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ZUSAMMENFASSUNG 

 

Alltäglich führen wir mühelos Zeigebewegungen zu Bewegungszielen in unserem 

Umfeld aus, beispielsweise wenn wir den Touchscreen unseres Telefons berühren, um 

einen Anruf anzunehmen. Um eine Zeigebewegung auszuführen und unsere Hand zu der 

gewünschten Position zu bewegen, erstellt unser Gehirn einen Bewegungsplan. Dieser 

Bewegungsplan erfordert unter anderem eine Transformation eingehender visueller 

Informationen in motorische Signale, die an die Muskeln gesendet werden. Ein 

frontoparietales Netzwerk für Zeigebewegungen ist entscheidend an der 

Bewegungsplanung beteiligt. Das Netzwerk umfasst den dorsalen prämotorischen Cortex 

(PMd) und Areale im posterioren parietalen Cortex (PPC). Es ist bisher weitgehend unklar, 

wo im frontoparietalen Netzwerk die Transformation visueller Informationen in motorische 

Signale stattfindet. 

Das erste Ziel dieser Arbeit war es daher, zu untersuchen, ob die Areale des 

frontoparietalen Netzwerks eine visuelle oder motorische Repräsentation des 

Bewegungsziels aufrechterhalten. Hierfür wurde eine funktionelle 

Magnetresonanztomographie (fMRT)-Studie durchgeführt, in der Probanden einen 

visuellen Reiz dargeboten bekamen und nach einem Bewegungsplanungsintervall eine 

Zeigebewegung ausführten. Ein Bewegungsplanungsintervall zwischen der Präsentation 

des visuellen Reizes und der Bewegungsausführung ermöglicht es, die Bewegungsplanung 

zu isolieren und die planungsspezifischen Gehirnaktivierungen zu messen. Die 

anschließende Zeigebewegung wurde entweder zu der Position des visuellen Reizes 

ausgeführt oder zu der achsengespiegelten Position des Reizes. Diese Aufgabe erlaubt es, 

die motorische Repräsentation des Bewegungsziels von der sensorischen Repräsentation 

des visuellen Reizes zu dissoziieren. Zudem manipulierten wir, ob während des 

Planungsintervalls das Bewegungsziel voll spezifiziert oder unterspezifiziert war. So 

konnte die zweite Fragestellung dieser Arbeit untersucht werden, nämlich wie 

unterspezifizierte Bewegungsziele im frontoparietalen Netzwerk für Zeigebewegungen 

repräsentiert sind, und ob auch ein Bewegungsplan erstellt wird, wenn das Bewegungsziel 

unterspezifiziert ist. 



In der ersten Studie nutzten wir univariate Analysen der fMRT-Daten. Während der 

Bewegungsplanung zeigten sich frontoparietale Aktivierungen, im PMd und in Arealen des 

PPC, wie dem superioren Parietallappen (SPL) und dem anterioren Sulcus intraparietalis 

(aIPS). Innerhalb dieses Netzwerks hielt der linke SPL das Bewegungsziel aufrecht. Wenn 

das Bewegungsziel unterspezifiziert war, waren nur (posteriore) parietale Areale aktiviert, 

allerdings mit geringerer Aktivierungsstärke. 

In der zweiten Studie wurden die neuronalen Aktivierungsmuster weiterer 

frontoparietaler Regionen desselben Datensatzes mittels sensitiverer multivariater Analysen 

untersucht. Die Ergebnisse für die spezifizierten Bedingungen zeigten, dass frontoparietale 

Areale im PMd und SPL vorrangig das Bewegungsziel repräsentieren. Wenn das 

Bewegungsziel nicht spezifiziert war, war die Position des visuellen Reizes im PMd 

repräsentiert. 

Zusammengefasst zeigen die Ergebnisse, dass frontoparietale Areale bereits 

während der Bewegungsvorbereitung eine motorische Repräsentation des Bewegungsziels 

aufrechterhielten. Dies war auch der Fall in Arealen, die anatomisch nahe dem visuellen 

Cortex und damit früh im visuell-motorischen Verarbeitungspfad lokalisiert sind. Die 

Ergebnisse unterstreichen die Rolle des frontoparietalen Netzwerks für die 

Aufrechterhaltung und, möglicherweise, den Aufbau eines Bewegungsplans. Solange das 

Bewegungsziel unklar ist, hielt der PMd eine sensorische Repräsentation des visuellen 

Reizes aufrecht, während Areale im PPC eine vorbereitende Aktivierung ohne räumliche 

Repräsentation aufwiesen. Die Befunde legen nahe, dass keine vollständige 

Bewegungsplanung stattfindet, wenn das Bewegungsziel nicht spezifiziert ist. 

  



 

ABSTRACT 

 

In our everyday life, we effortlessly reach towards goal positions in space, like the 

touchscreen of our phone to accept an incoming call. To do so, the brain sets up a 

movement plan that will be used to move our hand to the desired position. Among others, 

such a plan requires incoming visual information to be transformed into a motor command 

that will be sent to the muscles. On a cortical level, reach planning primarily involves a 

frontoparietal reach network comprising the dorsal premotor cortex (PMd) and areas in the 

posterior parietal cortex (PPC). It remains widely unclear where in the reach network the 

transformation from a visual to a motor representation of the reach goal takes place. 

The first goal of this thesis was to examine whether frontoparietal reach regions 

maintain a visual or motor representation of the reach goal. To do so, we conducted a 

functional magnetic resonance imaging (fMRI) experiment in which participants saw a 

visual cue and had to reach after a delay either to its actual or to its mirrored position. This 

allowed for dissociating the sensory representation of the visual cue position from the 

motor representation of the reach goal position. By inserting a delay between stimulus 

presentation and reach execution we could analyze brain activation related only to reach 

planning. We further varied if the movement goal was fully specified or underspecified 

during the delay. We could thereby address the second main question of this thesis; how 

underspecified movement goals are represented in the frontoparietal reach network, and if 

frontoparietal reach regions are also engaged in reach planning when the movement goal is 

underspecified. 

In the first study of this thesis, we used univariate fMRI analyses and found 

predominant activation in the PMd and in posterior parietal areas like the anterior 

intraparietal sulcus (aIPS) and the superior parietal cortex (SPL) during reach planning. 

Within this reach network, the left SPL encodes the inferred reach goal rather than the 

position of the visual cue. When the reach goal is underspecified, reach regions in the PPC 

are recruited, but at a lower activation level. 

In the second study, multivariate pattern analysis was used on the same dataset to 

examine in more detail the characteristics of multiple regions within the reach network. In 

specified conditions, the PMd and regions in the SPL are again biased to maintain the 



position of the reach goal rather than that of the visual cue. However, in underspecified 

conditions, only the PMd, but not areas within the PPC, represents the visual cue position. 

Taken together, our results show that frontoparietal reach regions maintain a 

prospective motor code during reach planning. This highlights the crucial role of this 

network in maintaining and possibly also in setting up reach plans. When the movement 

goal is not yet specified, PMd maintains a sensory code rather than the reach goal, while 

PPC areas elicit non-spatial preparatory activation. This may suggest that the reach plan is 

only set up once the movement goal is specified. 

  



 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 1.1, 1.4, 2.2, 2.3, 2.4 and 3.1 show the Montreal Neurological Institute (MNI) 152 template MNI-

Colin27 brain template (MNI, Montréal, Canada; Holmes et al., 1998) and were created using the Multi-

image Analysis GUI (Mango, Research Imaging Institute, San Antonio, Texas, USA).  
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1. THE ONSET 

 

 

1.1 REACHING SEEMS SIMPLE 

In our everyday life, we continuously interact with our environment by executing 

goal-directed movements towards objects surrounding us. For instance, when the mobile 

phone rings and one sees that his or her boss is calling, one effortlessly reaches for the 

phone and presses the touch screen to reject the call. Reaching refers to a pointing 

movement with an additional transport of the hand. In order to perform such a seemingly 

simple movement, we first need to set up a movement plan that will be used to activate our 

muscles and move our joints in order to bring our finger to the desired position. However, 

the plan for this action requires many processing steps. 

Before planning a reaching movement to reject an incoming call, we need to 

perceive that our mobile phone is ringing, by either seeing a color/brightness change on the 

screen, hearing the ring tone, feeling the vibration, or a combination of those. Thereafter, 

the process of movement planning can begin. In order to plan a reaching movement 

towards a single position we need to obtain information about the spatial position of the 

phone and, more specifically, of the button that we want to press. We also need to integrate 

this spatial information, for instance with information about the position of our own hand. 

Even if we only consider these fundamental components of movement planning, the 

sensory information relevant for the movement needs to be integrated and transformed into 

motor commands, so that we can execute the desired reach to answer or reject the call. The 

necessary transformation from sensory to motor information involves cortical brain areas 

that form a network for reach planning.  
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1.2 THE BRAIN MAKES THE PLAN 

When we want to reach for an object, we usually shift our gaze to its position. The 

visual signals are transmitted from our retina to the visual cortex, a brain structure 

responsible for processing visual information. The visual cortex comprises the occipital 

lobe, located at the posterior part of the brain (Figure 1.1). To reach out for an object, on 

the other hand, we rely on motor commands that are sent to our muscles. The motor 

commands are generated in the primary motor cortex (M1) and from there, they are sent to 

the spinal cord. M1 is located in the frontal lobe of the brain. To be suitable for the motor 

system, the visual input needs to be transformed to a motor output in between the visual 

and motor cortex. Two core brain structures are involved in this transformation: the dorsal 

portions of the premotor cortex (PMd), located in the frontal cortex just anterior to the M1, 

and the posterior portions of the parietal cortex (PPC; Figure 1.1), located between the 

visual and primary motor cortex. Due to its anatomical location in between sensory 

cortices, most importantly just anterior from the visual cortex, the PPC is an ideal hub for 

several aspects of movement planning, including visuomotor transformations. The PPC 

comprises the superior parietal lobule (SPL), the inferior parietal lobule (IPL), as well as 

the intraparietal sulcus (IPS). The frontal and posterior parietal areas involved in reach 

planning are collectively referred to as the frontoparietal reach network (Gail and 

Andersen, 2006).  

 

 
Figure 1.1: Schematic of brain areas involved in reach planning. The posterior parietal cortex (PPC) 
comprises the superior parietal lobule (SPL), the inferior parietal lobule (IPL), as well as the intraparietal 
sulcus (IPS), and is located anterior from the visual cortex. The dorsal premotor cortex (PMd) is located 
anterior from the primary motor cortex (M1) that sends motor commands to the spinal cord. 
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The essential role of the frontoparietal reach network in reach planning can be 

illustrated when parts of it are disrupted due to lesions. Optic ataxia for instance is a well-

known neuropsychological symptom that occurs after damage to posterior parietal areas. 

Most patients with optic ataxia have difficulties reaching towards goals in the peripheral 

visual field (Rossetti et al., 2003) although their perceptual and motor abilities are 

preserved. Optic ataxia can be further characterized by errors in reaching movements 

towards goals in the contralesional visual field (field effect) and/or errors in movements 

with the contralesional hand (hand effect; Perenin and Vighetto, 1988; Khan et al., 2007; 

Blangero et al., 2008). It is worth noting that although misreaching can occur also to targets 

of other sensory modalities, the deficits occur predominantly for visual goals (Perenin and 

Vighetto, 1988; Blangero et al., 2007). These findings illustrate that optic ataxia may result 

from deficits in coupling visual input with motor output and they highlight the importance 

of PPC areas in the process of visuomotor integration. 

Studies of single patients have shown that optic ataxia can result from either 

unilateral (Perenin and Vighetto, 1988; Blangero et al., 2007; Ferrari-Toniolo et al., 2014) 

or bilateral lesions to the SPL (Pisella et al., 2000, 2004). Nevertheless, more inferior PPC 

lesions can also lead to optic ataxia (Perenin and Vighetto, 1988). Reports on overlapping 

lesion sites in a larger sample of patients suggest the intraparietal sulcus (Perenin and 

Vighetto, 1988) or the parieto-occipital junction (Karnath and Perenin, 2005) as the neural 

basis of optic ataxia.  

Still, the results concerning the neural correlates of optic ataxia are unclear, partly 

because the PPC lesions are typically widespread and they are located at slightly different 

anatomical locations, which makes it difficult to compare lesions across patients. As a 

result of these anatomical differences, there are also differences in the extent and character 

of functional impairments, such as the occurrence of visual field- and/or hand-effects in 

different patients. Although studies of optic ataxia patients reveal causal contributions of 

PPC areas to visuomotor integration, they do not allow for the characterization of precisely 

circumscribed anatomical areas. Such limitations can be overcome with experiments using 

electrophysiological recording techniques in non-human primates or neuroimaging 

techniques in healthy humans. 
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1.3 THE MACAQUE’S REACH NETWORK 

Over the last few decades, the brains of non-human primates, like macaque 

monkeys, have been regarded as an adequate model of sensorimotor processes in the 

human brain. When it comes to tasks such as goal-directed movements, macaque monkeys 

are equipped with skills that are comparable to those of humans and are therefore suitable 

study subjects. Moreover, macaque monkeys can be subject to electrophysiological 

recordings that allow for measuring the current produced by neuronal populations (local 

field potentials), and for the recording of single neurons’ firing rates. As a result, neuronal 

activity can be directly measured in precisely circumscribed brain areas, which gives an 

important insight into the neurophysiological processes underlying the preparation of 

movements. 

Mountcastle and colleagues (1975) conducted one of the first studies reporting 

neuronal activity related to the movement behavior of macaque monkeys. In particular, 

different neuronal populations in area 5 and 7a of the PPC (Figure 1.2) not only respond 

during saccadic and smooth pursuit eye movements, as well as fixation, but also during 

passive arm movements, as well as when planning and executing active reaching 

movements within the immediate extrapersonal space (Mountcastle et al., 1975). These 

findings motivated numerous studies to investigate the specificity of monkey PPC areas for 

certain effectors, such as the limbs or eyes. For instance, are there regions that are 

selectively involved in planning and executing movements with the arms? A second 

important aspect of movement planning is where we move. Subsequent research has 

addressed the question of how areas of the PPC involved in movement planning represent 

movement goals. 

A number of studies have suggested different areas of PPC, particularly in the SPL 

and along the IPS, for planning and executing movements with different effectors. One way 

to study effector selectivity is to test if and to what extent neuronal activity represents either 

the saccade goal or the reach goal. Snyder et al. (1997) examined effector-selectivity in the 

PPC using a saccade vs. reach paradigm. Their results revealed that the PPC is indeed 

involved in movement planning, but most interestingly that the activity in different PPC 

areas depends on the effector the monkey will use to perform the goal-directed movement. 

For instance, when the monkey has to plan and perform a saccadic eye movement, an area 

located at the lateral wall of the posterior half of the IPS, the lateral intraparietal area (LIP, 
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Figure 1.2) is strongly involved in encoding the saccade goal position. On the other hand, 

when the monkey has to perform a reaching movement, neuronal activity in another area 

posterior to LIP comprising parts of the medial wall of the intraparietal sulcus (area MIP; 

Figure 1.2) is strongly tuned to the spatial position of the reach goal. Reach goal encoding 

was taken as evidence for area MIP being involved in reaching movements and has since 

been confirmed in numerous studies (Gail and Andersen, 2006; Gail et al., 2009; 

Westendorff et al., 2010), also for reach sequences (Batista and Andersen, 2001). 

Moreover, MIP exhibits reach planning activity even if the exact reach goal position is still 

unknown (Calton et al., 2002), and also when the macaque is not instructed but freely 

chooses to perform a reach (Cui and Andersen, 2007). Area MIP has therefore been 

referred to as the parietal reach region (PRR; Snyder et al., 1998). In encoding the reach 

goal position, PRR neurons do not only take into account the absolute position of the goal. 

Rather, their firing rates are gain modulated by a combination of the reach goal and the 

hand position (Buneo et al., 2002) as well as the distance between eyes and hand (Chang et 

al., 2009). It is important to note that reach-related signals do not occur exclusively in PRR, 

and saccade-related signals do not occur exclusively in LIP (Snyder et al., 1997). Rather 

than speaking of effector selectivity, it is more appropriate to refer to regions as being 

preferentially or dominantly involved in or related to reaches or saccades. 

One main characteristic of reach-related regions like PRR is the extent to which 

these regions are specialized for representing the reach goal positions and/or the arm to 

move. Recently, Yttri et al. (2014) inactivated PRR and showed deficits in reaching 

movements with the contralateral arm independent of the reach goal position, leaving 

reaches with the ipsilateral arm unaffected. This suggests that PRR specifically represents 

the arm for an upcoming reach. However, there is also evidence that inactivation of PRR 

yields specific deficits in reaching to goals contralateral to the lesion site comparable to the 

field-effect in optic ataxia (Hwang et al., 2012), indicating that the reach goal is represented 

more strongly in PRR than the effector. Possibly, these contradictory results occur due to 

differences in the size of the lesioned site. However, they may also be caused by differences 

in the anatomical location of the lesion. For instance, the most posterior parts of MIP were 

lesioned in the former study (Yttri et al., 2014), but the middle portions of MIP in the latter 

(Hwang et al., 2012). This illustrates the current debate about the anatomical location and 

extent of PRR. 
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It is important to note that PRR contains several reach-related cortical regions. 

Although most studies have focused on area MIP (Buneo et al., 2002; Cui and Andersen, 

2007; Hwang et al., 2012), PRR may also be defined as including dorsal aspects of the 

parieto-occipital visual area 6a (V6a; Fattori et al., 2001) located anterior to the parieto-

occipital sulcus (POS; Figure 1.2). In addition to the vague anatomical definition of 

macaque PRR, selective responses for reach planning have also been found for neurons in 

the dorsal portions of Brodmann area 5 (area 5d; Cui and Andersen, 2011), and in area AIP 

(Lehmann and Scherberger, 2013) that is located anterior to LIP, which was previously 

reported as grasp-selective (Murata et al., 2000). Considering these widespread reach-

selective neuronal populations within PPC, it is reasonable to assume a whole network of 

reach regions throughout macaque SPL and IPS, rather than a single module specialized for 

reaching movements.  

In accordance with their functional specialization for different effectors, the PPC 

regions also show different patterns of connectivity with frontal regions. Reach-related 

regions V6a and 5d as well as PRR exhibit the strongest connectivity with PMd via 

monosynaptical connections (Tanné-Gariépy et al., 2002), underlining the importance of 

PMd in reach planning and execution (Kalaska et al., 1997; Wise et al., 1997). 

 

 

Figure 1.2: Lateral view of the macaque monkey brain showing the posterior parietal cortex (PPC) in white. 
The PPC is located posterior from the primary somatosensory cortex (S1), and anterior from the occipital 
cortex, from which it is divided by the parieto-occipital sulcus (POS). It comprises Brodmann areas 7A and 7B 
in the inferior parietal lobule (IPL), and Brodmann area 5 in the superior parietal lobule (SPL). Crucial for 
movement planning are the areas located along the intraparietal sulcus (IPS): the lateral intraparietal area 
(LIP) for saccades, the anterior intraparietal area (AIP) for grasping and reaching, and the middle 
intraparietal area (MIP) and visual area 6a (V6a) for reaches. Figure adapted from Culham and Kanwisher 
(2001). 
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In accordance with the findings in PPC, neurons in PMd encode goals for upcoming 

reaches (Cisek and Kalaska, 2002; Gail et al., 2009; Westendorff et al., 2010). Similar to 

PRR, gain-modulated neurons in PMd represent the reach goal relative to the position of 

hand and gaze (Pesaran et al., 2006). However, the PMd also encodes additional 

information required to set up a motor command such as the amplitude of the upcoming 

reach (Messier and Kalaska, 2000). Furthermore, the activity of PMd during movement 

execution resembles the activity in M1. For instance, PMd activity similar to M1 activity 

reflects arm orientation and reach trajectory (Scott et al., 1997). Moreover, the preferred 

direction of neurons in both PMd and M1 representing the reach goal position changes in 

response to changes of arm orientation (Caminiti et al., 1991). The functional properties of 

the PMd highlight that in addition to its crucial role in setting up reach plans, the PMd is 

also important for reach execution and shows a stronger motor-based character than PPC. 

