2 Multi-branch

Now we consider the general multi-branch case. We follow the same reasoning as
in chapter 2, i.e. we glue together instances of single-branch processes to construct
a general branching process. The correlation of the different branching processes is
preserved and described by the conditional distributions. The necessity of a constant
branching rate is due to the fact that we use the single-branch processes from section 3.1
with initial distributions z0 =

∑K
n=1 anδzn (see section 3.1). We collect some notation

first and define the conditional probability measures accordingly.
Throughout this section we assume that the particles branch independent of each other,
i.e. the branching times of the particles are independent of each other and that the
branching mechanisms of the particles are independent of each other. Also we assume
that the branching mechanism of any particle is independent of the branching time. As
in chapter 2 we take copies (Yn,Yn) of the template space (Y,Y) from section 3.1 and
define

Ω :=
∏
n∈N

Yn, F0 := σ

(∏
n∈N

Yn

)
.

The process is given by

x(t)(ω) :=


z0, t < T1(ω)

Zk(ω), t ∈ [Tk(ω), Tk1(ω))

z∞, t ≤ T∞(ω).

And the probability measure is characterized by the set of conditional measures s.t.
∀k = 2, 3, . . . and Γ ∈ Ωk

P((T1, Z1) ∈ Γ) = µ1(Γ)

P((Tk, Zk) ∈ Γ|η) = µk(η; Γ),

where the functions µ1 and µk satisfy the same conditions as in section 2.1.

We construct the multi-branch random walk by the same strategy as in chapter 2. To
that end set

x̄1(t)(ω) :=

{
z0, t < T1(ω)

Z1(ω), T1(ω) ≤ t,
x̄k(t)(ω) :=

{
Zk−1(ω), t < Tk−1

Zk(ω), Tk(ω) ≤ t.

We call these processes single-branch sections of the multi-branch process. They are
adapted to the filtrations Hk

s that are defined as

Hk
s := FUk

s

where Uks := (Tk−1 + s) ∧ Tk.
The multi-branch random walk is then constructed by the following composition:

x(t)(ω) :=


x̃1(t)(ω), t ≤ T1(ω)

x̃k(t)(ω), t ∈ [Tk−1(ω), Tk(ω)),

z∞, t ≥ T∞(ω).

(3.2.1)



3.2. MULTI-BRANCH 79

Note that for the right choice of φk : Ωk−1 × R+ × X → R the process ṽk :=(
φk(ωk−1; t, x̃

k(t))
)
t∈R+ is a local Hk-martingale, due to corollary 2.3. Thus we can

compose another process

v(t)(ω) := φ(t, x(t))(ω) =


φ1(t, x(t))(ω), t ≤ T1(ω)

φk(ωk−1; t− Tk−1, x(t)), t ∈ [Tk−1(ω), Tk(ω))

z∞, t ≥ T∞(ω).

(3.2.2)

By theorem 2.6 this process is a local Ft-martingale for the right choice of φ1, φ2, . . . .

Let r denote the probability of a particle to reproduce, u denote the probability with
which a particle is born one unit above the parent particle and pkl := pkl (ωk−1) denotes
the probability that a particle at positions l ∈ Z is the particle which performs the k-th
branching action. Under the above assumptions and for z0 = δ0 and for ν ∈ Ωk−1, n ∈ Z
the transition probabilities for the process are as follows:

P(T1 ≤ t, Z1 = 2δ1) = (1− exp(−λt))ru2

P(x(t) = 2δ−1) = (1− exp(−λt))r(1− u)2

P(T1 ≤ t, Z1 = δ−1 + δ1) = (1− exp(−λt))ru(1− u)

P(T1 ≤ t, Z1 = 0) = (1− exp(−λt))(1− r)

P(Tk ≤ t, Zk = Zk−1(ν)− δn + 2δn+1|ν) = (1− exp(−λt))pkn(ν)ru2

P(Tk ≤ t, Zk = Zk−1(ν)− δn + 2δn−1|ν) = (1− exp(−λt))pkn(ν)r(1− u)2

P(Tk ≤ t, Zk = Zk−1(ν)− δn + δn−1 + δn+1|ν) = (1− exp(−λt))pkn(ν)ru(1− u)

P(Tk ≤ t, Zk = Zk−1(ν)− δn|ν) = (1− exp(−λt))pkn(ν)(1− r).

Remark 3.5. These are the transition probabilities under the assumption that each
branching is independent of the previous branching. But in the slightly more general
case where each branching might depend on the previous branches one can adjust the
probabilites for branching to r = r(ωk−1) and/or u = u(ωk−1). For example the repro-
duction probability might depend on the current population size, the previous branching
method, or even the positions of the current population.

Now let t ∈ [Tk−1, Tk). Then the process x is about to branch the k-th time and thus
the current path of v will be described by:

φk(ωk−1; t− Tk−1, x(t)) = bk(ωk−1;x(t))1T≤t − 1T>t
1

1− F kt−Tk−1
(ωk−1)

×

(∫
(0,t]×X

bk(ωk−1; z)dµ
k(ωk−1;u, z) + rk(ωk−1)

)

for some bk(ωk−1; ·) ∈ L1
loc(µ) and r

k(ωk−1) = φ(Tk−1, Zk−1). The interesting part here
is again the integral. Since we assumed that each particle in our population obeys
the same behavior as the original ancestor, we can decompose the integral same as in
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(3.1.4) and (3.1.5) for every ω ∈ Ω:∫
(0,t]×X

bk(ωk−1(ω); z)dµ
k(ωk−1(ω;u, z)

=

∫
(0,t]

∫
X
bk(ωk−1(ω); z)dµ

k
u(ωk−1(ω); z)dF

k
u (ωk−1(ω))

=

∫
(0,t]

∑
z∈Xk

bk(ωk−1(ω); z)µ
k
u(ωk−1(ω); z)dF

k
u (ωk−1(ω)

where X k is the set of all possible populations after the first k jumps and µku(ωk−1(ω); ·)
denotes the conditional distribution of Zk given Tk = u and ωk−1. The sum can be
decomposed further as:∑

z∈Xk

bk(ωk−1(ω); z)µ
k
u(ωk−1(ω); z)

=
∑
l∈Z

[
bk(ωk−1(ω);Zk−1(ω)− δl)p

k
l (1− r)

+ bk(ωk−1(ω);Zk−1(ω)− δl + 2δl−1)p
k
l r(1− u)2

+ bk(ωk−1(ω);Zk−1(ω)− δl + 2δl+1)p
k
l ru

2

+ bk(ωk−1(ω);Zk−1(ω)− δl + δl−1 + δl+1)p
k
l ru(1− u)

]
.

