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Summary 

 

Tropical malaria caused by the unicellu lar apicomplexan parasite Plasmodium is still a major threat to 

human health and welfare in trop ical and subtropical regions of the world. In the past decades, both the 

emergence of antimalarial resistance of Plasmodium and insecticide-resistance in the mosquito vector 

made the situation more and more severe. The progress in developing a malaria vaccine, in identify ing 

new drug targets, and in developing novel antimalarials is slow. Hexokinase represents a central 

enzyme of glucose metabolism in  the malaria parasite P. falciparum. Due to the high g lucose 

dependence of the parasite, studying hexokinase can enhance our knowledge of central metabolic 

processes in Plasmodium and contribute to the search for new antimalarial drug targets. In this thesis, I 

have therefore studied hexokinase (PfHK) from P. falciparum including its kinetic properties as well as 

its redox regulation. 

First, PfHK has been successfully cloned, heterologously overexpressed in Escherichia coli and 

purified to homogeneity. Gel filtrat ion indicated that recombinant PfHK is present as a tetramer. 

Kinetic studies showed relatively low affin ities for the substrates glucose and ATP when compared with 

the human homologues. In contrast to the common 50-kDa hexokinases in other species, PfHK can be 

inhibited by G6P. Two constructs of GFP fused PfHK (fu ll-length and C-terminally truncated) were 

generated and revealed that the sub-cellu lar localization of PfHK is cytosolic in P. falciparum. The data 

furthermore showed that the C-terminal hydrophobic region in PfHK does not seem to lead to 

membrane association of the protein. In order to obtain crystals of PfHK and solve its 

three-dimensional structure, more than 500 crystallization conditions were tested. Although no high 

quality crystals have been obtained so far, the screening seems to be worth of further optimization. To  

gain first structural insights, a model of PfHK was generated based on the structure of human 

hexokinase I (PDB ID: 1DGK). Three insertions were found on the surface of PfHK when comparing 

the structure with its human counterpart, which might provide a basis for selective inhibitor 

development. 

In a second focus of my work, I studied the redox regulation of PfHK, which had been shown to be a 

target of members of the thioredoxin superfamily and of S-glutathionlylation. Th ioredoxin-related 

proteins (thioredoxin 1, g lutaredoxin and plasmoredoxin of P. falciparum) slightly enhanced the 
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activity of PfHK. Similar results were obtained with DTT incubation which indicates an underlying 

reductive mechanis m. Furthermore PfHK was inhibited by S-glutathionylation, an effect that could be 

partially reversed by DTT. Different incubation conditions with glutathione were tested and anti-GSH 

antibodies were used to probe S-glutathionylation. After trypsin digestion, a clear mass increase of 

~305 Da was observed in several cysteine- containing peptides by MALDI-TOF. S-glutathionylation 

was reproducibly found on Cys
21

, Cys
249

, Cys
236

, and Cys
346

.  

Thirdly, to validate PfHK as a drug target in P. falciparum, I started to generate a PfHK knockout strain. 

For this purpose, first a merodip loid strain was constructed which can episomally express PfHK. The 

transgenic parasites were obtained and in a next step the knockout of endogenous PfHK will be 

performed. 

The experiments performed in this s tudy represent important steps towards characterizing PfHK as a 

potential target of novel antimalarial compounds. 

 



Zusammenfassung 

 

VIII 

Zusammenfassung 

 

Tropische Malaria, die durch den einzelligen Parasiten der Gattung Apikomplexa, Plasmodium, 

verursacht wird, stellt weiterhin eine große Bedrohung für Gesundheit und Wohlergehen der Menschen 

in tropischen und subtropischen Regionen der Welt dar. In  den vergangenen Jahrzehnten haben sowohl 

die Verbreitung von Resistenzen des Malariaerregers gegen eingesetzte Medikamente, als auch 

Pestizidresistenzen der Vektormücke die Situation ständig verschlechtert. Der Fortschritt in der 

Entwicklung von Impfstoffen, in der Identifizierung von neuen Angriffspunkten für Medikamente und 

in der Entwicklung von neuen Medikamenten gegen Malaria geht nur langsam voran. Die Hexokinase 

repräsentiert ein zentrales Enzym in dem Glukosemetabolismus des Malariaparasiten P. falciparum. 

Infolge der hohen Glukoseabhängigkeit des Parasiten kann d ie Erforschung der Hexokinase dazu 

beitragen, zentrale metabolische Prozesse in Plasmodium zu verstehen und neue Ziele für die 

Entwicklung neuer Medikamente gegen Malaria zu finden. Deshalb habe ich in meiner Arbeit die 

Kinetik und Redoxregulation der Hexokinase aus Plasmodium falciparum untersucht. 

Als erstes wurde PfHK kloniert, in Escherichia coli heterolog überexprimiert und gereinigt. Die 

Gelfiltrat ionschromatografie weist darauf hin, dass die rekombinante PfHK als Tetramer vorliegt. 

Kinetische Untersuchungen zeigen, im Verg leich zu dem humanen Homolog, eine relat iv geringe 

Affinität zu den Substraten Glukose und ATP. Im Gegensatz zu den üblichen 50-kDa-Hexokinasen in 

anderen Spezies, kann PfHK durch G6P gehemmt werden. Es wurden zwei Fusionskonstrukte aus GFP 

und PfHK (fu ll-length und C-terminal verkürzt ) hergestellt, d ie erkennen lassen, dass PfHK im Zytosol 

von P. falciparum lokalisiert  ist. Des Weiteren  zeigten d ie Daten, dass die C-terminale hydrophobische 

Region der PfHK nicht zu einer Membranassoziation des Proteins führt. Um Kristalle der PfHK zu  

erhalten und die dreidimensionale Struktur aufzu lösen, wurden mehr als 500 

Kristallisationsbedingungen getestet. Obwohl bisher keine hochqualitativen Kristalle erhalten wurden, 

Wird es sich lohnen, das Screening weiter zu optimieren. Um erste Kenntnisse über die Struktur zu  

gewinnen, wurde ein Modell basierend auf der Struktur der humanen Hexokinase I (PDB ID: 1DGK) 

erstellt. Im Vergleich mit dem humanen Gegenstück wurden drei Insertionen auf der Oberfläche der 

PfHK gefunden, die eine Basis für die Entwicklung selektiver Inhibitoren darstellen könnten.  

Ein zweiter Fokus meiner Arbeit richtete sich auf die Redoxregulation der PfHK, von der gezeigt 
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wurde, dass sie ein Angriffspunkt von Mitgliedern  der Thioredoxinsuperfamilie und der 

S-Glutathionylierung ist. Thioredoxin-verwandte Proteine (Thioredoxin 1, Glutaredoxin und 

Plas moredoxin von P. falciparum) erhöhen leicht die Aktivität der PfHK. Ähnliche Ergebnisse wurden 

durch die Inkubation mit DTT erhalten, was dafür spricht, dass ein reduktiver Mechanismus zugrunde 

liegt. Des Weiteren wurde d ie PfHK durch S-Glutathionylierung gehemmt, einen Effekt, der teilweise 

durch DTT reversibel ist. Es wurden verschiedene Inkubationsbedingungen mit Glutathion getestet und 

anti-GSH-Antikörper genutzt um die S-Glutathionylierung zu untersuchen. Nach dem Trypsinverdau 

wurde eine Masse von ~305 Da in verschiedenen Cystein-enthaltenden Peptiden durch MALDI-TOF 

beobachtet. S-Glutathionylierung wurde reproduzierbar in Cys
21

, Cys
249

, Cys
236

 und Cys
346

 gefunden. 

Drittens, um PfHK als Ziel für Medikamente gegen P. falciparum zu validieren, habe ich angefangen 

einen PfHK knockout-Stamm herzustellen. Für diesen Zweck wurde zunächst ein merodip loider 

Stamm konstruiert, der ep isomal PfHK exprimiert. Die transgenen Parasiten sind vorhanden und in 

einem nächsten Schritt wird der knockout des endogenen PfHK durchgeführt werden.  

Die Experimente, die in dieser Studie durchgeführt wurden sind wichtige Schritte auf dem Weg zur 

charakerisierung der PfHK als Ziel für neuartige Antimalaria mittel. 
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Introduction 

1.1 Malaria 

The malaria parasite causes a life-threatening tropical d isease via the bite of infected mosquitoes and 

still plagues tropical and sub-tropical regions. Because of its high morb idity and mortality, malaria is a 

great endemic infectious disease and a major d isease burden in these countries , as are HIV and 

tuberculosis (Mechai et al., 2012). According to the W HO 2012 report, malaria caused an estimated 

219 million illnesses and 660,000 deaths in 2010, having fallen by more than 25% since 2000 (WHO, 

2012). Approximately 80% of cases and 90% of deaths were estimated to occur in Africa, with children  

under five years of age and pregnant women most severely affected; 90% of the cases are caused by P. 

falciparum (Murray et al., 2012; WHO, 2012). 

 

 

Figure 1.1: Worldwide distribution of countries at risk of malaria (WHO 2011)  

“Mal’ aria,” which means bad air in Italian and was associated with marshy areas, has been noted for 

more than 4,000 years and has probably influenced to a great extent human populations and human 

history (CDC 2013). People have struggled unremittingly with this ancient, preventable, and treatable 

disease. In 2700 B.C., the symptoms of malaria were described in ancient Chinese medical writings. In  

Europe malaria also became widely recognized in Greece by the 4
th

 century B.C., and it was 
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responsible for the decline of many of the city-states‟ populations. By the age of Pericles, there were 

extensive references to malaria in literature, and depopulation of rural areas was recorded (CDC 2013). 

In the development of malaria parasitology, many events are remarkable from the end of the 19
th

 

century. Charles Louis Alphonse Laveran, a French army surgeon, firstly discovered the parasites in the 

blood of the patients suffering from malaria in 1880, and he was awarded the Nobel Prize in 1907.  

During the same period, Camillo Golg i, an Italian  neurophysiologist, devoted himself to the 

differentiat ion of species of malaria in 1886. Ronald Ross demonstrated and solved malaria 

transmission in 1887 and was awarded  the Noble Prize in  1902. Finally  the complete sporogonic cycle 

of P. malaria was demonstrated in 1899 by an Italian team (CDC 2013).  

In order to fight against malaria, people have applied more than 1,277 plant species from 160 families 

as herbal medicines over thousands of years (Willcox et al., 2004). The qing hao plant and cinchona 

bark as the representative herbal medicines are used to extract artemisinins and quinine , which are the 

potent and effective drugs today. In some poor, rural areas with malaria ep idemics, these traditional 

medicines are still a choice to exp loit  as affordable and effect ive treatment (Willcox et al., 2004). In the 

antimalarial chemical synthesis, chloroquine (resochin) was discovered by a German, Hans Andersag, 

in 1934 at Baye IG and was established as an effective and safe antimalarial in 1946 by Brit ish and U.S.  

scientists (CDC website 2013). Unt il now artemisinin -based combination therapies (ACTs) are the 

pillars of first-line t reatment of malaria cases. 

The Global Malaria Erad ication Program was init iated by the WHO in 1955, rely ing on chloroquine for 

prevention and treatment as well as DDT for vector control (WHO, 1999). This program achieved 

success in eliminating malaria from North America, the Caribbean, Central-South America, Europe, 

and parts of Asia (Carter et al., 2002). However, this strategy of massive and rapid application of DDT 

to interrupt transmission of the disease, regardless of geography and epidemio logy, failed to interrupt 

transmission completely in many countries , and malaria resurged to previous  levels (Feachem et al., 

2008). After the emergence of ch loroquine-resistant Plasmodium parasites and DDT-resistant 

Anopheles mosquitoes (Brito, 2001), the eradication program was abandoned in 1972. With the spread 

of chloroquine resistance from the early 1970s, the situation began to deteriorate slowly and 

progressively. At the same time, malaria mortality doubled or more in most parts of Africa (Trape et al., 

2002). To combat this worsening situation, many organizations initiated several programs to control or 

eliminate this public health problem. In 1992, the global strategy for malaria control was adopted by a 
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Global Min isterial Conference on Malaria. The strategy has four elements: to provide early diagnosis 

and prompt treatment; to plan and implement selective and sustainable preventive measures, including 

vector control; to detect early, contain, or p revent epidemics; and to strengthen local capacit ies in  basic 

and applied research (Dr. B.S. Kakkilaya's Malaria Web Site 2006). The Roll Back Malaria (RBM) 

program, which  was started in  1998 by the World Health Organizat ion, the United  Nations 

Development Program, the United Nations Children‟s Fund, and the World Bank, focused on 

establishing a global partnership to control malaria effectively  (WHO Malaria report 2012). The aim of 

this program was to halve the global malaria burden of risk, morbidity, and mortality by 2010 (Hay et 

al., 2004). In 2007, the Bill & Melinda Gates Foundation renewed a call, originally set forth by the 

WHO in 1955, for malaria eradication. And in 2011, the UN Secretary -General declared a goal of 

reducing malaria deaths to zero by 2015 (Murray et al., 2012). Achiev ing this ambitious goal requires 

the development of new tools to monito r, prevent, and treat malaria.  

 

1.1.1 Life cycle of Plasmodium falciparum 

Malaria is a parasitological disease caused by protozoan parasites of the genus Plasmodium from the 

phylum Apicomplexa. There are five Plasmodium species, P. falciparum, P. knowlesii (Collins, 2012;  

Singh et al., 2004), P. malariae, P. ovale, and P. vivax, which cause human malaria. P. falciparum and P. 

vivax are the two predominant species responsible for most malaria infect ion (WHO, 2011). P. 

falciparum is the most lethal one, which causes over 90% of deaths in Africa (WHO, 2012). All five of 

these Plasmodium species exhib it a similar complex life cycle with slight differences, composed of 

different stages and multip le fo rms that inhabit mult iple cell types including the vertebrate host (human) 

and invertebrate vector (Anopheles mosquito) (Figure 1.2). The malaria infection begins with a bite 

from an infected Anopheles female mosquito. Normally more than 25 sporozoites  in the saliva of a 

mosquito are inoculated into the subcutaneous tissue and then migrate into the blood stream. Via the 

circulatory  system, sporozoites invade the hepatocytes in the liver, in itiat ing liver stage development 

(the pre-erythrocytic phase). This stage lasts about 6 days. After asexual replication, thousands of 

merozo ites are released into the blood stream and invade erythrocytes beginning asexual blood stage 

development (erythrocytic phase). Notably, P. vivax and P. ovale are capable of undergoing a dormant 

period instead of asexual rep licat ion within hepatocytes. Within the erythrocytes, the parasites live in  

the cytosol and develop their own plas ma membrane. From the young trophozoites , called the ring 
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stage due to its morphology, the parasites develop into mature trophozoites within 24 hours after 

invasion. Approximately 36 hours after invasion, parasites develop into the schizont stage, which is 

indicated by repeated nuclear division without cellu lar segmentation. Later the schizonts develop and 

form merozo ites in the erythrocytes. About 48 hours after invasion, the mature merozoites rupture the 

erythrocytes and spread into the bloodstream to invade new erythrocytes , reinitiat ing a new round of 

the erythrocytic life cycle. The asexual blood stage of Plasmodum parasites is responsible for all the 

clin ical manifestations and the pathology associated with malaria. To transmit malaria, a few parasites 

in the form of blood-stage merozo ites develop into macrogametocytes (female) and microgametocytes 

(male), which are ingested into the mosquito gut when a female mosquito bites an infected human. 

Gametogenesis can be induced by several factors , such as a sudden drop in temperature, a rise in pH, or 

the metabolites within the mosquito. The male gametocyte develops into eight flagellated 

microgametes, which escape from the enclosing erythrocytes (exflagellation). Macrogametes can be 

fertilized by microgametes and form motile zygotes (ookinetes). This zygote then resembles a wart on 

the outside of the mosquito gut and develops an oocyst when it traverses the peritrophic membrane and 

epithelium of the mosquito midgut. Numerous threadlike sporozoites are released after oocyst 

maturation  and rupture. The sporozoites quickly migrate to the salivary  glands and start the next  round 

of infect ion once the mosquito bites a human. Normally  the mosquito becomes infectious two weeks 

after ingesting gametocytes from an infected human. 

 

Figure 1.2: Life cycle of malaria (EVI website 2013) 
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1.1.2 Control of malaria 

After the first Global Malaria Eradicat ion Program which was abandoned in 1972, the situation of 

malaria in some parts of the world  (especially in Africa) progressively deteriorated, and antimalarial 

resistance emerged (Trape, 2001). In order to control the havoc wrought by malaria, antimalarial 

chemotherapy is still the predominant treatment, but the development of an effective vaccine would 

bring a more p romising future.  

 

1.1.2.1 Development of chemotherapeutics 

Through several decades fighting against malaria, antimalaria l chemotherapy by drugs can be divided 

into a few classes: quinolines, antifolates, artemisinins, atovaquone, pyrimethamine, and their 

derivatives. After decades of research, understanding of the action site of antimalarial drugs has 

increased remarkab ly (Tab le 1.1). 

 

Table 1.1: Targets for antimalarial chemotherapy (Fidock, et al. 2004) 

 

The quinoline family, which comprises chloroquine, amodiaquine, quin ine, mefloquine, etc., used to be 

the gold standard for the treatment of malaria with its efficacy, low toxicity, and affordability (less than 

US $0.20 for a three-day adult treatment course) (White, 1996). These drugs acts by binding to heme 

moieties and interfering with heme detoxificat ion in infected erythrocytes (Fitch, 2004). Because of the 

abuse, only a decade later the first report of chloroquine-resistant strains of P. falciparum came out 
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(Wellems  et  al., 2001). To date ACTs have become the mainstay of malaria control (WHO, 2010) 

because of their beneficial properties such as rapid action and a broad spectrum. The ACT combination 

therapies are the first choice of treatment of malaria cases. There are five recommended combinations 

available currently: artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, 

artesunate-sulfadoxine-pyrimethamine, and dihydroartemisinin -piperaquine (WHO, 2012). In spite of  

the emergence of resistance in P. falciparum in Southeast Asia (Anderson et al., 2010), the ACTs still 

contribute to over 90% worldwide clinical efficacy (WHO, 2012). Current evidence suggested that the 

mechanis m of ART and derivates is to cleave the endoperoxide bridge, leading to alkylat ion of essential 

biomolecules (O'Neill et al., 2004). 

For decades, the rise of resis tant P. falciparum strains interrupted the efficacies of almost all 

antimalarial drugs. The mechanis m was not clearly understood. Recent research found that the 

mutation of transporters was a major contributor to drug resistance, and three transporters are focused 

on: the chloroquine-resistance transporter PfCRT, the multi-d rug resistance-associated protein PfMRP, 

and the multi-d rug-resistant transporter 1 PfMDR1 (Sanchez et  al., 2010). The mult iple polymorphic 

alleles of pfcrt are related to different levels of ch loroquine resistance (Sa et al., 2009). The PfMRP was 

demonstrated to transport multip le antimalarial d rugs out  of the parasites (Raj et al., 2009). Single 

nucleotide polymorphisms of pfmdr1 encoding an ATP-binding cassette (ABC) t ransporter and a 

homolog of P-glycoprotein in  humans regulate drug susceptibility (Reed et al., 2000; Sidhu et al., 

2005). 

In the challenging situation of combating malaria, novel drugs are desperately needed. The new 

antimalarial drugs must meet the requirement of rapid efficacy, minimal toxicity, and low cost (Fidock 

et al., 2004). However, trad itional d rug development strategies hardly meet these desires. Therefore, an  

effective vaccine against malaria would offer the prospect of malaria elimination. 

 

1.1.2.2 Development of a malaria vaccine  

To control, prevent and eradicate malaria, a safe, effective, and affordable malaria vaccine is a vital 

milestone. Then natural immunity to malaria can be acquired via repeated malaria infect ion. This 

immunity to human malaria is largely mediated by IgG antibodies, but the specific antigens that these 

antibodies target are difficult  to pinpoint (Hviid, 2007). This immunity response is generally short-lived, 

possibly because malaria in fections hinder the development of B cell memory (Dorfman et al., 2005). 
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Although the acquisition of natural immunity response seems to appears only at blood stages of malaria,  

the development of a malaria vaccine is focused on three life cycle stages: the sporozoite and liver 

stage (pre-erythrocytic vaccines), the asexual b lood stage (blood stage vaccines), and the sexual 

gametocyte/gamete stage (transmission blocking vaccines) (Ashley et al., 2012). 

 

Figure 1.3: Vaccine candidates targeting different life cycle  stages (MVI 2013) 

 

The pre-erythrocytic vaccines aim to elicit an immune response in order to prevent infection or attack 

the infected hepatocytes at the liver stage, where parasites enter or mature in hepatocytes. The 

circumsporozoite protein (CSP) is a promising target, because strong immunity response can be elicited 

during natural exposure or vaccination (Calvo-Calle et al., 2005). RTS vaccine, which shows the best 

result of immunity so far, is fused to the amnio-terminal portion of HBsAg with portions of the P. 

falciparum CSP polypeptide. However, the protection of clinical malaria has only been 56% until now 

(Patterson et al., 2008). 

Besides the pre-erythrocytic vaccines , the blood stage vaccines  target Plasmodium at its most 

destructive stage (the rapid replication of the organism in erythrocytes). The blood-stage vaccines aim 

to decrease the number of parasites  (the merozo ites) in the blood to reduce the severity of disease. Up 
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until now, the candidate antigens in the blood stage are composed of merozo ite surface protein 1-3 

(MSP1-3), apical membrane antigen 1 (AMA-1), erythrocyte-binding surface antigen 175 (EBA-175), 

glutamate-rich protein  (GLURP), ring-infected erythrocyte surface antigen (RESA), and serine repeat 

antigen 5 (SERA5) (Ashley et al., 2012). The evidence shows that low concentrations of anti-basigin 

antibodies of conserved merozoite ligands can block the invasion of malaria completely (Crosnier et al.,  

2011). Transmission-blocking vaccines (TBVs) seek to interrupt the life cycle of malaria by inducing 

antibodies to prevent the parasite from maturing in the mosquito. These vaccines would not prevent 

human in fection by malaria or attenuate the symptoms of d isease, but they would limit the transmission 

by mosquitoes. Research of Pfs25, a protein expressed on the surface of the zygote and ookinete form 

of the parasites, showed that high anti-Pfs25 IgG titers and sera from immunized mice inhib ited the 

transmission of P. falciparum to the mosquito in mice (Goodman et al., 2011). 