In accordance, PMd is not only connected to M1 (Dum and Strick, 2005), but is also 

directly connected to the spinal cord (He et al., 1993).  

Taken together, electrophysiological recordings from the macaque monkey show 

that a frontoparietal network comprising the macaque PMd and PPC areas is involved in 

reach planning and execution, for instance by representing the position of the goal for an 

upcoming reach. These findings contribute to our current understanding of 

neurophysiological mechanisms underlying visuomotor processing. However, the extent to 

which the macaque and human brain regions are anatomically and functionally equivalent 

is still under debate (Passingham, 2009). Despite their similarities, macaque and human 

PPC also show strong anatomical differences (Van Essen et al., 2001). For instance, 

Brodmann area 7 is located inferior from the IPS in macaques, but superior from the IPS in 

humans (Figure 1.2 and 1.5). Therefore, the extent to which findings in macaque monkeys 

can be transferred to humans is unclear. 

 

1.4 THE HUMAN’S REACH NETWORK 

While electrophysiological recordings in macaque monkeys allow for the precise 

characterization of single cell firings as well as responses of neuronal populations at a very 

high temporal resolution, studies typically examine only a few cortical regions. Moreover, 

the recordings require electrodes to be implanted in the brain which is not adequate for 
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studying healthy human brains and has so far only been done in small samples of specific 

patient groups, such as in a recent study of tetraplegic patients (Aflalo et al., 2015).  

On the other hand, non-invasive imaging techniques, such as functional magnetic 

resonance imaging (fMRI), allow for measuring correlates of brain responses throughout 

the whole brain, although at a lower temporal resolution than electrophysiological 

measures. Magnetic resonance imaging (MRI) makes use of the fact that the nuclei of 

hydrogen atoms have magnetic properties. In an MRI scanner, these nuclei are aligned 

along the direction of a strong static magnetic field and then they are exposed to a radio 

frequency magnetic pulse that causes the nuclei to absorb energy and thereby produce a 

measurable signal. In fMRI, changes in the local oxygenation of blood in the brain are 

measured, which are assumed to reflect the amount of brain activity; the more active a brain 

region, the more blood is sent to this region, which leads to a surplus in local blood oxygen. 

Relative changes in the amount of oxygenated and deoxygenated blood also go along with 

differences in magnetic susceptibility that can in turn be used to map which brain regions 

are active. This effect is referred to as the blood oxygenation level dependent (BOLD) 

effect (Ogawa et al., 1990).  

For each individual volume element (voxel) of the brain, conventional univariate 

fMRI analyses determine if changes across time in the measured BOLD signal are related 

to a particular event, and are significantly more active in response to this event as compared 

to a baseline condition or another condition. By looking at individual activated voxels or 

connected clusters of activated voxels, it is possible to map activated regions throughout 

the brain or to determine the averaged activation within a particular region of interest 

(Figure 1.4). 

To capture the BOLD signal related to movement planning, delayed movement 

tasks have been used in several studies. Again, monkey research forms the basis of this 

strategy. The PRR as a core region for reach planning exhibits persistent activity, thereby 

maintaining the reach goal position even if the onset of the reach movement itself was 

delayed by several seconds and the reach goal was not visible anymore (Klaes et al., 2011). 

Likewise, human brain regions associated with reach planning, such as the SPL and PMd, 

maintain movement goal positions throughout a delay of up to 20 seconds (Toni et al., 

2002; Connolly et al., 2002; Lindner et al., 2010; Medendorp, Goltz, and Vilis, 2005, 

2006). Moreover, inserting a delay between the presentation of the sensory input, such as a 

visual cue position, and the movement execution has the advantage of dissociating sensory 
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representations from motor related representations (Rosenbaum, 1980). Importantly, using 

such a manipulation for studying sensorimotor processing does not lead to an artificial 

situation. Although humans usually perform visually-guided reaches towards a visually 

present object, in many cases we need to remember the position of an object, and only 

reach to the remembered goal position after a delay, which is referred to as memory-guided 

reaching. For instance, one can keep the position of the ringing mobile phone in memory 

and reach for it, even if in the meantime one is talking to and looking at a person nearby. 

Using univariate analyses of fMRI data, a network of human frontoparietal regions 

has been robustly shown to be involved in both reach planning (Toni et al., 2002; Beurze et 

al., 2007, 2009; Lindner et al., 2010) and execution (Fabbri et al., 2010, 2014). As shown 

schematically in Figure 1.1, this network typically comprises the PMd and the PPC, 

particularly its areas SPL and IPS. Nevertheless, neurons in reach-related regions may also 

be active during saccade planning, as has been shown in macaque monkeys, where reach-

related regions also exhibit some activity related to saccade planning (Snyder et al., 1997). 

One may then ask to what extent the regions of the human frontoparietal reach network are 

specific to reach planning. 

Human frontoparietal networks for arm and eye movements seem to largely 

overlap, since these regions show activation during planning and execution of both saccade 

movements and reaching or pointing movements. Yet reaching movements usually recruit a 

more widespread network at a higher level of activation such as the PMd, the middle IPS 

and anterior IPS (aIPS), and the SPL, particularly its medial parts (the precuneus; PCu) 

extending to the parieto-occipital cortex (Astafiev et al., 2003; Filimon et al., 2009; Beurze 

et al., 2009; Medendorp, Goltz, Crawford, and Vilis, 2005). To quantify the extent to which 

frontoparietal regions are specifically involved in reach planning, Beurze et al. (2009) 

calculated index maps representing the degree to which a region shows stronger activation 

during reach or saccade planning in humans (Figure 1.3). A preference for reaches was 

found in the posterior parietal and frontal regions, including the PMd. The preference for 

reaches becomes stronger in frontal regions, such as the PMd (Beurze et al., 2009; 

Medendorp, Goltz, Crawford, and Vilis, 2005). These regions are considered to be 

dominantly involved in reach planning, i.e. they are reach-related. It is noteworthy that 

reach-dominance was determined by comparing reaches and saccades in most studies. A 

recent study additionally investigated foot movements and found limb-selective rather than 

reach-selective regions in PPC (Heed et al., 2011). Moreover, effector relatedness may not 
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be a fixed property in PPC and PMd, but it may rather evolve throughout the process of 

movement planning. When only the effector but not the movement goal is presented, SPL, 

IPS, and PMd are recruited, but in an effector-independent manner. Only when the 

movement goal is also specified, do these regions exhibit effector dominant representations 

with a preference for hand over eye movements in PPC and PMd as depicted in Figure 1.3 

(Beurze et al., 2009).  

 

 

Figure 1.3: Effector-dominance in the network involved in movement planning (Beurze et al., 2009). 
Significantly stronger activations for reach planning than saccade planning can be seen in the dorsal 
premotor cortex, in the supplementary and cingulate motor area, in the primary motor cortex, and in the 
posterior parietal cortex along the intraparietal sulcus. All of these regions show a preference for reaches 
over saccades. 

 

As described above, traditional univariate fMRI analyses reveal the average 

activation within a particular region. But they do not take into account the information 

contained in distributed activation patterns, so they may not be sensitive enough to discover 

potential differences between effectors. Multivoxel pattern analysis (MVPA) of fMRI data, 

on the other hand, is well suited to examine the informational content represented in spatial 

patterns of activation for different experimental manipulations, such as reach versus 

saccade planning. When one performs MVPA, a classifier is trained on a subset of data in 

order to learn how voxel patterns represent different conditions (Haxby et al., 2001; 

Kamitani and Tong, 2005). Then, another subset of the same dataset is presented to the 

classifier and it is tested on whether it can correctly classify the voxel pattern as 

representing one of the learned conditions, such as reach or saccade planning. In other 

words, while univariate analyses of fMRI data reflect the strength of activation, 

multivariate approaches assess the pattern of activation and thus the information contained 

within a region (Figure 1.4). During movement planning, regions in the SPL and IPS, as 

well as PMd, represent whether the upcoming movement will be a reach or a saccade 
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(Gallivan, McLean, Smith, et al., 2011). This result indicates that arm and eye movements 

are represented differently, but information about which effector is predominantly 

represented is lacking. To gain a better understanding, it is necessary to combine univariate 

and multivariate fMRI analyses to quantify how strongly a representation is involved in a 

certain process. 

 

 
 
Figure 1.4: Schematic of fMRI analyses in a region of interest (ROI). Effector specificity can be studied via 
univariate or multivariate analyses in an exemplary ROI, such as the anterior SPL. In the case of a univariate 
analysis, one possibility is to determine the activation level for each individual voxel (depicted in white, light 
blue, and dark blue) and then average it across all voxels contained in the ROI. The averaged activation can 
then be compared across conditions to determine if the region shows a preference for one of the conditions 
(here, it is between reaches and saccades). In a multivariate analysis, such as multi-voxel pattern analysis, on 
the other hand, a classifier is trained on a subset of data in order to learn how voxel patterns represent 
different conditions (Kamitani and Tong, 2005) like reach or saccade planning. Then, another subset of the 
same dataset is presented to the classifier and it is tested on whether it can correctly classify the voxel 
pattern as representing one of the learned conditions. If the obtained decoding accuracy is significantly 
above chance, one can conclude that the region contains information about the effector. 

 

Taken together, previous research shows that there are also areas dominantly related 

to reach preparation and execution in human PPC. Early human fMRI studies have focused 

on identifying a homologue of macaque reach-related regions within the PPC. For PRR, 

they found designated regions in Brodmann area 7 in the SPL (SPL7) for pointing, i.e. 

finger movements towards a position without an arm movement (Astafiev et al., 2003; 

Connolly et al., 2003). More recent studies, however, question the concept of one reach-
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related region in human PPC (Filimon et al., 2009; Gallivan, McLean, Smith, et al., 2011). 

As in macaque PPC with reach-related neurons in PRR, V6A, AIP, and area 5d (Snyder et 

al., 1997; Fattori et al., 2001; Cui and Andersen, 2011; Lehmann and Scherberger, 2013), 

human PPC likewise contains a complex of reach regions. A broad distinction can be made 

between two clusters in the SPL7.  

A posterior SPL7 cluster comprises the posterior PCu and posterior IPS (Prado et 

al., 2005; Filimon et al., 2009). This cluster often extends to the superior parieto-occipital 

cortex (SPOC; Gallivan et al., 2009; Cavina-Pratesi et al., 2010) just anterior or even 

posterior to the parieto-occipital sulcus (POS). Based on probabilistic histological maps 

(Eickhoff et al., 2007), this cluster most often falls into the posterior BA7, being labelled as 

the SPL7P. SPOC processes information not only about the transportation of the hand in 

reach and grasp movements (Cavina-Pratesi et al., 2010), but also about an object’s 

reachability (Gallivan et al., 2009), the hand orientation (Monaco et al., 2011), as well as 

the grasp axes (Monaco et al., 2014) for grasping movements. Therefore, SPOC has been 

discussed as a putative human homologue of macaque area V6A (Gallivan et al., 2009), 

which not only contains reach-related neurons, but also neurons selective for different grip 

types (Figure 1.5; Fattori et al., 2010).  

An anterior SPL7 cluster is also located medially, in the anterior precuneus (aPCu), 

sometimes extending to the middle portions of medial IPS (Prado et al., 2005; Filimon et 

al., 2009; Gallivan, McLean, Smith, et al., 2011; Gallivan, McLean, Valyear, et al., 2011; 

Bernier et al., 2012). The corresponding probabilistic histological label for this anterior part 

of BA 7 is SPL7A. Area SPL7A, labelled ‘human PRR’ by Connolly et al. (2003), likewise 

plays a crucial role in planning and executing reaching and pointing movements (Figure 

1.5; Connolly et al., 2003; Fernandez-Ruiz et al., 2007; Bernier et al., 2012), with and 

without visual feedback from the hand (Filimon et al., 2009), and it is even engaged in 

imagined and observed reaching (Filimon et al., 2007).  

How do the SPL regions functionally differ from each other? It has been discussed 

that the SPL exhibits a visual to somatosensory gradient with the posterior cluster relying 

more on visual input, making it a visuomotor region mostly involved in visually-guided 

reaches (Filimon et al., 2009). The anterior cluster relies more on proprioceptive 

information, such as in reaching with closed eyes (Filimon et al., 2009). Similarly, a 

gradient for the representation of movement goal versus effector representation has been 

suggested (Beurze et al., 2009), with posterior clusters exhibiting a stronger representation 
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of the movement goal position (left or right visual field), while the anterior cluster shows a 

stronger representation of the effector to move (left or right arm, as opposed to the eye). 

Although these regions encode the movement goal (Beurze et al., 2009), it remains unclear 

if they weight the visual or motor components differently in their representation of the 

reach goal.  

 

 

Figure 1.5: Lateral view of the human brain showing the posterior parietal cortex (PPC) in white. The PPC is 
located posterior from the postcentral sulcus (PCS), and anterior from the occipital cortex from which it is 
divided by the parieto-occipital sulcus (POS). It comprises Brodmann areas 7 and 5 in the superior parietal 
lobule (SPL), the inferior parietal lobule (IPL), and the intraparietal sulcus (IPS). The regions located in the 
SPL are particularly crucial for movement planning. A putative human homologue of macaque PRR is 
sketched superior from the IPS in the anterior portions of SPL area 7. Putative human area AIP may be 
located in the anterior parts of the intraparietal sulcus (IPS). The homologue of area V6A (not visible here) is 
presumed to be located in the medial portions of SPL7 extending to the parieto-occipital region (PO). Figure 
adapted from Culham and Kanwisher (2001). 

 

In addition to the SPL clusters described above, reaching activates the aIPS 

(Filimon et al., 2009; Lindner et al., 2010). The aIPS shows stronger activation during 

grasping even without transporting the arm towards the object (i.e. only opening and 

closing the grip to grasp an object). It has therefore been suggested that the aIPS may be the 

human homologue of macaque grasp-selective region AIP (Figure 1.5; Culham et al., 2003; 

Cavina-Pratesi et al., 2010; for a review see Culham et al., 2006). However, as aIPS also 

responds to mere arm transport without a grip component, it is unlikely that it is exclusively 

involved in grasping. Instead, the area may play a more general role in visuomotor control, 

such as in the on-line control of movements (Tunik et al., 2005; for a review see Tunik et 

al., 2007). 
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Taken together, previous research has ascribed functional differences to the regions 

within the frontoparietal reach network. Putative functional differences among these 

regions with regards to spatial encoding processes are mostly unclear. That is, do different 

regions maintain a visual or motor representation of reach goals during reach planning? To 

address this question, it is essential to dissociate visual and motor representations from each 

other. 

 

1.5 WHAT YOU SEE OR WHERE YOU MOVE? 

In the previous sections, we considered one of the simplest cases of movement 

planning: planning a reach towards a visually present or memorized goal. However, 

movements can also be shaped by the context in which a movement goal is placed. It is 

then important to voluntarily and flexibly adjust our actions to this context. For instance, it 

is easy to reach for the button of a phone and reject a call, but rejecting the call may only be 

the desired action in certain situations, like when one’s boss is calling. If a friend’s name is 

on the screen, one would rather press the accept button. The same visual input (seeing an 

incoming call on the screen of the phone) can thus lead to different actions depending on 

the context (movement of one’s finger to one button or the other and accepting or rejecting 

the call). 

The pro-/anti-movement task (Hallett, 1978) is a well suited task to set identical 

visual inputs into different contexts and, thereby, manipulate the desired motor output. In 

this task, participants see a visual cue and need to combine it with a context rule in order to 

infer the movement goal. These context rules either require performing a pro-movement 

towards the position of the visual cue or an anti-movement to its mirrored position. Pro-

movements require a direct sensorimotor transformation because the visual cue position 

corresponds to the movement goal position. However, for anti-movements the movement 

goal position is dissociated from the visual cue position. In other words, anti-movements 

require the suppression of the intuitive pro-movement, as well as the voluntary generation 

of a movement towards the mirrored position. Under these requirements, the pro-/anti-

movement task is well suited to study sensorimotor transformations during the planning of 

eye and arm movements.  

In an immediate reach task, anti-reaches yield longer reaction and movement times 

and are less precise, as compared to pro-reaches (Westendorff and Gail, 2011). On a 
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cortical level, anti-pointing causes higher activation in SPL and IPL (Connolly et al., 2000). 

These behavioral and neurophysiological effects may reflect the additional cognitive 

processes of movement suppression and re-planning that are required before executing an 

anti-movement. However, by inserting a delay between the presentation of the instructing 

cues (the visual cue and the rule cue) and the movement execution, these behavioral 

differences can be reduced and the advantage of dissociated visual cue and movement goal 

positions can still be exploited. As a result, a delayed pro-/anti-movement task is ideally 

suited to study preparatory activation and its nature. Does the activation reflect a 

retrospective sensory code, the visual cue position, or a prospective motor code, the 

movement goal position? 

Several electrophysiological studies in macaque monkeys used this task design and 

demonstrated that some neurons in both PMd and PRR encode the position of the visual 

cue until the context rule cue that specified the reach goal appeared. Importantly, once the 

context rule is presented and the movement goal is specified, the neurons may dynamically 

switch to encode the reach goal position (Figure 1.6; Gail and Andersen, 2006; Gail et al., 

2009; Westendorff et al., 2010; Klaes et al., 2011). The tuning properties of populations in 

PMd and PRR are thus not fixed to either the visual cue or reach goal. Rather, they vary 

throughout the process of reach planning, and their tuning properties are also dependent on 

the amount of information available.  

 

 

Figure 1.6. Directional tuning of a PRR example neuron (Westendorff et al., 2010). This example motor-goal 
neuron shows a dynamic switching from cue- to motor-related tuning. The left polar plots show that the 
neuron is directionally tuned for the visual cue position (down) in both pro- and anti-trials when only a visual 
cue is known (cue period). During a memory period, when the context rule (pro or anti) is known, the 
neuron is directionally tuned for the motor goal, in opposite directions in both the pro- and anti-trials (right 
plot).  
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Interestingly, PRR shows stronger directional tuning for directly cued pro-reaches, 

while PMd prefers anti-reach goals (Gail et al., 2009). The context rule thus differently 

modulates neuronal activity in the two regions and is interpreted as a more stimulus-driven 

representation of automatic reach plans in PRR as opposed to a predominant representation 

of inferred movement goals in PMd. 

For reach execution, it is known that the SPL is sensitive to both the movement 

direction (Fabbri et al., 2010, 2014) and the movement goal position (Barany et al., 2014). 

This region may be involved in sensorimotor transformations as it represents both the input 

(the visual movement goal position) and the output (the movement direction) to these 

transformations. PMd, on the other hand, does not contain representations of the movement 

goal position. It only contains representations of the movement direction, indicating that it 

may be more important for motor-related than for sensory-related features (Barany et al., 

2014). It is noteworthy that the described results are based on the reach execution phase, so 

the findings may have been biased towards a motor representation.  

How the reach goal is encoded during reach planning remains widely unclear, 

particularly with regard to putative differences between regions within the frontoparietal 

reach network during assessment of the visual and motor components of the reach goal. For 

instance, one may hypothesize that posterior parietal regions located near the visual cortex 

maintain visual representations, while the PMd is located anterior to M1 and may be more 

motor-related. If a prospective motor code (the reach goal) rather than a retrospective visual 

code is maintained in frontoparietal regions, this suggests that the regions may be involved 

in maintaining and potentially setting up reach plans. Yet, it would still be unclear how 

much information is necessary to set up a movement plan. 

 

1.6 PLANNING TO REACH AMBIGUOUS GOALS 

As movement planning relies on the integration of numerous different pieces of 

information, it is important to understand what happens when one of these pieces is 

missing. Coming back to the previous example, one would normally always reject a call 

from one’s boss, but always accept a call from a friend. But what happens if one only hears 

the phone ringing before seeing the screen to realize who is calling? One cannot be sure 

whether to accept or reject the call before looking at the screen. If the available information 

is not enough to specify one reach goal, it may be that movements towards both the reject 
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and accept button are planned simultaneously. Alternatively, reach planning may be 

delayed until all necessary information is given (seeing the name on the screen) and the 

reach goal is specified. 

