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Abstract
Purpose  Organochlorine pesticides (OCPs) like lindane and DDT have been used extensively after World War II until the 
1990s. Still, residues of these pesticides can be found in agricultural soils all over the world, especially in developing coun-
tries. Often, they occur in extensive areas and elevated concentrations so that food safety is jeopardized. Hence, simple, cheap, 
and fast analytical methods are needed for a straight-forward assessment of risks. A miniaturized solid–liquid extraction 
combined with solid-phase microextraction (SPME) based on a proven ISO method is presented.
Methods  The performance of the method is evaluated by extracting three different soils which were spiked with HCH and 
DDT congeners, and trifluralin, and aged for 35 days. The results are compared with those of a modified quick, easy, cheap, 
efficient, rugged, and safe (QuEChERS) method. For further validation, both methods are applied to three environmental 
soil samples.
Results  Validation results show limits of detection and quantification as well as recovery rates in good agreement with 
standard requirements. The new method was found to be quicker than QuEChERS, which requires time-consuming prepara-
tion of reagents.
Conclusion  Merits include low time and sample volume requirements (0.5 g) and the possibility to extract many samples 
simultaneously, which allows the screening of large sample sizes to determine the pollution status of whole landscape regions. 
However, access to an automated SPME apparatus is assumed. The authors can recommend this method as a cheap and fast 
alternative where SPME is available.

Keywords  Organochlorine pesticides (OCPs) · Dichlorodiphenyltrichloroethane (DDT) · Hexachlorocyclohexane (HCH) · 
Trifluralin · Solid-phase microextraction (SPME) · Gas chromatography mass spectrometry (GC–MS)

1  Introduction

Soils are the foundation for human life. Among many ser-
vices, they hold water and nutrients, are habitat for myri-
ads of organisms, are the platform onto which structures are 
built, and most importantly, soils are the compartment where 

human food is grown. As such, keeping them in good condi-
tion is of utmost importance. All over the world, agricultural 
production systems are forced to develop in a more sustaina-
ble direction: simultaneously securing health and food safety 
for a growing population, minimizing detrimental environ-
mental effects, preserving natural resources, and ensuring a 
sufficient yield and income especially in structurally weak, 
rural areas (subsistence farming) are only some of the associ-
ated challenges. However, soils are threatened by a multitude 
of factors, one of which is contamination with xenobiotics. 
To secure high crop yields, large quantities of pesticides are 
applied in agriculture each year, a great amount of which 
remains in the soil for a long time (Silva et al. 2019). While 
modern pesticides are required to be readily biodegrad-
able and to minimize their impact on non-target organisms, 
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historically applied compounds did not have these prerequi-
sites. A recognized group of legacy compounds are organo-
chlorine pesticides (OCPs), of which DDT (dichlorodiphe-
nyltrichloroethane) and lindane (γ-hexachlorocyclohexane, 
γ-HCH) are well-known representatives. They were pro-
duced and used excessively after World War II until their 
toxicity, bioaccumulation, and persistence came to attention 
and led to various national restrictions and subsequent inter-
national ban on account of the Stockholm Convention 2001 
(United Nations 2001). Yet, they are still found in occasion-
ally large concentrations in agricultural soils all over the 
world, e.g., in Europe (Camenzuli et al. 2016), in states of 
the former Soviet Union (Aliyeva et al. 2012; Sharov et al. 
2016; Tepanosyan et al. 2020), Africa (Olisah et al. 2020), 
or China (Li et al. 2014).

During HCH production, five main isomers are formed: 
55–80% α-HCH, 5–14% β-HCH, 8–15% γ-HCH, 2–16% 
δ-HCH, and, 3–5% ε-HCH (Kutz et al. 1991). Of these, 
only γ-HCH has the desired insecticidal property, lead-
ing to approx. 85% of unwanted by-products. This techni-
cal mixture was either applied as is, or after purification to 
a formulation with a γ-HCH content of > 90% known as 
lindane. Apart from the contamination of agricultural land 
through intended application, many sites around the world 
were contaminated by the mainly uncontrolled dumping of 
the by-products (Vijgen et al. 2011).

During production of DDT, the two main congeners 4,4′-
DDT and 2,4′-DDT make up 65–80% and 15–20% of the 
technical mixture, respectively (Haller et al. 1945). Only the 
first has insecticidal properties. When degraded in the soil, 
congeners retain their 2,4′ or 4,4′ conformation (Ricking and 
Schwarzbauer 2012). Under aerobic conditions, the primary 
transformation product (TP) of DDT is DDE (dichlorodiphe-
nyldichloroethylene), and when anaerobic conditions prevail, 
it is DDD (dichlorodiphenyldichloroethane). In a study by 
Silva et al. (2019), in which the authors surveyed agricultural 
soils of 11 member states of the European Union, 4,4′-DDE 
was the fourth most found pesticide with median and maxi-
mum concentrations of 20 and 310 µg·kg−1, respectively.

Both analyte groups are stable, lipophilic, and semi-volatile,  
and, as such, are distributed widely from their points of ori-
gin by water, air, and soil (Garrison et al. 2014; Al Mahmud 
et al. 2015; Chen et al. 2017; Nežiková et al. 2019), lead-
ing to further contaminations of, e.g., ground and surface 
waters. They can enter the food chain, which leads to their 
bioaccumulation in fat cells of several types of organisms 
(Kutz et al. 1991; Nolan et al. 2012) also posing a threat to 
human health. From fat tissue they can be mobilized into 
the blood stream and further into breast milk among others 
(Longnecker et al. 1997; Smith 1999; Stuetz 2006).