Despite recent progress, the development of a  malaria vaccine is still as complex as ever. In order to 

achieve the long-term goal of over 80% efficacy against malaria, there is still a long way to go 

(Nussenzweig et al., 2011). 

 

1.1.3 Glucose metabolism of P. falciparum in the human blood stage  

Glucose, the most important and abundant nutrient in human serum, is essential for the asexual stage of 

P. falciparum to survive and multip ly (Kirk, 2001). The intra-erythrocytic parasites possess a 

significantly streamlined carbon metabolic network in which the TCA cycle p lays a minor ro le and 

derives most of its energy from g lucose fermentation (Kirk et al., 1996;  van Dooren et al., 2006). After 

infection, the parasites increase glucose consumption 50 to 100-fo ld at the most metabolically active 

trophozoite and schizont stages (Roth, 1990). After a  couple hours of glucose starvation, P. falciparum 

parasites appeared as shrunken, rounded bodies with pyknotic nuclei and failed to  recover v iability via  

glucose re-supplementation (Babbitt et al., 2012). Besides extreme g lucose dependence, the glucose 

metabolism of P. falciparum is also quite different from the human host. 

The transport of glucose into erythrocytes is mediated by the human glucose transporter and the 

Plasmodium glucose transporter (PfHT) with relatively high affin ities (K m <1 mM) (Geary  et al., 

1985). The utilizat ion of glucose in parasites can be catalogued into the core conserved components of 

carbon metabolis m: g lycolysis and the pentose phosphate pathway (PPP). The intermediate of 

glycolysis and the PPP can be integrated into lipid biogenesis, glycosylation, and at least some 



Introduction 

9 

components of citric acid metabolis m (Olszewski et al., 2011). 

 

Figure 1.4: Carbon flow through the metabolic network of P. falciparum (Olszewski et al., 2011) 

Based on numerous classical experiments, the Embden-Meyerhof-Parnas (EMP) pathway has been 

verified to be central to carbon metabolis m in blood stage Plasmodium parasites. This 

glucose-to-lactate convention provides ATPs for energy and metabolic intermediates , which involves 

other physiological process such as ribose synthesis, lip id metabolis m, and amino sugar metabolis m. 

By completely sequencing the P. falciparum genome, it was shown that the parasites possess all the 

enzymes found in glycolysis. Due to rapid mult iplication and the absence of a functional citric acid  

cycle in  P. falciparum, the huge requirement of ATP must be obtained by a mass of glucose 

fermentation. With voracious glucose assimilation, Plasmodium g lycolysis consumes and incompletely  

oxidizes approximately 60-70% of glucose to lactic acid (Jensen et al., 1983). This large consumption 

of glucose by parasites and excretion of lactic acid to the host correlate with the metabolic 

complications (lact ic acidosis and hypoglycemia) of malaria.  

The pentose phosphate pathway is another critical and conserved glucose metabolis m pathway in  

Plasmodium, which oxidizes glucose-6-phosphate to ribose for nucleic acid synthesis and NADPH for 

redox regulation and as a cofactor for b iosynthetic reactions. Due to the high  metabolic rate of their 
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rapid growth and mult iplication in erythrocytes, Plasmodium parasites demand a large amount of ribose 

and are confronted with continuous oxidative stress from the large quantities of toxic redox-active 

byproducts (Becker et  al., 2004). Hence a h ighly efficient PPP is essential for the asexual stages of the 

parasites. In investigations, the activity of this oxidative pathway in infected erythrocytes  increased 

78-fo ld at the trophozoite stages (Atamna et al., 1994). The parasites contribute 82% of this activity, 

and the erythrocytes‟ PPP is also up-regulated 24-fo ld to levels roughly similar to  those observed when 

subjecting uninfected erythrocytes to oxidative stress (Olszewski et al., 2011). It seems that the active 

PPP is important for both parasites and their host blood cells to eliminate the toxicity of reactive 

oxidative species. After all, maintaining the host erythrocytes‟ survival is required to sustain the 

parasites‟ viability. 

As Plasmodium parasites rely on glucose, the utilization of g lucose and the enzymes involv ed in 

glucose metabolism have been studied over many years and have the potential to contribute to the 

development of new anti-malarial drugs directed e.g. against the glucose transporter (PfHT1) or the 

rate-limiting enzyme in the PPP (glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase). 

 

1.2 Rationale of the study 

With the tardy progression of vaccine development and the rapid emergence of both antimalarial drug 

and insecticide resistance, the situation of malaria is becoming increasingly severe. In reports, there is 

no more clin ical and parasitological response to the malaria of ART-resistant strains which can resist 

almost all antimalarial drugs. In response to this dire situation, research and identification of new drug 

candidates is becoming more urgent. From the inspiration of anti-cancer therapy and the rigid  

dependence on glucose, this glucose utilizat ion of Plasmodium parasites could be a promising target of 

antimalarial drugs. Plasmodium hexokinase which contributes to the first step of glucose utilizat ion is 

an ideal target to disturb the glucose metabolism of the parasites. Also, the whole genomic sequencing 

of Plasmodium falciparum reveals that there is only one isoenzyme of PfHK, that and it exists as a 

single copy in the genome. The investigation of catalytic mechanism and post-translational regulation 

of PfHK may provide the hints for a novel anti-malarial drug. 

1.2.1 Hexokinase 

In a large part of prokaryotic cells and all eukaryotic cells hexokinase as the pacemaker of g lucose 
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metabolism starts the initial step of intracellular g lucose utilization by phosphorylating glucose to form 

glucose-6-phosphate (G6P). After phosphorylation the imported glucose can be trapped in the 

cytoplasm, entering different metabolic pathways. The subsequent metabolic fates  of G6P may vary in  

different types of cells and under different physiological conditions. Hexokinase prefers glucose as the 

primary substrate and can also phosphorylate other hexoses, as the recommended name of 

ATP:D-hexose 6-phosphotransferase (EC 2.7.1.1 ind icates). Only  a few species, especially bacteria, are 

known to possess the enzyme specific for glucose, which is called glucokinase (ATP:D-g lucose 

6-phophotransferase, EC 2.7.1.2) (Ureta et al., 1987). In d ifferent species hexokinases differ in  

molecular mass and tissue distribution, and these enzymes normally exist as a mixture of isoenzymes 

that again have different kinetic characteristics and molecular mass es. The differential expression of 

isoenzymic forms of hexokinases may be an important factor in determining the pattern of glucose 

metabolism in cells. Besides the function of g lucose phosphorylation, many studies have proved that 

the different isoforms of hexokinases are involved in a series of metabolic regulations and 

physiological processes. 

 

1.2.1.1 Isoforms of hexokinase 

The first system with mult iple hexokinases was demonstrated in yeast with three isoenzymes: 

hexokinase PI and PII and glucokinase (Kaji et al., 1961). From then on the isoenzymes of hexokinases 

have been successively found in different species. More than two isoforms of hexokinases  have been 

found and examined in green plants and several invertebrate species  (Jang et al., 1997; Ureta et al., 

1987). In mammals, the hexokinase isoforms were first reported in rodent livers (Viñuela et al., 1963;  

Walker, 1963) and seem to be a characteristic of all an imals . In human t issues these isoenzymes were 

also verified (Brown  et al., 1967;  Rogers  et al., 1975). Furthermore, the hexokinases in vertebrate 

species have been characterized in four isoenzymes, named hexokinase types I, II, III, and IV (Katzen  

et al., 1965) on the basis of their electrophoretic mobility; hexokinase IV is commonly called  

„glucokinase‟ because of its substrate specificity. 

The molecular mass of most native hexokinases in different species is  50 kDa or 100 kDa, and the 

subunits also exist with  the molecular mass of 50 kDa or 100 kDa (Table 1.2 ). There are some smaller 

molecular mass hexokinases that were found in eubacteria, i.e., 24 kDa subunits in E. coli (Fukuda et 

al., 1984) and S. mutans (Victoria et  al., 1982), 33 kDa subunits in Z. mobilis (Scopes  et al., 1985) and 
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B. stearothermophilus (Hengartner et al., 1973), and a large amont of other bacterial sugar kinases with 

molecular masses from 32 kDa to 37 kDa. The o ligomers of these isoenzymes are commonly  

monomers or d imers. In fungi and invertebrates, the hexokinases are formed as monomers of 50 kDa 

molecular mass, althought in a few cases they are dimerized, as  glucokinase in  Drosophila. Veterbrates 

have hexokinases of 100 kDa monomers , which can also dimerize  when co-crystallized with substrates, 

with the exception of glucokinase, which is only 50 kDa  and does not dimerize . The monomer 

molecular masses of hexokinases in all species can statistically fall in the geometric series 25:50:100, 

apart from the 35-kDa hexokinases in bacteria. Thus, according to a hypothesis shown in Fig 1.5, 

hexokinases in present-day organisms may have been derived from the ancestor of the 25-kDa enzyme 

still present in bacteria (Ureta et al., 1987). It was supposed that genes of 50-kDa hexokinases in fungi 

and invertebrates came from the duplication and fusion of ancestral genes, and another gene duplicated 

and fused to produce a gene of hexokinase of 100-kDa in vertebrates. For this tempting assumption, 

there is good evidence for the duplication and fusion from the hexokinase of 100-kDa. In vertebrates, 

the rise of 100-kDa hexokinase might correspond to the acquisition of new functions, with a new 

allosteric site responsible for the significant inh ibition by g lucose 6-phosphate. For example, 

hexokinase I in  rats, twice the size enzyme of yeast hexokinase, only has one catalytic site, which is 

located in  the C-terminal half, and each domain is structurally  related to yeast hexokinase. The 

mutation of the residues in the N-terminus that correspond to catalytic residues in the C-terminus did 

not influence the activ ity of this enzyme;  glucose 6-phosphate could strongly inhibit  the enzyme ‟s 

activity, but not the activity of yeast hexokinase. However, further research on the 51 kDa C-terminal 

fragment from the digestion of hexokinase I by typsine revealed that the regulation by glucose 

6-phosphate can also take place at the C-termial half (White et  al., 1989). The same result was reported 

for the C-terminus of human hexokinase I: the inhibit ion by g lucose 6-phosphate was exactly  as the 

complete hexokinase (Magnani et al., 1992). Then the view of the evolutionary relationship between 

the hexokinases adjusted accordingly to accept that the sensitivity to glucose 6-phosphate arose before 

gene duplication and fusion. According to this , the ancestor of mammalian hexokinases is more similar 

to starfish hexokinase than the yeast enzyme , which is the 50-kDa hexokinase inhibited by glucose 

6-phosphate (Mochizuki, 1981; Mochizuki et al., 1980). 
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Table 1.2 The molecular dimensions of hexokinases  (Cardenas et al., 1998) 

 

 

Fig 1.5: Scheme depicting the hypothesis of hexokinase evolution (Cardenas et al., 1998). The duplication that produced the 

100-kDa animal hexokinases is shown as occurring later than the branch point that separated the 50-kDa hexokinase D from the 

other isoenzymes. Because of no direct evidence that any of bacterial hexokinases are homologous with the eukaryotic enzymes, 

the line leading to the bacterial hexokinases is discontinuous. 

 

1.2.1.2 Structure of hexokinase 

As the pacemaker o f glucose metabolis m in tissues of human and other species, hexokinase attracted 
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intensive attention with respect to the analysis of its crystal structure. From the first crystallized  

hexokinase in yeast (Anderson et al., 1978; Shoham et al., 1980), many hexokinases in different 

organisms and species, i.e ., Rattus norvegicus, Schistosoma mansoni (Mulichak et al., 1998), and 

Homo sapiens (Liu et al., 2012) have been crystallized and analyzed with different ligands. Via the 

pioneering crystallographic research of yeast hexokinase, the structures of hexokinases could be 

divided into large and small lobes, and the active site was found to be located in the pocket embraced 

by the large and small lobes. With the bind ing of glucose, relative movements of the large and s mall 

lobes induce the conformational change from an open form to a closed form (Anderson et al., 1978). In  

the closed conformat ion, the small lobe comes closer to the presumed position of the ATP and makes 

the interaction possible, which is not possible in the open form (Fig 1.6). 

 

 

Fig 1.6: Structure of yeast hexokinase with open (A) and closed (B) conformations (Shoham et al., 1980). 

 

The crystal structure of human brain  HK I or rat  HK II revealed  that the 100-kDa hexokinase could be 

organized in two domains  linked by a connection helix, which  are called the N-terminal and C-terminal 

halves. These two domains exhib it extensive sequence similarity and are structurally related to yeast 

hexokinase (Griffin  et al., 1991). As shown in the yeast hexokinase structure, the small lobe and the 

large lobe could be distinguished in the N- and C-terminal halves. In the crystalline state, human and 

rat HKI were found to be dimerized (Fig 1.7). Within the dimer, two monomers formed a twofold axis 

in molecular symmetry, in which the N-terminal domain from one subunit is juxtaposed to the 

B A 
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C-terminal domain o f another subunit (Rosano et al., 1999). 

 

 

Fig 1.7: Stereoview of the monomer and dimer of hexokinase I in humans (Aleshin et al., 1998; Rosano et al., 1999). The 

chain of the large lobe is in purple; small lobe in yellow; the dimerized hexokinases are in blue and red. 

 

The active conformation of hexokinase was considered to relate to the close form. The conformational 

transition from open form to close form was supposed to stabilize the binding of ATP (Shoham et al., 

1980). The b inding sites of glucose and glucose 6-phosphate were clearly exh ibited in both 50-kDa and 

100-kDa hexokinases by the co-crystallized Glc/G6P complexes of hexokinases (Aleshin et al., 1998). 

Since the crystal structure of the ATP-hexokinase complex is still not available, the complex of 

hexokinase with ADP/Glc was used to suggest a Mg
2+

-ATP complex with  hexokinase, which was in  

agreement with proposed metal-ATP complexes of related enzymes  (Aleshin et al., 2000). In this 

model, the binding sites for g lucose 6-phophate and ADP overlapped (Fig 1.8), thus evidently 

demonstrating the structural basis for the direct inhibit ion of glucose 6-phosphate. Different mutations 

of hexokinase complexes with glucose and glucose 6-phosphate were obtained and analyzed in order to 

investigate the mechanisms of catalysis and allosteric regulat ion. Glucose and glucose 6-phosphate 

could combine with both N- and C-terminal halves. The binding site of glucose 6-phosphate in the 

N-terminal half used to be considered to contribute to allosteric inhibit ion. However, mutations that 
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eliminate the binding of glucose 6-phosphate in either the N- or C- terminal half had little to no effect 

on the inhibition (Sebastian et al., 1999; Zeng et al., 1996). Only the mutations at both glucose 

6-phosphate binding sites could abolish the product inhibition  (Liu et al., 1999). Ev idently, the 

inhibit ion of glucose 6-phophate consisted of allosteric inhibition (b inding at the N-terminal half) and 

direct inhib ition (b inding at the C-terminal half). 

 

 

Fig 1.8: Active site  of the C-terminal half of monomeric hexokinase I. Right: the ADP/Glc-bound active site with ADP and 

Glc drawn in green, selected side-chains in orange, elements of the small domain in yellow, and segments of the large domain in 

purple. Dotted red lines designate donor-acceptor interactions. Left: the G6P/Glc-bound active site. ADP in black, taken from the 

top illustration, represents the overlap with G6P (Aleshin et al., 2000). 

 

Significant inhib ition by glucose 6-phosphate was commonly said to be a striking property of the 

100-kDa hexokinases in vertebrates in the hypothesis of allosteric conformation. The multiple b inding 

sites of glucose 6-phosphate indicate that product inhibition is not only by allosteric regulation. Some 

models were constructed to explain the mechanis m of g lucose 6-phosphate inhibition. White & Wilson 

(White et al., 1989) proposed that the N-terminal half of 100-kDa hexokinases could block the g lucose 

6-phosphate binding site of the C-terminal half, and that the binding of glucose 6-phosphate at the 

N-terminal half might allosterically regulate access to the ATP binding site for the C-terminal half. 

However, subsequent crystal structures of glucose 6-phosphate complexes of hexokinases revealed 

product binding. Alshin et al., [2000] improved the model of White & Wilson, while the same 

shortcoming of anti-cooperative binding of g lucose 6-phosphate could not be solved. In this model, two  

conformat ional states also exist in the N-terminal half, which differ by a 6
o
 rotation about the 
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N-terminal end of the transition helix. Th is difference in conformational states relates to the transition 

from the ATP-compatib le to the ATP-antagonistic status of the C-terminal half (Fig 1.9). 

 

Figure 1.9: Scheme of the allosteric regulation in 

hexokinase I monomer. (a) At low concentrations of 

glucose 6-phosphate, the allosteric interface between the 

N- and C-terminal halves maintains the flexible 

subdomain in an ATP-antagonistic state, in which the 

Thr784 blocked the binding of ATP. (b) In the presence of 

elevated concentrations of G6P, the N- and C-terminal 

halves are decoupled, the ATP binding site was directly 

overlapped by the binding of glucose 6-phosphate. (c) The 

competition of Pi promoted the dissociation of glucose 

6-phosphate from the N-terminal half and made a 

rigid-body rotation of that half relative to the C-terminal 

half. (d) Pi facilitates the binding of ATP (Aleshin et al., 

2000). 

 

 

 

 

 

 

 

1.2.1.3 Hexokinase in humans 

In mammals there are four different types of hexokinase that have been identified via ion exchange 

chromatography (González et al., 1964) or electrophoresis (Katzen et al., 1965). The isoforms of 

hexokinase I, II, and III are all 100 kDa molecules , and type IV is a 50 kDa molecule (Postic et al., 

2001). The distributions and localizations of these hexokinase isoforms are quite different in human 

organs and tissues. Hexokinase I is expressed in the brain at a particularly h igh level; the tissue relies 

on the metabolis m of glucose to sustain a high rate of energy consumption (Clarke et al., 1999). The 

expression of type II hexokinase is much more restricted, mainly being found in insulin-sensitive 

tissues such as adipose tissue and skeletal muscle (Wilson, 1995). Compared to type I, hexokinase II 

plays a more anabolic ro le in the process of lipid synthesis in the liver (Sebastian et al., 2000) and 



Introduction 

18 

lactating mammary g land (Kaselonis  et al., 1999), provid ing NADPH v ia the pentose phosphate 

pathway. Type III is in low expression but detectable in lung cells and immunohistochemically found in 

the perinuclear compartment (Preller et al., 1992). As in hexokinase II, the type III hexokinase also was 

considered to be involved in anabolic pathways (Wilson, 2003). HKIV was found with a low affin ity 

for g lucose (5 mM), which p lays an important ro le in g lucose homeostasis, and is main ly distributed in  

the liver and the pancreas  (Postic et al., 2001). 

Due to the N-terminal hydrophobic region, the subcellular localizations of human hexokinase I and II 

are combined with the outer mitochondrial membrane (Kropp et al., 1970; Po lakis  et al., 1985). Th is 

combination between hexokinase and mitochondria plays an important role in glucose metabolis m and 

the fate of the cell (BeltrandelRio et al., 1992; Pedersen, 2007). The isoform III is also a 100 kDa 

hexokinase but without the hydrophobic region at the N-terminus and has been found localized both in  

cytoplasm and the perinuclear compartment, which is supposed to relate to the transport functions in 

endothelial and epithelial cells (Preller et al., 1992). The subcellular localization of hexokinase IV is in  

cytoplasm, and the function is clear with the hematologic balance of g lucose. 

Among these four isoforms of hexokinase in human tissues, hexokinase I and II attracted the most 

concern due to their wide distribution and their relationship with tumor cells. Numerous excellent 

studies exquisitely elucidate the specific binding  of hexokinase I and II with the porin (VDAC: 

voltage-dependent anion channel) at the outer membrane of mitochondria (Gelb et  al., 1992;  Lindén et 

al., 1982; Su i et al., 1997). Th is combination has been elaborated to fluently utilize the mitochondrial 

ATPs. Besides this, the more important function of the insert of hexokinase I and II into the porin at the 

outer membrane of the mitochondrion could prevent cytochrome C release, which regulates cell 

apoptosis (Arzoine et  al., 2009; Pastorino et al., 2008;  Pastorino et al., 2002). As described previously, 

hexokinase I is much more related to energy generation via catabolism, and hexokinase II tends to 

contribute to anabolism. This difference determines that the expression of hexokinase II is silenced in  

normal cells except some special cells by the methylation of the transcriptional promoter (Goel et al., 

2003). However, the demethylation of the promoter can be induced by a term of promiscuous activators, 

including a mutated p53 gene (Mathupala et al., 1997) and hypoxia (Mathupala et al., 2001) (Fig 1.10). 

The overexpression of hexokinase II has been recognized as a hallmark of many cancers, especially the 

most aggressive, and this phenotype also relates to the shift of glycolysis product from pyruvate to 

lactate, which is called the „Warburg effect‟ (Warburg, 1956). In the 1920s, Warburg and his colleagues 

app:ds:cytochrome%20C
app:ds:cell%20apoptosis
app:ds:cell%20apoptosis
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(Warburg et al., 1930) found cancers frequently rely less on mitochondria, and the metabolism is more 

like anaerobism; over 50% of their ATP was obtained from metabolizing glucose directly to lactic acid, 

even in the presence of oxygen. In normal cells, most of the ATP is generated by oxidative respirat ion 

in mitochondria composed of the TCA cycle and the respiratory chain. Via the shifted pathway of 

glcolysis and its off-shoot the pentose phosphate shunt (hexose monophosphate pathway), the rapidly  

dividing tumor cells are provided  with rich  sources of carbon precursors , which  are essential for the 

biosynthesis of phospholipids, nucleic ac ids, fatty acids, porphyrins, and cholesterol (Pedersen, 2007). 