The outer integral describes the probability that any particle branches before t− Tk−1

after the last branching event and thus is given by

F kt−Tk−1
(ωk−1(ω)) = [1− exp (−λ⟨1, Zk−1(ω)⟩(t− Tk−1))] .

3.3 Semimartingale representation

In this section we will determine the semimartingale representation of certain functions
of the branching random walk. This is a direct application of corollary 2.9. In our
framework the process takes its values in the space of weighted Dirac-measures, i.e. the
random variable Zk is a random distribution of the population and Tk is the random
branching time that leads to the population described by Zk. Throughout this section
we assume that T∞ = ∞ P-a.s.; under the assumptions from section 3.1 - namely binary
branching or dying at each branching time and only two birthplaces for descendents of a
branching particle to choose from - the values of Zk are finite for all k ∈ N and thus the
possible values of any function φ : R+ ×X → R of the process with φ(t, x(t)) are finite
for each fixed t ∈ R+ if T∞ = ∞. Further we assumed before that each particle has an
exponential lifetime and thus a continuously differentiable distribution function. Now
let φ satisfy condition (C) (see definition 1.13). The results from chapter 2, corollary
2.9 imply that the semimartingale representation is then given by:

φ(t, x(t)) =M1
t∧T1 +

∞∑
k=2

[
Mk

(t−Tk−1)∧Sk
(ωk−1)−Mk−1

Sk−1
(ωk−1)

]
1Tk−1≤t

+A1
t∧T1 +

∞∑
k=2

[
Ak(t−Tk−1)∧Sk

(ωk−1)−Ak−1
Sk−1

(ωk−1)
]
1Tk−1≤t
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where eachMk is a local Hk martingale and Ak are each previsible processes w.r.t. Hk.
In the last section we constructed a function φ by combining functions φk that apply
to the random intervals [Tk−1, Tk]. But the discussion about φ(t, x(t)) has also shown,
that any function φ of the process x can always be represented as a combination of
such functions φk:

φ(t, x(t)) :=

∞∑
k=1

φk(t, x(t))1Tk−1<t≤Tk .

These functions φk are given by the respective semimartingale Mk
t−Tk−1

+Akt−Tk−1
and

thus depend on the knowledge of the previous branching time Tk−1. From corollary 2.8
we take the form of each of these terms for η ∈ Ωk−1:

Mk
t (η) = φk(η; 0, Zk−1(η)) +

∫
(0,t]×X

[
φk(η; s, z)− φk(η; s, Zk−1(η))

]
dqk(s, z)

Akt (η) =

∫
(0,t]

dφk

dF k
(η; s, Zk−1(η)) +

1Sk≥s

1− F ks−

[
φk(η; s, z)− φk(η; s, Zk−1(η))

]
dµk(η; s, z)

where mk(η; s) := Eµk(η;·)
[
φk(η;Tk, Zk)|Tk = s

]
. Under the assumption of exponential

branching times one might also write

Akt (η) =

∫
(0,t]

dφk

dt
(η; s, Zk−1(η))dt

+

∫
(0,t]×X

1Sk≥s

1− F ks−

[
φk(η; s, z)− φk(η; s, Zk−1(η))

]
dµk(η; s, z).

Example 3.6. 1. As an example we explore the process

v(t) := exp (⟨f, x(t)⟩) ,

where for a measure ν and a measurable function f : X → R we denote ⟨f, ν⟩ =∫
X f(z)dν(z). Let x(t) be the symmetric branching random walk from example

3.4. Then v(t) = φ(t, x(t)) where φ(t, z) = exp (⟨f, z⟩) =: φ(z), hence d
dtφ ≡ 0.

Take ω ∈ {Tk−1 ≤ t < Tk}. Then

v(t, ω) = exp (⟨f, x(t, ω)⟩)
= exp (⟨f, Zk−1(ω)⟩) .

The semimartingale representation is given by

Mk
t−Tk−1

(ω) = exp (⟨f, Zk−1(ω)⟩) (3.3.1)

+

∫
(0,t]×X

[exp (⟨f, z⟩)− exp (⟨f, Zk−1(ω)]⟩) dqk(s, z)

Akt−Tk−1
(ω) =

∫
(0,t∧Sk]×X

1

1− F ks−
[φ(z)− φ(Zk−1(ω))] dµ

k(ωk−1(ω); s, z)

(3.3.2)
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We further simplify (and omit ω in favor of readability):∫
(0,(t−Tk−1)∧Sk]×X

1

1− F ks−
[φ(z)− φ(Zk−1)] dµ

k(ωk−1; s, z)

=

∫
(0,(t−Tk−1)∧Sk]

1

1− F ks−

∫
X
[φ(z)− φ(Zk−1)] dµ

k
s(ωk−1; z)dF

k(ωk−1; s)

=

∫
(0,(t−Tk−1)∧Sk]

exp(λs⟨1, Zk−1⟩)

∑
z∈Zk

[φ(z)− φ(Zk−1)] r
k
z

 dF k(ωk−1; s)

=

∑
z∈Zk

[φ(z)− φ(Zk−1)] r
k
z


∫
(0,(t−Tk−1)∧Sk]

(λ⟨1, Zk−1⟩)ds

=

∑
z∈Zk

[φ(z)− φ(Zk−1)] r
k
z

 [(t− Tk−1) ∧ Sk] (λ⟨1, Zk−1⟩)

where for k ∈ N, η ∈ Ωk−1 :

Zk−1(η) :={z ∈ X|∃m ∈ X k−1 :

z − Zk−1(η) + δm ∈ {0, 2δm−1, δm−1 + δm+1, 2δm+1}}

is the set of possibly obtainable measures with the k-th branching, given the mea-
sure Zk−1

1 and

z ∈ X, k ∈ N, η ∈ Ωk−1 : r
k
z (η) := µk(η;R+ × {z})

is the respective transition probability to any measure z given measure Zk−1. In
our particular case (symmetric branching random walk) the possible outcomes of
the k-th branching event are finite. Each particle of the current ensemble can
either die or split in 3 different patterns, thus |Zk| ≤ 4⟨1, Zk−1⟩. The transition
probabilities rkz are thus composed of the probability for choosing the specific par-
ticle that can lead to z, the probability for the right branching method (death or
split) and the respective choices of birthplace:

rkz (η) :=


⟨δm,Zk−1(η)⟩
⟨1,Zk−1(η)⟩

1
2 , if ∃m ∈ X k−1(η) : z − Zk−1(η) + δm = 0,

⟨δm,Zk−1(η)⟩
⟨1,Zk−1(η)⟩

1
8 , if ∃m ∈ X k−1(η) : z − Zk−1(η) + δm = 2δm±1,

⟨δm,Zk−1(η)⟩
⟨1,Zk−1(η)⟩

1
4 , if ∃m ∈ X k−1(η) : z − Zk−1(η) + δm = δm−1 + δm+1.