Several behavioral studies in humans have addressed this issue using paradigms in 

which participants were presented with multiple potential reach goals and asked to start 

their arm movement before the final reach goal was cued (C. S. Chapman et al., 2010; 

Stewart et al., 2013; Gallivan et al., 2016). Results showed that in ambiguous situations, 

movement characteristics, such as the reach direction, correspond to an average of 

movements towards each of the targets presented alone (C. S. Chapman et al., 2010). The 

authors suggest that this averaged trajectory reflects both the number and the position of all 

potential movement targets. In addition to averaged reach trajectories, two competing 

movement goals with different orientations cause an averaged wrist orientation until one of 

the goals is cued as the final movement goal (Stewart et al., 2013). However, these results 

leave unclear whether both competing movement plans are fully specified or if one 

movement plan is specified based on averaged visual-spatial target information. To test 

both putative hypotheses, Stewart et al. (2014) introduced an obstacle close to one of two 

possible target positions. The obstacle’s position led to a rotation of the initial movement 

trajectory away from the obstacle. Thus, the movement vector is not just a mere averaged 

visual-spatial representation of both reach goals, but a motor average of competing 

movement plans. These findings were interpreted as a simultaneous specification of all 

potential movement plans, supporting previous reports from electrophysiological studies in 

macaque monkeys. 

Cisek and Kalaska (2002, 2005) were one of the first to demonstrate that neurons in 

macaque PMd fire when one of two potential reach goals is near their preferred direction. 

The responses of single neurons were significantly weaker compared to trials with only one 

reach target at the neuron’s preferred direction. Yet at the population level both potential 

reach directions were encoded until one of the two was selected as a final reach goal. Once 

the reach goal was specified, neurons tuned for the direction of the goal increased their 

firing rate while the firing of neurons tuned towards the non-selected potential target was 

suppressed. Similar results have since been obtained in PRR (Cui and Andersen, 2007; 

Klaes et al., 2011), and were placed into a theoretical framework, the affordance 

competition hypothesis (Cisek, 2007). According to this hypothesis, frontal and parietal 

neurons maintain internal representations (affordances) for all currently available reach 
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targets. Importantly, neurons with different directional preferences are mutually inhibiting 

each other, thus competing with each other, until information biasing this competition 

towards one of the two goals reaches the respective population from cortical or subcortical 

regions (Cisek, 2007). It is important to note that this hypothesis does not apply to all 

reach-related regions in macaque PPC. For instance, area 5d differs from PRR in that it 

only encodes reach plans after a decision about the movement goal has been made (Cui and 

Andersen, 2011).  

How do macaque PMd and PRR interact when multiple reach goals are available? 

When selecting among multiple reach goals, activity in PMd populations rises significantly 

earlier than in PRR, while reaching towards one cued target produces approximately 

simultaneous activation in PMd and PRR (Pesaran et al., 2008). Also, when a reach goal 

needs to be remapped, the movement goal representation arises earlier in PMd and 

significantly later in PRR, presumably because movement goal selection in PMd triggers a 

reorganization of network activity in PRR towards a movement goal representation 

(Westendorff et al., 2010). These findings highlight the role of PMd in reach goal selection. 

How do reach regions in the human brain behave when the information necessary to 

plan a movement is ambiguous? Evidence for the simultaneous specification of multiple 

movement plans comes from an electroencephalographic (EEG) study showing that delay 

phase activity in (pre)motor cortex is inversely scaled with the number of possible reach 

goals (Praamstra et al., 2009). This is presumably caused by mutually suppressive 

interactions between cell populations encoding different movement directions, as suggested 

by the affordance competition hypothesis (Cisek, 2007).On the other hand, results from an 

fMRI study with separate cues for the movement goal and the effector (left vs. right arm) 

showed that conditions in which the effector was specified but the visual movement goal 

was unknown yield activation in reach-related regions of the PPC (Beurze et al., 2007). 

However, activations were stronger and broader when both the effector and the movement 

goal were specified. The authors interpreted these findings as an incomplete state of 

sensorimotor integration (Beurze et al., 2007), contradictory to the behavioral and 

electrophysiological studies described above. Similarly, Bernier et al. (2012) cued the 

effector (left vs. right arm) either before or simultaneously with the presentation of the 

movement goal. They tested whether frontoparietal reach regions represent the movement 

goal for both arms when the effector is unknown, or if the movement goal is only formed 

after the information about the effector is given. They found evidence for the latter case and 
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concluded that a motor plan is specified only if both the movement goal and the effector 

information are given. Thus, the specification of the effector to move seems to be necessary 

to set up a reach plan. 

As pointed out above, evidence from behavioral (C. S. Chapman et al., 2010; 

Stewart et al., 2013; Gallivan et al., 2016) and electrophysiological studies (Praamstra et 

al., 2009; Tzagarakis et al., 2010; Rawle et al., 2012) instead implies the simultaneous 

specification of multiple reach plans. However, in these studies, only the movement goal 

was unknown, while the effector to move was known. This is a crucial difference to the 

study of Bernier et al. (2012) and suggests that uncertainty about the effector may have a 

stronger influence on sensorimotor integration than uncertainty about the movement goal. 

Hence, there is mixed evidence on whether multiple movement plans are set up in parallel 

when the movement goal is ambiguous. It remains to be answered if and how reach related 

regions represent ambiguous movement goals. 

A delayed pro-/anti-reach task is suitable to introduce different pre-cueing 

conditions to manipulate the level of movement goal specification (Westendorff et al., 

2010). When presenting both the visual cue and the context rule before the delay, the reach 

goal can be inferred and is specified. On the other hand, when only the visual cue position 

but not the context rule is known, the reach goal remains ambiguous, because it is unclear 

whether a pro- or anti-reach is required. The task allows addressing the questions if the 

visual cue position is sufficient to set up a movement plan, and how underspecified reach 

goals are represented in the human brain. 

 

1.7 OUTLINE 

Specifying the goal for an upcoming movement is essential for successfully 

executing reaches. Previous studies have emphasized the role of a frontoparietal network in 

reach planning, particularly in integrating and transforming sensory information to set up 

and maintain movement plans (Beurze et al., 2007, 2009; Filimon et al., 2009; Lindner et 

al., 2010; Bernier et al., 2012). The characteristics of different regions of the human 

frontoparietal reach network are still poorly understood. In this thesis, I address the 

question of whether certain regions, particularly in PPC, are more specialized for visual or 

for motor information. Furthermore, it remains unclear how much information is necessary 

to set up a reach plan. Are regions within the reach network engaged in movement planning 
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when the movement goal is underspecified? Answering this question can give further 

insight into the process of sensorimotor integration.  

We conducted an fMRI-experiment in which participants planned and performed 

right-arm reaches in a delayed pro-/anti-reach task. We also introduced different pre-cueing 

conditions to manipulate the level of movement goal specification. In specified conditions, 

the context rule that was required to infer the movement goal was presented right after the 

visual cue and before the delay, resulting in a specified movement goal. In underspecified 

conditions, on the other hand, only the visual cue was presented before the delay. As the 

context rule was not yet presented, the movement goal remained underspecified throughout 

the delay, since the required movement could either be a pro-reach or an anti-reach. The 

analyses were based on the delay, capturing reach planning activation and excluding reach 

execution. The two studies presented in this thesis differ in the analyses of the fMRI data 

(univariate vs. multivariate). 

For the first study, presented in chapter 2, we used univariate analyses of fMRI data 

to investigate whole brain activation clusters in conditions with specified or underspecified 

reach goals. Moreover, we examined signal strength in designated regions of interest 

(ROIs) for reach planning, in particular the SPL and the PMd, to determine whether these 

regions maintain the visual cue or the movement goal position. 

In the second study, presented in chapter 3, we focused on the spatial information 

contained in the voxel patterns within several ROIs. As MVPA has been shown to detect 

more subtle characteristics of spatial encoding processes during movement execution 

(Fabbri et al., 2014; Haar et al., 2015) and thus may reveal different results than univariate 

analyses, we applied this approach to refine and extend our previous study. In this study, 

we examined several regions of the PPC to account for potential functional differences. 

Thereby, we extend the results of the first study not only by focusing on the informational 

content, but also by determining the characteristics of multiple reach regions in the SPL and 

aIPS of the PPC, as well as the PMd. 
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2. ACTIVATION IN THE REACH NETWORK 

 

 

A similar version of this manuscript has been published as: 

Gertz, H. & Fiehler, K.(2015). Human posterior parietal cortex encodes the movement goal 

in a pro-/anti-reach task. Journal of Neurophysiology, 114, 170–83. 

 

 

Previous research on reach planning in humans has implicated a frontoparietal network, 

including the PCu, a putative human homologue of the monkey PRR, and the PMd. Using a 

pro-/anti-reach task, electrophysiological studies in monkeys have demonstrated that the 

movement goal rather than the position of the visual cue is encoded in PRR and PMd. 

However, if only the effector but not the movement goal is specified (underspecified 

condition) the PRR and PMd have been shown to represent all potential movement goals. 

In this fMRI study, we investigated whether the human PCu and PMd likewise encode the 

movement goal, and whether these reach-related areas also engage in situations with 

underspecified compared to specified movement goals. By using a pro-/anti-reach task, we 

were able to spatially dissociate the position of the visual cue from the position of the 

movement goal. In the specified conditions, pro- and anti-reaches activated similar parietal 

and premotor areas. In the PCu contralateral to the moving arm, we found directionally 

selective activation fixed to the movement goal. In the underspecified conditions, we 

observed activation in reach-related areas of the posterior parietal cortex, including PCu. 

However, the activation was substantially weaker in parietal areas and lacking in PMd. Our 

results suggest that human PCu encodes the movement goal rather than the position of the 

visual cue if the movement goal is specified and even engages in situations when only the 

visual cue but not the movement goal is defined.  
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2.1 INTRODUCTION 

Previous research in monkeys has identified two regions being crucially involved in 

reach planning: the PRR (Snyder et al., 1997; Batista and Andersen, 2001; Gail and 

Andersen, 2006; for a review see Andersen and Buneo, 2002) and the PMd (Crammond 

and Kalaska, 1996; Cisek and Kalaska, 2002, 2005). The PRR is located at the medial bank 

of the intraparietal sulcus (Snyder et al., 1997) and receives direct input from extrastriate 

visual areas and projects to the PMd (Johnson et al., 1996; Tanné-Gariépy et al., 2002; for a 

review see Wise et al., 1997). It is thus an important interface between sensory and motor 

cortices (Mountcastle et al., 1975). A subset of PRR neurons codes both the movement goal 

for an action and the effector to perform the action, whereas other subpopulations fire in the 

absence of spatial movement goal information if only the effector is specified and vice 

versa (Calton et al., 2002). The PMd has likewise been shown to integrate positional 

information of the movement goal and the effector (Hoshi and Tanji, 2006). Using target-

selection tasks, it has been demonstrated that PMd neurons simultaneously encode multiple 

movement goals if more than one potential reach goal is present (Cisek and Kalaska, 2002, 

2005). As soon as the correct movement goal is specified the corresponding directional 

signal is enhanced while the signals of the non-chosen movement goals are suppressed. 

Thus, both areas the PRR and the PMd which are reciprocally connected (Johnson et al., 

1996) contribute to sensorimotor integration.  

A recent inactivation study in PRR found lesion effects specific to contralateral 

limb movements but independent of the spatial position of the reach goal (Yttri et al., 

2014). Based on this result, the authors suggested limb-specific movement planning in area 

PRR and therefore characterized the PRR as a motor area situated early in the visuomotor 

pathway. However, other inactivation studies observed stronger lesion effects in a region 

slightly anterior to PRR for reach goals presented contralateral to the injection site arguing 

for target-selectivity (Hwang et al., 2012; Battaglia-Mayer et al., 2013).  

In contrast to target-selection tasks, rule-selection tasks have been applied to answer 

the question whether PMd and PRR neurons represent the position of the visual cue or the 

movement goal. In order to disentangle the position of the visual cue from the position of 

the movement goal, context rules are applied to the visual cue which either instruct a reach 

towards the visual cue (rule pro) or towards its mirrored position (rule anti) (Gail and 

Andersen, 2006; Gail et al., 2009; Westendorff et al., 2010; Klaes et al., 2011). Delay-



2. ACTIVATION IN THE REACH NETWORK 

 25 

related directional tuning signals in PRR neurons revealed selective coding of the 

movement goal rather than the memorized position of the visual cue irrespective of whether 

it was directly cued by the physical visual cue (pro-reach) or inferred from the rule applied 

to the visual cue (anti-reach) (Gail and Anderson, 2006). This suggests that PRR translates 

current sensory information into reach plans rather than storing the visual cue position in 

visual memory. Similar results have been revealed for PMd neurons (Gail et al., 2009) 

indicating an important role of PMd and PRR in space-context integration in order to 

encode the desired movement goal. By introducing different pre-cueing conditions, it has 

been shown that movement goal representations in PMd and PRR neurons are modulated 

by contextual information, i.e. by the information given before the movement planning 

phase. For example, PRR neurons were stronger engaged in planning of pro-reaches while 

PMd neurons showed stronger overall activity during planning of anti-reaches (Gail et al., 

2009). Moreover, motor-related latencies were shorter for PMd than PRR neurons for 

inferred movement goals, i.e. during anti-reach planning, suggesting that PMd initiates 

movement goal remapping in PRR (Westendorff et al., 2010). In these experiments, the 

point in time when the context rule was given varied between trials; the context rule was 

either presented before or after a variable instructed delay. This also allowed for 

differentiating movement planning based on specified movement goals (visual cue and 

context rule given before the delay) from movement planning based on underspecified 

movement goals (only the visual cue given before the delay). In the underspecified 

condition, monkeys were uninformed whether they should perform a reach towards the 

visual cue (pro-reach) or towards its mirrored position (anti-reach) until an additional rule 

cue was given after the delay specifying the movement goal. The underspecified movement 

goal condition yielded spatial tuning preferences for the inferred anti-movement goal in 

both PRR and PMd (Westendorff et al., 2010). Likewise, a preference for the encoding of 

the inferred movement goal in underspecified conditions were also observed in free-choice 

trials where the monkeys were free to choose the pro- or anti-reach goal (Klaes et al., 

2011). However, if the free-choice behavior was controlled for by a bias-minimizing 

reward schedule the delay-phase activity indicated that PMd and PRR simultaneously 

encoded the two alternative movement plans when only the visual cue was given.  

In humans, a broad frontoparietal network, likewise including strongly connected 

areas of the PPC and dorsal premotor cortex (Tomassini et al., 2007), is involved in the 

preparation of goal-directed reaching movements (Prado et al., 2005; Beurze et al., 2007; 
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Busan et al., 2009; Lindner et al., 2010; Parkinson et al., 2010; for a review see Culham et 

al., 2006). Consistent with electrophysiological findings in monkeys, the human PPC and 

PMd have been demonstrated to represent both the spatial position of the movement goal 

and the effector selected for that action, e.g. left vs. right arm (Beurze et al., 2007). Using a 

sequential cueing task, Beurze et al. (2007) also found activation in the PPC and the PMd 

even if only information of the movement goal or the effector was available, which is in 

line with previous findings in monkey PRR (Calton et al., 2002). However, activation in 

PPC and PMd was more pronounced when both the movement goal and the effector were 

cued by showing stronger effector- than target-selectivity (Beurze et al., 2007). The double 

coding of movement goal and effector signals together with stronger activation when both 

the movement goal and the effector were specified let the authors argue for a role of the 

human PPC and PMd in sensorimotor integration. Vice versa, the weaker activation in PPC 

and PMd when only the movement goal or the effector was specified argues for an 

incomplete stage of sensorimotor integration. One goal of the present study was to examine 

whether and how PPC and PMd engage in underspecified conditions in a pro-/anti-reach 

rule-selection task. 

Within the human PPC, a dorso-medial area of the SPL seems to be crucially 

involved in the planning of hand and arm movements and has been discussed as a putative 

human homologue of monkey area PRR (Astafiev et al., 2003; Connolly et al., 2003; 

Pellijeff et al., 2006; Fernandez-Ruiz et al., 2007; Hagler et al., 2007; Vesia and Crawford, 

2012). Consistent with previous reports on monkey PRR (e.g., Snyder et al., 1997), the 

‘human PRR’ elicits higher activation for the planning of goal-directed pointing 

movements compared to the planning of goal-directed saccades (Connolly et al., 2003). In 

the following, we will label this region as PCu, as it gives an anatomical reference. 

In order to examine the spatial code maintained in the PCu during movement 

planning, Fernandez-Ruiz et al. (2007) used left/right reversing prisms. By doing so, they 

were able to dissociate the visually perceived direction of a pointing movement towards a 

spatially corresponding visual cue from the actual (physical) pointing direction, e.g., an 

actual rightward movement to a right visual cue was seen as a leftward movement to a left 

visual cue. During movement planning, they found higher activation to contralateral visual 

cues in conditions without the prism and a reversed activation pattern with higher activation 

to ipsilateral visual cues (which are now visually perceived in contralateral space) in 

conditions with the prism. This effect was only significant for the left PCu contralateral to 
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the moving hand. The authors concluded that the PCu encodes the position of the visual 

movement goal rather than the direction of the actual limb movement, i.e. the physical 

movement goal. However, this task design does not spatially dissociate the visual cue 

presented before the delay from the visual movement goal representation since participants 

always reached to the visual cue, i.e. performed pro-reaches in visual coordinates. Thus, it 

remains unclear whether human PCu maintains the visual cue in visuospatial memory or 

represents the visual movement goal. Pro-/anti-reach tasks are suitable to answer this 

question. Therefore, a second goal of this study was to examine whether the human PCu 

and the PMd encode the position of the visual cue or the (inferred) visual movement goal 

by applying a pro-/anti-reach rule-selection task. 

We used functional magnetic resonance imaging (fMRI) to investigate whether 

human reach-related areas, in particular PCu and PMd, represent the visual cue or the visual 

movement goal, and how strongly these areas are engaged during reach planning when the 

movement goal is not specified. We applied an adapted version of the pro-/anti-reach rule-

selection task from an electrophysiological study in monkeys (Westendorff et al., 2010). 

This task allows us to (a) dissociate the position of the previously presented visual cue from 

the position of the (inferred) visual movement goal and (b) compare movement planning 

activation in situations with specified or underspecified movement goals. First, we 

hypothesize that visual movement goals are encoded in the human PCu and PMd as it has 

previously been shown in monkey electrophysiological research (Gail et al., 2009; 

Westendorff et al., 2011). If the human PCu and PMd represent the visual movement goal, 

we expect higher activation for contralateral visual cues in pro-trials and a reversed 

activation pattern for anti-trials, i.e. higher activation for ipsilateral than contralateral visual 

cues. Second, we hypothesize that PCu and PMd also engage in reach movement planning 

in underspecified conditions (cf., Westendorff et al., 2010; Klaes et al., 2011). To further 

specify the characteristics of this engagement we examined the activation strength and 

lateralization effects in underspecified conditions. 
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2.2 MATERIALS AND METHODS 

PARTICIPANTS 

Twenty-five participants participated in this fMRI experiment. We discarded three 

participants due to motion artifacts and another three participants due to poor performance 

in the behavioral task (<70 % correct trials), leaving nineteen participants (age range 20–29 

years; 11 females). All participants were right-handed as assessed with the Edinburgh 

Handedness Inventory (Oldfield, 1971), had normal vision, and no history of neurological 

or psychiatric disorders or chronic diseases. They were financially compensated or received 

course credit for their participation. All participants gave informed written consent 

according to the Declaration of Helsinki (2008) before the experiment in accordance with 

the study procedure approved by the local ethics committee. 