The consequent research evidently showed that hexokinase II and  the VDAC complex p lay the most 

pivotal and direct roles in the „Warburg effect‟ (Pedersen, 1978; Pedersen et al., 2002; Smith, 2000). 

In recent years, through the research of subcellular localization o f hexokinase II, another key role of 

hexokinase II is to maintain cancer cell survival by suppressing cell death (Mathupala et al., 2006). The 

N-terminal b inding domain  of hexokinase II is predominantly essential to anchor to  the VDAC protein  

in this process. Many factors, both metabolic and signal transduction-related, could be implicated in the 

formation of the HKII/VDAC complex, including ADP concentration, lactate, pH, and the signaling 

cascades involving protein kinase-B (PKB/Akt) (Gauthier et  al., 1990;  Graham et al., 1985; Miccoli et  

al., 1996). The mechanism of preventing apoptosis by the hexokinase II/VDAC complex was 

concluded to interrupt the formation of the MPTP (mitochondrial permeability transition pore complex).  

The binding of HKII can reduce the interaction of free VDAC sites with the activated proapoptotic 

molecules such as Bax and Bad (Capano et al., 2002; Pastorino et al., 2002). In the process of 

hexokinase II/VDAC complex formation, Akt, which is known as a potent effector of antiapoptotic 

stimuli in tumors (Gottlob et al., 2001), induces the hexokinase II binding on VDAC and transportation 

of the antiapoptotic molecule Bcl2 to VDAC on mitochondria (Zhou et al., 2005). All these factors 

finally prevent the proapoptotic molecules from b inding to the outer mitochondrial membrane, MPTP, 

thereby activating and further sealing cytochrome C in the apical surface of the inner mitochondrial 

membrane (Fig 1.11). 
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Figure 1.10: Tumors harness a multitude of genetic, epigenetic, transcriptional and post-translational strategies for 

enhanced expression and function of hexokinase  II. During tumorigenesis of tissues where the expression of HK II is 

suppressed, demethylation of the promoter of the gene may be first  brought out of its hibernation and then amplified 5-10-fold. 

There are two active sites obtained in HK II per enzyme moiety. The combination of the mitochondrial voltage-dependent anion 

channel and HK II further gets rid of the product inhibition by glucose 6-phosphate (Mathupala et al., 2006). 

 

The predilection of hexokinase II in tumor cells  can be observed via up-regulation of hexokianse II 

expression and down-regulation of expression of other isoforms. The phenomenon of the expression of 

hexokinase IV replaced by hexokinase II in the p rocess of tumors arising in  liver and pancreas were 

observed (Mathupala et al., 2006;  Rempel et al., 1994). The shift  of hexokinase I to hexokinase II was 

also found in the malignant gliomas (Wolf et al., 2011). When comparing isoforms of hexokinases in 

humans, the properties of hexokinase II might be an important factor. Indeed hexokinase II has a much  

higher affinity for glucose than hexokinase IV, and there are two catalytic sites in hexokinase II that can 

be equivalent to two hexokinases, I or IV, providing a more efficient phosphorylation of glucose, 

satisfying the demands of tumor cells  (Mathupala et al., 2009). Another reason might be due to the 

metabolism and expression profiles being altered into something much more like the 

embryonic/progenitor state in different kinds of tumors (Christofk et al., 2008; Vander et al., 2009). 

Actually, hexokinase II is essential for the development of embryos. From the embryonic lethality of 

hexokinase II-deficient mice, the loss of hexokinase II cannot be compensated by other isoforms of 
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hexokinase during embryonic development (Heikkinen et al., 1999). The essentiality of hexokinase II 

during the development of embryos and the central nervous system evidently indicates there are some 

unknown functions. 

 

 

Figure 1.11: Mitochondrial-bound hexokinase II plays a major role in preventing tumor apoptosis. Right: without control 

mechanisms in place to prevent the release of HK II from the mitochondrial membrane, apoptosis would be likely to happen at 

the particular conditions that exist in a tumor microenvironment. Left: the combination of mitochondrial voltage-dependent anion 

channels (VDACs) and HK II persist  in the channel of adenine nucleotides and inhibit MPTP formation (Mathupala et al., 2006). 

 

1.2.1.4 Hexokinase in Plasmodium falciparum  

As in other species, P. falciparum also relies on hexokinase to initially catalyze the phosphorylation of 

glucose, generating glucose 6-phosphate in the utilization of imported glucose. It has been verified via  

observation in cultured parasites that the supply of glucose is essential for the survival of P. falciparum 

during the blood stage. A short-term deficit of glucose in the medium leads Plasmodium parasites into 

an abnormal state, and they fail to recover their viability via  glucose re-supplementation (Babbitt et al., 

2012). The rapacious demand for glucose in Plasmodium parasites is represented by the 50-100-fold  
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enhancement of glucose consumption in red blood cells after becoming parasitized (Roth, 1990). The 

symptoms of hypoglycemia with fatal consequences are frequently observed in patients with malaria 

(White et al., 1987). As the pacemaker of g lucose metabolis m, hexokinase is obviously considered 

essential to Plasmodium parasites. 

The evidence of hexokinase in Plasmodium falciparum was obtained by activity assays in the lysate of 

parasitized red blood cells (Roth, 1987). The genes of hexokinase in Plasmodium falciparum were first 

cloned and analyzed in the 1990s (Olafsson et al., 1992). By genomically sequencing Plasmodium 

falciparum (Gardner et al., 2002), there was a single copy of the hexokinase gene found located on 

chromosome 6 without intron. The deduced primary  sequence of hexokinase shows a low identity with 

human counterparts (only 33%), but the signature of hexokinase is quite conserved, for example  

multip le glucose binding sites, ATP binding patterns , and multiple  glucose 6-phosphate binding sites. 

Interestingly a similar hydrophobic region was found at the C-terminus of PfHK, which  corresponds to 

the N-terminal mitochondrial binding region in human hexokinase I and II. Subsequently immune 

electron microscopy also revealed that hexokinase was part ially associated with  the membrane 

(Olafsson et al., 1992). From research on carbon metabolis m in Plasmodium parasites, glucose 

metabolism of Plasmodium is somewhat similar to tumor cells in humans: i.e., voracious consumption 

of glucose, incomplete oxidation to lactic acid and excretion, and an increasing flux of glucose carbon 

into biosynthesis (glycosylated proteins, nucleic acids, lipids) (Olszewski et al., 2011). All these figures 

of glucose metabolism are in accordance with the demands of proliferating parasites. Beside this, 

glucose 6-phosphate as the product of hexokinase and the initial substrate of the pentose phosphate 

pathway, the activity of hexokinase was found to be proportionally related to the rate of oxidized  

glutathione reduction in the lysates of parasitized red blood cells, and surprisingly hexokinase seemed 

to be the limit ing enzyme in the flux of glucose into the pentose phosphate shunt, not glucose 

6-phosphate dehydrogenase (Roth, 1987). 

Inhibiting the utilization of glucose by Plasmodium parasites has been considered to be a promising 

approach to eradicate malaria , for example by b locking glucose permeat ion via inhib ition of the 

glucose transporter (Joet et al., 2003), or pentose phosphate pathway block-up v ia g lucose 6-phosphate 

dehydrogenase inhibition (Beutler et al., 2007; Jortzik et al., 2011). By catalyzing the first 

phosphorylation of cellular g lucose without other isoenzymes, hexokinase in Plasmodium parasites is 

obviously a promising target of antimalarial medicat ion due to its predominant function in g lucose 
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metabolism and its distinguished protein sequence from the human host. 

 

1.2.2 Protein S-Glutathionylation 

Protein thiols of cysteines represent the important post-translational modification sites in functional 

regulation and signal transduction, especially during changes in the cellular redox state (Dalle-Donne et 

al., 2009). The modificat ion of thiols can significantly manipulate protein structure, enzyme catalysis , 

and signaling pathways. Glutathione as the most abundant low-molecu lar-weight thio l is a major 

antioxidant and detoxification agent in cells  and shows the functions of specific post-translational 

modification by reacting with the low pKa cysteinyl residues in proteins, which is called 

S-glutathionlyation (Dalle-Donne et al., 2007). S-glutathionlyation is promoted not only via oxidative 

stress but also under physiological conditions. S-glutathionlyation can specifically regulate protein 

activities during redox signaling, which is considered protecting the sensitive protein thiols from 

irreversible oxidation and simultaneously serves the function of glutathione storage, preventing 

oxidized  glutathione excret ion (Adachi et al., 2004;  Clavreul et al., 2006; Qanungo et al., 2007). More 

and more proteins have been identified as potential targets of S-glutathionlyation and lead either to 

inhibit ion [calcium ATPase (Ying et al., 2007), MEKK1 (Cross  et al., 2004)] or activation [angiotensin 

II (Adachi et al., 2004), SERCA (Adachi et al., 2004), and mitochondrial complex II (Chen et al., 

2007)]. Using the method of biotinylated-GSH labeling, the proteomes of S-glutathionlyation have 

been systematically investigated in some species in vivo, i.e., Arabidopsis (Dixon et al., 2005), 

Chlamydomonas reinhardtii (Michelet et al., 2008), human (Fratelli et al., 2002; Fratelli et al., 2003), 

Plasmodium falciparum (Kehr et al., 2011) and yeast (Shenton et al., 2003). 

The mechanis m of protein S-glutathionlyation is particu larly susceptible to oxidative suppression and is 

related to a series of redox react ions (Fig  1.12). Protein S -glutathionlyation can be direct ly triggered by 

a high level of oxidized glutathione with the reaction of thio l-d isulfide exchange between oxidized  

glutathione and the target protein (Wang et al., 2001). The exchange of GS moieties between a 

S-glutathionlylated protein (PSSG) and a reduced protein  can  also serve S-glutathionlylation, including 

the enzymatic monothiol mechanis m v ia g lutaredoxin o r g lutathione transferase (Lind et al., 1998;  

Qanungo et al., 2007). In the biochemical studies it was observed that S-glutathionlylation can also be 

mediated by GSNO in vivo (Giustarini et al., 2005; Martínez-Ruiz et al., 2007). To define the function 

of S-glutathionlylation in redox regulation, some criteria were established (Shelton et al., 2005): (a) the 
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reaction is reversible; (b) the site of S-glutathionlylation is specific in part icular p roteins; (c) a 

physiological stimulus or a physiological response can promote the formation of S-g lutathionlylation; 

(d) modification of activ ity or related cell function can arise from S-glutathionlylation. The reverse 

reaction of S-g lutathionlylation was convincingly catalyzed by the thio l-d isulfide oxidoreductases Grxs  

(thioltransferases), which is called deglutathionylation (Gallogly et al., 2007; Shelton et al., 2005). In  

deglutathionylation, Grx catalyzes the reaction of nucleophilic double displacement. The human 

sulfiredoxin (Srx1) has been observed in catalyzing the reversal reaction of protein S-g lutathionlylation 

induced by NO both in vitro and in vivo (Findlay et al., 2006). 

 

Figure 1.12: Scheme depicting different pathways leading to the formation of protein S -glutathionylation (Dalle-Donne et 

al., 2009). 

 

The oxidation of thiols has been shown to be capable of significantly regulating the activ ity of 

hexokinase in humans (Redkar et al., 1972). Only the oxidation of a few cysteine residues leads to the 

loss of activity, and full recovery is related to the addition of excess thiol. The oxid ized glutathione was 

shown to inactive hexokinase (Gilbert, 1984). The thiols of hexokinase seem to be the regulation sites 

of dithio l-containing redox proteins. Particularly in Plasmodium falciparum, hexokinase has been 

recognized as the target of the thioredoxin superfamily (Sturm et al., 2009). The same result was 

obtained from the identification of glutathionylation in  Plasmodium falciparum (Kehr et  al., 2011). All 
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these studies suggest that the modification of hexokinase thiols in Plasmodium falciparum might be an  

important mechanism of regulation in response to oxidation. 

 

1.2.3 Genetic manipulation of Plasmodium falciparum 

To investigate the functions of specific genes and their encoded proteins, RNA interference (RNAi) and 

gene knockout are the predominant methods at the RNA and DNA level. Different from the 

post-modificat ion studies, these methods could help answer the question of whether this protein is 

essential for survival or some particu lar response of cells. The mechanism of RNAi is based on the 

sequence-specific RNA degradation mediated by small, double-stranded, interfering RNAs (siRNA), 

which have sequence complementary with target message RNA (Du et al., 2003). In this process, the 

RNA-induced silencing complex (RISC) containing several proteins specifically identifies  and cleaves 

target RNA (Hammond, 2005). Th is method is considered to be a potent tool to knock down any gene. 

But whether this RNAi machinery exists in Plasmodium falciparum is argued. Two important genes 

that play key roles in the RNAi pathway could not be found in the genome of Plasmodium falciparum 

(Coulson et al., 2004;  Hall et  al., 2005), and the functional short RNAs involving RNAi also could not 

be observed in Plasmodium falciparum (Rathjen et al., 2006). However, in other experiments on 

dsRNA-treated Plasmodium falciparum, the inhib ition of growth was observed and correlated with a 

decrease in the level of target mRNA (McRobert et al., 2002). Right now the RNAi technique is mainly  

used in investigations of the Anopheles mosquito, the vector of malaria (Clayton et al., 2013;  Thailayil 

et al., 2011). Different from RNAi, the technique of gene knockout directly manipulates the genes of 

target proteins. The mechanism of gene knockout makes a deletion (double crossover) or disruption 

(single crossover) on the locus of target genes leading to the elimination or malfunction of target 

proteins, based on the machinery of homologous gene recombination. This technique has been well 

used in Plasmodium parasites in order to investigate the function of particular p roteins (Bissati et al., 

2006; Ke et al., 2011; Tarun et al., 2009). The procedures of knockout in Plasmodium parasites are 

similar. The d ifference is mainly on the different sets of knockout vector constructs, which are designed 

with different selective markers, including W R92210 (a specific inhib itor of DHFR in P. falciparum), 

blasticidin (BS), and 5-fluorocytosine (5-FC). After electroporation, drug off-and-on cycling is a 

common strategy to select the parasites that integrate with the knockout plasmids by single or double 

crossover recombination. The result of the knockout is checked by a diagnostic PCR or southern blot 
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for the genotype of genomic DNA and northern blot for the transcription. 

In the studies of proteins that are supposed to be essential for Plasmodium parasites, successful 

knockout is lethal and not able to distinguish from failu re of cell culture. Some special strategies should 

be applied for this situation. To construct a merodip loid expression system of particu lar proteins is an 

option in the blood stage Plasmodium parasites, which  are haplo id. The merod iploid  means to insert an 

additional copy of the target protein into the genome of a haploid organis m. In Plasmodium falciparum, 

a rapid and efficient attB X attP recombination system was  developed for genetic integration and 

complementation analyses (Nkrumah et al., 2006). In this system the attB site is integrated into the 

glutaredoxin-like cg6 gene, the disruption of which is not detrimental fo r b lood stage Plasmodium 

falciparum. The attP-containing plasmid constructed with the transgene and the drug resisitance gene 

is used to transfect attB
+ 

lines, an additional integrase gene on a separate plasmid is necessary. The 

result of the episomal expression can be monitored via Western blot. Normally the episomally  

expressed protein contains a drug-sensitive degradation domain. Without drug protection, this 

degradation domain  can be recognized by  ubiquitin, and the ubiquitylased proteins are further digested 

by the proteosome. Then this transgenetic line of parasites can be used for the knockout step. If the 

knockout is successful, checked by diagnostic PCR or northern blot, the difference between the parasite 

cultures with or without protective drugs shows whether the target protein is essential or not. 

 

1.3 Objective of the study 

Plasmodium falciparum is still a life-threatening parasitic disease. Because of the lack of an efficient 

vaccine and rising drug resistance, controlling the spreading and transmission of malaria is becoming 

more difficult to achieve. New drug targets must urgently be identified, and novel antimalarials must be 

designed in this battle. My study aims to evaluate PfHK as a new drug target and to contribute to the 

further screening of inhib itors. 

 

1.3.1 Hexokinase from P. falciparum 

Due to the reliance of P. falciparum on glucose, interrupting the utilizat ion of g lucose has been 

considered a promising approach to combat malaria. Hexokinase, the first rate limit ing velocity enzyme 

in the glucose metabolis m pathway, was supposed to be essential for P. falciparum survival. However, 

the difficulties in heterologous overexpression of PfHK restricted the investigation of this enzyme. The 
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insolubility of recombinant PfHK is the main obstacle to obtaining a high-quality enzyme (Olafsson et 

al., 1994). In this study, we aimed to optimize the conditions of heterologous overexpression and 

purification in order to obtain purified PfHK and furthermore to determine its biochemical 

characterizat ion, to screen the conditions of crystallization and to reveal the subcellular localizat ion of 

this enzyme. 

 

1.3.2 S-Glutathionylation of PfHK 

PfHK was found to be targeted by the thioredoxin  superfamily in P. falciparum and has been identified  

as the target of glutathionylation. This enzyme has the potential to be regulated in  the response to 

celluar oxidation. We have attempted to elucidate the redox regulat ion and the modification of 

glutathionylation on PfHK. 

 

1.3.3 Knockout of PfHK 

To evaluate the necessity of PfHK in P. falciparum, a strain of PfHK knockout parasites was prepared. 

Due to the essential role of hexokinase in other species and the fact that no other iosenzymes were 

found in P. falciparum, the PfHK knockout was supposed to be lethal to P. falciparum. A merodiploid  

strain of P. falciparum was prepared to express an episomal PfHK in collaboration with Prof. Vaidya‟s 

group in the Medicine College of Drexel University, USA. Based on this approach, the necessity of 

PfHK might be proved or the compensatory pathway of glucose phosphorylation might be found in P. 

falciparum. 
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2. Materials 

2.1 Chemicals 

Most chemicals used in the study were of highest purity available.  

Chemical  Producer 

Acetic acid 

Acrylamide and bis-acry lamide solution (30/0.8%) 

Roth, Karlsruhe 

BioRad, München 

Adenosine diphosphate (ADP) Sigma Aldrich, Steinheim 

Adenosine triphosphate (ATP) Sigma Aldrich, Steinheim 

Agarose PeqLab, Erlangen 

Albumax Gibco, Karlsruhe 

Alkynyl biot in Invitrogen, USA  

6-Aminohexanoic acid  Roth, Karlsruhe 

Ammonium persulfate (APS) Sigma Aldrich, Steinheim 

Ammonium sulfate Roth, Karlsruhe 

L-Arabinose Sigma Aldrich, Steinheim 

Azido myristic acid Invitrogen, USA  

Bradford reagent BioRad, München 

Bacto-Agar Roth, Karlsruhe 

Boric acid Roth, Karlsruhe 

Bovine serum albumin  Roth, Karlsruhe 

Bromophenol blue  Sigma Aldrich, Steinheim 

Calcium chloride Roth, Karlsruhe 

Carbenicillin  Roth, Karlsruhe 

Chloramphenico l Roth, Karlsruhe 

Coomassie brilliant blue R250 Sigma Aldrich, Steinheim 

Coumaric acid  Sigma, Steinheim 

Cupric sulfate (CuSO4) Sigma Aldrich, Steinheim 

Cystatin  Roth, Karlsruhe 

1,4-Dith iothreitol (DTT) Roth, Karlsruhe 

Dimethyl sulfoxide (DMSO) Roth, Karlsruhe 

Dipotassium phosphate (K2HPO4) Roth, Karlsruhe 

Disodium hydrogen phosphate (Na2HPO4) Roth, Karlsruhe 

dNTPs Fermentas, St. Leon-Rot 

Ethanol Roth, Karlsruhe 

Ethid ium bromide Sigma Aldrich, Steinheim 

Ethylenediaminetetraacetic acid (EDTA) Roth, Karlsruhe 

Ethylene glycol tetraacetic acid (EGTA) Roth, Karlsruhe 

Gentamycin Invitrogen, Karlsruhe 
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Giemsa (0.4%, w/v) Sigma Aldrich, Steinheim 

Glucose Merck, Darmstadt 

Glycero l Roth, Karlsruhe 

Glycin Roth, Karlsruhe 

Hydrochloric acid  Roth, Karlsruhe 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Roth, Karlsruhe 

Hydrogen peroxide Sigma Aldrich, Steinheim 

Imidazole   Roth, Karlsruhe 

Isopropanol  Roth, Karlsruhe 

Isopropyl-β-D-thiogalactopyranoside (IPTG)  Roth, Karlsruhe 

Kanamycin Roth, Karlsruhe 

Luminol Sigma Aldrich, Steinheim 

Methanol Roth, Karlsruhe 

Magnesium ch loride  Roth, Karlsruhe 

β-Mercaptoethanol Roth, Karlsruhe 

Milk powder Roth, Karlsruhe 

β-Nicotinamide adenine dinucleotide, reduced 

disodium salt (NADH) 
Sigma Aldrich, Steinheim 

Nickel-nit rilotriacet ic acid (Ni-NTA)  Qiagen, Hilden 

PEG 3350 (Po lyethylene glycol) Roth, Karlsruhe 

PEG 6000 Roth, Karlsruhe 

Pepstatin A Sigma Aldrich, Steinheim 

Phenylmethylsulfonylfluoride (PMSF) Sigma Aldrich, Steinheim 

Phosphoenolpyruvate (PEP) Sigma Aldrich, Steinheim 

Ponceau Sigma Aldrich, Steinheim 

Potassium chloride (KCl) Roth, Karlsruhe 

Potassium d ihydrogen phosphate (KH2PO4) Roth, Karlsruhe 

Potassium hydroxide (KOH) Roth, Karlsruhe 

Rhamnose Sigma Aldrich, Steinheim 

RPMI 1640 Gibco  Invitrogen, Karlsruhe 

Saccharose Roth, Karlsruhe 

Saponin Roth, Karlsruhe 

Sodium acetate Roth, Karlsruhe 

Sodium chloride (NaCl) Roth, Karlsruhe 

Sodium dihydrogen phosphate (NaH2PO4) Roth, Karlsruhe 

Sodium hydrogen carbonate ( NaHCO3) Roth, Karlsruhe 

Sodium dodecyl sulphate (SDS) Merck, Darmstadt 

Tetramethylethylenediamine  (TEMED) Sigma Aldrich, Steinheim 

Triethylamine hydrochloride (TEA-HCl) Sigma, Steinheim 

Tris[(1-benzy l-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) Sigma Aldrich, Steinheim 