HCH isomers as well as DDT and its TPs have been 
classified as carcinogenic and endocrine disruptors with 
genotoxic, mutagenic, and teratogenic effects (Kojima 

et al. 2004; Muñiz et al. 2017; Vandenberg et al. 2020). 
The latter is also assumed to be linked to obesity-related 
diseases like type 2 diabetes, and Alzheimer’s disease 
(Lee et al. 2011; Richardson et al. 2014; Loomis et al. 
2015; Evangelou et al. 2016; Elmore and La Merrill 2019).

This endangers food supply, as crops grown on these soils 
can be contaminated in turn (Lunney et al. 2004; Namiki 
et al. 2013). Apart from the challenges mentioned above, 
this might also jeopardize a country’s export of foodstuff, if 
the contamination exceeds international regulations. Particu-
larly affected groups are subsistence farmers, who rely solely 
on food grown on their own land to feed themselves. Quite 
often, this coincides with a lack of knowledge on correct and 
safe handling, storage, application or disposal of pesticides 
or even the general hazards associated with these substances 
(Oesterlund et al. 2014; Jallow et al. 2017; Sapbamrer 2018; 
Ndayambaje et al. 2019; Mubushar et al. 2019; Deng et al. 
2019; Olisah et al. 2020).

In 2015, the nations of the UN defined and adopted 17 
goals as calls to action for a more sustainable development 
on economic, social, and ecological scale in all member 
states (SDG, Social Development Goal; United Nations 
2015). In order to support developing countries to screen 
and monitor large areas to determine pollution status (SDGs 
2, 3, 6 and 15), simple, time, and cost-efficient methods are 
needed. Better yet, if these methods can be implemented 
in the framework of capacity building measures (SDG 17).

Generally proven methods to extract pesticides from 
environmental samples include solvent extraction, Sox-
hlet, ultrasound-assisted, microwave-assisted, or pressur-
ized liquid extraction (Ayala-Cabrera et al. 2021). Nowa-
days, new developments in extraction and pre-extraction 
adhere to the principals of green chemistry and are 
therefore often miniaturized methods with little solvent 
consumption and small sample volumes (Ali et al. 2019; 
Prosen 2019). This includes QuEChERS (quick, easy, 
cheap, efficient, rugged, and safe; Anastassiades et al. 
2003) extraction, originally intended for extraction of 
pesticide residues in food that has been adapted to other 
matrices, even soil (Vera et al. 2013). New methods on 
the basis of QuEChERS or dSPE (dispersive solid-phase 
extraction) continue to emerge (Eyring et al. 2021; Park 
et al. 2021). A lot of effort is directed into the develop-
ment of new sorbents — e.g., on the basis of graphene 
(Li et al. 2021) or natural materials (Huang et al. 2020) 
— and new extraction materials like ionic liquids (Llaver 
et al. 2021) or deep eutectic solvents (Lee et al. 2020) 
among many others. Still, microextraction techniques 
both with solvent (e.g., liquid-phase microextraction, 
LPME; Prosen 2019; Rutkowska et al. 2019) and solvent-
less (e.g., solid-phase microextraction, SPME; Liang et al. 
2019; Naccarato and Tagarelli 2019) have been popular 
choices in extraction or clean-up of samples since their 
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invention in the 1990s, and have seen new developments 
as well (Da Soares Silva Burato et al. 2020). Among the 
latter group, SPME is an extraction and preconcentration 
method (Arthur and Pawliszyn 1990) in which a reus-
able sorbent-coated fiber is exposed to the sample either 
directly (immersed) or in the sample’s headspace. During 
exposure, the fiber accumulates possible analytes which 
are subsequently thermally desorbed in the injector of 
a gas chromatograph, without the need of an additional 
clean-up step. Compared to conventional liquid injection 
where, usually, only a small portion of the sample extract 
is injected, everything the fiber extracted is injected with 
SPME. Especially when performed in headspace, co-
extraction of interfering matrix compounds is reduced 
substantially and longevity of the fiber is increased 
(Zhang and Pawliszyn 1993; Zhang et al. 1994). SPME 
can also be used as a clean-up of extracts from solid sam-
ples if they have been extracted beforehand by a suitable 
solvent (Hernandez et al. 2000; Fidalgo-Used et al. 2003).

With the present study, a miniaturized solid–liquid 
extraction technique is validated (hereinafter referred to 
as MISOLEX) that combines a modified standard method 
(ISO 10382 2002) with SPME as simple clean-up and 
preconcentration to sensitively and selectively analyze 
pesticides in a large number of soil samples with little 
effort. Among the method’s merits are low solvent con-
sumption, only one evaporation step, no laborious clean-
up steps, and a sample requirement of only 0.5 g. Apart 
from SPME equipment and the requirement of internal 
standards (ISs) with appropriate physicochemical proper-
ties, it can be done with standard lab equipment and could 
be an affordable alternative. Larger sets of samples can be 
managed by this approach allowing for extensive area soil 
screening for OCPs to assess food security. With small 
adaptions, suitability of this method for further matri-
ces (e.g., sediment or plant material) is conceivable. A 
preliminary version of this approach was used by Mukaj 
et al. (2016) on agricultural soils in Albania.