 

EXPERIMENTAL DESIGN AND CONDITIONS 

To investigate brain areas involved in movement planning in specified and 

underspecified conditions, we adapted a delayed reach task with different cueing conditions 

from an electrophysiological study in monkeys (Westendorff et al., 2010; Figure 2.1B). 

This task allowed us to separate the position of the visual cue (visuospatial memory) from 

the position of the movement goal (movement goal encoding) by introducing a context rule 

(pro- vs. anti-reach) that had to be applied to the visual cue. By applying the context rule 

either before (specified condition) or after the delay (underspecified condition), we were 

able to manipulate the amount of information available during the delay resulting in 

conditions with specified or underspecified movement goals.  
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Figure 2.1: Setup and experimental design. A. Participants lay in the scanner with their head tilted and their 
index finger on a button box. Right arm reaches were performed to a touchscreen mounted in front of a PVC 
board. Also attached to this board were optic fiber cables connected to stimuli LEDs in the control room. The 
board was mounted to a PVC table placed over the participants’ hips. Eye movements were recorded with 
an infrared camera. B. Delayed pro-/anti-reach task with different precueing conditions. Context rules (pro, 
anti) had to be applied to visual cues at four possible positions to infer the movement goal. All possible cue 
positions are illustrated here (light green spheres), but were not visible during the experiment. In this 
exemplary single-reach trial only one visual cue was presented (dark green sphere). A red fixation LED was 
visible at the center of the screen throughout the whole trial, and a change of its brightness served as a go-
cue. In the specified pro condition (left timeline), the context rule was indicated centrally by a green LED 
above the fixation LED, and reaches were performed toward the position of the previously presented visual 
cue after a variable memory delay (broken line circle). In the specified anti condition (center timeline), the 
context rule was indicated by a red LED above the fixation LED. Reaches were performed to the mirror-
imaged position of the visual cue (broken line circle). Different precueing conditions were introduced to vary 
the information available during the memory delay. In the specified pro and anti conditions, both the visual 
cues and the context rule were available before the delay. In the underspecified conditions (right timeline), 
only the visual cue was available during the memory delay, whereas the context rule was given immediately 
after the delay prompting participants to start the respective reaching movement. An additional task-
irrelevant yellow cue was presented above the fixation LED before the delay to keep visual input constant. 
The timeline for underspecified conditions shows an exemplary pro trial, with a green LED above the fixation 
LED presented after the delay. 
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Light-emitting diodes (LEDs) served as spatial cues, rule cues and fixation point. 

Participants were instructed to maintain fixation on a red central fixation LED throughout 

the trial. Green LEDs served as spatial cues which were presented at one of four possible 

positions left or right from the fixation point. In addition to the randomized trial structure 

with jittered delay durations we varied the number of reaches (50% single-reach trials and 

50% double-reach trials). We did so to ensure that planning-related activation is not 

reduced due to predictability of the target position (Berndt et al., 2002; Dassonville et al., 

1998). In single-reach trials, one visual cue was presented at one of four possible positions, 

two positioned in the left and two in the right hemifield (see Stimuli). In double-reach 

trials, the two visual cues were always presented sequentially. Double reaches were 

performed from the start position to the (mirrored) 1st visual cue position and from there 

directly to the (mirrored) 2nd visual cue position following the order of the visual cue 

presentation. Both reach goals always fell into the same visual hemifield so that all reaches 

were either performed within the left or right visual field. For subsequent analyses we 

collapsed data of single- and double-reach trials, and reaches planned to the lower and 

upper workspace. 

In the specified condition, visual cue and rule cue were presented consecutively. 

The color of the LED located right above the fixation point specified the context rule that 

participants had to apply to the visual cue in order to infer the movement goal. A green 

LED indicated that participants had to perform a reach towards the remembered position of 

the visual cue (pro-reach), whereas a red LED required moving towards the position 

mirrored to the centrally located fixation point (anti-reach), e.g. to the lower left in case of a 

visual cue presented at the lower right. In this condition, all information required for 

building up a movement plan was available during the following delay. Participants started 

right arm reaches as soon as the central fixation LED was dimmed after the delay (go-cue). 

In the underspecified condition the visual cue and an additional non-informative cue were 

presented before the delay. Importantly, the rule cue was presented after the delay. Thus, 

during the delay participants knew the position of the visual cue but were unaware about 

the movement goal (pro- vs. anti-reach). We introduced an additional non-informative cue 

in this condition to keep visual information constant and to inform participants about the 

underspecified condition with the delay preceding the rule cue. Participants performed 

reaches after the presentation of the rule cue. Other than that, specified and underspecified 

conditions were identical and trials were presented interleaved in random order. 

Participants did not receive feedback about the correct reach goal position. 
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APPARATUS AND STIMULI 

To enable a direct view of the visual stimuli, participants were positioned in the 

scanner with their head tilted with wedges (~20-30°) inside the head coil. A custom-made 

MR-compatible PVC table, adjustable in distance and height, was mounted over the 

participants’ hips and fixed to the scanner bed. At the front end of the table a vertical PVC 

board with six holes with a diameter of 1mm was attached. Inside each hole one fiber optic 

cable ended which was connected with an LED placed in the control room. One red LED 

was positioned centrally and served as fixation point and go-cue. Four green LEDs served 

as visual cues with one LED each positioned at the upper left and upper right workspace (5 

cm horizontal and 5cm vertical deviation from the fixation LED) and at the lower left and 

lower right workspace (8 cm horizontal and 1 cm vertical deviation from the fixation LED). 

An additional bicolor (green/red) LED right above the central LED indicated the context 

rule. Directly in front of the PVC board an MR-compatible 10.4" touch screen panel 

(Magic Touch, Keytec, Inc., Garland, Texas, USA) was attached at an eye-to-screen-

distance of about 50 cm to record reaching endpoints with a resolution of 1024 x 768 

pixels. To reduce effects of eye movements on brain activation we recorded the eyes using 

an infrared camera (MRC Systems GmbH, Heidelberg, Germany) attached to the head coil 

and visually inspected the data offline for constant fixation throughout the trials. Due to the 

tilted head position we could not conduct eye tracking. Using a camera allowed for a 

general control of constant fixation but not for a quantitative analysis of single eye 

movements. However, we instructed and trained our participants thoroughly to maintain 

fixation, especially during the delay. In addition, the subtle change in brightness of the 

fixation LED serving as go-cue along with the variable delay interval encouraged 

participants to fixate until they started the movement. For all remaining participants (see 

Participants) this rough criterion of constant fixation was fulfilled. 

The right upper arm was strapped to the bed to minimize movement artifacts during 

reaching. Yet, it was ensured that participants could freely move their right forearm and 

reach towards all positions of the touch screen without moving the upper arm or shoulder. 

Before and after movement execution participants continuously pressed a button of an MR-

compatible button box placed on their abdomen with their right index finger. To assess 

individual reach endpoint errors, we subtracted the observed reach endpoints from the 

physical position of the visual cue. To this end, all visual cue LEDs were turned on 

subsequently after the end of the experiment and participants touched each position 
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accordingly. Based on the individual reach endpoint errors, reaches were classified offline 

in correct and incorrect movements (description see below). All LEDs and response devices 

were controlled by Presentation software (Neurobehavioral Systems, Inc., Albany, CA). 

 

TRIAL TIMING 

We used a rapid event-related design to study the neural correlates of movement 

planning. Each trial started with a fixation phase of random duration varying from zero to 

three seconds with 15 ms steps (repetition time / number of trials = 3s / 192). Then the 

visual cue was presented for 500 ms. In the specified condition, the visual cue was 

succeeded by the rule cue (500 ms) and a random delay of 3 s, 3.6 s, 4.3 s or 5 s (Figure 

2.1B). After the delay, the go-cue was presented initiating the movement interval (2 s). We 

varied the duration of the delay in order to minimize the predictability of the movement 

onset that might reduce activation associated with movement preparation. In the 

underspecified condition, the visual cue was followed by a non-informative cue (500 ms; 

Figure 2.1B) and then the delay (3 s, 3.6 s, 4.3 s, 5 s). Afterwards the rule cue (500 ms) and 

the go-cue were presented successively followed by the movement interval (2 s). In 

specified conditions and the underspecified condition, a new trial started after an inter-trial 

interval of 2 s with the next excitation pulse. 

After the end of the experiment, a calibration session was run to determine the 

physical position of the visual cue. To this end, all visual cue LEDs were turned on 

subsequently and participants were asked to reach to each position accordingly. 

One trial lasted on average 10.75 s (8 to 13.5 s). Each condition (specified 

conditions pro and anti and underspecified condition) consisted of 64 trials, resulting in 192 

trials in total and a duration of about 35 minutes. The experiment in the scanner lasted 

about 1.5 h, including the set-up time, the functional scan, and the anatomical scan. 

Participants practiced the task on a computer outside the scanner prior to the experiment. 

 

BEHAVIORAL ANALYSES 

Behavioral data refer to the movement execution phase. At the time of the go-cue, 

participants were informed about the movement goal and performed either pro- or anti-

reaches depending on the rule cue given before (specified condition) or after 

(underspecified condition) the delay period. We thus analyzed pro- and anti-reaches 

separately in the specified and underspecified conditions. 
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To assess individual reach endpoint errors, we subtracted the observed reach 

endpoints from the physical position of the visual cue determined in the calibration session 

(see Apparatus and Stimuli). In a first step, we analyzed the rate of correct responses. To do 

so, we separated the area of the touch screen into individual quadrants (mean size, width x 

height: 10.06 x 7.9 cm) based on the vertical and horizontal centerlines between the 

coordinates of the touches to the visible spatial cues acquired during the calibration session 

after the experiment. Responses were classified as correct if touches fell into the correct 

individual quadrant. Three participants performed poorly in all conditions with a rate of 

correct responses of < 70 % and were discarded from further analyses. For the remaining 

participants (N = 19) the amount of correct responses was compared across conditions 

using a one-way repeated measures (RM) ANOVA with the factor condition (specified pro, 

specified anti, underspecified pro, underspecified anti) and an alpha level of 0.05. When the 

assumption of sphericity was violated according to Mauchly’s test for sphericity, F 

statistics were corrected according to the procedure of Greenhouse-Geisser. Two-tailed post 

hoc t tests were Bonferroni-Holm corrected for multiple comparisons. 

Second, we analyzed the response time for all participants, defined as the time 

elapsed after the onset of the go-cue and until the first touch. We used a one-way RM 

ANOVA with the factor condition (specified pro, specified anti, underspecified pro, 

underspecified anti) and an alpha level of 0.05. Corrections for multiple comparisons or for 

violations of sphericity were carried out as described above. 

 

IMAGING PARAMETERS 

Functional and anatomical MRI data were acquired at the Bender Institute of 

Neuroimaging (Giessen, Germany) using a 1.5-Tesla Siemens Symphony whole-body MRI 

system with a quantum gradient system (Siemens, Erlangen, Germany) and a standard 1-

channel head coil. A gradient-echo field map was measured before the functional run to 

receive information about inhomogeneities in the static magnetic field. For functional 

imaging, a total of 794 volumes were registered on average, varying from 786 to 802 

volumes due to the combined duration of the randomized trial ordering with jittered 

fixation intervals and delay phases. A T2*-weighted gradient-echo-planar imaging (EPI) 

sequence was used with 30 axial slices covering the whole brain (slice thickness: 4 mm; 1 

mm gap; descending slice order; echo time (TE): 59 ms; repetition time (TR): 3 s; flip 

angle: 85°; field of view: 192 mm; matrix size: 64 x 64 mm; voxel size: 3.0 x 3.0 x 4.0 
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mm). The orientation of the slices was selected to cover superior parietal areas and was 

tilted to parallel the inferior border of the orbitofrontal cortex in order to reduce signal 

losses due to susceptibility artifacts. Structural images consisting of 160 sagittal slices were 

acquired using a T1-weighted magnetization-prepared, rapid-acquisition gradient echo 

(MPRAGE) sequence (matrix size: 256 x 180 mm; field of view: 250 mm; TE: 4.18 ms; 

TR: 1990 ms; voxel size: 1.4 x 1.0 x 1.0 mm). 

 

PREPROCESSING 

Imaging data were preprocessed and analyzed using the Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) Software Library (FSL; version 5.0.2; 

http://www.fmrib.ox.ac.uk/fsl). The first four volumes (12 s) were discarded due to an 

incomplete steady state of the magnetic field. We manually screened the motion parameters 

(rotations, translation) along the x, y, and z axes of each participant. After realignment and 

motion correction using FSL’s motion correction tool MCFLIRT (Jenkinson et al., 2002) 

we used a custom-made FSL tool to detect EPI outlier volumes by calculating the mean 

squared difference in brightness values to the respective adjacent volumes. These deviation 

scores were thresholded according to an outlier detection method for skewed data (Hubert 

and van der Veeken, 2008) globally for the whole data set. Three participants were 

discarded from further analyses due to large motion artifacts defined by more than 10% 

outlier volumes (Hubert and van der Veeken, 2008). 

Non-brain tissue was removed from all images using the FSL’s brain extraction tool 

BET (Smith, 2002). Further preprocessing included the following steps: 1) B0-unwarping 

using field maps, 2) spatial normalization to the Montreal Neurological Institute (MNI) 

space, 3) slice timing correction, 4) spatial smoothing using a Gaussian kernel of 5mm full-

width-half-maximum, and 5) temporal high-pass filtering with a cutoff of 144 s to remove 

low frequency drift. 
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DATA ANALYSES 

Data analyses were performed using the general linear model (GLM) implemented 

in FSL’s FMRI Expert Analysis Tool FEAT v6.00 (Smith et al., 2004). We defined the 

delay phase as the period of interest for putative movement planning. We modeled one 

separate delay predictor for each experimental condition (specified conditions pro and anti, 

underspecified condition) and position of the visual cue (left or right visual field), resulting 

in six predictors of interest: PRO LEFT, PRO RIGHT, ANTI LEFT, ANTI RIGHT, 

UNDERSPECIFIED LEFT, UNDERSPECIFIED RIGHT. In addition to these delay 

regressors, we defined the fixation interval (FIX), the presentation of the spatial cue 

(SPATIAL), the presentation of the rule cue (RULE), and the movement phase (MOVE) as 

predictors of no interest. Each predictor was defined as a boxcar function with the value 1 

for the duration of the respective event. Regressors were convolved with a double-Gamma 

hemodynamic response function in order to model the late undershoot. We also included 

the temporal derivative to our model to achieve a better fit to the data (Friston et al., 1998). 

We conducted three different types of analyses. To identify brain areas active 

during the delay in the specified and underspecified conditions, we performed whole-brain 

voxelwise analyses. Additionally, we performed a conjunction analysis across the specified 

and underspecified conditions to extract activation in common brain regions. Finally, we 

conducted ROI analyses based on our prior hypotheses about cortical areas involved in 

movement planning.  

 

VOXELWISE ANALYSES 

Whole-brain voxelwise analyses were conducted using standard multiple regression 

procedures. We calculated one baseline contrast for each experimental condition to test our 

hypothesis that areas of the reaching network are involved in specified and underspecified 

conditions. The two delay regressors of each condition were combined and compared to the 

fixation interval: (PRO LEFT + PRO RIGHT) > FIX, (ANTI LEFT + ANTI RIGHT) > 

FIX, and (UNDERSPECIFIED LEFT + UNDERSPECIFIED RIGHT) > FIX. Additionally, 

we identified differences in activation strength between conditions by calculating the 

differential contrasts: (ANTI LEFT + ANTI RIGHT) > (PRO LEFT + PRO RIGHT) and 

vice versa, (PRO LEFT + PRO RIGHT) > (UNDERSPECIFIED LEFT + 

UNDERSPECIFIED RIGHT), and (ANTI LEFT + ANTI RIGHT) > (UNDERSPECIFIED 

LEFT + UNDERSPECIFIED RIGHT). 
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For individual analyses, z statistic images were thresholded at p < 0.05, corrected 

for multiple comparisons using Gaussian random field theory (GRF; Worsley et al., 1996). 

For group-level analyses, parameter estimates were assessed with a mixed effects model, 

with the random effects component of variance estimated using FSL's FLAME stage 1 

procedure (Beckmann et al., 2003; Woolrich et al., 2004). Before thresholding, the 

statistical images were masked by a maximum probability gray matter mask based on the 

Harvard-Oxford cortical structural atlas provided by the Harvard Center for Morphometric 

Analysis (http://www.cma.mgh.harvard.edu/fsl_atlas.html) available with FSL. We did so 

to restrict our analyses to gray matter and thereby reduce the cluster criteria for statistical 

significance. Z (Gaussianized T) statistic images were generated using a z statistics 

threshold of 2.1 and a corrected cluster probability threshold of p = 0.05 using GRF 

(Worsley et al., 1996).  

We applied a custom-made FSL tool to locate signal peaks of clusters and label 

anatomical regions according to the Juelich probabilistic cytoarchitectonic atlas (Eickhoff 

et al., 2007). 

 

CONJUNCTION ANALYSIS 

To identify a general reaching network being involved in movement planning 

independent of the context rule we conducted a second-level conjunction analysis on 

baseline contrasts from specified conditions pro and anti: [(PRO LEFT + PRO RIGHT) – 

FIX] ⋂ [(ANTI LEFT + ANTI RIGHT) – FIX]. A custom-made FSL tool was used to 

create a minimum z image from the second-level z statistics images (z > 2.1, p = 0.05) of 

the respective contrasts and to perform a cluster wise test. Note that for easier reading the 

conjunction analysis will be denoted as pro ⋂ anti. 

 

ROI ANALYSES 

We conducted second-level ROI analyses on three regions that were activated 

during movement planning in the specified conditions as revealed by previous whole-brain 

analyses: the left PMd and left and right PCu. We defined the ROIs independently of our 

analyses on the basis of the study by Lindner et al. (2010), who found sustained activation 

in PMd and PCu during the delay phase associated with reach movement planning. ROIs 

were created by specifying spheres with a radius of 5 mm centered at the reported 
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coordinates (left PCu: -17.6 -64.9 60.0; right PCu: 17.6 -64.9 59.6; left PMd: -26.6 -8.6 

58.1).  

In a first step, we confirmed our ROI selection by testing for a main effect of 

condition using the following contrasts: (PRO LEFT + PRO RIGHT) > FIX, (ANTI LEFT 

+ ANTI RIGHT) > FIX, (UNDERSPECIFIED LEFT + UNDERSPECIFIED RIGHT) > 

FIX. Z statistic images were thresholded at p=0.05, corrected for multiple comparisons 

using GRF (Worsley et al., 1996). For further analyses we extracted the mean percent 

signal change (%SC) per participant for each delay regressor from each ROI using 

Featquery (http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/feat5/featquery.html). We hypothesized that 

movement goals are encoded in PCu and PMd leading to higher %SC in response to 

contralateral visual cues in condition pro, but higher %SC for ipsilateral visual cues in 

condition anti (indicating a contralateral movement goal). To test this assumption we 

conducted a 2 x 2 RM ANOVA with the factors condition (pro vs. anti) and visual field 

(left vs. right) with an alpha level of 0.05. One-tailed post-hoc t tests were Bonferroni-

Holm corrected for multiple comparisons, if necessary. 

Second, we tested how activation strength changed in the underspecified condition 

compared to specified conditions in areas which showed a main effect for all three 

conditions, namely the left and right PCu. To do so, we analyzed %SC as a function of 

condition (three levels: pro, anti, underspecified) in a one-way RM ANOVA with an alpha 

level of 0.05. When the assumption of sphericity was violated according to Mauchly’s test 

for sphericity F statistics were corrected according to the procedure of Greenhouse-Geisser. 

Two-tailed post-hoc t tests were Bonferroni-Holm corrected for multiple comparisons, if 

necessary. Finally, we examined if the left and right PCu show a preference for the left or 

right visual cue by testing for lateralization differences performing two-tailed paired sample 

t tests. 

