
Doctoral Thesis

Measuring Defects in Finite Automata

Katja Meckel

1st Reviewer
(Supervisor): Prof. Dr. Martin Kutrib

2nd Reviewer: Prof. Dr. Markus Holzer

Fachbereich 07 - Mathematik und Informatik, Physik, Geographie

Institut für Informatik

Justus-Liebig-Universität Gießen

Disputation: 12.05.2016

Danksagung

An dieser Stelle möchte ich mich bei meinen Betreuern, den Herren Prof. Dr. Mar-
tin Kutrib und Prof. Dr. Markus Holzer, bedanken. Ihre Ratschläge und Anregun-
gen waren eine unschätzbare Hilfe bei der Erarbeitung der vorliegenden Ergebnisse.
Zusätzlich möchte ich auch noch einen Dank an Dr. Matthias Wendlandt und Dr. Se-
bastian Jakobi aussprechen. Die beiden haben mich in meinem Forschungsvorhaben
ebenfalls sehr unterstützt und bei Problemen, die während der Forschung auftraten,
mit ihren Ideen neue Perspektiven und Blickwinkel auf das Problem eröffnet.

Selbstverständlich möchte ich mich hiermit ebenfalls bei all jenen bedanken, die
mit kritischen Bemerkungen zu einer Verbesserung dieser Arbeit beigetragen haben.
Ich bedanke mich auch für die Geduld und das Verständnis, das meine Familie und
Freunde während der letzten fünf Jahre mir gegenüber aufgebracht und damit eben-
falls einen Beitrag zum Gelingen dieser Arbeit geleistet haben.

Contents

1 Introduction 1

2 Definitions 8
2.1 Words and Languages . 8
2.2 Regular Languages and Regular Expressions 9
2.3 Finite Automata . 10
2.4 Defects in Finite Automata . 15

3 State Complexity of DFA for Defects 19
3.1 Defects Occurring on the Transitions 19
3.2 Defects Occurring on the States . 34
3.3 Defects in DFA Accepting Finite Languages 40

4 Recognition and Correction of Defects in DFA – By Example 57
4.1 Recognition of Defects in a Finite Automaton 58
4.2 Correction of Defects in a Finite Automaton 60
4.3 Languages Related to Defective Automata 69

4.3.1 Construction of DFA for L+, L−, and L? 70
4.3.2 Analysis of the Accepting DFA for the Three Languages . . . 71

5 Distances 75
5.1 Introduction to Distances . 76
5.2 The Paramerized Prefix Distance . 80

5.2.1 Upper and Lower Bounds for the Prefix Distance 80
5.2.2 Distances Below the Upper Bound 84
5.2.3 Decidability of the Order of the Distances 87
5.2.4 Computation of the Precise Distance 93
5.2.5 Distinguishing Different Computations of the Prefix Distance 95
5.2.6 Criteria for the Cases . 99
5.2.7 Construction of an Automaton to Determine the Prefix Distance104
5.2.8 Detailed Differentiation of the Cases Based on Automaton H 114
5.2.9 Calculation of the Prefix Distance Based on Automaton H . 120
5.2.10 Analysis of the Sum for the Prefix Distance on Base of H . . 134

5.3 The Parameterized Suffix Distance 143
5.3.1 Upper and Lower Bounds . 144
5.3.2 Distances Below the Upper Bound 144
5.3.3 Decidability of the Order of the Distances 145

i

ii Contents

5.3.4 Calculation of the Suffix Distance 145

6 Concluding Remarks 146
6.1 Parameterized Distances and Defects 146
6.2 A Different Definition of L+, L− and L? 148
6.3 Future Research . 150

Measuring Defects in Finite Automata

List of Figures

2.1 NFA that is converted into a DFA in Example 2.3.1. 13

2.2 DFA that is constructed by the power set construction from the
NFA depicted in Figure 2.1. 13

2.3 Minimal DFA accepting the language {a, b}2{a, b}∗ ∪ {λ}. 16

2.4 Defective finite automaton derived from the DFA depicted in Fig-
ure 2.3 for the defect exchange symbol affecting the transition on a
for state q0. 16

2.5 Defective finite automaton derived from the DFA depicted in Fig-
ure 2.3 for the defect flip transition affecting the transition on b for
state q0. 16

2.6 Defective finite automaton derived from the DFA depicted in Fig-
ure 2.3 for the defect delete transition affecting the transition on b for
state q0. 17

2.7 Defective finite automaton derived from the DFA depicted in Fig-
ure 2.3 for the defect insert transition that inserts the transition
δ(q1, b) = q0. 17

2.8 Defective finite automaton derived from the DFA depicted in Fig-
ure 2.3 by the defect delete accepting state affecting state q2. 17

2.9 Defective finite automaton derived from the DFA depicted in Fig-
ure 2.3 by the defect delete non-accepting state affecting state q1. . . 18

2.10 Defective finite automaton derived from the DFA depicted in Fig-
ure 2.3 for the defect remove acceptance affecting state q0. 18

2.11 Defective finite automaton derived from the DFA depicted in Fig-
ure 2.3 for the defect add acceptance affecting state q1. 18

3.1 DFA that proves the optimality of the upper bound for the defect
exchange symbol. 20

3.2 NFA of Moore whose equivalent minimal DFA needs precisely 2n

states for n ≥ 2 [54]. 20

3.3 DFA that proves the tightness of the upper bound for the defect flip
transition. 21

3.4 NFA of Jirásková and Šebej for which the equivalent minimal DFA has
exactly 2n states for n ≥ 2. 22

3.5 DFA A for the defect flip transition for unary alphabets. 22

3.6 DFA for which the defect flip transition can result in any number of
states between 2 and n− 1 for the equivalent minimal DFA. 24

iii

iv List of Figures

3.7 An incomplete DFA whose equivalent minimal DFA needs exactly
n+ 1 states. 25

3.8 DFA to prove the existence of minimal DFA equivalent to defective
automata for the defect delete transition with a number of states
between 1 and n− 1. 26

3.9 Incomplete DFA whose equivalent minimal DFA needs exactly i states. 27

3.10 DFA that proves the existence of a minimal DFA with n states, that
is equivalent to a defective automaton received for the defect delete
transition. 27

3.11 Incomplete DFA whose equivalent minimal DFA needs exactly n states. 27

3.12 NFA whose equivalent minimal DFA needs exactly 2n − 1 states for
n ≥ 2. 28

3.13 DFA for which the equivalent minimal DFA of the defective automa-
ton with inserted transition from q1 to q2 on a needs 2n − 1 states. . 30

3.14 General structure of a DFA that accepts a unary regular language.
The acceptance property is omitted. 30

3.15 DFA for which the defect insert transition inserting a transition on a
from q2 to qn results in a minimal DFA with n2 − 2n+ 2 states. . . . 30

3.16 DFA for the proof of the optimality of the upper bound for the defect
delete accepting state. 35

3.17 DFA used in the proof for the upper bound for the defect of inserting
the accepting property to a non-accepting state. 38

3.18 Minimal DFA with unary alphabet and i states. 39

3.19 DFA for which the defect exchange symbol affecting the transition
of q1 on b by exchanging it into an a results in a minimal DFA with
O(n2) states. 43

3.20 DFA for which the defect flip transition affecting the transition of q1

to q2 for a results in a minimal DFA with Ω(2n) states. 46

3.21 DFA used in the proofs of several defects. 48

3.22 DFA for which the defect insert transition inserts a transition from
q1 to q2 on a results in a minimal DFA with Ω(2n) states. 50

3.23 DFA for which the defect delete non-accepting state affecting state q2

results in a minimal DFA with n− 1 states. 52

3.24 DFA for which the defect of insertion of the accepting property for
state qn results in a minimal DFA with i states, where 1 ≤ i ≤ n. . . 55

4.1 Minimal DFA used in Example 4.2.1 for the defect exchange symbol. 61

4.2 Defective automaton used in Example 4.2.2 for the defect exchange
symbol. 61

4.3 Not minimal DFA used in Example 4.2.2 for the defect exchange symbol. 61

4.4 Minimal DFA used in Example 4.2.5 for the defect delete transition. 63

4.5 Minimal DFA used in Example 4.2.6 for the defect insert transition. 64

4.6 Minimal DFA used in Example 4.2.7 for the defect insert transition. 64

Measuring Defects in Finite Automata

List of Figures v

4.7 Minimal DFA used in Example 4.2.8 for the defect delete accepting
state. 65

4.8 Minimal DFA used in Example 4.2.8 for the defect delete accepting
state. 65

4.9 Minimal DFA used in Example 4.2.9 for the defect delete non-accepting
state. 66

4.10 Minimal DFA used in Example 4.2.9 for the defect delete non-accepting
state. 66

4.11 Minimal DFA used in Example 4.2.13 for the defect remove acceptance. 68

5.1 Structure of minimal DFA used in the proof of Theorem 5.2.2. . . . 91
5.2 Two minimal DFA that accept the languages L(A1) = {a, b}{a}∗

respectively L(A2) = {a}{a, b}∗. 108
5.3 An example for a history automatonH, based on the minimal DFA de-

picted in Figure 5.2. Here only some part of the automaton is depicted
for words starting with a. The missing transitions and states can be
added like described in the definition of H. 109

5.4 An example for a history automatonH, based on the minimal DFA de-
picted in Figure 5.2. Here only some part of the automaton is depicted
for words starting with b. The missing transitions and states can be
added like described in the definition of H. 110

5.5 One possible path leading into a state s = (s1, s2, reads, hists, accept2),
where s2 is productive and hists consists of k triples. Then, the in-
formation in position i of hists was inserted by state rk−i+1. 127

5.6 One possible path leading into a state s = (s1, s2, reads, hists, accept2),
where s2 is non-productive, and the only state on this path storing
a productive state of A2 is s′. Then, the information in position 1
of hists was inserted by s′, and the information on position i ≥ 2 is
already stored in position i− 1 in the history of s′. 128

Measuring Defects in Finite Automata

List of Tables

3.1 Bounds for defects affecting the transitions of a minimal DFA. For
unary alphabets, these bounds are tight. For arbitrary regular lan-
guages, these bound are also tight already for binary alphabets, except
for the defect insert transition. For this defect, the alphabet is at least
ternary. 40

3.2 Tight bounds for defects affecting the states of a minimal DFA with
n states. 40

3.3 Bounds for minimal DFA that are equivalent to a defective automa-
ton received from a minimal DFA that accepts a finite language. The
bounds for the defects flip or insert transition, and for the defect ex-
change symbol are tight in the order of magnitude for at least ternary
alphabets. All of the other bounds are tight even for unary alphabets. 56

4.1 Characteristic properties of a defective automaton resulting from a
minimal DFA for precisely one defect of one of the considered types. 59

4.2 Upper bounds for the numbers of states of minimal DFA accepting
the languages L+, L−, respectively L? for the different defects. Here,
n is the number of states of the original automaton. 74

6.1 Upper bounds for the number of states of minimal DFA accepting
the languages L+, L−, and L? for the different defects, where n is the
number of states of the original DFA, Σ is its alphabet, and F is the
set of accepting states of the original DFA. 150

vi

1 Introduction

Back in the 1950s, Chomsky started to research for formalisms to decribe the English
language and its grammar. In the papers [14] and [15], he characterised special types
of grammars, where a grammar is given by rules that describe and build words and
sentences of the described language. Nowadays, the introduced hierarchy for these
grammars is well known as the Chomsky hierarchy. Each level of this hierachy has to
obey certain restrictions for the structure of the grammar rules. The grammars with
less and weaker restrictions have a greater power of description than the ones with
stronger restrictions. In the theory of formal languages, the grammars describing a
certain class of languages in this hierarchy are of special interest.

The grammars obeying the weakest restrictions are the type 0 grammars. They
describe the class of recursively enumerable languages. The next level is given by
the type 1 grammars. They describe the context-sensitive languages. This type
of grammar needs to fulfill stronger restrictions than the type 0 grammars. The
context-free languages are generated by the so called type 2 grammars. The lowest
level of this hierarchy describes the regular languages. The grammars of this level
are also called type 3 grammars. These grammars underly the strongest restrictions
in the whole hierarchy defined by Chomsky.

The language classes defined in terms of grammars in the Chomsky hierarchy can
also be described by different formal models. For example, there exist automata
models for each of the classes.

Already in the 1930s, Turing [66] introduced a model of an abstract machine,
long before there were computers. These machines are called Turing machines. The
aim of Turing was to find a model that describes all that is computable, which
comprises all computable numbers, functions, and so on. The Turing machines can
be considered to be an abstract model of todays computers, so the Turing machines
also describe the computational power of computers.

A Turing machine can also be regarded as a recognition model for formal lan-
guages. Chomsky proved that this automaton model describes precisely the class of
recursively enumerable languages [15]. This means, the class of languages that are
described by the type 0 grammars is the same one that is recognised by the Turing
machines.

In general, a Turing machine is a device having a finite central processing unit
that converts an input into an output using some internal memory. Its input is
given on a tape. The memory is also considered to be a tape that the machine
may use to store intermediate results needed for the computation of the output.
Usually, this tape is called working tape. Genarally, these two tapes are considered
to be unbounded by any size to the left and to the right. In a standard Turing

1

2

machine, the transformation of an input into an output is done deterministically.
This means each step of the conversion is uniquely determined by the currently read
input symbol, the content of the working tape, and the current state of the machine.
The output may be given on a separate tape, but, more conveniently, all tapes, the
input tape, the working tape, and the output tape are considered to be only one
tape. Due to the unbounded size of the tapes, this is possible.

Also modifications of Turing machines were considered over the past decades, like
Turing machines with more than only one working tape, or with a working tape
that is bounded on one side, or non-deterministic Turing machines. All of these
modified Turing machines can be simulated by a deterministic Turing machine with
only one unbounded tape. This means, the mentioned modified Turing machines
also recognise the class of recursively enumerable languages (see for example [29]).

Also for the other classes of languages described in the Chomsky hierarchy, there
exist recognising automata models. Just like for the grammars, the restrictions of the
automata models grow for lower levels in the hierarchy. All of these automata models
may be considered to be restricted Turing machines. The following three automata
models are restricted Turing machines describing the other language classes of the
Chomsky hierarchy.

For example, a linear bounded automaton (LBA) is a non-deterministic Turing
machine, that may only access a limited number of cells of the tape. This number
is a linear function in the size of the machines initial input. This automaton model
was shown to recognise precisely the class of context-sensitive languages [43]. An-
other type of linear bounded automata are the deterministic ones (DLBA). They
were introduced by Myhill [56], and were shown to recognise a proper subset of the
context-sensitive languages [46].

When starting from a non-deterministic Turing machine with a one-way and read-
only input tape, and one working tape that is bounded on one side, another possible
restriction concerns the accessability of the content on the working tape. If the last
inserted symbol needs to be processed first, that is the working tape is restricted to
a last-in-first-out (LIFO) mode, the class of languages recognised by this automaton
model is the class of context-free languages. This new type of automaton is called
pushdown automaton (PDA) [62].

Also the finite automata (FA) that recognise the regular languages (see for ex-
ample [29]) can be interpreted as restricted Turing machines. A finite automaton
only consists of the finite processing unit of the Turing machine, and a read-only
tape. The input of the automaton is contained on this tape in the beginning of a
computation. While processing this word, the finite automaton may read the input
only from left to right, and may not access any other cell. This especially means,
every symbol of the input is processed only once.

Like for the Turing machines, modifications of the other automata models were
introduced and investigated. Some of those new models recognise language classes
that are different from the ones defined in the Chomsky hierarchy. For example
the deterministic pushdown automata were shown to be strictly weaker than non-
deterministic PDA [22, 23]. Also the language class accepted by DLBA mentioned

Measuring Defects in Finite Automata

3

before differs from the ones described in the Chomsky hierarchy.
From all of the classes of languages yet known, this thesis concentrates on the

regular languages. This language class is perhaps the best researched of all yet
known classes of languages. This is no surprise, since this type of language and
its representations have several applications. The regular languages are used, for
example, in the lexical analysis in programming language compilation [1, 2], circuit
design [10], or text editing and pattern matching [42].

The class of regular languages is still one of the most intensely researched lan-
guage classes in the theory of formal languages. This is particularly interesting
since already in the late seventies, it was a wide spread belief that all important and
everything of interest has already been known about regular languages. The only
exceptance were some very hard problems, that were summarised by Brzozowski in
1979 at the International Symposium on Formal Language Theory [9].

Over the last few decades, this belief was proven to be wrong. First of all, at least
three of the six very hard open problems have been solved: the restricted star height
problem [24], the regularity of noncounting classes problem [18], and the problem
of the optimality of prefix codes [63]. Additionally, new problems have been stated
and solved for this language class. For example, the complexities for operations on
regular languages respectively finite automata were introduced [26, 39, 59, 60, 68].
Some recent surveys about descriptional complexities are given by Gao, Moreira,
Reis and Yu [19] and by Holzer and Kutrib [27, 28].

Since the beginnigs of the theory of formal languages and automata theory, a lot
of different representations for the regular languages have been defined. Besides
the type 3 grammars and finite automata, the regular languages were shown to be
representable also by so called regular expressions. This model was presented by
Kleene in 1956 [41]. A regular expression consists of symbols from a given alphabet,
that are combined by union, concatenation, and Kleene star. Additionally, also ∅
and λ are regular expressions.

Over the years, also different models of automata were introduced, like two-way
finite automata, alternating automata, and many more (see, for example, [29]). All
of these models were shown to be equivalent to finite automata, and, therefore, they
also describe the class of regular languages. Two somehow different types of finite
automata were introduced by Mealy [50] and Moore [53]. In their definitions, the
automata produce an output when processing some sequence of symbols. This is
why they can be interpreted to be translaters or transducers.

Most of the equivalence results are proven by simulating one model by another
one. This naturally leads to the question for a possibility to compare the different
models. One such possiblity for automata recognising the regular languages is to
compare the numbers of states. This number is called the size of such an automaton.
The size of finite automata is also called their state complexity. For example, the
size of a DFA that is equivalent to an NFA with n states can at most be 2n. This
was first shown by Myhill [55] and Nerode [57]. Their famous algorithm for this
conversion is called powerset construction. There exist several examples that prove
the tightness of this bound, which means there exist NFA with n states that cannot

Measuring Defects in Finite Automata

4

be transformed into a DFA having strictly less than 2n states [48, 51, 54].
Other costs for conversions are for example the one between alternating finite

automata and deterministic finite automata. For an AFA with n states there exist
DFA with 22n states. There exist examples such that any DFA needs not less than
this many states [12]. The costs for the conversion of a 2NFA with n states into a
DFA are shown in [40] to be n(nn − (n− 1)n).

The mentioned numbers for the costs of conversions are so called trade offs. In
general, a trade off is a number, that enables the comparison of the size of one
automaton model with another model simulating the first model. Trade offs between
models describing the same family of languages can normally be expressed by a
function depending on the size of the simulated model. Such a trade off is called
recursive. If there does not exist such a function, the trade off is non-recursive.
This type of trade off often occurs when simulating one model by another model,
where the models do not recognise the same class of languages. This phenomenon is
discussed in detail by Kutrib in [44]. One such non-recursive trade off occurs when
simulating a pushdown automaton by a deterministic finite automaton. This was
already shown by Meyer and Fischer [51].

The trade offs for the conversions of automata recognising the regular languages
often differ for unary and at least binary alphabets. Chrobak showed in [16, 17]
that the trade off between non-deterministic and deterministic finite automata for
unary alphabets is given by eΘ(

√
n·lnn). Also finite languages often differ in the state

complexity. For finite languages over arbitrary alphabets Salomaa and Yu showed
tight bounds in [61]. Due to this, also in this thesis finite and unary regular languages
are considered separately for some of the considered problems.

But not only for language classes belonging to the hierarchy defined by Chomsky
trade offs were considered. Also for several classes of subregular languages trade
offs for the conversion of non-deterministic to deterministic finite automata were
considered for example by Bordihn, Holzer, and Kutrib [3]. In addition to trade
offs for subregular languages, also the state complexity for operations on subregular
languages and the finite automata recognising these types of languages were subject
of research. Results on star-free languages were shown by Brzozowski and Liu in
2012 [8]. In this work, another definition for the size of deterministic finite automata
was used. The used quotient complexity is not defined on the states of the automata
but is related to the quotients of an automaton. Even though the approach differs,
the quotient and the state complexities are equivalent. For more details on the
definition of quotient complexity, the reader is referred to [5]. Other result on
quotient complexities are found for example in [6] and [7].

Besides the state complexity for regular languages respectively their recognising
finite automata, there exist several other measures. The state complexity often only
compares the size of different automata recognising the same fixed regular language.
A measure for the comparison of different regular languages is the distance. Intro-
duced by Choffrut and Pighizzini [13], the already existing measures between words
were extended to measures between regular languages. Examples for such word dis-
tances are the prefix, suffix, subword, Hamming, and the edit distance. All of these

Measuring Defects in Finite Automata

5

distances can be extended in the way Choffrut and Pighizzini did. They defined the
distance between two regular languages to be the maximum of the suprema of the
minimal distances of all words of one language to all words of the other language.
This may be difficult to use in pratice, since, in general, a regular language consists
of infinitely many words.

In practice, there exist a lot of applications using finite automata. Especially in
language processing, finite automata with millions of states are used [52]. Like for
circuits, also in finite automata defects may occur. In such big automata, it is more
likely that a defect occurs, especially when changing between different representation
models. Such defects may affect the states, or the transitions, or both. For a
defective automaton with that many states it may be of interest to know, if the defect
results in a large or small blow up in the size of an equivalent minimal deterministic
automaton. If may be uselful, if the size does not change too much. Another question
concerns the accepted languages. Do the languages of the defective respectivley the
original automaton differ much? A practical example for such a comparison is given
in the production of flat screens. A limited number of defective pixels is acceptable,
in contrast to many such defects.

Another example in practice is the comparison of reproduced parts with a sample.
In case that there exist too many differences, the reproduced parts will not be used
or selled. For this, there needs to exist a sample. In our case for defective automata,
this means the original automaton is reproducible in some way. One possibility is
by its accepted language.

Another question arises naturally for defective automata: is the defect recognis-
able? And if it can be recognised, is possible to repair the automaton? Then the
whole problem concerning blow ups for determinising and minimising such automata
does not bother at all. Unfortunately, only one of the considered defects in this the-
sis is possible to be repaired. But for all of the defects, we will consider languages
related to the languages to the defective and the original finite automaton. Depend-
ing on the sizes of the these languages, the language of the defective automaton may
not differ too much from the one of the original deterministic finite automaton. But
also the opposite may happen.

The second chapter of this thesis gives a short introduction to the fundamentals
of formal languages and automata theory used in the subsequent chapters. This
introduction focusses on the regular languages and their representation by finite au-
tomata. Also the defects investigated in most of the chapters are defined. Examples
are given for the possible defects and their consequences. In the end of this chapter
we explain by example the reason for the decision to only investigate such defective
automata that are received by only one defect of one of the defined types.

In Chapter 3, for all defined defects, bounds for the size of minimal deterministic
automata equivalent to the defective automata are given. For most of the defects,
the bounds for at least binary alphabets differ from the one for unary alphabets.
The results for the unary case are stated separately in this chapter.

For some defects, we also consider the possibility of the existence of defective finite
automata of size n such that the equivalent minimal deterministic finite automaton

Measuring Defects in Finite Automata

6

has a fixed size less than or equal to the upper size bound. This question is related
to the magic number problem. This problem asks for the existence of minimal
deterministic automata equivalent to non-deterministic automata of size n, having
a fixed size i between n and the upper bound of 2n. If there exists a number i
such that there exists no non-deterministic finite automaton having an equivalent
deterministic finite automaton of size i, then this number is called magic [32].

The last section of the third chapter covers the question for the state complexity of
deterministic finite automata equivalent to defective automata for finite languages.
It is shown that most of the bounds for arbitrary regular languages and the finite
languages differ massively.

Chapter 4 covers the questions for the recognisability of defects and the possibility
of correction. Assuming that only one occurrence of one type of defect results in
a given defective automaton, properties of these automata to recognise the type of
defect are summarised. It is proven by example that for most of the defects it is im-
possible to fix the defective automaton to receive the original minimal deterministic
automaton.

In this chapter, also three types of languages related to the defective and the orig-
inal automaton are defined and researched. For the definition of these languages,
the defective automaton, the type of defect occurring in this automaton, and the
affected state is assumed to be provided. One of these languages collects all words
that are accepted by the defective automaton without using the defect. Another
language collects all those words that are rejected by the automaton that do not use
the defect while being processed by the defective automaton. These two languages
are subsets of the languages accepted respectively rejected by the original automa-
ton. The last considered language collects all words that use the defect while being
processed by the defective automaton. This includes all such accepted or rejected
words. The union of all the three languages is Σ∗, where Σ denotes the underlying
alphabet. For these three defined languages, upper bounds for the state complexity
of minimal deterministic finite automata are considered.

In Chapter 5, a distance between two regular languages is introduced. In the
first part of this chapter, this distance is based on the prefix distance between two
words, and in the second part on the suffix distance. The introduced distances are
parameterised. Since they sum up the word distances for words in one language to
the other language and vice versa, only words up to a certain length are considered
in these sums. This length is the parameter in the language distance.

Properties of this distance are investigated. It is proven that the defined distances
can only be constant, polynomial, or exponential. A construction of an automaton
assisting to compute the precise distance between two languages is given. Different
cases are separated that may occur when calculating the distance between a word
and a regular language. Based on these criteria and the constructed automaton,
the precise distance for two languages can be computed. This computation is also
analysed in detail which gives criteria for the decision if the distance is constant,
polynomial, or exponential. All these results are proven for the parameterized prefix
distance and are inherited for the parameterized suffix distance in the last part of

Measuring Defects in Finite Automata

7

this chapter. For this, the relation between the two distances is also proven.
The last chapter concludes this thesis. In one section, the languages related to the

defective automata and the distances for defective automata are linked. It is shortly
summarised that the combination of two possibilities to measure the influence of
a defect may give better criteria for the decision if a defective automaton differs
much or not much from the original automaton. Another section covers another
definition for the languages related to the defective automaton. This definition is
based only on the given defective automaton. It does not presume the knowledge
of the affected state or transition. Upper bounds for minimal deterministic finite
automata recognising these languages are given. The last part of Chapter 6 gives
perspectives of possible future research.

Measuring Defects in Finite Automata

2 Definitions

In this chapter, nearly all of the formalisms used in the following chapters will be
defined. Most of them were already introduced by other researchers. One source for
these definitions is [29], others for example are [67] or [47].

2.1 Words and Languages

A non-empty and finite set of symbols is called an alphabet. This is the base for the
definition of languages. The symbols belonging to an alphabet are also called letters.
A word over an alphabet Σ is a finite sequence of symbols from Σ. For example,
the sequence ababba is a word over the alphabet Σ = {a, b}. The sequenc abc is
not a word over Σ, since c does not belong to Σ, but it is a word over the alphabet
{a, b, c, d}. This also shows, that it is not necessary for a word to contain all the
symbols of the alphabet.

The length of a word w is the number of its not necessarily different symbols and is
denoted by |w|. Let w = a1a2 . . . an be a word that consists of symbols a1, a2, . . . , an
from a fixed alphabet. Then the length of w is |w| = n. The word of length zero,
that does not contain any symbols, is called empty word and is denoted by λ.

The reversal of a word w is denoted by wR. If w = a1a2 · · · ak for some k ≥ 1, its
reversal is wR = ak · · · a2a1.

Let u = a1a2 · · · an and v = b1b2 · · · bm be two words, where all the symbols
a1, a2, . . . , an and b1, b2, . . . , bm belong to some alphabet. The concatenation of the
words u and v is defined to be

u · v = a1a2 · · · anb1b2 · · · bm.

This means, the concatenation of two words is received by stringing them together.
The concatenation symbol · between the two words is often omitted to simplify the
expression. For every word w, its concatenation with the empty string is given by
w · λ = λ · w = w.

For two words u, v over some alphabet Σ, v is called a prefix of u, if there exists
a word w over Σ such that u = vw. If v 6= u, and v 6= λ, v is said to be non-trivial,
otherwise it is a trivial prefix. In the same way, the suffix of a word is defined to
be a word v such that the word u can be split up into u = wv, where w is another
word over Σ. The suffix v is also called non-trivial, if v 6= u and v 6= λ.

The set of all words over a fixed alphabet Σ is denoted by Σ∗. This set also
includes the empty word λ. The set Σ∗ \ {λ} is denoted by Σ+. It consists of all
words of length at least one over Σ. The set containing all words over Σ up to a fixed

8

2.2. Regular Languages and Regular Expressions 9

length n ≥ 0 is denoted by Σ≤n, and the set of words of length precisely n is Σ=n.
The size or cardinality of a set A is denoted by |A|. For finite sets, this number is
the number of elements belonging to A. For infinite sets, this number is ∞. The
power set of a given finite set A is denoted by 2A, and consists of

∣∣2A∣∣ = 2|A| many
elements. Each of its elements is a subset of A. This also includes the empty set ∅,
since this always is a subset. The set A itself also belongs to its power set.

A subset L of Σ∗ is a collection of certain words. Such a set is called a language.
The trivial languages are the empty set ∅ and the whole set Σ∗. For languages
L,L1, L2 ⊆ Σ∗, the union

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 or w ∈ L2},

intersection
L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 and w ∈ L2},

difference
L1 \ L2 = {w ∈ Σ∗ | w ∈ L1 and w 6∈ L2},

and symmetric difference

L14L2 = (L1 \ L2) ∪ (L2 \ L1)

are defined in the usual way. Also the Kleene star of a language

L∗ = {w ∈ Σ∗ | w = w1 · w2 · · · · · wk for some k ≥ 0 and some w1, w2, . . . , wk ∈ L}

is defined as usual, where k = 0 means w = λ, even though λ may not belong to L.
Notice that Kleene star applied to the empty language ∅ yields the language {λ}.

The Kleene Star for a language can also be expressed by

L∗ =
⋃
i≥0

Li,

where the languages Li are inductively defined by

L0 = {λ}, Li+1 = L · Li.

2.2 Regular Languages and Regular Expressions

A lot of different models are existent that represent the regular languages. This
class of languages, denoted by REG, is important and well studied. In the Chomsky
hierarchy, described by Chomsky [14, 15], the regular languages represent the lowest
level.

A common and quite natural way to describe this class of languages are the regular
expressions. This model was introduced by Kleene [41]. A regular expression is a
finite combination of concatenation, union, and Kleene star over the symbols of an
alphabet and the empty language ∅.

Formally, a regular expression over an alphabet Σ is defined as follows:

Measuring Defects in Finite Automata

10 2.3. Finite Automata

• For each a ∈ Σ, λ, ∅, and a are regular expressions.

• If r and s are regular expressions, so are (r · s), (r + s), and r∗.

The language described by regular expressions r and s is given by

• L(λ) = {λ}, L(∅) = ∅, and L(a) = {a} for all a ∈ Σ.

• L(r · s) = L(r) · L(s), L((r + s)) = L(r) ∪ L(s), and L(r∗) = (L(r))∗.

To simplify the notation, it is common to give highest priority to the star op-
erator ∗, followed by ·, and then +. Due to this priority and the associativity of
concatenation and union, superfluous parentheses can be omitted. Usually, also the
operator · is omitted. It is conventional to write ri instead of r · r · . . . · r (i times),
and r+ for r · r∗.
Example 2.2.1. Let

r =

((
(a+ b) + c

)∗ · ((((a+ c) · (a)
)
·
(
a+ (b+ c)

)∗) · (a · b))) · (c)
be a regular expression. This expression can be simplified by omitting unnecessary
braces, and the · for the concatenation. So, r can also be denoted by the expression
(a + b + c)∗(a + c)a(a + b + c)∗abc. If Σ = {a, b, c}, the expression can be further
simplified to r = Σ∗(a + c)aΣ∗abc. The language L(r) described by the regular
expression r consists of all words over {a, b, c} that end on abc and contain at least
one of the sequences aa, or ca before the last sequence of abc. This is precisely the
language L(r) = Σ∗{aa, ca}Σ∗{abc}. _ ^

^ _

Regular expressions can also be used to prove some closure properties for REG. A
language class L is said to be closed under some language operation, if all possible ap-
plications of this operation to a language belonging to L leads to a language that also
belongs to L. From the definition of regular expressions it is derived immediately,
that the class REG is closed under the operations concatenation, union, and Kleene
star. Also under the operation of reversal, REG is closed. The language L(r)R for
some regular expression r can be described by its reversal rR.

2.3 Finite Automata

Another possibility to describe the regular languages is given in form of finite au-
tomata. A finite automaton can be considered to be a device with a finite input tape,
that either accepts or rejects an input. The device changes its state while reading
symbols from left to right provided on the input tape, but it does not produce any
output. The only information obtained from finite automata after processing some
word, is the type of the state that is entered at the end of the computation. The
type of a state can be accepting or non-accepting. This means, finite automata can
be regarded to be some kind of recognition device for regular languages.

Measuring Defects in Finite Automata

2.3. Finite Automata 11

The following definition for non-deterministic finite automata was first introduced
by Rabin and Scott [58]. They were the first to introduce non-determinism for finite
automata.

A non-deterministic finite automaton (NFA) is a quintuple A = 〈Q,Σ, δ, q0, F 〉,
where

• Q is a finite set of states,

• Σ is an alphabet,

• δ : Q×Σ→ 2Q is the state transition function (or simply transition function),

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of accepting states.

The rules defined by the state transition function determine the behaviour of the
automaton. If the NFA is in some state q ∈ Q, and reads a symbol a ∈ Σ on its input
tape, the NFA can change its state into some state p ∈ δ(q, a). Since there may exist
more than only one such state p, the automaton is called non-deterministic. It is
also possible, that such a state p does not exist at all. In this case, the transition
for q on a is said to be undefined.

In each step of the automaton, such an NFA consumes one symbol of the in-
put and changes its state according to its transition function. If more than one
state is existent, into which the automaton may change, one of them is chosen non-
deterministically.

If |δ(q, a)| ≤ 1 for all q ∈ Q and all a ∈ Σ, the automaton is called deterministic.
In such a deterministic finite automaton (DFA), there exists no possibility for the
choice of the next state for each combination of a state and a symbol in the input.
In this thesis, all DFA are considered to be complete, which means there exist no
undefined transitions. Every incomplete DFA can be converted into a complete
DFA. This is done by letting each undefined transition lead into a rejecting sink
state, which is a non-leaving state.

The state transition function δ of a finite automaton 〈Q,Σ, δ, q0, F 〉 is defined only
for single symbols. For all states q ∈ Q, it can be extended to a transition function
for words w ∈ Σ∗ by δ(q, w) =

⋃
p∈δ(q,a)

δ(p, w), if w = av for some symbol a ∈ Σ and

a word v ∈ Σ∗, respectively by δ(q, w) = {q}, if w = λ. To simplify the notation of
the transition function for DFA, the set braces are omitted for the successing state.

While processing a word, a finite automaton enters several states. Such a sequence
of states is called a path of the automaton. In this sequence, it is possible that one
state appears several times. The length of a path is defined to be the number of
states contained in the path. If a state occurs several times, each occurrence is
counted separately. Let for example s1s2s1s3 denote a path. Then its length is four,
even though s1 appears twice. A subsequence of the path that begins with a state s,
ends with the same state s, with s not appearing elsewhere in this subsequence, is

Measuring Defects in Finite Automata

12 2.3. Finite Automata

called a cycle or ring of the DFA. The length of a cycle is defined as the number of
states within the cycle minus one, since state s builds the beginning and the end of
the cycle. If a cycle is of length one, it is also called a loop. A loop is nothing else
but a single transition that does not change the state.

For every word over the alphabet of the automaton there exists a path that begins
with the initial state. Let s0s1 . . . sk be a path for some word, where s0 = q0 and
k ≥ 0, and let si be one of these states. All the states, that are visited before
entering si are called its predecessors, and all the states that are visited after this
state are the successors of si. In the path, this means thart all states sj , where j < i
are predecessors, and that all states sl with l > i are the successors.

Let A be a finite automaton, either deterministic or non-deterministic. The ac-
cepted language of A, in terms L(A), is the set of words that lead the automa-
ton into acceptance, when starting the processing in the initial state. Formally,
for a finite automaton A = 〈Q,Σ, δ, q0, F 〉, its accepted language is defined to be
L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅}.

Two finite automata A and B are said to be equivalent, in terms A ≡ B, if they
accept the same language, which means L(A) = L(B).

Kleene showed that the language class that is recognised by finite automata is
precisely the class REG [41].

Theorem 2.3.1 (Kleene [41]). A language L is regular if and only if there exists a
finite automaton A with L(A) = L.

Conversions of NFA into DFA Since NFA and DFA are both models that describe
the class REG, it should be possible to convert one model into the other. Indeed,
this is possible. It was shown by Rabin and Scott in 1959 [58]. The conversion is
done by the so-called power set construction.

Let A = 〈Q,Σ, δ, q0, F 〉 be an arbitrary NFA. An equivalent DFA is given by
B = 〈2Q,Σ, δ′, {q0}, F ′〉, where δ′(P, a) =

⋃
p∈P

δ(p, a) for all P ⊆ Q and a ∈ Σ, and

F ′ = {P ∈ 2Q | P ∩ F 6= ∅}.
The following example gives an idea of how the power set construction works. It

also shows how finite automata are represented by state transition diagrams.

Example 2.3.1. Let A = 〈{q0, q1, q2, q3}, {a, b}, δ, q0, {q3}〉 be the NFA with state
transition function

δ(q0, a) = {q1, q2}, δ(q0, b) = {q2},
δ(q1, a) = δ(q1, b) = {q2},
δ(q2, a) = {q3},
δ(q3, a) = δ(q3, b) = {q3}

that is depicted in Figure 2.1.
An equivalent DFA is given by B = 〈Q, {a, b}, δ′, {q0}, F 〉, where its state set

is Q = {∅, {q0}, {q2}, {q3}, {q1, q2}, {q2, q3}}, its set of accepting states is given by

Measuring Defects in Finite Automata

2.3. Finite Automata 13

q0 q1 q2 q3
a a, b a

a, b

a, b

Figure 2.1: NFA that is converted into a DFA in Example 2.3.1.

{q0} {q1, q2} {q2, q3} {q3}

{q2}∅

a a a, b

b
b

a

b

a, b

a, b

Figure 2.2: DFA that is constructed by the power set construction from the NFA de-
picted in Figure 2.1.

F = {{q3}, {q2, q3}}, and its transition function is defined by

δ′({q0}, a) = {q1, q2}, δ′({q0}, b) = {q2},
δ′({q2}, a) = {q3}, δ′({q2}, a) = ∅,
δ′({q3}, a) = δ′({q3}, b) = {q3},
δ′({q1, q2}, a) = {q2, q3}, δ′({q1, q2}, b) = {q2},
δ′({q2, q3}, a) = δ′({q2, q3}, b) = {q3},
δ′(∅, a) = δ′(∅, b) = ∅.

This automaton is depicted in Figure 2.2 _ ^

^ _

The formal description of the DFA constructed by the power set construction
contains all possible states. The states that are not depicted in Figure 2.2 cannot be
reached from the initial state {q0} by any word over {a, b}. It is a general convention
to omit such states for finite automata.

Minimal Deterministic Finite Automata Taking a closer look at the constructed
DFA from Example 2.3.1, one can recognise that by the states {q2, q3} and {q3} the
same words are accepted. This leads to the formal definition of equivalent states:

Measuring Defects in Finite Automata

14 2.3. Finite Automata

Given a DFA with state transition function δ. Two states p and q are said to be
equivalent, if for any word w, δ(p, w) is accepting if and only if δ(q, w) is accepting.
Otherwise, the states p and q can be distinguished and are inequivalent.

Equivalent states can be merged. This means, for a DFA A = 〈Q,Σ, δ, q0, F 〉,
and two equivalent states p, q ∈ Q, a new DFA A′ = 〈Q \ {p},Σ, δ′, q′0, F \ {p}〉 is
constructed, where

δ′(s, a) =

{
q if δ(p, a) = p,

δ(s, a) else
,

and

q′0 =

{
q if q0 = p,

q0 else
.

Merging equivalent states always leads to a new DFA. If a DFA only contains
states that are not equivalent, it is called minimal.

There exist several algorithms to minimise a DFA, for example one by Brzo-
zowski [4], one by Hopcroft and Ullman [29], one by Huffman [30], or one by
Moore [53].

One well-known algorithm to minimise a DFA is the so called table-filling algo-
rithm, see for example [29]. This algorithm determines recursively all inequivalent
states by marking pairs of states. For a given DFA A = 〈Q,Σ, δ, q0, F 〉, at first all
state pairs of states are marked, where only one of them is accepting. Then, for all
non-marked pairs of states p and q, and symbols a ∈ Σ, this pair is marked, if and
only if the state pair δ(p, a) and δ(q, a) is already marked. This algorithm stops,
if there either exist no more unmarked pairs of states, or if there exists no more
possibility to mark the remaining unmarked pairs. The unmarked pairs are exactly
the equivalent states.