Note further that ⟨·, ·⟩ is bilinear and thus

exp(⟨f, Zk−1 − δm + ν⟩) = exp(⟨f, Zk−1⟩) exp(−⟨f, δm⟩) exp(⟨f, ν⟩).
1Note that X k−1(η) := {m ∈ Z : ⟨δm, Zk−1(η)⟩ ̸= 0}
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For the next term this helps a bit:∑
z∈Zk

[φ(z)− φ(Zk−1)] r
k
z

=
∑
z∈Zk

[exp(⟨f, z⟩)− exp(⟨f, Zk−1⟩)] rkz

=
∑

m∈Xk−1

[
(exp(⟨f, Zk−1 − δm⟩)− exp(⟨f, Zk−1⟩))

⟨δm, Zk−1(η)⟩
2⟨1, Zk−1(η)⟩

(exp(⟨f, Zk−1 − δm + 2δm−1⟩)− exp(⟨f, Zk−1⟩))
⟨δm, Zk−1(η)⟩
8⟨1, Zk−1(η)⟩

(exp(⟨f, Zk−1 − δm + 2δm+1⟩)− exp(⟨f, Zk−1⟩))
⟨δm, Zk−1(η)⟩
8⟨1, Zk−1(η)⟩

(exp(⟨f, Zk−1 − δm + δm−1 + δm+1⟩)− exp(⟨f, Zk−1⟩))
⟨δm, Zk−1(η)⟩
4⟨1, Zk−1(η)⟩

]
=
1

2
exp(⟨f, Zk−1⟩)

∑
m∈Xk−1

⟨δm, Zk−1(η)⟩
⟨1, Zk−1(η)⟩

[
(exp(−f(m))− 1)

+
exp(2f(m− 1)− f(m))− 1

4

+
exp(2f(m+ 1)− f(m))− 1)

4

+
exp(f(m− 1)− f(m) + f(m+ 1))− 1

2

]
.

The final form of (3.3.2) is hence given by:

Akt−Tk−1
= [(t− Tk−1) ∧ Sk] (λ⟨1, Zk−1⟩)

exp(⟨f, Zk−1⟩)
2

×
∑

m∈Xk−1

⟨δm, Zk−1(η)⟩
⟨1, Zk−1(η)⟩

[
(exp(−f(m))− 1)

+
exp(2f(m− 1)− f(m))− 1

4

+
exp(2f(m+ 1)− f(m))− 1)

4

+
exp(f(m− 1)− f(m) + f(m+ 1))− 1

2

]
2. As another and last example we now look at the slightly adjusted process:

v(t) := exp(t⟨f, x(t)⟩)

so that φ(t, ν) := exp(t⟨f, ν⟩) for some t ∈ R+ and ν ∈ X. In this case the
derivative d

dtφ(t, ν) = ⟨f, ν⟩φ(t, ν). For ω ∈ {Tk−1 ≤ t < Tk} we can now
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determine the compensator again:

Akt−Tk−1
=

∫
(Tk−1,t]

dφ

dt
(s, Zk−1)ds

+

∫
(Tk−1,t]×X

1Tk≥s

1− F ks−
[φ(s, z)− φ(s, Zk−1(η))] dµ

k(η; s, z)

=

∫
(Tk−1,t]

⟨f, Zk−1⟩φ(s, Zk−1)ds+

∫
(Tk−1,t]

exp(λs⟨1, Zk−1⟩)1Tk≥s

×
(∫

X
[φ(s, z)− φ(s, Zk−1(η))] dµ

k
s(ωk−1; z)

)
dF k(ωk−1; s).

Using the fact that dF k(ωk−1; s) = λ⟨1, Zk−1⟩ exp(−λs⟨1, Zk−1⟩) and that φ(s, z) =
φ(s, Zk−1)φ(s, ν) for some ν ∈ {2δm−1, δm−1+δm+1, 2δm+1} and some m ∈ X k−1,
we can further simplify the second integral to:∫

(Tk−1,t∧Tk]
exp(λs⟨1, Zk−1⟩)

(∫
X
[φ(s, z)− φ(s, Zk−1)] dµ

k
s(ωk−1; z)

)
dF k(ωk−1; s)

=λ⟨1, Zk−1⟩
∫
(Tk−1,t∧Tk]

φ(s, Zk−1)

[∑
ν

(φ(s, ν)− 1)

]
rkνds

where in this case the transition probabilities rkν(η) := P(Zk = Zk−1 + ν|η) and
are given by the same values as in the previous example. We revert back to the
whole term for

Akt−Tk−1

=

∫
(Tk−1,t]

⟨f, Zk−1⟩φ(s, Zk−1)

+ λ⟨1, Zk−1⟩φ(s, Zk−1)1Tk≥s

[∑
ν

(φ(s, ν)− 1)rkν

]
ds

=

∫
(Tk−1,t]

φ(s, Zk−1)

{
⟨f, Zk−1⟩+ ⟨λ, Zk−1⟩1Tk≥s

[∑
ν

(φ(s, ν)− 1)rkν

]}
ds.

From this form one can easily deduce that only f ≡ 0 can provide us with a
martingale, as the compensator does not vanish otherwise.



Chapter 4

Discussion

As a closing section we want to discuss the results of this work, their implications, some
possible generalizations, developments and open problems.

We started this journey with the idea to combine a rather intuitive strategy with a
classical result: a discrete time approximation of the time continuous Doob-Meyer de-
composition of a process adapted to the single-jump processes filtration to help with the
determination of martingales of said jump process. While the discrete version (theorem
1.10) of the process has been a straightforward application of Doob’s decomposition
theorem and some taylormade results and properties of conditional expectation (lemma
1.9), the limiting procedure (theorem 1.14 and corollary 1.16) lead us to first technical
assumptions (conditions C and C’). After the limiting procedure has been dealt with,
we were left with an instructive result (theorem 1.14 and corollary 1.16) that shows how
to compute the time-continuous Doob-Meyer decomposition of any acceptable function
φ of time and the value of the single-jump process at that time. This enabled us to
determine structural conditions a function would have to show to be able to transform
the process into a martingale w.r.t. to its natural filtration. Finally we highlighted the
connection to the result by [Davis, 1976] and moved on to the generalization of our
result to multi-jump processes by glueing together so called single-jump sections of the
process (theorem 2.6). The ominous ’glue-condition’ as well as another instructive re-
sult shows that processes of this certain form are in fact martingales of the multi-jump
process. Here assumed that the accumulation time T∞ = ∞. In the final section of
chapter 2 we then went on to obtain a version of the Doob-Meyer decomposition for
multi-jump processes under the above assumptions (theorem 2.10). Chapter 3 finally
focuses on applying the results to a Branching random walk. We find ourselves con-
fronted with a paradigm for martingales, delivering a practical amount of parameters
to control different aspects of the process.