 

2.3 RESULTS 

In the present study, we first analyzed brain activations in the specified conditions 

pro and anti to examine whether the brain encodes the reach movement goal or the physical 

position of the visual cue. Here, we focused on three regions of the reaching network, the 

left PMd and the left and right PCu. Second, we investigated how delay phase activation 

differs if the movement goal is underspecified compared to when it is specified. In the 
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following, we provide an overview of the behavioral results, and then report the results of 

the voxelwise whole-brain group analyses and the ROI analyses.  

 

BEHAVIORAL ANALYSES 

Across all conditions participants’ reaches fell into the correct quadrant of the touch 

screen in 85.8 % of all trials (90.2 % for the specified condition pro, 83.7 % for the 

specified condition anti, 86.0 % for the underspecified condition pro, and 83.1 % for the 

underspecified condition anti), with a mean deviation across all trials of 2.1 cm ± 1.9 cm. 

There was no significant effect of condition on the percentage of correct responses (F(3, 54) = 

1.954, p = 0.146). Response time did also not differ between the four conditions (F(3, 54) = 

1.115, p = 0.318), specified pro (M = 1299 ms, SD = 261), specified anti (M = 1317 ms, SD 

= 295), underspecified pro (M = 1254 ms, SD = 483), and underspecified anti (M = 1369 

ms, SD = 519).  

 

PLANNING PRO- AND ANTI-REACHES IN SPECIFIED CONDITIONS 

To identify brain areas active during the delay in the specified conditions, we 

performed baseline contrasts for the specified conditions pro and anti on the group data. 

The activation of both conditions with labels of the signal peaks according to the Juelich 

cytoarchitectonic atlas (Eickhoff et al., 2007), MNI coordinates and z scores are listed in 

Table 2.1. 

For the planning of pro-reaches, we calculated the baseline contrast (PRO LEFT + 

PRO RIGHT) > FIX and found activation in frontoparietal areas comprising the reaching 

network (Figure 2.2A). Specifically, the left and right SPL were activated. The cluster 

included the PCu comprising the medial portions of the SPL, anterior to the parieto-

occipital sulcus. This region has previously been suggested as putative human homologue 

of monkey area PRR (Connolly et al., 2003; Fernandez-Ruiz et al., 2007; Fabbri et al., 

2010). Moreover, activation occurred in the left and right IPL, the left and right aIPS and 

adjacent primary somatosensory cortex (S1), the left M1, and the left PMd spreading into 

the left superior frontal gyrus (SFG). We also found activation in the left frontal pole 

extending into the left middle frontal gyrus (MFG), and in the right frontal pole spreading 

into the right MFG and SFG.  
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Figure 2.2: Delay phase activation for the specified conditions pro (A) and anti (B) obtained by calculating 
the respective baseline contrasts (PRO LEFT + PRO RIGHT) > FIX and (ANTI LEFT + ANTI RIGHT) > FIX. C. The 
overlap of activation in both specified conditions, pro ⋂ anti, as revealed by the conjunction analysis of the 
two contrasts shown in 2A and 2B. White broken lines denote the central sulcus. S1, primary somatosensory 
cortex; aIPS, anterior intraparietal sulcus; IPL, inferior parietal lobule; PCu, precuneus; PMd, dorsal premotor 
cortex; aPCu, anterior precuneus. 
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Figure 2.2B illustrates the results for the specified condition anti contrasted against 

fixation (ANTI LEFT + ANTI RIGHT) > FIX. The planning of anti-reaches activated a 

similar frontoparietal network as we found for pro-reaches which contained bilateral 

activation in the SPL (including the left and right PCu), the IPL, the aIPS, and S1 and a 

left-lateralized activation in the PMd which also covered the left M1. In addition, the 

specified condition anti activated the left and right frontal pole with the left activation 

spreading into the left MFG. 

Descriptively, condition pro yields activation in the left and right SFG and the right 

MFG, while we see no such effect for the specified condition anti. To examine whether 

activation differences were statistically significant between planning pro- and anti-reaches, 

we calculated the contrasts (ANTI LEFT + ANTI RIGHT) > (PRO LEFT + PRO RIGHT) 

and (PRO LEFT + PRO RIGHT) > (ANTI LEFT + ANTI RIGHT). These contrasts 

revealed no cluster more strongly activated in planning anti-reaches as compared to pro-

reaches and vice versa, suggesting that the planning of pro- and anti-reaches recruits similar 

brain areas. In order to substantiate this result, we conducted a conjunction analysis on the 

two specified conditions, pro ⋂ anti. Consistent with the results described above, the 

conjunction analysis revealed an activation overlap in a large frontoparietal network 

extending from the bilateral SPL (signal peaks in the left hemisphere: z = 3.88, right 

hemisphere: z = 3.82) to the aIPS, the IPL, and S1, as well as to the left PMd and M1 

(Figure 2.2C). These clusters comprised the PCu in both the left and right hemispheres. The 

activation patterns further overlapped in the left frontal pole (z = 3.76) spreading into the 

left MFG and the right frontal pole (z = 3.34). In short, in the specified pro- and anti-reach 

conditions delay phase activation expanded throughout posterior parietal and premotor 

areas and did not differ between conditions. 
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Table 2.1: Voxelwise analyses. MNI coordinates of local maxima in clusters showing significantly more 
activation in specified conditions pro and anti as compared to fixation (cluster corrected, z > 2.1). Functional 
labels are given in brackets. 

  MNI coordinates  MNI coordinates  

Anatomic region 
Hemi-

sphere 
x y z z score x y z z score 

  Specified condition pro Specified condition anti 

SPL7P (PCu) R 10 -72 54 3.82 10 -72 54 3.83 

 L -12 -68 56 3.23 -10 -78 52 3.43 

SPL7A (aPCu) R 30 -62 64 3.4 28 -64 64 3.44 

 L -12 -64 66 3.3 -12 -64 66 3.28 

SPL7PC L -42 -48 58 3.88 -42 -48 58 4.06 

SPL 5M L     -6 -50 56 2.27 

Angular Gyrus R 52 -54 44 2.46     

 L -52 -58 44 3.08 -52 -56 42 3.11 

Supramarginal Gyrus R 54 -30 44 3.07 54 -30 44 3.3 

 L -48 -46 54 3.47 -48 -46 54 3.64 

aIPS (hIP1) R 38 -56 46 3.18 38 -56 46 3.4 

 L -38 -50 44 3.56 -36 -52 40 3.6 

aIPS (hIP2) R 40 -46 50 3.27 40 -48 50 3.41 

 L -46 -44 44 3.03 -40 -46 48 3.58 

aIPS (hIP3) R     32 -56 52 2.63 

 L -26 -56 52 2.56     

Postcentral Gyrus (BA 

1, S1) 
R 46 -38 64 3.02 46 -38 64 2.74 

 L -44 -38 60 3.78 -44 -38 60 3.65 

Postcentral Gyrus (BA 

2, S1) 
L -46 -36 48 3.73 -46 -42 58 3.72 

Precentral Gyrus (BA 

4a, M1) 
L -42 -16 48 2.67     

Precentral Gyrus 

(BA6, PMd) 
L -26 4 68 3.02 -26 -18 74 2.38 

SFG R 22 4 68 3.25     

 L -24 14 62 3     

MFG R 48 12 50 2.4     

 L -46 36 32 2.8 -50 28 30 2.39 

Frontal Pole R 30 56 -4 2.42 32 60 -2 2.56 

 L -40 46 -2 3.83 -40 46 -2 3.76 

SPL, superior parietal lobule; PCu, precuneus; aPCu, anterior precuneus; aIPS, anterior intraparietal sulcus; 
hIP, human intraparietal area; S1, primary somatosensory cortex; M1, primary motor cortex; PMd, dorsal 
premotor cortex; SFG, Superior Frontal Gyrus; MFG, Middle Frontal Gyrus.   
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Based on our hypotheses on movement goal encoding within the reaching network, 

we conducted ROI analyses on the PCu and the PMd, using the MNI coordinates reported 

by Lindner et al., (2010). As the whole-brain analyses revealed that only the left PMd was 

activated during reach planning in specified conditions, we restricted our ROI analyses to 

the left PMd in addition to the left and right PCu. For both specified conditions pro and anti 

we found a main effect in the three ROIs left PCu (pro: z = 3.09, anti: z = 3.03), right PCu 

(pro: z = 3.17, anti: z = 3.43), and left PMd (pro: z = 2.29, anti: z = 2.8).  

Based on previous findings in monkeys (Gail and Andersen, 2006), we 

hypothesized that the movement goal rather than the physical position of the visual cue is 

encoded in the reach-related areas PCu and PMd. Therefore, we conducted a two-way RM 

ANOVA with the factors condition (2) x visual field (2) on the mean percent signal change 

(%SC) in the respective areas across participants (Table 2.2). If the visual movement goal 

is represented, we expected higher signal changes in the left PCu for contralateral (right) 

visual cues in condition pro. However, in condition anti ipsilateral (left) visual cues should 

yield higher signal changes, as left visual cues combined with the context rule ‘anti’ 

indicated movement goals in the right contralateral visual field. This should result in an 

interaction of condition and visual field. Indeed, we found a significant condition x visual 

field interaction indicating that the movement goal rather than the physical position of the 

visual cue is represented in the left PCu (F(1, 18) = 9.68, p = 0.006). This finding is illustrated 

in Figure 2.3 showing higher %SC for the specified condition pro right as compared to pro 

left, and for the specified condition anti left as compared to anti right.  

 

 
Figure 2.3: Percent signal change (%SC) for specified conditions pro and anti for the Regions of Interest 
(ROIs): left dorsal premotor cortex (PMd), and left and right precuneus (PCu). In the left PCu, %SC for right 
visual cues is significantly higher than for left visual cues, while the pattern reverses in condition anti. In 
both conditions, right movement goals thus lead to higher %SC indicating movement goal encoding. No such 
interaction effect occurs in the right PCu and the left PMd. Error bars denote the standard error of the mean 
(* p < 0.05, Bonferroni-Holm-corrected; one-sided t test). 
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Table 2.2: Mean percent signal change (± standard deviations) per ROI and condition. 

 pro anti Underspecified 

 left right mean left right mean left right mean 

PCu 

L 

0.21 

(±0.35) 

0.28 

(±0.35) 

0.23 

(±0.33) 

0.26  

(± 0.4) 

0.20  

(±0.32) 

0.23 

(±0.35) 

0.14 

(±0.39) 

0.07 

(±0.29) 

0.10 

(±0.31) 

PCu 

R 

0.20 

(±0.16) 

0.19 

(±0.17) 

0.19 

(±0.15) 

0.20 

(±0.18) 

0.20  

(±0.18) 

0.20 

(±0.16) 

0.1 

(±0.17) 

0.06 

(±0.16) 

0.07 

(±0.15) 

PMd 

L 

0.04 

(±0.12) 

0.07 

(±0.15) 

0.05 

(±0.13) 

0.07 

(±0.14) 

0.06  

(±0.17) 

0.07 

(±0.14) 

   

PCu L, left precuneus; PCu R, right precuneus; PMd, dorsal premotor cortex. 

 

To further test for movement goal encoding within the conditions pro and anti, we 

performed the respective post-hoc paired t tests using Bonferroni-Holm adjusted alpha 

levels (p < 0.025 and p < 0.05). In condition pro, contralateral right visual cues elicited a 

significantly higher %SC than ipsilateral left visual cues (t(18) = 2.53, p = 0.0105, one-

sided). In condition anti, the %SC for ipsilateral left visual cues were higher than for 

contralateral right visual cues (t(18) = 1.74, p = 0.0495, one-sided). The overall response 

pattern speaks in favor of movement goal encoding within the left PCu.  

For the right PCu and the left PMd, the %SC did not differ between conditions pro 

and anti or left and right visual cue positions. 

 

ACTIVATION OF REACH-RELATED AREAS IN UNDERSPECIFIED CONDITIONS 

In order to investigate whether reach-related brain areas are active during the delay 

when movement-relevant information is insufficient to prepare the final reach 

(underspecified situation), we first calculated a baseline contrast for the underspecified 

condition, (UNDERSPECIFIED LEFT + UNDERSPECIFIED RIGHT) > FIX. As depicted 

in Figure 2.4A we observed activation in the left parietal cortex, including IPL, aIPS, S1, 

and, importantly, the left and right PCu and anterior PCu (Table 2.3). Furthermore, the 

underspecified condition activated the left frontal pole. The results clearly show that 

posterior parietal areas of the reaching network were active even in situations where the 

movement goal was underspecified. However, in contrast to the specified conditions, we 

found no activation in the left PMd in the underspecified condition. Therefore, we 

performed the ROI analyses on the left and right PCu only.  

Next, we identified areas showing higher activation in specified as compared to 

underspecified conditions by calculating the differential contrasts (PRO LEFT + PRO 

RIGHT) > (UNDERSPECIFIED LEFT + UNDERSPECIFIED RIGHT) and (ANTI LEFT 
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+ ANTI RIGHT) > (UNDERSPECIFIED LEFT + UNDERSPECIFIED RIGHT). 

Comparing the delay phase activations from condition pro to the underspecified condition 

revealed stronger activation in the specified condition in the left PMd (z = 3.09), and in 

clusters in the left parietal cortex extending throughout the SPL, the IPL , S1 , along the 

aIPS, and to the right SPL (Figure 2.4B). Similarly, the specified condition anti yielded 

higher activation in the left PMd, extending to the left SFG, and in the left and right SPL 

including the PCu as shown in Figure 2.4C. 

 

 

Figure 2.4: A. Delay phase activation in the underspecified condition obtained by the baseline contrast 
(UNDERSPECIFIED LEFT + UNDERSPECIFIED RIGHT) > FIX. Areas eliciting higher activation in the specified 
conditions as compared to the underspecified condition are shown in B for the differential contrast (PRO 
LEFT + PRO RIGHT) > (UNDERSPECIFIED LEFT + UNDERSPECIFIED RIGHT) and in C for the differential contrast 
(ANTI LEFT + ANTI RIGHT) > (UNDERSPECIFIED LEFT + UNDERSPECIFIED RIGHT). White broken lines denote 
the central sulcus. PMd, dorsal premotor cortex; S1, primary somatosensory cortex; aIPS, anterior 
intraparietal sulcus; PCu, precuneus; aPCu, anterior precuneus; IPL, inferior parietal lobule.  
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Table 2.3: Voxelwise analyses. MNI Coordinates of local maxima in clusters showing significantly more 
activation in the underspecified condition as compared to fixation, and in the specified conditions pro and 
anti as compared to the underspecified condition (all cluster corrected, z > 2.1). Functional labels are given 
in brackets.  

  MNI coordinates  

Anatomic region Hemisphere x y z z score 

  Underspecified condition  

SPL7P (PCu) R 10 -74 50 3.24 

 L -4 -76 50 2.96 

Supramarginal Gyrus L -48 -48 54 2.34 

aIPS (hIP1) L -36 -54 42 3.28 

Postcentral Gyrus  

(BA 2, S1) 

L -44 -38 48 3.15 

Postcentral Gyrus  

(BA 1, S1) 

L -46 -36 62 2.89 

Frontal Pole L -40 46 -2 3.81 

  pro > Underspecified  

SPL7A (aPCu) R 8 -60 44 2.83 

 L -14 -64 64 3.6 

Supramarginal Gyrus L -56 -30 52 3.08 

aIPS (hIP2) L -46 -44 56 2.53 

Postcentral Gyrus  

(BA 2, S1) 

L -52 -28 46 2.15 

Postcentral Gyrus  

(BA 1, S1) 

L -50 -24 52 2.56 

Precentral Gyrus  

(BA6, PMd) 

L -30 -8 70 3.09 

  anti > Underspecified  

SPL7P (PCu) R 18 -74 54 3.14 

 L -2 -58 48 2.96 

SPL7A (aPCu) R 30 -60 60 3.25 

 L -14 -64 64 3.45 

Precentral Gyrus  

(BA6, PMd) 

L -26 -6 64 3.84 

SFG L -20 18 64 2.4 

SPL, superior parietal lobule; PCu, precuneus; aPCu, anterior precuneus; aIPS, anterior intraparietal sulcus; 
hIP, human intraparietal area; S1, primary somatosensory cortex; PMd, dorsal premotor cortex; SFG, 
Superior Frontal Gyrus.  
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In addition to the whole brain frontoparietal areas showing higher activation in 

specified compared to underspecified conditions we examined whether the activation 

strength differed likewise in the left and right PCu. Moreover, we tested for putative 

lateralization effects between left and right visual cues that may indicate movement 

planning or visual memory processes within the ROIs.  

Again, we first confirmed the validity of our ROIs based on the results by Lindner 

et al., (2010) by showing delay phase activation in the left PCu (z = 1.92, p < 0.05, 

uncorrected) and the right PCu (z = 2.23) in the underspecified condition. Within the left 

PCu the %SC differed significantly between conditions (F(2, 36) = 17.14, p < 0.001). Post-

hoc t tests revealed that %SC were significantly higher in condition pro (t(18) = 4.88, p < 

0.017, corrected) and anti (t(18) = 4.75, p < 0.025, corrected) as compared to the 

underspecified condition, respectively. However, there was no significant difference 

between the specified conditions (t(18) = 0.25, p = 0.81). Similarly, %SC differed 

significantly between conditions in the right PCu (F(1.41, 25.40) = 16.11, p < 0.001). Again, we 

observed higher %SC in the specified conditions pro (t(18) = 3.72, p < 0.025, corrected) and 

anti (t(18) = 5.03, p < 0.017, corrected) as compared to the underspecified condition, while 

%SC from the specified conditions did not differ (t(18) = 0.908, p = 0.376). These results 

extend the findings from the whole-brain contrasts showing that a specified movement goal 

leads to higher activation as compared to underspecified movement goals in the predefined 

PCu regions.  

In addition, we aimed to explore lateralization preferences in the PCu in the 

underspecified condition. Left and right visual cues did not elicit significant differences in 

%SC (Table 2.2) neither in the left PCu (t(18) = 1.69, p = 0.109) nor in the right PCu (t(18) = 

1.42, p = 0.173). 

 

2.4 DISCUSSION 

In the current study we used a pro-/anti-reach rule-selection task to examine the 

nature of movement planning processes in conditions with specified and underspecified 

movement goals. For specified conditions, we identified a reaching network comprising the 

PPC bilaterally and the left PMd with a large activation overlap between planning pro- and 

anti-reaches. Within this network, the PCu contralateral to the moving effector elicited 

directionally selective activation depending on the position of the movement goal and not 
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on the position of the visual cue. If the movement goal was not specified, areas of the 

reaching network within the PPC but not the PMd were recruited and showed weaker 

activation than in the specified conditions.  

 

PRO- AND ANTI-REACH PLANNING IN SPECIFIED CONDITIONS 

In the specified conditions which required either a pro- or an anti-reach, we 

identified a broad frontoparietal network involved in the planning of reaching movements. 

This network included the bilateral PCu and the left PMd which has also been described in 

earlier fMRI studies on reach planning and execution (Prado et al., 2005; Beurze et al., 

2007; Lindner et al., 2010; Parkinson et al., 2010; Fabbri et al., 2012). Area PCu, labelled 

‘human PRR’ by Connolly et al. (2003), plays a crucial role in planning and executing 

reaching and pointing movements (Connolly et al., 2003; Fernandez-Ruiz et al., 2007; 

Bernier et al., 2012) with and without visual feedback from the hand (Filimon et al., 2009) 

and even engages in imagined and observed reaching (Filimon et al., 2007). The PCu seems 

to functionally differ from an area in the superior parieto-occipital cortex (SPOC) which is 

located more posterior and within the parieto-occipital sulcus (Gallivan et al., 2009). SPOC 

has been shown to be specialized for the transport component of reach and grasp 

movements (Cavina-Pratesi et al., 2010), but also processes object’s reachability (Gallivan 

et al., 2009), and hand orientation (Monaco et al., 2011) as well as grasp axes (Monaco et 

al., 2014) for grasping movements. Therefore, SPOC rather than PCu has been discussed as 

a putative human homologue of monkey area V6A (Gallivan et al., 2009), which does not 

only contain reach-related neurons but also neurons selective for different grip types 

(Fattori et al., 2010). However, the exact human homologues of monkey PRR, reach-related 

area 5, V6A and MIP remain unclear. 