To prove the adequacy of MISOLEX, quality param-
eters such as recovery rate, limits of quantitation and 
detection (LOQ and LOD, respectively), and reproduc-
ibility were determined. As QuEChERS has long since 
been used to analyze soil samples for halogenated pesti-
cides and other contaminants (Vera et al. 2013), the qual-
ity parameters were compared to a modified QuEChERS 
approach by Woldetsadik et al. (2021) that applies SPME 
as clean-up and preconcentration step as well. In addition, 
both methods were applied to analyze environmental sam-
ples from a contaminated site in Tamarissi municipality, 
Georgia. The results were used to further validate the 
performance of the two methods by demonstrating the 
applicability of the method to environmental samples.

2 � Materials and methods

2.1 � Chemicals

Organic solvents acetone, methanol, and acetonitrile 
(all gradient grade for HPLC) were purchased from 
VWR International (Radnor, PA, USA), petroleum ether 
(40–60 °C, p.a.) was purchased from Merck GmbH & Co. 
KG (Darmstadt, Germany), and n-pentane was purchased 
from Carl Roth GmbH & Co. KG (Karlsruhe, Germany). 
Standards (purity) of trifluralin (TriF; 99.6%) 2,4′-dichlo-
rodiphenyldichloroethane (DDD, 97.5%), 2,4′-dichlorodi-
phenyldichloroethylene (DDE, 99%), 2,4′-DDT (99.5%), 
4,4′-DDD (99.5%), 4,4′-DDE (98%), 4,4′-DDT (99.5%), 
13C-2,4′-DDT (100%), γ-HCH (98.6%), and δ-HCH-D6 
(98%) were purchased from Dr. Ehrenstorfer GmbH 
(Augsburg, Germany). α-HCH (≥ 98%) and δ-HCH 
(≥ 98%) were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). β-HCH (99.5%) was obtained from Institute 
of Industrial Organic Chemistry (Warsaw, Poland). TriF-
D14 (98%), 4,4′-DDD-D8 (99.7%), 4,4′-DDE-D8 (99.4%), 
and α-HCH-D6 (99.2%) were purchased from CDN Iso-
topes (Pointe Claire, Canada). 13C-4,4′-DDT (99%) was 
purchased from Cambridge Isotope Laboratories Inc. 
(Andover, MA, USA). Purity was considered when pre-
paring stock solutions of standards. QuEChERS extrac-
tion salts magnesium sulfate (MgSO4) and sodium cit-
rate dibasic sesquihydrate (≥ 99%) were purchased from 
VWR International and Sigma-Aldrich, respectively. Tri-
sodium citrate dihydrate (≥ 99.5%) was obtained from 
Th. Geyer GmbH & Co. KG (Renningen, Germany) and 
primary-secondary amine (PSA) from Supelco (Belle-
fonte, PA, USA). Sodium chloride (NaCl, ≥ 99.5%) for 
preparation of SPME salt solution was purchased from 
Carl Roth GmbH & Co. KG (Karlsruhe, Germany). All 
salts were of analytical grade or better. Ultra-pure water 
was produced with Milli-Q A10 water purification sys-
tem (Merck KGaA).

2.2 � Preparation of spiked soil samples

Three soil samples were chosen according to their soil 
organic carbon (SOC) content, to cover representative 
SOC contents for arable soils in temperate climates: 1.25, 
2.27, and 2.74%. An overview of these samples’ features 
is given in Table 1, while the full characterization is avail-
able in the Online Resource (Table S1). These samples 
were spiked with DDX (2,4′-DDD, 2,4′-DDE, 2,4′-DDT, 
4,4′-DDD, 4,4′-DDE, 4,4′-DDT), HCHs (α-, β-, γ-, and 
δ-HCH), and TriF to a concentration of 50 µg·kg−1 per 
analyte. For that, n-pentane was added to 120 g of each 
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soil until a supernatant of ca. 1 cm occurred, and stand-
ard mixes containing DDX, HCHs, and TriF were injected 
into the supernatant. After thorough stirring, samples were 
placed on a horizontal shaker (Swip KS-10, Edmund 
Bühler GmbH, Bodelshausen, Germany) at 200 rpm and 
shaken until the solvent had evaporated completely. Then, 
samples were stored at 8 °C in a refrigerator for 35 days, 
to simulate aging for generation of field-like samples as 
suggested by Škulcová et al. (2017).