Tris(2-carboxyethyl)phosphine (TCEP) Sigma Aldrich, Steinheim 
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2.2 Antibodies 

Antibody Source 

Mouse anti-histidine6-tag antibody Dianova, Hamburg  

HRP Anti-mouse IgG antibody Pearce, Rockford  

Anti-GFP antibody  Roche, Mannheim 

Anti-Exp 1 antibody Dr. Przyborski, Marburg  

Anti-Hsp 70 antibody Dr. Przyborski, Marburg  

Anti-PfTrxR antibody Pearce, Rockford  

Anti-GSH antibody Virogen, Watertown 

 

2.3 Antibiotics 

Antibiotic  Source Stock concentration Working concentration 

Carbenicillin  Roth 50 mg/ml in 50% Ethanol 100 μg/ml 

Chloramphenico l Roth 25 mg/ml in 100% Ethanol 25 μg/ml 

Kanamycin Roth 25 mg/ml in water 50 μg/ml 

 

2.4 Enzymes 

2.4.1 Restriction Enzymes 

Enzyme Cleavage sequence  Source 

AvrII 5' C  CTAGG 3' Fermentas, St. Leon-Rot 

BamHI 5' G  GATCC 3' Fermentas, St. Leon-Rot 

XmaI 5' C  CCGGG 3' Fermentas, St. Leon-Rot 

HindIII 5' A  AGCTT 3' Fermentas, St. Leon-Rot 

NdeI 5' CA  TATG 3' Fermentas, St. Leon-Rot 

XhoI 5' C  TCGAG 3' Fermentas, St. Leon-Rot 

AflII 5' C  TTAAG 3' New England Biolabs, USA 

BsiWI 5' C  GTACG 3' New England Biolabs, USA 

SpeI 5' A  CTAGT 3' New England Biolabs, USA 

SacII 5' C CGC  GG3' New England Biolabs, USA 

BssHII 5' G  CGCGC3' Fermentas, St. Leon-Rot 

XmaI 5' C  CCGGG3' Fermentas, St. Leon-Rot 

Tetramethylethylenediamine (TEMED) Sigma Aldrich, Steinheim 

Tris(hydroxymethyl)aminomethane (Tris) Roth, Karlsruhe 

Triton X-100 Sigma Aldrich, Steinheim 

Trypton Roth, Karlsruhe 

Tween 20 Merck, Darmstadt 

Yeast extract  Oxoid LTD, U.K 
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2.4.2 DNA Polymerase 

Enzyme  Company 

AccuPrime
TM

 Taq DNA Polymerase Invitrogen, Karlsruhe 

Pfu DNA Polymerase Promega, Mannheim 

RedTaq
®

 DNA Polymerase Sigma Aldrich, Steinheim 

 

2.4.3 Other enzymes 

Enzyme Source Function 

DNaseI Roche, Mannheim DNA digestion  

DpnI Fermentas, St. Leon-Rot Methylated DNA digestion 

Lysozyme Sigma Aldrich, Steinheim Cell lysis 

Glucose-6-phosphate 

dehydrogenase 

Sigma Aldrich, Steinheim HK assay 

T4 Ligase Fermentas, St. Leon-Rot Nucleotide fragment ligation 

 

2.5 Biological materials 

2.5.1 Plasmids 

Plasmids Antibiotic resistance Source 

pARL-2+ Carbenicillin  Prof. Alan F. Cowman, Melbourne University 

pET30a Kanamycin Novagen, Darmstadt 

pGEM-T Easy Carbenicillin  Promega, Mannheim 

pGRO7 Chloramphenico l TaKaRa, Gött ingen 

pRAREII Chloramphenico l Novagen, Darmstadt 

pLN Carbenicillin  Promega, Mannheim 

pUF-1 Carbenicillin  Promega, Mannheim 

pINT Carbenicillin  Promega, Mannheim 

 

2.5.2 E. coli strains 

E. coli strain Usage Source 

XL-1 Blue Cloning and plasmid preparation Stratagene, Amsterdam 

Top10 Cloning and plasmid preparation Invitrogen, USA  

KRX Overexpression Promega, Mannheim 

BL21 Overexpression Invitrogen, Karlsruhe 

C41 Overexpression Avidis, France 
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2.5.3 Plasmodium falciparum strain 

Plasmodium falciparum strain Source 

3D7 (Chloroquine-sensitive) 

Dd2 (Chloroquine-resistant) 

Prof. Lanzer, Heidelberg University 

Prof. Vaidya, Drexel University 

 

2.6 Kits 

Bradford kit  Biorad, München 

HiSpeed
® 

Plas mid Maxi kit  Qiagen, Hilden 

QIAprep Sp in Miniprep Kit  Qiagen, Hilden 

QIAprep Sp in Maxiprep Kit  Qiagen, Hilden 

QIAquick PCR Purification Kit  Qiagen, Hilden 

Western lightning chemiluminescence reagent  Perkin Elmer, Boston, U.S.A  

 

2.7 Materials of affinity chromatography 

Nickel-Nitrilotriacetate-Agarose (Ni-NTA) Qiagen, Hilden 

Protino® Ni-TED Machery-Nagel, Düren  

Talon GE Healthcare, Freiburg 

 

2.8 Medium for E. coli culture 

Lysogeny Broth Medium (LB), 1 L 10 g Tryptone 

5 g Yeast ext ract 

10 g NaCl 

Terrific Broth Medium (TB), 1 L 12 g Tryptone 

24 g Yeast extract  

9,4 g K2HPO4 

2,2 g KH2PO4 

4 ml Glycerol 

2x YT Medium, 1 L 16 g Tryptone 

10 g Yeast extract  

5 g NaCl 

Modified LB, 1 L 12 g Tryptone 

 24 g Yeast extract  

 5 g NaCl 

 5 g K2HPO4 

 0,142 Na2SO4  

 40 ml Glycero l 

 



Materials 

33 

2.9 Instruments 

Instruments  Producer 

Analytical Balance  Scaltec Instruments, Göttingen 

Autoclave Webeco, Bad Schwartau 

Beckman DU 650 Spectrophotometer Beckmann, Munich 

Beckman Optima Max Ultracentrifuge Beckmann, Munich 

Bio Photometer  Eppendorf, Hamburg 

Eppendorf Research® Plus Pipettes Eppendorf, Hamburg 

Eppendorf Thermomixer Eppendorf, Hamburg 

FPLC-Software Unicorn  Amersham Bioscience, Freiburg 

FPLC System ÄKTA-FPLC Amersham Bioscience, Freiburg 

Fraction Collector Frac-100 Pharmacia Biotech, Freiburg 

Freezer -86 °C Heraeus Instruments, Hanau 

Gene Pulser Xcell Electroporation BioRad, Munich  

GEL DOC 2000 System BioRad, Munich  

HeraCell CO2 Incubator for P. facliparum Culture  Heraeus Instruments, Hanau 

Hitachi U-2001 Spectrophotometer Hitachi, Schwäbisch Gmünd 

Honeybee 961 Crystallization robot  Zinsser Analytic, Frankfurt  

Magnetic Stirrers RCT basic IKA Werke, Staufen 

Mastercycler
®

 Thermal Cyclers Eppendorf, Hamburg 

Megafuge 1.0R Centrifuge Heraus Instruments, Hanau 

Mini-PROTEAN 3 cell Electrophoresis Module BioRad, Munich  

Minispin
® 

Centrifuge  Eppendorf, Hamburg 

Mitsubishi P91 Photo Printer Mitsubishi, Ratingen 

Neolab Heat ing Block NeoLab, Heidelberg  

Optima
TM

 TLX Ultracentrifuge Beckmann, Munich 

OptiMax X-ray Film Processor Protec, Oberstenfeld  

QuadroMACS
® 

Magnetic Separator Miltenyi Biotec GmbH, Berg isch 

Gladbach 

Owl EasyCast B1A Mini Gel Electrophoresis 

Systems (Agraose) 

Thermo Scientific, Dreieich 

pH Meter Beckman, Munich  

Pharmacia LKB Multiphor II NovaBlot Amersham Pharmacia Biotech, Freiburg 

Rotor Sorvall SLA 3000, SS34  Thermo Fisher Scientific, Waltham, USA  

Sonopuls GM 70 Ultrasonicator Bandelin Electronics, Berlin  

Sorvall
® 

RC5BPlus Centrifuge ThermoScientific, Waltham, USA  

Thermomixer Comfort  Thermo Life Sciences, Egelsbach 

Ultra Pure Water System MembraPure, Bodenheim 

UV/Vis-Spectrophotometer Beckman DU
®

 650 Beckmann, Munich 

Vortex Minishaker MS2 IKA Werke, Staufen 



Materials 

34 

 

2.10 Protease inhibitors 

Inhibitor Stock concentration Working concentration 

Protease Inhibitor Cocktail Tablets  / 50 ml solution / one tablet 

Cystatin  40 μM in buffer 80 nM 

Pepstatin A 0.3 mM in DMSO 3 μM 

PMSF 100 mM in ethanol 0.1 mM 

 

2.11 Buffers and solutions 

2.11.1 Buffer for DNA electrophoresis 

DNA Sample buffer 0.1% Bromophenol blue 

 60% Saccharose 

 1 mM Tris 

 pH 8.3 HCl (adjustment) 

10 X TBE (e lectrophoresis buffer) 1 M Tris 

 1 M Boric acid 

 20 mM EDTA 

 pH 8.0  Acetic acid (adjustment) 

 

2.11.2 Buffer for extraction of P. falciparum parasites 

Saponin lysis buffer 7 mM K2HPO4 

 1 mM MgCl2 

 1 mM NaH2PO4 

 11 mM NaHCO3 

 58 mM KCl 

 56 mM NaCl 

 14 mM Glucose 

 0.02% Saponin 

 pH 7.4  HCl (adjustment) 

Cytomix 12 mM KCl 

 5 mM MgCl2 

 10 mM KH2PO4 

 10 mM K2HPO4 

 25 mM HEPES 

 0.15 mM CaCl2  

 2 mM EDTA 

 pH7.6 KOH (adjustment) 
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Parasite cell lysis buffer 137 mM  NaCl 

 2.7 mM  KCl 

 8 mM  Na2HPO4 

  1.46 mM  KH2PO4 

  1% Triton 

  pH 7.6 HCl (adjustment) 

 

2.11.3 Buffer for HK assay 

HK assay buffer 7 mM MgCl2 

 100 mM Tris 

 pH 7.0 HCl (adjustment) 

 

2.11.4 Buffer for protein purification 

Lysis buffer 50 mM Tris 

 300 mM KCl 

 10% Glycero l 

 pH 7.0 HCl (adjustment) 

HK stock buffer 50 mM Tris 

 300 mM KCl 

 30% Glycero l 

 pH 7.0 HCl (adjustment) 

 

2.11.5 Buffer for SDS-PAGE electrophoresis 

Electrophoresis buffer 193 mM Glycine 

 25 mM Tris 

 0.1% (w/v) SDS 

 pH 8.3  HCl (adjustment) 

SDS Sample buffer (4x) 240 mM 1 M Tris-HCl, pH 6.8 

 8% (w/v) SDS 

    40% (v/v) Glycero l 

 5% (v/v) 14.7 M β-Mercaptoethanol 

 0.04% (w/v) Bromophenol Blue  

Coomassie staining solution 0.2% (w/v) Coomassie brillant blue R250 

 40% (v/v) 2-Propanol 

 10% (v/v) Acetic acid 

Coomassie destaining solution 10% (v/v) Acetic acid 

 40% (v/v) Methanol 
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2.11.6 Western blot buffer  

Anode buffer I 300 mM Tris 

Anode buffer II 25 mM Tris 

Cathode buffer 40 mM 6-aminohexanoic acid  

TBS buffer 10 mM Tris 

 155 mM NaCl 

 pH 8.0 HCl (adjustment) 

TBS-Tween (TBST) 0.05% Tween 20 (in TBS buffer) 

Ponceau staining solution 1% (w/v) Ponceau S 

 5% (v/v) Acetic acid 

Ponceau destaining solution 1% (w/v) Acetic acid 

Luminol solution (store in dark 

at 4 °C) 

1.25 mM  Luminol 

0.0093% (v/v) H2O2 

0.1 M  Tris-HCl, pH 8.6 

 

2.11.7 Stock solutions  

Compound Concentration Solvent Storage 

APS 10% (w/v) H2O -20 °C 

L-Arabinose 20% (w/v) H2O Filter sterilized, -20 °C 

IPTG 1 M H2O Filter sterilized, -20 °C 

Rhamnose 20% (w/v) H2O Filter sterilized, -20 °C 

  

3. Methods  

3.1 General methods 

3.1.1 Preparation of competent cells  

Liquid LB medium (3 ml) with an antibiotic was inoculated with E. coli cells and grown overnight (~ 

15 hours) in a shaking incubator at 37 °C. The overnight pre-culture was added into 100 ml of LB 

medium containing the same antib iotic and then was grown in a shaking incubator at 150 rpm at  37 °C 

until the O.D. value reached 0.6-0.8. The E. coli cell cu lture was transferred into Falcon tubes. After 10 

minutes placing the cell culture on ice, a pellet was  obtained via 10 minutes centrifugation with a speed 

of 4,000 g at 4 °C. Then the pellet was resuspended in 10 ml ice-co ld 0.1 M CaCl2 solution containing 

10% glycero l and was left on ice for 15 minutes. A second round centrifugation was performed at 4,000 

g at 4 °C for 10 minutes. This time the pellet was resuspended in 1 ml of ice-co ld 0.1 M CaCl2 

containing 10% glycero l and aliquoted into labeled Eppendorf tubes and placed into liquid n itrogen for 
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3 minutes. The frozen competent cells were stored at -80 °C and ready to use. 

3.1.2 Cleavage of double  stranded DNA by restriction endonucleases and ligation 

The DNA fragment obtained by PCR and the plasmids, which contain the specific nucleotide sequences 

known as the restriction sites, were cleaved by the restriction endonulease (Roberts, 1976). The 

digestion procedure was performed at an optimized buffer and temperature for 1 hour according to the 

restriction endonulease manufacturer‟s instructions. After digestion the mixture was purified by the 

QIAquick PCR Purification Kit, and the concentration of DNA was determined via absorption at 260 

nm (Sambrook et al., 2001). The purity o f the DNA sample was examined by the rat io of A260nm/A280nm 

which ranges from 1.8 to 2.0. 

The T4 ligation  system was used to connect the PCR product and plasmid, which  were d igested by the 

appropriate restriction endonulease. T4 ligase catalyzes the reaction to form a phosphodiester bond 

between the 5' phosphate group of one fragment and the 3' hydroxyl group of the other. The molar ratio  

of the vector to the insert can vary  from 1:3 to 1:7. The following formula  can  be used to calculate  the 

amount of insert. 

insert (ng) =      
vector (ng) x insert (kb) 

x desired molar ratio of insert : vector 
vector (kb) 

The mixture of ligation left at RT for 1 hour or 4 °C overnight (~ 18 h) contained the vector, DNA 

fragments (insert), and T4 ligase in a proper buffer. After ligation the mixture could  be used to 

transform competent cells. 

 

3.1.3 Transformation of competent cells  

2 μl of the plas mid  or 5 μl ligation product was added into 50 μl o f competent cells, mixed thoroughly, 

and incubated on ice for 30 minutes. The mixture was placed at 42 °C for 90 seconds for heat shock 

and then the cells were put back on ice for 10 minutes. Approximately 400 μl LB medium was added to 

the cells. After being grown at 37 °C for 1 hour, the cells were spread on LB agar p lates with the 

appropriate antibiotic or selection marker. Then plates were placed in an incubator at 37 °C overnight, 

and the colonies were observed the next day. 

 

3.1.4 SDS-polyacrylamide gel electrophoresis 

The SDS-PAGE is a technique used to separate protein mixtures according to the different molecu lar 
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weight under denatured conditions. The detergent SDS can neutralize the negative charge of the 

polypeptide. The distribution of SDS covered on the protein surface is also related to the molecular 

weight of the protein. Therefore the proteins can be separated by their different sizes. 

SDS-PAGE was performed according to the following steps . Protein samples were mixed with 1x 

sample buffer and denatured at 95 °C for 5 minutes. The denatured proteins were loaded onto the 

pre-cast discontinuous polyacrylamide gels consisting of 2 parts named stacking gels and resolving gels. 

The stacking gel contained pockets where the samples were loaded, and the resolving gel on which  the 

proteins were separated by their molecular weight. The gels were run at  200 volts in an electrophoresis 

tank containing an electrophoresis buffer. After electrophoresis, the gels were stained in Coomassie 

blue solution and destained with Coomassie destaining solution until protein bands were visible. If 

Western blot was required, the gels were not stained with  Coomasie blue but were  directly soaked into 

the cathode buffer. 

Stacking gels (4%) 

1.5 M Tris pH 6.8 1.25 ml 

SDS (10% in water) 0.05 ml 

Acrylamide (Rotiphorese® gel 30)*  0.65 ml 

TEMED 5 μl 

APS (10%) 25 μl 

H2O 3.05 ml 

Resolving gels (12%) 

1.5 M Tris pH 8.8 3.75 ml 

SDS (10% in water) 0.15 ml 

Acrylamide (Rotiphorese® gel 30)*  6 ml 

TEMED 7.5 μl 

APS (10%) 75 μl 

H2O 5.1 ml 

Table 3.1: Composition of SDS-PAGE gels. 

3.1.5 Western blot 

The semi dry Western blot was performed in our experiments (Towbin et al., 1979). The protein was 

transferred into a polyvinylidene difluoride (PVDF) membrane fo llowed by SDS-PAGE gel separation. 

The specific  antibody was used to detect the target protein through an immunological reaction. The gel 

was soaked into cathode buffer after the complet ion of gel electrophoresis. The PVDF membrane was 

activated by methanol and quickly  transferred into anode buffer II solution. Five filter papers that were 
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pre-soaked in cathode buffer were put onto a cathode graphite plate, and the gel electrogram in  cathode 

buffer was laid onto it. The PVDF membrane in anode buffer II was laid onto the gel electrogram. Then 

2 filter papers soaked in anode buffer II and 3 filter papers soaked in anode buffer I were laid on to the 

PVDF membrane, respectively. The air bubbles among the layers were carefu lly  removed. Finally an  

anode graphite plate was placed  onto it. The transfer process was run at 0.8 mA/cm
2 

of gel electrogram 

for 55 minutes. 

After the transfer process, the result of the transfer was checked by staining the PVDF membrane in  

Ponceau staining solution for 1 minute and destaining with 1% acetic acid until protein bands were 

visible. Then the PVDF membrane was washed with TBST buffer to remove the remain ing Ponceau 

dye and gently shaken in 5% milk powder in  TBS buffer for 1 hour in  order to block the excess 

absorption sites and prevent unspecific b inding. After that the PVDF membrane was washed 3 t imes 

for 10 minutes each in TBST buffer and incubated with the primary antibody for 1 hour at RT. Then the 

uncombined primary  antibody or membrane was rinsed by TBST buffer, and the secondary antibody 

was added to react with the primary antibody. After 1 hour incubation and 3 times of 10 minutes TBST 

washing, the membrane was immunostained by exposing it to an enhanced chemiluminescence mixture 

that contained 1 ml luminal solution and 10 μl coumaric acid fo r 1 minute. Finally the membrane was 

wrapped in a transparent foil and exposed to X-ray film. The exposure time was varied between 30 

seconds to 10 minutes according to the signal strength. 

 

 

 

 

 

 

 

 

 

Figure 3.1: Transfer stack in semi-dry Western blot. I. Arrangement of the transfer stack from cathode to anode: 5 filter 

papers in cathode buffer, SDS-PAGE gel in cathode buffer, PVDF membrane in anode buffer II, 2 filter papers in anode buffer II, 

and 3 filter papers in anode buffer 

Anode 

Cathode 

Filter paper/ 

Cathode buffer 

SDS-PAGE gel 

PVDF membrane 

Filter paper/ 

Anode buffer II 

Filter paper/ 

anode buffer I 
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3.1.6 Gel filtration 

To further separate the target protein from cell lysate or protein samples, a native gel chromatography 

on a 16/60 superdex 200 prep  grade column was used to determine the molecu lar mass of the target 

protein, which was connected to an ÄKTA FPLC system (Amersham Pharmacia Biotech). The gel 

filtration standard (Amersham Pharmacia Biotech) was used to perform the calib ration of the column 

containing aldolase, albumin, chymotrypsinogen, ferritin , and ovalalbumin as reference proteins. After 

per-equilibrating with  the appropriate buffer, 1 milliliter of a 1 mg/ml protein  solution was loaded onto 

the column. Protein-containing fractions were detected spectrophotometrically at  280 nm and were 

collected at a flow rate of 1.0 ml/min. The UNICORN 4.11 software was used to evaluate the peak 

areas and KAV values. The elution fractions containing proteins were further analyzed on SDS-PAGE. 