Our results showed that pro- and anti-reach movements activated similar brain areas 

which did not differ in activation strength. This is consistent with findings from Connolly et 

al. (2003) who also observed no activation differences between pro- and anti-reach 

movements during the planning phase. We did not find activation in additional brain areas 

for anti- as compared to pro-reaches, as has been reported in an earlier study by Connolly et 

al. (2000). However, these results were based on activation during both movement planning 

and execution and thus are hardly comparable to the present findings where we exclusively 

focused on activation during movement planning. 
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MOVEMENT GOAL VS. VISUAL CUE REPRESENTATION IN SPECIFIED CONDITIONS 

In order to investigate whether PCu and PMd represent the visual movement goal or 

maintain the presented visual cue in visual memory during movement planning, we applied 

an adapted version of the pro-/anti-reach rule-selection task by Westendorff et al. (2010). 

Here, we focused on the left and right PCu and the left PMd. Based on previous findings 

from electrophysiological studies in monkeys (Westendorff et al., 2010; Klaes et al., 2011), 

we hypothesized that the position of the movement goal rather than the position of the 

visual cue is encoded in PCu and PMd.  

In the left PCu, we observed a preference for contralateral visual cues in pro-reach 

trials where the visual cue coincided with the movement goal. Importantly, this pattern 

reversed for anti-reach trials showing a preference for ipsilateral visual cues where the 

visual cue indicated the contralateral movement goal. By showing that human PCu encodes 

the visual movement goal rather than the position of the visual cue preceding the movement 

preparation phase we substantially extend the results by Fernandez-Ruiz et al. (2007) who 

demonstrated a preference for visual over physical movement goals in PCu. Taken together 

with our findings, it is unlikely that the activation observed in PCu in the study by 

Fernandez-Ruiz et al. (2007) reflects the visual memorization of the visual cue rather than 

the visual movement goal. 

The present finding is also in line with the results on reach planning in monkeys 

demonstrating directional selectivity of PRR neurons fixed to the motor goal rather than the 

visual cue in a similar pro-/anti-reach task (Westendorff et al., 2010). However, caution is 

needed when comparing fMRI activations in humans with single-unit recordings in 

monkeys. Kuang et al. (2015) combined a reversing-prism task with an anti-reach task in 

monkeys and found that the majority of PRR neurons encode the physical movement goal 

while only a small portion encodes the visual movement goal; a finding incompatible with 

previous fMRI work (Fernandez-Ruiz et al., 2007) and the present findings in humans. But, 

when they analyzed the local field potentials (LFPs) instead of single-neuron spiking 

activity from the same brain areas they found evidence for pure visual movement goal 

encoding. Furthermore, they demonstrated that the observed movement goal encoding was 

unrelated to visual memory in line with our fMRI results in humans. This suggests similar 

spatial coding mechanisms for reaching movement planning in monkey PRR and human 

PCu. 
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We found evidence for (visual) movement goal encoding in the left PCu, 

contralateral to the moving effector (right arm reaches), while no such effect occurred in 

the right PCu although both the left and right PCu were activated during movement 

planning. Similarly, Fernandez-Ruiz et al. (2007) also found PCu activation related to 

movement goal encoding only in the hemisphere contralateral to the moving arm. The 

movement goal thus seems to be reliably encoded in the contralateral PCu for right arm 

reaches, while movement goal encoding in the ipsilateral PCu seems to be less robust. One 

explanation for the lacking effect might be that univariate GLM analyses of fMRI data are 

not sensitive enough to assess movement goal encoding in the ipsilateral hemisphere. By 

applying fMRI adaptation, Fabbri et al. (2010) were able to find directional selectivity in 

the contralateral left and the ipsilateral right PCu for right arm reaches. However, for left 

arm reaches this effect only occurred for the contralateral right PCu and was absent for the 

ipsilateral left PCu. Given the fact that the PCu represents both the effector and the 

movement goal (Beurze et al., 2007) reach movement goals might preferably be encoded in 

the human PCu contralateral to the moving arm. 

During the movement preparation phase only the left PMd contralateral to the 

reaching hand was activated. Such a contralateral bias was also observed in earlier studies 

on reach planning (Medendorp, Goltz, Crawford, and Vilis, 2005; Bernier et al., 2012). The 

activation maximum we observed for planning reaches with specified movement goals was 

located near an area previously labelled PMd proper due to its movement-specific 

functions, in contrast to the pre-PMd which has been associated with higher-order 

processes such as response selection or motor imagery (for a review see Picard and Strick, 

2001). The PMd proper has been suggested to transform visuo-spatial information into 

motor codes by double coding of movement goal and effector signals with a preference for 

the latter (Medendorp, Goltz, Crawford, and Vilis, 2005; Beurze et al., 2007). Here, we 

found no directionally selective activation in the left PMd. Our results thus speak in favor 

of a stronger effector- and weaker target-specificity in PMd compared to PCu in the human 

brain. Although earlier studies on reach planning indicated that PMd is primarily modulated 

by the effector-hand (Beurze et al., 2007; Medendorp, Goltz, Crawford, and Vilis, 2005) 

more recent work using multivariate decoding approaches on fMRI data also demonstrated 

target-selectivity in PMd (Gallivan, McLean, Smith, et al., 2011; Fabbri et al., 2014). 
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ACTIVATION OF REACH-RELATED AREAS IN UNDERSPECIFIED CONDITIONS 

In conditions with underspecified movement goals, participants knew the position 

of the visual cue but were uninformed about whether they should perform a pro- or an anti-

reach movement after the movement preparation phase. We observed activation in reach-

related parietal regions similar to the areas activated in the specified conditions, again 

comprising the bilateral PCu. Yet, the PCu as well as other parietal areas showed stronger 

activation in conditions with specified movement goals. Moreover, we found no activation 

in the PMd in the underspecified conditions, in contrast to the specified conditions. In sum, 

situations with underspecified movement goals recruit fewer areas which are restricted to 

the parietal cortex and show weaker activation than in specified conditions. 

The lower activation in reach-related areas might be caused by an incomplete stage 

of sensorimotor integration since only the effector and the visual cue but not the visual 

movement goal was given. A similar conclusion has been derived from results of a 

sequential cueing task presenting separate cues for the movement goal and the effector (left 

vs. right arm) (Beurze et al., 2007). They showed that conditions in which the effector was 

specified but the visual movement goal was unknown (corresponding to our underspecified 

condition) yield activation in reach-related areas of the PPC, but activations were stronger 

and broader when both the effector and the movement goal were specified (after cue 2) 

compared to situations when only the effector or only the movement goal was given (after 

cue 1) (Beurze et al., 2007). In a similar study, Bernier et al. (2012) cued the effector (left 

vs. right arm) either before or simultaneously with the presentation of the movement goal. 

They tested whether frontoparietal reach regions represent the movement goal for both 

arms if the effector is unknown, or if the movement goal is only formed after the 

information about the effector is given. They found evidence for the latter case and 

concluded that a motor goal is specified only if both the movement goal and the effector 

information are given. Thus, the specification of both the effector and the movement goal 

seems to be necessary to reach complete sensorimotor integration in the frontoparietal 

reaching network. However, the tasks applied by Beurze et al. (2007) and Bernier et al. 

(2012) differ in various aspects from our pro-/anti-reach rule selection task, e.g. single 

reaching vs. sequential reaching or reaching to the visual cue vs. the inferred mirrored 

position, limiting a direct comparison of the findings. 

An alternative explanation for the lower activation in reach-related areas could be 

that in underspecified conditions participants have planned all potential pro- and anti-reach 
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movements but mutual inhibition of competing movement plans led to lower net activation 

in reach-planning areas like PCu and PMd. Evidence for this second possibility comes from 

electrophysiological studies in monkeys demonstrating that neural activity of spatially 

selective neuronal populations first spans the entire angular range of potential reach 

directions and after movement goal specification sharpens to reflect the choice (Bastian et 

al., 1998, 2003). Selection of one movement plan is achieved by mutual inhibition among 

neuronal populations with different tuning properties (Cisek, 2006) and/or through 

differential selection in cortico-striatal circuits (Leblois et al., 2006). Simultaneous 

encoding of multiple movement plans has been identified in frontoparietal areas including 

PMd and PRR in conditions with underspecified movement goals and even with single cue 

presentation like in pro-/anti-reach tasks (Cisek and Kalaska, 2002, 2005; Klaes et al., 

2011). In humans, evidence for the co-activation of multiple movement plans comes from 

magnetoencephalographic (Tzagarakis et al., 2010) and electroencephalographic (EEG) 

studies (Rawle et al., 2012) showing weaker beta-band suppression, and thus attenuated 

activation, in motor-related frontal areas when multiple potential movement goals were 

presented before the delay. In accordance, EEG recorded delay phase activity in (pre)motor 

cortex inversely scaled with the number of possible reach goals presumably caused by 

mutually suppressive interactions between cell populations encoding different movement 

directions (Praamstra et al., 2009).  

With the present task design, we cannot exclude one of the two aforementioned 

possibilities. The lack of directional selectivity we observed in the left PCu in the 

underspecified condition (in contrast to the specified condition) might suggest that human 

PCu encodes both potential pro- and anti-reach movements in parallel. Future brain 

imaging studies should investigate in more detail whether reach-related areas in the human 

brain plan all potential movements in advance and later select the appropriate one or wait 

until the movement goal is specified and then plan the appropriate movement.  

 

2.5 CONCLUSIONS 

Our study aimed to clarify the nature of movement planning processes within the 

human reaching network in a pro-/anti-reach rule selection task. The present findings 

demonstrate that the reach-related area PCu encodes the visual movement goal rather than 

the viewed visual cue if the movement goal is specified and even engages in situations 
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when only the visual cue but not the movement goal is available. Visual movement goal 

specificity was only found in the left hemisphere suggesting preferred encoding in the PCu 

contralateral to the reaching hand. 
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3. DECODING MOVEMENT GOALS FROM THE 

REACH NETWORK 

 

 

 

To plan a reaching movement, frontoparietal brain areas need to transform sensory 

information into a motor code. It is debated whether these areas maintain a sensory 

representation of a visual cue or a motor representation of the upcoming movement goal 

during reach planning. Here, we used a delayed pro-/anti-reach task which allowed for 

dissociating the position of the visual cue from the reach goal. In this task, the visual cue 

was combined with a context rule (pro vs. anti) to infer the movement goal. Different levels 

of movement goal specification during the delay were obtained by presenting the context 

rule either before the delay together with the visual cue (specified movement goal) or after 

the delay (underspecified movement goal). By applying fMRI multivoxel pattern decoding 

we demonstrate a strong bias for movement goal encoding in the dorsal premotor cortex 

(PMd) and posterior parietal cortex (PPC), particularly in the right superior parietal lobule 

(SPL) when the reach goal is specified. This suggests that fronto-parietal reach regions 

maintain a prospective motor code during reach planning. When the reach goal is 

underspecified, only the PMd but not the SPL represents the visual cue position. This 

suggests an incomplete state of sensorimotor integration.  
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3.1 INTRODUCTION 

The PPC is a core area for planning and guiding reaching movements in both 

monkeys (Snyder et al., 1997; Batista and Andersen, 2001; Gail and Andersen, 2006; for a 

review see Andersen and Buneo, 2002) and humans (Connolly et al., 2003; Culham and 

Valyear, 2006). Previous research in humans has found that areas of the PPC represent the 

movement effector (Connolly et al., 2003; Medendorp, Goltz, Crawford, and Vilis, 2005; 

Beurze et al., 2007, 2009; Gallivan, McLean, Smith, et al., 2011; Heed et al., 2011; Leoné 

et al., 2014), the orientation of hand/wrist (Monaco et al., 2011; Barany et al., 2014), the 

grip and transport component (Cavina-Pratesi et al., 2010), the availability of visual 

information (Filimon et al., 2009), the reachability of a target object (Gallivan et al., 2009), 

and the type of motor act (Fabbri et al., 2010, 2014; Gallivan, McLean, Valyear, et al., 

2011; Gallivan et al., 2013).  

One key aspect of reach planning and execution is the spatial representation of the 

movement goal. Movement direction selectivity during reach execution has been 

demonstrated in the PPC, in particular in the SPL and IPS, as well as in the PMd (Fabbri et 

al., 2010, 2014; Haar et al., 2015). Likewise, during reach planning SPL and IPS encode 

the position of a movement goal to be acted upon (Beurze et al., 2007, 2009; Gallivan, 

McLean, Smith, et al., 2011). In these studies, however, the visual cue spatially 

corresponded with the movement goal leaving open whether PPC and PMd rely on a 

retrospective sensory code or a prospective motor code. Using left/right reversing prisms, 

Fernandez-Ruiz et al. (2007) tried to address this question and reported movement goal 

rather than visual cue encoding in the SPL contralateral to the effector used for the 

upcoming reach. While reversing prisms allow for dissociating the visually perceived 

movement direction toward a spatially corresponding visual cue from the actual (physical) 

movement direction (i.e. an actual rightward movement to a right visual cue is seen as a 

leftward movement to a left visual cue), they cannot dissociate the position of the visual 

cue from the visual movement goal. In a recent study, we applied a pro-/anti-reach task and 

showed that during reach planning the visual movement goal rather than the visual cue is 

encoded in the SPL contralateral to the moving effector (Gertz and Fiehler, 2015). 

The PPC as well as the PMd have been further associated with sensorimotor 

integration showing higher activation when information about both the effector and the 

movement goal is given than when only one piece of information is available (Beurze et al., 
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2007, 2009; Bernier et al., 2012). It remains unclear how situations with ambiguous 

movement goals are represented in reach-related areas.  

Here we used multi-voxel pattern analysis (MVPA) of functional magnetic 

resonance imaging (fMRI) data to investigate the functional specificity of reach-related 

areas. As MVPA has been shown to detect more subtle characteristics of spatial encoding 

processes during movement execution (Fabbri et al., 2014; Haar et al., 2015) and thus may 

reveal different results than univariate analyses, we applied this approach to refine and 

extend our previous findings (Gertz and Fiehler, 2015). In particular, we examined whether 

the PPC and PMd represent the visual cue or the movement goal, and, second, different 

levels of movement goal specification. We applied a pro-/anti-reach task combined with a 

context cue (pro vs. anti) which was presented before (specified movement goal) or after 

(underspecified movement goal) a delay. While earlier studies assumed one core PPC 

region for reaching located in the SPL, the putative human homologue of monkey PRR 

(Connolly et al., 2003), more recent studies argue for multiple reach-related areas within 

PPC, possibly following a gradient with different weightings, e.g. of effector- and spatial 

information (Beurze et al., 2007, 2009; Heed et al., 2011) or different sensory input 

modalities (Filimon et al., 2009). A broad distinction can be made between two clusters in 

the SPL7. A posterior SPL7 cluster comprises the posterior PCu and posterior IPS (Prado et 

al., 2005; Filimon et al., 2009). This cluster often extends to the SPOC (Gallivan et al., 

2009; Cavina-Pratesi et al., 2010) just anterior or even posterior of the POS. Based on 

probabilistic histological maps (Eickhoff et al., 2007) this cluster most often falls into the 

posterior BA7, thus being labelled as the SPL7P. An anterior SPL7 cluster is also located 

medially in the SPL, in the aPCu, sometimes extending to the middle portions of medial 

IPS (Prado et al., 2005; Filimon et al., 2009; Gallivan, McLean, Smith, et al., 2011; Bernier 

et al., 2012). The corresponding probabilistic histological label for this anterior part of BA 

7 is SPL7A. We therefore examined multiple PPC areas with a focus on Brodmann area 7 

of the SPL, subdividing it into posterior and anterior ROIs of the SPL7.  

In this study, we dissociated for the first time brain regions encoding a sensory 

representation of a visual stimulus from brain regions encoding a motor representation of 

the upcoming movement goal by using a multivariate approach. We observed a preference 

for movement goal encoding in the PMd and PPC with the strongest effects in the right 

SPL. The PMd, SPL and left aIPS distinguished between specified and underspecified 

movement goals suggesting an important role in sensorimotor integration. 
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3.2 MATERIALS AND METHODS 

The results of this study are based on the same dataset as in Chapter 2. Therefore, 

the Participants, the Experimental Design & Conditions, the Apparatus & Stimuli, and the 

Trial Timing are identical to those described in Chapter 2.2 of this thesis. Moreover, the 

Behavioral Analyses and the Imaging Parameters were identical to those in Chapter 2.2. 

All further steps of the preprocessing and analysis of the fMRI data differed between the 

two studies, and will be described in the following. 

 

PREPROCESSING 

Imaging data were preprocessed and analyzed using FSL (version 5.0.2; 

http://www.fmrib.ox.ac.uk/fsl). The first four volumes (12 s) were discarded due to an 

incomplete steady state of the magnetic field. After realignment and motion correction 

using FSL’s motion correction tool MCFLIRT (Jenkinson et al., 2002) we used a custom-

made fMRI artifact correction tool (Bertram Walter, Bender Institute of Neuroimaging, 

Giessen, Germany) to detect EPI outlier volumes by calculating the mean squared 

difference in brightness values to the respective adjacent volumes. These deviation scores 

were thresholded according to an outlier detection method for skewed data (Hubert and van 

der Veeken, 2008) globally for the whole data set. Three participants were discarded from 

further analyses due to large motion artifacts defined by more than 10 % outlier volumes 

(cf., Hubert and van der Veeken, 2008). 

Non-brain tissue was removed from all images using the FSL’s brain extraction tool 

BET (Smith, 2002). Further preprocessing included the following steps: 1) B0-unwarping 

using fieldmaps, 2) temporal high-pass filtering with a cutoff of 144 s to remove low 

frequency drift 3) slice timing correction, and 4) registration of individual functional 

images to structural images, as well as non-linear registration of individual structural 

images to the MNI space using FMRIB’s Non-linear Image Registration Tool (Smith et al., 

2004; Andersson et al., 2010).  

In the following, we set up separate GLM analyses for ROI definition and 

extraction of parameter estimates for MVPA of the six experimental conditions, resulting 

from a combination of task (pro, anti, underspecified) and position of the visual cue (left, 

right). To identify group level peaks for ROI definition, we applied a Gaussian kernel of 5 

mm full-width-half-maximum (FWHM) for spatial smoothing. To extract the parameter 
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estimates for MVPA on individual data, data were spatially smoothed with a smaller 

Gaussian kernel of 2 mm FWHM. Other than that, preprocessing was identical for the two 

analyses. 

 

ROI DEFINITION 

ROIs were defined separately for each participant based on individual univariate 

statistical maps, combined with anatomical masks from the Juelich anatomical atlas 

(Eickhoff et al., 2007).  

Data analysis was performed using the GLM implemented in FEAT v6.00 (Smith et 

al., 2004; Jenkinson et al., 2012). FMRIB's Improved Linear Model (FILM) was used to 

estimate voxel-wise time series autocorrelation for prewhitening of the time series and 

thereby improve efficiency of the model. We defined the delay phase (3 – 5 s from the 

offset of the rule cue in specified conditions and of the non-informative cue in the 

underspecified condition) as the period of interest for putative movement planning. We 

modeled one separate delay predictor for each experimental condition (specified conditions 

pro and anti, underspecified condition): PRO, ANTI, UNDERSPECIFIED. Note that here 

we collapsed data across visual cue positions (left, right). In addition to these delay 

predictors, we defined the fixation interval (FIX), the presentation of the spatial cue, the 

presentation of the rule cue, and the movement phase as predictors of no interest. Each 

predictor was defined as a boxcar function with the magnitude of 1. Predictors were 

convolved with a double-Gamma hemodynamic response function in order to model the 

late undershoot. We also added the temporal derivative to our model to achieve a better fit 

to the data (Friston et al., 1998). 