Theorem 2.3.2. If two states are not distinguished by the table-filling algorithm,
then the states are equivalent.

The following important property of deterministic finite automata results from
this.

Theorem 2.3.3. If A is a DFA, and B the DFA constructed from A by the table-
filling algorithm, then B has as few states as any DFA equivalent to A.

From all these properties of deterministic finite automata, the following theorem
can be derived, that gives a characterisation of minimal DFA.

Theorem 2.3.4. A DFA is minimal if and only if all states are reachable from its
initial state, and if all of its states are pairwise inequivalent.

This especially means, that for any regular language, there exists a DFA that
accepts this language, and has a minimal number of states. This also means, all
minimal DFA are the same except for a renaming of the states. Therefore, this

Measuring Defects in Finite Automata

2.4. Defects in Finite Automata 15

minimal number of states can be used to measure the size of DFA and indirectly
the size of regular languages. This measure is called state complexity.

This measure can also be extended to non-deterministic finite automata. A min-
imal NFA accepting a certain language is defined to be an NFA, for which there
exists no equivalent NFA that has fewer states.

Now it is possible to use this measure to express the compactness of the repre-
sentation of regular languages by NFA instead of DFA. It was shown by Rabin and
Scott [58] that an upper bound for the conversion of NFA into DFA is exponen-
tial. The tightness of this bound was shown later independently by Lupanov [48],
Moore [54], and Meyer and Fischer [51].

Theorem 2.3.5. There exist regular languages, that are accepted by NFA with n
states, and by minimal DFA with 2n states.

2.4 Defects in Finite Automata

Finite automata can be manipulated. Such a manipulation can affect either the
transitions or the states. In the following, the manipulations are called defects. A
finite automaton that contains a defect will be called defective. The automaton,
from which the defective automaton is received by some defect, is called original
automaton. The investigations in this thesis concentrate on the following defects.

Definition 2.4.1. The following defects can affect a deterministic finite automaton.
Their definitions will be reduced to only one occurrence of the defect.

Exchange Symbol: The symbol of a transition is exchanged by another one.

Flip Transition: The source and target of a transition are interchanged.

Delete Transition: A transition is deleted.

Insert Transition: A new transition is inserted.

Delete Accepting State: An accepting state is deleted, including all transitions
having this state as source or target.

Delete Non-Accepting State: A non-accepting state is deleted, including all tran-
sitions having this state as source or target.

Remove Acceptance: The property of acceptance is removed for a state.

Add Acceptance: The property of acceptance is added for a state.

Example 2.4.1. Let A = 〈Q,Σ, δ, q0, F 〉 be the DFA depicted in Figure 2.3, where
Q = {q0, q1, q2}, Σ = {a, b}, F = {q0, q2}, and

δ(q0, a) = δ(q0, b) = q1,

δ(q1, a) = δ(q1, b) = q2,

δ(q2, a) = δ(q2, b) = q2.

Measuring Defects in Finite Automata

16 2.4. Defects in Finite Automata

q0 q1 q2
a, b a, b

a, b

Figure 2.3: Minimal DFA accepting the language {a, b}2{a, b}∗ ∪ {λ}.

q0 q1 q2
b, b a, b

a, b

Figure 2.4: Defective finite automaton derived from the DFA depicted in Figure 2.3
for the defect exchange symbol affecting the transition on a for state q0.

This automaton accepts the language {a, b}2{a, b}∗ ∪ {λ}.
The defect exchange symbol affecting the transition from state q0 to state q1 by

replacing a by the symbol b in DFA A results in an incomplete non-deterministic
finite automaton. This defective automaton is depicted in Figure 2.4, and accepts
the language {b}{a, b}+ ∪ {λ}.

If the defect flip transition affects the transition from state q0 to q1 on symbol b
for DFA A, the resulting defective DFA is the one given in Figure 2.5 which accepts
the language {a}{ba}∗{a, b}+ ∪ {λ}.

The automaton depicted in Figure 2.6 accepts the language {a}{a, b}+ ∪{λ}, but
is the result of the defect delete the transition affecting the transition on b for state q0

in DFA A.

If the defect insert transition affects the DFA A by inserting a transition on b from
state q1 to state q0, the accepted language does not change. The resulting defective
automaton is depicted in Figure 2.7.

q0 q1 q2
a a, b

a, b

b

Figure 2.5: Defective finite automaton derived from the DFA depicted in Figure 2.3
for the defect flip transition affecting the transition on b for state q0.

Measuring Defects in Finite Automata

2.4. Defects in Finite Automata 17

q0 q1 q2
a a, b

a, b

Figure 2.6: Defective finite automaton derived from the DFA depicted in Figure 2.3
for the defect delete transition affecting the transition on b for state q0.

q0 q1 q2
a, b a, b

a, b

b

Figure 2.7: Defective finite automaton derived from the DFA depicted in Figure 2.3
for the defect insert transition that inserts the transition δ(q1, b) = q0.

The deletion of the accepting state q2, or the non-accepting state q1 both result
in defective finite automata, that are both incomplete DFA. These two automata
are depicted in Figures 2.8 respectively 2.9. Both automata only accept the lan-
guage {λ}.

If the acceptance property of state q0 for DFA A is removed, the language accepted
by the defective automaton only differs by the empty word from language L(A). The
defective automaton is depicted in Figure 2.10.

The last remaining defect of adding the acceptance for some state of A results in
the automaton from Figure 2.11. This automaton accepts the language {a, b}∗. _ ^

^ _

In general, all defects change the accepted language of the affected automaton. If
the DFA is affected by more than only one defect, it is possible that the accepted
language does not change at all, which means in detail that the defective DFA is
equivalent to the original DFA. This is the case if, for example, the defects delete
transition and insert transition affect the same transitions.

If is also possible that one defect applied several times results in a massive change

q0 q1
a, b

Figure 2.8: Defective finite automaton derived from the DFA depicted in Figure 2.3
by the defect delete accepting state affecting state q2.

Measuring Defects in Finite Automata

18 2.4. Defects in Finite Automata

q0 q2

a, b

Figure 2.9: Defective finite automaton derived from the DFA depicted in Figure 2.3
by the defect delete non-accepting state affecting state q1.

q0 q1 q2
a, b a, b

a, b

Figure 2.10: Defective finite automaton derived from the DFA depicted in Figure 2.3
for the defect remove acceptance affecting state q0.

q0 q1 q2
a, b a, b

a, b

Figure 2.11: Defective finite automaton derived from the DFA depicted in Figure 2.3
for the defect add acceptance affecting state q1.

of the accepted language. For example, if the defect of removing acceptance for
some states affects a minimal DFA several times, the accepted language may change
massively. This can be seen by removing the acceptance of the states q0 and q2 of
the minimal DFA depicted in Figure 2.3. The resulting defective automaton does
not accept any word, which means that infinitely many words are not accepted any-
more. Similar things may happen when combining different defects. Combinations
of defects may also lead to other types of defects. For example, the combination of
inserting and deleting one transition each can result in the defect flip transition. If
the transition of DFA A depicted in Figure 2.3 on b is deleted for state q0, but a
transition on b is added to q1 that leads into state q0, the resulting defective finite
automaton is the one we received in Example 2.4.1 for the defect flip transition.

This is the reason why, in this thesis, only one occurrence of a single defect will
be considered.

Measuring Defects in Finite Automata

3 State Complexity of DFA for Defects

This chapter deals with the state complexity of finite automata resulting from de-
fects. These automata are retrieved from minimal and complete DFA which are af-
fected by a defect. Those defects always lead to at least incomplete DFA or even to
non-deterministic finite automata. These automata will be converted into complete
and minimal DFA again. The size of these automata will be given in dependency of
the size of the original, non-defective DFA.

3.1 Defects Occurring on the Transitions

In this section, we concentrate on defects on the transitions of a DFA. The possible
defects on transitions are exchange symbol, flip transition, delete transition, and
insert transition.

The first defect to be examined is exchange symbol. The following theorem gives a
tight upper bound for the state complexity of a complete and minimal DFA accepting
the language of the defective automaton. Its size will be determined in terms of the
size of the original DFA.

Theorem 3.1.1. Let A be a minimal DFA with n ≥ 2 states and let the NFA, which
is received by the defect exchange symbol affecting DFA A be denoted by A′. Then
the equivalent minimal DFA of A′ needs at most 2n states. This bound is tight even
for binary alphabets.

Proof. In the worst case the considered defect implements ambiguity in the automa-
ton and leads to undefined transitions. An equivalent minimal DFA may need all
states generated by the power set construction. This means a minimal DFA has at
most 2n states.

We now show that this bound is reachable by a defect on a single transition in a
DFA with binary alphabet. Let A = 〈Q, {a, b}, δ, q1, {qn}〉 be the DFA depicted in
Figure 3.1 with Q = {q1, q2, . . . , qn} and

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
q2 if j = n

,

δ(qj , b) =

{
q1 if j = 1 or j = n,

qj+1 if j ∈ {2, 3, . . . , n− 1}
.

This DFA is complete. It is also minimal since for x, y ∈ {1, 2, . . . , n − 1}, x < y,
we have that δ(qx, a

n−y) 6= qn but δ(qy, a
n−y) = qn.

19

20 3.1. Defects Occurring on the Transitions

q1 q2 q3 qn−1 qn
a a, b a, b a, b a, b

b

b

a

Figure 3.1: DFA that proves the optimality of the upper bound for the defect ex-
change symbol.

q1 q2 q3 qn−1 qn
a a, b a, b a, b a, b

b

a

a

Figure 3.2: NFA of Moore whose equivalent minimal DFA needs precisely 2n

states for n ≥ 2 [54].

Modifying the transition δ(qn, b) = q1 by exchanging the letter b by a results in
the NFA given in Figure 3.2. For this automaton it was already shown by Moore
in [54] that the equivalent minimal DFA needs precisely 2n states for n ≥ 2.

This defect has no effect for unary alphabets since in such an alphabet there do
not exist enough symbols to exchange one by another. This gives a tight bound of n
states for unary alphabets.

The theorem below provides the upper bound for the state complexity of a DFA af-
feted by the defect flip transition.

Theorem 3.1.2. Let A be a minimal DFA with n ≥ 2 states and let the NFA A′
be the automaton that is received from A by the defect flip transition. Then the
equivalent minimal and complete DFA of NFA A′ needs at most 2n states. This
bound is tight even for binary alphabets.

Proof. In the worst case, the modification implements ambiguity in the automaton
and leads to undefined transitions. An equivalent complete and minimal DFA may
need all states generated by the power set construction. This means such a DFA needs
at most 2n states.

In the following we show that this bound can be reached by manipulating a single
transition in a DFA with a binary alphabet. Let A = 〈Q, {a, b}, δ, q1, {qn}〉 be the

Measuring Defects in Finite Automata

3.1. Defects Occurring on the Transitions 21

q1 q2 qn−5 qn−4 qn−3 qn−2 qn−1 qn
a a a a a a a, b

b b b b b

a

b

a

b

Figure 3.3: DFA that proves the tightness of the upper bound for the defect flip
transition.

DFA from Figure 3.3 with state set Q = {q1, q2, . . . , qn} and

δ(qj , a) =


qj+1 if j ∈ {1, 2, . . . , n− 4, n− 2, n− 1}
q1 if j = n− 3,

qn−2 if j = n

,

δ(qj , b) =


qj if j ∈ {1, 2, . . . , n− 4, n},
qj+1 if j ∈ {n− 3, n− 1},
qn−3 if j = n− 2

.

This DFA is complete. The following considerations prove the minimality of this
automaton.

In case state qi belongs to the set {q1, q2, . . . , qn−3} it is reachable from state q1

by the word ai−1. If qi is one of the states qn−2, qn−1, or qn it can be reached from
the initial state by the word an−4bai−(n−2).

For indices x, y ∈ {1, 2, . . . , n − 3}, x < y, we have that δ(qx, a
n−3−xba2) = qn

but δ(qy, a
n−3−xba2) 6= qn. It also holds that δ(qn−2, ab) = qn but δ(qx, ab) 6= qn,

δ(qn−1, a) = qn but δ(qx, a) 6= qn and δ(qn−2, a) 6= qn. This proves that all the states
of automaton A are reachable and inequivalent.

In case the considered defect flip transition affects the transition δ(qn−1, b) = qn
it is replaced by the transition δ(qn, b) = qn−1. This leads to the NFA given in
Figure 3.4. For this automaton Jirásková and Šebej have already shown in [38] that
the equivalent minimal DFA needs exactly 2n states for n ≥ 2.

Theorem 3.1.2 gives a tight bound for at least binary alphabets. For unary alpha-
bets, this bound differs. The following theorem covers the unary case.

Theorem 3.1.3. Let A be a minimal DFA with n ≥ 2 states and unary alphabet,
and let A′ be the NFA that is received by the defect flip transition affecting A. Then
the equivalent minimal DFA for A′ needs at most n+ 1 states. This bound is tight.

Proof. It is well known since Chrobak [16, 17] that a complete and minimal DFA over
a unary alphabet consists of a connected chain of states followed by a ring of states.

Measuring Defects in Finite Automata

22 3.1. Defects Occurring on the Transitions

q1 q2 qn−5 qn−4 qn−3 qn−2 qn−1 qn
a a a a a a

b b b b b

a

b b

a

b a

Figure 3.4: NFA of Jirásková and Šebej for which the equivalent minimal DFA has
exactly 2n states for n ≥ 2.

q1 q2 qn−1 qn
a a a a

a

Figure 3.5: DFA A for the defect flip transition for unary alphabets.

This ring may be a single (accepting or non-accepting) state having a transition to
itself on the only symbol of the alphabet. It can also contain more than one state.
It is also possible that the chain of states does not exist at all and the automaton
only consists of a ring of states. In a DFA, where the ring is a single accepting state,
or consists of more than only one state, a rejecting sink state does not exist. In the
following, only DFA of this structure will be considered.

The structure of such DFA especially means that there exists only one transition
leaving each state and for most states only one transition enters this state. The only
exception to this is the last state of the chain, which is the end of the chain and the
beginning and ending of the ring at the same time. This state q is the only state
that is the target of two transitions.

If the defect flip transition affects a unary minimal DFA, the resulting defective
automaton always accepts a finite language. The reason for this is, that the in-
terchanging of the source state s and target state t 6= q of a transition deletes the
connection between s and t. Due to the structure of unary DFA, this means at the
same time the loss of reachability of all states that are reached from s in the original
DFA. The equivalent minimal DFA to this defective automaton needs at most as
many states as the original one, since the insertion of a rejecting sink state suffices.

If the target state is q, all states may still be reachable, since there exist two
transitions leading into q. This happens, if the transition leading from the last state
of the ring r into the first state of the ring q is flipped. In this case, also a finite
language is accepted by the defective automaton. The longest word of this language
has at most n − 1 symbols, if the number of states of the original DFA is n. It is
well known, that a minimal DFA accepting a (unary) finite language has a number

Measuring Defects in Finite Automata

3.1. Defects Occurring on the Transitions 23

of states, that is given by the length of the longest word plus two. In this case, this
gives the upper bound of n+1.

To show the optimality of this bound, let A = 〈Q, {a}, δ, q1, {qn}〉 be the minimal
DFA depicted in Figure 3.5, where Q = {q1, q2, . . . , qn} is the set of states and

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
q1 if j = n

is its state transition function.
This DFA is complete. The following considerations provide the minimality of the

chosen automaton.
Every state qi ∈ {q1, q2, . . . , qn} is reachable from the initial state by the word ai−1.
For indices x, y ∈ {1, 2, . . . , n − 1}, x < y, we have that δ(qx, a

n−y) 6= qn but
δ(qy, a

n−y) = qn. Thus, all the states of the considered automaton are reachable
and inequivalent.

If the defect interchanges the transition from state qn to q1, we receive an unde-
fined transition for state qn and an ambiguity for state q1. The accepted language
is modified to the finite language {a, an−1}. It is well known that the minimal
DFA accepting this language needs exactly n+ 1 states, n states to count up to the
length n− 1 and one more state to reject all words longer than n− 1. This proves
the optimality of the upper bound.

For the defect flip transition in the unary case, the next theorem proves that it is
possible for the minimal DFA that is equivalent to the defective automaton to have
any number of states below the upper bound.

This question is closely related to the one asking for magic numbers. This question
was stated by Iwama, Kambayashi, and Takaki [31]. It asks whether there always
exists a nondeterministic finite automaton with n states whose equivalent minimal
DFA has α states for all integers n and α, with n ≤ α ≤ 2n.

Iwama, Matsuura, and Paterson [32] called a number α magic, if there exists no
NFA with n states having an equivalent DFA with α states. In [31] it was shown,
that α = 2n − 2k or α = 2n − 2k − 1, for 0 ≤ k ≤ n/2− 2 is non-magic, and in [32]
this was shown for α = 2n−k, with 5 ≤ k ≤ 2n−2, and some coprimality condition
for k. These results were shown for binary NFA.

The results for binary alphabets were improved in [34], [35], [20], and [49]. The
question asking for magic numbers turned out to become easier, if the size of the
alphabet is increased. In [34] it was even shown that for exponentially growing
alphabets, no magic numbers exist at all. In [20], this result was improved to smaller
growing alphabets. In [33] it was shown for four-letter alphabets that there exist no
magic numbers, and in [37], this was even proven for ternary alphabets. The magic
number problem for unary alphabets was studied in [21]. Further results on magic
numbers can be found, for example, in [35], [36], and [25].

Theorem 3.1.4. Let n ≥ 4 be a number. Then a minimal DFA A exists with n
states and unary alphabet, such that by the defect flip transition, the equivalent

Measuring Defects in Finite Automata

24 3.1. Defects Occurring on the Transitions

q1 q2 qi−2 qi−1 qi qi+1 qi+2 qn
a a a a a a a a a

a

Figure 3.6: DFA for which the defect flip transition can result in any number of
states between 2 and n− 1 for the equivalent minimal DFA.

minimal DFA for the defective automaton needs precisely a number of i states, for
all 1 ≤ i ≤ n+ 1.

Proof. The existence of a minimal DFA with n + 1 states was already shown in
Theorem 3.1.3.

To prove the existence of a minimal DFA with a number of states i between 1 and
n, that is equivalent to a defective automaton, we use the DFA A = 〈Q,Σ, δ, q1, F 〉
depicted in Figure 3.6, where Q = {q1, q2, . . . , qn} is the set of states, its set of
accepting states is given by F = {qi−1, qi, qi+1}, and the transition function δ is
defined by

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
q1 if j = n

.

This DFA is complete. It is also minimal, since each state qj , 1 ≤ j ≤ n, is
reachable from the initial state q1 by the word aj−1. The accepting states can
be differentiated by the words a and a2 since then we have δ(qi−1, a

2) = qi+1,
δ(qi, a

2), δ(qi+1, a
2) 6∈ {qi−1, qi, qi+1}, and δ(qi, a) = qi+1, δ(qi+1, a

2) 6∈ {qi−1, qi, qi+1}.
For the states with indices 1 ≤ j < l ≤ i − 2, we have δ(ql, a

i−l−1) = qi−1, but
δ(qj , a

i−l−1) = qk, where k < i − 1. Thus, the states from the set {q1, q2, . . . , qi−2}
are pairwise inequivalent. The same is true for the states with indices j and l where
i + 1 ≤ j < l ≤ n, since δ(ql, a

n+i−l−1) = qi−1 is accepting, but on the other hand
we have δ(qj , a

n+i−l−1) 6∈ {qi−1, qi, qi+1}, and, therefore, non-accepting.

Any state qj ∈ {q1, q2, . . . , qi−2} is inequivalent to any state ql ∈ {qi+2, qi+3, . . . , qn}
since δ(qj , a

i−j−1) = qi−1, but δ(ql, a
i−j−1) 6∈ {qi−1, qi, qi+1}.

In the following, we distinguish the two cases 2 ≤ i ≤ n− 1, and i = 1 or i = n.

To receive a number of states i between 2 and n−1 for the minimal DFA equivalent
to the defective automaton, we assume that the considered defect affects the transi-
tion from state qi−1 to qi of DFA A. Then all states of the set {qi, qi+1, . . . , qn} are
not reachable anymore. The remaining accepted language is the language {ai−2},
which is finite and can be accepted by a minimal DFA with i states.

For the case i = 1 or i = n, we modify the automaton from above. Let qn−2, qn−1,
and qn be the accepting states in this case. If the transition from q1 to q2 is defective,

Measuring Defects in Finite Automata

3.1. Defects Occurring on the Transitions 25

q1 q2 qn−2 qn−1 qn
a a a a a

Figure 3.7: An incomplete DFA whose equivalent minimal DFA needs exactly n+ 1
states.

the resulting automaton accepts the empty language. Thus, one state is sufficient
for an equivalent minimal DFA. This proves i = 1. In case the defect affects the
transition from qn−1 to qn, the automaton accepts the finite language {an−3, an−2},
which can be accepted by a minimal DFA with n states. This concludes the proof.

The three theorems from above considering the defect flip transition show that
this defect can result in a very huge minimal DFA for arbitrary alphabets. For unary
alphabets, this number is much smaller. This, again, proves the difference between
unary alphabet sizes, and at least binary alphabets concerning the state complexity.

In the proof of Theorem 3.1.4, we used the DFA depicted in Figure 3.6. This
DFA accepts an infinite language. The defective automata constructed in the proof
accept finite languages. This means that the defect can result in a loss of a lot of
information about the accepted language. This is motivates the analysis of defects.

The next theorem proves an upper bound for the number of states of an equivalent
minimal DFA that is received by the defect delete transition affecting a given DFA.

Theorem 3.1.5. Let A be a complete and minimal DFA with n ≥ 4 states and let
the NFA A′ be received from A by the defect delete transition. Then the equivalent
minimal DFA of A′ needs at most n + 1 states. This bound is tight even for unary
alphabets.

Proof. Even in the worst case, the deletion of a transition in a complete and minimal
DFA cannot implement ambiguity in the automaton. It can only lead to undefined
transitions. Thus, an equivalent minimal DFA may need at most one more state
that represents a rejecting sink which will be the target of every undefined transition.
Therefore, a minimal DFA needs at most a number of n+ 1 states.

To prove the optimality of the bound for this defect affecting only a single tran-
sition in a minimal DFA with unary alphabet, we will use the DFA depicted in
Figure 3.5. We assume the set of accepting states to be {qn−2, qn−1, qn}. In the
proof of Theorem 3.1.3 it was already shown, that this DFA is complete and mini-
mal.

Let this DFA be defected by deleting the transition δ(qn, a) = q1. We receive the
incomplete DFA given in Figure 3.7. This automaton accepts the finite language
{an−3, an−2, an−1}, which is known to be accepted by a minimal DFA with n + 1
states.

Measuring Defects in Finite Automata

26 3.1. Defects Occurring on the Transitions

q1 q2 qi−2 qi−1 qi qn−1 qn
a a a a a a a a

a

Figure 3.8: DFA to prove the existence of minimal DFA equivalent to defective au-
tomata for the defect delete transition with a number of states between
1 and n− 1.

We now know that a minimal DFA equivalent to the defective automaton needs
at most n+ 1 states when deleting one transition of a given DFA with n ≥ 2 states.
In this context the question naturally arises if there exists an equivlant minimal
DFA for any number of states between 1 and n+ 1 for the defect delete transition.
The following theorem provides the answer.

Theorem 3.1.6. Let n ≥ 3 be a number. Then there exist minimal DFA A with n
states, such that by the defect delete transition, the equivalent minimal DFA for the
defective automaton needs precisely a number of i states, for all 1 ≤ i ≤ n+ 1. This
is true even for unary alphabets.

Proof. In the proof of Theorem 3.1.5 it has already been shown that there exists
a DFA with n ≥ 1 states that meets the upper bound of n + 1 states. For the
remaining numbers of states, we first consider i ≤ n − 1. Let A = 〈Q, {a}, δ, q1, F 〉
be the DFA from Figure 3.8 with Q = {q1, q2, . . . , qn}, F = {qi−1, qn} where i−1 = 0
means that qn is the only accepting state of the automaton, and

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n

.

This DFA is complete. The following considerations provide the minimality of
automaton A.

Every state qj ∈ {q1, q2, . . . , qn} is reachable by aj−1.
For indices x, y ∈ {1, 2, . . . , n − 1} \ {i − 1}, x < y, either δ(qx, a

n−y) 6= qi−1 or
δ(qx, a

n−y) = qi−1 but δ(qy, a
n−y) = qn. In the first case, qx and qy are inequivalent.

In the other case, qx and qy can be distinguished by reading an−ya since then we
have δ(qx, a

n−ya) = qi 6∈ F and still δ(qy, a
n−ya) = qn. To show that states qi−1

and qn are inequivalent, we use the word a and obtain δ(qi−1, a) = qi, i < n and
δ(qn, a) = qn. Thus, all the states are reachable and inequivalent.

For 2 ≤ i ≤ n−1, we modify the DFA A by deleting the transition δ(qi−1, a) = qi.
We receive the incomplete DFA depicted in Figure 3.9. Since this automaton accepts
the finite language {ai−2}, an equivalent minimal DFA needs precisely i states.

For i = 1, the transition connecting states q1 and q2 is deleted. The result-
ing incomplete DFA accepts the empty language, which is accepted by a minimal
DFA with only one state.

Measuring Defects in Finite Automata

3.1. Defects Occurring on the Transitions 27

q1 q2 qi−2 qi−1

a a a a

Figure 3.9: Incomplete DFA whose equivalent minimal DFA needs exactly i states.

q1 q2 qn−2 qn−1 qn
a a a a a

a

Figure 3.10: DFA that proves the existence of a minimal DFA with n states, that
is equivalent to a defective automaton received for the defect delete
transition.

For a state complexity of n let A = 〈Q, {a}, δ, q1, F 〉 be the DFA depicted in
Figure 3.10, where Q = {q1, q2, . . . , qn}, F = {qn−1} and

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n

.

This DFA is complete. The following considerations provide the minimality of the
chosen automaton.

Every state qj ∈ {q1, q2, . . . , qn} is reachable by aj−1.
For indices x, y ∈ {1, 2, . . . , n} \ {n− 1}, x < y, we have δ(qx, a

n−1−y) 6= qn−1 but
δ(qy, a

n−1−y) = qn−1. Thus, all the states are reachable and inequivalent.
We now modify the DFA A by deleting the transition δ(qn−1, a) = qn. We receive

the incomplete DFA from Figure 3.11. Since this automaton accepts the finite
language {an−2}, the equivalent minimal DFA has n states.

Before we turn to the next defect, we prove that the minimal DFA for the NFA de-
picted in Figure 3.12 needs exactly 2n − 1 states. We use this automaton to prove
the optimality of Theorem 3.1.7.

Lemma 3.1.1. The minimal DFA equivalent to the NFA depicted in Figure 3.12
has precisely 2n − 1 states for n ≥ 2.

q1 q2 qn−2 qn−1

a a a a

Figure 3.11: Incomplete DFA whose equivalent minimal DFA needs exactly n states.

Measuring Defects in Finite Automata

28 3.1. Defects Occurring on the Transitions

q1 q2 q3 qn−1 qn
a, c a, b, c a, b, c a, b, c a, b, c

a, b

a, b, c

Figure 3.12: NFA whose equivalent minimal DFA needs exactly 2n − 1 states for
n ≥ 2.

Proof. Let A = 〈Q, {a, b, c}, δ, q1, {qn}〉 be the NFA with n ≥ 2 states depicted in
Figure 3.12 with state set Q = {q1, q2, . . . , qn}. The state transition function δ can
be determined from the picture.

At first we consider the reachability of the states of 2Q. The singletons {qi} for
all qi ∈ Q are reachable by reading the words ci−1 from the initial state {q1}. The
sets {q1, qx}, where x ∈ {2, 3, . . . , n} can be reached by the words abx−2. By induc-
tion, the sets {q1, qx1 , qx2 , . . . , qxk}, where k ≥ 2, x1, x2, . . . , xk ∈ {2, 3, . . . , n}, and
x1 < x2 < · · · < xk, are reachable from the set {q1, qx2−x1+1, qx3−x1+1, . . . , qxk−x1+1}
of size k − 2 by reading the word abx1−2. Therefore, all subsets of Q containing
state q1 are reachable.

The sets {qx1 , qx2 , . . . , qxk}, where k ≥ 2, and where x1, x2, . . . , xk ∈ {2, 3, . . . , n}
are indices with x1 < x2 < · · · < xk, can also be shown to be reachable. Since all
states containing q1 are reachable we can also reach the set {qx1 , qx2 , . . . , qxk} by
reading the word cx1−1 from the set {q1, qx2−(x1−1), qx3−(x1−1), . . . , qxk−(x1−1)}.

Thus, every non-empty set can be reached from the initial state {q1}. The only
non-reachable set from 2Q is the empty set. This cannot be reached by any word
read from the initial state {q1} since there exists no undefined transition in the given
NFA.

In the following we show that these 2n − 1 states are inequivalent. Let x and y
denote two arbitrary indices of states of A belonging to {1, 2, . . . , n − 1}, where
x < y. In the DFA built by the power set construction the sets {qx} and {qy} can be
distinguished by the word an−y. Therefore, also all the sets S, T ⊆ {q1, q2, . . . , qn−1},
where S 6= T , and S 6= ∅, T 6= ∅, can be distinguished.

This leaves the inequivalence of the accepting states containing qn. Let S and T
be the sets selected as above. The first case we consider is qn−1 6∈ S. Then we have
δ(S ∪ {qn}, a) = S′ ⊆ {q1, q2, . . . , qn−1} and δ(T ∪ {qn}, a) = T ′ where S′, T ′ are
not empty. If qn−1 ∈ T then T ′ contains qn and the sets S ∪ {qn} and T ∪ {qn} are
distinguishable.

In case that qn−1 6∈ T , T ′ is a non-empty subset of {q1, q2, . . . , qn−1} and we
already know that S′ and T ′ can be distinguished and, thus, also S ∪ {qn} and
T ∪ {qn}.

Measuring Defects in Finite Automata

3.1. Defects Occurring on the Transitions 29

If qn−1 ∈ S we have that δ(S ∪{qn}, a) = S′ ∪{qn}, where S′ ⊂ {q1, q2, . . . , qn−1},
and δ(T ∪ {qn}, a) = T ′. If qn−1 6∈ T , the considered sets are inequivalent. In case
that qn−1 ∈ T , we choose j = max{i | qi ∈ S \T ∪T \S}. Without loss of generality,
let qj ∈ S. We then have δ(S ∪{qn}, an−j) = S′∪{qn} where S′ ⊆ {q1, q2, . . . , qn−1}
and δ(T ∪ {qn}, an−j) = T ′ ⊆ {q1, q2, . . . , qn−1}. This proves all sets S ∪ {qn} and
T ∪ {qn} to be inequivalent.

Summarising, we have 2n − 1 inequivalent and reachable states in the minimal
DFA that accepts the same language as the NFA given in Figure 3.12.

With the help of Lemma 3.1.1 we can show the following theorem.

Theorem 3.1.7. Let A be a minimal DFA with n ≥ 2 states and let the NFA A′
be received by the defect insert transition. Then the minimal DFA equivalent to A′
needs at most 2n − 1 states. This bound is tight for at least ternary alphabets.

Proof. In the worst case the defect insert transition implements ambiguity in the
automaton but does not lead to undefined transitions since the DFA affected by the
defect is complete. Thus, an equivalent minimal DFA may need all states generated
by the power set construction except the empty set which can only be reached in
the DFA if there exists an undefined transition in the NFA. This means a complete
and minimal DFA needs at most 2n − 1 states.

We now show that this bound can be reached by inserting a single transition
in a minimal DFA with ternary alphabet. Let A = 〈Q, {a, b, c}, δ, q1, {qn}〉 be the
DFA given in Figure 3.13, where Q = {q1, q2, . . . , qn} and

δ(qj , a) =

{
q1 if j = 1 or j = n,

qj+1 if j ∈ {2, 3, . . . , n− 1}
,

δ(qj , b) =

{
q1 if j = 1 or j = n,

qj+1 if j ∈ {2, 3, . . . , n− 1}
,

and

δ(qj , c) =

{
qj+1 if j ∈ {1, 2, . . . n− 1},
q1 if j = n

.

This DFA is complete. It is also minimal since every state qi ∈ {q2, q3, . . . , qn} can be
reached from the initial state q1 by reading can−i−1 and state q1 is reached by reading
symbol a. The states are also inequivalent, since for states qk, ql ∈ {q1, q2, . . . , qn−1}
with k < l, we have that δ(qk, a

n−l) 6= qn but δ(ql, a
n−l) = qn.

We modify this DFA by inserting the transition δ(q1, a) = q2. We receive the
NFA depicted in Figure 3.12. For this automaton we in Lemma 3.1.1 it was already
shown that the equivalent minimal DFA needs precisely 2n − 1 states.

Since the upper bound stated in the former theorem needs a ternary alphabet, the
following theorem gives the upper bound for unary alphabet. For binary alphabets,
we were not able to prove a tight upper bound, yet. In this thesis, this is left over
for future work.

Measuring Defects in Finite Automata

30 3.1. Defects Occurring on the Transitions

q1 q2 q3 qn−1 qn
c a, b, c a, b, c a, b, c a, b, c

a, b

a, b, c

Figure 3.13: DFA for which the equivalent minimal DFA of the defective automaton
with inserted transition from q1 to q2 on a needs 2n − 1 states.

q1 q2 qk−1 qk

qk+1 qk+2

qn−1qn

a a a a

a

a

a

a

a

a

Figure 3.14: General structure of a DFA that accepts a unary regular language. The
acceptance property is omitted.

Theorem 3.1.8. Let A be a complete and minimal DFA with n ≥ 2 states and
unary alphabet, and let A′ be the NFA that results from the defect insert transition.
Then the equivalent minimal DFA for A′ has at most n2−2n+ 2 states. This bound
is tight.

Proof. It is well known since Chrobak [16, 17], that minimal DFA for unary alphabets
consist of a chain of states followed by a ring of states. There exists only one state
belonging to both of these parts. We want to call this state the connecting state,
and denote it by qk, like in the DFA depicted in Figure 3.14.

q1 q2 qn−1 qn
a a a a

a

Figure 3.15: DFA for which the defect insert transition inserting a transition on a
from q2 to qn results in a minimal DFA with n2 − 2n+ 2 states.

Measuring Defects in Finite Automata

3.1. Defects Occurring on the Transitions 31

The insertion of one additional transition to one of the states causes an ambiguity
for precisely this one state. Let qa denote this state. The defective automaton
consists of as many states as the original DFA since the defect does not lead to a
loss of any states. Therefore, the number of states for the DFA equivalent to the
defective automaton is denoted in terms of the number of states of the original DFA.

In case qa is not reachable from all of its successors, the ambiguity can be used
only once on every path leading through the automaton. For an equivalent minimal
DFA constructed by the power set construction this means that the predecessors
of qa are represented by singletons and the successors of this state are represented
by sets consisting of at most two states of the original DFA. The restriction to at
most two states within such a set is due to that the ambiguity leads into at most
two different states, from which state qa is not reachable anymore.

Let A denote a unary DFA like depicted in Figure 3.14. The insertion of a
transition for any state in {q1, q2, . . . , qk−1} to a state with a higher index, leads to
the restriction that the ambiguity can only be used once. For example, this is the
case when inserting a transition from q2 to q4 in A. In the power set automaton for
this defective automaton, only the singletons {q1} and {q2} are reachable, and the
pairs of states of the form {qi, qi+1}, where 3 ≤ i ≤ n−1, and {qn, qk}. Once entering
state {qn, qk} in the power set automaton, only the pairs {qi, qi+1} for k ≤ i ≤ n−1,
and {qn, qk} are reachable.

For such an inserted transition, an upper bound for the number of states for
the power set automaton is given by 2n. This includes the possibility to reach all
singletons and all pairs of two consecutive states of the DFA. For pairs of non-
consecutive states, the number may only decrease.

The inserted ambiguity may also be used more than only once on some paths in
the automaton. In this case, the state qa needs to be reachable from at least one of
its successors. This means, there exists at least one path that starts and ends with
state qa. Inserting another transition on a in the DFA depicted in Figure 3.14 for
state q4 leading into state q2, a path from q4 to itself is inserted. The shortes such
path is given by q4q2q3q4. In this example, only the singletons {q1}, {q2}, {q3}, and
{q4} are reachable in the power set automaton for k ≥ 5.

This is because all states in the power set automaton that are reachable from
{q4} are represented by sets of size at least two. These sets are {q2, q5}, {q3, q6},
and {q4, q7}. The reachable triples are {q2, q5, q8}, {q3, q6, q9}, and {q4, q7, q10}, if
n = 10. The indices differ for different numbers n, and also the number of reachable
sets of a fixed size.

From this, we can deduce that the more states, also the more sets of states are
existent and reachable of a fixed size between 2 and n − 1. But since n is fixed to
some number, the number of reachable sets is maximisedby minimising the length
of the path connecting qa to itself. Then the maximal number of sets of states of
a fixed size is reachable in the power set automaton. This means, the insertion of
δ(q4, a) = q3 would fulfill these requirements.

If the additional transition is inserted for a state within the cycle qkqk+1 . . . qnqk,
then there exist two different cycles that begin and end with state qa. If, for example,

Measuring Defects in Finite Automata

32 3.1. Defects Occurring on the Transitions

the additional transition is inserted for state qk+1 leading into state qk+4, there exist
the cycles qk+1qk+2 . . . qnqkqk+1, and qk+1qk+4qk+5 . . . qnqkqk+1 for state qk+1. For
the states within the power set automaton this means that all singletons up to {qk+1}
are reachable. Also all pairs of the form {qi, qi+2} for k + 2 ≤ i ≤ n − 2, and the
pairs {qn−1, qk}, {qn, qk+1} are reachable. These are n − k − 2 many pairs. The
reachable sets of three states are {qi, qi+2, qi+4} for k ≤ i ≤ n − 4, and the triples
{qn−3, qn−1, qk}, and {qn−2, qn, qk+1}. These are also n− k − 2 sets.

From this, we can deduce that there exist n − k − 2 numbers of reachable state
sets for each size between 2 and n − 1. To maximise this number, k needs to be
minimised. This is the case, if k is equal to one. Since most of the reachable sets
consist of states with indices that have the same fixed distance greater than or
equal to one, the number of such sets is maximised, if this distance is fixed to one.
Summarising all the maximising conditions, this means the original DFA consists
only of a ring of n states and the inserted transition inserts a second cycle from qa
to itself of length n − 1. All n singletons also need to be reachable, wherefore the
state qa needs to be the state qn.

In the power set automaton for such a defective automaton, the rejecting sink state
cannot be reached, since there do not exist any undefined transitions. Combining
the results from above, there exist precisely n − 1 reachable sets of states in the
power set automaton of the defective automaton for each size i between 2 and n−1.
All in all this gives the following sum for the number of reachable state sets:

n+
n−1∑
i=2

n− 1 = n2 − 2n+ 2.

Since it is possible that these state sets are all inequivalent, this gives an upper
bound for the number of states of a complete and minimal DFA accepting the
language of the defective automaton.

The upper bound is met when the defect insert transition affects the DFA depicted
in Figure 3.15. Let A = 〈Q, {a}, δ, q1, {qn}〉 denote this DFA, where its set of states
is Q = {q1, q2, . . . , qn}, and its state transition function is given by

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
q1 if j = n

.

This DFA is complete and each state qi ∈ Q is reachable from the initial state q1

by the word ai−1, where 1 ≤ i ≤ n. The states are all inequivalent since for two
states qi, qj ∈ Q, 1 ≤ i < j ≤ n − 1, the word an−j distinguishes the two states.
Thus, the depicted DFA is minimal.

If the defect adds the transition δ(qn, a) = q2 to this DFA the result is an NFA con-
sisting of two cycles, one of length n and one of length n− 1.

The states of the equivalent DFA resulting from the power set construction have a
special structure due to the structure of A. In this special case, for the sets consisting
of more than one state, the states are consecutive. That means if the state with the

Measuring Defects in Finite Automata

3.1. Defects Occurring on the Transitions 33

smallest index within the set is qi, where 1 ≤ i ≤ n − 1, then the rest of the states
of the set are qi+1, qi+2, . . . , qi+l. This also includes the accepting state consisting of
all the states of the NFA. The indices are to be considered modulo n plus one.

The only state containing state q1 and not q2 is the singleton {q1}. All of the
other state sets contain either both, only q2 or none of these two states.

The accepting states of the power set automaton are the ones containing state qn,
the other state sets are non-accepting.

For this DFA we have that all of these sets are reachable by a certain number
of a’s to be read. Not all of the reachable states are inequivalent. The two states
represented by the sets {q2, q3, . . . , qn} and {q1, q2, . . . , qn} are equivalent, since both
states are accepting and by any number of a’s read from each of the states the
resulting state is {q1, q2, . . . , qn}. Thus, they are equivalent.