 

3.1.7 Determination of protein concentration 

The Bradford method was performed to determine the concentration of proteins. This method is based 

on the shift of absorbance of maximum of Coomassie Brilliant Blue G-250 dye from 465 nm to 595 nm 

when the protein-dye complex is formed (Bradford, 1976). The amount of proteins was correlated with 

increasing absorbance at 595 nm, thereby providing the protein amount measurement.  

To determine the protein concentration, a calibration curve with standard concentrations was required. 

A series of BSA with different concentrations was prepared in order to plot a calibration curve. Each  

sample contained 5 μl BSA solution and 495 μl ddH2O. 125 μl Bradford reagent was added, vortexed 

and incubated for 5 minutes at RT. A spectrophotometer was used to determine the absorption in a 

cuvette at 595 nm. Then, the calibration curve of absorption was plotted , which was correlated with 

protein concentrations. This calibration curve could  be used to calculate the sample concentration by 

the absorption obtained following the above procedure. 

 

3.2 PfHK methods 

3.2.1 Cloning of PfHK 

In order to clone Pfhk  from a blood stage cDNA lib rary of P. falciparum 3D7, two primers 

(5„-CGTTCATATGAGTGAGTACGATATTGCAAAAA-3„, 5„-CGTTCTCGAGTGGTAATTGAGGA 

ATGTCCGCAT -3„) with NdeI and XhoI restriction sites were used to amplify about 1,482 bp 

fragments. The PCR procedure was performed according to the following program. Then the PCR 
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product was checked by agarose gel electrophoresis. After purificat ion with a QIAquick PCR 

purification kit, both the PCR product and pET 30a vector were digested by NdeI and XhoI restriction 

enzymes. The double digestion mixtures were prepared as shown in the table below and incubated at 

37 °C for 1 hour. When digestion was finished, agarose gel electrophoresis was applied to determine 

the efficacy of digestion. Furthermore the d igestion mixture was purified  again and the concentration 

was measured. A T4 ligation system was applied to connect the fragments and vectors at optimal 

conditions. Then the ligation mixture was added to E. coli XL-1 Blue cells fo r transformation. After 

one night of incubation, the colonies were observed on the agar plates with the selection marker 

(Kanamycin) and were p icked up to be cu ltured in  3 ml LB medium containing Kanamycin (100 μg/ml)  

overnight (~ 15 hours). The Qiagen Min iprep plas mid kit was used to extract plas mids. The accuracy of 

colonies was verified by restriction cleavage and sequencing. 

PCR mixture   PCR program 

Component Volume (μl)  Program Time and Temperature  

10x buffer 5  Initializat ion 95 °C for 3 min  

Template (~80 ng) 1  Denaturation 95 °C for 30 s 

dNTP (2 mM) 4  Annealing 55 °C for 45 s 

Primer forward (100 μM) 1  Elongation 72 °C for 3 min  

Primer reverse (100 μM) 1  Cycles 30 cycles 

Polymerase  0.5  Final elongation 72 °C for 10 min  

H2O dd 37.5  

 

Double restriction enzyme digestion 

Component Volume (μl) 

PCR product 30 

10 x Tango buffer 10 

NdeI (10 U/μl) 2.5 

XhoI(10 U/μl) 2.5 

H2O dd 5 

 

Ligation mixture  

Component Volume (μl) 

Insert 3 

Vector 1 

2 x rap id ligation buffer 5 

T4 ligase 1 
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3.2.2 Heterologous overexpression of PfHK 

The plasmid of PfHK/pET30a was transformed into E. coli C41pGro7 cells. The overnight pre-culture 

was transferred into 1 liter TB medium containing 50 µg/ml of kanamycin and 25 µg/ml of 

chloramphenicol antibiotic and 0.8% (w/v) L-arabinose, inducing the pGro7 p lasmid. Cell culture was 

grown in an incubator at 37°C. When the optical density (OD 600 nm) reached 0.8, the culture was 

induced by a final concentration 1mM IPTG and further grown at 18 °C for about 48 hours. Cells were 

harvested as a pellet by centrifugation at 8,000 g for 15 minutes at 4 °C and resuspended in 50 mM Tris, 

300 mM KCl, 10% Glycero l, pH 7.0. After adding a protease inhibitor cocktail composed of cystatin, 

pepstatin, and PMSF, cells were stored at -20 °C. 

 

3.2.3 Optimization of the heterologous overexpression of PfHK 

Different E. coli cell lines were used to optimize  the heterologous overexpression of PfHK as well as 

varying the different expression parameters as summarized in Table 4.2. 

 

3.2.4 Purification of PfHK 

A small amount of DNase and lysozyme (5 mg/g pellet) was added into the resuspended pellet and 

stirred on ice fo r 1 and a half hours. The cells were sonicated 6 times for 30 seconds in the presence of 

protease inhibitors (100 μM PMSF, 3 μM pepstatin, and 80 nM cystatin) and centrifuged at 18,000 g  

for 30 minutes. The clear supernatant containing the soluble fraction was exposed to 5 mM imidazole  

and applied to a Protino
®

 Ni-TED resin column, which was pre-equilibrated with HK purificat ion 

buffer containing 50 mM Tris, 300 mM KCl, 10% g lycerol, 5 mM imidazole , pH 7.0. The column was 

washed with 10 ml HK purification buffer and twice with elution buffer with 10 mM imidazole , and the 

recombinant protein was eluted by 500 mM imidazole. A ll the fract ions were checked on SDS-PA GE. 

The pure fraction was concentrated using a 10 kDa v iva spin column and further purified by gel 

filtration using an ÄKTA FPLC system (Amersham Pharmacia Biotech).  

 

3.2.5 Optimization of PfHK purification 

The purification procedure was optimized with different columns in combination with gel filtrat ion 

using an FPLC machine (Table 4.3). Different buffers, pH and salt concentrations were also optimized  

(Table 4.1). 
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3.2.6 Gel filtration of PfHK 

Gel filtration can help separate proteins by their molecular mass. The small proteins are slower than the 

big ones when passing though the gel filt ration medium. PfHK was further purified by gel-filtrat ion 

chromatography on a HiLoad 16/60 Superdex 200 prep-grade column connected to an ÄKTA FPLC 

system (Amersham Pharmacia Biotech). After equilibration, the column with 1 column volume of 

buffer containing 50 mM Tris, 300 mM KCl, 10% glycerol, pH 7.0, sample was loaded onto the 

column. The elution fract ion was collected and detected spectrophotometrically at 280 nm. The 

protein-containing fractions obtained were analyzed on  SDS-PAGE and then concentrated using 3 kDa 

viva spin columns. The concentration of PfHK was determined using the Bradford protein assay 

(Bradford, 1976). 

 

3.2.7 Western blot using anti -His antibody to identify PfHK 

During the purificat ion process, PfHK was identified by the anti-His antibody as the recombinant PfHK 

containing the 6-His tag as selecting marker. The Western blot was performed as outlined in  3.1.5. The 

primary antibody was diluted using 3% BSA in TBST (1:1,000). The secondary  anti-mouse antibody 

was diluted using 5% milk powder in TBST (1:5,000). The His-marker was used as positive control. 

 

3.2.8 PfHK kinetic assay 

3.2.8.1 Determination of Km values for ATP and glucose 

The PfHK assay used in our study was the standard coupled HK assay, which measured the reduction 

of NADP
+ 

to NADPH at  340 nm and was catalyzed by G6PDH in a coupled assay system at RT 

(Beulter, 1984). Generally, glucose 6-phosphate produced by HK could be utilized by G6PDH. The 

generation of NADPH was monitored by the change of absorbance at 340 nm. The react ion mixture for 

measurement of the Km for ATP was composed of 0.5 mM glucose, 0.2 mM nicotinamide adenine 

dinucleotide phosphate (NADP), 0.3 U G6PDH from Leuconostoc mesenteroides (Sigma), HK assay 

buffer (100 mM Tris-Cl, 7 mM MgCl2,  pH 7.0), PfHK enzyme, and varying amounts of ATP 

(50-2,000 μM), which was add to start the reaction. The total reaction volume was 500 μl. 

Measurement of Km for glucose on the other hand was performed by varying the concentrations of 

glucose (20-1,000 μM) and fixing the concentration of ATP at 2 mM. 
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Glucose + ATP           glucose 6-phosphate + ADP 

Glucose 6-phosphate + NADP           glucosamine 6-phosphate + NADPH 

HK assay buffer : 500 – x μl  

Hexokinase : x μl  

Glucose (50 mM) : 5 μl 0.5 mM 

NADP
+ 

(10 mM) : 10 μl 0.2 mM 

G6PDH (0.1 U/μl) : 3 μl 0.3 U/mL 

-------------------Baseline----------------  

ATP (200 mM) : 5 μl 2 mM 

 

εNADPH = 6.22 mM
-1

cm
-1

 

△ A/min * V0  

6.22 * vi 

 

The stability of the baseline was determined before the assays were carried out in order to prevent the 

background reactions that would affect the integrity of assays. Such background reaction could be from 

contamination or the E. coli proteins co-purified  with PfHK. A standard reaction mixture for the HK 

assay was prepared as outlined above in the presence of all substrates and G6PDH, but the reaction was 

started by adding ATP. In a similar set up, expression was performed using C41 pGro7 cell without 

PfHK and purified as outlined for PfHK. The fract ions that normally  contain positive bands of PfHK 

were then used to check the stability of the baseline as outlined. 

 

3.2.8.2 PfHK’s pH and buffers profile 

To determine the optimum buffer and pH conditions for PfHK activity, three buffers as outlined below 

were tested. Because Mg
2+

 is necessary for the PfHK act ivity, 7 mM MgCl2 was added to all buffers . 

  

[U/ml] VA= 
V0 is the total volume of assay, 

and vi is volume of enzyme used. 

 

Hexokinase 

G6PDH 
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Buffer pH range 

Tris buffer (100 mM) 6.5-8.1 

Hepes buffer (50 mM) 

MOPS buffer  

6.5-8.1 

6.5-7.9 

 

3.2.8.3 Feedback inhibition with ADP and G6P  

In product inhibition studies, ADP as the product of the reaction was added to the assay mixture. The 

initial rates were measured for a series of ADP concentrations (0-1.5 mM) at a fixed g lucose 

concentration (0.3 mM) while vary ing the concentrations of ATP (0-3 mM) using the assay described in 

3.8.2.1; the total volume of the reaction mixtures was adapted to 200 μl. A similar measurement was 

carried  out by fixing the ATP concentration (1 mM) and vary ing glucose concentrations (0-1 mM). For 

the G6P feedback inhibit ion test, the ADP assay was applied to measure the decrease of NADH at 340 

nm, at which point the production of ADP was catalyzed by a coupled reaction of pyruvate kinase and 

lactate dehydrogenase. The reaction mixture was composed of 0.5 mM glucose, 2 mM ATP, 5 mM PEP, 

0.2 mM NADH, 5 U PK, 5 U LDH, PfHK enzyme and buffer (100 mM Tris -HCl, 7 mM Mg Cl2, pH 

7.4). A series of G6P concentrations (0-0.5 mM) were measured by the same procedure as in the ADP 

feedback inhib ition assay. The data were automat ically read by an Infinite M 200 multiwell reader 

(TECAN. Inc) and analyzed by the GraphPad Pris m 5 software (GraphPad Software, Inc). 

 

 3.2.8.4 Test for HK activi ty in full blood and P. falciparum-infected RBC 

In order to determine whether the P. falciparum infection has an impact on the host HK act ivity, the HK 

activities in  in fected RBC and uninfected RBC were determined. After synchronization and continuous 

culture, the parasitized erythrocytes with P. falciparum at the trophozoite stage (IRBC) were separated 

from uninfected erythrocytes (UIRBC) by LD-columns (MACS, Miltenyi Biotec). A p late of 

non-parasitized erythrocytes was cultured under the same conditions as control. The erythrocytes were 

washed three times by PBS pH 7.4 and lysed in  0.02% saponine PBS buffer. The RBC lysates were 

centrifuged at 1,000 g for 10 minutes at 4 °C. Then supernatants were transferred into new tubes and 

protein concentration was determined using the Bradford method. The assay of HK activity was 

performed as described in 3.2.8.1. To avoid the background of hemoglobin, the assay was changed to 

fluorescence spectrometry. The NADPH generation was monitored at  340 nm and 460 nm. The data 
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were automatically read by an Infinite M 200 mult iwell reader (TECAN. Inc) and analyzed by the 

GraphPad Pris m 5 software (GraphPad Software, Inc). 

A possible contamination of IRBC lysate with parasites was checked by Western blot using P. 

falciparum-specific antibodies (PfTrxR and PfGluPho). The ratio o f contamination was also 

determined by measuring the activity of GluDH in buffer C (100 mM potassium phosphate, 1 mM 

EDTA; pH 8.0) (Zocher et al., 2012), which only exists in P. falciparum (see below) and not in hRBC. 

 

Glutamate + NADP
+ 

          2-oxoglutarate + NADPH 

 

Assay buffer ( pH8.0) : 180 – x μl  

NADP
+ 

(1 mM) : 10 μl (0.05 mM) 

GDH (RBC lysates) : x μl  

-------------------Baseline----------------    

Glutamate (100 mM) : 10 μl (5 mM) 

 

3.2.9 PfHK regulation by P. falciparum redox proteins 

The recombinant P. falciparum redox proteins (PfTrx1, PfGrx, PfPlrx) were prepared according to the 

procedures in our lab (Becker et  al., 2003; Kanzok et al., 2000; Rahlfs  et al., 2001). The concentrations 

of these proteins were adjusted to 5 mg/ml. After p re-reducing these proteins with 4 mM DTT for 1 

hour at 4 °C, the excess DTT was removed via gel filtration chromatography (Zeba
TM

, Thermo 

Scientific). The protein  concentration was measured via the Bradford method. PfHK was diluted to the 

normal stock solution which was used for the standard HK assay outlined in 3.2.8.1, and mixed with 

reduced PfTrx, PfGrx, PfPlrx (0-20 μM), or DTT (5 mM), respectively. The mixtures were incubated 

for 15 minutes at RT. Then the standard HK assay was performed to determine the activity of each 

treatment. 

 

3.2.10 S-Glutathionylation of PfHK 

The recombinant PfHK was diluted to 400 μg/ml and incubated with different concentrations of both 

reduced and oxidized glutathione (0.001-10 mM) for 30 minutes at RT and overnight at 4 °C, 

GDH 
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respectively. The glutathionylated PfHK was detected by semi-dry Western blots under non-reducing 

conditions, using a monoclonal anti-GSH antibody (Virogen, diluted 1:500 in 5% non-fat milk with 

TBST) and a phosphatase-conjugated anti-mouse antibody (Dianova, 1:5,000 in 5% non-fat milk with 

TBST). A control was applied using PfHK incubated under the same conditions but without glutathione. 

To monitor the influence of glutathionylation on the enzymatic activ ity  of PfHK, enzymes were 

incubated with different concentrations of oxid ized g lutathione (1-10 mM) for 1 hour at RT. Aliquots 

were taken every two minutes and assayed for activity. The deglutathionylation was performed  with the 

incubation of glutathionylated PfHK with the reducing compound (DTT) and the pre-reduced members 

of the thioredoxin superfamily. Western blot and activity assays were used to determine this reversible 

glutathionylation. 

 

3.2.11 Deletion mutant of PfHK 

To verify the function of the hydrophobic region at the C-teminus of PfHK, a truncated mutant of 

PfHK was designed. After analyzing the alignment of HKs in different species, the last 15 amino acid  

residues were deleted, which were supposed to contribute to the membrane association of the protein. 

 

3.2.11.1 Mutagenesis PCR 

In order to heterologously overexpress the truncated PfHK, a pET30a plas mid containing the 

C-terminus of deleted PfHK was constructed. An efficient, one-step, site-directed plas mid mutagenesis 

protocol was performed  (Liu et  al., 2008), using the PfHK/pET30a as a template. This method allowed  

facile, large, single insertions, deletions , and mult iple mutations within a single PCR reaction. Two 

primers (5„-AGGGAGCAGCCATCCTCGAGCACCACCACCACCAC-3„, 5„- GTGCTCGAGGA 

TGGCTGCTCCCTTTCCTGAACCATC -3„) were designed following the protocol. 

The following PCR program was performed, and the PCR product was purified by the Qiaquick PCR 

purification kit. The template p lasmid was digested for 2 hours at 37 °C using 5 un its of DpnI 

restriction enzyme. Then 10 μl of the product was analyzed by agarose gel electrophoresis. Then the 

amplified plasmid was transferred into XL-1 Blue E. coli cells. A positive colony was picked and sent 

to sequencing for verification. 
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Figure 3.2: Schematic diagram of the primer design for site-directed mutagenesis. Primer designs are shown for 

site-directed mutation (A), deletion (B), and insertion (C). Triangles, DEL, and INS indicate the locations of the mutations, 

deletion, and insertion, respectively, in the primer sequences (Liu et al., 2008). 

 

 

DpnI digestion 

Component Volume (μl) 

PCR product 30 

10 x Tango buffer 5 

DpnI (10 U/μl) 0.5 

H2O dd 14.5 

 

3.2.11.2 Heterologous overexpression of truncated PfHK 

The plasmid of truncated PfHK/pET30a was transformed into E. coli BL21 cells. The overexpression 

and purification procedures were similar to the full-length PfHK described in 3.2.2. 

PCR mixture   PCR program 

Component Volume (μl)  Program Time and Temperature 

10x buffer 5  Initializat ion 95 °C for 5 min  

Template (~10 ng) 1  Denaturation 95 °C for 1 min  

dNTP (2 mM) 5  Annealing 60 °C for 1 min  

Primer forward (100 μM) 0.5  Elongation 72 °C for 15 min  

Primer reverse (100 μM) 0.5  Cycles 12 cycles 

Pfu polymerase (3U) 1  Annealing 35 °C for 1 min  

H2O dd 37  Final elongation 72 °C for 30 min  
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3.2.12 GFP construction of full-length and truncated PfHK 

Green fluorescent protein (GFP) is widely used to investigate proteins ‟ subcellular localizat ion, which  

is originally 238 amino acids in length and can emit green fluorescence at 509 nm under the excit ing 

light (Shimomura et  al., 1962; Tsien, 1998). After transfection with the vector containing target protein 

and GFP, the GFP-fused target protein can be overexpressed and examined. Because GFP is 

co-localized with the target protein, the immunofluorescence from GFP could be detected under a 

fluorescent microscope and reveals the compartment localizat ion of the target protein. In P. falciparum, 

this method could be used to examine compartment-specific proteins in living parasites. 

To determine the localizat ion and the function of the C-terminal hydrophobic region of HK in P. 

falciparum, the PfHK gene must be integrated downstream of the GFP gene in the vector. The 

pARL-2a+ vector was chosen to carry PfHK fused with N-terminal GFP. Two pairs of primers (Table 

3.3) with BssHII and XmaI restriction sites were designed to clone the full-length and truncated PfHK 

from the PfHK/pET30a plasmid. 

 

PfHK 

Full-length 

atatGCGCGCAGTGAGTACGATATTGCAAAAAATG 

atatCCCGGGTTATGGTAATTGTGGAATGTCCGC  

Truncated atatGCGCGCAGTGAGTACGATATTGCAAAAAATG 

atatCCCGGGTTAGATGGCTGCTCCCTTTCCTG 

Table 3.2: Primers for HK-GFP constructs. The BssHII and XmaI restriction sites are underlined. 

 

 

 

 

Figure 3.3: Structure  of GFP fusion construction of the PfHK gene in pARL-2a+ 

 

After the PCR program, a QIAquick PCR purification  kit was used to clean the PCR product. Because 

the restriction enzymes BssHII and XmaI work in different buffers, a  two-step digestion (see below) 

was applied to digest insertions and vector. After analysis by agarose gel electrophoresis, the T4 

ligation system was applied to connect the fragment and vector. The PfHK/ pARL-2a+ vectors 

containing the fusion constructs were verified by sequencing . To prepare the plasmid for transfection, 

3’ 5’ 

XhoI             AvrII                     BssHII                      XmaI 

3HA              GFP                PfHK  
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the Qiagen Maxi Kit  was used to extract  and purify plas mid from XL-1 b lue cells. Then a future 

precipitation step was required to obtain the sterile DNA with high purity and concentration. 

 

Two-step digestion 

Component Volume (μl) 

PCR product or vector 30 

10 x Tango buffer 5 

XmaI (10 U/μl) 2.5 

H2O dd 12.5 

37 °C           2 Hours  

BssHII (10 U/μl) 3 

10 x Tango buffer 7 

37 °C           2 Hours  

 

3.2.12.1 P. falciparum cell culture  

The 3D7 strains of P. falciparum in intraerythrocytic stages were cultured in our lab (Trager et al., 

1976). The strains were propagated in RBC (A
+
) and cultured in RPMI 1640 medium plus 9 mM 

glucose, 0.2 mM hypoxanthine, 0.5% Albumax, 2.1 mM L-g lutamine, and 22 μg/ml gentamycin. The 

culture was maintained in an incubator containing 3% CO2, 3% O2, and 94% N2 at 37 °C. On a daily  

basis, the parasite growth was monitored by using Giemsa stained blood smears (10% Giemsa, 20 

minutes). Normally every 48 hours parasites propagate 3 to 8-fold. 

 

3.2.12.2 Synchronization 

Synchronization of parasites was performed with 5% (w/v) sorbitol as described (Lambros  et al., 1979). 