Now let us turn to the interesting avenues for further research. Although they were
not unrealistic for our purpose, one might be interested in more general/popular con-
ditions for the functions φ to still admit a consistent time continuous Doob-Meyer
decomposition. As we already stated the most general and simple proof of the time-
continuous Doob-Meyer decomposition can be found in [Beiglboeck et al., 2010]. The
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strategy there makes use of the uniform integrability that comes with the assumption
that the submartingale is of class D. While our result is convergent P-a.s., we can yield
an L1-convergent result under the assumption of uniform integrability of the discrete
approximations ofM and A by Vitali’s theorem. Furthermore one can explore the con-
nection between conditions C’ and class D to locate our result in the classical literature.

The application in chapter 3 showed, that the results of the first two chapters could
be adapted to hold for branching processes. As a matter of fact we applied them to
branching random walks, which opened up some options for similar result on branching
Brownian motion. In analogy to the approximation of Brownian motion through ran-
dom walks one might try to approximate branching Brownian motion by rescaling the
time and space of branching random walks to yield similar results in the limit. Another
possibility is to combine the path-valued approach from Appendix A and the measure-
valued example from chapter 3. For this let T be a random jump time in R+, Z be a
random number of descendents (integer-valued) and Bt the path of Brownian motion
stopped at time t ∈ R+ (see [Levental et al., 2013] for notation). The single-branch
Brownian motion then would be defined as a process

xt(ω) :=

{
δBt(ω), T (ω) < t

Z(ω)δBT (ω)(ω), T (ω) ≤ t.

This simple process is measure valued, but with measures on the path space D :=
D(R+,R). As long as the branching time T has not been overcome, the process is
the measure that follows the ’excavation’ of the Brownian motions path Bt. Once
the branching time is hit, it is the constant measure Z(ω)δBT (ω)(ω) and the symboli-
cally phrased ’excavation’ of the Brownian motions path has stopped. But now the
integer-valued random variable Z determines how many new particles may start at the
branching location B(T (ω), ω)). The program for this application can follow the strat-
egy of the first chapter to determine discrete Doob-decompositions of the single-branch
Brownian motion. Assuming the Brownian motion to be independent of the jump time
(T ) and height (Z) and vice-versa should even be a straightforward application of the
results, as the products of independent processes can be viewed separately most of the
times. Generalizing the single-branch Brownian motion to the multi-branch case might
be achieved by a similar technique as we explored in chapter 2, by fuzing single-branch
instances.

Another interesting perspective is the representation of a martingale of the jump pro-
cess, as an integral w.r.t. the fundamental family of martingales. In light of the
factorization lemma or the related result for Brownian motion, this observation turns
our attention to the underlying dynamics of randomness. While fundamentally differ-
ent to Brownian motion, the jump processes still obey a general basic process that can
be described seperately and explains the behaviour of processes that are structurally
related to jump processes (e.g. branching random walks). An interesting topic might
be, how the combination of jump processes and Brownian motion can be factorized
into their respective fundamental processes. Applying the above strategy of discrete
approximations to branching Brownian motions may yield constructive results for de-
termining martingales of said processes.
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The application to branching random walks could also be generalized or adjusted: the
branching mechanism may allow an arbitrary number of descendents, the progeny may
distribute over Rd, etc. But eventually incorporating multitype processes seems to be
the most interesting part to us, as it enables us to assume more dependencies between
for example reproduction and age.

Another generalization concerning the accumulation time T∞ might be achieved in a
similar way as [Elliott, 1976] and [Elliott, 1977] generalize [Davis, 1976]. The con-
nection of [Gushchin, 2020] to the results of chapter 2 is suspected to hold in the
multi-jump case. An augmentation of [Gushchin, 2020] to multi-jump processes could
draw intuition from our results.



Appendix A

Single Jump and path dependent

In chapter 1 we approached the single-jump process with a function φ(t, x(t)) to form
a martingale. We ended up with a Markov process, since only the present state of the
process is inserted into the second argument of the function φ. While this is a first
successful step, we would like to generalize the methods with a different approach:

Let φ be a function of time and the whole path of the process until time t.

This enables us to use the notation for path-spaces and possibly incorporate non-
markovian features more easily in future research projects.

A.1 Definitions

The state space and random variables: We will keep the state space Ω and the
random variables S,Z, T as before, since our only change will affect the process x.
Before x(t) was just the evaluation of the path at the time t. Now we want xt to hold
the values of x until time t and constant afterwards. This is the notation from [Levental
et al., 2013]. Keep in mind, that this is still the single-jump case.

The path process: For any ω ∈ Ω the path of the process up to time t will be denoted
by

xt(ω, ·) = x(ω, ·)1[0,t](·) + x(ω, t)1(t,∞)(·)

and is a member of the space of cdlg-paths D(R+, X). Since the above description is
rather long, we denote the relevant paths for z ∈ X, u ∈ R+:

zu := {z01[0,u)(s) + z1[u,∞)(s) : s ∈ R+} (A.1.1)

for the path that jumps to the value z ∈ X at time u ∈ R+. The path that never jumps
will be denoted by z(0). I.e. for ω ∈ Ω we have

xt(ω) =

{
z(0), if t < T (ω),

Z(ω)T (ω), if T (ω) ≤ t.
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This notation is reminiscent of the first approach. In fact the evaluation of the path
for fixed t ∈ R+ at any time s ∈ R+ would be:

xt(ω, s) =

{
z0, if s ∧ t < T (ω)

Z(ω), if T (ω) ≤ s ∧ t.
(A.1.2)

The message from this is, that xt is - for a fixed t - a stopped process x(·). So by
increasing the time t we push back the time at which we stop the process. If we let
t→ ∞ the resulting path would be just the whole path of x(·) from the first approach.

On D := D(R+, X) × R+ we take the distances d̃ from [Levental et al., 2013] defined
by

d̃((x, t), (y, s)) := ∥x− y∥∞ + |t− s|
where ∥x− y∥∞ := sup0≤t<∞ ∥x(t)− y(t)∥.