To prove the inequality of the other states, let X and Y be two arbitrary subsets
of {q1, q2, . . . , qn} representing a state of the power set automaton, where X 6= Y , qn
belongs to both of the sets, and none of the sets X and Y is equal to {q2, q3, . . . , qn}.
Let qx denote the state of the symmetric difference X4Y , where we define the
number x = max{m | qm ∈ X4Y } to be the biggest index of all states belonging
to only one of the sets X and Y . This especially means 1 ≤ x < n. Without loss
of generality, we assume qx ∈ X. Then the word an−x shows the inequality of the
sets X and Y . If this word is processed from set X, the power set automaton is
driven into a state represented by a set containing state qn, and if it is processed from
state set Y into a state set without qn. This proves the inequality of all accepting
states of the power set DFA. The only exception are the two accepting state sets
{q2, q3, . . . , qn} and {q1, q2, . . . , qn}, which were already proven to be equivalent.

This leaves the proof of the inequality of the reachable non-accepting states of
the power set automaton. For this, let X,Y ⊆ {q1, q2, . . . , qn−1} now be two ar-
bitrary, non-accepting state sets, where X 6= Y . These sets consist of consecutive
states since they do not contain state qn. Let X = {qi, qi+1, . . . , qi+k} and let
Y = {qj , qj+1, . . . , qj+l}, where 1 ≤ i, j ≤ n − 2, k, l ≥ 0, and qi+k 6= qn, qj+l 6= qn.
Since these two sets are not equal and consist of consecutive states, their intersec-
tion X ∩ Y is either empty or contains states, that belong to both of the sets.
In the first case, there exists a state qx in one of the sets X or Y , for which
x = max{m | qm ∈ X ∪ Y } is the biggest index of all states belonging to either X
or Y . Without loss of generality, we can assume qx ∈ X. Then the word an−x proves
the inequality of the sets X and Y . If this word is read from set X the automaton
is driven into a state containing state qn, and read from state set Y into a state
without qn.

In case that X ∩ Y is not empty, there exists a state qx in this intersection,
where x = max{m | qm ∈ X ∩ Y } is the biggest index belonging to both sets.
Processing the word an−x from X and Y , the power set automaton is driven into
two different accepting states, since X 6= Y . These accepting states cannot be the
two equivalent accepting sets {q2, q3, . . . , qn} and {q1, q2, . . . , qn}, since the latter one
is only reachable from the former one. The inequivalence of the accepting states also
proves the inequivalence of X and Y .

Measuring Defects in Finite Automata

34 3.2. Defects Occurring on the States

The total number of states for a minimal DFA accepting the same language as
the defective automaton constructed above, is given by summing up the numbers
of all the reachable state sets of a fixed size between 1 and n that were proven to
be inequivalent. This minimal DFA has two state less than the DFA received from
the power set construction, since {q2, q3, . . . , qn} and {q1, q2, . . . , qn} are the only
equivalent states, and the empty set does not represent one of the reachable states.
The rest of the unreachable states were already omitted.

This DFA consists of precisely n different singletons. For each size 2 ≤ i ≤ n− 1,
the minimal DFA contains a state represented by a state set of exactly size i. For
each of these sizes there exist exactly n − 1 such sets. The set {q2, q3, . . . , qn} is
equivalent to the last state also belonging to the power set automaton, which is
represented by the state set Q. The following sum then gives the number of all
states of the minimal DFA for the considered defective automaton:

n+ 1 +

((
n−1∑
i=2

n− 1

)
− 1

)
= n+ (n− 2)(n− 1) = n2 − 2n+ 2.

This concludes the proof.

3.2 Defects Occurring on the States

This section deals with defects occurring on the states of deterministic finite au-
tomata. The following theorem covers the defect of deletions of accepting states of a
given DFA and of all transitions leading into these states and the ones leaving these
states.

Theorem 3.2.1. Let A be a minimal DFA with n ≥ 2 states and let the NFA A′ be
received by the defect delete accepting state affecting A. Then the equivalent minimal
DFA for A′ needs at most n states. This bound is tight even for unary alphabets.

Proof. For this defect the upper bound is n since the deletion of an accepting state
and all its incoming and outgoing transitions only leads to undefined transitions.
It does not insert any ambiguity to the automaton. Thus, to receive an equivalent
minimal DFA it is sufficient to add a rejecting sink state if it does not already exist.

We show that the automaton given in Figure 3.16 meets the upper bound when
deleting the accepting state n. Let A = 〈Q, {a}, δ, q1, {qn−1, qn}〉 denote the depicted
DFA, where Q = {q1, q2, . . . , qn} is the set of states, and

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
q1 if j = n

defines its state transition function.
Deleting the accepting state qn and all transitions leading into or going out of this

state results in an NFA that accepts the finite language {an−2}. The complete and
minimal DFA accepting this language needs n states.

Measuring Defects in Finite Automata

3.2. Defects Occurring on the States 35

q1 q2 q3 qn−1 qn
a a a a a

a

Figure 3.16: DFA for the proof of the optimality of the upper bound for the defect
delete accepting state.

The theorem below deals with the question for magic numbers for the defect delet
accepting state.

Theorem 3.2.2. Let n ≥ 2 be a number. Then there exist minimal DFA A with
n states, such that by the defect delete accepting state, the equivalent DFA for the
defective automaton needs precisely a number of i states, for all 1 ≤ i ≤ n. This is
true even for unary alphabets.

Proof. For i = n we have already shown in the proof of Theorem 3.2.1 that there
exists a DFA that meets the upper bound of n states.

Let 1 ≤ i ≤ n − 1 and A = 〈Q, {a}, δ, q1, F 〉 be the DFA depicted in Figure 3.8
with state set Q = {q1, q2, . . . , qn}, set of accepting states F = {qi−1, qn} where
i− 1 = 0 means that qn is the only accepting state of this automaton, and

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n

.

This DFA is complete and minimal, which was alredy used in the proof of Theo-
rem 3.1.6.

If the considered defect affecting DFA A deletes the accepting state qn and all
transitions having qn as source or target, we receive an incomplete DFA that accepts
the finite language {ai−2}. For this language it is well known that the accepting
minimal DFA consists of precisely i states.

The next possible defect on states we want to consider is the defect delete non-
accepting state. In the following theorem an upper bound for the number of states
of an equivalent minimal DFA for the defective automaton is presented.

Theorem 3.2.3. Let A be a minimal DFA with n ≥ 2 states and let A′ denote the
NFA that is received by the defect delete non-accepting state affecting A. Then the
equivalent minimal DFA of A′ has at most n states. This bound is tight even for
unary alphabet.

Proof. Deletion of one non-accepting state and all transitions leading into and leav-
ing this state in a minimal DFA with n ≥ 2 states does not lead to ambiguity, only
to undefined transitions. Thus, this defect results in an incomplete DFA. By adding

Measuring Defects in Finite Automata

36 3.2. Defects Occurring on the States

a rejecting sink state if it does not already exist, the upper bound for the number
of states of an equivalent minimal DFA is given by n.

For the proof of tightness of this upper bound, we use the automaton depicted in
Figure 3.10 already used in Theorem 3.1.6. Let A = 〈Q, {a}, δ, q1, {qn−1}〉 be this
DFA for which the state set is Q = {q1, q2, . . . , qn}, and its state transition function
δ : Q× {a} → Q is defined as follows:

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n

.

The accepted language is {an−2} and it is well known, that automaton A is the
minimal one accepting this language.

If the defect delete non-accepting state affects state qn, this results in an incom-
plete DFA, since qn is a rejecting sink state. The language accepted by this defective
automaton still is {an−2}. This shows the tightness of the upper bound, since the
minimal DFA accepting this language still needs n states.

Also for this defect, the question for magic numbers arises in a natural way. The
following theorem gives the answer to this question.

Theorem 3.2.4. Let n ≥ 2 be a number. Then there exist minimal DFA A with n
states, such that by the defect delete non-accepting state, the equivalent DFA for the
defective automaton needs precisely a number of i states, for all 1 ≤ i ≤ n. This is
true even for unary alphabets.

Proof. The existence of such an automaton for i = n was already shown in the
proof of Theorem 3.2.3. It was used to show that the upper bound of n states for a
minimal DFA accepting the language of the defective automaton is met.

For the remaining numbers of states 1 ≤ i ≤ n−1, we use the automaton depicted
in Figure 3.8. This automaton was already stated to be a minimal DFA in the proof
of Theorem 3.1.6. If n = 2, this DFA consists of the non-accepting state q1, and the
accepting state q2. The non-accepting state qi−1 does not exist in this automaton.

When deleting state qi of this automaton for i between 1 and n− 1, the resulting
automaton is disconnected from all the states qi+1 up to state qn. Then the only
remaining accepting state is qi−1. In case that i = 1 this means, there is no state
left at all, especially no accepting state. For each i ≥ 2, the accepted language is
{ai−2}, where a0 = λ. For this language it is well known, that a recognising minimal
DFA has exactly i states.

The case i = 1 still needs to be considered. The defective automaton does not
consist of any state. This means, the accepted language is the empty language,
which is accepted by a minimal DFA with only one state, which is a rejecting sink
state. This completes the proof.

Theorems 3.2.1, 3.2.2, 3.2.3 and 3.2.4 show that the defects deleting any type of
state in a minimal DFA with n ≥ 2 states may result in an automaton accepting a

Measuring Defects in Finite Automata

3.2. Defects Occurring on the States 37

language such that a minimal DFA accepting the same language needs a number of
states between 1 and n.

Another defect to consider for automata is the loss of the accepting property for a
state within a minimal DFA. The following theorems will cover some of the questions
concerning the state complexity of this type of defect.

Theorem 3.2.5. Let A be a minimal DFA with n ≥ 3 states and let A′ denote the
NFA that is received by the defect remove acceptance. Then the equivalent minimal
DFA for A′ needs at most n states. This bound is tight even for unary alphabets.

Proof. In case there only exists one accepting state in the DFA the defect results
in a DFA accepting the empty language. In this case n is an upper bound for the
state complexity of a minimal DFA accepting the empty language. Considering a
DFA A with at least two accepting states, the defect does not affect the completeness
property of the automaton since there exists no added ambiguity or results in any
undefined transition. It is even possible that the minimality is preserved. The only
difference between the two automata is the accepted language since the defective
one accepts less words than the other one. Thus, in any case there is no need to add
new states to the defective automaton A′. This is why at most n states are needed
for an equivalent minimal DFA.

To prove the tightness of this bound for n ≥ 3, we use the automaton depicted in
Figure 3.8 again, which we already used in the proof of Theorem 3.1.6. The accepting
states of this automaton are chosen to be qn−2 and qn, which means i = n− 1.

In case the defect only affects the acceptance of state qn−2 of this automaton,
the defective automaton still is complete and minimal, since it accepts the language
{a}n−1{a}∗. The minimal DFA accepting this language is already the defective
automaton. Since this DFA consists of n states, the statement of the theorem is
proven.

As for the former defects affecting states, the next theorem covers the question
for the possible state complexities of minimal DFA accepting the language of the
defective automaton for the defect remove acceptance.

Theorem 3.2.6. Let n ≥ 3 be a number. Then there exist minimal DFA A with n
states, such that by the defect remove acceptance, the equivalent DFA for the defective
automaton needs precisely a number of i states, for all 1 ≤ i ≤ n. This is true even
for unary alphabets.

Proof. Again, we use the automaton A depicted in Figure 3.8 for n ≥ 3.
For 2 ≤ i ≤ n, if the defect affects state qi−1 of this automaton, the resulting

automaton accepts the language {a}n−1{a}∗, which is accepted by a complete and
minimal DFA with exactly n states. This was already shown to prove the tightness
of the upper bound in Theorem 3.2.5.

To show the existence of a DFA with a number of states i between 1 and n − 1,
that is equivalent to a defective automaton, we assume that the defect affects the
acceptance property of state qn of A. For i ≥ 2, the accepted language is reduced

Measuring Defects in Finite Automata

38 3.2. Defects Occurring on the States

q1 q2 qi−1 qi qi+1 qn−2 qn−1 qn
a a a a a a a a a

a

Figure 3.17: DFA used in the proof for the upper bound for the defect of inserting
the accepting property to a non-accepting state.

to the single word ai−2. The language consisting of this word only, is accepted by a
minimal DFA with exactly i states.

For i = 1, state qi−1 does not exist at all and the language accepted by the defective
automaton is empty. Since this language is accepted by a minimal DFA with one
state, the proof is completed.

The last defect to consider is the defect add acceptance. The following theorems
will cover some questions concerning the state complexity for this type of defect.

Theorem 3.2.7. Let A be a minimal DFA with n ≥ 3 states, and let A′ be received
from A by the defect add acceptance. Then the equivalent minimal DFA of A′ needs
at most n states. This bound is tight even for unary alphabet.

Proof. Adding acceptance to already existing non-accepting states in a minimal
DFA never leads to undefined or ambiguous transitions. It also does not lead to less
states. This defect can only result in a violation of the minimality of the given finite
automaton. Thus, it is possible that the minimal DFA accepting the same language
as the defective automaton already is the defective one. All these considerations
lead to an upper bound of n states for the equivalent DFA.

The optimality of this upper bound is shown by letting the defect affect the
minimal DFA depicted in Figure 3.5 we already used to show the optimality of the
upper bound for the defect flip transition.

For n ≥ 3 states, this automaton consists of one accepting and at least two non-
accepting states. The accepted language consists of all words over the alphabet {a}
for which the length is kn+n− 1 for some integer k ≥ 0. The adding of acceptance
for one of the non-accepting states of the considered DFA does not lead to any
ambiguity or undefined transitions to the automaton. This defect may only affect
the inequivalence of the states, and, thus, the minimality of the DFA. We assume
that the defect affects state qn−1. Then the two accepting states can be distinguished
by the word a, and the defective automaton still is a minimal DFA with n states.

Lemma 3.2.1. The finite automaton depicted in Figure 3.17 is a minimal DFA for
n ≥ 3.

Measuring Defects in Finite Automata

3.2. Defects Occurring on the States 39

q1 q2 qi−1 qi
a a a a

a

Figure 3.18: Minimal DFA with unary alphabet and i states.

Proof. Let the depicted DFA be denoted by A = 〈Q, {a}, δ, q1, F 〉, with state set
Q = {q1, q2, . . . , qn}, set of accepting states F = {qi, qi+1, . . . , qn−2, qn}, and state
transition function δ : Q× {a} → Q defined as follows:

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n.

This automaton A is a minimal DFA. This is because a state qj is reachable from
the initial state q1 by the word aj−1. The states q1, q2, . . . , qi−1 and also qn−1 are
inequivalent to the states qi, qi+1, . . . , qn−2 and qn. Two states qj and qk from the
subset {qi, qi+1, . . . , qn−2, qn}, with j < k, can be shown to be inequivalent by the
word an−j , since δ(qj , a

n−j) = qn−1 6∈ F , but δ(qk, a
n−j) = qn ∈ F .

Two states qj and qk from the set {q1, q2, . . . , qi−2}, where j < k, are inequivalent
since δ(qj , a

n−j−1) = qn−1 6∈ F and δ(qk, a
n−j−1) = qn ∈ F . Any state qk of this

subset of states can be proven to be inequivalent to the states qi−1 and qn−1 by the
word a.

The only states left to show to be inequivalent are the states qi−1 and qn−1. We
have that δ(qi−1, a

n−i) = qn−1 6∈ F and δ(qn−1, a
n−i) = qn ∈ F .

Summarising the results, we have that all states of automaton A are reachable
from the initial state q1. They are also inequivalent. Thus, the DFA depicted in
Figure 3.17 is a minimal DFA.

In the following theorem the answer is given to the question for possible numbers of
states that a minimal DFA needs to accept the language of the defective automaton
for the defect add acceptance.

Theorem 3.2.8. Let n ≥ 3 be a number. Then there exist minimal DFA A with n
states, such that by the defect add acceptance affecting A, the equivalent DFA for
the defective automaton needs precisely a number of i states, for all 1 ≤ i ≤ n. This
is true even for unary alphabets.

Proof. We use the automaton depicted in Figure 3.17, which was shown to be min-
imal in Lemma 3.2.1.

In case the defect affects state qn−1 of this automaton the resulting automaton
accepts the language {a}i−1{a}∗, which is accepted by the minimal DFA with ex-
actly i states depicted in Figure 3.18. This automaton is complete and each state qj

Measuring Defects in Finite Automata

40 3.3. Defects in DFA Accepting Finite Languages

Unary reg.
Reg. languages languages

Delete Transition n+ 1 n+ 1

Insert Transition 2n − 1 n2 − 2n+ 2

Flip Transition 2n n+ 1

Exchange Symbol 2n n

Table 3.1: Bounds for defects affecting the transitions of a minimal DFA. For unary
alphabets, these bounds are tight. For arbitrary regular languages, these
bound are also tight already for binary alphabets, except for the defect
insert transition. For this defect, the alphabet is at least ternary.

Unary reg.
Reg. languages languages

Delete Non-Acc. State n n

Delete Accepting State n n

Remove Acceptance n n

Add Acceptance n n

Table 3.2: Tight bounds for defects affecting the states of a minimal DFA with n
states.

is reachable from the initial state by the word aj−1. Two states qk and qr belong-
ing to the subset {q1, q2, . . . , qi−1} are inequivalent since for k < l it is true that
δ(qk, a

i−k−1) = qi−1, which is a non-accepting state, and δ(qr, a
i−k−1) = qi, which is

an accepting state. This completes the proof.

Tables 3.1 and 3.2 summarise the results of this section.

3.3 Defects in DFA Accepting Finite Languages

This section covers the question of the state complexity for equivalent minimal
DFA for a defective automaton that is the result of a defect affecting a minimal
DFA accepting a finite language.

In general, results concerning the state complexity for finite languages differ from
those for arbitrary regular languages. In [11] it was shown that some bounds of
the state complexity for simple operations like for the concatenation of two finite
languages are strictly lower for finite languages than the one for general regular
languages. In some sence, a defect may be considered as an operation that is not
applied to the regular language directly, but to the deterministic finite automaton
that accepts the language. This motivates the separate investigation of the finite

Measuring Defects in Finite Automata

3.3. Defects in DFA Accepting Finite Languages 41

languages also for defects.

The first result proves an upper bound for the defect exchange symbol.

Theorem 3.3.1. Let A be a minimal DFA with n ≥ 2 states that accepts a finite
language, and let A′ be the NFA that results from the defect exchange symbol. Then
the equivalent minimal DFA of A′ needs at most n2

2 − n
2 + 1 states.

Proof. Let Q = {q1, q2, . . . , qn} denote the state set of the minimal DFA A accepting
a finite language. Since the accepted language is finite and the DFA is complete
there exists a rejecting sink state. Without loss of generality, let qn denote this
sink state. In such a DFA, there also exists one accepting state for which each
transition leads into this sink state. Let this state be denoted by qn−1. All of the
other accepting or non-accepting states of the DFA have at least one transition that
does not lead into this sink state qn. If there would exist another accepting state for
which all transitions lead into the rejecting sink state, this state and qn−1 would be
equivalent which is a contradiction to the minimality of DFA A. Similar is true for
any non-accepting state q with transitions leading only into qn. Then q and qn are
equivalent. In addition to these facts, there also do not exist any cycles or loops in
such a DFA except for one loop on the rejecting sink state. Otherwise the accepted
language would not be finite anymore.

Due to the last fact, the states of such a DFA can be ordered by the maximal
number of symbols that need to be read to reach state qn−1. This property is unique
for each state of the DFA. The only state that cannot be ordered in this way is the
rejecting sink state qn, because there exists no path from qn to qn−1. Therefore, this
state is not considered when ordering the states.

Let k = max{|w| | w ∈ L(A)} denote the length of the longest word accepted
by DFA A. Then the initial state has distance k from state qn−1 since that many
symbols have to be read from the initial state to reach qn−1. This is because the
longest words need to be accepted by qn−1. Otherwise they would be accepted by
another accepting state for which there exists a transition leading into a different
state than the sink state. For this state there needs to exist a path to another
accepting state, since otherwise DFA A would not be minimal. But this would be a
contradiction to the choice of k.

The other states all have a distance smaller than k to state qn−1 since everytime
a transition is performed the target state has a smaller distance to state qn−1 than
the source state. And there always exists at least one transition from a state with
distance 1 ≤ i ≤ k to a state with distance i− 1 since the longest words need to be
accepted.

Let the states having the same longest distance 0 ≤ i ≤ k to qn−1 be collected
in levels named by their longest distance i. By the facts from above, we can derive
that there always exists at least one transition from a level 1 ≤ j ≤ k into the level
j−1. It is impossible to have transitions leading from a state of one level to another
state in the same level. There also do not exist transitions leading from one level
into a level with a bigger index.

Measuring Defects in Finite Automata

42 3.3. Defects in DFA Accepting Finite Languages

Now it is possible to rename the states such that the states of level j always have
a smaller index than the ones in the level j − 1 and levels with smaller indices for
all levels j ∈ {1, 2, . . . , k}. By this, the smallest indices are found in the level k and
the ones with the biggest indices in level 0.

If in this automaton for exactly one transition the symbol of the transition is
exchanged by another one, an ambiguity for only one state is inserted. Any path
leading through this defective automaton can visit this state at most once. Thus,
the ambiguity is used at most once. For the DFA resulting from the power set
construction this means that at most all singletons may be reachable and at most
all pairs of states. But not all pairs are possible to reach due to the structure of the
defective automaton. The only reachable pairs in the power set automaton consist of
states that are reachable from the state that is the source of the defective transition
by a path that uses this defective transition. This especially means for a pair of
states {qi, qj}, where i < j, that in case qi is on level k ≥ 1 and qj on level l ≥ 1 the
successor state in the power set automaton consists of either two states, one from a
level ≤ k − 1 and one from a level ≤ l − 1, or of only one state from a level smaller
than or equal to min{k − 1, l − 1}.

With this knowledge it is possible to sum up all of the possible numbers of reach-
able states. There exist n−1 possible singletons plus the rejecting sink state. For the
pairs there exist the following possible combinations for a state qi ∈ {q1, q2, . . . , qn−1}
of A: It is possible that qi appears in a pair with any of the other states with a
bigger index > i. This is due to the renumbering of the states depending on the
levels. Thus, there may exist n− i− 1 pairs containing state qi. So there may exist
at most n− 1− 1 = n− 2 pairs containing state q1, at most n− 2− 1 = n− 3 pairs
containing state q2, and so on up to at most n − (n − 2) − 1 = 1 pairs containing
state qn−2, and n − (n − 1) − 1 = 0 pairs containing state qn−1. In this listing, all
combinations are mentioned and counted only once.

Adding up all the possible numbers of states, the following sum gives the upper
bound:

n+ (n− 2) + (n− 3) + · · ·+ 1 = n+

n−2∑
i=1

i =
n2

2
− n

2
+ 1

To prove the tightness of this upper bound, there must exist a possibility within
the defective automaton to reach every state from the initial state. In the automa-
ton there also need to exist transitions that can enlarge the distance between two
states. For the DFA gained by the power set construction this means that from a
pair of consecutive states it is possible to reach another pair of states that are not
consecutive anymore but have a fixed distance. This is necessary to have as many
as possible reachable pairs within the power set automaton.

The next theorem proves a lower bound for the defect of exchanging the symbol
of a transition. The provided lower bound and the upper bound proved in Theo-
rem 3.3.1 do not match but are in the same order of magnitude.

Measuring Defects in Finite Automata

3.3. Defects in DFA Accepting Finite Languages 43

q1 q2 q3 q4 q5 q6

q7 q8 q9 q10 q11 qn−2 qn−1 qn

a, c a, b, c a a, b, c a, b, c

a a, b, c a, b, c a, b, c a(, b, c) a(, b, c) a, b, c a, b, c

a, b, c

b

b
c

b
c

b

c

a, b, c

Figure 3.19: DFA for which the defect exchange symbol affecting the transition of
q1 on b by exchanging it into an a results in a minimal DFA with O(n2)
states.

Theorem 3.3.2. For n ≥ 2, the upper bound of n2

2 − n
2 + 1 states for a minimal

DFA accepting the same language as an automaton that results from a DFA affected
by the defect exchange symbol is tight in the order of magnitude.

Proof. Let A = 〈Q,Σ, δ, q1, {qn}〉 denote the DFA depicted in Figure 3.19, where
Q = {q1, q2, . . . , qn} is its set of states, Σ = {a, b, c} is its alphabet, and its state
transition function is given by

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n

,

δ(qj , b) =


q3 if j = 1,

qj+1 if j = 2, j = 4 + 4k, j = 5 + 4k, or j = 6 + 4k,

qj+2 if j = 3 + 4k,

qn if j = n

,

and

δ(qj , c) =


qj+1 if j = 1, j = 2, j = 4 + 4k, j = 5 + 4k, or j = 6 + 4k,

qj+3 if j = 3 + 4k,

qn if j = n

,

where k ≥ 0. In case the target state for a transition on b or c of a state qi does not
exist due to the size n, the transition leads into state qi+1.

Measuring Defects in Finite Automata

44 3.3. Defects in DFA Accepting Finite Languages

This automaton is complete. Each of the states qi ∈ Q is reachable from the
initial state q1 by the word ai−1. The inequivalence of two different states qi and qj
of A, where i < j, is proven by the word an−1−i. The DFA accepts when this word
is read from the state with the smaller index, and rejects when it is read from the
other state. This proves the minimality of A.

In case that the defect exchange symbol affects the transition between the states q1

and q3 on symbol b, and b is replaced by a, in the resulting automaton there exists
an ambiguity on a and one undefined transition on b for state q1. In the following we
will show that the equivalent minimal DFA for this automaton needs O(n2) states,
which proves the tightness of the upper bound shown in Theorem 3.3.1 in the order
of magnitude.

The power set construction applied to this defective automaton gives a DFA with
states that are represented by sets consisting of at most two states of the defective
automaton. All of the other possible subsets of Q cannot be reached in the power
set automaton, since state q1 is not reachable from any state of A. Therefore, this
ambiguity can only be used once. All possible pairs do not contain state q1. For
each state of such a pair, the transition in A changes the state deterministically.

Since the states in the singletons and pairs are the same states as in DFA A these
sets are subsets of Q = {q1, q2, . . . , qn}. All pairs containing state qn that represent
a state of the power set automaton are equivalent to the singleton composed of only
the state of the pair unequal to qn. This is due to the fact that qn is the rejecting
sink state of the defective automaton. Since the initial state q1 also cannot be part
of any pair, the pairs are subsets of {q2, q3, . . . , qn−1}.

The structure of the defective automaton resulting from the DFA A depicted
in Figure 3.19 causes the pairs to consist of two states of this automaton with a
fixed distance. The minimal distance is 1, the maximal distance is

⌊
n−1

2

⌋
if qn−1 is

reachable from a state with index 5+4k or 6+4k for some k ≥ 0 by a symbol b or c,
or it is

⌊
n−1

2

⌋
− 1 if n − 1 is computable by 4 + 4k for some k ≥ 0. The structure

is also the reason for the property that the bigger the distance of the states within
the pairs gets the higher is the index of the state with the smaller index.

The reachable pairs representing states of the power set automaton are all pairs
{qi, qi+1} ⊂ {q2, q3, . . . , qn−1}. They are reachable by the words ai−1. Reachable
pairs with bigger distances l ≥ 2 are of the form {3 + 2k+ i, 3 + 2k+ i+ l} for even
distances and {3 + 2k + i, 3 + 2k + i+ l+ 1} for odd distances, where i, k ≥ 0. The

pairs with even distances are reached by the words (ac)
l
2
−1abai, and the pairs with

odd distances by the words (ac)
l−1
2 ai.

No other pairs of states are reachable since the distances are produced by the
transitions on b and c by the states with an index computable by 3 + 4k, where
k ≥ 0. The distance can be increased on each of these states by either one or two,
depending on the transition used for the state. Therefore, it is impossible to have a
big distance already for small indices of the states contained in the pair.

The singletons {qi} for qi ∈ {q1, q2, . . . , qn} are all reachable by the words cai−2.

This leaves the proof of the inequality of the reachable states of the power set

Measuring Defects in Finite Automata

3.3. Defects in DFA Accepting Finite Languages 45

automaton to show its minimality. All the singletons {qi} 6= {qj} from the set
{q1, q2, . . . , qn−2} are inequivalent because if i < j, the word an−i−1 computed from
state {qi} leads into acceptance, and into the rejecting sink state when read from
state {qj}.

All the reachable non-accepting states represented by two different pairs {qi1 , qi2}
and {qj1 , qj2}, can be distinguished by the word an−1−i1 , when i1 = min{i1, i2, j1, j2}.

To show the inequality of any the non-accepting singletons and any of the non-
accepting pairs, let {qi} denote such a reachable singleton and {qj1 , qj2} such a pair.
Then the word an−1−m distinguishes the states, where m = min{i, j1, j2} is the
smallest of all three indices.

The accepting states can also be shown to be inequivalent. Let {qi, qn−1} and
{qj , qn−1} denote two different accepting pairs, and i < j. These pairs can be
differentiated by the word an−1−i. This word also differentiates any pair {qi, qn−1}
from the accepting singleton {qn−1}.

This concludes the proof of the minimality of the considered power set automaton
and leaves the counting of the states of this DFA. There exist n singletons, one
of them represents the rejecting sink state of the DFA. The number of pairs with
distance one is n− 3 since the first such pair is {q2, q3} from which all of the other
such pairs are reached by reading a certain amount of a’s.

For the number of pairs of states of the form {qi, qj} ⊆ {q1, q2, . . . , qn−1} having a
distance l ≥ 2 we differentiate between even and odd distances. For even distances
l ≥ 2 there exist exactly n− 1− 2l pairs reachable, and for odd distances there exist
n − 1 − 2l + 1 such pairs in the minimal DFA accepting the same language as the
defective automaton.

In case the maximal distance for the pairs is given by
⌊
n−1

2

⌋
, we differentiate

between even and odd n − 1. In case n − 1 is even, the maximal distance is n−1
2 .

Then the number of states is bounded from below by the following sum:

n−1
2∑
l=0

n− 1− 2l =
n2 − 1

4
∈ Θ(n2)

A quite similar lower bound is received for odd n − 1, where the maximal distance
is n−1

2 − 1.
n−1

2
−1∑

l=0

n− 1− 2l =
n2 − 1

4
∈ Θ(n2)

If the maximal distance for the pairs is
⌊
n−1

2

⌋
− 1, n − 1 is always even. So the

maximal distance is n−1
2 − 1. Then a lower bound is the same as for odd n− 1 and

the other maximal distance.
This proves that the number of pairs is already at least quadratic.
Considering an upper bound for the number of pairs, the sums from above can be

built over the numbers n−1−2l+1. This gives a quadratic upper bound. Since the
number of singletons is only n, this proves the tightness in the order of magnitude
of the upper bound proved in Theorem 3.3.1.

Measuring Defects in Finite Automata

46 3.3. Defects in DFA Accepting Finite Languages

q1 q2 q3 q4 qn−2 qn−1 qn
a, b, c a, b, c a, b a, b, c a, b, c a, b, c a, b, c

a, b, c

c

Figure 3.20: DFA for which the defect flip transition affecting the transition of q1 to
q2 for a results in a minimal DFA with Ω(2n) states.

Having a closer look at the structure of the DFA depicted in Figure 3.19, the
transitions on the symbols b and c for the states q3, q7, and so on are responsible for
the reachability of the pairs in the power set automaton with a distance greater than
one. The bigger the distance, the bigger is the index of the smallest state having
such a distance to another state. If there exist more symbols in the alphabet, it
is possible to receive bigger distances much earlier in the automaton. This results
in more reachable pairs for the power set automaton and a better lower bound for
the defect of exchanging the symbol of a transition. The best result would give an
alphabet of a size near to the number of states. But since this number is not fixed,
this is not possible.

In the following theorem, we concentrate on the defect flip transition affecting
DFA that accept a finite language.

Theorem 3.3.3. Let A be a complete and minimal DFA with n ≥ 2 states that
accepts a finite language and let A′ be the NFA that is received from the defect flip
transition. Then the equivalent minimal DFA for A′ needs at most 2n states. This
bound is tight in the order of magnitude for at least ternary alphabets.

Proof. The interchange of the source and the target of a transition introduces an
ambiguity to the automaton and results in an undefined transition. In the worst
case, this leads to an NFA, for which the equivalent minimal DFA has 2n states.
Therefore, we can assume the upper bound to be the one for arbitrary regular
languages, which is 2n.

To prove the optimality of this bound at least in the order of magnitude, we give a
lower bound based on the DFA depicted in Figure 3.20. Let A = 〈Q,Σ, δ, q1, {qn−1}〉
denote this DFA, where Q = {q1, q2, . . . , qn} is its set of states, Σ = {a, b, c} is the
underlying alphabet, and its transition function δ : Q× Σ→ Q is given by

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n,

δ(qj , b) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n,

Measuring Defects in Finite Automata

3.3. Defects in DFA Accepting Finite Languages 47

and

δ(qj , c) =

{
qj+1 if j ∈ {1, 2, 4, 5, . . . , n− 1},
qn if j ∈ {3, n}

.

This DFA is minimal since each state qi ∈ Q is reachable from the initial state q1

by reading the word ai−1, and two different states qi, qj ∈ Q can be proved to be
inequivalent by the word an−1−i.

In case the considered defect affects the transition between states q1 and q2 on the
symbol a, the accepted language of the resulting automaton is infinite. The power
set construction produces a DFA with states of a special structure. First of all, each
of the singletons is reachable by words consisting of only b’s.

Let {qi1 , qi2 , . . . , qik} ⊂ {q1, q2, . . . , qn−1} be a set representing a state of the power
set automaton, where 1 ≤ i1 < i2 < · · · < ik ≤ n − 1, and k ≥ 2. The first such
state reachable from the initial state {q1} of the power set automaton is the state
{q1, q3}. It is reached by reading the word ba. By further reading only b’s and c’s,
all pairs are reachable where the indices have a distance of two.

Reading the word ba from state {q1, q3} leads into the state {q1, q3, q5}, from which
all sets of three states of the same structure are reachable. This means, the indices
of the states pairwise differ by either two or four.

From this, we can deduce that all sets of size at least two, that do not contain qn,
and which represent states of the power set automaton, consist of states of A that
have consecutive indices that pairwise differ by a multiple of two. This especially
means, for such a set {qi1 , qi2 , . . . , qik} the indices can be calculated by i1,i2 = i1 +2,
i3 = i2 + 2, . . . , ik = ik−1 + 2.

By words of the form ((ab)kc)lbm for k, l,m ≥ 0 it is possible for the sets of states
with consecutive even or odd indices to build bigger gaps between the indices. But
the distance is always a multiple of 2.

All in all, this gives the possibility to reach every subset of {q1, q2, . . . , qn−1},
where all the indices of the contained states are either even or odd, but not both
in the same set. There is only one exception to this. The subsets of at least size
two cannot contain state q1 without state q3. This is due to the only possibility of
reaching q1 by reading symbol a in state q2, which also leads into state q3.

Counting all the sets containing state qi, where i ≥ 2 is even and the biggest of
all indices within the set, we have at most i

2 − 1 states that may be contained in
addition to qi in the same set. This gives exactly

i
2
−1∑
j=1

(i
2 − 1

k

)
= 2

i
2
−1 − 1

such sets of states.
If qi is the state with the biggest index in a set consisting only of states with an

odd index, we have

2 ·
i
2
−1∑
j=1

(i
2 − 1

k

)
= 2

i
2
−1 − 1

Measuring Defects in Finite Automata

48 3.3. Defects in DFA Accepting Finite Languages

q1 q2 qi−2 qi−1 qi qn−2 qn−1 qn
a a a a a a a a a

a

Figure 3.21: DFA used in the proofs of several defects.

many such sets of states. This number excludes the set {q1}.
In both of the sums from above the state represented by the empty set is not

included. Therefore, for the total number of reachable states in the DFA received
by the power set construction, we have the following sum:

2 +
∑

i even,
i∈{1,2,...,n−1}

2
i
2
−1 + 2 ·

∑
i odd,

i∈{1,2,...,n−1}

2
i
2
−1

For even n− 1 this is exactly 2
n
2

+1− 1, and if n− 1 is odd this is 2
n+1

2 + 2
n−1

2 − 1.
All of these reachable sets can be shown to be inequivalent by words consisting

only of b’s. The exact number is given by n−1− i, where i is the biggest index such
that state qi belongs only to one of the two considered state sets. This concludes
the proof, since the DFA derived from the power set construction is minimal with a
number of states in Ω(2n).

Theorem 3.3.3 shows that even for a minimal DFA accepting a finite language the
defect flip transition can lead to a massive blow up in the number of states for the
equivalent minimal DFA.

In several of the following theorems, the automaton depicted in Figure 3.21 is used
in their proofs. Therefore, let A = 〈Q, {a}, δ, q1, {qi−1, qn−1}〉 denote the depicted
DFA, where Q = {q1, q2, . . . , qn} denotes its set of states, 1 ≤ i ≤ n − 1, and the
state transition function δ : Q× {a} → Q is defined as follows:

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n

.

This DFA is complete and each of the states is reachable for all numbers n ≥ 2
and 1 ≤ i ≤ n − 1. In case that i = 1, the only accepting state of A is state qn−1.
The inequivalence of two different states qj and qk from Q\{qi−1, qn−1} is proved by
the word an−j−1, if j < k. The states qi−1 and qn−1 are proven to be inequivalent
by the word an−i−2. This shows the minimality of the chosen DFA.

The next two theorems will cover the defect delete transition affecting minimal
DFA accepting a finite languages. It is shown that this defect may lead to either
a massive loss of states or no loss at all. This depends on the structure and the
position of the missing transition.

Measuring Defects in Finite Automata

3.3. Defects in DFA Accepting Finite Languages 49

Theorem 3.3.4. Let A be a complete and minimal DFA with n ≥ 3 states that
accepts a finite language and let A′ be the incomplete DFA that is received by the
defect delete transition affecting A. Then the equivalent minimal DFA of A′ needs
at most n states. This bound is tight already for unary alphabets.

Proof. For any minimal DFA accepting a finite language, the deletion of a transition
results in an incomplete finite automaton. This automaton is still deterministic since
the deletion of a transition does not insert ambiguity to any of the existing states. In
a minimal DFA for finite languages there always exists a rejecting sink state. This
would be the only state to be inserted in the worst case to complete the incomplete
DFA. Thus, the upper bound is given by n.

To prove the tightness of this bound, let A denote the minimal DFA depicted in
Figure 3.21, and its set of states by Q = {q1, q2, . . . , qn}.

In case the defect delete transition affects the transition on a for state qn−1,
the resulting defective automaton is an incomplete DFA. The equivalent minimal
DFA is automaton A itself. This proves the optimality of the upper bound for this
defect.

The automaton in Figure 3.21 can also be used to prove that all numbers of states
between 1 and n are possible to reach for the minimal DFA that is equivalent to the
automaton derived from a minimal DFA accepting a finite language that is affected
by the defect delete transition.

Theorem 3.3.5. Let n ≥ 3 be a number. Then there exist minimal DFA A with n
states accepting finite languages, such that by the defect delete transition, the equiv-
alent DFA for the defective automaton needs precisely a number of i states, for all
1 ≤ i ≤ n. This is true even for unary alphabets.

Proof. Let i ∈ {1, 2, . . . , n} be a fixed number and A = 〈Q, {a, b}, δ, q1, {qi−1, qn−1}〉
denote the minimal DFA depicted in Figure 3.21, where Q = {q1, q2, . . . , qn} is its
set of states. Here, i = 1 means, only qn is accepting.

Let the considered defect delete the transition on a from state qi−1 to state qi. For
2 ≤ i ≤ n− 1 this results in the loss of the reachability of the states qi, qi+1, . . . , qn.
The accepted language is {ai−2}, which is accepted by a minimal DFA with pre-
cisely i states.

The case i = n is already shown in Theorem 3.3.4. For i = 1, the defect affects
the transition on a of state q1. The resulting defective automaton accepts the empty
language, which is known to be accepted by a minimal DFA with only one state.
This concludes the proof.

Just like for arbitrary regular languages, the next defect on transitions to inves-
tigate is insert transition adding a transition to the already existing transitions in
a minimal DFA accepting a finite language. The next theorem provides an upper
bound which is tight in the order of magnitude.

Measuring Defects in Finite Automata

50 3.3. Defects in DFA Accepting Finite Languages

q1 q2 q3 q4 qn−2 qn−1 qn
b, c a, b, c a, b a, b, c a, b, c a, b, c a, b, c

a, b, c

c

a

Figure 3.22: DFA for which the defect insert transition inserts a transition from q1

to q2 on a results in a minimal DFA with Ω(2n) states.

Theorem 3.3.6. Let A be a minimal DFA with n ≥ 2 states that accepts a finite
language, and let A′ be the NFA that is received by the defect insert transition affect-
ing A. Then the minimal DFA that is equivalent to A′ needs at most 2n − 1 states.
This bound is tight in the order of magnitude for at least ternary alphabets.

Proof. The upper bound of 2n − 1 is derived from the arbitrary case proven in
Theorem 3.1.7. To prove the optimality in the order of magnitude, the automaton
depicted in Figure 3.22 can be modified by the insertion of a transition on a from
state q1 to q2 to receive an automaton quite similar to the one used in the proof of
Theorem 3.3.3. For the two automata the sets of reachable and inequivalent states
in the power set automata are the same. Therefore, a lower bound of Ω(2n) for the
defect of insert transition can be derived from the one for the defect flip transition.
This concludes the proof.