The cell culture (5% hematocrit, 10 ml) with predominantly ring stages was centrifuged (2,100 rpm, 3 

minutes). A pellet  of 500 μl of parasitized  RBC was obtained. The pellet  was resuspended in 5 ml o f 5% 

(w/v) sterile sorbitol and incubated for 10 minutes at RT. After incubation, the parasites were 

centrifuged (2,100 rpm, 3 minutes) again to spin down the parasitized RBC. The supernatant was 

aspirated, and the pellet was washed twice by resuspending it in complete medium. The result of 

synchronization was checked by Giemsa-stained thin blood films (10% Giemsa, 20 min). 
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3.2.12.3 Parasite transfection 

The electroporation method (Crabb et al., 2004) was used to carry out the transfection with the P. 

falciparum 3D7 strain. A 5 ml parasite cu lture at ring stage (8-10 hours) with  5-8% parasitemia was 

centrifuged at 1,500 g  for 5 minutes. Cytomix buffer was mixed with 150 micrograms of plas mid  

(GFP-HK fusion gene in pARL-2a+)
 
in a total volume of 400 μl. 400 μl plas mid  Cytomix solution was 

used to resuspend the parasite pellet, and the suspension was transferred into a sterile electroporation 

cuvette. Then the parasites were electroporated at 310 V, 950 μF (Gene pulser, Bio-Rad) as described 

(Crabb et al., 2004). The resulting time constant was about 13 milliseconds. The transfected parasites 

were quickly transferred into 15 ml fresh complete medium (pre-warmed to 37 °C) with 3.5% 

hematocrit. After 6 hours, the selection marker (2 nM WR99210) was added fo r selection  after 

transfection. The concentration of WR 99210 was increased to 5 nM after 3-4 weeks. The RPMI 

medium with WR99210 was changed daily, and 100 μl of fresh erythrocytes was added weekly. 

 

3.2.12.4 Immunofluorescence imaging 

Immunofluorescence imaging was carried out in  collaboration with Dr. Jude Przyborski‟s group at 

Philipps University in Marburg. The cells were fixed in 4% paraformaldehyde/0.0075% glutaraldehyde 

in PBS pH 7.4 for 30 minutes at 37 °C (Tonkin et al., 2004). The fluorescence quenching was achieved 

by adding 100 mM glycine/PBS. To label the nucleus , Hoechst DNA binding dye (50 ng/ml) was used 

to reveal the nucleus. The images were obtained on a Zeiss Axio Observer inverted epifluorescence 

microscope system. 

 

3.2.12.5 Western blot analysis 

The transgenic parasites were cultured as described in 3.2.12.3. LD-columns (MACS, Miltenyi Biotec) 

were used to enrich the parasitized red  blood cells with trophozoite stage P. falciparum. After washing, 

the IRBCs were centrifuged at 300 g fo r 3 min at room temperature and ruptured by 0.1% saponine for 

45-60 seconds. Parasites were resuspended in 10 mM Tris pH 7.4 buffer, which contain s a complete 

cocktail of p rotease inhibitors from Roche, and lysed by three freezing-thawing cycles by liquid  

nitrogen. The lysates were centrifuged at 50,000 g  for 30 minutes at 4 °C. The supernatants of parasite 

cytosol were transferred into another new tube, and the pellets of the membrane fraction of the parasite 

were washed with 1 ml of PBS buffer. A ll the cytosol fractions and membrane fractions were 
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centrifuged again at 50,000g for 30 minutes at 4 °C. After the second centrifugation, the membrane 

pellets were resuspended in PBS buffer according to the init ial volume of lysates. 

The proteins in membrane pellets and cytosol fractions were separated by 10% SDS-PAGE gel and 

then transferred to a PVDF membrane. The membranes were probed with anti-GFP (1:1,000, Roche), 

anti-Hsp70 (1:1,000, T. Blisnick, Paris), o r anti-Exp1 (1:500, Jude Przyborski) antibodies, respectively, 

followed by HRP-conjugated secondary anti-mouse and anti-rabbit antibodies (1:10,000, Jackson 

Immuno Research). All antibodies were diluted in 5% non-fat milk in TBST buffer. The membrane was 

then incubated with enhanced chemilu minescence agents for detection and exposed to an X-ray  film 

for a proper time starting from 30 seconds to 10 minutes. The film was developed by using an OptiMax 

X-ray film processor, and the signal was detected. 

 

3.2.13 PfHK knockout 

Previous studies demonstrated that glucose is essential for P. falciparum, and hexokinase is the key 

enzyme catalyzing the first intercellular reaction of imported glucose. Glucose 6-phosphate, the 

product of hexokinase, is the initial substrate of glycolysis and the pentose phosphate pathway, which  

supply most of the energy, reducing power, and intermediate products for other metabolic  processes. 

There is ev idence that without glucose, malaria parasites appear as shrunken, rounded bodies with 

pyknotic nuclei and fail to recover viability by glucose re-supplementation. To verify whether there is 

another compensation approach when the activity of hexokinase is blocked, the knockout of PfHK can  

give solid proof. Because in other species, the homozygous deficiency of HK cannot survive (Wu et al., 

2012), and P. falciparum only has a single copy of hexokinase in the genome, the strategy of 

hexokinase knockout preparation in  P. falciparum is to construct a merod iploid  strain of the parasite. A 

merodiplo id is an essentially haploid organism that carries a second copy of a part of its genome . The 

knockout preparation was carried out in collaboration with Prof. Vaidya‟s group at the College of 

Medicine of Drexel University in Philadelphia, USA. 

 

3.2.13.1 Construction of the merodiploid strain 

Two pLN vectors with attP site were chosen to carry PfHK fused with an N-terminal GFP-DHFR-HA 

tag and a DHFR-HA tag, respectively. Two pairs of primers with BsiWI and AflII restriction sites 

(5„-atatCTTAAGAGTGAGTACGATATTGCAAAAAATG-3„, 5„-atatCGTACGTTATGGTAATTGT 
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GGAATGTCCGC -3„ ) were designed to clone the full-length PfHK from the PfHK/pET30a plasmid. 

 

 

 

 

 

 

 

Figure 3.4: The PfHK gene in the pLN vector. 

After PCR the QIAquick PCR purification kit was used to clean the PCR product. Because the 

restriction enzymes BssHII and XmaI work at different temperatures, a two-step digestion (see below) 

was applied to digest insertions and vector. After analysis by agarose gel electrophoresis, the T4 

ligation system was applied  to connect the fragment and vector. The PfHK/  pLN vectors containing the 

fusion constructs were verified by sequencing. To prepare the plasmid for transfection, the Qiagen 

Maxi Kit was used to extract and purify plasmid from the cells. Then a furture precip itation step was 

required to obtain the sterile DNA with high purity and concentration. 

 

 

pLN-PfHK 

8050 bp 

GFP-DHFR-HA/DHFR-HA 

bsd 

 

Amp(R)  

attP 

calmodulin-5'  

PcDT-5' 

hrp2-3' 

PfHK 

Afl II (873) 

Avr II (2545) 

Hin dIII (2) 

Avr                                    BsiWI                                    AflII 

GFP-DHFR-HA                          PfHK 

DHFR-HA                             PfHK 

Avr                                    BsiWI                                    AflII 
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Two-step digestion 

Component Volume (μl) 

PCR product or vector 4  (500 ng DNA) 

Buffer 2 1 

10xBSA  1 

AflII (10 U/μl) 1 

H2O dd 3 

37 °C           1 Hour  

BsiWI (10 U/μl) 1 

Buffer 2 1.5 

10xBSA  1.5 

H2O dd 6 

55 °C           1 Hour  

 

The procedure of parasite transfection was applied as described in 3.2.12.3. The transgenic Dd2attB 

parasites, which integrated a 44-bp attB fragment into the nonessential cg6 gene encoding a 

glutaredoxin-like protein, were used to carry the merodip loid p lasmid. The Bxb1 integrase expressed in 

trans from the pINT p lasmid facilitated the integration of the pLN±GFP-DHFR-HA-PfHK plas mid  

into the cg6-attB site by single-crossover recombination. The attB×attP recombination generates two 

sites, attL (left) and attR (right). After transfection and several weeks‟ continuous culture with drug 

selection, the transgenic parasites were obtained, and Western blot was applied to check the expression 

of integrated PfHK, using anti-GFP antibody. 

 

Figure 3.5: Scheme of the dual-plasmid attB×attP recombination approach according to the method reported by 

Nkrumah et al ., 2006. 
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To knock out the endogenous hexokinase, we used the double crossover recombination method. The 

pUF-1 vector was chosen to construct the knockout plasmid. Two fragments in the 5‟UTR and 3‟UTR 

of hexokinase on Chromosome 6 were amplified  by two  pairs of primers (Tab le.3.3). The 569 bp 

fragment of 5‟UTR was designed with NcoI and EcoRI restrict ion sites. The 854 bp fragment of 3‟UTR 

was designed with SpeI and SacII restrict ion sites. 

 

5’-UTR 

CTCCATGGGATTAAAAATTTTCACATTAAGGAATAA  

TAGAATTCCAGAAAAGTATATGGTAAATAATTACTC 

 

3’-UTR 

GAACTAGTGTCTGTATGTGAGTGTGTGA 

ATCCGCGGATTTCTGATGCCATGTTAGTAATTTC 

Table 3.3: Primers for knockout constructs. The NcoI , EcoRI , SpeI, and SacII restriction sites are underlined. 

 

 

Figure 3.6: Structure  of the pUF-1 vector 

 

After sequencing, two fragments were integrated into pUF vectors and transferred into Top 10 

competent cells. The Qiagen Maxi Kit was used to prepare large amount of plasmid. The transfection 

method was applied as described in  3.2.12.3. The parasites were continuously cultured under drug 

pressure of DSM1, which is  a specific inhib itor of Plasmodium dihydroorotate dehydrogenase 
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(DHODH). The same drug on-and-off cycle was performed to obtain the recombinant parasites. Then 

5-fluorocytosine (5-FC) was used for the negative selection. Theoretically, only the knockout parasites 

would exh ibit resistance to the toxic p recursor compound 5-FC. A significant portion of the PfHK gene 

with  bsd cassette was removed by the double crossover recombination  in  the strain of knockout and 

lost the remnant plasmid containing the yFCU negative selection gene cassette. Southern and northern 

blots were used to analyze the efficiency of knockout. 

 

3.2.14 PfHK crystal screening 

In order to study the structure of PfHK in atomic detail, it is essential to obtain the crystals of this 

protein. A protein crystal can be used for X-ray diffraction, and then the data of X-ray d iffraction can 

be used for structure solution and structure refinement. The protein structure can be revealed by 

computer calculations. We used both hanging drop and sitting drop methods to try to produce PfHK 

crystals, which were based on the princip le of water vaporizat ion or certain volat ile  agents between the 

droplet containing protein and the reservoir solution. Along with water vaporization from the drop let, 

the concentration of precipitant in the droplet gradually increases until a crystal forms. If the conditions 

are optimal, the crystal could grow large (McRee, 1993; Rhodes, 1993). 

Initially, the crystal screening was performed with the JCSG Core Su ite kit from Qiagen by using the 

Honeybee 961 robot (Zinsser Analytic Inc), which allows a minimum volume of 1 nanoliter of protein  

solution for screening and fast plate preparation. The full set of the JCSG Core Suite kit is composed of 

four screens of 384 unique condit ions that have three types of precipitants, salt, organic, and polymers , 

on the basis of analyzing over 500,000 crystallization experiments . After the preliminary screening, 

several promising solutions were selected for further testing using a manual hanging drop method. 

Each droplet was a mixture o f 2 µl PfHK solution and 2 µl reservoir solution on the cover slips. These 

cover slips were placed  over small wells containing 800 µl of the reservoir solution. The wells were 

sealed by silicon oil and placed at RT. The droplets were checked by microscopy. 
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4. Results 

4.1 PfHK characterization 

In this study, a putative hexokinase in P. falciparum has been identified, cloned, and heterologously 

overexpressed. The kinetic  profile and  post-translational modificat ion were also described. These 

findings provide further information of glucose phosphorylation by hexokinase in P. falciparum and on 

the suitability of the enzyme as drug target. 

 

4.1.1 Sequence alignment and phylogenetic tree 

The hexokinase gene in P. falciparum was identified several years ago (Olafsson et al., 1994;  Olafsson 

et al., 1992). When searching Plas moDB, there is a single gene of hexokinase in P. falciparum 3D7 

(PF3D7_0624000) located on chromosome 6 from position 981,066 to 982,547. The nucleotide  

sequence of PfHK is 1482 bp without intron. This gene is expressed in both sexual and 

intraerythrocytic stages. The molecu lar mass of the predicted amino acid sequence is 55,262 Da and the 

isoelectric point is 7.1. The homolog searching in  the Protein Data Bank (PDB) shows the highest 

similarity with human hexokinase I (33% identity). The amino acid sequence alignment of the P. 

falciparum putative hexokinase, together with those of five hexokinases from other species , is shown in 

Fig. 4.1. The deduced protein sequence of PfHK has a hexokinase signature, as do those of other 

species. The consensus regions in hexokinase were found in P. falciparum putative hexokinase such as 

multip le glucose-binding sites, binding sites of the sugar moiety of glucose 6-phosphate, mult iple 

binding sites of the phosphate moiety of glucose 6-phosphate, and multip le ATP binding patterns. The 

strictly conserved sequence, LGGTN, which moves forward  to embrace the binding  sites and is 

supposed to be functionally important for contributing to the format ion of the glucose-binding site, is 

substituted in PfHK to FGGTN. In the putative hexokinase sequence of P. falciparum, no unique 

insertion or deletion was found. 

The C-terminal hydrophobicity profile, mentioned in previous reports (Olafsson et al., 1994), was 

checked via hydrophobic cluster analysis (www.ExPASy.org/tools). Although there was no significant 

hydrophobic cluster region found, the last 20 amino acids seemed to have the potential to be a binding 

region to the parasite membrane. 

  

http://www.expasy.org/tools
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Figure 4.1: Multiple  sequence alignment of PfHK with six hexokinases from other species. PfHK (XP_966222.1), HpHKI 

N-terminal (NP_001096656.1), OcHKII N-terminal (XP_002709755.1), ScHK (NP_013551.1), BdHK  (EGF82377.1), TpHK 

(XP_765570.1), and CpHK  (XP_667007.1). The box indicates the signature sequence. Underlined residues indicate the 

adenosine triphosphate-binding pattern. Black arrows indicate binding sites of the phosphate moiety of G6P. White arrows 

indicate the binding sites of the sugar moiety of G6P. 
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Based on the multiple alignment of highly similar HK sequences, a phylogenetic tree was constructed 

(Figure 4.2). The hexokinase in P. falciparum was catalogued in the cluster of apicomplexans. It  

revealed the homologous evolution of hexokinase in apicomplexans. 

 

 

Figure 4.2: Radial phylogenetic tree generated by using the neighbour-joining method based on the results of multiple 

sequence alignments of HKs from various species. Tg, Toxoplasma gondii, XP_002368674.1; To, Theileria orientalis, 

BAM38568.1; Ch, Cryptosporidium hominis, XP_667007.1; Hp, Homo sapiens, CAA86476.2; Tb, Trypanosoma brucei, 

CAC69958.1; Nf, Neocallimastix frontalis, AFJ73476; Hg, Heterocephalus glaber, EHB01702.1; Gg, Gallus gallus, 

NP_989543.1; Bb, Babesia bovis, XP_001608748.1. Scale bar, evolutionarily indicated 0.2 substitutions per site. 

 

4.1.3 Cloning, heterologous overexpression and purification of recombinant PfHK 

To clone the HK gene from P. falciparum, a gametocytic cDNA library  of the P. falciparum 3D7 strain  

was used. The specific primers were designed as described in Methods. After the PCR, a 1482 bp 

fragment was obtained and cloned into the pET30a vector, which attached a 6 -His tag to the 

C-terminus of the protein. The sequencing result guaranteed accuracy. 
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To obtain the active PfHK, there were several barriers to overcome. The main problem of heterologous 

overexpression was the insolubility of the recombinant proteins (Olafsson et al., 1992). In our study, 

we successfully overexpressed and purified  the recombinant PfHK in E. coli, and yielded nearly 0.5 

mg/l recombinant PfHK from E. coli culture after purification. The molecular mass of purified  

recombinant of PfHK was 55 kDa. The heterologous overexpression and purificat ion of recombinant 

PfHK was optimized as summarized in Tables 4.1, 4.2, and 4.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Purification and gel filtration result of recombinant PfHK. A) 12% SDS-PAGE gel of PfHK after Protino 

Ni-TED purification. M, unstained molecular weight marker; 1: supernatant; 2: flow through; 3: wash fraction; 4-6 elution with 

10 mM, 20 mM, 500 mM imidazole, respectively. B) 12% SDS-PAGE gel of PfHK containing fraction after gel filtration. C) Gel 

filtration chromatogram after Protino Ni-TED, an elution time of 69.8 corresponds to 192 kDa. D) Western blot of recombinant 

PfHK using an anti-His antibody. 

 

4.1.4 PfHK oligomerization studies 

Apart from the bacteria l 35 kDa hexokinase, most of the hexokinases are 100 kDa enzymes in  
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vertebrates and 50 kDa enzymes in invertebrates (Ureta  et al., 1987). There is a hypothesis that 100 

kDa vertebrates‟ enzymes evolved from the 50 kDa invertebrates ‟ enzymes. In reports, vertebrate 

hexokinases exist as monomers of 100 kDa with the exception of hexokinase D, a monomer of about 

50 kDa without dimerizat ion (Cárdenas  et al., 1978; Holroyde et al., 1976). In the fungal and 

invertebrate group, the enzymes exist as monomers, but in a few cases they readily dimerize (Ureta et 

al., 1987). Although the subunit molecular weight of PfHK was 55 kDa and belongs to the invertebrate 

group, PfHK was found to be a tetramer in our studies. From the results of native gel filtrat ion 

chromatography, using different salt concentrations (KCl 500 mM and 150 mM) and pH (7.0 and 7.4), 

PfHK remained a tetramer structure both in the presence and absence of its substrate. To avoid the 

possible interference of intermolecular d isulfide bridges, the protein sample was incubated with excess 

DTT (4 mM) at 4 °C for 1 hour before gel filt ration chromatography. There was no observable change 

in the tetramer structure of PfHK (Fig. 4.4) 

 

Buffer Results 

US buffer  
This buffer was not suitable for resuspension and 

purification 

HEPES, 300 mM KCl, pH 7.0 
This buffer was better than US buffer, but still a 

large part of PfHK was in the pellet 

100 mM Tris, 300 mM NaCl, pH7.4, 10% glycerol  
This buffer was good for resuspension and 

purification.  

100 mM Tris, 300 mM KCl, pH 7.0,10% glycerol 
This buffer was the best for resuspension and 

purification. 

Table 4.1: O ptimization of the buffers used for heterologous overexpression of PfHK 

 

 

 

 

 

 

 

 

Figure 4.4: PfHK tetramer structure in the presence of 4 mM DTT. In the gel filtration chromatogram, the elution time of 

69.6 corresponds to a molecular mass of 196 kDa 
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E.coli strain Medium  Temperature  Time Inductor and 

concentration 

Western 

blot 

Inference 

BL 21 LB  2xYT 

TB 

37 
o
C, 

RT 

4 hours 

overnight 

IPTG (0.1, 0.3, 

1 mM) 

Tested 

Positive 

Medium: no significant difference 

Temperature: better at RT for overnight 

IPTG: no significant difference 

Final yield very low 

C41 LB  2xYT 

TB 

37 
o
C,      18 

o
C 

RT 

4 hours 

overnight 

IPTG (0.1, 0.3, 

1 mM) 

Tested 

Positive 

Medium: TB is the best 

Temperature: better at RT for overnight 

IPTG: 1 mM IPTG was the best 

Final yield very low 

KRX LB  2xYT 

TB 

37 
o
C 

RT 

4 hours 

overnight 

Rhamnose: 

0.05 

and 0.1 % 

Tested 

Positive 

Medium: no significant difference 

Temperature: no significant difference 

IPTG: no significant difference 

Final yield very low 

BL pRAREII LB  2xYT 

TB 

37 
o
C,      18 

o
C 

RT 

4 hours 

overnight 

IPTG (0.1, 0.3, 

1 mM) 

Tested 

Positive 

Medium: no significant difference 

Temperature: better at RT for overnight 

IPTG: no significant difference 

Even worse with pRAREII 

C41 pRAREII  LB  2xYT 

TB 

37 
o
C 

RT 

4 hours 

overnight 

IPTG (0.1, 0.3, 

1 mM) 

Tested 

Positive 

Medium: no significant difference 

Temperature: better at RT for overnight 

IPTG: 1 mM IPTG was the best 

No improvement 

C41 pGro7 LB  2xYT 

TB 

37 
o
C,      18 

o
C 

RT 

24 hours 

48 hours 

IPTG (0.1, 0.3, 

1 mM) 

Tested 

Positive 

Medium: TB is the best 

Temperature: at 18 
o
C for 48 hours was the best 

IPTG: 1 mM IPTG was the best 

The best and applied as the standard method 

Table 4.2: O ptimization of the heterologous overexpression of PfHK. Western blot was performed using anti-His antibody and all samples tested positive for PfHK 
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Material  Condition used Inference 

Ni-NTA Equilibrated the column material with buffer of pellet 

resuspended and eluted with an imidazole concentration 

gradient. 

The protein binds well, but the unspecific binding 

cannot be removed in further gel filtration. 

Before the washing step, upload 5% ethanol in pellet 

resuspended buffer and eluted with an imidazole 

concentration gradient. 

The protein binds well, but the unspecific binding 

cannot be removed in further gel filtration. 

Equilibrated the column material with buffer containing 5 

mM imidazole then loaded the lysate and eluted with an 

imidazole concentration gradient. 

The protein binds weakly but purity improved. 

Protino Ni-TED Equilibrated the column material with buffer of pellet 

resuspended and eluted with an imidazole concentration 

gradient. 

The protein binds well, but the unspecific binding 

cannot be removed in further gel filtration. 

Before the washing step, upload 5% ethanol in pellet 

resuspended buffer and eluted with an imidazole 

concentration gradient. 