2.3 � QuEChERS extraction

As comparative method, the QuEChERS extraction for plant 
material as described in Woldetsadik et al. (2021) was used. 
Extraction was done in quintuplet. In brief, 1 g of air-dried 
(30 °C, 24 h), homogenized sample was weighed into a 
50 mL glass centrifuge tube, to which 10 mL of ultrapure 
water was added and vortexed for 10 s. After letting the 
samples rehydrate for 10 min, 15 mL acetonitrile was added 
and samples were shaken on a horizontal shaker for 15 min 
at 200 rpm (Swip KS-10, Edmund Bühler GmbH). There-
after, 4 g MgSO4, 1 g NaCl, 1 g sodium citrate (tribasic) 
dihydrate, and 0.5 g sodium citrate (dibasic) sesquihydrate 
were added and vortexed for another 10 s. Then, samples 
were centrifuged for 10 min at 1,000 rpm (207.2 g; Rotanta 
460 R, Hettich AG, Bäch, Switzerland). Afterwards, 8 mL 
of supernatant was transferred into a centrifuge tube con-
taining 1.2 g MgSO4 and 0.2 g PSA. It was again vortexed 
for 10 s and centrifuged at 2,500 rpm (1,295 g) for 10 min. 
Of the supernatant, a 4 mL aliquot was transferred into a 
20 mL brown glass head space vial; 2 µL of IS mix (see 
Table S2) was added and vortexed. Under a gentle stream of 
nitrogen at ambient temperature, the extract was evaporated 
to dryness and immediately resolubilized with 100 µL of 
methanol after which it was vortexed for 5 s, and 10 mL of 
salt solution (200 g NaCl in 1 L ultrapure water) was added. 
The glass vial was firmly closed with a septum screw cap for 
subsequent measurement by HS–SPME–GC–MS.

2.4 � Miniaturized solid–liquid extraction (MISOLEX)

Extraction was done in quintuplet. 0.5  g of air-dried 
(30 °C, 24 h), homogenized soil sample was weighed in 
a 20 mL clear glass head space vial. 5 mL acetone and 

5 mL petroleum ether were added and the vial was closed 
tightly with a screw cap. The sample was shaken on a 
horizontal shaker for 30 min at 200 rpm (Swip KS-10, 
Edmund Bühler GmbH) and then centrifuged for 10 min 
at 1000 rpm (207.2 g; Rotanta 460 R, Hettich AG). The 
supernatant was transferred into a 20 mL brown glass head 
space vial. Another 5 mL of petroleum ether was added to 
the sample, and the process was repeated. The superna-
tant was added to the one taken before, resulting in approx. 
12 mL of extract. An aliquot of 10 mL was transferred to 
a fresh 20 mL brown glass head space vial, and 2 µL of an 
IS mix as well as 200 µL of acetonitrile acting as keeper 
was added. The extract was evaporated to keeper under a 
gentle stream of nitrogen at ambient temperature. Immedi-
ately thereafter, 10 mL of salt solution (200 g NaCl in 1 L 
ultrapure water) was added. The glass vial was firmly closed 
with a septum screw cap for subsequent measurement by 
HS–SPME–GC–MS.

2.5 � Note on environmental samples

Even though only 1 g or 0.5 g of sample material is needed 
for QuEChERS and MISOLEX, respectively, standard pro-
tocols concerning representative sampling in the field do 
apply. That is, it is not correct to assume that only 0.5 g is 
supposed to be collected from a soil intended as representa-
tive sample. Rather, we recommend to collect adequately 
large (composite) samples to depict the in situ situation, 
to homogenize them sufficiently and only then to take the 
subsample of 1 g or 0.5 g intended for extraction from it. 
Although a larger sample amount has to be taken in the field, 
the small sample amount intended for pesticide extraction 
is still beneficial because the remaining soil sample can be 
used for further characterization (e.g., SOC, particle size 
analysis, pH).

2.6 � Environmental sampling

The study area (108 m2) from which environmental samples 
were taken was located near Tamarissi municipality, Georgia 
(N41.444311° E44.76041°) next to an abandoned, ruinous pesti-
cide storage house. Three composite samples (A, B, and C) were 
collected in 2018, each consisting of five 10-cm cores, sam-
pled with a soil corer (inner diameter 20 mm) in a subplot of 4  

Table 1   Characteristics of the spiked soil samples used in the comparisons. For a full list of parameters, please refer to the electronic supplemen-
tary material (Table S1). Ntot total nitrogen, SOC soil organic carbon

Soil Usage Depth [cm] Sand [%] Silt [%] Clay [%] Ntot [%] SOC [%]

Soil 1 Arable land 0–30 19.2 62.4 18.4 0.15 1.25
Soil 2 Arable land 0–30 33.5 47.5 19.0 0.26 2.27
Soil 3 Grassland 0–30 43.2 43.1 13.7 0.23 2.74
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m2. Detailed soil characteristics for these samples are avail-
able in the Online Resource (Table S1). The soil in the study 
area can be characterized as Vertic Kastanozem according to 
the World Reference Base for Soil Resources (IUSS Working 
Group WRB 2015). After transport to Germany, samples were 
air-dried (30 °C) for 24 h, homogenized, and sieved (2 mm) to 
gain the fine earth fraction. Samples were stored at −30 °C until 
extraction.