This concludes the investigations for defects on the transitions affecting minimal
DFA that accept finite languages. The next theorems will cover the defects on states.
The first type of this kind of defect is delete state, either accepting or non-accepting.
The following theorem considers the defect delete accepting state.

Theorem 3.3.7. Let A be a complete and minimal DFA with n ≥ 2 states that ac-
cepts a finite language, and let A′ be the incomplete DFA that is received by the defect
delet accepting state. Then the equivalent minimal DFA of A′ needs at most n − 1
states. This bound is tight already for unary alphabet.

Proof. Since the deletion of states only leads to undefined transitions, the insertion
of a rejecting sink state to build the target of the undefined transitions leads to
the minimal DFA equivalent to the defective automaton in the worst case. Due
to the fact that a rejecting sink is already included in a complete and minimal
DFA accepting a finite language, this leads to the upper bound of at most n − 1
states.

Measuring Defects in Finite Automata

3.3. Defects in DFA Accepting Finite Languages 51

Let A denote the DFA depicted in Figure 3.21 with state set Q = {q1, q2, . . . , qn},
and i = n− 1.

If the considered defect affects the accepting state qn−1 the resulting defective
automaton only consists of the reachable states q1, q2, . . . , qn−2. The non-accepting
states qj and qk from {q1, q2, . . . , qn−3} are still inequivalent, which can be proven
by the word an−j−3 in case that j < k. Reinsertion of the rejecting sink state qn
and the transition on a from state qn−2 to qn leads to the complete and minimal
DFA that is equivalent to the defective automaton since qn can also be proven to be
inequivalent to any state qj from {q1, q2, . . . , qn−3} by the same word an−j−3.

This DFA has exactly n− 1 states, which matches the upper bound.

To conclude the investigations on the defect delete accepting state, the next theo-
rem covers the question about the possible numbers of states below the upper bound
of n− 1.

Theorem 3.3.8. Let n ≥ 3 be a number. Then there exist minimal DFA A with n
states, each one accepting a finite language, such that by the defect delete accepting
state, the equivalent DFA for the defective automaton needs precisely a number of i
states, for all 1 ≤ i ≤ n− 1. This is true even for unary alphabets.

Proof. For this we again use the DFA A that is depicted in Figure 3.21, where
Q = {q1, q2, . . . , qn} denotes its set of states, and i is an index between 1 and n− 1.

The deletion of state qn−1 results in an incomplete deterministic automaton which
accepts the language {ai−2}. If i = 1 this is the empty language, and if i = 2 this
is the language {λ}. For all 1 ≤ i ≤ n − 1, this language is accepted by a minimal
DFA with precisely i states.

The next defect of deletion of states affects non-accepting states. There exists a
small difference between the deletion of accepting and non-accepting states. One
difference is the upper bound for the number of states that a minimal DFA needs
to accept the same language as the defective automaton. In the following theorem,
this upper bound is shown.

Theorem 3.3.9. Let A be a minimal DFA with n ≥ 2 states that accepts a finite
language, and let A′ be the incomplete DFA that is received by the defect delet non-
accepting state affecting A. Then the equivalent minimal DFA of A′ needs at most n
states. This bound is tight even for unary alphabet.

Proof. The worst case to happen in case that a non-accepting state is deleted is the
deletion of the rejecting sink state. In this case, there exist undefined transitions for
some states and a new rejecting sink state needs to be inserted to obtain a minimal
DFA. Therefore, the upper bound is given by n states.

To prove the optimality of the upper bound, let A be the DFA depicted in Fig-
ure 3.21, Q = {q1, q2, . . . , qn} denote its set of states, and i = n−1. In case that the
defect delet non-accepting state affects the rejecting sink state qn of A, the equiv-
alent minimal DFA for this defective automaton is precisely A since the defect did

Measuring Defects in Finite Automata

52 3.3. Defects in DFA Accepting Finite Languages

q1 q2 q3 qn−1 qn
a a, b a, b a, b a, b

a, b

b

Figure 3.23: DFA for which the defect delete non-accepting state affecting state q2

results in a minimal DFA with n− 1 states.

not have any effect on the accepted language. This shows the reachability of the
upper bound and concludes the proof.

The next theorem will give the answer to the question of possible sizes of a DFA ac-
cepting the language of a defective automaton that was received by the defect delete
non-accepting state.

Theorem 3.3.10. Let n ≥ 3 be a number. Then there exist minimal DFA A
with n states, each one accepting a finite language, such that by the defect delete
non-accepting state, the equivalent DFA for the defective automaton needs precisely
a number of i states, for all 1 ≤ i ≤ n. This is true even for unary alphabets.

Proof. For the number of states i ∈ {1, 2, . . . , n − 2, n}, we use the automaton
depicted in Figure 3.21 for which we have already shown that this is a minimal DFA.
In case that the defect affects state qi, the states qi, qi+1, . . . , qn are not reachable
anymore and the only accepting state is state qi−1. To make this automaton a
minimal DFA it is sufficient to add a rejecting sink state that builds the target of
all missing transitions. This results in a DFA with exactly i states.

The case i = n − 1 needs to be proven in a slightly different way because the
deletion of state qi is impossible for this defect since qn−1 is accepting. There-
fore, let A = 〈Q, {a, b}, δ, q1, {qn−1}〉 be the DFA depicted in Figure 3.23, where its
set of states is denoted by Q = {q1, q2, . . . , qn}, and the state transition function
δ : Q× {a, b} → Q is defined as follows:

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n

,

and

δ(qj , b) =


q3 if j = 1,

qj+1 if j ∈ {2, 3, . . . , n− 1},
qn if j = n

.

Measuring Defects in Finite Automata

3.3. Defects in DFA Accepting Finite Languages 53

This DFA is minimal since each state qj ∈ {q1, q2, . . . , qn} is reachable by the
word aj−1 and two states qj , qk ∈ {q1, q2, . . . qn−2, qn}, where j < k, can be shown
to be inequivalent by the word an−j−2.

If the defect delete non-accepting state affects state q2, the resulting automaton is
not complete anymore. The completeness can be received by adding the transition
from q1 on a into state qn. But it is still minimal since all of the states qj from the set
{q3, q4, . . . , qn} are still reachable from the initial state q1 by the words baj−3, and
for all states qj , qk ∈ {q3, q4, . . . , qn−2, qn} the word ban−j−3 proves the inequality
of qj and qk, if j < k. Since this DFA consists of exactly n − 1 states, the proof is
concluded.

The considered defect can only result in a minimal DFA with n− 1 states if there
exists at least one path in the original DFA not containing the deleted state that
preserves access to all of the states that are not deleted. This is only possible for at
least binary alphabets.

Now that the defects deleting states are covered, we turn come to those defects
that change the accepting property of the states. The first defect we are going to
investigate is the defect remove acceptance.

Theorem 3.3.11. Let A be a complete and minimal DFA with n ≥ 3 states that
accepts a finite language, and let A′ be the incomplete DFA that is received by the
defect remove acceptance. Then the equivalent minimal DFA of A′ needs at most n
states. This bound is tight even for unary alphabet.

Proof. The deletion of the acceptance property does not insert any ambiguity to the
DFA nor does it delete any transitions. This means, this defect may not change
anything on the completeness of the DFA, but may result in a DFA that is not
minimal anymore. In the worst case even the minimality is preserved. Thus, the
upper bound for the number of states of the minimal DFA that is equivalent to the
defective automaton is given by n.

To prove the tightness of this bound, let A again be the minimal DFA depicted
in Figure 3.21, where Q = {q1, q2, . . . , qn} denotes its set of states.

Let i be fixed to the index n− 1. Then, states qi−1 = qn−2 and qn−1 are different,
for n ≥ 3. In case that the defect removes the accepting property of state qi−1,
the resulting DFA accepts the language {an−2}. This language is accepted by a
minimal DFA with precisely n states already given by the defective automaton.
This concludes the proof.

The proof of Theorem 3.3.11 shows that removing acceptance for a state may
result in a DFA that is minimal again. This especially means that it may be difficult
to recognise if a given automaton is defective or not. This aspect will be further
investigated in the next chapter.

Since the upper bound of n states is the worst case, it is interesting to have a look
at other possible numbers of states below this bound. The following theorem proves
that the defect remove acceptance may result in another minimal DFA with exactly

Measuring Defects in Finite Automata

54 3.3. Defects in DFA Accepting Finite Languages

1 ≤ i ≤ n states, where i = n was already shown in the proof of the tightness of the
upper bound.

Theorem 3.3.12. Let n ≥ 3 be a number. Then there exist minimal DFA A
with n states, each one accepting a finite language, such that by the defect remove
acceptance, the equivalent DFA for the defective automaton needs precisely a number
of i states, for all 1 ≤ i ≤ n. This is true even for unary alphabets.

Proof. For any number 1 ≤ i ≤ n, we use the automaton depicted in Figure 3.21
for which it was already shown that this is a minimal DFA. In case that the defect
affects state qn−1, the minimality of this automaton is not preserved, since then the
only accepting state is qi−1 and all states from {qi, qi+1, . . . , qn} are equivalent and
can be replaced by a single rejecting sink state. The states from {q1, q2, . . . , qi−2} are
still reachable and inequivalent. This means that the equivalent minimal DFA for
this defective automaton has exactly i states.

This also covers the special case i = 1, where only state qn−1 is accepting. Remov-
ing acceptance for this state results in an automaton recognising the empty language,
for which the minimal DFA consists of exactly one rejecting sink state.

The last defect we want to consider for finite languages also concerns the accepting
property of a state. This time, this property is not removed but inserted for some
non-accepting state. Theorem 3.3.13 gives a tight upper bound of n for the number
of states of the minimal DFA that is equivalent to the defective automaton.

Theorem 3.3.13. Let A be a complete and minimal DFA with n ≥ 3 states, and
let A′ be the incomplete DFA that is received by the defect add acceptance. Then the
equivalent minimal DFA of A′ needs at most n states. This bound is tight even for
unary alphabet.

Proof. The insertion of the acceptance property to any of the already existing states
does not insert any ambiguity. It also does not lead to any undefined transitions.
The only thing this defect may change is the property of inequivalence for some of
the states. In the worst case, the given DFA can be modified by the considered
defect and the minimality property is not affected. This gives an upper bound of n
states.

To prove the tightness of this bound, let A be the minimal DFA depicted in
Figure 3.21, where Q = {q1, q2, . . . , qn} denotes its set of states, and i = 1, which
means that only state qn−1 is accepting.

In case that the defect affects state q1, the minimality of the automaton is pre-
served for n ≥ 3. All of the states are still reachable by reading a certain amount
of a’s, and the non-accepting states can still be distinguished also by a word con-
taining only a’s. The only two states that need to be checked to be inequivalent are
the two accepting states q1 and qn−1. But these two states are not equivalent since
the word an−2 read from q1 leads into state qn−1, wherefore qn−1 ends up in the
rejecting sink state qn. Since this minimal DFA still consists of n states, this proves
the optimality of the bound.

Measuring Defects in Finite Automata

3.3. Defects in DFA Accepting Finite Languages 55

q1 q2 qi−1 qi qi+1 qn−2 qn−1 qn
a a a a a a a a a

a

Figure 3.24: DFA for which the defect of insertion of the accepting property for state
qn results in a minimal DFA with i states, where 1 ≤ i ≤ n.

Also for this special defect we are interested of the possible numbers of states for
a minimal DFA that is equivalent to the defective automaton. The answer to this
question is given in the following theorem.

Theorem 3.3.14. Let n ≥ 3 be a number. Then there exist minimal DFA A
with n states, each of them accepting a finite language, such that by the defect add
acceptance, the equivalent DFA for the defective automaton needs precisely a number
of i states, for all 1 ≤ i ≤ n. This is true even for unary alphabets.

Proof. The number of states i = n is already shown in Theorem 3.3.13 for n ≥ 3.
For 1 ≤ i ≤ n− 1, let A = 〈Q, {a}, δ, q1, {qi, qi+1, . . . , qn−1}〉 denote the DFA de-

picted in Figure 3.24, where its set of states is given by Q = {q1, q2, . . . , qn}, and its
state transition function δ : Q× {a} → Q is defined as follows:

δ(qj , a) =

{
qj+1 if j ∈ {1, 2, . . . , n− 1},
qn if j = n

.

This DFA is minimal for n ≥ 3, since the longest accepted word is of length n− 2.
In case that the defect adds acceptance for state qn, all of the accepting states

are equivalent. The longest word not accepted then is ai−2 for i ≥ 2. It is well
known, that the minimal DFA accepting such a language needs exactly i states.
For i = 1, the language {a}∗ is accepted by the defective automaton. A minimal
DFA accepting this language consists of only one state.

Concluding this chapter, the results of the theorems are summarised in Table 3.3.

Measuring Defects in Finite Automata

56 3.3. Defects in DFA Accepting Finite Languages

Delete Transition n

Insert Transition Ω(2n) ≤ · ≤ 2n − 1

Flip Transition Ω(2n) ≤ · ≤ 2n

Exchange Symbol Ω(n2) ≤ · ≤ n(n−1)
2 + 1

Delete Non-Acc. State n

Delete Accepting State n− 1

Remove Acceptance n

Add Acceptance n

Table 3.3: Bounds for minimal DFA that are equivalent to a defective automaton
received from a minimal DFA that accepts a finite language. The bounds
for the defects flip or insert transition, and for the defect exchange symbol
are tight in the order of magnitude for at least ternary alphabets. All of
the other bounds are tight even for unary alphabets.

Measuring Defects in Finite Automata

4 Recognition and Correction of Defects
in DFA – By Example

In the previous chapter, we have seen that the considered defects may lead to large
minimal DFA accepting the language of a defective automaton compared to the
size of the original DFA. For some defects the size can even be exponential. In
practice, the automata used in speech processing often already consist of more than
one hundred million states [52]. If such an automaton is affected by a defect, this
may be desastrous for its size, and also for the usability.

This leads to the question of the possibility of recognition and also of fixing such
a defect. This may help to recognise a defective automaton. In addition, this leads
to the knowledge that the given automaton is not the original DFA. If the defect
could be recognised, located, and even be fixed, this would be helpful.

In the following, we will give properties of defective automata, that characterise
the appearance of the different defects. We already mentioned that more than one
appearance of one type of defect, or mixing the appearances of different defects may
lead to a different type of defect. This is the reason for restricting the following
research to only one appearance of only one type of defect. We will show, that some
defects lead to similar properties, and some to different ones. This means, not all
defects can be determined precisely by these properties.

We will also prove by example, that only one of the considered defects is fixable,
even if it is known, which defect leads to the defective automaton. Concluding from
this, it is nearly impossible to fix a defect.

This is the reason, why we turn to the investigation of some subsets of the lan-
guage that is accepted and rejected by the defective automaton, and the sizes of the
minimal DFA accepting these subsets. One of these subsets contains those words
that are accepted by the given automaton and which do not use the defect while
being processed by the defective automaton. These words were already accepted by
the original DFA. Another subset we will consider consists of all the rejected words,
that do not use the defect while being processed by the given automaton. This set
of words was also rejected by the original DFA. The third subset gathers all the
words that are accepted or rejected by the defective automaton that explicitly use
the defect while being processed. For these words it is not known, if they were also
accepted or rejected by the original DFA. Constructions will be given for automata
accepting these languages and upper bounds for the number of states for equivalent
minimal DFA.

57

58 4.1. Recognition of Defects in a Finite Automaton

4.1 Recognition of Defects in a Finite Automaton

At the first sight, it seems to be quite difficult to recognise, if an arbitrary finite
automaton is defective or not. Some of the considered defects modify a minimal
DFA to an NFA, but for some defect, the automaton still is a minimal DFA. This
especially is true for the combination of more than one occurence of one type of
defect, and also for a combination of several defects. This is why the following
investigations are restricted to defective automata that are the result of only one
occurence of a single type of defect.

At first we take a look at the properties of a defective automaton, that is the
result of a single defect. For the defect exchange symbol there exists one state having
exactly one undefined and one ambiguous transition. The defect flip transition leads
to one undefined transition for one state and an ambiguity for another state. These
two states are connected at least by the flipped transition. The insertion of one
transition leads to an ambiguity for one state. All of these defects result in an NFA.

The defect delete transition results in an automaton with one undefined transition
for exactly one state. This automaton is always an incomplete DFA.

The deletion of one accepting state and all transitions having this state as source
or target leads to at least one undefined transition for at least one state. The same
holds true for the deletion of a non-accepting state and all transitions starting or
ending in this state. The received automaton is still deterministic but incomplete.

Both defects that affect the property of acceptance for a state do not add any
ambiguity or introduce any undefined transitions to the DFA. It may only happen
that the minimality of the DFA gets lost.

Table 4.1 gives an overview of the possible results of the considered defects.

With the help of this knowledge it is now possible to recognise that a defect occurs
in a given automaton, assuming that only one defect occurs. In some cases we are
even able to decide which of the possible defects is at hand. We need to read the
entries of Table 4.1 not from the left to the right but from the right to the left. This
means, if the given automaton has only one transition missing for one state, and
the same state also has an ambiguity for exactly one symbol, then we know that the
defect exchange symbol lead to the given defective automaton. In case that the given
automaton misses only one transition for one state and has an ambiguity for one
symbol for another state, this automaton is the result of the defect flip transition.
If the automaton has no missing transitions but one ambiguity for one state, the
defect insert transition has appeared. Having that only one transition is missing for
one state, there exists more than one possible defect that may be present. The first
is the obvious one delete transition. The other one is delet state, either accepting or
non-accepting. This means, that for only one undefined transition it is impossible
to decide, which of the three possible defects has occurred.

The last two possible defects that affect the acceptance of states may also not be
recognised since the given automaton may still be complete and minimal. In case
the automaton is complete but not minimal anymore, we can conclude that a defect
of this kind has appeared, since all of the other defects lead to undefined transitions

Measuring Defects in Finite Automata

4.1. Recognition of Defects in a Finite Automaton 59

Defect Property of the defective automaton

Delete One undefined transition
Transition for precisely one state

Insert One ambiguous transition
Transition for precisely one state

One ambiguous transition for one state,
Flip Transition one undefined transition

for one other state

Exchange One ambiguous and one undefined
Symbol transition for one state

Delete At least one
Non-Accepting undefined transition
State for at least one state

Delete At least one
Accepting undefined transition
State for at least one state

Remove Acceptance none

Add Acceptance none

Table 4.1: Characteristic properties of a defective automaton resulting from a min-
imal DFA for precisely one defect of one of the considered types.

Measuring Defects in Finite Automata

60 4.2. Correction of Defects in a Finite Automaton

or ambiguities for some states. But, in general, we cannot differentiate between the
two defects.

4.2 Correction of Defects in a Finite Automaton

In the previous section, criteria were introduced to decide which of the defects is
responsible for the defective automaton. In this section, we give possibilities to
correct such a defective automaton.

Given an automaton and the knowledge which of the defects has occurred exactly
once to receive the given defective automaton from a complete and minimal DFA,
we can try to fix the automaton. This is not that simple for nearly all of the defects
since there may exist several possibilities that fix the defect, and lead to a minimal
DFA. In this case, it is impossible to decide which of the possible minimal DFA is
the original one. This would only be possible, if not only the defective automaton is
given but also some more information about the original DFA, like for example its
set of accepting states.

In the following, the different defects will be investigated on the subject of how
to fix the defect in the given automaton with the knowledge, which defect lead to
this automaton and that this defect only appears once within the automaton.

Exchange Symbol: The first defect to discuss is the one that exchanges the symbol
of a transition. In the previous section it was shown that this leads to one undefined
transition for one state and an ambiguity for the same state. More precise, this
state leads into two other states on the same symbol. It is obvious that one of these
transitions is the defective one. To repair the automaton it is possible to construct
two DFA by exchanging the symbol for one of the ambiguous ones by the symbol
of the undefined transition. One of these two DFA is the one that was affected by
the defect and resulted in the given automaton. This DFA then is minimal and
complete. But also the other automaton may be complete and minimal. So we may
not be able to decide which of the two constructed DFA is the original one.

The two following examples will show that it is both possible and impossible for
some cases to fix the defect in a given automaton if it is known that the symbol of
exactly one transition was exchanged.

Example 4.2.1. Let the automaton from Figure 3.2 be the given defective automa-
ton. The exchange of the symbol needs to have affected the transition on b with
source state qn. In order to fix this defect, we need to change the symbol from a
into b for one of the two transitions on a starting in state qn. This leads either to
the minimal DFA depicted in Figure 3.1 or the one depicted in Figure 4.1, which is
also minimal. Thus, it is impossible to decide, which of these DFA is the one the
given defective automaton was derived from. _ ^

^ _

Example 4.2.2. For the automaton depicted in Figure 4.2, we have two possibilities
to correct the defect. Either the transition from qn−1 to itself on b or the one

Measuring Defects in Finite Automata

4.2. Correction of Defects in a Finite Automaton 61

q1 q2 q3 qn−1 qn
a a, b a, b a, b a, b

b

a

b

Figure 4.1: Minimal DFA used in Example 4.2.1 for the defect exchange symbol.

q1 q2 q3 qn−1 qn
a, b, c a, b, c a, b, c a, b, c a

a, cb

b

b

Figure 4.2: Defective automaton used in Example 4.2.2 for the defect exchange
symbol.

from qn−1 to q1 on b is replaced by one on c. The second possibility leads to a
minimal DFA since all states are reachable by reading a certain number of a’s from
the initial state and can be distinguished by reading a word from {a}+{b}.

The other fixed DFA is the one depicted in Figure 4.3. Here states qn−1 and qn
are equivalent and, thus, this DFA is not minimal. Therefore it is possible to decide
from which the defective automaton was derived. _ ^

^ _

Flip Transition: The defect that interchanges the source and the target of a transi-
tion causes an ambiguity for one state and an undefined transition for another state,

q1 q2 q3 qn−1 qn
a, b, c a, b, c a, b, c a, b, c a

a, cc

b

b

Figure 4.3: Not minimal DFA used in Example 4.2.2 for the defect exchange symbol.

Measuring Defects in Finite Automata

62 4.2. Correction of Defects in a Finite Automaton

in case that the flipped transition does not have the same source and target. In fact,
these states are connected by the ambiguous transition before and after the defect
takes effect. This means, when trying to fix the defect, the target of the defective
transition is exactly the state with the undefined transition on the symbol of the
ambiguous transition. Thus, it is decidable which transition is the defective one and
can be fixed. Given a complete and minimal DFA with state set {q1, q2, . . . , qn}, and
an alphabet containing symbol a. In case that the transition on a from a state qi
to a state qj is corrupted and there already exists a transition on a from qj to qi
the defective transition is not merged with the original transition on a even if the
source, target, and symbol are the same. This is necessary to recognise the type of
defect and also to recognise the defective transition.

Example 4.2.3. Let the automaton from Figure 3.4 be the given defective automa-
ton. It is obvious that there exists an ambiguity for the transition on b for state qn
and an undefined transition on b for state qn−1. Thus, the transition on b connecting
the states qn and qn−1 is the defective transition and needs to be fixed. This leads
to the DFA depicted in Figure 3.3, which was proven to be complete and minimal
in Theorem 3.1.2. This DFA is the one, the given defective automaton was derived
from. _ ^

^ _

Delete Transition: For the defect delete transition, the state for which this tran-
sition is missing can be identified. It is also possible to identify the symbol for this
transition. The difficulty in fixing this defect is to determine the target of the missing
transition. There exist n different targets for this transition if the given automaton
consists of n states. It is possible that not only for one of these targets the result-
ing DFA is minimal. In general there exist more than only one resulting DFA that
are minimal and it is impossible to decide which one is the original DFA the given
defective automaton is derived from.

In the following we will give two examples, one for the undecidability for the
original DFA, and one for which the only minimal DFA resulting from the fixing of
the defect is the original DFA.

Example 4.2.4. If for the minimal DFA depicted in Figure 3.16 its transition
from qn to q1 on a is deleted, it is simple to identify that a transition on a is missing
for state qn. There exist n possible targets to complete this automaton. One of
the resulting DFA is the original one from Figure 3.16, if the missing transition is
inserted with target q1. In the proof of Theorem 3.2.1 it was shown that this DFA is
complete and minimal. Another possible fixed DFA is the one with target qn−1.
This is a DFA that is not minimal since the two accepting states qn−1 and qn are
equivalent.

A third option for the target of the missing transition would be state q2. The
resulting DFA with this transition also is minimal since all states qi, 1 ≤ i ≤ n, are
still reachable by reading the word ai−1 from the initial state q1. Two states qi, qj ,
1 ≤ i < j ≤ n − 2, can be shown to be inequivalent by the word an−j . States qn−1

and qn can be differentiated by the word a.

Measuring Defects in Finite Automata

4.2. Correction of Defects in a Finite Automaton 63

q1 q2 qn−1 qn
a a, b a, b a, b

a, b

b

Figure 4.4: Minimal DFA used in Example 4.2.5 for the defect delete transition.

Thus, there exist more that one minimal DFA resulting from the correction and re-
pair of the defect, and it is impossible to decide from which one the given automaton
is derived. _ ^

^ _

Example 4.2.5. Let the DFA depicted in Figure 4.4 be defected by deleting the
transition on a for state q1. Then only state qn is still reachable, all of the other
states cannot be reached anymore from the initial state q1 by any word. The only
possibility to fix this automaton and receive a minimal DFA where all of the states
are reachable again is to insert exactly the transition on a for state q1 leading into
state q2. All of the other possible targets lead to DFA that are not minimal. Thus,
in this case, there only exists one minimal DFA with n states that results from fixing
the defect, and is, therefore, decidable. _ ^

^ _

Insert Transition: Like discussed in Section 4.1, the defect insert transition leads
to an ambiguity for exactly one state. This especially means that for this state there
exist transitions on all symbols and for one symbol there exist two targets. In case
that these two targets are the same state, the correction is done by merging the two
transitions on the same symbol. This leads to the DFA the defective automaton is
derived from.

In general, the two targets for the ambiguous transition are different. The dele-
tion of either one of the two transitions on the same symbol leads to two different
DFA that may both be minimal. Therefore it is impossible to decide which of the
two minimal DFA is the one, the given defective automaton is derived from.

Example 4.2.6. Let the given automaton be the one depicted in Figure 3.12. The
inserted transition is either the one on a from state q1 to q2 or the one to q1 itself.
Trying to fix this automaton needs the deletion of one of these transitions. The
deletion of the transition on a from state q1 to q2 results in the DFA depicted in
Figure 3.13 for which its minimality was already shown in the proof of Theorem 3.1.7.

The other possible resulting DFA is the one depicted in Figure 4.5, which is
received from the defective automaton by deleting the transition on a from state q1

to itself. This automaton is also minimal since the state qi ∈ {q1, q2, . . . , qn} is
reachable by reading the word ai−1 from the initial state q1, and two different states
qi, qj ∈ {q1, q2, . . . , qn−1} can be distinguished for i < j by the word an−j . Therefore,

Measuring Defects in Finite Automata

64 4.2. Correction of Defects in a Finite Automaton

q1 q2 q3 qn−1 qn
a, c a, b, c a, b, c a, b, c a, b, c

b

a, b, c

Figure 4.5: Minimal DFA used in Example 4.2.6 for the defect insert transition.

q1 q2 qn−1 qn
a a a a

a

a

Figure 4.6: Minimal DFA used in Example 4.2.7 for the defect insert transition.

it is impossible to decide, from which of these two minimal DFA the given automaton
was derived from without the knowledge of more information of the original DFA._ ^

^ _

Example 4.2.7. Let the DFA depicted in Figure 3.8 be the minimal DFA where
i = 2. This means, that the two accepting states of this automaton are states q1

and qn. Its minimality was already shown in the proof of Theorem 3.1.6. This
DFA is corrupted by inserting a transition on the symbol a for state q1 that leads
into state qn. This automaton is depicted in Figure 4.6.

One of the transitions on a with source q1 needs to be deleted to correct this
defective automaton. The deletion of the transition with target qn leads exactly to
the one, this defective automaton was derived from. But the deletion of the other
transition leads to a DFA that is not minimal since the states q2, q3, . . . , qn−1 are
not reachable anymore.

For this given defective automaton it is obvious which of the corrected automata
is the original DFA. _ ^

^ _

Delete (Non-)Accepting State: Like for the defect delete transition, also for the
defects delete accepting or non-accepting state there exist n different targets for the
transitions of the missing state, that needs to be inserted to fix the defect. In case
that the given defective automaton consists of n− 1 states and an alphabet of size
k ≥ 1, the correction may lead to nk different DFA. Since this is quite a huge number
of automata, not only one of them needs to be minimal. This means that in the

Measuring Defects in Finite Automata

4.2. Correction of Defects in a Finite Automaton 65

q1 q2 qn−2 qn−1 qn
a a a a a

a

Figure 4.7: Minimal DFA used in Example 4.2.8 for the defect delete accepting state.

q1 q2 qn−2 qn−1 qn
a a a a a

a

Figure 4.8: Minimal DFA used in Example 4.2.8 for the defect delete accepting state.

general case it is not decidable which of the repaired DFA is the one the defective
automaton was received from. The next two examples will give evidence of this fact
for both defects.

Example 4.2.8. For the defect delete accepting state, let the given automaton be
the one depicted in Figure 3.11. If the defect is known from which this automaton
is derived, the target of the missing transition on a for state qn−1 needs to be the
deleted state. Inserting this state leaves the question where the transition on a
for this accepting state ends up. Let qn denote the inserted accepting state. One
of the resulting n DFA are the one depicted in Figure 3.8 for i = n. This one is
not minimal since the two accepting states qn−1 and qn cannot be distinguished.
But the two DFA depicted in Figures 4.7 and 4.8 are also possible to receive for
the fixed automaton. These DFA are both minimal since for both automata state
qi ∈ {q1, q2, . . . , qn} is reachable from the initial state q1 by reading ai−1, and two
states qi, qj ∈ {q1, q2, . . . , qn−2} for i < j are proven to be inequivalent by the
word an−j . The two accepting states qn−1 and qn can be proven to be inequivalent
by the word a in case that n ≥ 4. It is impossible to decide from which of these two
minimal DFA the given defective automaton was derived from or if it even was one
of the other n− 3 automata, we did not consider explicitly in this example. _ ^

^ _

Example 4.2.9. The DFA depicted in Figure 4.9 is minimal since every state
qi ∈ {q1, q2, . . . , qn} is reachable by reading the word ai−1 from the initial state q1,
and two states qi, qj , where 1 ≤ i < j ≤ n− 1, can be proven to be inequivalent by
the word an−j .

If in this DFA the non-accepting state q2 is deleted, the resulting defective au-
tomaton contains undefined transitions for states q1 on a and qn on a and b. To
correct the defect, it is necessary to insert a non-accepting state. For the sake of

Measuring Defects in Finite Automata

66 4.2. Correction of Defects in a Finite Automaton

q1 q2 q3 qn−1 qn
a a, b a, b a, b a, b

b

a, b

Figure 4.9: Minimal DFA used in Example 4.2.9 for the defect delete non-accepting
state.

q1 q2 q3 qn−1 qn
a a a, b a, b a, b

b

b
a, b

Figure 4.10: Minimal DFA used in Example 4.2.9 for the defect delete non-accepting
state.

convenience let this state be called q2 again. This new state is the target for the
three missing transitions for states q1 and qn. The targets for the transitions with
source state q2 are still unknown. Since there exist two symbols in the alphabet
and n states in the corrected automaton there exist n2 different combinations for
the targets.

One of these possible corrected DFA is the one depicted in Figure 4.9, which is the
minimal DFA the defective automaton was derived from. Another minimal DFA is
the one depicted in Figure 4.10. A state qi ∈ {q1, . . . , qn} of this DFA is reachable
by reading the word ai−1 from the initial state q1, and two different states qi and qj
with 1 ≤ i < j ≤ n− 1 can be shown to be inequivalent by the word an−j .

This means, there exist at least two minimal DFA that are the results from cor-
recting the defect in the given defective automaton, and it is not possible to decide
which of the two is the one, the given automaton was derived from. At least not
without further information of the original DFA. _ ^

^ _

The following two examples give proof of the possibility to correct the defects of
deleting an accepting or a non-accepting state.

Example 4.2.10. Starting from the DFA depicted in Figure 3.8, which was shown
to be minimal in the proof of Theorem 3.1.6, where i = n− 1 and n ≥ 3, the defect
of deleting an accepting state affects state qi−1. In this case, states qi, qi+1, . . . , qn
are not reachable anymore.

If it is known that the defect deleted an accepting state, the correction for this
given automaton is quite simple. The missing accepting state, lets name it qi−1 again,

Measuring Defects in Finite Automata

4.2. Correction of Defects in a Finite Automaton 67

is inserted, and the missing transition for state qi−2 is inserted with target qi−1.

The transition on a for state qi−1 is still missing to complete the DFA. At the mo-
ment, there exists no connection between the states q1, q2, . . . , qi−1 and the states qi
up to qn. This lets conclude, that this last missing transition needs to have the
target qi. The resulting DFA is the original one. Any other possibility of repair
leads to a DFA that is not minimal. _ ^

^ _

Example 4.2.11. Also for the defect delete non-accepting state, we start from
the DFA depicted in Figure 3.8, which was shown to be minimal in the proof of
Theorem 3.1.6. For this example, we choose i = 2 and n ≥ 3. In case that the
defect of deleting a non-accepting state affects state q2, states q3, q4, . . . , qn are not
reachable anymore.

If it is known that the defect delete non-accepting state occurred, the correction
for the given automaton is the following. The missing non-accepting state, for
convenience called again q2, is inserted. The missing transition for state q1 with
target q2 is reinserted.

The last transition to insert, is the one on a for state q2 itself. But since there
exists no connection from the part on the automaton consisting of the states q1

and q2 and the part containing the states q3 up to qn, this transition needs to have
target q3. The resulting DFA is the original DFA. Any other possibility for the
target of the transition on a for state q2 leads to a non-minimal DFA respectively
minimal DFA with less than n states. _ ^

^ _

Remove Acceptance: The defect remove acceptance leads to a DFA that may not
be minimal anymore. In general there exists more than only one possibility to fix
this defect. In case that the given defective automaton has state set Q and its set of
accepting states is denoted by F , there exist |Q| − |F | many DFA that result from
correction. For each of these resulting DFA, for one of the existing non-accepting
states of the defective automaton the accepting property is inserted. Just like for the
other defects, usually more than only one of these fixed DFA is minimal. The next
two examples will show that it is impossible for some automata to determine the
DFA from which the defective automaton is derived from, and for some automata
only one of the corrected DFA is minimal.

Example 4.2.12. Let the minimal DFA depicted in Figure 3.8 be the one that is
affected by the defect remove acceptance on state qi−1, where 2 ≤ i ≤ n − 1. The
minimality of this DFA was already shown in Theorem 3.1.6.

The resulting defective automaton can be fixed by inserting the accepting property
for any of the states q1, q2, . . . , qn−1. Since we already know that all the DFA re-
sulting from inserting the accepting property to any of the states q1 up to qn−2 are
minimal, it is impossible to decide, which of these was the original DFA. _ ^

^ _

Example 4.2.13. Let the DFA that will be corrupted be the one depicted in Fig-
ure 4.11. This DFA is minimal since a state qi ∈ {q1, q2, . . . , qn−1} is reachable

Measuring Defects in Finite Automata

68 4.2. Correction of Defects in a Finite Automaton

q1 q2 qn−1 qn
a, b a, b a, b a, b

a, b

Figure 4.11: Minimal DFA used in Example 4.2.13 for the defect remove acceptance.

from the initial state q1 by reading the word ai−1, and two states qi and qj , where
1 ≤ i < j ≤ n− 1, can be shown to be inequivalent by the word an−j .

In case that the defect remove acceptance affects any of the states from the set
{q1, q2, . . . , qn−2}, there exists only one possibility to correct this defect for which
the resulting DFA is minimal. _ ^

^ _

Add Acceptance: The last defect to consider is the one that adds the accepting
property to one of the states of a minimal DFA. This defect can only be corrected by
removing the acceptance for one of the accepting states in the defective automaton,
that was derived from the minimal DFA. This leads to |F | many different DFA,
if F denotes the set of accepting states of the defective automaton. In general, at
least two of these resulting DFA are minimal, and it is impossible without more
knowledge about the original DFA to decide which of these corrected DFA is the
one, the defective automaton was derived from.

In the following, we give an example, where the original DFA cannot be found,
and another example where there exists only one corrected DFA that is minimal.

Example 4.2.14. Let the minimal DFA depicted in Figure 3.24 be the one that is
defected by adding the accepting property for state qn, where 1 ≤ i ≤ n − 1. The
minimality of this DFA was already shown in Theorem 3.3.14.

The derived defective automaton can be fixed by removing the accepting property
for any of the states qi, qi+1, . . . , qn. The two DFA resulting from the removement
of the acceptance for either state qn−1 or qn are both minimal, which can easily be
seen. Therefore, it is impossible to decide from which of these two DFA the given
defective automaton was derived from. _ ^

^ _

Example 4.2.15. Starting from the DFA depicted in Figure 3.21, we already known
that this DFA is minimal from the proof of Theorem 3.3.7 for all 1 ≤ i ≤ n− 1. In
this example, we choose i = 1. Then state qn−1 is the only accepting state.

In case that the defect of inserting the accepting property affects state qn−2, there
exists only one possibility to correct this defect, and this correction results in the
original minimal DFA. _ ^

^ _

All the results discussed above are summarised in the following theorem.

Measuring Defects in Finite Automata

4.3. Languages Related to Defective Automata 69

Theorem 4.2.1. Given an automaton and the knowledge, that a defect has appeared
in a complete and minimal DFA to receive the given automaton. Then in general
for the defects

• exchange symbol,

• delete transition,

• insert transition,

• delete accepting state,

• delete non-accepting state,

• remove acceptance,

• add acceptance

it is impossible to decide, which of the DFA produced by fixing the defect in the given
automaton is the one the defect affected originally.

For the defect flip transition, there only exists one possibility for the fixed DFA,
which is the DFA that was defected.

This covers the possibility of correcting the defects for a given automaton if it is
known that only one defect of one given type is responsible for the automaton.

4.3 Languages Related to Defective Automata

In the last part of this chapter, we will investigate three types of languages and their
accepting DFA that can be constructed based on the defective automaton. The first
language will be the set that collects all the words that are accepted by the defective
automaton, and that do not use the defect while being processed. These are words
that are also accepted by the original DFA. This set is called L+.

The second language is the set of words, which are rejected by the given automaton
but do not use the defect while being processed. This set is a subset of the rejected
language of the minimal DFA the given automaton is derived from. We will refer to
this language by L−.

The third and last language collects all accepted or rejected words processed by
the defective automaton that explicitly use the defect. This language is referred to
by L?. For the words of this subset it is unknown if they were accepted or rejected
by the original DFA. This is the reason why the investigation of this set of words is
of interest.

To be able to consider all of these languages, we need to know which defect occurs
in the given DFA. We also need to know which state is affected by this defect.
Therefore, in the following, we assume that this information is provided.

Measuring Defects in Finite Automata

70 4.3. Languages Related to Defective Automata

4.3.1 Construction of DFA for L+, L−, and L?

DFA for L+: In general, the constructions are quite similar for all of the defects.
An automaton accepting L+ is constructed based on the given defective automaton
by removing the existing defect. This especially means to delete all ambiguous
transitions since it is unknown which of them is the original one and which one is
the defective one, if there exists an ambiguity. In case that the property of acceptance
for a state is defective, we assume that the defective state is known. To construct a
DFA that accepts L+ this state is removed. All of these deletions lead to incomplete
DFA. To receive a complete DFA in general it is necessary to insert a rejecting sink
state. For the defects that delete a state and all the transitions having this deleted
state as source or target, the resulting defective automaton is already an incomplete
DFA, that accepts L+. For these defects, it is sufficient to insert a rejecting sink
state that builds the target for all missing transitions.

All of these incomplete DFA only consist of states and transitions that already
existed in the original DFA the given defective automaton is derived from. This
especially includes the accepting states of the original DFA. There may be missing
some of the accepting states of the original DFA but there are no additional accepting
states in the new automata. Hence, the words accepted by the constructed complete
DFA are also accepted by the original DFA.

DFA for L−: A minimal DFA for the language L− can be constructed in a quite
similar way as the DFA for L+. The only difference is that before inserting the reject-
ing sink state to make the DFA complete, the property of acceptance is interchanged
for all states. We already observed that the existing states and transitions for the
new incomplete DFA where the accepting property was not interchanged already
existed in the original DFA. Therefore, by interchanging the accepting property for
those states, the now accepted words belong to the rejected language of the origi-
nal DFA. This is because the DFA accepting the rejected language of the original
DFA can be constructed by interchanging the accepting property of the states of
the original DFA. This shows that the constructed incomplete DFA accepts only
words that belong to the rejected language of the original DFA. This incomplete
DFA can be completed by inserting a rejecting sink state as target for the remaining
undefined transitions.