To define the ROIs we first calculated one baseline contrast across the three 

experimental delay conditions: (PRO + ANTI + UNDERSPECIFIED) > FIX. For 

individual analyses, z statistic images were thresholded at p < 0.05, corrected for multiple 

comparisons using GRF (Worsley et al., 1996). For group-level analyses, parameter 

estimates were assessed with a mixed effects model, with the random effects component of 

variance estimated using FSL's FLAME stage 1 procedure (Beckmann et al., 2003; 

Woolrich et al., 2004). Z (Gaussianized T) statistic images were generated using a z 

statistics threshold of 2.3 and a corrected cluster probability threshold of p = 0.05 using 

GRF (Worsley et al., 1996). Subsequently, we used the Juelich probabilistic 

cytoarchitectonic atlas (Eickhoff et al., 2007) to identify regions exhibiting a signal peak in 
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the group level analysis. To ensure that the defined ROIs were anatomically precisely 

located, we multiplied the activations of the group level baseline contrast with an 

anatomical mask of each (sub-) region. We applied anatomical masks of the Juelich atlas 

(Eickhoff et al., 2007) which are based on histological processing and cytoarchitectonic 

analyses of 10 postmortem human brains. The resulting cytoarchitectural areas are 

probability maps. For ROI definition, we included all voxels that had a probability of at 

least 50 % as being part of the respective anatomical region. The resulting group-activation-

bound anatomical masks in standard MNI space were transformed to individual functional 

space for each participant separately using FSL’s applywarp. In a next step, we detected the 

individual signal peaks within the activation-bound anatomical masks using FSL featquery, 

and placed a sphere with a radius of 10mm around the corresponding coordinate. We did so 

to also account for individual activation patterns. Finally, we masked the individual spheres 

with the original anatomical Juelich masks (again transformed to individual functional 

space) to ensure that the individual ROIs only comprised voxels of the respective regions. 

ROIs comprised at least 10 voxels with a voxel size of 3x3x3 mm (for the mean size of the 

ROIs see Table 3.1). Note that we therefore had to exclude the right aIPS (4.7 voxels) from 

further analyses. 

 

MVPA 

We used MVPA to examine if and how reach-related areas functionally differ in 

encoding visual cue or movement goal positions, and movement goals at different levels of 

specification during the delay of a pro-/anti-reach task. To do so, we first computed 

parameter estimates for six experimental conditions (pro, anti, underspecified combined 

with the visual cue position left vs. right).  

As we applied a rapid-event related design with interleaved trial structure we 

artificially split up the experiment into eight runs. To avoid temporal dependencies between 

the runs we randomized all trials of each of the six conditions (32 per condition) and 

combined four trials to one predictor per condition for each of the eight runs. Thus, the six 

predictors of interest per run were: PRO_LEFT, PRO_RIGHT, ANTI_LEFT, 

ANTI_RIGHT, UNDERSPECIFIED_LEFT, and UNDERSPECIFIED_RIGHT. Predictors 

were defined with the onset of the delay for a fixed duration of 3 s and a magnitude of 1. In 

addition, we modeled the fixation phase (FIX), the visual cue presentation, the rule cue 

presentation, and the reach execution as predictors of no interest as described before (see 
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ROI definition). In the following, we set up one GLM for each run and participant in FEAT 

(Smith et al., 2004; Jenkinson et al., 2012) including the FILM prewhitening procedure and 

contrasted the predictor of each condition to the fixation phase, resulting in six contrasts: 

PRO_LEFT > FIX, PRO_RIGHT > FIX, ANTI_LEFT > FIX, ANTI_RIGHT > FIX, 

UNDERSPECIFIED_LEFT > FIX, UNDERSPECIFIED_RIGHT > FIX. We thus obtained 

48 PEs for the delay phase per participant (6 conditions x 8 runs) used for MVPA. 

MVPA was performed using a linear-discriminant analysis (LDA)-based classifier 

as implemented in the CoSMoMVPA toolbox (Oosterhof et al., 2016). The following steps 

were performed for every participant and ROI separately. Classification accuracies were 

computed using leave-one-run-out cross-validation, so that the classifier was trained using 

seven runs and tested on the remaining pattern of one run. For each participant this 

procedure was repeated seven times each time leaving out another run as a test pattern. The 

resulting classification accuracies were averaged per test. 

Using MVPA, we pursued two main goals. First, we examined whether reach-

related areas encode the spatial position of the visual cue or the (inferred) movement goal, 

i.e. the combination of visual cue and context rule, during the delay of the specified 

conditions. To decode the visual cue position we trained and tested the classifier on the 

conditions pro left and anti left versus the conditions pro right and anti right. To decode the 

movement goal position we trained and tested the classifier on planned movements to the 

left (pro left, anti right) versus movements to the right (pro right, anti left).  

Second, we aimed to decode the level of movement goal specification (specified vs. 

underspecified) and thereby identifying regions potentially involved in sensorimotor 

integration. The classifier was trained on conditions with underspecified movement goals 

(underspecified left, underspecified right) versus conditions with specified movement goals 

(pro left, pro right, anti left, anti right). To account for the different number of specified (4) 

and underspecified conditions (2), we balanced the number of samples per class by 

randomly choosing two out of the four specified conditions in each run of the training set.  

In addition, we performed two exploratory analyses aiming to decode the type of 

movement goal (directly cued vs. inferred) and the position of the visual cue in 

underspecified conditions. We examined if the reach-related ROIs can distinguish between 

directly cued movement goals (condition pro) and movement goals inferred from the visual 

cue position (condition anti). Therefore, we trained the classifier on the conditions pro left 

and pro right versus anti left and anti right.  
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Next, we tested which ROIs encode the position of the visual cue despite 

underspecified movement goals. To do so, we separately trained the classifier on the 

conditions underspecified left versus underspecified right.  

We computed a one-tailed one-sample t test per ROI against the theoretical chance 

level of 50% in order to assess statistical significance. Statistical results were FDR 

corrected for the number of one-sample t tests (6 ROIs x 5 classifications = 30 tests; 

Benjamini and Hochberg, 1995).  

To determine whether a region is specialized to encode the visual cue or the 

movement goal position in specified conditions we ran a two-sample t test per ROI testing 

the accuracy of the visual cue against the accuracy of the movement goal. If a region is 

specialized for encoding the visual cue position, it should exhibit a decoding accuracy 

significantly above chance level for the visual cue position, but a non-significant decoding 

accuracy for the movement goal position as assessed by the t tests. In addition, it should 

also show a significantly higher decoding accuracy for the visual cue position than for the 

movement goal position. However, if a region is specialized for movement goal encoding 

decoding accuracy should be significantly above chance for the movement goal and not 

significantly higher than chance for the visual cue. Moreover, one would expect a 

significantly higher decoding accuracy for the movement goal than for the visual cue. 

 

3.3 RESULTS 

The behavioral results have been reported in Chapter 2.3 in the Behavioral results 

section. The results of the fMRI analyses will be presented in the following section. 

 

UNIVARIATE RESULTS 

To define ROIs for subsequent MVPA, we computed a group baseline contrast for 

the delay phase across all conditions (pro, anti, underspecified). This contrast revealed 

widespread activation most pronounced in the left and right SPL7, extending to adjacent 

left and right aIPS, left and right inferior parietal lobule, and left and right primary 

somatosensory cortex (Figure 3.1). We further detected activation in the right frontal pole 

extending into the orbitofrontal cortex and the parahippocampal gyrus, and in the left 

frontal pole extending into the left middle and inferior frontal gyrus. Finally, activation was 

revealed in the dorsal part of the premotor cortex in BA 6. 
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Figure 3.1: Delay phase activation across conditions. Activation maps were obtained by calculating one 
baseline contrast across the three experimental delay conditions (PRO + ANTI + UNDERSPECIFIED) > FIX (Z > 
2.3, corrected cluster probability threshold p = 0.05; N = 19). Labels indicate the location of activation peaks 
used for ROI definition. PMd, dorsal premotor cortex; SPL7A, anterior portions of Brodmann area 7 in the 
superior parietal lobule; SPL7P, posterior portions of Brodmann area 7 in the superior parietal lobule; aIPS, 
anterior intraparietal sulcus. 

 

Previous studies on reach execution identified movement direction encoding in the 

SPL, adjacent IPS, as well as in the PMd (Fabbri et al., 2010, 2014). Therefore, we focused 

subsequent analyses on these regions based on our univariate activation cluster and split up 

SPL activation into two regions per hemisphere to get a more detailed picture of potential 

functional differences within this area. We defined ROIs for the two SPL regions, SPL7A 

(peak group MNI coordinates: left -12 -66 68, right 28 -64 64) and SPL7P (peak group 

MNI coordinates: left -12 -78 54, right 6 -76 54), adjacent left aIPS (peak group MNI 

coordinates: -38 -52 40), as well as the left PMd (peak group MNI coordinates: -4 -4 72). 

 

MVPA 

We used ROI-based MVPA to examine whether the visual cue or the movement 

goal are encoded in the parieto-frontal reaching network, particularly in SPL regions 

previously discussed as human parietal reach regions. Second, we aimed to decode the level 

of movement goal specification, i.e. if the movement goal is specified or underspecified. In 

addition, we investigated whether reach-related areas represent different types of movement 

goals (directly cued vs. inferred), and the position of the visual cue in the underspecified 

conditions. 

The spatial position of the visual cue and the movement goal could be decoded in 

different areas of the SPL for combined specified conditions, pro and anti (Figure 3.2, 

Table 3.1). We decoded the visual cue position only in one SPL region, the left SPL7A. 

The left PMd and bilateral SPL regions (left and right 7A, left and right 7P) encoded the 
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movement goal position. The decoding accuracy was also higher for the movement goal 

position than for the visual cue position in the right SPL7A and the right SPL7P (Table 

3.2). In the left aIPS, the decoding accuracy was not above chance for either the visual cue 

or the movement goal position. 

 

 

Figure 3.2: Mean classification accuracy for decoding the visual cue position and the movement goal. Error 
bars indicate SEM, asterisks indicate statistically significant difference from chance (50%) as follows: *, p < 
0.05; **, p < 0.01; ***, p < 0.005; ◊, FDR corrected for the number of tests. The dotted line represents 
decoding accuracy at chance (50%). SPL7A, anterior portions of Brodmann area 7 in the superior parietal 
lobule; SPL7P, posterior portions of Brodmann area 7 in the superior parietal lobule; aIPS, anterior 
intraparietal sulcus; PMd, dorsal premotor cortex. 
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Table 3.1: Results of ROI MVPA and t tests against chance for visual cue and movement goal decoding. 

 Mean 

size 

(voxels) 

visual cue movement goal 

 accuracy SEM t p accuracy SEM t p 

Left SPL7A 45.8 0.543 0.016 2.60 0.009* 0.541 0.019 2.13 0.023 

Right SPL7A 39.9 0.505 0.013 0.38 0.354 0.549 0.014 3.43 0.002* 

Left SPL7P 29.1 0.508 0.015 0.56 0.291 0.533 0.018 1.80 0.044 

Right SPL7P 41.3 0.487 0.017 -0.77 0.774 0.553 0.023 2.25 0.019 

Left aIPS 19.6 0.480 0.017 -1.17 0.873 0.487 0.017 -0.79 0.781 

Left PMd 37.3 0.536 0.021 1.69 0.054 0.544 0.022 2.00 0.030 

t tests one-tailed, against chance (0.5). * Significant p values (FDR corrected for number of tests). 

 

 

Table 3.2: Results of two-tailed t tests between visual cue and movement goal. 

  t p 

SPL7A Left -0.0777 0.939 

 Right 2.6197 0.0174 

SPL7P Left 1.41 0.176 

 Right 2.638 0.017 

aIPS Left 0.236 0.816 

PMd Left 0.2538 0.802 
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We were able to decode underspecified versus specified movement goals from the 

left PMd. Furthermore, the SPL regions (left and right SPL7A, left and right SPL7P) as 

well as the left aIPS showed significant decoding accuracies for specified than 

underspecified conditions (Figure 3.3, Table 3.3). 

 

 

Figure 3.3: Mean classification accuracy for decoding the level of movement goal specification (dark blue) 
and the visual cue position in underspecified conditions (light blue). Error bars indicate SEM, asterisks 
indicate statistically significant difference from chance (50%) as follows: *, p < 0.05; ***, p < 0.005; ◊, FDR 
corrected for the number of tests. Dotted line represents decoding accuracy at chance (50%). SPL7A, 
anterior portions of Brodmann area 7 in the superior parietal lobule; SPL7P, posterior portions of Brodmann 
area 7 in the superior parietal lobule; aIPS, anterior intraparietal sulcus; PMd, dorsal premotor cortex. 

 

 

Table 3.3: Results of ROI MVPA and t tests against chance for decoding the visual cue position in 
underspecified conditions, and decoding specified vs. underspecified movement goals. 

  Levels of movement goal specification visual cue (underspecified conditions) 

  accuracy SEM t p accuracy SEM t p 

SPL7A Left 0.602 0.022 4.61 0.0001* 0.52 0.022 0.9 0.19 

 Right 0.595 0.017 5.65 0.00001* 0.473 0.017 -1.51 0.926 

SPL7P Left 0.557 0.017 3.34 0.0018* 0.503 0.018 0.175 0.432 

 Right 0.605 0.022 4.76 0.000078* 0.513 0.021 0.62 0.271 

aIPS Left 0.566 0.029 2.28 0.0174 0.497 0.014 -0.24 0.592 

PMd Left 0.566 0.017 3.95 0.0005* 0.55 0.018 3.03 0.004* 

t tests one-tailed, against chance (0.5). * Significant p values (FDR corrected for number of tests). 
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None of the ROIs encoded the difference between directly cued and inferred 

movement goals, i.e. between conditions pro and anti (Table 3.4).  

For underspecified conditions, the position of the visual cue could be decoded from 

one area, the left PMd (Figure 3.3, Table 3.3).  

 

Table 3.4: Results of ROI MVPA and t tests against chance for decoding specified conditions pro vs. anti. 

  accuracy SEM t p 

SPL7A Left 0.515 0.014 1.06 0.152 

 Right 0.5 0.020 0 0.5 

SPL7P Left 0.518 0.014 1.26 0.113 

 Right 0.484 0.019 -0.86 0.801 

aIPS Left 0.512 0.02 0.58 0.283 

PMd Left 0.487 0.02 -0.67 0.743 

t tests one-tailed, against chance (0.5). * Significant p values (FDR corrected for number of tests). 

 

The results demonstrate that frontoparietal reach regions do well distinguish 

between different levels of specification of movement goals (specified vs. underspecified) 

but not between the type of movement goal (anti - inferred vs. pro - cued). Being provided 

with all necessary information to form a movement plan seems to bias spatial encoding 

processes in that network towards the encoding of the respective movement goal rather than 

the maintenance of the obsolete visual cue position. Especially, right SPL and left PMd 

play an important role in movement goal encoding. Interestingly, if the movement goal is 

underspecified the visual cue position is not encoded in the PPC, but only in PMd. 

 

3.4 DISCUSSION 

In the present study we aimed to investigate whether areas of the frontoparietal 

reaching network encode the visual cue position or the movement goal position in a pro-

/anti-reach task. Our results demonstrate that SPL and PMd, but not aIPS, encode the 

position of the movement goal when the movement plan is specified. The right anterior and 

posterior portions of the SPL elicited highest specificity for movement goal encoding. We 

also decoded the visual cue position in the SPL, in particular in the left anterior SPL. In line 

with our previous univariate results (Gertz and Fiehler, 2015), none of the areas 
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differentiated between directly cued and inferred movement goals, i.e. between pro- and 

anti-reach planning. For conditions with underspecified movement goals, the visual cue 

position only showed specificity in the left PMd, but not in parietal regions. Finally, we 

observed the level of movement goal specification (specified vs. underspecified) to be 

encoded bilaterally in the posterior and anterior SPL, as well as in the left aIPS and PMd. 

 

SPATIAL ENCODING PROCESSES DURING MOVEMENT PREPARATION 

Our findings provide evidence that specifying the movement goal biases the 

encoding towards the position of the upcoming movement goal and away from the (now 

obsolete) visual cue position. The latter one seems to be maintained in a brain region which 

also encodes the movement goal showing that both encoding processes are not necessarily 

mutually exclusive. This finding may be explained by different neuronal populations within 

the SPL. 

SPL and IPS have been suggested to encode the position of a movement goal to be 

acted upon (Beurze et al., 2007, 2009; Gallivan, McLean, Smith, et al., 2011). Here we 

dissociated the positions of the visual target from the movement goal in order to investigate 

whether frontoparietal areas maintain a visual, a motor representation or both. We found 

that anterior and posterior regions of the SPL as well as area PMd decode the position of 

the movement goal. Similar to our results on reach planning, SPL and PMd also show 

movement direction selectivity during reach execution (Fabbri et al., 2010, 2014; Haar et 

al., 2015). Our finding highlights the function of the frontoparietal network in encoding 

motor representations during movement planning. This contributes to the debate how 

motor-specific areas within the PPC compared to frontal motor regions are and strengthens 

the view of action representations in the PPC (c.f. Snyder et al., 1997; Andersen and 

Buneo, 2002; Andersen and Cui, 2009; Filimon, 2010; Lindner et al., 2010; Filimon et al., 

2015).  

In area aIPS, we were neither able to decode the visual cue position nor the 

movement goal position. Area aIPS is a grasp-selective region showing higher activation 

during the execution of grasping than reaching movements in monkeys and humans 

(Murata et al., 2000; Culham et al., 2003) and decoding of grasp versus reach movement 

planning as well as of similar grasps on objects with different sizes (Gallivan, McLean, 

Valyear, et al., 2011). Moreover, aIPS contains overlapping representations of movement 

direction and grip type and does not show pure directional selectivity (Fabbri et al., 2014). 
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Therefore, it is not surprising that the position of the movement goal was decoded from 

preparatory brain activation in reach-selective areas of the SPL and not in area aIPS.  

We further demonstrate that none of the examined frontoparietal regions 

differentiate the type of movement goal, i.e. directly cued versus inferred movement goals 

for pro- and anti-reaches, respectively. This is in line with the largely overlapping brain 

activation in the frontoparietal network we found recently during planning of pro- and anti-

reach movements (Gertz and Fiehler, 2015). The lack of a differential effect may be due to 

the fact that decoding was based on a delay phase of 3 s. In monkeys, movement goal 

tuning in monkey PRR occurs in pro-reach trials after 474 ms while PRR cells are tuned to 

the movement goal with a delay of 58 ms in anti-reach trials (Gail and Andersen, 2006). 

Moreover, monkey PRR cells show a preference in a sense of stronger directional 

selectivity for directly cued pro-reaches compared to anti-reaches, while the opposite effect 

is present in PMd cells (Gail et al., 2009). In our study, it is likely that participants inferred 

the movement goal in both specified pro- and anti-reach trials at the very beginning of the 

delay probably diluting any differences of the type of movement goal across the delay. 

 

HEMISPHERIC ASYMMETRIES IN MOVEMENT GOAL ENCODING 

During movement planning only the left PMd contralateral to the reaching hand was 

activated and encoded the movement goal. Such a contralateral bias was also observed in 

earlier univariate studies on reach planning (Medendorp, Goltz, Crawford, and Vilis, 2005; 

Bernier et al., 2012) speaking in favor of a stronger effector- and weaker target-specificity 

in PMd. For area SPL, on the other hand, we found bilateral activation with highest 

specificity for movement goal encoding in the right anterior and posterior SPL, thus 

ipsilateral to the moving effector. Previous studies on spatial encoding processes during 

reach planning reported movement goal encoding in regions of the SPL contralateral to the 

moving effector and thus suggested a contralateral bias in SPL (Medendorp, Goltz, 

Crawford, and Vilis, 2005; Fernandez-Ruiz et al., 2007; Gertz and Fiehler, 2015). 