2.7 � SPME and GC–MS analysis

OCP analysis in soil samples was carried out with a Trace 
1310 gas chromatograph (Thermo Fisher Scientific, San 
Jose, CA, USA), a CombiPAL autosampler (CTC Analytics 
AG, Zwingen, Switzerland) equipped with a SPME fiber 
assembly, and an ISQ 7000 mass spectrometer (Thermo 
Fisher Scientific). For all measurements, a SPME fiber 
coated with PDMS/DVB (65 µm StableFlex fiber) was used 
(Sigma-Aldrich, St. Louis, MO, USA). SPME of prepared 
samples started with a heat-up phase of 5 min to 80 °C in 
the agitator, followed by headspace extraction at the same 
temperature for 60 min. After extraction, the fiber was ther-
mally desorbed in splitless mode in the GC injector for 3 min 
at 260 °C, after which it switched back to a split flow of 
30 mL·min−1. At the start and end of each SPME sample 
cycle, the fiber was desorbed in a needle heater for 7.5 min 
at 270 °C to prevent potential carry-over of analytes between 
samples. Chromatographic separation was conducted on a 
fused silica capillary column (TG-XLBMS: 60 m, 0.25 mm 
inner diameter, 0.25 μm coating thickness; Thermo Fisher 
Scientific). Helium (≥ 99.999%, Praxair Inc., Danbury, 
CT, USA) was used as carrier gas at a constant flow of 
1.0 mL·min−1. The initial oven temperature was set to 90 °C 
and held for 3 min. The temperature was ramped to 150 °C 
at a rate of 15 °C·min−1. Then, it was ramped to 280 °C at 
a rate of 5 °C·min−1 and held for 3 min. Quantification was 
done in selected ion monitoring (SIM) mode based on one 
target and one qualifier ion. The list of utilized ions and 
retention times (RTs) is available in the Online Resource 
(Table S3). The peak areas of analytes in sediment samples 
were corrected with their respective ISs (Online Resource, 
Table S2). The according concentration was determined by 
interpolation of the relative peak areas for each pesticide to 
standard peak areas of the calibration curve (compare sec-
tion “Method Validation”).

2.8 � Method validation

Linearity, precision, and recovery rate were evaluated 
using a seven-level calibration curve at working solu-
tion concentrations of 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, and 
2.0 µg·L−1 for DDX and TriF, and 0.1, 0.5, 1.0, 1.5, 2.0, 
2.5, and 3.0 µg·L−1 for HCHs. Calibrations were extended 

with concentrations of 12.5 and 25 µg·L−1 when analyzing 
environmental samples to assess linearity in very high 
concentration ranges. Recoveries of the analytes were 
calculated per soil as percentage of the expected concen-
tration of 50 µg·kg−1. For determination of LODs and 
LOQs, the concentration result of each analyte in each 
(matrix) sample was divided by the corresponding signal 
to noise ratio of its peak as approximation to noise present 
at the analyte’s RT. The resulting noise concentrations 
were multiplied by 3 and 10 to obtain LOD and LOQ, 
respectively.

Both applied methods make use of a large number of 
isotopically labeled ISs. For four analytes (2,4′-DDD, 2,4′-
DDE, β-HCH, and γ-HCH), instead of isotopologues the 
IS of a similar congener (4,4′-DDD-D8, 4,4′-DDE-D8, 
δ-HCH-D6, and α-HCH-D6, respectively) was used. Inci-
dentally, these four analytes demonstrated implausibly high 
recovery rates. As the IS correction was deemed the cause 
for this overestimation, an alternative approach for this step 
was applied. In principle, the RT of an analyte was used as 
indicator for its physicochemical properties. The closer the 
RTs of two analytes (or an analyte and IS) are, the closer 
these two compounds may also be in terms of their phys-
icochemical properties. Because of this assumption, correc-
tion factors for each of the four mentioned analytes were 
calculated proportionally between the nearest two ISs that 
surrounded each of them. In the case of 2,4′-DDD and 2,4′-
DDE, this meant using other ISs as before (4,4′-DDE-D8 and 
13C-2,4′-DDT for the first, and δ-HCH-D6 and 4,4′-DDE-
D8 for the latter). Further explanations can be found in the 
Online Resource (Table S3 and Figure S1).

2.9 � Statistics and figures

Statistical calculations to check assumptions and deter-
mine likeliness between methods were carried out with 
the computational software R, version 4.0.4 (R Core Team 
2020). Shapiro–Wilk test was used to test for assumption of 
normality. Statistical significance was set at p < 0.05 level. 
Single pairwise comparisons were done with Welch’s t-test 
or ANOVA-type rank test by Brunner and Munzel (2013), 
if assumptions were not met, as it does require neither 
normal distribution nor homoscedasticity of data. Multi-
ple pairwise comparisons to test for significant difference 
between three soils were computed with t-tests with Holm 
correction to correct for inflated familywise error rates. 
In those cases, where the assumptions were violated, the 
robust trimmed means bootstrap post hoc test (mcppb20) 
described by Wilcox (2016) was applied, which is avail-
able in the package WRS2 (Mair and Wilcox 2020). Fig-
ures were created with OriginPro 2020 (OriginLabs Corp., 
Northampton, MA, USA).
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3 � Results

For MISOLEX, LODs and LOQs of DDX congeners were 
0.04–0.32 and 0.12–1.05 µg·kg−1, respectively. LOD of TriF 
was 0.005 µg·kg−1, and LODs of HCHs ranged from 0.27 
to 1.16 µg·kg−1. LOQs were 0.02 and between 0.90 and 
3.85 µg·kg−1, respectively. Recovery rates were between 65.8 
and 172.6% for most DDX, and between 70.2 and 126.1% for 
TriF and most HCH isomers (Online Resource Fig. S2 and 
Table S4). Here, γ-HCH and 2,4′-DDD were overestimated 
with values up to 180.9% and 167.3%, respectively. The aver-
age recovery rate for the whole method was 110%. Repeat-
ability expressed as relative standard deviation (RSD) was 
23.7%. On a per soil basis, it ranged from 1.3 to 22.4%, and 
between 6.7 and 20.6% if soils were taken together. γ-HCH, 
again, demonstrated elevated values between 12.9 and 22.4%.