The protein binds well, but the unspecific binding 

cannot be removed in further gel filtration. 

Equilibrated the column material with buffer containing 5 

mM imidazole then loaded the lysate and eluted with an 

imidazole concentration gradient. 

The protein binds well, the unspecific binding 

improved much. The main contamination with Hsp 

60 is reduced. 

TALON Equilibrated the column material with buffer of pellet 

resuspended and eluted with an imidazole concentration 

gradient. 

The protein binds weakly and unspecific binding 

cannot be removed. 

Equilibrated the column material with buffer containing 5 

mM imidazole then loaded the lysate and eluted with an 

imidazole concentration gradient. 

No improvement but protein binding became even 

worse. 

Table 4.3: O ptimization of the purification of heterologously overexpressed PfHK 
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4.1.4 Test of buffers, pH and salt for PfHK 

Different buffers were tested to determine the optimal PfHK buffer. The Tris-HCl, HEPES-NaOH, and 

MOPS buffers were tested with a concentration of 100 mM and pH set at the buffering range of each 

buffer. PfHK recorded the best activity in Tris -HCl buffer pH 7.0 and Hepes-NaOH buffer pH 7.4 (Fig. 

4.5). No acitiv ity was found in MOPS buffer.   

Figure 4.5: PfHK pH profile in Tris-HCl and Hepes-NaOH buffers; the highest activity was set to 100% 

 

4.1.5 PfHK kinetic studies 

The kinetics figures of hexokinase in P. falciparum were mainly determined using the recombinant 

protein with a C-terminal His-tag. The glucose 6-phosphate dehydrogenase-coupled assay was applied 

as the standard assay. Determin ing NADPH generation corresponds to the rate of G6P generation. The 

Km values for each substrate were calculated from the measurments of varying the substrate 

concentrations over a specific range relat ive to each Km value. The maximum of velocity was also 

concluded. The methods of Lineweaver-Burk, Eadie-Hofstee, and Hanes were used to process the 

primary data of absorbance (Figure 4.6). PfHK was found to exh ibit high affin ity and therefore a low 

Km value for glucose and exh ibited relatively  low affin ity and therefore a high Km value for ATP. The 

Km for ATP and glucose of PfHK in parasites lysate were also determined (Tab le 3.4). 
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Figure 4.6: Michaelis-Menten, Lineweaver-Burk, Eadie-Hofstee, and Hanes graphs of PfHK with glucose and ATP. 
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The initial-velocity studies of PfHK using different combinations of ATP and glucose yielded linear 

converging double reciprocal plots (Fig. 4.7 A and D). An intersecting pattern was also observed when 

the results were replotted with ATP as the independent variable (Fig. 4.7 D). Straight linear plots were 

yielded by the secondary plots of the slopes and intercepts against the reciprocal of the substrates (Fig . 

4.7 B, C, E, and F). An internal check was performed by comparing the plotting sequence with kinetic 

parameters. 

 

 

Figure 4.7: The double reciprocal plots of PfHK for the reaction with ATP and glucose as substrates. A) Primary plots of 

1/v against 1/ [ATP] at various concentrations of glucose. B) Secondary plots of intercepts of primary plots against 1/ [Glucose]. 

C) Secondary plots of slopes of primary plots against 1/ [Glucose]. D) Primary plots of 1/v against 1/ [Glucose] at various 

concentrations of ATP. E) Secondary plots of intercepts of primary plots against 1/ [ATP]. F) Secondary plots of slopes of 

primary plots against 1/ [ATP]. 
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Recombinant PfHK  Km (μM)  Vmax (U/mg)  k cat (s
-1

)  

ATP  709.4±89.4  31.47±4.69  31.13±1.64  

Glucose 72.45±7.83  33.29±3.08  31.38±2.9  

PfHK in P.falciparum lysate Km(μM)  Vmax (U/mg)  k cat (s
-1

)  

ATP  427±52.77  0.06±0.008  0.057±0.07  

Glucose  87.19±10.85  0.051±0.07  0.049±0.08  

Table 4.4: Kinetic parameters of PfHK. 

 

4.1.6 PfHK product inhibition 

Many products of enzymatic reactions do inhibit the enzymes ‟ activ ity. The patterns of product 

inhibit ion can provide useful informat ion to understand the enzyme react ion mechanisms. In this study, 

the effect of ADP on the PfHK reaction was measured by the glucose 6-phosphate dehydrogenase 

coupled assay, and the effect of G6P was measured by the pyruvate kinase and lactate dehydrogenase 

coupled assays because G6P is the substrate of glucose 6-phosphate dehydrogenase. G6P was found to 

be a competitive inhibitor with respect to ATP, as indicated by the intersection on the x-axis in Figure 

4.8 and the increasing Km values with increasing inhibitor concentration. A mixed-type inhibition of 

G6P was found towards glucose. ADP showed a mixed  type inhibit ion with respect to ATP and glucose 

(Fig 4.9). The IC50s of ADP and G6P were also determined, which were 2.19 mM for ADP, and 0.32 

mM for G6P, respectively (Fig. 4.10). 

4.1.7 Redox regulation of PfHK 

As the target protein of members of the thioredoxin superfamily (PfGrx, PfTrx, and PfPlrx) in P. 

falciparum, PfHK was ab le to  be recognized by the conserved Cys-X-X-Cys motif of the active site 

and suspected to be regulated by these proteins (Sturm et al., 2009). In the present study, the 

recombinant P. falciparum redox proteins (PfGrx, PfTrx, and PfPlrx) and DTT were incubated with 

PfHK for 30 minutes at room temperature. The act ivity of PfHK was 10-20 % up-regulated by these 

redox proteins and DTT (Fig. 4.11). 
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Fig 4.8: Inhibition of PfHK by G6P. 

 

-5 5 10 15 20 25 30

-5

5

10

15

1.25 mM

1 mM

0.5 mM

0 mM
ADP

1/Glu (mM)

1
/v

 

-2 -1 1 2 3 4 5 6

-20

20

40

60

80
0 mM

0.4 mM

1.0 mM

1.2 mM

1.6 mM

ADP

1/ATP (mM)

1
/v

 

0.0 0.5 1.0 1.5
0.25

0.30

0.35

0.40

0.45

[ADP] (mM)

K
m

 f
o
r 

G
lu

c
o
s
e
 (

m
M

)

    

0.0 0.5 1.0 1.5 2.0
0.9

1.0

1.1

1.2

1.3

1.4

1.5

[ADP] (mM)

K
m

 f
o
r 

A
T

P
 (

m
M

)

 

Fig 4.9: Inhibition of PfHK by ADP. 
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Fig 4.10: IC 50s of ADP and G6P on PfHK. 
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Figure 4.11: Activity of PfHK after incubation with redox proteins and DTT.  

 

4.1.8 S-Glutathionylation of PfHK 

Cysteine residues in proteins have the potential to form d isulfides with  glutathione, which can  regulate 

activities or structures of these proteins. PfHK was one of the proteins identified to be 

S-glutathionylated in P. falciparum (Kehr et  al., 2011). The anti-GSH-antibody was applied to 

determine the glutathionylation of recombinant PfHK. As shown in Fig. 4.12A, the recombinant PfHK 

was probed by the anti-GSH antibody. Both reduced and oxidized g lutathione were incubated with 

recombinant PfHK. The positive signal only existed in the sample incubated with 10 mM oxidized 

glutathione; DTT in the loading buffer can remove the signal. Western blots showed that the level of 

glutathionylation was increased with increasing concentrations of oxidized g lutathione (Fig. 4.12B). 

Mass-spectrometry was also applied to analyze the glutathionylation of PfHK; different concentrations 

of oxid ized glutathione were incubated with PfHK. Then after digestion by trypsin, MALDI-TOF was 

employed to monitor the peptides of PfHK. The glutathionylation was confirmed by the result of 
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mass-spectrography, but not all the cysteines were detected (Fig. 4.13). 

 

 
 

 

 

 

Figure 4.12: Western blot of glutathionylation of PfHK. A) Both oxidized and reduced glutathione were incubated with PfHK, 

using loading buffer with or without DTT. B) Different concentrations of oxidized glutathione were incubated with PfHK. 

 

To determine the influence of glutathionylation on the activity of PfHK, the recombinant PfHK was 

incubated with different concentrations of oxid ized glutathione at room temperature and 4 °C (Fig. 4.14 

and 4.15). The activ ity of PfHK was significantly inhib ited by the glutathionylation. This inhibition of 

glutathionylation was related to incubation conditions, indicating that the glutathionylation process 

could be enhanced by higher temperature and concentration of oxidized  glutathione and prolonged 

incubation time. 

The deglutathionylation experiment was performed  with the pre -reduced protein of the thioredoxin 

superfamily and DTT. Different concentrations of the members of th ioredoxin superfamily  (PfTrx1, 

PfGrx and PfPlrx) (5-20 μM) and conditions (RT and 37 °C) were tested, but the activity of 

glutathionylated PfHK could only be partially recovered by DTT (Fig. 4.16). After incubation with 

oxidized glutathione, the stability of recombinant PfHK was changed to be weak. In the desalting step 

A 

B 
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to remove the excess oxidized  glutathione, some precipitat ion occoured after centrifugation. Buffer 

with glycerin could attenuate the precipitation. It seems the covalent modificat ion of glutathionylation 

could influence or regulate the conformat ional stability of PfHK. 

 

MSEYDIAKNDVTYTKLDTIECDIPINEELSWRINKFVNQLRISYSTLEEFVDNFVYELKK 

GLEAHRKHPNLWIPHECSFKMLDSCIANIPTGQEKGTYYAIDFGGTNFRAVRASLDGKGK 

IKRDQETYSLKFTGSYSHEKGLLDKHATASQLFDHFAERIKYIMGEFNDLDNKEVKSVGF 

TFSFPCTSPSINCSILIDWTKGFETGRATNDPVEGRDVCKLMNDAFVRAAIPAKVCCVLN 

DAVGTLMSCAYQKGRGTPPCYIGIILGTGSNGCYYEPEWKKYKYAGKIINIEFGNFDKDL 

PTSPIDLVMDWYSANRSRQLFEKMISGAYLGEIVRRFMVNVLQSACSKKMWISDSFNSES 

GSVVLNDTSKNFEDSRKVAKAAWDMDFTDEQIYVLRKICEAVYNRSAALAAGTIAAIAKR 

IKIIEHSKFTCGVDGSLFVKNAWYCKRLQEHLKVILADKAENLIIIPADDGSGKGAAITA 

AVIALNADIPQLP 

 

Figure 4.13: Glutathionylated cysteins in PfHK as detected by mass spectrometric analysis. Red indicates the cysteine 

residues that were not detected; grey indicates the cysteine residues that were not glutathionylated in all the samples; green 

indicates the cysteine residues that were glutathionylated in part of the samples; yellow indicates the cysteine residue that was 

glutathionylated in all the samples. 

 

 

 
Figure 4.14: PfHK incubated with different concentrations of oxidized glutathione at 4 °C overnight. 
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Figure 4.15: PfHK incubated with different concentrations of oxidized glutathione at room temperature. 
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Figure 4.16: Reversibility of the  glutathionylation of PfHK. A) Enzyme activity; B) Western blot. 

 

4.1.9 Inhibition of PfHK by compounds with antimalarial activity 

To verify whether the current effective antimalarials can  in fluence the activ ity of hexokinase in  P. 

falciparum, the antimalarials (artemisin ins, quinolines, anifolates, methylene blue, and their derivatives) 

were added to the standard assays of hexokinase. No  inhib itory effect was found at drug concentrations 

of up to 100 μM. This result indicated that PfHK is not a major target of these antima larials. 

4.2 PfHK localization 

After successfully transfecting the parasites with the vector fusing GFP to full-length and truncated 

PfHKs, the subcellular localizations of PfHK were studied by examin ing transgenic parasites via 

immune fluorescence microscopy. Both the full-length and truncated PfHK were located in the parasite 

cytosol (Figures 4.17 A and C). There was no detectable difference between the full-length and 

truncated PfHKs, and there was no membrane association tendency of the full-length PfHK. To further 

determine whether there was membrane ass ociation, Western blots using anti-GFP antibodies 

confirmed  that PfHK only existed in the cytosol of parasites. To control the separation of membrane 

and cytosolic fraction of the parasites, the antibodies of membrane protein Exp1 and the cytosolic 

protein Hsp70 were probed in the samples after u ltra-centrifugation. The inevitable contamination by 

the Exp-1 and Hsp70 were observed in both membrane and cytosolic fractions. But the GFP-PfHK was 

only detected in the cytosolic fract ion of the parasite lysates by the anti-GFP antibody (Fig. 4.17 B and 

D). 
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Figure 4.17: The images of subcellular localization of PfHK. A) Localization of full-length PfHK in the cytosol. B) Western 

blot of the lysates of parasites transfected with full-length PfHK, using anti-Hsp70 as the marker for the cytosolic fraction, 

anti-Exp1 as the marker for the membrane fraction, and anti-GFP antibodies. C) Localization of truncated PfHK in the cytosol. D) 

Western blot of the lysates of parasites transfected with truncated PfHK. 

 

4.3 Activity of HKs in P. falciparum-infected erythrocytes 

The continuously cultured, parasitized erythrocytes were harvested by the magnetic columns. After 

harvest the parasitemia reached over 98%. In order to avoid interference of hemoglobin, the activities 

of HK in the lysates were monitored by a fluorescence spectrometer. The G6PDH-coupled assay was 

applied to determine the NADPH generation at 340 nm (ex) and 460 nm (em). There was a significant 

difference between the HK act ivity in  parasitized erythrocytes and the uninfected erythrocytes. The 

enhancement was approximately 10-fo ld. The activity of HK in uninfected erythrocytes was similar to 

the one that was cultured without parasites (Fig. 4.18). After measuring the protein concentrations , the 

standardized activit ies in the parasitized erythrocytes, uninfected erythrocytes and control group were 

2.86, 0.25, and 0.26 RFU/min  per μg of protein in lysates , respectively. Different amounts of lysates 
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were applied to determine the activit ies of HKs (Fig. 4.18). 

In the process of erythrocyte rupture, there is the possibility of contamination from parasites. Because 

the activity of PfHK in P. falciparum was pretty high, approximately 65.99 RFU/min/μg, the 

contamination of PfHK can possibly significantly influence the test. To check for a possible 

contamination by parasite lysates, Western blot was employed by using the antibodies that selectively 

react with proteins (PfTrxR and PfGluPho) that only exist in parasites. By the Western blot results, a 

contamination of erythrocyte samples by parasite lysates became evident (Fig. 4.19). 

 

Figure 4.18: Activities of HKs in RBC lysates . 

 

In order to determine and evaluate the contamination of parasite lysates  further, the activ ity of GDH, 

which is not present in human erythrocytes  but only in P. falciparum, was employed. In the PBS buffer 

with pH 8.0, the NADPH generation could  be monitored at 340 nm (ex) and 460 nm (em). The act ivity 

of GDH was only found in the infected RBC sample, not in uninfected and control samples. The 

activity of GDH in  the in fected RBC sample was 0.155 RFU/min/μg, which all came from the 

contaminated parasite lysate. At the same conditions, the activity of GDH in parasite lysate was 10.93 

RFU/min/μg. Combined with the HK assay, the ratio between the enzyme activit ies (EA) of PfHK and 

PfGDH was 6.038 ([EA]PfHK/[EA]PfGDH = 65.99/10.93). That means if there is 1 RFU/min/μg GDH 

activity found in IRBC lysate, approximately 6 RFU/min/μg HK activity would come from the 

contamination of parasite lysate. Based on this ratio we can estimate the activity of HK that was 

contributed by PfHK in the parasitized erythrocyte sample. After calculat ion, 0.94 RFU/min/μg 

(6*0.155 RFU/min/μg) of HK activity was contributed by PfHK, and the remain ing activity of HK 

(1.92 RFU/min/μg) was still much higher than in the uninfected and control samples  (0.26 
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RFU/min/μg). This indicates that HK activity in IRBCs is upregulated by a factor of approximately 8. 

However, these results need to be comfirmed by replicates. 

 

   

      

 

Figure 4.19: Western blots of infected and uninfected RBC using antibodies against PfTrxR (A) and PfGluPho (B). 1: 100 

μg of infected RBC lysate; 2: 200 μg of infected RBC lysate; 3: 100 μg of uninfected RBC lysate; 4: 200 μg of uninfected RBC 

lysate; 5: 100 μg of control sample; 6: 200 μg of control sample; 7: 100 μg of parasite lysate; 8: 200 μg parasite lysate. From the 

films, clear bands of TrxR and GluPho were probed (arrows). Some unspecific bands were also detected in the RBC lysates.  

 

4.4 Crystallization and structure prediction of PfHK 

The crystal screening of recombinant PfHK was in itially performed using the sitting drop method, and 

a JSCG Core Su ite kit was chosen. In the first round of screening, 480 different formulas of salt, pH, 

and precipitator were automat ically prepared and tested by the crystal screening robot. The 

concentration of recombinant PfHK was 7.8 mg/ml and was stored in the buffer containing 100 mM 

Tris and 300 mM KCl with pH 7.0. The concentration of recombinant PfHK could not be raised further 

because of precipitation. The proteins were found to precipitate very fast in the crystal screening 

buffers. However, after 2 months there was a litter of crystals forming in  two screening buffers. The 

crystals demonstrated different colors from the background with a polarizing filter (Fig. 4.20 A), and 

there was no crystal found in the control wells , which only contained buffers (Fig. 4.20 B). 
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Figure 4.20: Image of the crystal screening. A) The crystal in the mixture of buffer and protein. B) The control sample only 

with buffer. 

 

From the result of the preliminary trials, three conditions seemed promising to further optimization 

(Table 4.5). The hanging drop method was used to perform the second round of screening. By slightly 

varying the concentration of components and pH value, a series of buffers that were similar to the 

promising buffers in preliminary trials were tested manually. To stabilize the enzyme in screening 

buffer, the substrate of PfHK ATP (2 mM) was also added, but there seemed to be no difference. After a 

week‟s storage at room temperature, all the tests were precipitated, and two months later no crystal 

existed in these trials. 

Drop 1  Drop 2  Drop 3  

0.2 M MgCl2, 0.1 M imidazole, 

pH 8.0, 40% MPD 

0.2 M MgCl2, 0.1 M Tris, 10% glycerin, 

pH 8.5, 25% 1,2-propaediol 

0.2 M MgCl2, 0.1 M Tris, 

pH 8.5, 30% PEG 4000 

Table4.5: Promising conditions for crystallization screening. 

 

Due to the absence of hexokinase crystal structures in Plasmodium parasites, the secondary and tertiary 

structures of PfHK were predicted by the homologous hexokinases in the PDB database. Although the 

alignment shows low identities with other hexokinases, the binding sites are quite conserved with some 

substitutions. Based on the N- and C-terminal halves of human crystal structures (1DGK), two structure 

models were constructed (Fig. 4.22 A and B). Two ADP binding site are observed in these two models. 

One is on the surface and another is at the binding site of ATP. The binding site of G6P overlap pes with 

the ADP binding site, which is the same as in human hexokinase I. Three insertions belong to the 

undefined part of the model. The insertion (63~76 residues) contains a couple of positively charged 

A B 
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residues; a neighboring reg ion of human hexokinase interacts with  the second half of the dimer. 

Another two insertions at the surface, 133-143 and 206-213, which are missing in humans, are near 

each other. The residues contributing to the binding of glucose and ADP at the active site are illustrated 

in Figure 4.22 C. Based on the models, Cys77, Cys85, Cys193, Cys236, and Cys445 are at the surface 

of PfHK; Cys186, Cys249, Cys260, Cys273, and Cys399 are conserved in human hexokinase and 

internally located in PfHK. 

 

 

Figure 4.21: The predicted secondary structure of PfHK.  helix, strand; the image was created by the 

PDBsum online server. 
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Figure 4.22: The PfHK models and details of substrate binding sites. A) The predicted model I of PfHK based on the 

C-terminal half-structure of human hexokinase I (Access number: 1DGK) by the Swiss-Model Server. The green molecule is 

ADP, showing the ATP binding site. The red molecule is glucose. B) The predicted model II of PfHK based on the N-teminal 

half-structure of human hexokinase I, showing the surface binding site of ADP. The yellow molecule is G6P, which overlappes 

with the binding site of ATP compared to model I. C) Amino acids in the peptide binding pocket of the model of PfHK on the 

ternary complex with glucose, ADP, and the pentapeptide of FGGTN, which embraces the binding sites of glucose and ATP. 
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4.5 PfHK knockout 

4.4.1 Generation of a PfHK merodiploid strain 

The Plasmodium falciparum hexokinase genes, with DNA encoding DHFR-HA and GFP-DHFR-HA 

added to the 5‟ end (designated ±GFP-DHFR-HA-PfHK), were cloned into the pLN plasmid, which 

contains attP sites, and cotransfected into Dd2attB strains along with the pINT vector, which carries a 

gene encoding the Bxb1 integrase from mycobacteriophage. After two to three weeks continuous 

culture, the integration of the target gene was checked via diagnostic PCR in the parasites observed 

after transfection. Subsequently, the episomal plasmids were eliminated by removing the selective drug 

G418 and blasticidin for at least one month. Western blot was applied to check the episomally 

overexpressed PfHK in the transgenic parasite lysates using anti-GFP antibodies. From the Western 

blot results, the clear bands of episomally overexpressed PfHK were observed in the films (Fig. 4.23). 

In the cell cu lture with b lasticidin, both episomal PfHKs expressed well. Unfortunately, the ep isomal 

PfHKs were not degraded without TMP. That means that the conditional knockout down could not be 

realized. After knocking out the endogenous PfHK, the parasites will only rely on the episomally 

expressed PfHK. To show the status of PfHK eliminated in parasites, a control of wild type strain was 

added to the next knockout step. 