Filtration and probability measure: Take E0
t = σ(xu : u ∈ [0, t]), the natural

σ-field of the path process (xt)t≥0. We note that E0
t = F0

t since they both include the
history of x(u) up until the time t. This enables us to use the exact same σ-field as in
the first approach: Ft
Our path approach would start with functions - or, better: functionals

φ : R+ ×D(R+, X) → R,

and we define a new stochastic process by

vt := φ(t, xt),

Following our strategy from before, we need a discrete version of the above process.
We define v := (vtk)k∈{1,...,2N} and Ftk := Fk for an arbitrary set of times t1 < · · · <
tN2 ∈ R+.
We also keep the probability measure P as defined in (2.1.3).
The discrete Version of the process is adapted to the filtration Ftk from before, i.e. a
Doob-Meyer-decomposition is imminent. Let us prepare:

Lemma A.1.

E[vtk |Ftk−1
] = φ(tk, xtk−1

) + 1T>tk−1

1

1− Ftk

∫
{T>tk−1}

[φ(tk, xtk)− φ(tk, z
(0))]dP

Proof. We seperate Ω into the two exclusive sets {T ≤ tk−1} and {T > tk−1} and get:

E[vtk |Ftk−1
] = E[vtk1T≤tk−1

|Ftk−1
] + E[vtk1T>tk−1

|Ftk−1
]

(1)
= vtk1T≤tk−1

+ 1T>tk−1

1

P(T > tk−1)

∫
{T>tk−1}

vtkdP

(2)
= vtk1T≤tk−1

+
1T>tk−1

P(T > tk−1)

{∫
{tk−1<T≤tk}

vtkdP+ φ(tk, z
(0)
k )

∫
1T>tkdP

}
(3)
= vtk1T≤tk−1

+ 1T>tk−1

{
1

1− Ftk−1

∫
{tk−1<T≤tk}

[vtk − φ(tk, z
(0)
k )]dP+ φ(tk, z

(0)
k )

}
where we used in particular:
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(1) On the set {T ≤ tk−1} vtk is Ftk−1
-measurable, since we only take paths that

jumped prior to tk−1 (i.e. they remain constant afterwards). In fact we have

vtk1T≤tk−1
= φ(tk, xtk)1T≤tk−1

= φ(tk, xtk−1
)1T≤tk−1

.

Therefore we can move vtk1T≤tk−1
out of the conditional expectation. For the

second part of the sum we used, that {T > tk−1} is an atom of

Ftk−1
= σ

(
{x(s)1T≤tk−1

: s ≤ tk−1}, {T > tk−1},N0

)
.

The conditional expectation is then calculated with Lemma 1.6.

(2) Further seperate into {T ≤ tk} and {T > tk} and use vtk1T>tk = φ(tk, z
(0)
k )1T>tk

as well as {T > tk} ∩ {T > tk−1} = {T > tk} to get∫
vtk1T>tk−1

dP =

∫
vtk1tk−1<T≤tkdP+

∫
φ(tk, z

(0)
k )1T>tkdP

.

(3) Write

φ(tk, z
(0)
k )

∫
1T>tkdP = φ(tk, z

(0)
k )(1− Ftk−1

+ Ftk−1
− Ftk)

and sort with respect to the fraction 1
1−Ftk−1

.

A.2 Doob-Meyer-decomposition

Due to our last lemma, we only need to piece together the different parts of the Doob-
Meyer-decomposition.

Corollary A.2. The Doob-Meyer-decomposition of the discrete time process (vtk) con-
sists of (MN

tk
)k∈N and (ANtk)k∈N which are given by

MN
tk

−MN
tk−1

= [φ(tk, xtk)− φ(tk, z
(0)
k )]1tk−1<T≤tk

− 1T>tk−1

1

1− Ftk−1

∫
(φ(tk, xtk)− φ(tk, z

(0)
k ))1tk−1<T≤tkdP

ANtk −ANtk−1
= [φ(tk, xtk−1

)− φ(tk−1, xtk−1
)]

+ 1T>tk−1

1

1− Ftk−1

∫
[φ(tk, xtk)− φ(tk, z

(0)
k )]1tk−1<T≤tkdP.

Proof. Use MN
tk
−MN

tk−1
= vtk −E[vtk |Ftk−1

] and ANtk −A
N
tk−1

= E[vtk |Ftk−1
]−vtk−1

and
insert Lemma A.1:

MN
tk

−MN
tk−1

= vtk − φ(tk, xtk−1
)

− 1T>tk−1

1

1− Ftk

∫
{T>tk−1}

[φ(tk, xtk)− φ(tk, z
(0)
k )]dP

(i)
= [φ(tk, xtk)− φ(tk, z

(0)
k )]1tk−1<T≤tk

− 1T>tk−1

1

1− Ftk

∫
tk−1<T≤tk

[φ(tk, xtk)− φ(tk, z
(0)
k )]dP
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and

ANtk −ANtk−1
= φ(tk, xtk−1

)− vtk−1

+ 1T>tk−1

1

1− Ftk

∫
{T>tk−1}

[φ(tk, xtk)− φ(tk, z
(0)
k )]dP

(i)
= [φ(tk, xtk−1

)− φ(tk−1, xtk−1
)]

+ 1T>tk−1

1

1− Ftk−1

∫
tk−1<T≤tk

[φ(tk, xtk)− φ(tk, z
(0)
k )]dP.

Where we used in particular:

(i) In the integral we decompose [φ(tk, xtk) − φ(tk, z
(0)
k )] (1T≤tk + 1T>tk) and note

that:

[φ(tk, xtk)− φ(tk, z
(0)
k )]1{T>tk} = [φ(tk, z

(0)
k )− φ(tk, z

(0)
k )]1T>tk

= 0

Further we use that

[φ(tk, xtk)− φ(tk, xtk−1
)] = [φ(tk, xtk)− φ(tk, z

(0)
k−1)]1tk−1<T≤tk

= [φ(tk, xtk)− φ(tk, z
(0)
k )]1tk−1<T≤tk

Before we advance to the limiting procedure, we take a closer look at the various
differences in the above result:

(I)

[φ(tk, xtk)− φ(tk, z
(0)
k )]1tk−1<T≤tk .

Other than in our first approach we are confronted with a difference of a functional
on two paths. In this case the difference will vanish everywhere except right at
the jump time T (i.e. where tk−1 < T ≤ tk) where it will describe the change in
φ under the jump height. This particular increment can be found twice in the
representation of MN

tk
−MN

tk−1
. Given the same basic martingale process we find

this difference to be a disintegration against the basic process p:

[φ(tk, xtk)− φ(tk, z
(0)
k )]1tk−1<T≤tk

=

∫
Y
[φ(tk, xtk)− φ(tk, z

(0)
k )]p(dz, du)1tk−1<T≤tk

where dz inserts the jump height and du the jump time. Note that xu = xT for
T ≤ u, hence we wrote xtk for the path that actually describes a random jump
at a random time.
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The second time this term appears as a part of the representation ofMN
tk
−MN

tk−1

it is actually a disintegration against the compensator of p, namely p̃:

1T>tk−1

1

1− Ftk−1

∫
(φ(tk, xtk)− φ(tk, z

(0)
k ))1tk−1<T≤tkdP

=

∫
(φ(tk, xtk)− φ(tk, z

(0)
k ))p̃(z, u)1tk−1<T≤tk

(II)
[φ(tk, xtk−1

)− φ(tk−1, xtk−1
)].