For the modified QuEChERS method, LODs and LOQs 
of DDX congeners were between 0.03 and 0.47 µg·kg−1, 
and between 0.10 and 1.57 µg·kg−1, respectively (Table 2). 
For TriF and HCHs, LODs were 0.001 and between 0.31 
and 1.48 µg·kg−1, respectively, and LOQs were 0.004 and 
between 1.05 and 4.93 µg·kg−1, respectively. Recovery rates 
were satisfactory, ranging from 67.8 to 127.0% for most ana-
lytes (Online Resource Fig. S2 and Table S5). The rates for 
2,4′-DDE and δ-HCH were above 120%, with values up to 
169.3% and 140.7%, respectively. The overall average for all 
analytes was 102.4%. Repeatability (RSD) was 21.8% for the 
whole method. Separated into analytes, it ranged between 
1.2 and 9.4% on a per soil basis and between 3.6 and 8.8% 
if calculated for all three soils together.

On average, the interpolated IS correction resulted in 
the preferred range of 80 to 120% for all analytes of both 
methods (Fig. 1 and Online Resource Tables S6 and S7), 
the exception being δ-HCH and 2,4′-DDD in the QuECh-
ERS method. The former was not significantly altered and 
still remained mostly outside of range whereas the latter 
was slightly worsened. The most drastic effects in terms 
of recovery rate adjustment (all significant) were shown 
by 2,4′-DDE of the QuEChERS method and by γ-HCH, 
β-HCH, and 2,4’-DDD of the MISOLEX method. In terms 
of repeatability, the RSD of γ-HCH was reduced from 20.6 
to 12.8%, while that of 2,4′-DDD was increased from 11.2 
to 40.9%. Figures showing means and standard deviations 
(SDs) of the results discriminated by soil are included in the 
Online Resource (Figs. S2 and S3).

Comparing the results of regularly and interpolated 
IS-corrected environmental samples shows a very simi-
lar pattern (Fig. 2). Interpolation results in considerable 
reduction in concentration (mean of all three samples) of 
γ-HCH (−30%), 2,4′-DDE (−60%), and 2,4′-DDD (−74%)  

Table 2   Overview of the analytes’ LODs and LOQs as median 
(n = 15) in µg·kg−1 for the two compared methods

Analyte MISOLEX QuEChERS

LOD LOQ LOD LOQ

TriF 0.005 0.02 0.001 0.004
α-HCH 0.27 0.90 0.31 1.05
γ-HCH 0.90 3.00 0.39 1.29
β-HCH 1.16 3.85 1.31 4.36
δ-HCH 0.91 3.02 1.48 4.93
2,4′-DDE 0.04 0.12 0.06 0.19
4,4′-DDE 0.13 0.43 0.03 0.10
2,4′-DDD 0.32 1.05 0.32 1.08
4,4′-DDD 0.14 0.47 0.20 0.66
2,4′-DDT 0.25 0.82 0.47 1.57
4,4′-DDT 0.05 0.17 0.14 0.47

Fig. 1   Boxplots of recovery rates of 11 different analytes in three 
spiked soils for the two examined methods with five replicates per 
soil and method (n = 15 per boxplot). Order follows elution sequence. 
γ-HCH, 2,4′-DDE, and 2,4′-DDD are derived from interpolated inter-
nal standard correction. Gray area depicts the targeted recovery rate 

range between 80 and 120%. Asterisks denote statistically significant 
difference between the two methods (p < 0.05). Figures discrimi-
nating between the three soils are available in the Online Resource 
(Figs. S2 and S3)

501Journal of Soils and Sediments  (2022) 22:496–508



for MISOLEX as well as QuEChERS (−39%, −30%, 
and −40%, respectively). Consequently, the three mentioned 
analytes were corrected by the interpolation approach in the 
environmental samples.

Repeatability of the two methods is assessed by the RSD 
of the five replicates: averaged across all analytes, RSDs for 
MISOLEX extraction were 23%, 19%, and 16% for samples 
A, B, and C, respectively. For QuEChERS, averaged RSDs 
were 11%, 13%, and 15%, respectively.

Both methods yielded similar results in the same orders 
of magnitude on a per analyte basis but with significant dif-
ferences in some cases. TriF was not detected in any sample, 
regardless of the method. In general, QuEChERS seemed to 
yield higher values for HCH isomers.

In samples A and B, values of HCHs were higher than 
those of DDX by at least one order of magnitude. In sample 
C, differences were not as pronounced between compound 
groups. Concentrations in the three samples ranged from 
0.33 to 849.0 µg·kg−1, or from 0.39 to 1,006.9 µg·kg−1 if 
analyzed by MISOLEX or QuEChERS, respectively. For 
detailed concentration values, the reader is referred to the 
Online Resource (Tables S8 to S11).