DFA for L?: The last DFA that needs to be constructed is the one for the lan-
guage L?. This automaton is received by modifying the defective automaton. In
general, the idea of the construction is the following for defects that affect the tran-
sitions or delete a state. All states and transitions of the defective automaton also
belong to the constructed DFA, except for the defective ones. In this automaton,
all states are non-accepting. A new accepting sink state is inserted. All the missing
transitions are now inserted, having this new sink state as target.

The construction is slightly different, if the defect affected the property of accep-
tance for one state. We assume in this case, that the corrupted state is known. This

Measuring Defects in Finite Automata

4.3. Languages Related to Defective Automata 71

state is deleted, the acceptance of all the remaining states is removed, and the rest
of the construction is similar the one for the other types of defects. By these two
constructions, all accepted words use the defect at least once while being processed.

4.3.2 Analysis of the Accepting DFA for the Three Languages

Since the DFA constructed for the languages L+ and L− are quite the same before
inserting the rejecting sink state except for the property of acceptance of the states,
their state complexities are the same for all defects. When interchanging the accep-
tance property for all states, it does not change anything on the minimality of the
DFA. The only possibility is that by changing the accepting property may already
introduce a rejecting sink state, such that its insertion is not needed anymore. But
in general, this is not the case. The state complexities for the minimal DFA accept-
ing L? is likely to differ from the state complexities for the languages L+ and L−.

Exchange Symbol: Lets start with the defect that exchanges the symbol for a
transition. The language L+ of a defective automaton with n states can be accepted
by an automaton based on the given automaton in which the two ambiguous tran-
sitions are deleted. In this way, the resulting automaton is deterministic again but
not complete. To make it complete it is sufficient to add a rejecting sink state,
that builds the target for the two missing transitions, and also for the transitions
beginning in this new state. In general, this DFA may be minimal.

Therefore an upper bound for the minimal DFA accepting L+ for the defect that
exchanges the symbol of a transition is given by n+ 1.

For the language L− the construction of an accepting minimal DFA was already
explained above. In general, the upper bound for such a DFA affected by this type
of defect is also a number of n+ 1 states.

The construction of a minimal DFA accepting the language L? for the defect
exchange symbol is as follows. In the defective automaton, there exists one state
having an ambiguous transition for only one symbol. The same state is missing
a transition on another symbol. The ambiguous transitions are deleted, so that
the automaton now contains a state with undefined transitions for two different
symbols. This automaton indeed is an incomplete DFA. To modify this DFA to
accept the language L? of the defective automaton, the acceptance is removed for
all existing states. After that, a new accepting sink state is inserted. The yet missing
transitions are inserted having this new sink state as target. This DFA is complete
and may even be minimal. This gives an upper bound of n + 1, just like for the
languages L+ and L−.

Insert Transition: For the defect insert transition, the deletion of the ambiguous
transition is the first step in the construction of a DFA for all languages L+, L−,
and L?. This automaton does not contain any defective transition. All the transi-
tions and states already existed in the original DFA, the defective automaton was
derived from by the defect. This means, the constructed incomplete DFA already

Measuring Defects in Finite Automata

72 4.3. Languages Related to Defective Automata

accepts the language L+. To receive a complete DFA for L+, a new rejecting sink
state is inserted. Also the missing transitions are added to the automaton, having
this new sink state as target.

This DFA has n+ 1 states. It also may be minimal, wherefore this number is an
upper bound for a minimal DFA accepting L+ for this defect.

For the language L−, the incomplete DFA is modified by interchanging the accept-
ing and non-accepting states. This automaton already accepts L− of the defective
automaton, but it is still incomplete. As target for the two missing transitions, a
new rejecting sink state is inserted, similar to the construction for L+.

This DFA also consists of n+ 1 states, and may be minimal. This gives the upper
bound of n+ 1 also for the language L− for the insertion of a transition.

The language L? is not yet accepted by the current incomplete DFA. This lan-
guage will be accepted by the following automaton. For all of the states of the
constructed incomplete DFA, the acceptance is removed. A new accepting sink
state is inserted, and the missing transitions are inserted having this new state as
target. This complete DFA accepts all words, that are accepted or rejected by the
defective automaton, and use the ambiguous transition while being processed. This
is precisely language L?.

Since this constructed DFA may be minimal, an upper bound for L? is given by
n+ 1 states for the currently considered type of defect.

Flip Transition: The next defect to consider is the one that interchanges the source
and the target of a transition. The minimal DFA that accepts the language L+ and
also the minimal DFA accepting L− are received in a similar way like for the defect
of exchanging the symbol of a transition.

Therefore an upper bound for the minimal DFA accepting L+ for the defect flip
transition is given by n + 1. The upper bound for the minimal DFA that accepts
the language L− is also n+ 1.

The construction of the minimal DFA accepting the language L? for this defect
also delivers an upper bound of n + 1. The construction for this language is also
similar to the construction for L? for the defect exchange symbol.

Delete Transition: The language L+ for the defect delete transition is the one
accepted by the defective automaton. The accepted language is already the sub-
set L+ of the language accepted by the minimal DFA the given automaton is derived
from. Since the defective automaton is incomplete but deterministic, it suffices to
insert a new rejecting sink state, that builds the target for the missing transition.
This DFA may already be minimal, and, therefore, the upper bound for the number
of states for a minimal DFA accepting L+ is n+ 1.

A minimal DFA accepting the language L− has at most n + 1 states. The lan-
guage L− is accepted by the incomplete DFA that is the result of inverting the
acceptance for the defective automaton. Similar to the construction for L+, a com-
plete DFA accepting L− is received by inserting a new rejecting sink state as the

Measuring Defects in Finite Automata

4.3. Languages Related to Defective Automata 73

target for the missing transitions.

The language L? is defined to be the language that consists of those words that
are accepted or rejected by the defective automaton that, in addition, use the defect
while being processed. For the defect that deletes one transition, L? consists of all
words that use this deleted transition while being processed by the original DFA.
This means, when removing the acceptance for all states of the defective automaton,
and adding a new accepting sink state as the new target of the missing transition,
we receive a complete DFA that accepts L?. Since this DFA may also be minimal,
this gives an upper bound of n+ 1 states.

Delete Accepting State: The language L+ of a defective automaton that is re-
ceived by the defect delete accepting state affecting a minimal DFA is accepted by a
DFA that is constructed by inserting a rejecting sink state that is the new target for
all missing transitions. This DFA may already be minimal, otherwise the equivalent
minimal one has less states. This leads to an upper bound of n + 1 states, if the
defective automaton has n states.

Just like before, the minimal DFA accepting L− also has at most as many states
as the one accepting L+. This means, also for the language L− the upper bound for
the number of states of a minimal DFA is n+ 1.

A DFA for the language L? for this type of defect is received by removing the
acceptance for all states of the defective automaton, and inserting a new accepting
sink state to be the target for all missing transitions. All words accepted by this
new complete DFA were accepted or rejected by the defective automaton, and,
additionally, used the defect while being processed. This also gives an upper bound
of n+ 1 states for a minimal DFA accepting L?.

Delete Non-Accepting State: For the defect of deleting a non-accepting state, we
have similar constructions as for the defect that deletes an accepting state for the
minimal DFA that accept the languages L+, L−, and L?. This leads to the same
upper bounds.

Remove Acceptance: For the defects that remove or add acceptance for a state
in a minimal DFA, we assume for the construction of the DFA accepting the lan-
guages L+, L−, and L? that it is known which of the states is the defective one.
Otherwise the constructions cannot be done and the languages can not be deter-
mined only from the knowledge of the defective automaton and the defect that
occurs in this automaton.

The defect delete acceptance already leads to the acceptance of a subset of the
language that is accepted by the original DFA. Therefore, the defective automaton
itself accepts L+. Since the considered defect does not insert any ambiguity to the
DFA, and does not delete any transitions, the defective one is still complete and
deterministic. In general the defective automaton may also be minimal. Thus, an

Measuring Defects in Finite Automata

74 4.3. Languages Related to Defective Automata

L+ L− L?

Delete Transition n+ 1 n+ 1 n+ 1

Insert Transition n+ 1 n+ 1 n+ 1

Flip Transition n+ 1 n+ 1 n+ 1

Exchange Symbol n+ 1 n+ 1 n+ 1

Delete Non-Acc. State n+ 1 n+ 1 n+ 1

Delete Accepting State n+ 1 n+ 1 n+ 1

Remove Acceptance n n n

Add Acceptance n n n

Table 4.2: Upper bounds for the numbers of states of minimal DFA accepting the
languages L+, L−, respectively L? for the different defects. Here, n is the
number of states of the original automaton.

upper bound for the minimal DFA accepting the language L+ is given by n, if the
defective automaton consists of n states.

Also for this defect, the minimal DFA accepting the language L− needs precisely
as many states as the defective automaton. This is because when reverting the
acceptance for all states except for the defective one, the language L− is accepted.
Therefore, the upper bound for L− is also given by n states.

To construct a DFA accepting L? for this type of defect, the acceptance of all
states of the defective automaton is removed. Then only the defective state, which
is known, gets accepting. This new complete DFA accepts language L?. Since this
DFA may be minimal, an upper bound for a minimal DFA accepting L? is given
by n.

Add Acceptance: For the defect add acceptance, we have similar constructions like
for the defect remove acceptance for minimal DFA that accept the languages L+, L−,
respectively L?. This leads to the same upper bounds.

Table 4.2 summarises the results of this section.

Measuring Defects in Finite Automata

5 Distances

In Chapter 3 it was shown that, starting from a minimal DFA that gets defective,
nearly all the defects on the transitions lead to an exponential blow-up for the
number of states of the minimal DFA accepting the defective language. It was
also shown that this blow-up also happens for defects that lead to only minimal
differences in the languages. From the point of view of the languages the defect may
be not as bad as one may assume from the blow-up for the number of states for the
accepting minimal DFA.

From Chapter 4 we know that it is impossible for most of the defects to correct
the defect, even if the type of defect is known and only one appearance of this
type of defect leads to the defective automaton. This makes it necessary to have
some information about the original DFA, additionally to the information about the
defective automaton at hand.

For the rest of this chapter, when dealing with defects, we assume that a defective
automaton will be at hand. Additionally also the language accepted by the original
DFA is available. This explicitly also includes the language that is accepted by the
defective automaton.

In the following, we introduce a measure for distances between two languages.
This measure is based on already existing measures for distances between words.
Such measures were already investigated for example by [13]. Extending the dis-
tances between words, there exists the problem that, in general, languages consist
of infinitely many words. Therefore, we restrict the distance between languages to
finite subsets of the languages. We do this by restricting the distance to the sets of
words having a length shorter than or equal to a fixed maximal length. This fixed
length will be a parameter of the distance. Therefore, this distance is called param-
eterized. This measure and some of the results related to it were already published
in [45].

After the introduction of this new distance measure, we apply it to regular lan-
guages and give upper and lower bounds for its range. Since we want to use this
measure for the defects we already considered in the previous chapters, we also take
a closer look at the distances below the upper bounds. For the decidability of the
order of the distance, the census function is introduced. This function is closely
related to a variant of the density function that is already investigated in [65]. We
will show that the order of the census function is decidable. This result is used to
decide the order of the distance.

The chapter concludes with a construction that allows to compute the precise
distance for two regular languages. This is an improvement since the former results
only lead to the order of the distance but do not provide the precise distance.

75

76 5.1. Introduction to Distances

5.1 Introduction to Distances

Before introducing some specific distances, a general definition of a distance is pro-
vided. A distance over a set of words Σ∗ is a function d : Σ∗×Σ∗ → N0 ∪{∞}, that
satisfies the conditions

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x), and

3. d(x, y) ≤ d(x, z) + d(z, y),

for all x, y, z ∈ Σ∗.
One such distance is the so-called prefix distance dpref : Σ∗ × Σ∗ → N0, that

determines the distance of two words w1 and w2 in Σ∗ by summing up the number
of all letters of the two words that do not belong to a common prefix. Formally the
prefix distance is defined by

dpref(w1, w2) = |w1|+ |w2| − 2 max{|v| | w1, w2 ∈ vΣ∗}.

It is a fact, that dpref(w1, w2) = 0 if and only if the words w1 and w2 are equal, and
dpref(w1, w2) = |w1| + |w2| if and only if the first letters of w1 and w2 are not the
same. It is also a fact that the distance between two words can be large if one of
their lengths is large and their common prefix is proportionally short.

Another such distance is the suffix distance dsuff : Σ∗ × Σ∗ → N0, that is defined
quite similar to the prefix distance by summing up the number of all letters of two
words that do not belong to a common suffix of them instead of a prefix. Formally
this is

dsuff(w1, w2) = |w1|+ |w2| − 2 max{|v| | w1, w2 ∈ Σ∗v},
for two words w1, w2 ∈ Σ∗.

Example 5.1.1. The distances defined above for the two words w1 = abab and
w2 = abbab are given by

dpref(w1, w2) = |w1|+ |w2| − 2 |ab| = 5,

and
dsuff(w1, w2) = |w1|+ |w2| − 2 |bab| = 3.

_ ^

^ _

Distances for words can be extended to distances between a word w and a lan-
guage L by taking the minimum of the distances between w and all the words of L.
For the prefix distance this extension is given by pref-d : Σ∗ × 2Σ∗ → N0, which is
defined by

pref-d(w,L) =

{
min{dpref(w, v) | v ∈ L} if L 6= ∅
∞ otherwise

.

Measuring Defects in Finite Automata

5.1. Introduction to Distances 77

In case w belongs to the language L, their prefix distance is zero, which means that
pref-d(w,L) = 0.

For the suffix distance, the extension to a measure between a word and a language
is defined in a similar way:

suff-d(w,L) =

{
min{dsuff(w, v) | v ∈ L} if L 6= ∅
∞ otherwise

,

for a word w and a language L over some alphabet.

Example 5.1.2. Let w = abab be a word and L = abaa∗ be a language. Their
prefix distance is

pref-d(w,L) = |w|+ |aba| − 2 |aba| = 1,

since the prefix distance to any other word of L leads to a distance of at least 2. For
the suffix distance we have

suff-d(w,L) = |w|+ |aba| − 2 |λ| = 7.

There exists no word in L that ends on b. This means, there does not exist a word
in L having a suffix in common with w. Therefore, the whole length of w counts
into its suffix distance to L. Also the whole length of the word in L is part of the
suffix distance. This means, the distance is minimal for the shortest word aba of L.

_ ^

^ _
One possibility to extend such a distance between a word and a language to a

distance between two languages L1 and L2 over an alphabet Σ is by taking the
maximum of the suprema of the distances of all words from L1 to L2 and vice versa,
see for example [13]. In general, it needs infinitely many comparisons to compute
this distance since the languages do not need to be finite. This is the reason why
we are interested in a parameterized definition, where the distance also depends on
the length of the words.

In this thesis, we concentrate on the prefix and suffix distances and extend them
to parameterized distances between languages. This has practical reasons. Quite a
lot of defects only affect some short suffixes or prefixes. This means, the language
of the original and the defective automaton have long common prefixes or suffixes,
and only differ on a short part. This effect is respected in the choice of the word
distance.

The parameterized prefix distance between two languages is the given by the
function pref-D : N0 × 2Σ∗ × 2Σ∗ → N0 ∪ {∞} defined by

pref-D(n,L1, L2) :=
∑
w∈L1,

0≤|w|≤n

pref-d(w,L2) +
∑
w∈L2,

0≤|w|≤n

pref-d(w,L1).

Measuring Defects in Finite Automata

78 5.1. Introduction to Distances

The parameterized suffix distance suff-D : N0 × 2Σ∗ × 2Σ∗ → N0 ∪ {∞} is defined
in a similar way by

suff-D(n,L1, L2) :=
∑
w∈L1,

0≤|w|≤n

suff-d(w,L2) +
∑
w∈L2,

0≤|w|≤n

suff-d(w,L1).

Example 5.1.3. Considering the languages L1 = {aba}{a}∗ and L2 = {aba}{b}∗,
that is the languages that start with aba and end on an arbitrary number of a’s
respectively b’s.

Computing the parameterized prefix distance of these languages up to some length
n ≥ 0 means to determine the distances of all the words of L1 of length at most n
to the language L2, and vice versa.

All the words in L1 that also belong to L2 have prefix distance 0. There exists
only the word aba that belongs to both languages. The words of L1 not belonging
to L2 are summarised in the language described by the regular expression abaaa∗.
The prefix distance of each of these words to language L2 is minimal to the word aba.
The distance then is computed by summing up all the symbols of the word in abaaa∗

minus the length of aba, which is 3. For each length greater than 3, there exists
exactly one word in abaaa∗. Therefore, summing up all the prefix distances of such
words to language L2 leads to the following sum:

∑
w∈L1\L2,
0≤|w|≤n

|w| − 3 =

n∑
i=4

i− 3 =

n−3∑
i=1

i =
(n− 3)(n− 2)

2
.

The prefix distance of L2 to language L1 is determined by the distances of the
words in ababb∗ to L1. The argumentation is similar to the one above for the prefix
distance of each word of L2 \ L1 to L1. Thus, the sum for the prefix distance of all
those words to L1 is

∑
w∈L2\L1,
0≤|w|≤n

|w| − 3 =

n∑
i=4

i− 3 =

n−3∑
i=1

i =
(n− 3)(n− 2)

2
.

We obtain the parameterized prefix distance of the languages L1 and L2 by sum-
ming up the two sums from above.

pref-D(n,L1, L2) =
∑

w∈L1\L2,
0≤|w|≤n

|w| − 3 +
∑

w∈L2\L1,
0≤|w|≤n

|w| − 3

= 2 · (n− 3)(n− 2)

2
= n2 − 5n+ 6

_ ^

^ _

Measuring Defects in Finite Automata

5.1. Introduction to Distances 79

A first result for the parameterized prefix distance is the following proposition. It
may be used to analyse and construct regular languages with a certain distance by
adding and removing words from given languages to start from.

Proposition 5.1.1. Let L1, L2 ⊆ Σ∗ be two languages so that L1 ⊆ L2.

1. For a word v ∈ L2 \ L1, let L′1 = L1 ∪ {v} and L′2 = L2 \ {v}. Then

pref-D(n,L1, L2) > pref-D(n,L′1, L2) and
pref-D(n,L1, L2) > pref-D(n,L1, L

′
2).

2. For a word v ∈ Σ∗ \ L2, let L′2 = L2 ∪ {v}. Then

pref-D(n,L1, L2) < pref-D(n,L1, L
′
2).

3. For a word v ∈ L1, let L′1 = L1 \ {v}. Then

pref-D(n,L1, L2) < pref-D(n,L′1, L2).

Proof. The parameterized prefix distance of the languages L1 and L2 is determined
by the words in L2 \ L1 since the distance of any word in L1 is equal to 0. Thus,
the formula for the prefix distance is reduced to

pref-D(n,L1, L2) =
∑

w∈L2\L1,
0≤|w|≤n

pref-d(w,L1).

1. Adding a word of L2 \L1 to L1 does not affect the sum of the prefix distances
of the words from L1 to L2. This sum is still 0. On the other hand, for words
w ∈ L2 \ L′1 we have

pref-d(w,L′1) = min{ dpref(w,w
′) | w′ ∈ L′1 } ≤ min{ dpref(w,w

′) | w′ ∈ L1 }
since the new word v in L′1 can only affect the distance if there is a w ∈ L2

so that dpref(w, v) < pref-d(w,L1). However, the distance pref-d(v, L1) is
at least 1, since v /∈ L1, and decreases to pref-d(v, L′1) = 0. We conclude
pref-D(n,L1, L2) > pref-D(n,L′1, L2).

In L′2 a word is missing from L2 that may have a contribution to the prefix
distance of L1 and L2. Thus, pref-D(n,L1, L

′
2) is less than pref-D(n,L1, L2).

2. Similar as above, adding a new word to L2 does not affect the sum of the prefix
distances of the words from L1 to L2.

For the new word v ∈ L′2 we have pref-d(v, L1) ≥ 1, since v does not belong
to L1. So, pref-D(n,L1, L2) < pref-D(n,L1, L

′
2), because the prefix distances

of words from L2 to L1 do not change by adding a word to L2.

3. The removal of a word of the language L1 results in the same situation as
adding a new word to L2. This is why the proposition follows also in this case.

Measuring Defects in Finite Automata

80 5.2. The Paramerized Prefix Distance

5.2 The Paramerized Prefix Distance

In this section only the parameterized prefix distance is considered. The parame-
terized suffix distance is discussed in Section 5.3. In the following subsections, we
will sometimes omit the word parameterized when talking about the parameterized
prefix distance, if it is clear from the context.

5.2.1 Upper and Lower Bounds for the Prefix Distance

For the parameterized prefix distance it is interesting to know upper bounds and
whether these bounds are tight, that is, whether they are optimal. We will give
witness languages for which their prefix distance reaches the upper bound.

Before we can investigate an upper bound, it is necessary to know the maximally
possible prefix distance between a word w and a language L. Since the parameterized
prefix distance for two languages L1, L2 ⊆ Σ∗ is the sum of the prefix distances of
all the words of L1 up to a given length to the language L2, and vice versa, this only
requires finitely many comparisons for each word w. The following considerations
confirm this fact.

Let w denote a word, and L a language, to which the prefix distance of w shall be
computed. In case there exists no word in L that has a common prefix with w the
prefix distance is minimised by computing the prefix distance to one of the shortest
words in L. Here, all symbols of w and of the chosen shortest word of L sum up to
the prefix distance.

If there exists any word in L having a prefix in common with w, not all the symbols
of w count into its prefix distance to L. In the worst case, the words v in L having
a common prefix with w have a suffix of a length such that the prefix distance of w
and v succeeds the prefix distance of w and a shortest word of L. In this case, the
minimal prefix distance for w and L is also given by the prefix distance between w
and a shortest word of L.

From this we can conclude that in the worst case, the prefix distance between a
word w and a language L is given by the length of w plus the length of a shortest
word of L.

The following proposition is based on this observation.

Proposition 5.2.1. Let L1, L2 ⊆ Σ∗ be two non-empty languages,

m = min{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }}, and

M = max{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }}.

Then pref-D(n,L1, L2) ≤
n∑

i=m

|Σ|i · (i+M).

Proof. The parameterized prefix distance between L1 and L2 is

pref-D(n,L1, L2) =
∑
w∈L1,

0≤|w|≤n

pref-d(w,L2) +
∑
w∈L2,

0≤|w|≤n

pref-d(w,L1).

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 81

We define m1 = min{ |w| | w ∈ L1 } and m2 = min{ |w| | w ∈ L2 } to be the lengths
of the shortest words of L1 and L2, respectively. According to the observation made
immediately before the proposition we obtain

pref-D(n,L1, L2) ≤
∑
w∈L1,

0≤|w|≤n

|w|+m2 +
∑
w∈L2,

0≤|w|≤n

|w|+m1.

Since there exist no words in L1 ∪ L2 shorter than m the sums can start with
length m. All words w ∈ L1 ∪ L2 have a distance that is less or equal to |w| + M .
Moreover, whenever a word belongs to the intersection of L1 and L2 it does not
contribute to pref-D(n,L1, L2) at all. So we can safely remove it from the sums.
Thus, we have

pref-D(n,L1, L2) ≤
∑

w∈L1\L2,
m≤|w|≤n

|w|+M +
∑

w∈L2\L1,
m≤|w|≤n

|w|+M.

Since (L1 \ L2) ∪ (L2 \ L1) = (L1 ∪ L2) \ (L1 ∩ L2), there are at most |Σ|i words in
L1 ∪ L2 of length m ≤ i ≤ n that contribute to pref-D(n,L1, L2). Thus, we have

pref-D(n,L1, L2) ≤
n∑

i=m

|Σ|i · (i+M).

The necessary properties for languages matching the upper bound are stated in
the following lemma.

Lemma 5.2.1. Let L1, L2 be languages with

m = min{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }} and

M = max{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }}.
Then the upper bound of Proposition 5.2.1 is met only if (i) each word w ∈ L1 ∪L2

contributes |w|+M to the prefix distance, (ii) L1∩L2 = ∅ if m ≥ 1, and L1∩L2 ⊆ {λ}
if m = 0, and (iii) L1 ∪ L2 = {w ∈ Σ∗ | |w| ≥ m }.

Proof. We assume m ≥ 1 and L1 ∩ L2 6= ∅, or m = 0 and L1 ∩ L2 is not a subset
of {λ}. In both cases there exists at least one word w of length greater than or
equal to max{1,m} that does not contribute to pref-D(|w|, L1, L2). So there must
be a word in L1 ∪ L2 that contributes more than |w| + M to the prefix distance.
However, this is a contradiction to the choice of M to be the maximum of the sizes
of the shortest words. So, (ii) is a necessary condition.

If L1∪L2 6= {w ∈ Σ∗ | |w| ≥ m }, then there is a word not in L1∪L2 whose length is
at least max{1,m}. This word can be added to both languages L1 and L2 without
affecting pref-D(n,L1, L2). Since in this case the intersection L1 ∩ L2 contains a
non-empty word, we have a contradiction to (ii). This shows (iii).

Measuring Defects in Finite Automata

82 5.2. The Paramerized Prefix Distance

At last we assume that there exists a word w ∈ L1 ∪ L2 that contributes less
than |w| + M to pref-D(|w|, L1, L2). Then there must be a word in L1 ∪ L2 that
contributes more than |w| + M to the prefix distance. The same contradiction as
for (ii) shows case (i).

Lemma 5.2.1 shows that it is impossible to reach the upper bound if m < M .
Let w be a word of a language L2 with |w| = M , which means w is a shortest word
of L2. In case that m < M , then pref-d(w,L1) ≤ |w|+m < |w|+M . This violates
condition (i) of the lemma.

The next proposition shows that the upper bound given in Proposition 5.2.1 is the
best possible, which means that there exist languages that match the upper bound.
Such languages need to satisfy the conditions stated in Lemma 5.2.1.

Proposition 5.2.2. For any M = m ≥ 0, there are binary regular languages

L1, L2 ⊆ {a, b}∗ so that pref-D(n,L1, L2) =

n∑
i=m

|Σ|i · (i + M), where m is the

minimum and M is the maximum of the lengths of the shortest words in L1 and L2.

Proof. For anym ≥ 1, we use the disjoint regular languages L1 = {a}{a, b}m−1{a, b}∗
and L2 = {b}{a, b}m−1{a, b}∗ as witnesses. In particular, no two words of L1 and L2

have a common prefix.

Let w ∈ L1 be some word. Its prefix distance to L2 is |w| + m. Similarly, the
prefix distance of every word w ∈ L2 to the language L1 is |w|+m. So we have

pref-D(n,L1, L2) =
∑

w∈L1\L2,
m≤|w|≤n

|w|+m+
∑

w∈L2\L1,
m≤|w|≤n

|w|+m.

Since L1 ∪ L2 = {w ∈ Σ∗ | |w| ≥ m } and L1 ∩ L2 = ∅ this in turn is

pref-D(n,L1, L2) =
n∑

i=m

|Σ|i · (i+m).

If m = 0, then the empty word belongs to both languages. In this case we set
L1 = {λ} ∪ {a}{a, b}∗ and L2 = {λ} ∪ {b}{a, b}∗ and obtain

pref-D(n,L1, L2) =
n∑
i=1

|Σ|i · i =
n∑
i=0

|Σ|i · (i+ 0) =
n∑

i=m

|Σ|i · (i+m).

Up to this point we have only considered languages over at least binary alphabets.
In the following we will show that the situation for unary languages is significantly
different. The most important observation is that two unary words have a prefix
distance to each other that is given only by the difference of their lengths. This
leads to the next proposition.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 83

Proposition 5.2.3. Let L1 ⊆ {a}∗ and L2 ⊆ {a}∗ be two non-empty unary lan-

guages. Then pref-D(n,L1, L2) ≤ n(n+1)
2 + 1.

Proof. By Proposition 5.2.1 we know that there is an upper bound on the parame-
terized prefix distance between two languages. So, let L1 and L2 be unary languages
whose distance is as large as possible.

If there is some word w in L1∩L2 then we can remove it from one of the languages,
say from L1, and obtain a larger distance. The reason is that now w ∈ L2 contributes
to the distance. Moreover, the distance of the remaining words from L1 to L2 are
not affected, and the contributions from words of L2 can never be decreased, when
some word from L1 is deleted. So, we conclude that L1 ∩ L2 = ∅.

Next, let m1 be the length of the shortest word in L1 and m2 be the length of the
shortest word in L2. Without loss of generality let m1 ≤ m2. If 0 < m1, then we
can add the words λ, a, a2, . . . , am1−1 to L1. In this way the contribution of words
from L2, and those from L1 are not affected. In addition, the new words contribute
to the distance. So, the distance between L1 and L2 would be increased. Therefore,
we conclude that λ already belongs to one of the languages.

Let λ ∈ L1. Since L2 is non-empty, 1 ≤ m2 exists. The contribution of any
word w from L1∪L2 whose length is at least m2 +1 is at most |w|. Now we consider
the contributions of the words λ, a, a2, . . . , am2 − 1 that may or may not belong
to L1, and the word am2 ∈ L2. If all words do belong to L1 we obtain the overall

contribution of
m2∑
i=1

i for the words from L1 and 1 for am2 . If one of the words do not

belong to L1 this amount decreases.

Altogether we have

pref-D(n,L1, L2) ≤ 1 +

m2∑
i=1

i+
n∑

i=m2+1

i = 1 +
n∑
i=1

i =
n(n+ 1)

2
+ 1.

Just like in the general case, the upper bound for the parameterized prefix distance
in the unary case can be matched, that means this bound is tight.

Proposition 5.2.4. There are unary regular languages L1, L2 ⊆ {a}∗ so that their

prefix distance is pref-D(n,L1, L2) = n(n+1)
2 + 1.

Proof. Let L1 = aa∗ and L2 = {λ}. These languages are unary, regular, and disjoint.
Therefore, the prefix distance of each word in w ∈ L1 to L2 is |w|. For the only
word λ in L2 its distance to L1 is dpref(λ, a) = 1. So we have

pref-D(n,L1, L2) = 1 +

n∑
i=1

i =
n(n+ 1)

2
+ 1.

Measuring Defects in Finite Automata

84 5.2. The Paramerized Prefix Distance

5.2.2 Distances Below the Upper Bound

In Section 5.2.1 we have investigated upper bounds for languages over either unary
or at least binary alphabets. We have given examples for worst case languages which
have a parameterized prefix distance that match these upper bounds.

In this section we concentrate on regular languages. We explore which functions
are possible to obtain for the parameterized prefix distance for this language class.
The next proposition gives an example that every polynomial is exceeded when
measuring the parameterized prefix distance for regular languages.

Proposition 5.2.5. There are regular languages L1 and L2 even over a binary
alphabet so that pref-D(n,L1, L2) ∈ Θ(n2n).

Proof. Here we can use the witness languages L1 and L2 from the case m = 0 in the
proof of Proposition 5.2.2. There,

pref-D(n,L1, L2) =
n∑
i=1

|Σ|i · i =
n∑
i=1

2i · i.

has been shown. This sum is equal to n2n+2 − (n+ 1)2n+1 + 2 ∈ Θ(n2n).

For any constant c ≥ 1, there exist regular languages with parameterized prefix
distance c.

Proposition 5.2.6. Let c ≥ 1 be an integer. Then there are unary regular lan-
guages L1 and L2 so that pref-D(n,L1, L2) = c, for all n ≥ c.

Proof. We use the languages L1 = {λ} and L2 = {λ, ac} as witnesses. Since
λ ∈ L1 ∩ L2 the empty word in L1 and L2 does not contribute to the distance be-
tween L1 and L2. It is that pref-d(ac, L1) = c and, thus, pref-D(n,L1, L2) = c, for
all n ≥ c.

Note that in the proof of Proposition 5.2.6, for all n < c, the distance of L1 and L2

is zero.

Another possible class of functions for the parameterized prefix distance are the
polynomials. In the following theorem we show that given any arbitrary polynomial p
having integer coefficients and a positive leading coefficient, p can be the parame-
terized prefix distance of two regular languages. Furthermore, in the proof of the
theorem we explicitly construct such two regular languages. It does not make sense
to consider a negative leading coefficient since such a polynomial would characterise
a negative distance that does not exist at all.

Theorem 5.2.1. Let p(n) = xk · nk + xk−1 · nk−1 + · · · + x0 be a polynomial of
degree k ≥ 0 with integer coefficients xi, 0 ≤ i ≤ k, and xk ≥ 1. Then two regular
languages L1 and L2 over the alphabet {a, b} can effectively be constructed so that
pref-D(n,L1, L2) = p(n), for all n ≥ n0, where n0 is some constant.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 85

Proof. Proposition 5.2.6 already shows the special case k = 0. Therefore, we assume
k ≥ 1. The basic idea of the construction is to start with two languages whose
distance is already a polynomial of degree k, but its coefficients may be incorrect.
Subsequently, the coefficients are corrected one after the other, from xk to x0. When
coefficient xi is corrected, the coefficients xk to xi+1 are not affected while the
coefficients xi−1 to x0 may be changed.

In general, language L1 will always be a subset of L2. In this way, the words
from L1 never contribute to the distance.

For the corrections of the coefficients a set of equally long prefixes is used. So,
we define P ⊆ {a, b}l, for some constant l, with P = {p0, p1, . . . , pm}. Assume for
a moment that l ≥ k is large enough to perform the following constructions. Later
we will give evidence that it always can be chosen appropriately.

We consider auxiliary languages

Lr,−1 = { pr } and Lr,−1,b = Lr,−1 ∪ Lr,−1b,

Lr,s = { prv | v ∈ {a, b}∗, |v|b = s } and Lr,s,b = Lr,s ∪ Lr,sb

for s ≥ 0 and pr ∈ P . There are
(
n−|pr|
s

)
=
(
n−l
s

)
∈ Θ(ns) many words of length n

in the languages Lr,s. Considering the distance between Lr,−1 and Lr,−1,b we obtain
pref-D(n,Lr,−1, Lr,−1,b) = 1. For the distance between Lr,s and Lr,s,b, all words
from Lr,sb contribute 1 while the words from Lr,s contribute nothing. For s ≥ 1, we
obtain

pref-D(n,Lr,s−1, Lr,s−1,b) =

n∑
i=1

(
i− l
s− 1

)
=

(
n− l + 1

s

)
=

(n− l + 1) · (n− l) · (n− l − 1) · · · (n− l − s+ 2)

s!

which gives us a term of the form ns+ys−1·ns−1+ys−2ns−2+ys−3ns−3+···+y0

s! , where a rough
and simple estimation yields |yi| ≤ 3s · ls, 0 ≤ i ≤ s− 1.

We start the construction by using the union of auxiliary languages with xk · k!
many different prefixes, that is,

L1 =

xk·k!−1⋃
i=0

Li,k−1 and L2 =

xk·k!−1⋃
i=0

Li,k−1,b.

So, we start with a distance of the form

xkn
k + zk−1n

k−1 + zk−2n
k−2 + zk−3n

k−3 + · · ·+ z0,

where xk is already the correct coefficient and |zi| ≤ xk · 3k · lk, 0 ≤ i ≤ k − 1.
Next we correct the remaining coefficients. Let xmax = max{xi | 0 ≤ i ≤ k }.

Concluding inductively, we assume that currently

pref-D(n,L1, L2) = xkn
k + xk−1n

k−1 + · · ·+ xk−i+1n
k−i+1 + zk−in

k−i + · · ·+ z0,

Measuring Defects in Finite Automata

86 5.2. The Paramerized Prefix Distance

where the coefficients xk, xk−1, . . . , xk−i+1 are already correct and, moreover, we
have that |zk−i|, |zk−i−1|, . . . , |z0| ≤ 3i−1 · xmax · (3k · lk)i.

In order to obtain the correct coefficient xk−i, we set d = zk−i − xk−i and distin-
guish the two cases, where d is negative or positive. If d = 0, the coefficient xk−i is
already correct and nothing has to be done.

If d < 0, the distance has to be increased. To this end, the auxiliary lan-
guages Lj,k−i−1 and Lj,k−i−1,b are used. We add their unions with |d| · (k − i)!
many new different prefixes to L1 and L2, that is,

|d|·(k−i)!−1⋃
j=0

Lj,k−i−1 is added to L1 and

|d|·(k−i)!−1⋃
j=0

Lj,k−i−1,b is added to L2.

Since all the prefixes pj are new and L1 ⊆ L2, again all words from L2 contribute 1
to the distance while the words in L1 contribute nothing. In particular, we have
added |d|nk−i + z′k−i−1n

k−i−1 + z′k−i−2n
k−i−2 + · · ·+ z′0 words up to length n to L2,

where |z′k−i−1|, |z′k−i−2|, . . . , |z′0| ≤ |d| · 3k−i · lk−i ≤ |d| · 3k · lk. This implies

pref-D(n,L1, L2) = xkn
k + xk−1n

k−1 + · · ·+ xk−in
k−i + zk−i−1n

k−i−1 + · · ·+ z0,

where xk, xk−1, . . . , xk−i are already correct and |zk−i−1|, |zk−i−2|, . . . , |z0| are at
most

3i−1 · xmax · (3k · lk)i + |d| · 3k · lk
= 3i−1 · xmax · (3k · lk)i + (3i−1 · xmax · (3k · lk)i + xmax) · 3k · lk
= 3i−1 · xmax · (3k · lk)i + 3i−1 · xmax · (3k · lk)i · 3k · lk + xmax · 3k · lk
≤ 3i · xmax · (3k · lk)i+1.

This concludes the first case.
If d > 0, the distance has to be decreased. To this end, words from L2 are added

to L1 so that they do not contribute to the distance anymore. Let p̃ be one of
the xk · k! prefixes used at the beginning of the induction to establish a polynomial
distance of degree k. Moreover, we may assume that p̃ has not been used for the
current purpose before.

Then, for r, t ≥ 0 and s ≥ r, another auxiliary regular language is defined as
L̃p̃,r,s,t = { p̃ubrv | uv ∈ {a, b}∗, |u| = t, |uv|b = s−r }. Here, we set L̃p̃,r,r−1,t = { p̃br }.
In these languages the position of the block br is fixed. This means, that the

union
⋃d·(k−i)!−1
j=0 L̃p̃,i,k−1,j contains dnk−i + z′k−i−1n

k−i−1 + z′k−i−2n
k−i−2 + · · ·+ z′0

words up to length n, for n ≥ d · (k − i)! + l + i, and where it holds true that
|z′k−i−1|, |z′k−i−2|, . . . , |z′0| ≤ d · 3k−i · (l + i)k−i ≤ d · 3k · lk. Now all these words are
concatenated with a symbol b and are added to L1. Since all words do belong to L2

as well, we obtain

pref-D(n,L1, L2) = xkn
k + xk−1n

k−1 + · · ·+ xk−in
k−i + zk−i−1n

k−i−1 + · · ·+ z0,

where the coefficients xk, xk−1, . . . , xk−i are already correct and analogously to the
first case |zk−i−1|, |zk−i−2|, . . . , |z0| are at most 3i · xmax · (3k · lk)i+1. This concludes
the second case.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 87

The construction is concluded by the observation that choosing n0 > l + k is
sufficient for the auxiliary languages applied in the initial step and the correction
steps in the first case. For the corrections in the second case

d · (k − i)! + l + i ≤ 3k+1 · xmax · (3k
2 · lk2

) · k! ≤ n0

is sufficient.
Finally, it has to be shown that the prefix length l always can be chosen appro-

priately. In the first step, xk · k! many prefixes are used. For the correction steps,
no additional prefix is used in the second case, and |d| · (k − i)! prefixes in the first
case. The latter is less than

(3i−1 · xmax · (3k · lk)i + xmax) · (k − i)! ≤ 3k · xmax · 3k
2 · lk2 · k!.

Therefore, altogether less than 3k ·xmax ·3k2 ·lk2 ·(k+1)! many prefixes are necessary.
On the other hand, there are 2l prefixes of length l. So it is sufficient to choose l
large enough so that 2l ≥ 3k ·xmax · 3k2 · lk2 · (k+ 1)! which is always possible since k
and xmax are constants and on the right-hand side there is only a polynomial in l.

5.2.3 Decidability of the Order of the Distances

Now that we know possible functions for the parameterized prefix distance, it is
interesting to decide the order of magnitude of the prefix distance for given regular
languages. This is also of interest both from the practical and from the theoretical
point of view.

For the parameterized prefix distance, only the words belonging to the symmetric
difference of the considered languages are important. All of the other words be-
long to both languages and contribute only 0 to the parameterized prefix distance.
Therefore, it is of interest to know the number of words up to a certain length that
do not belong to both languages. The function that counts the number of words for
a certain length n is the density function. This function is already mentioned and
explored amongst others in [65] and [67]. Formally this is the function %L : N0 → N0

defined by
%L(n) = |L ∩ Σn| = |{w ∈ L | |w| = n }|.