This will approximate the slope of the function φ(·, y) for xtk−1
= y. Think of

xtk−1
as a random parameter choosing a function φ from a family of functions.

For T > tk−1 the above difference will capture the slope of such a function prior
to the jump time T . After such a jump the function would have to stay constant
for it to have any chance of transforming the process into a martingale (but that’s
something for a later discussion below).

A.3 Limiting procedure for the path dependent approach

Like previously we now increase the resolution of our discrete time-scale. If we would
try this without any experience we would end up with the same complication we ran
into before. Take (tNu )N∈N, (t

N
d )N∈N s.t. tNu ↘ u ∈ R+, tNd ↗ u for N → ∞. For the

different parts of MN
tNu

−MN
tNd

we get:

1T>tNu → 1T≥t

φ(tNu , xtNu )− φ(tNu , xtNd
) → φ(u, xu)− φ(u, xu−)

1

1− FtNd
→ 1

1− Ft−
.

Since xt is in turn just working with the random variables T,Z, the path-process
has the same ”‘skeleton-process”’ as (x(t))t∈R+ . Not surprisingly the time continuous
Doob-Meyer decomposition reflects this dependency again:

Proposition 1. For φ ∈ C1,0 the time continuous version of the martingale part is
given by

Mt =

∫
[0,t]×S

[
φ(u, zu)− φ(u, z(0))

]
q(du, dz)

=

∫
[0,t]×S

[
φ(u, zu)− φ(u, z(0))

]
p(du, dz) +

∫
(0,t]×S

[
φ(u, zu)− φ(u, z(0))

]
dp̃(u, z)

Proof. Take for t ∈ R and A ∈ S the fundamental process

q(t, A) = p(t, A)− p̃(t, A)

from section 1.1. Then we write:

φ(tk, xtk)− φ(tk, z
(0)
tk

) =

∫
(tk−1,tk]×X

φ(tk, zu)− φ(tk, z
(0))p(du, dz)
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and check that

2N∑
k=1

(
φ(tk, xtk)− φ(tk, z

(0)
tk

)
)
=

∫
R+×X

2N∑
k=2

(
φ(tk, zu)− φ(tk, z

(0))
)
1(tk−1,tk](u)dp(u, z)

→
∫
[0,t]×X

φ(u, zu)− φ(u, z(0))p(du, dz)

for N → ∞ since the integrand is approximated pointwise. The other part is a little
bit more complicated, but we saw earlier, that this should end up as an integral against

the process p̃, which looks like (we omit the trivial integrand φ(u, z
(0)
u ) here to save

some space):∫
(0,t]×X

φ(u, zu)dp̃(u, z) =

∫
[0,t]×X

φ(u, zu)
1

1− Fu−
1T≥udµ(u, z)

=

∫
(0,t]

∫
X
φ(u, zu)

1

1− Fu−
1T≥uµu(dz)dFu.

In fact the discrete version looks like:

2N∑
k=2

1T>tk−1

1

1− Ftk−1

∫
φ(tk, xtk)1tk−1<T≤tkdP

=
2N∑
k=2

∫
R+

∫
X
1T>tk−1

1

1− Ftk−1

φ(tk, zu)1(tk−1,tk](u)µu(dz)dFu

For N → ∞ the mesh size converges to zero and in turn the above sum over k will
converge in the following way:

2N∑
k=2

∫ ∫
X
1T>tk−1

1

1− Ftk−1

φ(tk, zs)1(tk−1,tk](s)P(Z ∈ dz|T = s)P(T ∈ ds)

=

∫
R+

∫
X

2N∑
k=2

1T>tk−1

1

1− Ftk−1

φ(tk, zs)1(tk−1,tk](s)P(Z ∈ dz|T = s)P(T ∈ ds)

→
∫
(0,t]

∫
S

1

1− Fu−
1T≥uφ(u, zu)P(Z ∈ dz|T = u)P(T ∈ du)

where we used again that the integrand converges pointwise:

2N∑
k=2

1T>tk−1

1

1− Ftk−1

φ(tk, xtk)1(tk−1,tk](u)

→ 1

1− Fu−
1T≥uφ(u, xu)1(0,t](u)

since 1 is right-continuous with left limits, F is right-continuous with left limits and
φ is continuous in its first and second component (note that continuity in the second
component is for paths that ’pretty much look alike’ in terms of jump-time and -height,
since we have to use the metric d̃ here).
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Now we want to do the same for the compensator part.

Proposition 2. For φ ∈ C(1,0) the time continuous version of the compensator part is
given by

At =

∫
(0,t]

∂φ

∂t
(u, zu−)du+

∫
(0,t]

∫
X

1

1− Fu−
1T≥u

[
φ(u, zu)− φ(u, z(0))

]
dµ(u, z)

Proof. We sum our result from corollary A.2 over k

2N∑
k=2

ANtk −ANtk−1
=

2N∑
k=2

[φ(tk, xtk−1
)− φ(tk−1, xtk−1

)]
tk − tk−1

tk − tk−1

+

2N∑
k=2

1T>tk−1

1

1− Ftk−1

∫
[φ(tk, xtk)− φ(tk, z

(0)
k )]1tk−1<T≤tkdP

For N → ∞ we get due to φ being C1,0:

2N∑
k=2

[φ(tk, xtk−1
)− φ(tk−1, xtk−1

)]
tk − tk−1

tk − tk−1
→
∫
(0,t]

∂φ

∂t
(u, zu−)du.

The other term converges similar as in corollary 1.

Remark A.3. The path process is now openly represented as a stochastic transfor-
mation of the fundamental family of martingales q(t, z) for the martingale part. The
compensator takes again a form similar to the one we obtained in the first approach and
the result in theorem 1.14 and again we will have to assume some intrinsic regularities
to yield results about the characteristics of φ. Though we can easily generalize these
results for functions φ that only satisfy the condition (C’), we will stop right here, as
the similarities between the path dependent approach and the original value-at-time-t-
oriented approach are recognizable already. In fact one might construct the path of the
process up until time t ∈ R+ from the information about {T > t} or {T ≤ t} × {Z}
respectively. Even more the jump time and height can be reconstructed from a particular
path. This equivalence of notation seems to be unique for the single-jump processes that
stay constant in between two jumps. For branching Brownian motion for example, the
path-dependent notation seems to be preferable.