4 � Discussion

The miniaturized method showed good LODs, LOQs, 
recovery rates, and repeatability for the three tested soils, 
with only few exceptions. LOQs were far below the limit 
of 50 µg·kg−1 recommended by the European Commission 
(2021) for pesticide analyses in soil. Means of recovery rates 
and RSDs were mostly between 80 and 120% and below 
20%, respectively. The parameters are comparable with 
previous results reported in other studies for samples from, 
e.g., a SOC rich garden soil and a clay rich soil from Spain 
(LOD 0.15–2.2 µg·kg−1, recovery rates 62–92%, SD 0.1–3.4 
percentage points (pp); Pinto et al. 2010), two Portuguese 
strawberry farm soils (LOD 1.7–7.6 µg·kg−1, recovery rates 
70–151%, relative SD 1–14 pp; Fernandes et al. 2013), 
field soils in China (LOD 0.1–0.8 µg·kg−1, recovery rates 
80.6–118.3%, SD 2.4–8.4 pp; Ma et al. 2020), mineral and 
peat soils from vegetable farms in Malaysia (LOD 1 µg·kg−1, 
LOQ 3.33 µg·kg−1, recovery rates 82–104%; Chai et al. 
2013), and an agricultural soil from Gran Canaria (LOD 
0.024–6.25 µg·kg−1, LOQ 0.5–20 µg·kg−1, recovery rates 
63.7–122.8%; Acosta-Dacal et al. 2021). In fact, the low 
LODs and LOQs make the presented MISOLEX method not 
only applicable in screening cases, but constate suitability 
for use in trace analyses as well.

Differences of recovery rates between the three soils 
— while being significant in several cases — were mostly 
relatively small, attesting good reproducibility for each 
separate case. Preliminary experiments with soils of lower 

and higher SOC content (between 0.13 and 5.86%) showed 
similar reproducibility, although these results were not 
further validated and are therefore not considered here 
(Online Resource Fig. S4).

The performance of MISOLEX is comparable to that 
of the modified QuEChERS method, both in terms of 
sensitivity and recovery. In terms of quickness, however, 
MISOLEX was found to be faster, as there was no neces-
sity to prepare salt mixtures and subsequently weigh them 
into each vessel separately. In general, the variability of 
MISOLEX was higher than that of QuEChERS, both in 
spiked and environmental samples, which might be due to 
the lower sample volume that is extracted (0.5 g vs. 1 g).

The overestimation of γ-HCH, 2,4′-DDE and 2,4′-DDD 
could be alleviated with the interpolated IS correction for 
these analytes. The recovery rates of γ-HCH showed even 
less variability than before. In the case of 2,4′-DDD, how-
ever, the correction led to an increasing variability. This 
was less pronounced when regarding the results for each 
soil separately (Online Resource Fig. S3). The large stand-
ard deviation of 2,4′-DDD in Fig. 1 is mainly due to the 
large differences between the soils.

Recovery rates differed significantly, which was con-
firmed by the results of the environmental samples. Based 
on this, the authors can recommend to apply the interpo-
lated IS correction to 2,4′-DDD, 2,4′-DDE, and especially 
γ-HCH when using MISOLEX and to 2,4′-DDE when 
using the modified QuEChERS method.

Additionally, several other interpolation approaches of 
an increasing range between the applied ISs were calcu-
lated that would even further reduce the number of ISs 
needed. But as these did not yield consistent results espe-
cially between the two different methods, and would there-
fore require further experiments, they are not discussed 
here. Still, this interpolation approach should serve as 
incentive for other researchers. It could be adapted and 
made suitable for other applications or ISs and by this help 
reduce effort and costs.

To the best of the authors’ knowledge, this approach has 
not been published before. Although the combination of 
two IS was reported as an option in an analytics software 
(Thermo Electron PlasmaLab) for ICP-MS (inductively cou-
pled plasma mass spectrometry) as “interpolation technique 
between masses when multiple ISs” a detailed description 
of this combination was not given (Niemelä et al. 2005). In 
the recent past, other studies in analytics of organic contami-
nants have rather focused on determining the most suitable 
IS for larger groups of analytes in multiresidue methods. 
This was done on the basis of, e.g., shared variation, similar 
chemical properties, and matrix effect (Ueno et al. 2004; 
Cervera et al. 2010; Tsuchiyama et al. 2017).

ISs are intended to parallel as much as possible the 
physico-chemical properties of the analytes they are  
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supposed to correct (Poerschmann et al. 1997; Stokvis et al. 
2005). Ideally, there would be one IS for each analyte and 
this — in case of mass spectrometric detection — would be 
an isotope-labeled version of its analyte counterpart. Such 
standards are usually quite expensive or even not available 
at all, which was one reason why interpolation of ISs was 
examined here. The other fact was the overestimation of 
those analytes that did not have a very close IS counter-
part. As the RT is a function of the substance’s properties, 
it serves as an indication of similar behavior. Therefore, it 
could be assumed that greater distances in RT between two 
substances imply less similarity and less similar behavior. 
If this applies to the pair of a substance and its IS, the lat-
ter is not as representative of losses of the former that may 
occur during execution of an analysis, possibly resulting in 
overestimation or underestimation of the substance when 
corrected. In terms of losses, the most critical part in the 
methods presented here is the evaporation step, for which 
vapor pressure and lipophilicity are very important: two 
properties that are of high influence for RT as well. Another 
important factor could be the presence of organic residues 
in the extract, which could serve as sorbent for analytes and 
ISs that prevents their evaporation or drift with the nitro-
gen stream when the supernatant level decreases. This is 
corroborated by results from Woldetsadik et al. (2021) who 
used the modified QuEChERS method for plant material, 
where overestimation did not occur. This factor would be 
very much dependent on hydrophobicity.