However, recent MVPA studies highlight the importance of ipsilateral regions for the 

encoding of reach direction during reach execution (Fabbri et al., 2014) and for encoding 

the reach goal during reach planning (Gallivan et al., 2013). Note that uni- and multivariate 

approaches do not necessarily lead to similar results since amplitude differences of the 

BOLD response might occur in the absence of differences between activation patterns and 

vice versa (for a recent example, see Leoné et al., 2014). Yet, it is important to note that we 
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were also able to decode the position of the movement goal from anterior and posterior 

regions of the SPL contralateral to the effectoralthough decoding accuracies were lower. 

While we found movement goal encoding for a left-hemisphere ROI located at the border 

between SPL7A and SPL7P in our previous univariate study (Gertz and Fiehler, 2015), 

here we show that the more anteriorly located left SPL7A encodes both the position of the 

visual cue and the movement goal.  

There is also evidence arguing against strict contralateral effector-specificity during 

reach planning (Gallivan et al., 2013) and execution (Fabbri et al., 2010). During reach 

execution it has even been shown that right SPL elicits high directional selectivity during 

both left- and right-hand reaches (Fabbri et al., 2010). Although we did not manipulate the 

effector for the upcoming movement, our results support and extend this finding to reach 

planning. 

 

SENSORIMOTOR INTEGRATION IN FRONTOPARIETAL AREAS 

Given the fact that participants were only presented with the visual cue in the 

underspecified condition, one might have predicted decoding of the visual cue position in 

posterior (more visual) parts of the PPC. Interestingly, only area PMd differentiated left 

from right visual cue positions. Accordingly, PMd cells of monkeys are tuned to visual 

target locations (Hoshi and Tanji, 2006) and are preferably involved in spatial aspects of 

action, such as active maintenance of visuo-spatial coordinates (Cisek, 2006). Moreover, 

area PMd has been shown to engage in goal selection processes based on competition of 

multiple alternative movement plans (Cisek 2006; Cisek and Kalaska, 2002). Our result 

indicates that area PMd can maintain movement-relevant spatial information when the 

movement goal is ambiguous, while movement goal specification leads to spatial coding 

also in areas within the SPL. Although we cannot address the time course of sensorimotor 

integration with the current study, one may speculate that the visual cue position is 

maintained in PMd until the movement goal is specified. Movement goal selection may 

then happen in PMd before sending this information via feedback projections to the PPC, as 

has been previously suggested by studies in monkeys (Pesaran et al., 2008; Westendorff et 

al., 2010) and also discussed in humans (Bernier et al., 2012). 

Posterior parietal and premotor regions also encoded the different levels of 

movement goal specification, i.e. delay phases in which the movement goal was specified 

vs. underspecified. This suggests that the frontoparietal network comprising (at least) SPL, 
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aIPS, and PMd is engaged in integrating sensory and motor information and in setting up a 

movement plan. Based on differences in activation strength, similar results have been 

revealed in previous studies arguing for the integration of spatial target and effector 

information in PPC and PMd (Beurze et al., 2007; Bernier et al., 2012). Likewise, we 

showed previously that underspecified movement goals yield activation restricted to 

parietal regions as compared to specified movement goals (Gertz and Fiehler, 2015). 

Specifically, the medial posterior portions of the SPL were engaged in both specified and 

underspecified conditions. Our current results thus extend our knowledge about the 

processes within this region by showing that even if a region shows comparable activation 

for different levels of movement goal specification the underlying neuronal populations can 

distinguish between them. 

 

3.5 CONCLUSIONS 

We have reported evidence for movement goal encoding in anterior and posterior 

regions of the SPL as well as in PMd during reach planning. Our results further suggest that 

a frontoparietal network consisting of the left PMd, left aIPS and bilateral SPL plays a 

crucial role in sensorimotor integration. 
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4. THE ENDPOINT 

 

 

 

4.1 SUMMARY 

In this thesis, I presented results from a pro-/anti-reach task to examine the 

characteristics of movement planning processes in conditions with specified and 

underspecified movement goals at the cortical level. In a single experiment, we asked 

participants to perform a reaching movement either to the position of a visual cue (pro-

reach) or to its mirrored position (anti-reach). Doing so, we could dissociate the position of 

the visual cue from the movement goal. We determined whether participants were to 

perform a pro- or anti-reach via a context rule cue that was given before the onset of the 

movement. In the specified condition, the rule cue was given well before the onset of the 

movement during a delay phase, so participants could infer the position of the movement 

goal and plan a movement to that position during the delay. In the underspecified condition, 

the rule cue was given just before movement onset, so the position of the movement goal 

could not be inferred during the delay. Importantly, we measured the brain activity during 

the delay phase, allowing us to examine the neural correlates of reach planning when the 

movement goal was clearly specified and when it is underspecified. 

In the first study presented here, we demonstrated that when planning a reaching 

movement with the position of the movement goal specified, a frontoparietal brain network 

is recruited which comprises the PPC bilaterally and the left PMd (Figure 2.2). The 

activation in this network showed a large overlap between planning pro- and anti-reaches. 

Within this network, the activation in the PCu of the SPL contralateral to the moving arm 
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was modulated as a function of the position of the movement goal, but not of the position 

of the visual cue (Figure 2.3). The present findings demonstrate that the reach-related 

posterior SPL represents the movement goal rather than the visual cue when the movement 

goal is specified.  

If only the visual cue but not the movement goal is available, rendering the reach 

goal underspecified, areas of the reaching network within the PPC were again recruited, but 

their activation was substantially weaker compared to the specified conditions (Figure 2.4). 

The posterior SPL, representing the movement goal in specified conditions, was also 

engaged in underspecified situations, but did not show any selective activation for the 

visual cue position or the reach goal position. Interestingly, when the reach goal was 

underspecified, the PMd was not active. 

In the second study, we examined the spatial encoding processes in regions of the 

frontoparietal reach network in more detail. To detect potential subtle characteristics in 

spatial encoding during reach planning, we used MVPA which has been shown to be a 

sensitive approach in determining spatial processing during reach execution (Fabbri et al., 

2014; Haar et al., 2015). We did so by decoding the visual cue and the movement goal 

position from the activation patterns within the frontoparietal regions when the movement 

goal was specified. Our results demonstrate that SPL and PMd encode the position of the 

movement goal (Figure 3.2). The highest specificity in the encoding of the movement goal 

position was found in the right anterior and posterior portions of the SPL, ipsilateral to the 

moving arm. Yet the anterior SPL also represented the visual cue position even though such 

information intuitively seems not to be important anymore at this point, since the reach goal 

was already specified. This may be of particular interest, since one might have expected 

regions closer to the visual cortex, such as the posterior PPC, to be more involved in the 

representation of visual information. Moreover, all areas we tested could distinguish well 

between a specified movement goal and an underspecified movement goal, representing the 

level of movement goal specification (Figure 3.3).  

When the movement goal was underspecified, only the PMd represented the visual 

cue position. The SPL regions, the regions that encoded the movement goal in the specified 

conditions, did not represent the visual cue position (Figure 3.3). The encoding of the visual 

cue position in the PMd may have important implications for the way we understand motor 

planning in spatially ambiguous situations, and highlight the role of PMd for reach goal 

selection. 
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4.2 SPECIFIED REACH GOALS 

For the specified conditions we have shown that the frontoparietal reach network 

was activated and showed a predominant representation of the movement goal position. 

Areas within the PPC, such as the SPL and IPS, have been shown before to represent the 

movement goal position in humans (Beurze et al., 2007, 2009; Gallivan, McLean, Smith, et 

al., 2011). Moreover, it is known that the SPL exhibits a preference for the physical 

movement direction over the visual cue position (Fernandez-Ruiz et al., 2007). By 

dissociating the visual cue from the movement goal position, we have extended previous 

findings by showing that several SPL regions maintain the position of the movement goal 

rather than the visuo-spatial cue. Thus, even regions such as the posterior SPL that are 

located early in the reach pathway near the visual cortex seem to maintain a prospective 

motor plan, rather than a retrospective sensory (visual) representation. Likewise, we extend 

evidence for a motor representation of the reach goal in the PMd (Beurze et al., 2007; 

Gallivan, McLean, Smith, et al., 2011). These results are in line with research showing 

movement goal encoding during reach planning in macaque PMd and PRR (Gail and 

Andersen, 2006; Gail et al., 2009; Westendorff et al., 2010; Klaes et al., 2011).  

 

HEMISPHERIC ASYMMETRIES IN MOVEMENT GOAL REPRESENTATION 

Although left and right SPL7 showed comparable levels of activation during 

movement planning, our analyses revealed differences between the two hemispheres in 

movement goal encoding. The results of our first study revealed a preference for a 

movement goal representation in the left posterior SPL7. In the second study, the position 

of the movement goal was encoded in both the left and right SPL7. Importantly, however, it 

was the right posterior and anterior SPL7 that showed the highest specificity.  

One reason for these seemingly contradictory results may be the anatomical location 

of the tested ROI. In the first study, we based the ROI on SPL7 coordinates that have 

previously been shown to be involved in movement planning (Lindner et al., 2010). In this 

study we examined the characteristics of this reach related region in more detail. The ROI 

was located in the the PCu in the medial posterior SPL7. In the second study, we defined 

ROIs in a more elaborate manner, that is, individually for each participant. The activation 

across all conditions and participants served as a basis. Activation patterns were then 

combined with anatomical masks to ensure that the ROIs did not exceed the anatomical 
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border of a respective region. Thereafter, we identified individual signal peaks within the 

obtained region, resulting in an individually located ROI per participant for the anterior and 

posterior SPL7, respectively. As a result, the location of both ROIs differed between 

participants. Moreover, the location was not restricted to the PCu in the medial parts of the 

SPL7, as the ROI was in chapter 2. Indeed, slight changes in the anatomical location of a 

ROI in the SPL have recently been shown to dramatically change results on peripheral 

versus central reaching (Martin et al., 2014). This may be one reason why we found no 

spatial preference in the right SPL7 in the first study, while the right SPL7 exhibited 

strongest movement goal encoding in the second study. More so, in the first study, we 

tested for effects in the activation strength on the group level specifically related to 

movement goals in the contralateral field. The MVPA results from the second study, on the 

other hand, addressed the question if information about the movement goal position is 

encoded in a particular region in the individual activation patterns. Thus, as pointed out in 

chapter 1 of this thesis, we addressed substantially different questions with the two types of 

analyses. Moreover, uni- and multivariate approaches do not necessarily lead to similar 

results since amplitude differences of the BOLD response might occur in the absence of 

differences between activation patterns and vice versa (Leoné et al., 2014). 

In addition to these methodological considerations, recent MVPA studies highlight 

the importance of ipsilateral regions for the encoding of reach direction during reach 

execution (Fabbri et al., 2014) and for encoding the reach goal during reach planning 

(Gallivan et al., 2013). It has been suggested that frontoparietal reach regions do not only 

represent planned actions with both the contralateral and ipsilateral hand, but also that these 

representations are to some extent limb invariant (Gallivan et al., 2013). These findings 

question the concept of a predominant representation of the contralateral arm and are in line 

with the results of our MVPA study. However, earlier studies using univariate analyses 

provide evidence that posterior parietal regions show stronger activation for reaches with 

the contralateral arm to goals in the contralateral visual field (Medendorp, Goltz, Crawford, 

and Vilis, 2005; Beurze et al., 2007; Bernier et al., 2012), an effect that we also show for 

the left PCu in our first study. Future research should investigate in more detail to what 

extent these contradictory lateralization effects can be explained by different methods of 

analyzing data or actual functional specializations of hemispheres for movements with the 

ipsi- or contralateral arm or to goals in the ipsi- or contralateral visual field. 
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VISUAL CUE REPRESENTATION IN THE ANTERIOR SPL7 

In the MVPA study, we demonstrated that the anterior SPL7 not only maintains the 

visual cue position but also the movement goal position. This finding may suggest that the 

anterior SPL7 contains neural populations for both visual and motor representations. In this 

case, we may question why the obsolete visual cue position is still represented in the 

anterior SPL7, although the reach goal has already been specified.  

One may speculate that the visual cue is maintained as a back-up, in case the 

previously presented rule cue may change unexpectedly and the reach goal thus has to be 

reconsidered. This would not be surprising as there are behavioral studies on goal-directed 

reaching and grasping movements showing that humans, when confronted with unexpected 

displacements of the target during the movement, initially adjust their movements to the 

direction of the displacement, even though this is not advantageous (Aivar et al., 2008; Day 

and Lyon, 2000). This has been suggested to occur because an automatic posterior parietal 

mechanism relies on spatial vision to quickly guide the hand to the target (Pisella et al., 

2000). Although such effects are related to the phase of movement execution, one could 

speculate that the visual cue position remains in these posterior parietal areas during 

planning, in case this position will be used during movement execution. 

Moreover, there is also a temporal component of spatial encoding: the spatial tuning 

to either the visual cue or the movement goal position is not a fixed property in monkey 

PMd and PRR, but it rather evolves throughout the process of movement planning (Gail et 

al., 2009; Westendorff et al., 2010). Our analyses in both studies were based on the delay 

phase, which varied between 3 and 5 seconds. It may be that the representation of the visual 

cue position in a subpopulation of the anterior SPL7 was the dominant process throughout 

the delay, while only later on the encoding of the movement goal became predominant. 

Future research should address the temporal processes of spatial encoding to answer 

the question of how visual and motor representations evolve over time. It remains unclear if 

the visuo-spatial representation in the anterior SPL7 serves indeed as a “back-up”, and what 

the role of this potential back-up may be. An interesting aspect to address would thus be 

how this representation is used, or maybe even how it alters, representations in other 

regions when the movement goal suddenly changes. If there is more uncertainty about the 

movement goal, more frontoparietal regions may represent the visual cue in addition to, or 

instead of, the movement goal. 
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4.3 AMBIGUOUS REACH GOALS 

NON-SPATIAL ACTIVATION IN THE POSTERIOR SPL 

For the underspecified conditions, we found activation in the posterior SPL7 

bilaterally and in the left aIPS, but crucially without any spatial representations of the 

visual cue position, as was made evident by both the univariate and multivariate study. 

Our results are in line with previous findings of non-spatial preparatory activity in 

PMd and PPC in conditions where only the movement goal or the effector to move was 

known (Beurze et al., 2007). The role of such non-spatial activation remains widely 

unclear, but potential explanations have been put forward for findings in macaques. For 

instance, when the movement goal is still underspecified, a higher magnitude of non-spatial 

preparatory firing in the macaque PRR is significantly correlated with shorter reach 

reaction times (Snyder et al., 2006). Snyder and colleagues (2006) argued that the elevated 

baseline of PRR activity in underspecified conditions is useful for the rapid development of 

PRR firing rates that represent the reach goal, once it is specified. The more rapid 

movement goal representation in PRR may in turn cause a faster transfer of the spatial 

information over to the arm muscles, and thereby lead to shorter reaction times. Since the 

reach goal is already represented in PRR during a delay in conditions when the movement 

goal is specified, the stimulus to wait for is the go cue. In their experiment, this was the 

offset of the fixation point which is not processed by the PRR populations with peripheral 

response fields encoding the reach goal (Snyder et al. 2006). That may be why the 

magnitude of PRR activity and reach reaction times are not correlated in conditions with an 

early specified reach goal. A similar mechanism may account for our findings. The 

posterior SPL7 showed non-spatial activation in underspecified conditions, which still 

occured at a weaker level than in specified conditions. This may guarantee a rapid 

specification of the reach goal once the context rule (pro or anti) is presented. The posterior 

SPL7 areas and the aIPS may thus be in a “prepare-to-prepare” state rather than in a 

“prepare-to-move” state. 

However, the role of such non-spatial preparatory activation needs to be clarified 

further. For instance, it remains to be demonstrated that the link between such preparatory 

activation and the actual reach behavior in humans is as close as it has been shown in 

macaques (Snyder et al., 2006). 
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THE ROLE OF PMD IN REACH GOAL SELECTION 

Crucially, only the PMd represented the visual cue when the movement goal was 

ambiguous. In accordance, PMd cells of monkeys are tuned to visual target positions 

(Hoshi and Tanji, 2006) and are preferably involved in spatial aspects of action, such as 

active maintenance of visuo-spatial coordinates (Cisek, 2006). The PPC areas, on the other 

hand, did not show a spatial representation, while they do maintain the movement goal 

position in specified conditions. Therefore, it seems reasonable to assume a special function 

in reach plan specification to the PMd. 

For instance, macaque PMd has been shown to be engaged in goal selection 

processes based on competition of multiple alternative movement plans (Cisek, 2006; Cisek 

and Kalaska, 2002). Similarly, we show that the PMd encodes both potential movement 

options (the visual cue position) when the movement goal is ambiguous, but switches to a 

movement goal representation in the specified condition. One may hypothesize that, as in 

monkeys, the final movement goal is selected in human PMd.  

It is possible that PMd is not only engaged in reach goal selection, but may also 

trigger the SPL regions to switch from non-spatial activation (underspecified condition) to 

a representation of the movement goal position (specified conditions). Accordingly, it has 

been demonstrated that macaque PMd encodes the movement goal before it is later 

represented in PRR (Pesaran et al., 2008; Westendorff et al., 2010). It is still unclear 

whether this process is mediated by frontoparietal projections from PMd to PRR or because 

the movement goal specification in PMd causes a dynamic reorganization of PRR activity 

(Westendorff et al., 2010).  

Human PMd has to this day been studied far less than macaque PMd. If and how 

PMd also represents reach goals in humans before PPC areas and how the areas 

functionally interact should therefore be a topic of future research. In particular, the 

temporal characteristics of functional interactions between frontal and (posterior) parietal 

areas of the reach network should be addressed. That is, do latency differences also occur 

between the human PMd and the PPC that could reflect the movement goal being specified 

earlier in frontal regions? This could be achieved by combining fMRI measurements with 

measurements allowing for a higher temporal resolution, such as EEG, and would be 

helpful to clarify how frontoparietal regions communicate during sensorimotor processing. 

For instance, is the PPC indeed involved in setting up movement goals, or is the motor goal 

set up in PMd and sent back via feedback connections to the PPC? Future research could 



4. THE ENDPOINT 

 80 

not only address the question of where in the brain sensorimotor transformations happen, 

but also how they evolve. 

 

PARALLEL SPECIFICATION OF MULTIPLE MOVEMENT PLANS? 

Taken together, we showed large differences between conditions with specified and 

underspecified reach goals. For instance, the planning of pro- and anti-reaches caused 

significantly higher and more widespread activation compared to underspecified movement 

goals. In this line, all frontoparietal regions we tested in the MVPA study could distinguish 

well between specified and underspecified movement goals. Moreover, the non-spatial 

activation in SPL, as well as the visual cue representation in PMd, demonstrate 

substantially different processes when the reach goal is underspecified. Overall, our results 

suggest an incomplete state of sensorimotor integration when the movement goal is 

ambiguous. 

This interpretation contradicts findings from behavioral studies indicating the 

parallel specification of movement plans until the final reach goal is cued (C. S. Chapman 

et al., 2010; Stewart et al., 2013; Gallivan et al., 2016). It is important to note that the task 

we and others (Bernier et al., 2012) applied differs from the behavioral studies in the 

crucial aspect of when the final reach goal is cued. We cued the final reach goal right 

before movement onset. Our participants were thus aware that they could wait for the 

context rule cue and may therefore only then have started planning the movement. In the 

behavioral studies (C. S. Chapman et al., 2010; Stewart et al., 2013; Gallivan et al., 2016), 

the reach goal was cued only after movement onset. This manipulation may have biased the 

results towards what has been called a parallel specification of movement plans.  
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4.3 CONCLUSIONS 

The results presented in this thesis show that a motor code is maintained in 

frontoparietal regions even before movement onset. This is true even for regions located 

early in the visuo-motor pathway. However, an ambiguous movement goal is not sufficient 

to cause the specification of a reach goal, arguing against the parallel specification of reach 

goals in ambiguous situations. The findings highlight the role of the PMd in representing 

underspecified reach goals and may suggest an earlier representation of reach goals in PMd, 

similar to what has been reported for the macaque reach network. The studies presented in 

this thesis thereby contribute to our understanding of how humans plan goal-directed 

reaching movements. 
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