A.4 Compensating the path dependent compensator

We see ourselves again confronted with a solution of an ODE. But keep in mind, that φ
is now a functional in its second argument. Regarding the solution of the compensator-
ODE, we’ve treated the second argument only as a parameter so far. The differential
operator (or a.s. differential operator) was only aware of the first argument. In our
path dependent approach this is not different. The path is just a parameter to us, for
times t prior to the jump time T we will have the same argument z(0), which is just a
constant path. After T we will have jumped to a random height Z, but the path will
not change after that - our parameter here will then be ZT . Due to these similarities
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to the point-dependent approach, we can easily adopt the result from section 1.5 for
our path dependent approach:

Corollary A.4. v(t) = φ(t, xt) is an (Ft)-martingale, where

φ(t, y) = b(y)(1− δz(0)(y))− δz(0)(y)
1

1− Ft

(∫
(0,t]×X

b(zs)dµ(s, z) + r

)
,

and b : D([0,∞), X) → R with b ∈ L1
loc(P) and r ∈ R arbitrary.



Appendix B

Discrete jump heights

This section discusses an alternative way for more constrained processes. We use the
notation of chapter 1. The sections below can be read right after theorem 1.10, where
the discrete Version of the jump process is provided with a general Doob-decomposition.
An interesting special case arises under the following assumption:

Let Z(ω) ∈ {z1, . . . , zn} ⊂ X.

B.1 Markovian approach

The interesting part is the now available ability to ’pull’ the difference [φ(tk, z) −
φ(tk, z0)] out of the integral in the compensator part of the discrete Doob-Meyer com-
pensator (see theorem refDiscResultDM)

A
(N)
tk

−A(N)tk−1
= [φ(tk, x(tk−1))− φ(tk−1, x(tk−1))]

+ 1T>tk−1

1

1− Ftk−1

∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)]dµ(s, z).

For this we write

[φ(tk, Z)− φ(tk, z0)] =
n∑
i=1

[φ(tk, zi)− φ(tk, z0)]1Z=zi .

The measures dF
{zi}
s on R+ concentrate now on the atoms of the Z-distribution. We

can write

F
{zi}
t = µ([0, t]× {zi}) = P(T ∈ [0, t], Z = zi) = P(T ∈ [0, t]|Z = zi)P(Z = zi)

and would get∫
R+×X

g(s, z)dµ(s, z) =

∫
R+

n∑
i=1

g(s, zi)P(T ∈ dt|Z = zi)P(Z = zi)

=
n∑
i=1

∫
R+

g(s, zi)dF
{zi}
u (B.1.1)
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with B = {zi} and FBk as defined in section 1.1 before.

We immediately get

∫
(tk−1,tk]×X

[φ(tk, z)− φ(tk, z0)]µ(ds, dz)

=

∫
Y
[φ(tk, Z(ω))− φ(tk, z0)]1tk−1<T≤tk(ω)dP(ω)

=
n∑
i=1

∫
Y
[φ(tk, zi)− φ(tk, z0)]1Z=zi(ω)1tk−1<T≤tk(ω)dP(ω)

=
n∑
i=1

[φ(tk, zi)− φ(tk, z0)]

∫
Y
1Z=zi(ω)1tk−1<T≤tk(ω)dP(ω). (B.1.2)

The remaining integral might also be written as∫
R+×X

1Z=zi(ω)1tk−1<T≤tk(ω)dP(ω)

=

∫
R+×X

1Z=zi(ω)1T≤tk(ω)dP−
∫
Y
1Z=zi(ω)1T≤tk−1

(ω)dP

= P(T ≤ tk, Z ∈ {zi})− P(T ≤ tk−1, Z ∈ {zi})

= F
{zi}
tk

− F
{zi}
tk−1

.

For K → ∞ we will eventually end up with

n∑
i=1

2N∑
k=1

[φ(tk, zi)− φ(tk, z0)]
[
F

{zi}
k − F

{zi}
k−1

]
N→∞→

n∑
i=1

∫
[0,t]

[φ(u, zi)− φ(u, 0)]dF {zi}
u

(B.1.1)
=

∫
[0,t]×X

[φ(u, z)− φ(u, 0)]dµ(u, z)

(1.1.14)
=

n∑
i=1

∫
[0,t]

[φ(u, zi)− φ(u, 0)]P(Z = {zi}|T = u)dFu

=

∫
[0,t]

n∑
i=1

[φ(u, zi)− φ(u, 0)]E
[
1Z={zi}|T = u

]
dFu

=

∫
[0,t]

E

[
n∑
i=1

φ(u, zi)1Z={zi}|T = s

]
P(T ∈ ds)− φ(u, 0)[Ft − F0]

=

∫
[0,t]

E [φ(u, Z)|T = s]P(T ∈ ds)− φ(u, 0)[Ft − F0]

which is just a side note for now. We want to concentrate on the fact that we now
have:
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∫
(tk−1,tk]×X

[φ(tk, z)−φ(tk, z0)]µ(ds, dz) =

n∑
i=1

2N∑
k=1

[φ(tk, zi)−φ(tk, z0)]
[
F

{zi}
tk

− F
{zi}
tk−1

]
.

(B.1.3)

Upon closer inspection φ(tk, x(tk)) − φ(tk, x(tk−1)) is not zero if and only if the jump
time T ∈ (tk−1, tk]. With the above assumption of discrete-valued jump heights we get:

[φ(tk, x(tk))− φ(tk, x(tk−1))] =
n∑
i=1

(φ(tk, zi)− φ(tk, z0))[p(tk, {zi})− p(tk−1, {zi})]

(B.1.4)

Let us sum up the above discussion in a

Corollary B.1. The Doob-Meyer decomposition of the discrete process (x(tk)) with
discrete-valued jump heights is given by the martingale part (MN

tk
) and the previsible

compensator part (ANtk), each given respectively by

MN
k −MN

k−1 =
n∑
i=1

(φ(tk, zi)− φ(tk, z0))
[
M

(i),N
tk

−M
(i),N
tk−1

]
,

ANk −ANk−1 = [φ(tk, x(tk−1))− φ(tk−1, x(tk−1))]

+ 1T>tk−1

1

1− Ftk−1

n∑
i=1

(φ(tk, zi)− φ(tk, z0))
[
F

{zi}
tk

− F
{zi}
tk−1

]
.

were M
(i),N
tk

= p(tk, {zi})−
∑k−1

j=1 1T>tj
1

1−Fj

[
F

{zi}
j+1 − F

{zi}
j

]
is an (Ftk)-martingale.