Compared to the classic ISO method, MISOLEX features 
several advantages. The standard method relies on a great 
number of different steps that increase labor and neces-
sary time per sample, and with that the risks for errors and 
losses of analyte. As well, the required amount of solvent 
per sample (ca. 200 mL compared to ca. 15 mL) is by far 
higher than with MISOLEX. Additionally, each extract has 
to be washed with water to remove acetone, resulting in 1 L 
of contaminated washing water per sample. The relatively 
high sample amount of 20 g compared to 0.5 g renders it 
unsuitable for all cases, where sample volume is scarce or is 
impractical to collect, e.g., when a large number of samples 
need to be shipped. In the ISO method, apart from the wash-
ing step, multiple evaporations and transfers are necessary. 
Process standards that are added before these critical steps 
could serve as indicator if analyte losses occurred. With the 
utilization of mere injection standards as it is required in 
the ISO method, however, only deviations of measurement 
performance are considered. Taken together, the features 

of MISOLEX are in accordance with several principles of 
green analytical chemistry (Gałuszka et al. 2013), e.g., to 
generate as little waste as possible, to avoid derivatization, 
to analyze multiple parameters or analytes at once, and to 
automate and miniaturize.

But MISOLEX is not without disadvantages: The most 
prominent is the limitation that each extract can only be 
measured once, as the SPME alters the concentration of ana-
lytes in a sample. If a sample is to be analyzed in, e.g., a tri-
plet, there are two options. (1) It could be solvent-extracted 
the same number of times, at the cost of the maximum num-
ber of samples that could be simultaneously extracted. Or 
(2) the method could be upscaled with larger vessels that can 
contain thrice as much sample as well as solvent to gener-
ate the necessary extract volume for three aliquots in one 
step. Of course, if analyte concentrations are sufficiently 
high, the extract could be divided in as many aliquots as 
adequate before evaporation and SPME extraction without 
upscaling, also allowing for retention samples. Another point 
which is just as much an advantage as it is a disadvantage 
is the use of a large number of isotope-labeled standards. 
While they greatly enhance the certainty of recovery rates 
of the analytes, they are also quite costly. They could be 
exchanged for alternative, unlabeled, and thus cheaper stand-
ards, whose suitability needs to be validated beforehand. 
When using such a low sample amount as presented here, 
particular care has to be given to the homogenization of 
samples. The main sample from which the 0.5 g is taken 
has to be of adequate size and be homogenized sufficiently 
beforehand to ensure representative results for depiction of 
a real pollution situation in situ. And finally, as is the case 
with every new system, the implementation of SPME into 
existing routines initially requires additional method devel-
opment after installment. It should be noted, however, that it 
is possible to use SPME manually if no autosampler is avail-
able, but for that, great care to timing needs to be exercised. 
The implementation of SPME in general enables the adop-
tion of certain other standard methods for analysis of, e.g., 
water samples (ISO 27108 2010; ISO 17943 2016). It is of 
course possible to adapt this method to include more OCPs 
like aldrin, dieldrin, or endosulfan, but also pollutants in 
general like polychlorinated biphenyls (PCBs) or polycyclic 
aromatic hydrocarbons (PAHs).

5 � Conclusion

The presented miniaturized method allows to quickly and 
simply determine OCPs in soil samples. With its low sample 
amount and solvent requirements, it fulfills several princi-
ples of green analytical chemistry and is well suited for large 
area soil screenings or even trace amount analytics. It applies 
SPME and a single-quadrupole GC–MS, the latter of which 

Fig. 2   Means of concentrations of 11 different analytes determined in 
three environmental soil samples A, B, and C from Tamarissi munici-
pality, Georgia (n = 5 per bar). Note the different y-axes. Error bars 
depict standard deviation. Asterisks denote statistically significant 
difference between the two methods (p < 0.05)

◂
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is considered standard in terms of mass spectrometry. With 
more sophisticated instrumentation, e.g., a triple-quadrupole 
or high-resolution MS, the method’s performance could 
likely be improved. SPME adds the advantage of a fully aut-
omized clean-up procedure. The authors are aware that the 
appropriate equipment is not available in every laboratory. 
In such cases, SPME could be operated manually, which 
would save instrument costs but at the same time remove 
the advantage of automation.

In our laboratory, the extraction of 40 samples per day 
was very well manageable. So, for 80 samples, including 
evaporation and subsequent measurement with calibrations, 
it took 7 days in total. With more samples to be measured, 
the next set could be extracted during evaporation and meas-
urement, so that a continuous routine with considerable 
throughput of samples would be established.

The reproducibility of the MISOLEX method in this case 
leaves room for improvement, especially in comparison with 
the very well performing modified QuEChERS method, but 
is more than sufficient for screening purposes. This could be 
demonstrated with the application on environmental samples 
that cover a broad concentration range. MISOLEX might 
be improved by higher sample amounts, e.g., 1 g instead of 
0.5 g, to decrease the impact of the samples’ homogeneity, 
but this requires further experiments.

In addition, a first test of a new approach to interpolate 
different ISs was introduced. It uses the analytes’ RTs as 
indication for likeliness of physical properties. In the present 
study, it performed well for two out of four analytes and 
improved their recovery rates. Future studies should evalu-
ate additional samples with differing properties, different 
combinations of ISs between which interpolation is applied, 
and should expand the method to more substance groups.

The described approach of a highly efficient analytical 
method meets the urgent need to further identify the wide-
spread contamination of soils and sediments with OCPs, 
especially in developing countries.
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