The so called census function censL : N0 → N0, that is defined as

censL(n) =
n∑
i=0

%L(i) = |{w ∈ L | |w| ≤ n }|,

is a function that counts all words up to a fixed length n. These two functions are
closely related.

In [65], a regular language L ⊆ Σ∗ is said to have a polynomial density if |L ∩ Σn|
belongs to O(nk) for some integer k ≥ 0. This does not include the lower bound,
it is only an upper bound. This means, the authors only considered the limes
superior but not the limes inferior. Like already stated in [45], this may lead to

Measuring Defects in Finite Automata

88 5.2. The Paramerized Prefix Distance

different densities for different n. An example for this behaviour can be seen for
the language Rk = {w ∈ {a, b}∗ | |w|a = k + 1 and |w| is even}. For the density we
have that %Rk

(n) ∈ O(nk+1) if n is even, but %Rk
(n) = 0 if n is odd. This especially

means that the density is neither in O(nk) nor in Ω(nk+1).
To be able to deduce some of the results for the census function, we need to adjust

this and consider the factor n when talking about polynomial densities. Therefore,
in the following we call a density to be polynomial, if the function mapping n to
max{%(i) | 0 ≤ i ≤ n} is of order Θ(nk) for some k ≥ 1.

The following definition and the two lemmas were already used and shown in [65].
For the sake of completeness we will shortly recall these proofs in a version adapted
to our notion of the density function.

In the following definition we exchange the name t-tiered the authors used in the
original definition by t-looped.

Definition 5.2.1. Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA. A word w in Σ∗ is said to be
t-looped with respect to A for t ≥ 0, if the state transition sequence of w is given by

αβd1
1 γ1 · βd2

2 γ2 · · ·βdtt γt,

where

(i) α = p1p2 · · · pl, 0 ≤ l ≤ |Q|, where the p’s are states in Q,

and for each i between 1 and t

(ii) βi = qi,0qi,1 · · · qi,ki and γi = qi,0ri,1ri,2 . . . ri,li , 0 ≤ ki, li ≤ |Q|, where the q’s
and r’s are states in Q,

(iii) qi,0 appears only as the first state in βi and in γi,

(iv) di > 0.

Lemma 5.2.2. Let L be accepted by a DFA A = 〈Q,Σ, δ, q0, F 〉. If there exists
a word w ∈ L such that w is k-looped with respect to A, then the density of L
is Ω(nk−1).

Proof. According to the state transition sequence αβd1
1 γ1 · βd2

2 γ2 · · ·βdkk γk of w with

respect to A, w can be written as w = xyd1
1 z1y

d2
2 z2 . . . y

dk
k zk such that x is processed

by sequence α, yi is processed exactly once by one cycle βi, and zi is processed by
sequence γi for 1 ≤ i ≤ k. We define the length n = |xz1z2 · · · zk| + tC for an
arbitrary integer t > 0, and C = |y1| · |y2| · · · · · |yk|. Then for any k arbitrary
non-negative integers t1, t2, . . . , tk such that t1 + t2 + · · ·+ tk = t, the word

xy
C
|y1|

t1

1 z1 · y
C
|y2|

t2

2 z2 · · · y
C

|yk| tk
k zk

is in L and of length n. Let Nk(t) denote the set consisting of all such k-tuples
(t1, t2, . . . , tk), that is

Nk(t) = {(t1, t2, . . . , tk) | t1, t2, . . . , tk ≥ 0, t1 + t2 + · · ·+ tk = t}.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 89

This set consists of
(
t+k−1
k−1

)
tuples, since these k-tuples are simply ordered partitions

of the number t (see for example [64]). Since t is linear in n, we have(
t+ k − 1

k − 1

)
∈ Ω(tk−1) ∈ Ω(nk−1).

To prove that the number of distinct words in L of length n is also in Ω(nk−1) we
need to show that the words produced by different tuples from Nk(t) are different
again. This can easily be done by comparing the different state transition sequences
with respect to A and concluding that these sequences differ in the number of ap-
pearances of at least one state qi,0, 1 ≤ i ≤ k.

For our definition of the density of a regular language, this proves that if there
exists a k-looped word, then the density function is bounded from below by a poly-
nomial.

Lemma 5.2.3. Let L be an arbitrary regular language with L = L(A) for some
DFA A. If the density of L is O(nk) for some k ≥ 0, then each word w ∈ L is
t-looped with respect to A for some non-negative integer t ≤ k + 1.

Proof. Let A = 〈Q,Σ, δ, q0, F 〉 be a DFA accepting L. The proof is given by induc-
tion on the length of a word in L.

If the length of any word of L is shorter than |Q|, the lemma holds trivially. So
the induction hypothesis is that the lemma holds for all words w in L with |w| < n
for some n ≥ |Q|.

Let w ∈ L be an arbitrary word of length n. Taking a look at the state transition
sequence of w with respect to A, we reverse this sequence and denote by s the
first state that repeats. By s(i) we denote the ith appearance of s in the reversed
sequence. Let s(1), s(2), . . . , s(h+1) be the sequence of all appearances of s in the
non-reversed state transition sequence.

We have that h ≥ 1 and there exist less than |Q| states between s(h) and s(h+1).
Let w = w0v1v2 · · · vhw1 such that δ(s(i), vi) = s(i+1), for 1 ≤ i ≤ h, w0, w1 ∈ Σ∗,
and v1, v2, . . . , vh ∈ Σ+. Then also all words w0v

n1
1 vn2

2 · · · vnh
h w1 belong to L for

arbitrary non-negative integers n1, n2, . . . , nh.

To prove that w is t-looped for some t ≤ k+1, we need to show v1 = v2 = · · · = vh.
Assuming vi 6= vj for some i 6= j, vi cannot be a prefix of vj since then there
would exist another appearance of s between s(j) and s(j+1) which is impossible.
Similarly, vj is no prefix of vi. The language described by the regular expression
(vivj+vjvi)

g for any non-negative integer g consists of 2g different words of the same
length |vivj | · g. All words represented by the regular expression w0(vivj + vjvi)

gw1

have the same length |w0w1|+ |vivj | ·g. They all belong to L. This is a contradiction
to the fact that L has only polynomial density. Thus, v1 = v2 = · · · = vh and also
the parts of the state transition sequence of w with respect to A produced by the vi,
for 1 ≤ i ≤ h, are equal.

Measuring Defects in Finite Automata

90 5.2. The Paramerized Prefix Distance

The word w′ = w0w1 belongs to L. Since |w′| < n, w′ is t-looped with respect
to A for some t ≤ k + 1 due to the induction hypothesis. Then its state tran-
sition sequence with respect to A satisfies the conditions of Definition 5.2.1. Let
αβd1

1 γ1β
d2
2 γ2 · · ·βdtt γt denote this sequence. State s from above must appear only

in γt and no qi,0 may appear in the state transition sequence of w1 with a similar
argument as above. This means, all qi,0, 1 ≤ i ≤ t, appear before the first appear-
ance of s. In case that t < k + 1, the proof is complete. Assuming that t = k + 1,
then w is (k+2)-looped, since its state transition sequence with respect to A consists
of one more sequence βd. By Lemma 5.2.2, the density of L is in Ω(nk+1), which
contradicts the premise. Thus, t = k + 1 is impossible.

By Lemma 5.2.3 we know for a regular language L with a density in O(nk) for
some k ≥ 0, that every word of L is t-looped for some t ≤ k + 1. Lemma 5.2.2
then gives us a lower bound of Ω(nk). This is because the distance between two
lengths with a polynomial lower bound of the same degree is constant. From
the proof of Lemma 5.2.2 we can choose the length n to be |xz1z2 · · · zk+1| + tC,
where x, z1, z2, . . . , zk+1, t, and C are defined as in the proof. For this length
there exist Ω(nk) many different words in the language. Then the length n′ set
to |xz1z2 · · · zk+1| + (t + 1)C can also be defined for which Ω((n′)k) words belong
to the language. This also holds true for a length |xz1z2 · · · zk+1|+ (t+ x)C, where
x ≥ 1. The distance between two of such lengths is simply C, which is a constant.
Therefore, there always exists a length in Θ(n) for arbitrary n, whose lower bound
is in Ω(nk) if the density of the language belongs to O(nk).

These two lemmas are necessary to inherit the results from [65] for the density
function since their proofs are based on these conclusions. From the results in [65]
it follows that it is decidable whether the upper bound for the density function of a
regular language is constant, polynomial, or exponential, where exponential means,
the density function is of the form 2Ω(n).

The next proposition shows that it is decidable whether the census function of a
regular language is ultimately constant.

Proposition 5.2.7. Let A be a minimal DFA. Then it is decidable whether censA
is ultimately constant.

Proof. The function censA is ultimately constant if and only if A accepts a finite
language. The finiteness of a regular language is decidable by checking whether each
accepting path of A is acyclic.

In [65] it was shown, that there exist gaps for the density of regular languages.
For any k ≥ 0, there exists no regular language for which the density belongs to
ω(nk) ∩ o(nk+1), and no regular language whose density is superpolynomial and
in 2o(n). This especially means, there exists no density function of order Θ(

√
n),

Θ(n log(n)), or Θ(2
√
n).

Due to the proven fact that the density function is either constant, polynomial,
or exponential, the next corollary follows.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 91

q0 q1 ql qf
x z1 zt−1 zt

y1 yt

Figure 5.1: Structure of minimal DFA used in the proof of Theorem 5.2.2.

Corollary 5.2.1. The census function of every regular language is either ultimately
constant, polynomial, or exponential.

Proof. By definition we obtain the census function cens(n) by summing up the
densities up to n. Summing up polynomials of degree k ≥ 0 gives a polynomial at
most of degree k+ 1. Similarly, summing up exponential functions of the form 2Ω(n)

gives again an exponential function of that form.

It is possible to retrieve the degree of the density function for a language with
polynomial density from the minimal DFA accepting the language. This is not
explicitly stated in [65], but can be followed from the results stated there.

Theorem 5.2.2. Given a language with polynomial density, the degree of the density
function can be retrieved from the minimal DFA accepting the language.

Proof. In [65] it was shown that for a language over an alphabet Σ with polynomial
density of degree k ≥ 0 the language can be described by a finite union of regular
expressions of the form

xy∗1z1 · y∗2z2 · · · y∗t zt,

where x, y1, z1, y2, z2, . . . , yt, zt ∈ Σ∗, t ≤ k+1, and all of theirs lengths |x|, |y1|, |z1|,
|y2|, |z2| , . . . , |yt| , |zt| are smaller than or equal to |Q|, where Q is the set of states
of the minimal DFA accepting the language. Each of these regular expressions can
be accepted by a DFA of the following form that is depicted in Figure 5.1.

The automaton accepting the whole language consists of finitely many parts of
this form. Since we can count the number of loops of all these parts, we can also
determine the maximum of all these numbers. From this number we obtain the
degree of the density function of the language.

We can derive directly that the degree of the polynomial for the census function
can also be determined by inspecting the structure of the automaton. This is because
the degree of the polynomial for the census function is nearly the same as for the
density, it is just greater by one.

Corollary 5.2.2. Given a language with polynomial density, the degree of the census
function can be retrieved from the minimal DFA accepting the language.

Measuring Defects in Finite Automata

92 5.2. The Paramerized Prefix Distance

The results in [65] imply a decision procedure for the question whether the census
function of a regular language is polynomial or exponential. It is even possible to
compute the degree, if the census function is polynomial.

Theorem 5.2.3. Let A be a DFA. Then it is decidable whether censA is exponential
or a polynomial. If it is a polynomial, the degree can be computed.

Proof. If L(A) is a unary language, then censA is either constant or linear. By
Theorem 5.2.7 we can decide whether it is ultimately constant. If not by the results
in [65] it can be decided whether %A is exponential or polynomial, where in the latter
case the degree of the polynomial is computable. From the orders of the density we
can derive the order of censA.

Now that we are able to decide whether the census function is constant, polyno-
mial, or exponential, we can use this knowledge to decide the order of magnitude
of the parameterized prefix distance for regular languages. As already mentioned
before, the symmetric difference of the languages is crucial for the computation of
their prefix distance. And we also already know that for the prefix distance of a
word w and a language L it is true that 1 ≤ pref-d(w,L) ≤ |w|+ |m|, where m is a
shortest word of L, and w /∈ L.

Theorem 5.2.4. Let L1 and L2 be two regular languages. Then it is decidable
whether the parameterized prefix distance pref-D(n,L1, L2) is ultimately constant.

Proof. The family of regular languages is effectively closed under symmetric differ-
ence. So, a representation, say a DFA A, accepting L1 ⊕ L2 can effectively be con-
structed from DFA accepting L1 and L2. If L1 ⊕L2 is finite, then pref-D(n,L1, L2)
is ultimately constant. Conversely, if L1⊕L2 is infinite, then pref-D(n,L1, L2) can-
not be bounded by a constant, since all the infinitely many words in the symmetric
difference contribute at least 1 to the distance. Now the theorem follows from the
decidability of finiteness of regular languages.

Theorem 5.2.5. Let L1 and L2 be two regular languages. Then it is decidable
whether the parameterized prefix distance pref-D(n,L1, L2) is exponential.

Proof. As in the proof of Theorem 5.2.4 we may assume without loss of generality
that a DFA A accepting L1 ⊕ L2 can effectively be constructed from L1 and L2.
Moreover, one can decide whether pref-D(n,L1, L2) is ultimately constant. So,
assume that it is not.

Any word |w| in the symmetric difference contributes at least 1 and at most |w|+|s|
to the distance, where s is the shortest word in the language w does not belong to.
Therefore, we know censA(n) ≤ pref-D(n,L1, L2) ≤ (c+n) ·censA(n), where c is the
maximum of the lengths of the shortest words in L1 and L2. Since censA can only
be ultimately constant, polynomial, or exponential, pref-D(n,L1, L2) is exponential
if and only if censA is exponential. Now the theorem follows from the possibility to
decide whether censA is exponential.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 93

Theorem 5.2.6. Let L1 and L2 be two regular languages and k ≥ 1 be a constant.
Then it is decidable whether the parameterized prefix distance pref-D(n,L1, L2) be-
longs to Ω(nk) ∩O(nk+1).

Proof. First it is decided whether pref-D(n,L1, L2) is ultimately constant or expo-
nential. If this is neither of these, both census functions censL1\L2

and censL2\L1

are ultimately constant or polynomial. Theorem 5.2.5 shows that the degree k of
the polynomial can be computed. With the fact, that each word |w| contributes at
least 1 and at most |w| + |s| to the distance, where s is the shortest word in the
language w does not belong to, we derive pref-D(n,L1, L2) ∈ Ω(nk) ∩O(nk+1).

5.2.4 Computation of the Precise Distance

In the previous section it was shown that the order of the prefix distance of two
regular languages is decidable. But due to the inaccuracy of the estimation, this
degree cannot be determined exactly by the former results if it is polynomial.

In the rest of this section, a construction will be presented to compute the distance
of two given regular languages accurately. Let L1, L2 ⊆ Σ∗ be two arbitrary regular
languages whose parameterized prefix distance is to be computed.

Before turning to the constructions used in the computation, we have a look at
some examples for the different possibilities for the computation of the shortest
prefix distance between a word w ∈ L1 and a language L2.

Example 5.2.1. The prefix distance between a word w ∈ L1 that also belongs to L2

is 0, since the shortest distance is given by

pref-d(w,L2) = dpref(w,w) = |w|+ |w| − 2 |w| = 0.

_ ^

^ _

This, again, emphasises the fact, that only the words belonging to the symmet-
ric difference of the languages L1 and L2 affect the prefix distance of these two
languages.

Example 5.2.2. For w = b and L2 = a∗ab, the shortest prefix distance is given by

pref-d(w,L2) = dpref(w, ab) = |b|+ |ab| = 3.

The distances of w to all of the other words of L2 is bigger than that, since there
exists no common prefix between w and any word in L2. Thus, all the symbols of
both words count into the prefix distance. In this case, one of the shortest words of
the language gives the smallest distance of w and L2. _ ^

^ _

The previous example shows, that the prefix distance between a word w and a
language may be given by the distance of w and a shortest word of the language.
This especially is the case, if there exists no word in the language having a prefix in
common with w. In this case, all symbols of w have a share to the prefix distance,
and either do all symbols of the words in the language. This causes the choice of
one of the shortest words to minimise the prefix distance.

Measuring Defects in Finite Automata

94 5.2. The Paramerized Prefix Distance

Example 5.2.3. Given the word w = a42ba and the language L2 = a∗bb, their
prefix distance is

pref-d(w,L2) = dpref(w, a
42bb) =

∣∣a42ba
∣∣+
∣∣a42bb

∣∣− 2
∣∣a42b

∣∣ = 2.

To all words of L2 with a shorter prefix than a42b to w, the distance is bigger, since
then not only the size of the suffix a of w counts into the prefix distance but also
symbols that belong to the prefix w has in common with the word a42bb. For words
of L2 with a shorter common prefix, they are of the form aibb, where 0 ≤ i ≤ 41.
For all these words v the prefix distance to w is

dpref(w, v) =
∣∣a42ba

∣∣+ |v| − 2
∣∣ai∣∣ =

∣∣a42−iba
∣∣+ |bb| = 46− i,

which is greater than or equal to 5, and, thus, bigger than the distance of w and
a42bb.

All words v having the common prefix a42 with w, and not being the word a42bb
with the shortest distance to w, are of the form a42+ibb, where i ≥ 1. Their prefix
distance to w is given by

dpref(w, v) =
∣∣a42ba

∣∣+
∣∣a42+ibb

∣∣− ∣∣a42
∣∣ = |ba|+

∣∣aibb∣∣ = 4 + i,

which is greater than 4.
This shows, that the shortest prefix distance between w and L2 is between w and

a42bb. _ ^

^ _

Example 5.2.3 shows, that there exist word-language-combinations whose pre-
fix distance is minimised when computing the prefix distance to the word of the
language, having the longest prefix in common with w from all the words in the
language, and at the same time having the shortest suffix completing this longest
prefix to build a word of the language.

Example 5.2.4. Let w = a42b and L2 = a∗bb, then their prefix distance is minimised
by the word combination w and a42bb. All of the other words of L2 lead to bigger
prefix distances, since here the whole word w is a prefix of some words of L2. _ ^

^ _

In Example 5.2.4 we have a special case for the longest common prefix. Here, this
prefix is the word itself.

Example 5.2.5. Having w = aba and L2 = {abb10a∗, b, aa}, their prefix distance is
given by

pref-d(w,L2) = dpref(w, aa) = |aba|+ |aa| − 2 |a| = 3.

The distance between w and b is 4, since these words do not have a common prefix.
This distance exceeds the minimal distance. This means, that the distance of w
and L2 is not minimised by the distance to one of the shortest words.

The distance dpref(w, v) for any word v ∈ abb10a∗ is at least 11, since the longest
common prefix of these words is ab. But any such word v has a suffix of length at
least 10. This means also to these words the distance of w and L2 is not minimal. _ ^

^ _

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 95

Example 5.2.5 from above shows, it is also possible that the prefix distance between
a word w and a language is minimised by the distance of w and a word v in the
language that has not the longest possible prefix in common with w. It is also not
one of the shortest words of the language, and, therefore, this is another possibility
to compute such a prefix distance.

Example 5.2.6. For w = aba and L2 = {abb10a∗, b} the longest common prefix
of w to any word of L2 is ab. To the words v in abb10a∗, the word w has a prefix
distance of at least 11, since the longest common prefix of w and v is ab, and the
words v have length at least 12. To the word b ∈ L2, the prefix distance of w is

dpref(w, b) = |aba|+ |b| = 4,

which is smaller than the distance between w and any word in abb10a∗. _ ^

^ _

In Example 5.2.6 it is shown, that there exist word-language-combinations, such
that their prefix distance is minimised by choosing the distance between the word
and one of the shortest words with no common prefix to the word of the language.
This may even be the case, if there exist words in the language that have a non-empty
prefix in common with the word, just like in the previous example.

5.2.5 Distinguishing Different Computations of the Prefix Distance

The previous examples show that there exist different possibilities how the prefix
distance has to be computed between a single word and a language. In the following,
all possible and different cases for the computation of such a prefix distance between
two regular languges will be separated. We also give criteria how to differentiate be-
tween the cases and how to choose the word to which the prefix distance is minimal.
After this, these criteria are used to accurately compute the parameterized prefix
distance of all the words of one regular language to another based on the minimal
DFA accepting them.

Fact 5.2.1. Given a word w and a regular language L, exactly one of the following
cases occurs:
Case 1: w ∈ L,
Case 2: w 6∈ L, and there exists no word in L that has a prefix in common with w,
Case 3: w 6∈ L, and there exists a word in L with a common prefix to w.

Before we distinguish the cases in detail, we give a short example for possible
different calculations of the prefix distance.

Example 5.2.7. Let L = {a}{b}11{a}∗ ∪ {aa} be a given language. Considering
the word w1 = ab11a5, the distance of w1 to L is 0, since w1 belongs to L. This
resembles Case 1. The word w2 = ba10 does not have any prefix in common with
any word belonging to L, which is precisely Case 2. This is why its prefix distance
to L is calculated by the formula |w2|+ |aa| = 11 + 2 = 13.

Measuring Defects in Finite Automata

96 5.2. The Paramerized Prefix Distance

If the prefix distance of w3 = ab11ab5 and L needs to be determined, the formula
|w3|+

∣∣ab11a
∣∣− 2

∣∣ab11a
∣∣ = 18 + 13− 26 = 5 gives this distance. The distance of w3

to any other word in L is greater than this.
For the word w4 = ab10, its distance to L is minimised by choosing the word ab11,

which gives |w4|+
∣∣ab11

∣∣− 2
∣∣ab10

∣∣ = 11 + 12− 22 = 1. This distance is smaller than
the distance of w4 to any other word of L.

Given the word w5 = ab7a, its prefix distance to L is minimised by choosing the
word ab11, which results in |w5|+

∣∣ab11
∣∣− 2

∣∣ab7∣∣ = 9 + 12− 16 = 5. This distance
is the smallest of all possible distances of w5 to any word in L.

The words w3, w4, and w5 are examples for Case 3.
Another possible combination are the word w6 = aba and the language L given

by {a}{b}11{a}∗ ∪ {b}. Then the distance of given by |w6| + |b| = 3 + 1 = 4. All
of the other possible distances of w6 and L are greater than this, even though w6

has a prefix in common with each of the other words of L. This also resembles the
situation of Case 3. _ ^

^ _

As seen in the previous example, there exist several subcases of Case 3. For each
of these subcases, there exists a different formla to receive the distance.

Remark 5.2.1. Given a word w and a regular language L, then one of the cases
stated in Fact 5.2.1 applies for this combination.

If Case 1 applies, then the prefix distance is pref-d(w,L) = 0.
For Case 2, it is true that pref-d(w,L) = |w| + |m|, for a shortest word m ∈ L,

that is, m ∈ {v ∈ L | ∀u ∈ L : |v| ≤ |u|}.
For Case 3 there exist the following possibilities for the computation of the prefix

distance:
Case 3a applies, if w has a common prefix with some word of L, but its distance

to any of these words is greater than that to a shortest word of L having no prefix in
common with w. Then, the prefix distance is determined by pref-d(w,L) = |w|+|m|,
where m ∈ L is a shortest word, that has no common prefix with w.

Case 3b describes the situation, if there exists a word v ∈ L, that is a proper
non-empty prefix of w, and the prefix distance between w and v is smaller than the
distance of w to any other word of L. Then the formula for the prefix distance is
pref-d(w,L) = |w| − |v|, where v ∈ L is the longest prefix of w that belongs to L.
For all of the other proper prefixes of w belonging to L, their distance to w is bigger.

If there exists a word in L having w as a prefix, then Case 3c applies if all
of the other distances are bigger. Then the distance is derived from the formula
pref-d(w,L) = |v| − |w|, where the word v ∈ L is a shortest word having prefix w.

The last possible situation is described in Case 3d. This case covers all of the
other possibilities for the prefix distance of Case 3. The formula to determine this
distance is given by pref-d(w,L) = |w| + |v| − 2 |p|, for a word v ∈ L having a
non-empty prefix p in common with w. The choice of this word v is described later.

The Cases 1, 2, 3a, 3b, 3c, and 3d describe all possible situations for the deter-
minisation of the prefix distance between a word and a regular language. In the

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 97

following, criteria for the cases are defined. They determine for a given word and
language uniquely, which case applies for this combination.

To be able to formulate criteria to differentiate the possible cases stated in Re-
mark 5.2.1 for a given word w and a language L, the following definitions are nec-
essary.

Definition 5.2.2. Let w be a word, and L a language over an alphabet Σ.

1. The set of all non-empty strict prefixes of w is denoted by

spref(w) = {x ∈ Σ+ | w = xu, u 6= λ}.

2. The set

Ww = {v ∈ L | v = wu, u ∈ Σ+}

consists of all the words of L having the strict prefix w.

3. The set

Pw = {v ∈ L | (spref(v) ∩ spref(w)) \ L 6= ∅}

collects all words v of L having a non-empty, strict prefix in common with w.

The set spref(w) is used to separate Case 3b from the other cases, and also to
decide if Case 3a applies.

Set Ww gathers all words that possibly need to be investigated when deciding if
Case 3c or another case applies. The following lemma shows, that we can restrict
the investigation to a subset of Ww.

Lemma 5.2.4. Let w be a word and L a language. If the prefix distance of w
and L is minimised by a word v ∈ Ww, then this word already belongs to the subset
W ′w = {v ∈Ww | |v| = min{|u| | u ∈Ww}}.

Proof. Let v = wu, v′ = wu′ ∈ Ww with |u| < |u′|. It then holds true that |v| < |v′|
by definition. For the prefix distances of w to these words we have

dpref(w, v) = |u| <
∣∣u′∣∣ = dpref(w, v

′).

Notice that this set W ′w is finite since there only exist finitely many suffixes u
such that wu belongs to L, and for which the length is fixed to the minimum of such
suffixes.

A word of the set Pw is chosen if Case 3d applies for w to compute its shortest
prefix distance to L. This set can also be restricted to a subset, when searching for
a word within Pw that has the shortest distance to w.

Measuring Defects in Finite Automata

98 5.2. The Paramerized Prefix Distance

Lemma 5.2.5. Let w be a word and L a language, and let v ∈ L be the word to
which w has the smallest prefix distance.

If the word in L to which w has the shortest prefix distance belongs to the set Pw,
this word is to be found in the subset

P ′w = {v ∈ Pw | ∃p ∈ (spref(v) ∩ spref(w)) \ L :

w = pxs, v = pys′, x, y ∈ Σ, x 6= y, s, s′ ∈ Σ∗

and ∀v′ ∈ Pw, v′ = pzs′′, z ∈ Σ, z 6= x, s′′ ∈ Σ∗ : |v| ≤
∣∣v′∣∣}.

Proof. Let u and v be two words within the set Pw having the same fixed prefix
p ∈ spref(w), where p is the longest prefix u and v have in common with w. If these
two words have different lengths, we can assume without loss of generality |u| > |v|.

For the prefix distance of w to these words, we have

|su| > |sv|
⇔ |u| > |v|
⇔ dpref(w, u) = |w|+ |u| − 2 |p| > |w|+ |v| − 2 |p| = dpref(w, v).

This means, if w has its shortest prefix distance to L for a word belonging to L∩Pw,
this word also belongs to the subset

{v ∈ Pw | ∃p ∈ (spref(v) ∩ spref(w)) \ L :

w = pxs, v = pys′, x, y ∈ Σ, x 6= y, s, s′ ∈ Σ∗

and ∀v′ ∈ Pw, v′ = pzs′′, z ∈ Σ, z 6= x, s′′ ∈ Σ∗ :
∣∣s′∣∣ ≤ ∣∣s′′∣∣}.

This set is equivalent to the set P ′w since minimising the suffix of a word v in this
set is the same as minimising the whole length of a word in P ′w.

Let p be a prefix of w, and let v ∈ L be a word for which p is the longest common
prefix with w. This word v belongs to P ′w if and only if its length is minimal for all
words belonging to L having p as the longest prefix in common with w.

Notice that this set P ′w is finite since there exist only finitely many prefixes of w
unequal to λ and w and there exist only finitely many suffixes for each of these
prefixes to build a shortest word in L of the required type. From this set P ′w the
word v is chosen if Case 3d applies.

For the rest of this chapter, let m denote the shortest word of L that has no
non-empty prefix in common with w. If there exist more than only one such word,
let m denote one of them. Formally this means,

m ∈ {v ∈ L | |v| = min{|u| | u ∈ L}, v 6∈ wΣ∗, 6 ∃p ∈ spref(w) : v ∈ pΣ∗}.

This word is used to compute the distance of w and L for Case 2 and Case 3a. If any
of these shortest words has a common prefix with w unequal to λ, another subcase
of Case 3 applies that is different from Case 3a.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 99

To find the word in L to which w has the shortest distance, it is sufficient to
compare the distances of w to any word in either of the setsW ′w, and P ′w, spref(w)∩L,
and its distance to m. Notice that there only exist finitely many words in all of
these sets, and, therefore, there only exist finitely many distances that need to be
compared.

There does not exist any other possibility for the distance of w to L than the
cases, we separated before. Cases 1 up to 3c all differ from each other. The Case 3d
covers all of the other possibilities and is also disjunct from the other cases.

5.2.6 Criteria for the Cases

In the following, criteria will be formulated to determine precisely the cases stated in
Remark 5.2.1. These criteria are inequations that need to be fulfilled for the cases.

Let w denote a word, and L a regular language over the same alphabet Σ. To
find the formula for the computation of the prefix distance between w and L, it is
first tested, if w belongs to L.

Proposition 5.2.8. If w belongs to L, then Case 1 needs to be applied. If this
condition holds true, the distance pref-d(w,L) is equal to 0.

Proof. Since the word problem for regular languages is decidable, it is possible to
check this criterion. This results in the ability to decide Case 1. In this case, the
distance of w and L is minimised to zero by calculating the prefix distance to the
word itself.

The next case to decide is the Case 2. The criterion for this case is given in the
following proposition.

Proposition 5.2.9. If there exists no word in L that has a non-empty prefix in
common with the word w, then Case 2 needs to be applied. The distance pref-d(w,L)
then is given by |w|+ |m|, where m denotes one of the shortest words of L.

Proof. Let v ∈ L be a word that is not a shortest word. If there does not exist
a non-empty common prefix between v and w, their prefix distance is given by
dpref(w, v) = |w| + |v| − 2 |λ| = |w| + |v|. In case, there exists no word in L having
a prefix in common with w that is not λ, the distance of w and L is given by
dpref(w,m) = |w|+ |v| for a shortest word m of L.

Notice that, if there exists no word in L having a non-empty prefix in common
with w, this especially means, there exists no word in L beginning with the same
symbol as w. Considering the minimal DFA accepting L, the first symbol of w leads
into the rejecting sink state. This can be checked, and, therefore, it is decidable if
Case 2 applies for a word-language-combination for a regular language.

In the following, criteria to separate the subcases of Case 3 will be given. These
criteria only need to be checked, if none of the Cases 1 and 2 apply for the combi-
nation of w and L.

Measuring Defects in Finite Automata

100 5.2. The Paramerized Prefix Distance

Proposition 5.2.10. If neither Case 1 nor Case 2 applies, and if spref(w) ∩ L is
empty, and for all words wu ∈W ′w, and pu′ ∈ P ′w the inequations

|m| ≤ |u| − |w| , (5.1)

and
|m| ≤

∣∣u′∣∣− |p| (5.2)

hold true, exactly Case 3a applies for w and L, and their distance pref-d(w,L) is
given by |w|+ |m|, where w = pu′′ for some suffix u′′.

Proof. First, if spref(w)∩L is not empty, there exists a word v ∈ spref(w)∩L with

dpref(w,m) = |w|+ |m| > |w| − |v| = dpref(w, v), (5.3)

since |v| ≥ 1. Then, Case 3a cannot apply to w and L, since the distance of w and m
is greater than the distance between w and one of its non-empty prefixes belonging
to L.

In case there exists no proper prefix of w belonging to L, which means that
spref(w)∩L = ∅, Case 3b cannot apply. Then, it is to check if there exists no word
wu ∈W ′w, such that

dpref(w,m) ≤ dpref(w,wu)

⇔ |w|+ |m| ≤ |w|+ |wu| − 2 |w|
⇔ |m| ≤ |u| − |w| ,

is fulfilled. If so, then Case 3c does not apply to w and L, but one of the Cases 3a
or 3d may still apply.

If there does not exist any word pu′ ∈ P ′w for which the inequations

dpref(w,m) ≤ dpref(w, pu
′)

⇔ |w|+ |m| ≤ |w|+
∣∣pu′∣∣− 2 |p|

⇔ |m| ≤
∣∣u′∣∣− |p| ,

are true, Case 3d also does not apply.
This means, if these inequations are fulfilled for all words belonging to W ′w and P ′w,

the word w has its shortest prefix distance to the word m. This is exactly Case 3a.
Now, let Case 3a apply for the combination of word w and language L. Then

there cannot exist a word v ∈ L having a non-empty prefix in common with w, such
that the prefix distance of w and v is strictly smaller than the distance of w and a
shortest word m ∈ L that has no non-empty common prefix with w. This means,
the Inequations 5.1 and 5.2 need to be true for all words v belonging to W ′w and P ′w,
which excludes the Cases 3c and 3d. There may also not exist any strict prefix of w
belonging to L, since then Inequation 5.3 contradicts the minimality of the distance
between m and w. This also excludes Case 3b. Therefore, the conditions stated in
the proposition are fulfilled.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 101

If Case 3a applies for w and L, their prefix distance is computed by the formula

pref-d(w,L) = dpref(w,m) = |w|+ |m| , (5.4)

since for all words v ∈ L different from any shortest word m ∈ L, where m has no
prefix in common with w except for λ, the distance dpref(w, v) is greater that the
distance dpref(w,m).

Proposition 5.2.11. If none of the Cases 1, 2, or 3a applies for a word w and a
regular language L, and if for all words wu ∈W ′w, and pu′ ∈ P ′w the inequations

|w| ≤ |u|+ |v| , (5.5)

and
|p| ≤

∣∣u′∣∣+ |v| , (5.6)

hold true, exactly Case 3b applies for w and L, where v denotes the longest strict
prefix of w that belongs to L. The distance pref-d(w,L) is given by |w| − |v|.

Proof. Let v ∈ spref(w) ∩ L denote the longest non-empty, strict prefix of w that
belongs to L. If v is the word of L to which w has the shortest prefix distance, which
means Case 3b applies for w and L, the following inequations need to be true for all
words wu ∈W ′w:

dpref(w, v) ≤ dpref(w,wu)

⇔ |w|+ |v| − 2 |v| ≤ |w|+ |wu| − 2 |w|
⇔ |w| ≤ |u|+ |v| .

If this inequation is fulfilled for all words in W ′w, there does not exist a word in L
different to v with prefix w, to which w has its shortest distance. This especially
means that Case 3c does not apply for w and L.

If the inequation from above holds true for all words of W ′w, there may still exist
a word pu′ ∈ P ′w for which the following inequations are not true:

dpref(w, v) ≤ dpref(w, pu
′)

⇔ |w|+ |v| − 2 |v| ≤ |w|+
∣∣pu′∣∣− 2 |p|

⇔ |p| ≤
∣∣u′∣∣+ |v| .

If these inequations are fulfilled, there exists no word in P ′w to which w has a shorter
distance than to v. This also excludes Case 3d, and leaves Case 3b to apply for w
and L.

If Case 3b applies for w and L, then w has the shortest distance to the longest
word v ∈ spref(w) ∩ L. This case only applies, if this set is not empty. Then there
does not exist a word in L having w as a strict prefix, to which w has a shorter
distance. This excludes Case 3c, and, therefore, all words from the set W ′w. This
means, Inequation 5.17 is fulfilled. There also does not exist any word having some

Measuring Defects in Finite Automata

102 5.2. The Paramerized Prefix Distance

non-empty, strict prefix in common with w, to which w has a shorter distance. This
especially means, Inequation 5.18 is fulfilled.

In case, the distance between a word w and a regular language L is given by the
distance dpref(w, v) for the longest word v ∈ spref(w) ∩ L, the precise formula is
given by

pref-d(w,L) = dpref(w, v) = dpref(vwv, v) = |vwv| − |v| = |wv| , (5.7)

where w = vwv, and |wv| ≥ 1. This is true, since if Case 3b applies for w and L,
there does not exist any other word in L, having or not having a prefix in common
with w to which w has a shorter distance. This can be seen by the inequations that
need to be fulfilled if Case 3b applies.

If none of the Cases 1 and 2 applies, and in case that w has its shortest prefix
distance to L not to the word m and also not to any of its proper prefixes belonging
to L, at least one of the Inequations 5.1, and 5.2 and of 5.17, and 5.18 are not
fulfilled.

Then, the word to which w has the shortest distance to, belongs to one of the
sets W ′w and P ′w. If this word v belongs to W ′w, it is of the form v = wu for some
suffix u ∈ Σ+. This corresponds to Case 3c, where the prefix distance of w and L is
given by

dpref(w, v) = dpref(w,wu) = |w|+ |wu| − 2 |w| = |u| . (5.8)

Otherwise, the word v belongs to the set P ′w. This corresponds to Case 3d. Then
w = pwp and v = pvp for a proper prefix p of w and two suffixes wp and vp. Both of
these suffixes are unequal to the empty word, and vp does not begin with a symbol
that enlarges the prefix p to another prefix of w. The prefix distance pref-d(w,L)
then is computed by

dpref(w, v) = |pwp|+ |pvp| − 2 |p| = |wp|+ |vp| . (5.9)

Proposition 5.2.12. If none of the Propositions 5.2.8, 5.2.9, 5.2.10, or 5.2.11 leads
to an applicable case for the distance of a word w and a regular language L, and if
for at least one word wu ∈W ′w, and all words pu′ ∈ P ′w the inequation

|u| − |w| ≤
∣∣u′∣∣− |p| . (5.10)

holds true, exactly Case 3c applies for w and L. Their distance pref-d(w,L) then is
given by Formula 5.8.

Proof. If W ′w consists of more than only one word, any of the words wu ∈ W ′w can
be chosen for the following investigations, since all possible suffixes are of the same
length, and this length is the only information that has a share to the prefix distance.

If none of the Cases 1, 2, 3a, and 3b applies for w and L, and if the following
inequation holds true for all words pu′ ∈ P ′w, w has its shortest distance to a word

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 103

from W ′w, and Case 3c applies:

dpref(w,wu) ≤ dpref(w, pu
′)

⇔ |w|+ |wu| − 2 |w| ≤ |w|+
∣∣pu′∣∣− 2 |p|

⇔ |u| − |w| ≤
∣∣u′∣∣− |p| .

To show the other direction, let Case 3c be the case that is to apply for the
distance of w and L. Then, the distance of w to a word wu ∈ W ′w is smaller than
(or equal to) the distance of any word of L \W ′w. This especially means that the
conditions and inequations stated in Propositions 5.2.8, 5.2.9, 5.2.10, and 5.2.11 are
not fulfilled, and none of the Cases 1, 2, 3a, and 3b can be applied for the distance
of w and L.

Also for any word v from L, having a prefix in common with w that is neither λ
nor w itself, and v not being a proper prefix of w, the distance of v and w is at least
as big as the distance between wu and w. This especially leads to Inequation 5.10,
that is fulfilled.

Of course, it is not necessary to check the Inequations 5.1, 5.17, and 5.10 if set W ′w
is empty. The same holds true for the Inequations 5.2, 5.18, and 5.10 for an empty
set P ′w.

Concluding this section, the last proposition gives a criterion, when to apply
Case 3d for a given word w and a regular language L.

Proposition 5.2.13. If none of the Propositions 5.2.8, 5.2.9, 5.2.10, 5.2.11, or
5.2.12 lead to an applicable case for the distance of a word w and a regular lan-
guage L, exactly Case 3d applies for w and L. Their distance pref-d(w,L) then is
given by Formula 5.9.

Proof. If none of the Cases 1, 2, 3a, 3b, and 3c gives the shortest distance of w
and L, then w does not belong to L, there exist words in L having a non-empty
prefix in common with w, and no non-empty, proper prefix of w belonging to L gives
a shortest distance to w. Also no word with prefix w from L has a shortest distance
to w, and one of the shortest words of L having no non-empty prefix in common
with w minimises the distance between w and L.

This leaves all words v of L having a common prefix with w that belongs to
spref(v) ∩ spref(w) \ L. These words have all a longest common prefix with w.
Collecting all these words v leads precisely to the set Pw. Like already shown, the
search for the word within Pw to which w has its shortest distance, we can restrict to
the set P ′w. Since this set is finite, only finitely many distances need to be computed
to find the minimal distance. The distance is calculated by Formula 5.9 for the
word v of P ′w that minimises the distance.

Since all the sets spref(w), W ′w, and P ′w are finite, all the criteria for the Cases 3a,
3b, 3c, and 3d can be tested.