In particular: M
(i),N
tk

is the martingale part of the Doob-Meyer decomposition of the
process (p(tk, {zi}))k

Proof. Use (B.1.3) and (B.1.4) to achieve the stated representation. The only thing left

to show is that the M
(i)
k are (Ftk)-martingales and part of the particular Doob-Meyer

decomposition. The conditional expectation of the process (p(tk, {zi}))k is given by

E[p(tk, {zi})|Ftk−1
] = E[1Z=zi1T≤tk |Ftk−1

]

= E[1Z=zi1T≤tk−1
|Ftk−1

] + E[1Z=zi1tk−1<T≤tk |Ftk−1
]

= 1Z=zi1T≤tk−1
+ 1T>tk−1

∫
1Z=zi1tk−1<T≤tkdP

1− Ftk−1

= 1Z=zi1T≤tk−1
+ 1T>tk−1

1

1− Ftk−1

[
F

{zi}
tk

− F
{zi}
tk−1

]
By the instructions from the proof of the Doob-Meyer decomposition we get as usual

M
(i),N
tk

−M
(i),N
tk−1

= [p(tk, {zi})− p(tk−1, {zi})]− 1T>tk−1

1

1− Ftk−1

[
F

{zi}
tk

− F
{zi}
tk−1

]
which is an (Ftk)-martingale by construction.
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The above special case with discrete Z is also quite instructive on how to deal with the
general case. For that let us set xn(t) to be constant on the sets of a partition:

xn(t, ω) :=

n∑
i=0

zi1Bi(ω), (B.1.5)

with B0 = {T ≥ t} and Bi = {T ≤ t, Z ∈ Ci} for i ∈ {1, . . . , n} where C(n) :=
(Ci)i∈{1,...,n} is a partition of X \{z0} (to account for all the values of Z when the jump
already happened) and zi = supω∈Ci

Z(ω) for i = 1, 2, . . . . Inside of the transforming
function φ this would look like

vn(k) := φ(tk, x
n(tk)) =

n∑
i=0

φ(tk, zi)1Bi

By this approximation we restrict our process to being discrete-valued and the above
corollary applies. Choose a monotonously increasing sequence of such partitions C(n)

(i.e. C(n) < C(n+1) or C(n+1) is finer than C(n)) and note that

� vn(k) ≥ v(k) for all k ∈ {1, . . . ,K} and n ∈ N and

� vn+1(k) ≤ vn(k) (i.e. pointwise monotone decreasing).

Hence vn → v pointwise and monotone. Take corollary B.1 for the process (vn(tk))k∈{1,...,2N}

(denote martingale and compensator as Mn,N
k and An,Nk respectively) and we end up

with:

Mn,N
k −Mn,N

k−1 =
n∑
i=1

(φ(tk, zi)− φ(tk, z0))
[
M

(i),n,N
k −M

(i),n,K
tk−1

]
,

where

M
(i),n,N
k = p(tk, Bi)−

k−1∑
j=1

1T>tj
1

1− Ftj

[
FBi
tj+1

− FBi
tj

]
and

FBi
tj

=

∫
Ω
p(tj , Bi)dP = µ([0, tj ], Bi).

B.2 Pathdependent aproach

Assume again just finite different jump heights, i.e. values for the random variable Z:

Z(ω) ∈ {z(1), . . . , z(n)} ∈ S. (B.2.1)

Under these assumptions we denote the path which jumps at time u to the level z(i)

by z
(i)
u , so we will get:

xt1T≤t =

n∑
i=1

z
(i)
T 1Z=z(i)1T≤t.
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We take the the notation of section 2 and set:

F
(i)
t := P(T ≤ t, Z = z(i)),

M
(i)
t := p(t, {z(i)})−

∫
(0,t]×X

1T≥u
1

1− Fu−
dµ(u, {z(i)}).

Note that the assumption on Z yields, that the different jump heights are now atoms
of the conditional distribution P(Z ∈ ·|T = u) = µu(·).

We summarize the limiting results under discrete jump heights for the martingale part
seperately:

Corollary B.2. Under the assumption of discrete jump heights Z the limiting martin-
gale part of the process is given by

Mt = φ(0, z
(0)
0 ) +

n∑
i=1

∫
(0,t]×X

(
φ(u, z(i)u )− φ(u, z(0)u )

)
dM (i)

u .

Proof. Take the result from corollary1 and use the partition-property and the ”‘conditional-
atom-property”’:

Mt =

∫
[0,t]×S

[
φ(u, zu)− φ(u, z(0))

]
dp(u, z) +

∫
(0,t]×X

[
φ(u, zu)− φ(u, z(0))

]
dp̃(u, z)

then for one we’ve got∫
(0,t]×X

[
φ(u, zu)− φ(u, z(0))

]
dp(u, z)

=
n∑
i=1

∫
(0,t]×X

[
φ(u, z(i)u )− φ(u, z(0))

]
dp(u, z(i))

and on the other hand we know∫
(0,t]×S

[
φ(u, zu)− φ(u, z(0))

]
dp̃(u, z)

=

n∑
i=1

∫
(0,t]

[
φ(u, z(i)u )− φ(u, z(0))

]
dp̃(u, z(i)).

Since dp̃(u, z(i)) = 1
1−Fu−1T≥udµ(u, z

(i)) we end up with the claimed equality.

Now we do the same for the compensator part:

Corollary B.3. Under the above assumption the limiting compensator part of the pro-
cess is given by

At =

∫
(0,t]

∂φ

∂t
(u, xu−)du+

n∑
i=1

∫
(0,t]×X

1T≥u
1− Fu−

[φ(u, xu)− φ(u, z(0)u )]dµ(u, z(i))
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Proof. In the form of Lemma A.2 we get

AtK =
K∑
k=1

[φ(tk, xtk−1
)− φ(tk−1, xtk−1

)]

+ 1T>tk−1

1

1− Ftk−1

∫
[φ(tk, xtk)− φ(tk, z

(0)
k )]1tk−1<T≤tkdP

=

K∑
k=2

φ(tk, xtk−1
)− φ(tk−1, xtk−1

)

tk − tk−1
[tk − tk−1]

+
K∑
k=2

n∑
i=1

1T>tk−1

1

1− Ftk−1

∫
[φ(tk, z

(i)
k )− φ(tk, z

(0)
k )]1Z=z(i)1tk−1<T≤tkdP

→
∫
(0,t]

∂

∂t
φ(u, xu−)du

+

n∑
i=1

∫
[0,t]

1T≥u
1

1− Fu−

∫
[φ(u, z(i)u )− φ(u, z(0)u )]dµ(u, z(i))

where we used the same pointwise approximation arguments as previously.
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