 

 

 

 

 

Figure 4.23: Western blot of the episomal PfHK. A) GFP-DHFR-HA-PfHK. B) DHFR-HA-PfHK. 1: blasticidin and G418; 2: 

blasticidin, G418 and TMP; 3: G418; 4: G418 and TMP. 

4.4.2 Knockout of PfHK in both wild type and merodiploid Dd2 strains 

Due to this step of the experiment being time-consuming, the parasites transfected with knockout 

vectors are still in  cell cu ltures. This part of the work is in progress, and it will take a few more months 

to obtain the results. 
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5 Discussion 

5.1 Hexokinase in Plasmodium falciparum 

To investigate the kinetics of P. falciparum hexokinase, the heterologous overexpression of PfHK in 

high purity is necessary in order to exclude the interference of contamination. In this thesis, we have 

successfully obtained homogeneous PfHK from heterologous overexpression and purificat ion via  our 

optimized methods. Different from the heterologous overexpression of hexokinase in Toxoplasma 

gondii (Saito et al., 2002) and Schistosoma mansoni (Armstrong et al., 1996), we d id not choose the 

strategy of an N-terminal fusion partner protein (g lutathione S-transferase) to increase the solubility. To 

overcome the insolubility of heterologously overexpressed PfHK (Olafsson et al., 1994), chaperones 

(hot shock proteins) coexpression and low temperature incubation of cell culture  were applied to reduce 

the misfolding of recombinant protein and make it  soluble. After harvesting, glycerol in  resuspension 

buffer can stabilize the heterologously overexpressed PfHK and increase the y ield. Because of the 

C-terminal His-tag, the recombinant protein can be purified by the Protino Ni-TED column. The 

coexpressed chaperones need to be removed by adding 5% imidazole to cell lysates during column 

elution, otherwise chaperones will combine with the recombinant PfHK by intermolecular disulfide 

bonds and can not be removed via addit ional gel filtrat ion (FPLC). The productivity of heterologous 

overexpression of PfHK in E. coli was 0.5 mg of purified enzyme from 1 liter of cell cu lture. This 

enzyme from P. falciparum has for the first time been successfully heterologously overexpressed and 

purified. 

The oligomeric structure of PfHK in  our study is a tetramer from the result of gel filtration 

chromatography. The molecu lar mass of native PfHK should be around 55 kDa as calculated from the 

encoded amino acid sequence. The SDS gel electrophoresis shows a similar molecu lar mass (55 kDa). 

The elution peaks of PfHK in gel filtration chromatography are stable at 69.6 minutes (approximately 

correlated with 200 kDa) from different tests with different salt concentrations. The test with DTT in 

the elution buffer shows no difference, excluding the intermolecular disulfide bonds. These data clearly 

indicate that the PfHK is a tetramer, which is quite different from the hexokinases from the human host. 

Whereas the hexokinases in most species characterized show normally  as monomers or d imers, only in 

the high concentration or in the complex associated with mitochondria hexokinase can form a tetramer 

complex (Aleshin et  al., 1998). Additionally, a study of Trypanosoma cruzi reveals that hexokinases in 
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this parasite also exist as tetramers under native conditions (Cáceres  et al., 2003). 

Hexokinase from P. falciparum turned out to be a 50-kDa type enzyme similar to invertebrate 

hexokinases and vertebrate hexokinase IV. PfHK shows a similarity of 44% with T. gondii HK and of 

33% compared  to human hexokinases. Hexokinase of P. falciparum clustered with other apicomplexan 

HKs in  the phylogenetic tree (Fig 4.2), elucidating the evolutionary origin of Plasmodium. 

The kinetic studies reveald that the Km values of PfHK are similar to the enzyme of S. mansoni and 

show higher affinity to glucose and a similar affin ity to ATP as human hexokinase II (Table 5.1). When 

compared to the Km values tested by Eugene and Roth [1987] in the lysates of infected red blood cells, 

the affinities to both glucose and ATP were much higher in our tests. The discrepancy between the Km 

values of PfHK from our tests and those from earlier studies might be due to the presence of other 

factors in cell lysates. In human red blood cells, the dominant HK is hexokinase I, which shows lower 

Km values for glucose and ATP than PfHK. It therefore cannot be excluded that P. falciparum has to 

compete with the red blood cell for glucose. The demands of glucose consumption in P. falciparum 

may mainly be met by the high activity of PfHK and the enhancement of glucose permeability. The 

transport of glucose into red b lood cells and parasites is mediated by the specific g lucose transporter 

(GLUT) and Plasmodium falciparum hexose transporter (PfHT) respectively. PfHT (Km= 1.3±0.3 mM) 

glucose transport is accommodated significantly better than human GLUT1 (Km> 30 mM). It was 

suggested much more glucose is transported into IRBC and further into parasites (Woodrow et al., 2000;  

Woodrow et al., 1999). And there is ev idence that Plasmodium falciparum exports proteins to the 

surface of red b lood cells and changes the permeability o f the RBC membrane fo r g lucose (Ginsburg et 

al., 1983; Mart i et al., 2004). 

The initial velocity studies with glucose and ATP shows that the Michaelis -Menten equation is obeyed 

by PfHK. The double reciprocal plots obtained from the init ial rate studies illustrate that the kinetic 

mechanis m of PfHK is a sequential (ternary complex) mechanis m, in which  the binding of substrates to 

the enzyme must occur before the format ion of products. The same conclusions were also exhib ited in 

tests of other 50-kDa hexokinases in both invertebrate and vertebrate species (Danenberg et al., 1975; 

Gregoriou et al., 1981). To differentiate between random and ordered sequential mechanisms, product 

inhibit ion study was applied to elucidate the order of substrate binding and the release of products. 
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Due to the fact that individual b inding sites of G6P existed and overlapped with ATP binding sites in 

PfHK, G6P was found to be a mixed  type inhib itor with respect to glucose, and a competitive  inhib itor 

with respect to ATP. Surprisingly, the feedback inhibition of ADP was found to be a mixed type with 

respect to both glucose and ATP. That means ADP was observed binding with  the binary  complexes of 

enzyme-glucose and enzyme-ATP, whereas G6P was observed binding only with the binary complex of 

enzyme-glucose and not enzyme-ATP. To exp lain this outcome, the plausible exp lanation is that these 

inhibit ion patterns indicate a random Bi Bi mechanism without a leading substrate binding first to the 

enzyme (Fig 5.1), because in  an ordered mechanism the product of the first substrate should be a 

competitive inhibitor with respect to that substrate (Alberty, 1958). A mixed type inhibition of ADP 

with respect to both ATP and glucose has been also observed in rat brain hexokinase (Grossbard et al., 

1966) and bovine brain hexokinase (Ning et al., 1969). One explanation for this observation is  that 

ADP can bind at both substrate sites, whose ribose-5-P portion of the nucleotide had affinity for the 

sugar site. However, another explanation is more attractive : ADP interaction with enzymes is not 

merely to act at a product site but also a separate inhibitory nucleotide binding site (Purich et al., 1971). 

Danial et  al. [1971] proved this hypothesis via mixed type inhibit ion of ADP with respect to ATP, even 

at the saturating levels of glucose, and the same was true when the ATP site was nearly saturated. In our 

studies, the same result was observed. The competitive inhib ition of G6P with respect to ATP means 

that G6P cannot bind to the sugar binding site of the binary complex of enzyme-ATP formed. This 

could be explained by the instability of the binary complex of enzyme-ATP and by the fact that the 

binding of g lucose can form the close conformation  of the enzyme to stabilize the binding  of ATP. The 

absence of a crystal structure in the binary complex of hexokinase-ATP proves this possibility from 

Km (mM ) 

Organism ATP Glucose Reference 

Homo Sapiens  Type I 0.5 0.03 John E. Wilson, 2003 

Homo Sapiens  Type II 0.7 0.3  

Homo Sapiens  Type III 1.0 0.003  

Schistosoma mansoni 0.92 0.128 Robert L. Armstrong et al., 1996 

Toxoplasma gondii 1.05 0.008 Tomoya Saito et al., 2002 

Plasmodium falciparum  3.1 0.43 Eugene F. Roth, 1987 

Plasmodium falciparum  0.7 0.07 Present study 

Table 5.1: Summary of kinetic parameters of hexokinase 
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another perspective. 

 

 

Figure 5.1: Schematic representation of a random mechanism of PfHK where E is the enzyme. 

Interestingly, in contrast to other invertebrate 50-kDa hexokinases, PfHK shows the sensibility to G6P 

inhibit ion (IC50: 0.32 mM), and the predicted structure of PfHK also revealed  the conserved binding 

motif of G6P; however, the inhib ition of PfHK by G6P is not as strong as in the vertebrate 100-kDa 

hexokinases. For example human hexokinase I is significantly inhibited by G6P at the physiological 

concentrations. Along with the observation that G6P inhibition was found in the 50-kDa hexokinase in 

starfish (Mochizuki, 1981) and the C-terminal fragment of 51 kDa from human hexokinase I, the 

hypothesis of N-terminal allosteric regulat ion of G6P was doubted. A new view of the evolutionary 

relationship between the hexokinases suggested that G6P sensitivity arose before the gene duplication 

and fusion from 50-kDa to 100-kDa (Colowick, 1973; White et al., 1989). According to this view, the 

ancestral 50-kDa ancestor of the 100-kDa human hexokinases resembled the Plasmodium hexokinase 

more closely than the yeast enzyme. 

The feedback inhibit ion of G6P for hexokinases was considered to prevent excessive phosphorylation, 

which leads to ATP depletion and controls the flux of glucose utilization, avoiding the excessive 

production of lactate. In  vertebrates, hexokinase I and II show h igh affinit ies to the substrates and wide 

distribution in b rain  and other tissues, demonstrating the overall rate of g lucose phosphorylation 

commensurate with cellular energy demands. In hepatic cells, the function of glycogen storage relie s 

the glucokinase, which acquires the relatively low affinity o f g lucose, but an absence of G6P inhib ition 

facilitates the transformation of plasma glucose into glycogen via the activation of insulin. In the other 

tissues this unrestricted accumulation of G6P is dangerous , for ATP is invested before its net production. 

The transfer of high-energy phosphoryl from ATP to glucose actually makes the first reaction 
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irreversible and thereby the regulations in  the rest of the pathway become insignificant. Therefore, it  is 

vital to rigorously regulate the first reaction. In prev ious studies, it has been observed that the energy 

demands  of Plasmodium falciparum rely on anaerobic glycolysis, with regeneration of NAD
+ 

by 

conversion of pyruvate to lactate, which is further excreted into host blood cells (Sherman, 1998). 

Although Plasmodium parasites do not have the burden of harmful lactate, which is the result of 

anaerobic glycolysis, to maintain blood cell integrity, it is also important for the development of the 

intraerythrocytic stage. Similar patterns of reduced sensitivity of inhibition by G6P were also observed 

in the parasite Schistosoma mansoni and some cells exh ibit ing high anaerobic g lycolytic act ivity  

(Tielens  et al., 1994). The hypothesis for this reduced sensitivity to inhib ition by G6P was related to 

ATP demand. Due to the absence of increased ATP demand in the cells of anaerobic glycolysis with a 

low rate of respiration, large amounts of pyruvate formed cannot be degraded to carbon dioxide v ia the 

TCA cycle and result in the production of lactate. The altered regulation of hexokinases would be a 

factor contributing to this high anaerobic glycolyisis. Despite the hexokinases in Trypanosomes, which 

are also a 50-kDa parasitic hexokinase and exh ibit insensitivity to inhibition by G6P, excessive 

investment of ATP is also dangerous. Via the special compartmentation of hexokinases, which is called 

glycosome, trypanosomes are protected from the dangerous design of glycolysis (Bakker et al., 2000). 

In glycosomes, the ratio of ATP/ADP regulates the activity of hexokinase in order to prevent the 

accumulat ion of intermediates. The observation of G6P inhibit ion in  Plasmodium falciparum and the 

relatively high IC50 compared to the micromolar range of physiological G6P concentration in humans 

indicate a p lausible mechanis m of a modest regulation of hexokinase activity. Considering that the 

substrate affinities of PfHK are also intervenient to the values of human HK I and glucokinase, this 

might be a parasitic strategy of Plasmodium falciparum. 

The hypothesis of membrane association came from a cluster of hydrophobic peptides at the C-terminal 

of PfHK, which is similar to the N-terminal hydrophobic region in human hexokinase I. The N-terminal 

21 amino acid residues of human hexokinase I are essential for binding with the outer membrane of 

mitochondria, and mutants are on ly observed in the cytosol (Po lakis  et  al., 1985;  Schwab  et al., 1989). 

In humans the combination of hexokinase I and II with the outer membrane of mitochondria are 

considered to be close to ATP generation. However, fu rther research shows that this anchor plays more 

important functions besides glucose phosphorylation. Extensive evidence indicates that the dissociation 

of hexokinase from mitochondria leads to the dysfunction of mitochondria and cell apoptosis, which  is 
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related to the release of cytochrome C (Kelley et al., 2002; Majewski et al., 2004; Pastorino et al., 

2002). The function of the hydrophobic peptide at the C-terminus of PfHK is therefore interesting to 

explore. 

By analy zing the hydrophobic residues online, the last 15 residues of PfHK could form an α-helix 

showing moderate hydrophobic properties . A truncated PfHK was constructed to delete the last 15 

residues. Due to the adenine nucleotide translocator being in proximity to this region, no activity was 

detected in the truncated PfHK. Surprisingly, GFP fluorescence microscopy illustrated that the 

sub-cellular localization of PfHK was cytosolic. No  conspicuous difference was found between the 

full-length and the C-terminally  truncated PfHK. The results of our studies are quite disparate from the 

compartmentation of immune electron microscopy by Olafssen [1994]. They found that a statistically 

significant amount (65.7%) of PfHK was associated with the parasite membrane structure (Olafsson et 

al., 1994). Western blot also confirmed the cytosolic compartmentation of PfHK in our studies, which 

was indicated by the antibodies of PfHsp70 existing main ly in parasite cytosol and PfExp1 combining 

with the parasite membrane, and the signal of anti-GFP only existed in the cytosol fraction. The same 

observation from Western blot was also mentioned by Olafssen [1994], despite the fact that detergent 

was used to dissolve the membrane fraction. In the view of facilitating g lucose phosphorylation, 

Olafssen supposed the membrane association made PfHK close to the site of glucose uptake. However, 

it seems that proximity to the ATP generation site is more attractive for hexokinases in humans and 

other species. For Plasmodium parasites, in which the ATP supplement relies on cytosolic anaerobic 

glycolysis, it can be  deduced that PfHK exists in the cytosol where ATP generation is more reasonable. 

The discrepancy between our studies and Olafssen‟s cannot be explained by the diversity of methods. 

Since the resolution of the graph of immune electron microscopy is low by Olafssen, a much clearer 

picture with high resolution is necessary to settle this argument. 

 

5.2 Structure analysis of PfHK for estimating the potency as antimalarial drug target 

So far more than 50 crystal structures of hexokinases in different species have been investigated and 

refined, including Homo sapiens, Saccharomyces cerevisiae, Rattus norvegicus, Schistosoma mansoni, 

and others. Most of the crystal structures were obtained from humans and yeast in order to reveal the 

substrate binding and catalytic mechanis m, especially concerning the allosteric regulation of G6P in 

100-kDa human hexokinases and the activation in g lucokinase (Bebernitz et al., 2009;  Liu et al., 2012; 
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Rosano et al., 1999). Indeed the high-resolution structure and details of the binding sites from enzyme 

crystals could also facilitate inhib itor screening. Due to a lack of heterologous overexpression of PfHK, 

the crystal structure of PfHK has not been investigated yet. In our study, hundreds of conditions were 

tested for crystal screening via a high-throughput method by a robot. Some conditions showed 

promising signs of crystal formation, but we have not obtained a crystal big enough for X-ray 

diffract ion analysis because of the instability of PfHK at room temperature. Although obtaining a 

crystal of PfHK is still a challenge, it is worthwhile to screen for specific inhib itors. Based on the 

conserved motifs of hexokinases, a model of PfHK was constructed via homolog modeling with human 

hexokinase I. 

In the predicted model o f PfHK, approximately  33% of the amino acid residues  are conserved in all the 

hexokinase members from the alignment o f d ifferent species, and 13% are perfect  matches. When 

superposing the structures of hexokinases, it  is easy to find that these conserved residues form quite 

similar b inding site motifs and structures between enzymes. A large number of glycine residues are 

conserved (Gly
61

, Gly
96

, Gly
165

, Gly
215

, Gly
254

, Gly
267

, Gly
269

, Gly
286

, Gly
331

, and Gly
435

), which are 

located at the beginnings or ends of α-helices and β-strands, changing the direction of the chain. The 

conservation of these glycine residues might provide the necessary flexibility to hexokinase molecule s 

for the conformation change when binding glucose and ATP. As low identit ies, most of the 

discrepancies in structures exist in the flexib le reg ions between different hexokinases. In order to 

analyze its potency as a drug target, the predicted model of PfHK was superimposed with the crystal 

structure of human hexokinase I (PDB ID: 1DGK). Most of the α-helices and β-strands overlapped well 

in these two enzymes. Three significant insertions  (63~76, 133~143 and 206~213 residues) were 

recognized from the superposition (Fig. 5.2). All these insertions are located at the surface, which does 

not seem to contribute to the substrate binding and catalysis. However at the insertion between amino 

acid 63 and 76, a series of positively charged residues form a loop that could be accessed by the 

nucleophilic perssad. At the same position in human hexokinase I, it is overlapped by the second half of 

the molecule. The differences in both regions might form the basis of selective inhibit ion and further 

inhibitor screening. 



Discussion 

87 

 

Figure 5.2: Comparison of human hexokinase type I (yellow) (amino acids 16 to 459) and a model of PfHK (blue) (amino 

acids 29 to 488). Glucose (purple) and ADP (green). The insertions in PfHK are labeled in red. Image created by PDB Viewer 

4.1.0. 

 

Even though the substrate binding motifs are conserved among hexokinases, specific inhibitors for 

PfHK are still possible to obtain. The high throughput screening of hexokinase inhib itors in 

another parasitic protozoon, Trypanosome brucei, yielded ten small molecules that were promising and 

were further characterized from 220,000 unique compounds (Sharlow et al., 2010). One compound 

(ebselen) showed the specific inhibit ion of TbHK in the nanomolar range (IC50: 50 nM), serving as 

leads for the development of therapeutics . In humans, the inhibition of hexokinase was well studied in 

tumor cells, where the activity of this enzyme is extremely enhanced and vital for survival. A few 

compounds were identified as  inhibitors of human hexokinase II, which is predominant in various 

tumor cells, including chloromethyl ketone (Johnson et al., 1982), lonidamine (Gatto et al., 2002), and 

3-bromopyruvate (Kim et al., 2007). Part icularly, 3-bromopyruvate (3-BrPA) has shown remarkab le 

efficacy in preventing tumor g rowth and eradicat ing existing tumors in animal models. The mechanism 

of 3-BrPA inhibit ion might be due to the covalent modification of HK-II, probably at cysteine residues. 

5.3 Cysteine residues of PfHK as the target of redox regulation and S-glutathionylation. 

As shown in the structure analysis, there are 15 cysteine residues distributed in the sequence of PfHK. 

In previous studies, these cysteine residues , which have the potential to be regulated by proteins of the 
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thioredoxin superfamily, were first observed by Sturm et al., [2009]. In this work we found that the 

thioredoxin superfamily in Plasmodium falciparum could slightly enhance the activity of PfHK, and a 

similar result was observed for DTT treatment. The reason might be that most cysteine residues at the 

surface of hexokinase were in a reduced status under native conditions  that has been observed in bovine 

(Redkar et al., 1972). The fact  that HK is targeted by the Trx family and can be glutathionylated 

indicates that cysteines might be important for PfHK act ivity 

The reversible modificat ion of cysteine residues can significantly change activities and conformations 

of target proteins. In the process of oxidized glutathione-mediated S-glutathionylation, it can be 

considered an oxidation of the reduced thiols of hexokinase. The S-glutathionylation of hexokinases by 

oxidized g lutathione, which leads to inhibition, was observed in different species. In our studies, 

anti-GSH antibodies were used to detect the added group of GS on PfHK, and we showed that 

S-glutathionylation on PfHK was increased with increasing time, temperature and g lutathione 

concentration. Another direct evidence of S-glutathionylation was obtained from a MALDI-TOF 

analysis. A clear mass increase of ~305 Da was observed for different cysteine-containing peptides. 

Due to the efficacy of trypsin digestion and the resolution of MALDI-TOF, not all cysteine residues in 

PfHK were detected. However, combined with the enzyme assay and the MALDI-TOF results of 

samples, which incubated in different concentrations of oxidized glutathione, some putative sites of 

S-glutathionylation could be concluded. Cys
236

 and Cys
346 

were found to be glutathionylated in most 

samples, indicating that these two g lutathionylated sites did not contribute to the act ivity changes. 

Glutathionylated Cys
21

 and Cys
249

 were only observed in PfHK treated with 0.1 mM and 0.5 mM 

GSSG. A tentative inference was that the glutathionylation of these two cysteine residues was random 

and did not affect activity. Cys
85

, Cys
237

, Cys
249

, Cys
399

, and Cys
431 

were found to be not 

glutathionylated. The members in the undetected remainder (Cys
185

, Cys
193

, Cys
219

, Cys
260

, Cys
273

, and 

Cys
445

) might contribute to the enzyme inh ibition by glutathionylation. To confirm which one or few of 

these cysteine residues play a vital role during this process, a more sensitive MALDI-TOF and further 

specific mutations are necessary. 

From the studies, not only as the target of the thioredoxin superfamily  but also regulated by 

S-glutathionylation, the cysteine residues in PfHK have been proved to be capable of being regulated 

by redox events in vitro. Further studies are required  to elucidate the mechanis m and functional 

consequence of PfHK regulation under physiological conditions .
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