Measuring Defects in Finite Automata

104 5.2. The Paramerized Prefix Distance

5.2.7 Construction of an Automaton to Determine the Prefix Distance

Now that we have criteria to differentiate between the possibilities for the compu-
tation of the prefix distance of a word to a language, these criteria can be used
to compute the parameterized prefix distance of two languages L(A1) and L(A2)
accepted by the minimal DFA A1 = 〈Q1,Σ, δ1, s01, F1〉 and A2 = 〈Q2,Σ, δ2, s02, F2〉
more precisely.

As a recall, the formula for the parameterized prefix distance is given by

pref-D(n,L(A1), L(A2)) =
∑

w∈L(A1),
0≤|w|≤n

pref-d(w,L(A2)) +
∑

w∈L(A2),
0≤|w|≤n

pref-d(w,L(A1)),

where n ≥ 0 is fixed. In the following, these sums are computed separately. The
procedure is the same for each of the sums. Therefore, it is explained only for the
first of the two sums, that means only the precise approach of the computation of
the sum of the prefix distances of the words of L(A1) to the language L(A2) will be
given in detail.

To be able to do this, the criteria from above need to be decided by using infor-
mation provided by the automata A1 and A2. This especially includes the ability
to distinguish between productive and non-productive states. Some state s of an
automaton is said to be productive if there exists at least one word w ∈ Σ∗ such that
the automaton is driven into acceptance beginning the processing of w in state s.
Formally this means for a deterministic automaton A and its transition function δ,
there exists at least one word w such that δ(s, w) is an accepting state. If there
exists no such word, state s is called non-productive.

To compute the prefix distances for all the words of L(A1) up to a certain length n
to the language L(A2), a new automaton H is constructed based on the automata A1

and A2, that stores the following information in each state:

• As in the cross product automaton every state stores one state of A1 and
one state of A2. These stored states are exactly those states, in which the
automata A1 and A2 end up after processing the same word as automaton H.

• For every state s of H, a number is stored. If the state of A1 stored in s is
productive, this number indicates the length of a shortest word that needs to
be processed to reach this state s. Otherwise, this number is the length of a
prefix of the currently processed word. This prefix is the last prefix processable
by A1 that does not end up in the rejecting sink state of A1.

In the following we will refer to this number by calling it read or reads for a
considered state s of automaton H. This number will be limited by 2 |Q2|. If
this number would exceed this upper bound, this is indicated by the symbol
> 2 |Q2|. This means for s more than 2 |Q2| symbols have been processed by
automaton H since leaving its initial state.

• Every state s of automaton H also stores a list of at most 2 |Q2| triples. Each
triple consists of one state of automaton A1, one of automaton A2, and a

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 105

number of symbols. Such a list may look like ((s2, p2, 2), (s1, p1, 1), (s0, p0, 0)),
where s0, s1, s2 are states of A1, p0, p1, p2 are states of A2 and the number 0, 1
respectively 2 are the numbers of formerly processed symbols.

Starting in its initial state, automaton H visits several states while processing
some word w. This processing ends up in a state s. Like already mentioned
before, all of the visited states store two states, one from A1 and the other
from A2. Additionally, also the number read is stored. The list of triples stores
precisely this information of all states previously visited on a path of H. This
information is additionally stored in the order of occurrences of the informa-
tion. This especially means, we can reproduce the paths of the processing of w
in the automata A1 and A2.

Since it is impossible for a finite automaton to store infinitely many informa-
tion, the size of the list is limited to 2 |Q2| triples, where Q2 is the set of states
of automaton A2. This means, only the last 2 |Q2| states can be reproduced
of the paths in A1 respectively A2.

We will refer to this list of triples by the name hist or more precise hists, when
considering some special state s of H.

• Each state s of H also stores a marker that can be true or false. This marker
indicates, if there exists a state in automatonH from which state s is reachable,
and which contains an accepting state of A2 or not. This means, the marker
is true, if there exists such a state, otherwise it is false. In the following, it is
not wanted to let this predecessor accept the empty word, and, therefore, the
set of such predecessors is restricted to the states unequal to the initial state
of H.

This marker will be called accept2 in the following.

The following definition gives the formal definition of the automaton H.

Definition 5.2.3. Let A1 = 〈Q1,Σ, δ1, s01, F1〉 and A2 = 〈Q2,Σ, δ2, s02, F2〉 be
two minimal DFA. Based on these two automata, we construct a new automaton
H = 〈QH ,Σ, δH , sH , FH〉, where:

• QH = Q1 × Q2 × read×hist× accept2 is the set of states. Every state of
automaton H stores one state of A1 and one of A2. Additionally, a number
read ∈ {0, 1, . . . , 2 |Q2| , > 2 |Q2|} is stored. If the state of A1 stored in the
considered state s of H is productive, this number indicates the length of a
shortest word that needs to be processed to reach this state s. Otherwise, this
number is the length of a prefix of processed words that lead into state s. This
prefix is the longest prefix that does not drive A1 into its rejecting sink state.

hist is a list of at most 2 |Q2| triples belonging to the set

Q1 ×Q2 × {0, 1, . . . , 2 |Q2| , > 2 |Q2|}.

Measuring Defects in Finite Automata

106 5.2. The Paramerized Prefix Distance

This list is a storage of information about the at most 2 |Q2| predecessors of the
considered state. This information are the states of A1 and A2 stored in the
predecessors and also their numbers read. Additionally, due to the structure
of the list, also the order of the predecessors is stored.

The last information stored in every state of automaton H is accept2 having
a value in {true, false}. This is a marker for the acceptance of A2. If a state
of H stores an accepting state of A2, all of its successors have this marker set
to true.

• sH = (s01, s02, 0, (), false) ∈ QH is the initial state.

• The set of accepting states is given by

FH = {(s1, s2, read, hist, accept2) ∈ QH | s1 ∈ F1}.

• δH : QH × Σ→ QH is the transition function, given by

δH((s1, s2, reads, hists, accept2), a) =

(δ1(s1, a), δ2(s2, a), reads +1, hist′s, accept2
′) if s1, s2 are productive,

and reads < 2 |Q2|
(δ1(s1, a), δ2(s2, a), > 2 |Q2| , hist′s, accept2

′) if s1, s2 are productive,

and reads ∈ {2 |Q2| , > 2 |Q2|}
(δ1(s1, a), s2, reads +1,hists, accept2

′) if s1 is productive,

and s2 is non-productive

and reads < 2 |Q2|
(δ1(s1, a), s2, > 2 |Q2| ,hists, accept2

′) if s1 is productive,

and s2 is non-productive

and reads ∈ {2 |Q2| , > 2 |Q2|}
(s1, δ2(s2, a), reads,hist′s, accept2

′) if s1 is non-productive,

and s2 is productive,

(s1, s2, reads,hists, accept2) if s1, s2 are non-productive

for all states (s1, s2, reads,hists, accept2) ∈ QH and all symbols a ∈ Σ, where
hists = ((p1, q1, read1), (p2, q2, read2), . . . , (pk, qk, readk)), for 0 ≤ k ≤ 2 |Q2|,

hist′s =



((s1, s2, 0)) if k = 0, that means

hists = ()

((s1, s2, reads), (p1, q1, read1),

(p2, q2, read2), . . . , (pk, qk, readk)) if 1 ≤ k < 2 |Q2|
((s1, s2, reads), (p1, q1, read1),

(p2, q2, read2), . . . , (pk−1, qk−1, readk−1)) if k = 2 |Q2|

,

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 107

and

accept2
′ =

{
true, if s2 ∈ F2

accept2, else
.

Notice that the initial state of H is never reentered if A1 accepts at least one
non-empty word.

The DFA A1 and A2 are finite. Therefore, also automaton H is finite by con-
struction since its number of states is bounded by some constant depending only
on the sizes of A1 and A2. Automaton H is also deterministic since the transition
function of H is based on the deterministic transitions of two minimal DFA. The
constructed automaton is not minimal since there may exist several states in H that
store the rejecting sink state of A1. No accepting state of H is reachable from these
states. This means these states are all equivalent. For example, for a word w that is
accepted by A2 but not by A1, if |w| ≥ 2, and if already the first symbol of w drives
automaton A1 into its rejecting sink state, then in automaton H, there exist several
states storing this rejecting sink state of A1 but maybe different states of A2.

By definition, automaton H accepts the language L(A1), since H accepts if and
only if A1 accepts.

Having all the resources from above, the prefix distances for all the words accepted
by the minimal DFA A1 up to a fixed length n ≥ 0 to the language accepted by the
minimal DFA A2 can be computed.

The automaton H from above is constructed based on these two minimal au-
tomata. For each state s of H it is necessary to be checked, which of the cases
described in Remark 5.2.1 applies to words of L(A1) ending up in s after being
processed by H.

Let s = (s1, s2, reads,hists, accept2) denote a state of H, with a list of triples
hists = ((p1, q1, read1), (p2, q2, read2), . . . , (pk, qk, readk)), for 0 ≤ k ≤ 2 |Q2|, where
k = 0 means hists = (). The following information is stored either in the state itself,
or is obtained by the automata A1, A2, or H, or by their accepted languages.

States of A1 and A2 The states of the automata A1 and A2 are known, in which
these DFA would end up after processing the same symbols that lead automaton H
to state s, since these states are stored in s.

A shortest word of L(A2) By m, one of the shortest words of L(A2) is denoted.
If there exists more than one such word, m is chosen to be one of them. Its length
cannot exceed |Q2| − 1, since when accepting a shortest word, the automaton A2

visits each of its states at most once.

The number reads The component reads is a number between 0 and 2 |Q2|, or
the symbol > 2 |Q2|. By construction it is evident that this, in general, is a counter
for the minimal number of symbols that need to be processed by H from its initial
state to reach state s. This is true, if the state of A1 stored in s is producing.

Measuring Defects in Finite Automata

108 5.2. The Paramerized Prefix Distance

DFA A1

s0 s1 s2
a, b b

a a, b

DFA A2

p0 p1 p2
a

a, ba, b

b

Figure 5.2: Two minimal DFA that accept the languages L(A1) = {a, b}{a}∗ respec-
tively L(A2) = {a}{a, b}∗.

Example 5.2.8. Let H be the automaton depicted in Figures 5.3 and 5.4. By
having a closer look at the connected states, one can see the growth of the number
read within states storing productive states of A1. Each symbol leading from one
such state to another changes this number by one.

One can also see, that the history for each state only changes for a successing
state, if the stored state of A2 is productive. _ ^

^ _

In case s1 stored in s is the rejecting sink state of A1, this number reads only
indicates the number of symbols that could be processed by automaton H until
first entering a state also storing the rejecting sink state s1. This means, reads−1
resembles the length of a prefix for all words processed by H leading into state s.
This prefix is the longest prefix of words driving H into state s and words in L(A1).

The marker accept2 From the marker accept2 stored in the state the information
is obtained, if there exists a state in the automaton H from which state s is reachable,
and which stores an accepting state of automaton A2. This means, accept2 stores
the information of the existence of a word belonging to L(A2), that is a non-empty
prefix of the words ending up in state s while being processed.

Example 5.2.9. We consider the part of automaton H depicted in Figure 5.3. The
first occurrence of true for the marker accept2 is in the state h1 that stores the
accepting state p1 of A2. All of the states reachable from h1 also store true for this
marker. Every state not reachable from one of these states store false for the marker
accept2. This is the case in the part of automaton H depicted in Figure 5.4. _ ^

^ _

The function forward2 For each state q of automaton A2, the length of a shortest
word that leads A2 into acceptance can be retrieved. Formally, this number by is
obtained by the function forward2 : Q2 → {0, 1, . . . , |Q2| − 1,∞}. For a productive

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 109

h0 = (s0, p0, 0,false,())

h1 = (s1, p1, 1,true,
(((s0, p0, 0)))

h2 = (s1, p1, 2,true,
((s1, p1, 1),(s0, p0, 0)))

h3 = (s1, p1, 3,true,
((s1, p1, 2),(s1, p1, 1),
(s0, p0, 0)))

h4 = (s1, p1, 4,true,
((s1, p1, 3),(s1, p1, 2),
(s1, p1, 1),(s0, p0, 0)))

h5 = (s1, p1, 5,true,
((s1, p1, 4),(s1, p1, 3),
(s1, p1, 2),(s1, p1, 1),
(s0, p0, 0)))

h6 = (s1, p1, 6,true,
((s1, p1, 5),(s1, p1, 4),
(s1, p1, 3),(s1, p1, 2),
(s1, p1, 1),(s0, p0, 0)))

h7 = (s1, p1, > 2 |Q2|,true,
((s1, p1, 6),(s1, p1, 5),
(s1, p1, 4),(s1, p1, 3),
(s1, p1, 2),(s1, p1, 1)))

h14 = (s2, p1, 2,true,
((s1, p1, 1),(s0, p0, 0)))

h15 = (s2, p1, 2,true,
((s2, p1, 2),(s1, p1, 1),
(s0, p0, 0)))

h16 = (s2, p1, 2,true,
((s2, p1, 2),(s2, p1, 2),
(s1, p1, 1),(s0, p0, 0)))

h17 = (s2, p1, 2,true,
((s2, p1, 2),(s2, p1, 2),
(s2, p1, 2),(s1, p1, 1),
(s0, p0, 0)))

h18 = (s2, p1, 2,true,
((s2, p1, 2),(s2, p1, 2),
(s2, p1, 2),(s2, p1, 2),
(s1, p1, 1),(s0, p0, 0)))

h19 = (s2, p1, 2,true,
((s2, p1, 2),(s2, p1, 2),
(s2, p1, 2),(s2, p1, 2),
(s2, p1, 2),(s1, p1, 1)))

h20 = (s2, p1, 2,true,
((s2, p1, 2),(s2, p1, 2),
(s2, p1, 2),(s2, p1, 2),
(s2, p1, 2),(s2, p1, 2)))

h8 = (s1, p1, > 2 |Q2|,true,
((s1, p1, > 2 |Q2|),(s1, p1, 6),
(s1, p1, 5),(s1, p1, 4),
(s1, p1, 3),(s1, p1, 2)))

h9 = (s1, p1, > 2 |Q2|,true,
((s1, p1, > 2 |Q2|),(s1, p1, > 2 |Q2|),
(s1, p1, 6),(s1, p1, 5),
(s1, p1, 4),(s1, p1, 3)))

h10 = (s1, p1, > 2 |Q2|,true,
((s1, p1, > 2 |Q2|),(s1, p1, > 2 |Q2|),
(s1, p1, > 2 |Q2|),(s1, p1, 6),
(s1, p1, 5),(s1, p1, 4)))

h11 = (s1, p1, > 2 |Q2|,true,
((s1, p1, > 2 |Q2|),(s1, p1, > 2 |Q2|),
(s1, p1, > 2 |Q2|),(s1, p1, > 2 |Q2|),
(s1, p1, 6),(s1, p1, 5)))

h12 = (s1, p1, > 2 |Q2|,true,
((s1, p1, > 2 |Q2|),(s1, p1, > 2 |Q2|),
(s1, p1, > 2 |Q2|),(s1, p1, > 2 |Q2|),
(s1, p1, > 2 |Q2|),(s1, p1, 6)))

h13 = (s1, p1, > 2 |Q2|,true,
((s1, p1, > 2 |Q2|),(s1, p1, > 2 |Q2|),
(s1, p1, > 2 |Q2|),(s1, p1, > 2 |Q2|),
(s1, p1, > 2 |Q2|),(s1, p1, > 2 |Q2|)))

a

a

a

a

a

a

a

b

a, b

a, b

a, b

a, b

a, b

a, b

a

a

a

a

a

a

a

a, b

Figure 5.3: An example for a history automaton H, based on the minimal DFA de-
picted in Figure 5.2. Here only some part of the automaton is depicted
for words starting with a. The missing transitions and states can be
added like described in the definition of H.

Measuring Defects in Finite Automata

110 5.2. The Paramerized Prefix Distance

h0 = (s0, p0, 0,false,())

h21 = (s1, p2, 1,false,
(((s0, p0, 0)))

h22 = (s1, p2, 2,false,
((s0, p0, 0)))

h23 = (s1, p2, 3,false,
((s0, p0, 0)))

h24 = (s1, p2, 4,false,
((s0, p0, 0)))

h25 = (s1, p2, 5,false,
((s0, p0, 0)))

h26 = (s1, p2, 6,false,
((s0, p0, 0)))

h27 = (s1, p2, > 2 |Q2|,false,
((s0, p0, 0)))

h28 = (s2, p2, 2,false,
((s0, p0, 0)))

b

a

a

a

a

a

a

b

a

a, b

Figure 5.4: An example for a history automaton H, based on the minimal DFA de-
picted in Figure 5.2. Here only some part of the automaton is depicted
for words starting with b. The missing transitions and states can be
added like described in the definition of H.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 111

state q ∈ Q2, this function assigns the length of a shortest word w ∈ Σ+ to the
state q, so that δ2(q, w) ∈ F2. Otherwise, the function assigns ∞.

For the productive states, the assigned length is smaller than |Q2|, since for any
productive state there always exists an accepting state that is reached by processing
less than |Q2| symbols. This function only assigns the number 0 to a state q, if this
state is accepting.

The function pos For each triple (p, q, read) belonging to hists, it is of interest
to know how many symbols have (at least) been processed since a state of H was
entered, that added the considered triple to the list. Such a state needs to be a
predecessor of state s.

The number of symbols can be retrieved by counting the position of the considered
triple within hists. Formally, this is done by the function

pos : (T × · · · × T)︸ ︷︷ ︸
≤2|Q2| times

×T → {1, 2, . . . , 2 |Q2| ,∞},

where T := Q1 ×Q2 × {0, 1, . . . , 2 |Q2| , > 2 |Q2|}.
This function assigns a number, that denotes the position of a triple within hists.

If there exists more than one position for the triple, pos gives the smallest, that is
the leftmost position. If the triple does not exist within hists, the function maps
to ∞.

This position is used to determine the state of DFA A2, in which a common prefix
to a word of L(A1) stops to be processed. This is used in the Cases 3b and 3d.

Example 5.2.10. Let hists be denoted like above. The indices are chosen such that
they denote the position of the triples within this list. This means, if this list of
triples does not contain a triple twice, the function pos maps each triple (pi, qi, readi)
to its index i.

If there exist two triples (pi, qi, readi), and (pj , qj , readj), where i 6= j, but pi = pj ,
qi = qj , and readi = readj , the function pos maps this triple to the smallest index
of all the occurrences of this triple. _ ^

^ _

The index lcs Let h be a fixed index of a triple belonging to hists, if hists is not
empty. There always exists a word v belonging to L(A2) which has a prefix in
common with a word w ∈ L(A1) = L(H) visiting state s while being processed.
This prefix is of length readh, since this number indicates the number of symbols
processed by automaton H when entering the state that added the considered triple
to hists. In fact, this especially means, this prefix can be processed by automaton A2

and leads into the state qh stored in the considered triple. In the calculation of the
prefix distance of these two words v and w, this prefix does not have a share since
it is subtracted from both words. Therefore, even if readh is equal to > 2 |Q2|, only
the suffixes of v and w count for their distance.

The length of the suffix of v is given by forward2(qh), which resembles the length
of the shortest suffix of words in L(A2) having a prefix in common with w. In

Measuring Defects in Finite Automata

112 5.2. The Paramerized Prefix Distance

constrast, the whole length of the suffix of w generally cannot be computed from
information stored in state s. Only the length of some prefix of the considered suffix
of w can be determined. This prefix is computed up to state s since leaving the
state of H that added the triple (qh, ph, readh) to the list hists. The length of this
prefix is precisely h.

For two different fixed indices h and g of triples within hists, where h < g, the
sums forward2(qh) + h and forward2(qg) + g can be computed and compared. The
smaller sum leads to a smaller prefix distance. This is, because the part of the suffix
of w that is processed from state s has a share in all prefix distances that have to be
compared, and the numbers forward2(qh)+h respectively forward2(qg)+g build the
rest of the distance. If this number is minimised, then also the whole prefix distance
is minimised.

Based on the function pos, it is possible to retrieve the position of a triple
(p, q, read) within hists, for which the sum of its position and forward2(q) is minimal.
This can be done by searching for the minimum of these sums i + forward2(qi) for
all triples (pi, qi, readi), 1 ≤ i ≤ k, stored in hists. For the number lcs, we restrict to
those triples, where qi is non-accepting. In this notation, the index i indicates the
position of the triple within the list hists. This means, pos(hists, (pi, qi, readi)) = i.

The position of the triple of hists still needs to be determined, for which the
computed sum is minimal. First, all positions of triples are retrieved from hists, for
which the sum of the above mentioned components is minimal. From all of these
positions, the one with the smallest index is chosen. Let (pi, qi, readi) denote the
triple that is stored in hists in precisely this chosen index. The sum forward2(qi) + i
still needs to be compared with forward2(qs), if qs is non-accepting. The last number
resembles the suffix of a word v, that has a prefix in common with w, which stops
being processed precisely in state s. Depending on which of the number is smaller,
the index lcs either is set to i or to 0.

Definition 5.2.4. Let hists = ((p1, q1, read1), (p2, q2, read2), . . . , (pk, qk, readk)), for
0 ≤ k ≤ 2 |Q2|, where k = 0 means hists = (), denote the list of triples stored in a
state s of automaton H. The number lcs is defined to be the smallest index of a triple
of hists for which the sum i + forward2(qi) is minimised for all triples (pi, qi, readi)
belonging to hists, where qi is non-accepting. In case that forward2(qs) for the non-
accepting state qs of A2 stored in state s is smaller than all of the considered sums
from above, the index lcs is set to 0.

The index s of lcs refers to the fact that this number is computed for some fixed
state s of automaton H. This number may differ for another state s′.

This index will be used to separate Case 3d from the other cases.

Example 5.2.11. Let the part of the history automaton H be given that is depicted
in Figure 5.3. Considering state h3, the sums 1+forward2(p1), 2+forward2(p1), and
3 + forward2(p0) need to be computed. This leads to the set of numbers {1, 2, 4}.
The minimum of these numbers is 1, and, therefore, the index lch3 is set to 1, which
is the position of the triple (s1, p1, 2) delivering the smallest sum for all triples in
histh3 . _ ^

^ _

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 113

Considering the sums that need to be built to determine lcs for some state s of
automaton H, they have a range between 1 and 3 |Q2| − 1. The part of the sum
forward2(pi) is at least 1 and at most |Q2| − 1. This means, for the triple in hists
at position 2 |Q2| the sum ranges between 2 |Q2| and 3 |Q2| − 1. Therefore, there
always exists another triple in a different position with a smaller sum. This is why
it is sufficient to have a length of at most 2 |Q2| for hists.

The index las If the state qs of A2 stored in s is accepting, all words driving
automaton H into state s are accepted by automaton A2. Then the index las is
set to 0. In case that qs is non-accepting, quite like for the number lcs, the sums
forward2(qi) + i are compared for all triples (pi, qi, readi) of hists. But this time
only those triples of hists are considered, where qi is an accepting state of A2. In
fact, these sums then only consist of the position i, since forward2 assigns 0 to an
accepting state. Then the word processed up to the state that added the considered
triple to hists also stored this accepting state of A2. Let s′ denote this state. The
acceptance of qi especially means, that all words driving automaton H into the
state s′ are accepted by automaton A2.

For a word w leading into state s this means, that there exists at least one word v
in L(A2) that is a prefix of w. Such a prefix stops being processed by automaton H
in state s′ repectively s, if qs is accepting.

The position of the triple that is the smallest number in the set

{pos((p, q, read),hists) | q ∈ F2},

for all triples (p, q, read) belonging to hists will be called las, if qs is non-accepting.

By the definition of pos the smallest position is equal to∞ if there exists no triple
in hists for which the state from A2 is accepting. Otherwise it is a number between 1
and 2 |Q2|.

Definition 5.2.5. Let hists = ((p1, q1, read1), (p2, q2, read2), . . . , (pk, qk, readk)), for
0 ≤ k ≤ 2 |Q2|, where k = 0 means hists = (), denote the list of triples stored
in a state s of automaton H. If the state of A2 stored in state s is accepting, the
number las is defined to be 0. Otherwise, the number las is defined to be the smallest
index of a triple of hists that stores an accepting state of automaton A2. If there
does not exist such a triple, las is set to ∞.

This index determines the triple inserted by the state of H in which the longest
prefix of a word entering state s is processed, that belongs to the language L(A2).
This is used to compare Case 3b to the other cases.

Example 5.2.12. Let the part of the history automaton H be given that is depicted
in Figures 5.3 and 5.4. For state h6, the index lah6 is set to 0, since the accepting
state p1 of A2 is stored in h6. For state h22, the index lah22 is set to ∞, since
neither p2 nor the states of A2 stored in the triples belonging to histh1 are accepting.

_ ^

^ _

Measuring Defects in Finite Automata

114 5.2. The Paramerized Prefix Distance

5.2.8 Detailed Differentiation of the Cases Based on Automaton H

In the following it will be explained in detail how the cases stated in Remark 5.2.1
can be differentiated with the information retrieved from two minimal DFA A1,A2,
and automaton H, which is constructed based on these two automata. By the
definition of FH given above, H accepts a word if and only if A1 accepts the word.
This means that H also accepts the language L(A1).

Let s = (s1, s2, reads,hists, accept2) denote a state of automaton H. The states
s1 ∈ Q1, s2 ∈ Q2 belong to A1 respectively A2. The number reads belonging
to the set {0, 1, . . . , 2 |Q2| , > 2 |Q2|} is the number of symbols that have at least
been processed since leaving the initial state of H. For 0 ≤ k ≤ 2 |Q2|, the list
of triples hists is given by ((p1, q1, read1), (p2, q2, read2), . . . , (pk, qk, readk)), where
k = 0 means hists = (). The marker accept2 is true if there exists a state p in H
from which state s is reachable, such that p stores an accepting state of A2, and p
was already visited before entering state s for all words processed up to state s.

The first thing to do, is to identify those states of automaton H, for which one of
the cases given in Remark 5.2.1 need to be assigned.

Lemma 5.2.6. All investigations for the parameterized prefix distance of the lan-
guages accepted by the two minimal DFA A1 and A2 can be restricted to the accepting
states s of H.

Proof. The acceptance of a state s of H is equivalent to the fact that the state
of A1 stored in the considered state is accepting. This means, a word of L(A1) is
accepted in s. These are precisely the words, for which we already formulated criteria
in Section 5.2.6 to decide the formula for their contribution to the parameterized
prefix distance of L(A1) and L(A2).

For the words accepted by some state s of automaton H, it is decidable which
case from Remark 5.2.1 applies. The precise way of decision will be shown in the
following. This especially includes to decide which formula is used to compute the
contribution to the parameterized prefix distance.

Lemma 5.2.7. Only for those accepting states of H that store an accepting state
of A2, Case 1 applies. The contribution of words, accepted in these states is equal
to zero.

Proof. In the set of all accepting states those states can be identified, for which also
the stored state of A2 is accepting. This means, the words accepted in such a state
are also accepted by automaton A2. Thus, for these states Case 1 applies for the
accepted words. This especially means, the contribution to the parameterized prefix
distance of these words is zero.

If Case 1 applies for an accepted word w, then the word w also belongs to L(A2).
This especially means, that w is accepted in a state of H, that stores and accepting
state of A2.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 115

Lemma 5.2.8. Only for those accepting states s of H that store a non-productive
state of A2, and for which hists consists only of the triple (s01, s02, 0) , and also
for the initial state of H, if it is accepting, Case 2 applies. The contribution of a
word w, accepted in such a state s is equal to |w|+ |m|, where m is a shortest word
of L(A2).

Proof. Let s denote an accepting state of automaton H, where hists consists only
of the triple (s01, s02, 0), and where the state of A2 stored in s is non-accepting, and
let w denote an arbitrary word that is accepted in state s. This especially excludes
the initial state, since in this state the history is empty.

From the structure of hists, and the non-productive state of A2 stored in state s
it can be deduced, that already the first letter of w drives automaton A2 into its
rejecting sink state. This especially means, there does not exist a word in L(A2)
having a non-empty prefix in common with the word w.

Since this is true for all the words accepted in state s, the requirements of Case 2
apply for all of them. From Remark 5.2.1 it is known, that the formula for the
contribution of such a word w is given by |w| + |m|, where m is a shortest word
of L(A2) having no prefix in common with w.

If Case 2 applies for the words accepted in state s of H, then there may not exist
any word in L(A2) that has a prefix in common with any of these words. This
especially means, that the first symbol of the words drives automaton A2 into its
rejecting sink state. For automaton H this means, all paths leading into state s
start with its initial state followed by a state storing the rejecting sink state of A2.
This also means, all of the states on the paths except for the initial state store the
list ((s01, s02, 0)). Since the path includes state s, the list hists also consists only of
this single triple and stores the rejecting sink state of A2.

This leaves the initial state of H to consider, if it is accepting. In this state, the
history is empty. This means, there was no letter processed yet. The acceptance
indicates, that the empty word λ belongs to L(A1). For this word, the prefix distance
to L(A2) is always minimal to the shortest words of L(A2). This is precisely Case 2.

Example 5.2.13. Let the part of automaton H be given that is depicted in Fig-
ure 5.4. All of the words accepted in this part of the automaton start with the
symbol b. The language accepted by A2 does not contain any word starting with b.
These are precisely the criteria for Case 2.

Considering for example state h22 of H, Case 2 needs to apply. This is true, since
the history of h22 only contains the triple inserted by the initial state. _ ^

^ _

The remaining accepting states s of automaton H, are the states that have not
already been considered in Lemmas 5.2.7 or 5.2.8. All of these remaining states
have the property that s1 is always accepting, and s2 is not accepting, but it may
be productive or non-productive. For all such states, the following properties apply.
The stored list hists does not consist of only the triple (s01, s02, 0), so there exists at
least one word in L(A2) that has a non-empty common prefix to the words of L(A1)

Measuring Defects in Finite Automata

116 5.2. The Paramerized Prefix Distance

accepted in state s. This especially means, that the list hists contains at least one
triple (si, pi, readi), where readi 6= 0.

From Lemmas 5.2.7 and 5.2.8 it follows that the words accepted in these states it is
only possible that one of the subcases of Case 3 applies. In the following, these cases
will first be distinguished for those accepting states s of H where reads ≤ 2 |Q2|,
and afterwards for those states s where reads is equal to the symbol > 2 |Q2|.

Proposition 5.2.14. Let s denote an accepting state of H for which hists consists
of more than only the triple (s01, s02, 0) and is not equal to the empty list (). In
addition, let reads be a number between 1 and 2 |Q2|, and the state of A2 stored in s
be non-accepting. Then one of the subcases of Case 3 given in Remark 5.2.1 applies
for the words accepted in s. The criteria stated in Section 5.2.6 can be checked
directly with information provided by H,A1,A2, and s, to decide the precise case.

Proof. Having that 1 ≤ reads ≤ 2 |Q2|, the inequations stated in Section 5.2.6 can
be checked directly to distinguish the cases.

Case 3a Checking for Case 3a, the first thing to do is to determine if there exists a
common prefix of the words accepted by state s that belongs to L(A2). This can be
done by simply checking accept2 for being true. In this case, subcase 3a will never
apply for this state s like already mentioned in Section 5.2.6. Otherwise, Cases 3a,
3c, and 3d still need to be separated.

For this separation, the Inequations 5.1 and 5.2 need to be checked. Let w denote
a word accepted in state s. For all wu ∈W ′w, it needs to be tested if Inequation 5.1

|m| ≤ |u| − |w|

holds true, for all words w accepted in state s. If wu is a word of L(A2), s2 is
productive. Thus, |w| = reads ≤ 2 |Q2|, |u| = forward2(s2) < |Q2|, and also the
length |m| = min{|v| | v ∈ L(A2)} < |Q2| are computable, and the inequation can
be tested directly. If s2 is non-productive, there exists not word wu in L(A2) and
this inequation does not need to be tested, since then Case 3c cannot apply.

For pu ∈ L(A2), p 6= w, and p is not the empty word λ, Inequation 5.2 needs to
be checked:

|m| ≤ |u| − |p| .

It is |m| < |Q2| as above, |p| = readlcs ≤ 2 |Q2|, and |u| = forward2(qlcs) < |Q2|,
where lcs is the index from Definition 5.2.4. This is chosen to find p and u, since
in this inequation the distance of w to a shortest word of L(A2) is compared to
another word of A2 which has a non-empty prefix in common with w, that is also
unequal to w itself. The index lcs indicates the triple in hists for which the distance
of w to any of such words of L(A2) that need to be considered is minimal. This
triple contains the necessary information in the mentioned components. Thus, the
inequation can be tested by replacing the variables by the concrete numbers.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 117

If both of these inequations are fulfilled, Case 3a applies for the words accepted
in the considered state s, and the formula for their prefix distance is given by For-
mula 5.4.

If at least one of the inequations is not fulfilled, Case 3a cannot apply. Therefore,
the other inequations from above need to be checked to identify the case applying
for the words accepted by s. This concludes Case 3a.

Case 3b The Inequations 5.17 and 5.18 are tested to decide if Case 3b needs to be
applied. For any word w accepted in state s, Inequation 5.17 is given by

|w| ≤ |u|+ |v| ,

where v is the longest common prefix belonging to L(A2) for any such word w, and
wu ∈ W ′w is also a word of language L(A2). Due to this, s2 must be productive.
Thus, it holds true that |w| = reads ≤ 2 |Q2|, |u| = forward2(s2) < |Q2|, and
|v| = readlas ≤ reads ≤ 2 |Q2|, where las is the index from Definition 5.2.5. These
numbers are all computable since reads ≤ 2 |Q2|, and due to this hists also consists
of at most 2 |Q2| triples, all storing a number read unequal to > 2 |Q2|. This means,
that the inequation can be tested. If s2 is non-productive, Case 3c cannot apply.

For the Inequation 5.18
|p| ≤ |u|+ |v| ,

we choose v again to be the longest common prefix to the words accepted in state s,
and pu to be another word in L(A2) having the common prefix p to any of words
w = pu′ accepted by s. Under the given conditions, this results in the relations
|p| = readlcs ≤ reads ≤ 2 |Q2|, |u| = forward2(qlcs) < |Q2|, and also the relation
|v| = readlas ≤ reads ≤ 2 |Q2| is provided, where the indices lcs and las are the ones
defined before. These indices exactly indicate those triples in hists providing the
necessary information for the minimal prefix distance of w to the considered words
of the form v and pu. All of these numbers are computable, and, therefore, the
inequation can be tested.

If both of the Inequations 5.17 and 5.18 are fulfilled, Case 3b applies for the words
accepted in state s. Thus, Formula 5.7 gives the contribution of these words to the
parameterized prefix distance.

Otherwise, if at least one of the inequations is not fulfilled, Case 3b does not apply.
Since Case 3a is already excluded, the Cases 3c and 3d still need to be separated.

Cases 3c and 3d The separation of the remaining subcases of Case 3 is done by
checking the Inequation 5.10

|u| − |w| ≤
∣∣u′∣∣− |p| ,

for words wu and pu′ in L(A2), where w denotes any arbitrary word accepted by
state s. Since wu ∈ L(A2), s2 must be productive. If not, Inequation 5.10 does
not need to be checked, and Case 3d applies. If s2 is productive, we have that

Measuring Defects in Finite Automata

118 5.2. The Paramerized Prefix Distance

|w| = reads ≤ 2 |Q2|, |p| = readlcs ≤ reads ≤ 2 |Q2|, |u| = forward2(s2) < |Q2|,
and |u′| = forward2(qlcs) < |Q2|, where lcs is the index defined before. Since these
lengths are all numbers, the inequation can be tested. If it is fulfilled, Case 3c applies
to the words accepted in s, and their contribution to the prefix distance is given by
Formula 5.8.

Otherwise, Case 3d applies for those words, and Formula 5.9 gives their contribu-
tion.

This leaves the investigation of those accepting states of automaton H, for which
hists consists of more than only the triple (s01, s02, 0), and where reads is the symbol
> 2 |Q2|. The criteria from Section 5.2.6 to distinguish between the cases stated in
Remark 5.2.1 need to be calculated in a different way than for reads ≤ 2 |Q2|. But
the general idea of the calculation remains the same like for reads ≤ 2 |Q2|.

Proposition 5.2.15. Let s denote an accepting state of H for which hists consists of
more than only the triple (s01, s02, 0). In addition, let reads be the symbol > 2 |Q2|.
Then one of the subcases of Case 3 given in Remark 5.2.1 applies to the words
accepted in s. The criteria stated in Section 5.2.6 can be checked with the information
provided by H, A1, A2, and s, to decide the precise case.

Proof. In this case, the exact length of the words w accepted in s is unknown since
there have been processed more than 2 |Q2| symbols in automaton H. But also in
this situation it is necessary to distinguish between the subcases of Case 3.

Case 3a Like in the finite case for reads, it is possible to check if accept2 is set
to true. Then Case 3a cannot apply. If accept2 is false, Case 3a still needs to be
separated from the other two Cases 3c and 3d like above, but Case 3b cannot apply.
Trying to check the Inequation 5.1

|m| ≤ |u| − |w|

for any word w accepted in state s and for some word wu ∈ W ′w if it exists, we
have that |w| = reads > 2 |Q2|, |m| < |Q2|, and |u| = forward2(s2) < |Q2|, since
the word wu only belongs to L(A2) if s2 is productive. By this, the inequation can
never be fulfilled, since the left side is zero or positive in every case and the right
side is negative in any case. This means, Case 3a cannot apply, if s2 is productive,
and, thus, W ′w is not empty for any of the considered words w.

To separate Case 3a from Case 3d, the Inequation 5.2

|m| ≤ |u| − |p|

needs to be checked for all words w accepted in s, where pu is a word of L(A2)
having a common prefix p to all considered words, which means w = pu′.

It is |m| the length of a shortest word of L(A2), so |m| < |Q2|. The length of the
prefix p is equal to readlcs ≤ reads, and |u| = forward2(qlcs), where lcs is the index
from Definition 5.2.4, which gives the index of the triple in hists for which the prefix

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 119

distance of w and L(A2) is minimised in case that the word of L(A2) is to choose
from the set P ′w. If readlcs ≤ |u| < |Q2|, |u| − |p| needs to be computed, since in
this case this difference is a non-negative integer and the inequation may be fulfilled.
Otherwise, the right side of the inequation is always negative, the inequation is never
fulfilled, and, thus, Case 3a cannot apply.

If this inequation is fulfilled, for the words accepted in state s, and Cases 3b
and 3c are already excluded, Case 3a applies for the computation of their share to
the parameterized prefix distance. Otherwise, one of the other subcases of Case 3
must apply.

Case 3b If for state s Case 3a does not apply, it first is tested for Case 3b to
apply. For this, the word v ∈ L(A2) being the longest common prefix of all words w
accepted in state s is considered. This means, w = vu′ for some non-empty suffix u′.
Checking Case 3b against Case 3c, Inequation 5.17

|w| ≤ |u|+ |v|

is necessary to be checked for all words wu ∈ W ′w ⊆ L(A2), if W ′w is not empty.
Then we have that |w| = reads > 2 |Q2|, |u| = forward2(qs) < |Q2|, and |v| = readlas
if las ≤ 2 |Q2| respectively |v| is equal to > 2 |Q2| if las =∞. Here, las is the index
from Definition 5.2.5, that indicates the triple in hists that contains the information
of the word of L(A2) that is the longest prefix of any considered word w.

Since wu belongs to L(A2), the stored state s2 is productive. Thus, hists contains
the last 2 |Q2| predecessors such that the first triple (and therefore no triple) of
hists does not contain the rejecting sink state of A2. With this information, it is
possible to compute the difference |w|−|v|. This difference is exactly las, if las 6=∞,
and it is possible to check the inequation las ≤ forward2(s2). In case las = ∞, it
means that the longest prefix of every word accepted in s that belongs to L(A2)
is at least 2 |Q2| + 1 symbols shorter that the accepted word. Then the distance
|w|+ |wu| − 2 |w| = |u| < |Q2| is smaller than the distance |w|+ |v| − 2 |v| > 2 |Q2|.

If the inequation from above is not fulfilled, Case 3b cannot apply. Otherwise,
Inequation 5.18

|p| ≤ |u|+ |v| ,
needs to be tested, where pu is a word of L(A2) and p is a prefix of all words w
accepted by state s, which means w = pu′ for some non-empty suffix u′.

In this situation we have that |p| = readlcs , |v| = readlas if las ≤ 2 |Q2| respectively
|v| > 2 |Q2| if las = ∞, and |u| = forward2(qlcs) < |Q2|, where lcs and las are the
indices from Definitions 5.2.4 and 5.2.5. These indices indicate those triples of hists
providing the necessary information for the considered distances. The difference
|p|−|v| = readlcs − readlas = lcs−las is exactly the number of symbols differentiating
the longest common prefix (indicated by index las), and the prefix p of pu ∈ L(A2)
(indicated by index lcs). If this number is greater than |u| = forward2(qlcs) < |Q2|,
Case 3b cannot apply since then the prefix distance to the longest prefix v of each
word accepted in s is greater than its distance to the word pu.

Measuring Defects in Finite Automata

120 5.2. The Paramerized Prefix Distance

So only the difference |p| − |v| needs to be computed and tested if this difference
is smaller than or equal to |u| < |Q2|. If las ≤ lcs this especially results in |v| ≥ |p|,
which means that the difference |p| − |v| is smaller than or equal to zero, and,
therefore, is smaller than |u|. This means Case 3b applies if las ≤ lcs.

Having las > lcs, the difference |p| − |v| = readlcs − readlas needs to be com-
puted. The difference readlcs − readlas is the number of symbols read between
leaving the state adding the triple (plas , qlas , readlas) and entering the state adding
(plcs , qlcs , readlcs) to hists. This number can also be received by subtracting the
positions of the triples in hists, which is las− lcs. The indices las and lcs are known,
so this number is computable.

If las is equal to infinity, which means there exists no triple in hists with an
accepting state of A2, this difference is ∞ since lcs is a number smaller than 2 |Q2|.
Then Case 3b cannot apply since there exists a word pu ∈ L(A2) to which the
prefix distance of all words accepted in state s is smaller than the one to the longest
common prefix v. So only the difference las − lcs needs to be computed if las is not
equal to infinity. Inequation 5.18 proves that this difference needs to be smaller or
equal to |u| = forward2(qlcs). This can be checked since all numbers can be retrieved
from the automata.

If both Inequations 5.17 and 5.18 are fulfilled, and Cases 1, 2, and 3a were already
excluded, Case 3b applies for the words accepted by state s. Otherwise this is
impossible, and the Cases 3c and 3d need to be compared.

Cases 3c and 3d The Inequation 5.10

|u| − |w| ≤
∣∣u′∣∣− |p| ,

where wu ∈W ′w ⊆ L(A2) and pu′ ∈ P ′w ⊆ L(A2), needs to be checked for all words w
accepted in state s to decide which of the two remaining subcases of Case 3 applies.
Since wu is a word belonging to L(A2), s2 is productive and hists contains 2 |Q2|
triples, and no triple in hists contains the rejecting sink state of A2. In this situation,
we have that |u| = forward2(s2), |u′| = forward2(qlcs), |w| = reads, and |p| = readlcs ,
where lcs is the index from Definition 5.2.4 indicating the index of the triple in hists
providing the necessary information.

The difference |w| − |p| is the number of symbols differentiating w and p. Since p
is a prefix of w, this number is given by the position of the triple storing readlcs in
hists. This is exactly the index lcs. Thus, the inequation from above can be checked.
If it is fulfilled, and all of the Cases 1, 2, 3a, and 3b were already excluded, Case 3c
applies for s, otherwise Case 3d.

5.2.9 Calculation of the Prefix Distance Based on Automaton H

Now that we can distinguish the cases given in Remark 5.2.1 for every accepting state
of automaton H, it is still necessary to know how to compute the contributions to
the prefix distance to L(A2) of the words of L(A1) accepted in such a state in detail.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 121

We differentiate the computation by the cases. For all computations, an accepting
state s ∈ QH is given. For this state, it is already known how to compute the
contribution of words accepted in s in general. This means, for those words, the
formula for the contribution is the one that is stated in Remark 5.2.1.

In the following, copies of the automaton H are defined. These are used to com-
pute the prefix distances for the words accepted by H.

Definition 5.2.6. For an accepting state s = (s1, s2, reads, hists, accept2) ∈ QH ,
a copy of automaton H is constructed, where the only accepting state is s. This
automaton is defined by

Hs = 〈QH ,Σ, δH , sH , {s}〉.

To be able to define the other types of automata, the set of predecessing states
Preds of s is needed. These states can be found by checking for them in automatonH.
The processing of the longest common prefix of words in L(A2) to the words accepted
in state s stops in such a state.

Definition 5.2.7. Let s = (s1, s2, reads,hists, accept2) be an accepting state of
automaton H defined in Section 5.2.7. In case that s2 is productive, the set Preds

is defined to be {s}.
For non-productive s2, the set Preds collects all states spred of H, such that

there exists a shortest path connecting spred and s. Let this path be denoted by
spredr1r2 · · · rks, where k ≥ 0, and r1, r2, . . . , rk are states of H. Additionally to the
condition that there needs to exist a path connecting states spred and s, state spred

needs to store a productive state of A2 and state r1 stores a non-productive state
of A2. Formally, we have

Preds = {q ∈ QH | ∃a ∈ Σ, v ∈ Σ∗ : δH(q, av) = s,

δH(q, a) = (s′1, s
′
2, read′s, hist′s, accept2

′), where s′2 is non-productive,

and the path connecting q and s is as short as possible}.

All of such states spred can be retrieved from the information given in automa-
ton H. Due to the restriction that the considered paths are shortest paths, they
consist of at most |QH | many states, that is, they have finite length. The same re-
striction causes that there only exist finitely many such paths. Since automaton H
consists of only finitely many states, and not all of them can fulfill the conditions,
Preds is also finite for each accepting state s.

With the help of the set Preds, the second type of automaton used to compute the
parameterized prefix distance is defined. This type will be referred to by the name
prefix-automaton. This automaton is used to count the number of possible prefixes
of accepted words of s, where the prefixes stop being processed in a state of Preds.

Definition 5.2.8. Let H denote the automaton constructed by Definition 5.2.3,
and let s be an accepting state of H. The prefix-automaton is denoted by Hspred,pref

Measuring Defects in Finite Automata

122 5.2. The Paramerized Prefix Distance

for a fixed state spred ∈ Preds. This automaton is a copy of automaton H with the
only accepting state spred, and the initial state sH . Given a state spred ∈ Preds, the
associated prefix-automaton is formally defined by

Hspred,pref = 〈QH ,Σ, δH , sH , {spred}〉.

The last type of automaton is also constructed based on the set Preds, and is
called suffix-automaton. This type of automaton will be used to count the possible
suffixes for a fixed prefix of words accepted in s. This prefix is as long as possible,
and stops being processed in a state spred of Preds. To refer to this property, this
type of automaton is denoted by Hspred,suff , and consists of all states of H that are
visited when processing such a suffix starting in spred and stopping in s.

Definition 5.2.9. Let H denote the automaton constructed by Definition 5.2.3,
and let s be an accepting state of H. The suffix-automaton is denoted by Hspred,suff

for a state spred ∈ Preds. This automaton is a copy of automaton H with the only
accepting state s and the initial state spred. Another difference is that all transitions
of spred are dismissed that lead into a state of H storing a productive state of A2.

Formally, this automaton is defined as follows. At first, a set of symbols N ⊂ Σ
is defined that collects the symbols for which the transition of state spred leads into
a state storing a non-productive state of A2. Formally, we have

N = {a ∈ Σ | δ2(s2,pred, a) is non-productive}.

Here, s2,pred denotes the state of A2 that is stored in the state spred.

The suffix-automaton for state s and a state spred ∈ Preds is defined to be

Hspred,suff = 〈QH ,Σ, δspred,suff , spred, {s}〉,

where δspred,suff(q, a) = δH(q, a), for all q ∈ QH \ {spred} and a ∈ Σ, and

δspred,suff(spred, a) =

{
δH(spred, a) if a ∈ N,
undefined else

.

In the suffix-automaton, only paths from state spred to state s are preserved, that
consist of states storing the rejecting sink state of A2. This especially means, that
also state s stores this rejecting sink state. For all of the other states s, where s2 is
productive, the suffix-automaton accepts the empty language.

We will use this automaton for the share of words accepted in states where either
Case 3b or Case 3d applies. Observe, that if spred = s the suffix-automaton only
accepts the empty word, since the only accepting state s is the only state storing a
productive state of A2. All of the other states need to be successors of s and store
a non-accepting state of A2 by definition. This means, s is not reachable from any
of the other states.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 123

Based on the definitions from above, the minimal DFA A1 and A2 accepting some
regular languages, and automaton H built from these DFA like described in Defi-
nition 5.2.3, the exact share of words accepted in states of H to the parameterized
prefix distance of L(A1) and L(A2) can be calculated.

The following proposition states the share of words accepted in states s of H, for
which Case 1 applies. The share of each of these words is equal to zero, but for the
sake of completeness, the correct amount of words having this share is calculated in
the proof.

Proposition 5.2.16. For the accepting states of automaton H where Case 1 applies,
the share to the parameterized prefix distance of L(A1) and L(A2) is given by∑

s∈FH ,
Case 1 applies

0.

Proof. The contribution to the parameterized prefix distance of L(A1) and L(A2)
of words w ∈ L(A1), that are accepted by states, for which the prefix distance is to
be computed by the formula of case one, is 0.

The number of words that end up in such a state s are counted by using the
copy Hs of the automaton H from above for each of these states. The census function
censHs(n) for the given length n in parameterized prefix distance gives this number.
The number of words in L(A1) of lengths 0 to n, for which the processing by H ends
up in state s needs to be multiplied by zero, since this is the contribution of all of
these words. Thus, for such a single state s, the following formula is obtained:

censHs(n) · 0.
These sums are built for all states of H, for which Case 1 applies. Summing up

all these numbers obtained by the census function multiplied by zero gives the exact
number of the words of L(A1) up to the length n, which are accepted in a state
of H, where the prefix distance is computed by the formula stated for Case 1, and
have multiplied them with their contribution to the considered parameterized prefix
distance. This number will be referred to by d1, which is already known to be equal
to zero.

The result of Proposition 5.2.16 is straightforward. The sum giving the share
for the words accepted by automaton H, for which Case 2 applies, is stated in the
following theorem.

Proposition 5.2.17. For all accepting states of automaton H where Case 2 applies,
the share to the parameterized prefix distance of L(A1) and L(A2) is given by

n∑
i=0

%Hc
(i) · (i+ |m|) .

Automaton Hc is a copy of H that omits all transitions of sH that lead into states
storing a productive state of A2. Its accepting states are precisely those states for
that Case 2 applies.

Measuring Defects in Finite Automata

124 5.2. The Paramerized Prefix Distance

Proof. The contribution to the parameterized prefix distance of a word having no
common prefix to any word of L(A2) is the sum of the length of the word plus
the length of one of the shortest words of L(A2). In automaton H there exists no
transition leading back into the initial state. This is because every symbol of Σ
drives A2 into a state different from its initial state since L(A2) cannot be the
empty language by definition. This transition inserts a triple into the history of the
successor states of H. Thus, the history in every state of H is unequal to () except
for the initial state.

Only the words of L(A1) need to be considered, that begin with a symbol a ∈ Σ,
such that δ2(s02, a) is non-productive. For these words only, Case 2 applies. Their
contribution can be computed with the help of a copy Hc of automaton H. In this
copy all transitions from the initial state leading into a state storing a productive
state of A2 are omitted, and the only accepting states are the accepting states of H
where Case 2 applies.

Then the density function can be used to count the number of words of a certain
length i between 0 and n accepted by Hc. This number is multiplied by i + |m|,
where m denotes a shortest word of L(A2). This results in the sum

n∑
i=0

%Hc
(i) · (i+ |m|) .

The number given by this sum is denoted by d2.

This leaves the calculation of the share of all the words of L(A1), that are accepted
in a state of automaton H, for which one of the subcases of Case 3 is applied. These
subcases will be considered in the following Propositions.

Proposition 5.2.18. For the accepting states of automaton H where Case 3a ap-
plies, the share to the parameterized prefix distance of L(A1) and L(A2) is given
by ∑

s∈FH ,
Case 3a applies

n∑
i=0

%Hs
(i) · (i+ |m|).

Proof. If for a state s the prefix distance of words of L(A1) accepted in s is computed
by Formula 5.4 stated for Case 3a, their distance is given by their length plus the
length of a shortest word m of L(A2). Thus, for such a state s it is counted, how
many words of a length i between 0 and n are accepted.

The number of accepted words for state s is retrieved by using the copy Hs of
automaton H. The density function %Hs

is applied for each of the lengths 0 ≤ i ≤ n,
which gives exactly the number of such words accepted by state s. Multiplying this
number %Hs

i by i+ |m| gives the share of these words of L(A1).Summing up these
numbers for all 0 ≤ i ≤ n, the whole share of words accepted in state s is obtained.
This leads to the formula

n∑
i=0

%Hs
(i) · (i+ |m|).

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 125

To receive the contribution to the parameterized prefix distance of L(A1) and
L(A2) for all words of L(A1), where Case 3a holds true, it is necessary to sum up
over all the states s, where Case 3a is applied. In the following the number given by
this sum is called d3a.

Proposition 5.2.19. For the accepting states s = (s1, s2, reads, hists, accept2) of
automaton H where Case 3b applies, the share to the parameterized prefix distance
of L(A1) and L(A2) is given by the two sums, depending on s2 productive or non-
productive.

∑
s∈FH ,

Case 3b applies,
s2 productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j) · (j + las) ,

and

∑
s∈FH ,

Case 3b applies,
s2 non-productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j) · (j + las − 1) .

Proof. Let s = (s1, s2, reads, hists, accept2) denote a state of H that satisfies the
conditions from above for Case 3b. First, we consider those accepting states where s2

is a productive state of A2. Then the information stored in hists was inserted by the
last k direct predecessors of state s, where k denotes the length of hists. Having the
information of hists and the automaton H at hand, the paths of length k leading
into state s can be retrieved. Let r1r2 · · · rks denote such a path. The information
of state r1 is the information at position k in hists, the one of r2 at position k − 1
and so on up to the information of rk that is stored in position 1.

The marker las from Definition 5.2.5 gives the position of the triple, where the
prefix distance of the words accepted in s to L(A2) is minimised for Case 3b. Since
this position las coincides with a state on the considered path, we know precisely,
where the longest prefix belonging to L(A2) stops being processed in automaton H.
For all possible such paths r1r2 · · · rks, we can find this state. Let the set Preds

′

collect all of these states.

We still need to count, how many words of length at most n are accepted by s. We
also need to assume, that for different words accepted in s the length of the longest
common prefix may vary. Therefore, we split the considered words into some prefix
of a length i at most n and a suffix of length j at most n− i. The processing of the
prefix of length i starts in sH and needs to stop in a fixed state spred of Preds

′, and
the processing of the suffix of length j starts in state spred and stops in state s.

To count the possible numbers of such prefixes and suffixes, we construct the
automata Hspred,pref respectively H ′s, which is a modification of Hs, where spred is
the initial state instead of sH . Their densities applied to i respectively j give the

Measuring Defects in Finite Automata

126 5.2. The Paramerized Prefix Distance

numbers of prefixes respectively suffixes of some fixed length. Multiplying the two
densities gives the overall amount of possible words accepted in s.

The last missing component in the prefix distance for words accepted in s is the
amount each of the words provides to the distance. This is precisely the length j of
the suffix, which is the symbols processed since leaving a state spred.

Then the prefix distance of words accepted in all such states s if given by the sum

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %H′s(j) · j,

where spred ∈ Preds
′.

Next, we consider those accepting states where s2 is a non-productive state of A2

and where additionally Case 3b applies. Then hists does not need to store the
information of the direct last k predecessors, where k again denotes the length of
hists. But it is still possible to retrieve the paths leading into state s having the
form s′r1r2 · · · rls, such that the state of A2 stored in s′ is still productive and
the one on r1 is non-productive. This also means, all states r2, r3, . . . , rl, s store a
non-productive state of A2. Due to the definition of H, we then have

histr1 = histr2 = · · · = histrl = hists .

All of these states s′ are collected in the set Preds.

Since on the path from s′ to s only automaton A1 still visited productive states,
the longest prefix processable by automaton A2 stopped being processed in state s′

for automaton H. Then all symbols processed on such a path from s′ to s have a
share to the prefix distance of the words w accepted in s to L(A2).

The rest of the share is connected to the number las indicating the position in
hists where the prefix distance in minimised for Case 3b. The information of the
triple at this index was inserted by the last predecessor of s′ or s′ itself that stores
an accepting state of A2. But due to this, the suffix and the number las share one
processed symbol. Therefore, the precise share is las − 1.

Just like above, the counting of the amount of the words accepted in s can be
done by using the automaton Hs′,pref and, this time, the copy Hs′,suff for all states
s′ ∈ Preds. The combination of the densities of these two automata for the prefix
lengths 0 ≤ i ≤ n and the suffix lengths 0 ≤ j ≤ n − i also gives the number of
words accepted by s with precisely these prefix and suffix lengths. All in all, this
leads to the sum

n∑
i=0

n−i∑
j=0

%Hs′,pref
(i) · %Hs′,suff

(j) · (j + las − 1) .

Taking a closer look at the sum for those states s where s2 is productive, it can
also be written in the form of the sum above for the case that s2 is non-productive.
The length j of the suffix in this case is always fixed to las. The state spred is

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 127

r1 r2 rj−1 rj rj+1 rk s

Figure 5.5: One possible path leading into a state s = (s1, s2, reads, hists, accept2),
where s2 is productive and hists consists of k triples. Then, the infor-
mation in position i of hists was inserted by state rk−i+1.

precisely the state s, wherefore the density function of automaton Hspred,suff applied
to las equals 1, since the only accepting state s is not reachable from any of its
successors. This means, Hspred,suff only accepts the empty word λ. The set Preds

′ is
precisely the set Preds = {s}.

This means, the sum for states s = (s1, s2, reads, hists, accept2), where Case 3b
applies, and where s2 is productive is given by the formula

∑
s∈FH ,

Case 3b applies
s2 productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j) · (j + las) ,

and for s2 non-productive, it is

∑
s∈FH ,

Case 3b applies
s2 non-productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j) · (j + las − 1) ,

We will refer to the number received when adding up the two sums by d3b.

Example 5.2.14. Let s = (s1, s2, reads, hists, accept2) be a state of some automa-
ton H constructed for two minimal DFA A1 and A2 like defined in Section 5.2.7.
Having that Case 3b applies for s, we have to differentiate between the two possi-
bilities s2 is productive and s2 is non-productive.

In the first case, there exists at least one path r1r2 · · · rks like depicted in Fig-
ure 5.5, where k denotes the length of hists. Let rj = (s′1, s

′
2, readrj , histrj , accept2

′)
be the state on the path nearest to s, that stores an accepting state of A2, which
means s′2 is accepting.

Then, las indicates precisely the triple inserted by rj . The number of symbols
processed when entering state s since leaving state rj is precisely las. All words
processed up to rj are the longest prefixes of words w accepted in s that belong
to L(A2). This means, if for state s applies Case 3b, all of the symbols processed
up to rj do not have a share to the prefix distance of the words w to L(A2). This
leaves the share las for those words.

Measuring Defects in Finite Automata

128 5.2. The Paramerized Prefix Distance

s′ r1 r2 rk s

Figure 5.6: One possible path leading into a state s = (s1, s2, reads,hists, accept2),
where s2 is non-productive, and the only state on this path storing a
productive state of A2 is s′. Then, the information in position 1 of hists
was inserted by s′, and the information on position i ≥ 2 is already
stored in position i− 1 in the history of s′.

Let now s2 be a non-productive state of A2. Then there exist paths s′r1r2 · · · rks
in H, like depicted in Figure 5.6. Here, all the states r1, r2, . . . , rk, s store a non-
productive state of A2. Only state s′ = (s′1, s

′
2, reads′ ,hists′ , accept2

′) stores a
state s′2 of A2 that is productive. Then the information in hists stored in posi-
tion 1 was inserted by state s′ by definition of H. The rest of the information in
position i ≥ 2 is the information already stored in hists′ in position i− 1.

By definition, las′ then is las−1. The share of words w accepted in state s consists
of all symbols processed since leaving state s′ up to state s. Additionally, also the
symbols processed between a predecessor of s′ and s′ itself also count into this share.
The last number is indicated by las′ .

Summarising this information leads to precisely the share given in the formula
from Proposition 5.2.19 for non-productive s2. _ ^

^ _

Proposition 5.2.20. For the accepting states of automaton H where Case 3c ap-
plies, the share to the parameterized prefix distance of L(A1) and L(A2) is given
by ∑

s∈FH ,
Case 3c applies

censHs(n) · forward2(s2),

where s = (s1, s2, reads, hists, accept2).

Proof. Having the information that Case 3c holds true for words of L(A1), that stop
being processed in state s, their contribution is given by the number obtained by
applying the function forward2 to the state s2 of A2 stored in s. This means, it is
needed to count the number of words which end up in state s of all lengths 0 to n.
This is done by taking the copy Hs of H. Then, the census function censHs for
length n is applied. This gives the number of the words of L(A1), that stop being
processed in state s, which are of length at most n. This number is multiplied by
forward2(s2) to obtain the overall contribution for this these words. The contribution
for words ending up in state s is given by

censHs(n) · forward2(s2).

Summing up over all states for which Case 3c can be identified, the contribution
for all words of L(A1) is retrieved, for which the contribution to the parameterized

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 129

prefix distance of L(A1) and L(A2) is computed like in Case 3c. In the following,
the number given by the sum will be called d3c.

Proposition 5.2.21. For the accepting states s = (s1, s2, reads, hists, accept2) of
automaton H where Case 3d applies, the share to the parameterized prefix distance
of L(A1) and L(A2) is given by the following two formulas, where the cases that s2

is productive respectively non-productive are differentiated. For s2 productive, we
have the formula

∑
s∈FH ,

Case 3d applies
s2 productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + lcs + forward2(qlcs)) ,

and for non-productive s2, we have

∑
s∈FH ,

Case 3d applies
s2non-productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + lcs + forward2(qlcs)− 1) .

Proof. To retrieve the share to the distance of L(A1) and L(A2), the procedure is
quite the same as for Case 3b. Let s = (s1, s2, reads,hists, accept2) denote a state
of H that satisfies the conditions from above for Case 3d. Again, we first consider
those accepting states where s2 is a productive state of A2. Then the information
stored in hists was inserted by the last k predecessors of state s, where k denotes
the length of hists. Having the information of hists and the automaton H at hand,
the paths of length k leading into state s can be retrieved. Let r1r2 · · · rks denote
such a path. The information of state r1 is the information at position k in hists,
the one of r2 at position k − 1 and so on up to the information of rk that is stored
in position 1.

This time, the marker lcs from Definition 5.2.4 gives the position of the triple,
for which the prefix distance of the words accepted in s to L(A2) is minimised
for Case 3d. Since this position lcs coincides with a state on the considered path,
we know precisely where the common prefix of the word v belonging to L(A2)
and minimising the prefix distance stops being processed in automaton H. For all
possible such paths r1r2 · · · rks, we can find this state. Let the set Preds

′ collect all
of these states.

We still need to count, how many words of length at most n are accepted by s. We
also need to assume, that for different words accepted in s the length of the longest
common prefix may vary. Therefore, we split the considered words into some prefix
of a length i that is at most n and a suffix of length j ≤ n − i. The processing of
the prefix of length i starts in sH and needs to stop in a fixed state spred belonging

Measuring Defects in Finite Automata

130 5.2. The Paramerized Prefix Distance

to Preds
′. The processing of the suffix of length j starts in state spred and stops in

state s.

To count the possible numbers of such prefixes and suffixes, we construct the
automata Hspred,pref respectively H ′s, which is a modification of Hs, where spred is
the initial state instead of sH . Their densities applied to i respectively j give the
numbers of prefixes respectively suffixes of some fixed length. Multiplying the two
densities gives the overall amount of possible words of the fixed length accepted in s.

One last missing component in the prefix distance for words accepted in s is the
amount that each of the words provides to the distance. This is precisely the length j
of the suffix, which is the symbols processed since leaving a state spred. Also the
share of the words in L(A2) that minimise this distance is still missing. This is given
by forward2(qlcs), like already mentioned when considering the conditions which of
the cases applies for a state of H.

Then the prefix distance of words accepted in all such states s if given by the sum

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %H′s(j) · (j + forward2(qlcs)) ,

where spred ∈ Preds
′.

Next, we consider those accepting states where s2 is a non-productive state of A2

and where additionally Case 3d applies. Then hists does not need to store the
information of the direct last k predecessors, where k again denotes the length of
hists. But it is still possible to retrieve the paths in H leading into state s having
the form s′r1r2 · · · rls, such that the state of A2 stored in s′ is still productive and
the one on r1 is non-productive. This also means, all states r2, r3, . . . , rl, s store a
non-productive state of A2. Due to the definition of H, we then have

histr1 = histr2 = · · · = histrl = hists .

All of these states s′ are collected in the already defined set Preds.

Since on the path from s′ to s only the states of A1 are still productive, the longest
prefix of words w accepted in s to words in L(A2) has stopped being processed in
state s′ for automaton H. This means, all symbols processed on such a path from s′

to s have a share to the prefix distance of the words w to L(A2).

Part of the rest of the share is linked to the number lcs indicating the position
in hists where the prefix distance in minimised for Case 3b. The information of the
triple at this index was inserted by the last predecessor of s′ or s′ itself that stores an
accepting state of A2. The last part of the share is given by forward2(qlcs), where qlcs
is a state of automaton A2. The whole share lcs + forward2(qlcs − 1) minimises the
prefix distance, like already shown before. The subtracted one is due to the fact
that the suffix of length j shares precisely one symbol with the part given by lcs.

Just like above, the counting of the amount of the words accepted in s can be
done by using the automaton Hs′,pref and, this time, the copy Hs′,suff for all states
s′ ∈ Preds. The second automaton ensures that only path from s′ to s are considered

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 131

such that the second state on the path stores a non-productive state of A2. The
combination of the densities of these two automata for the prefix lengths 0 ≤ i ≤ n
and the suffix lengths 0 ≤ j ≤ n − i also gives the number of words accepted by s
with precisely these prefix and suffix lengths. All in all, this leads to the sum

n∑
i=0

n−i∑
j=0

%Hs′,pref
(i) · %Hs′,suff

(j) · (j + lcs + forward2(qlcs − 1)) .

Taking a closer look at the sum for those states s where s2 is productive, the
sum can be rewritten in the form of the sum above for s2 non-productive. The
length j of the suffix in this case is always fixed to lcs. The state spred is precisely
the state s, wherefore the density of Hspred,suff applied to lcs equals 1, since the only
accepting state s is not reachable from any of its successors. This means, Hspred,suff

only accepts the empty word λ. The set Preds
′ is precisely the set Preds = {s}.

This means, the sum for states s = (s1, s2, reads,hists, accept2) where Case 3d
applies, and where s2 is productive is given by

∑
s∈FH ,

Case 3d applies
s2 productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + lcs + forward2(qlcs)) ,

and for s2 non-productive by

∑
s∈FH ,

Case 3d applies
s2 non-productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + lcs + forward2(qlcs)− 1) .

The number given by adding up the two sums is called d3d.

Example 5.2.15. Let s = (s1, s2, reads, hists, accept2) be a state of some automa-
ton H constructed for two minimal DFA A1 and A2 like defined in Section 5.2.7.
Having that Case 3d applies for s, we have to differentiate between the two possi-
bilities s2 is productive and s2 is non-productive.

In the first case, there exists at least one path r1r2 · · · rks like depicted in Fig-
ure 5.5, where k denotes the length of hists. Let rj = (s′1, s

′
2, readrj , histrj , accept2

′)
be the state on the path nearest to s, that inserted the information of the triple
indicated by lcs. Then, s′2 = qlcs .

The number of symbols processed when entering state s since leaving state rj
is precisely lcs. All words processed up to rj are the longest prefixes of words w
accepted in s and words v belonging to L(A2). This means, if for state s applies

Measuring Defects in Finite Automata

132 5.2. The Paramerized Prefix Distance

Case 3d, all of the symbols processed up to rj do not have a share to the prefix
distance of the words w to L(A2). This gives a part of the share for those words
that is lcs. The second part of the share for those words w is given by forward2(qlcs).
This correlates to the amount given in the formula given in Proposition 5.2.21 for
productive s2.

Let now s2 be a non-productive state of A2. Then there exist paths s′r1r2 · · · rks
in H, like depicted in Figure 5.6. Here, all the states r1, r2, . . . , rk, s store a non-
productive state of A2. Only state s′ = (s′1, s

′
2, reads′ ,hists′ , accept2

′) stores a
state s′2 of A2 that is productive. Then the information in hists stored in posi-
tion 1 was inserted by state s′ by definition of H. The rest of the information in
position i ≥ 2 is the information already stored in hists′ in position i− 1.

By definition, lcs′ then is lcs − 1. The share of words w accepted in state s
consists of all symbols processed since leaving state s′ up to state s. Additionally,
also the symbols processed between a predecessor of s′ and s′ itself also count into
this share. The last number is indicated by lcs′ . The last part of the share is given
by forward2(qlcs). This number gives the length of a shortest suffix that completes
a prefix p to a word on L(A2). This prefix p stops being processed in predecessing
state of s′ that inserted the triple in position lcs of hists.

Summarising this information leads to precisely the share given in the formula
from Proposition 5.2.21 for non-productive s2. _ ^

^ _

Having done all the computations and constructions from above, the sum∑
1

= d1 + d2 + d3a + d3b + d3c + d3d

represents the sum of the prefix distances of each word of L(A1) to L(A2). Like
mentioned before, the prefix distance for all words of L(A2) to L(A1) is received by
quite similar computations and constructions. The only difference is that the roles
of L(A1) and L(A2) are interchanged. Let this prefix distance be denoted by

∑
2.

When adding up the two sums
∑

1 and
∑

2, the whole parameterized prefix distance
pref-D(n,L(A1), L(A2)) for a certain length n ≥ 0 is retrieved.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 133

Theorem 5.2.7. The parameterized prefix distance of the two regular languages
accepted by the minimal DFA A1 and A2 is computed by

∑
s∈S1

0 +

n∑
i=0

%Hc
(i) · (i+ |m|) +

∑
s∈S3a

n∑
i=0

%Hs
(i) · (i+ |m|) +

∑
s∈S3b

s2 non-productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + las − 1) +∑
s∈S3b

s2 productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j) · (j + las) + (5.11)

∑
s∈S3c

censHs(n) · forward2(s2) +

∑
s∈S3d

s2 non-productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + lcs − 1 + forward2(qlcs)) +∑
s∈S3d

s2 productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + lcs + forward2(qlcs)),

where s = (s1, s2, reads,hists, accept2).

Proof. The automaton H and all the necessary automata obtained from it are con-
structed in the way it is described in the former definitions. For this automaton the
following sets are defined:

Sj = {q ∈ QH | case j holds true for state q},

where j ∈ {1, 2, 3a, 3b, 3c, 3d}.
Having these sets we can compute the parameterized prefix distance of all words

Measuring Defects in Finite Automata

134 5.2. The Paramerized Prefix Distance

of L(A1) to L(A2) for a length n ≥ 0 by the following formula:∑
s∈S1

0 +

n∑
i=0

%Hc
(i) · (i+ |m|) +

∑
s∈S3a

n∑
i=0

%Hs
(i) · (i+ |m|) +

∑
s∈S3b

s2 non-productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + las − 1) +∑
s∈S3b

s2 productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j) · (j + las) +

∑
s∈S3c

censHs(n) · forward2(s2) +

∑
s∈S3d

s2 non-productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + lcs − 1 + forward2(qlcs)) +∑
s∈S3d

s2 productive

∑
spred∈Preds

n∑
i=0

n−i∑
j=0

%Hspred,pref
(i) · %Hspred,suff

(j)·

(j + lcs + forward2(qlcs)),

where always s = (s1, s2, reads,hists, accept2), m is one of the shortest words of
L(A2), and las and lcs are the indices from Definitions 5.2.5 and 5.2.4.

For the second sum in formula 5.11 of the parameterized prefix distance, the same
definitions and computations with interchanged roles of the languages A1 and A2

need to be done.

5.2.10 Analysis of the Sum for the Prefix Distance on Base of H

Before analysing the sum from Formula 5.11 for one direction of the parameterized
prefix distance pref-D(n,L1, L2), we want to recall that we already know that the
automaton H defined in Section 5.2.7 is finite. Its number of states is bounded by
a constant depending on the numbers of states of the underlying minimal DFA.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 135

With this information, the analysis of the sum given in Formula 5.11 is possible.
The analysis of the sums for the individual cases in this formula can be restricted
to the analysis of only parts of these sums.

Proposition 5.2.22. The analysis of the sum given in Formula 5.11 can be re-
stricted to the analysis of the sums

n∑
i=0

%Hs
(i) · i, (5.12)

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · j, (5.13)

censHs(n). (5.14)

Proof. The sums over the subsets of the set of accepting states of automaton H are
all finite. This means only finitely many amounts of distances are summed up. It
is well known, that the biggest amount belonging to such a sum gives the order of
the whole sum. Therefore, the following investigations can be concentrated on the
inner parts. This explicitly means the investigation of the following sums for states s
and spred, that are specified in Formula 5.11:

n∑
i=0

%Hc
(i) · (i+ |m|) , (5.15)

n∑
i=0

%Hs
(i) · (i+ |m|), (5.16)

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%Hspred,suff
(j) · (j + las − 1) , (5.17)

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%Hspred,suff
(j) · (j + las) , (5.18)

censHs(n) · forward2(s2), (5.19)

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · (j + lcs − 1 + forward2(qlcs)), (5.20)

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · (j + lcs + forward2(qlcs)). (5.21)

If all of these sums for all states s and spred are finite and independent of n, this
gives a constant distance that is provided by the sum given in Formula 5.11. This

Measuring Defects in Finite Automata

136 5.2. The Paramerized Prefix Distance

can only hold true if all densities and census functions are constant which is the case
if the language accepted by automaton H (which is L(A1)) is finite.

In case that at least one of the sums in Formulas 5.15, 5.16, 5.17, 5.18, 5.19,
5.20, or 5.21 is not constant for at least one state s, the whole sum in Formula 5.11
cannot be constant anymore. This is the case if at least a polynomial number of
words contribute an amount of at least one to the parameterized prefix distance
computed by the sum given in Formula 5.11.

In the following, the circumstances where the distance given by Formula 5.11 is
polynomial or superpolynomial are identified. It is polynomial if all the inner parts
cited in Formulas 5.15 to 5.21 are polynomials in n. In this case, only finitely many
polynomials of certain degrees are summed up which is known to be a polynomial
again. Its degree is determined by the maximal degree of the polynomials that are
summed up.

If at least one of the sums in the formulas from above provides a superpolynomial
amount to the prefix distance, the whole distance must also be superpolynomial.
Thus, for every combination of states defined by the outer sums in Formula 5.11
it needs to be checked, if all amounts are at most polynomial or if at least one is
superpolynomial.

Lets start with the analysis of the sums. Each of the automata Hc, Hs, Hspred,pref ,
and Hspred,suff can be constructed since automaton H can effectively be constructed
for given minimal DFA A1 and A2. For each of these automata based on H, the
density can be determined for all lengths between 0 and n, and also the census
function for n. The factors las and lcs are constants for a fixed state s. The same
holds true for the number given by forward2 applied to a fixed state that is stored
either in state s directly, or in hists of this state. This is due to the fact that this
number does not depend on n. The length |m| of a shortest word of L(A2) is a
constant, too.

This leaves in all Formulas 5.15 to 5.21 only the densities, the census, and the
lengths i and j to be non-constant. Due to this, these formulas can be simplified.
Instead of the formulas stated before, the investigations can be restricted to the
following ones:

n∑
i=0

%Hc
(i) · (i+ cs) , (5.22)

n∑
i=0

%Hs
(i) · (i+ cs), (5.23)

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · (j + cs), (5.24)

censHs(n) · cs, (5.25)

where cs in each formula is a constant that only depends on the chosen state s for
which the sum is computed.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 137

The first and the second formula have the same structure, so the investigations
can be restricted to the second one. When restricting the constant parameters in
Formulas 5.17, 5.18, 5.20 and 5.21, this leads to the common Formula 5.24.

Having a closer look at Formula 5.22, the investigations can further be restricted
to those parts of the sums that do not contain any of the constants. This is because
if the sum is split into the two sums

n∑
i=0

%Hc
(i) · i,

and
n∑
i=0

%Hc
(i) · cs,

the second sum is always smaller than the first one. So the second sum does not
affect the highest degree of the polynomial if the whole sum is a polynomial in n, and
it also does not affect the property for being superpolynomial. The same holds true
for the sum stated in Formula 5.23. In Formula 5.25, the constant that multiplies
the census function can also be omitted. Finally, in Formula 5.24 the constant cs
can also be omitted. This leaves the following formulas to be investigated, that are
stated in this proposition:

n∑
i=0

%Hs
(i) · i

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · j

censHs(n)

For the analysis of these three formulas the estimations given in the two following
Lemmas are useful.

Lemma 5.2.9. Let n ≥ 0 and k, l ≥ 1. Then the following estimations are true:

n∑
i=0

Ω(ik) ⊆ Ω(nk+1) (5.26)

and

n∑
i=0

Θ(ik) · Ω((n− i)l) ⊆ Ω(nk+l+1) (5.27)

Measuring Defects in Finite Automata

138 5.2. The Paramerized Prefix Distance

Proof.

n∑
i=0

Θ(ik) ≥
n∑
i=0

cmini
k = cmin

n∑
i=0

ik

≥ cmin


(

1

4
n

)k
+

((
1

4
n

)k
+ 1

)
+ · · ·+

(
3

4
n

)k
︸ ︷︷ ︸

n
2



≥ cmin


(

1

4
n

)k
+ · · ·+

(
1

4
n

)k
︸ ︷︷ ︸

n
2


= cmin

((
1

4
n

)k
· n

2

)

= cmin ·
(

1

4

)k
· 1

2
· nk+1 ⊆ Θ(nk+1),

where cmin is the minimal constant from {c0, c1, . . . , cn} such that for each length
0 ≤ i ≤ n the polynomial in the sum from above is bounded from below by ci · ik.

n∑
i=0

Θ(ik) ≤
n∑
i=0

cmaxi
k = cmax

n∑
i=0

ik

≤ cmax

n∑
i=0

nk = cmax(n+ 1)nk

= cmaxn
k+1 + cmaxn

k ⊆ Θ(nk+1),

where cmax is the maximal constant from {c0, c1, . . . , cn} such that for each length
0 ≤ i ≤ n the polynomial in the sum from above is bounded from above by ci · ik.

From these estimation it follows that

n∑
i=0

Ω(ik) ⊆ Ω(nk+1)

and

n∑
i=0

Θ(ik) · Ω((n− i)l) ⊆ Ω(nk+l+1).

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 139

Lemma 5.2.10. Let n ≥ 0 and k, l ≥ l. The estimation

n∑
i=0

Θ(ik) ·Θ((n− i)l) ∈ Θ(nk+l+1)

holds true.

Proof.

n∑
i=0

Θ(ik) ·Θ((n− i)l) =
n∑
i=0

Θ(ik) ·Θ(il)

=
n∑
i=0

Θ(ik+l) ⊆ Θ(nk+l+1),

where k, l ≥ 0 are the degrees of the considered polynomials.

Lets start investigating the first sum given in Formula 5.12.

Proposition 5.2.23. For the sum stated in Formula 5.12, the following facts hold
true:

• If and only if the language L(A2) is finite, the sum is constant.

• If and only if at least one density %Hs
for one state s is a polynomial but none

is superpolynomial, the sum is polynomial. If the highest degree of all of the
polynomial densities is l the polynomial of the sum has degree l + 2.

• If and only if at least one density %Hs
for one state s is superpolynomial, the

sum is superpolynomial.

The state s is some state of automaton H and is specified in Formula 5.11. Here, s
is an accepting state of H for which Case 2 or Case 3a is applied.

Proof. If the density is constant, that means %Hs
(i) = c for all i > n0 ≥ 0 for a fixed

size n0, this leads to

n∑
i=0

%Hs
(i) · i =

n∑
i=0

Θ(1) · i = Θ(1) ·
n∑
i=0

i = Θ(1) · n(n+ 1)

2
,

which is a quadratic polynomial in n.
In case the density %Hs

(i) is a polynomial p(i) =
∑l

k=0 ck · ik for constants ck of
degree l ≥ 1, this gives

n∑
i=0

%Hs
(i) · i =

n∑
i=0

p(i) · i =
n∑
i=0

Θ(il) · i =
n∑
i=0

Θ(il+1) = Θ(nl+2),

which is a polynomial in n of degree l + 2.

Measuring Defects in Finite Automata

140 5.2. The Paramerized Prefix Distance

For a superpolynomial density, the sum is also superpolynomial. This gives

n∑
i=0

%Hs
(i) · i =

n∑
i=0

Ω(il) · i =
n∑
i=0

Ω(il+1) = Ω(nl+2),

for all l ≥ 0.
This shows that for all possible densities, if the language L(A2) is not finite, the

sum is not constant. Due to this, the Formula 5.12 can only be constant, if L(A2)
is finite. Then there exist only finitely many summands for all word lengths n. For
all n greater than or equal to the length of the longest words in L(A2), the sum will
not change anymore and is fixed to some constant.

The next sum to investigate is the sum stated in Formula 5.13. Since in this
formula there exist two different densities, all possibilities need to be combined.

Proposition 5.2.24. For the sum given in Formula 5.13, the following facts can be
summarised:

• If and only if the language L(A2) is finite, the sum is constant.

• If and only if at least one density %Hspred,pref
or %Hspred,suff

for one state s and

a corresponding predecessor spred is a polynomial but none is superpolynomial,
the whole sum is polynomial. If the highest degree of all of the polynomial
densities %Hspred,pref

is r and the highest degree of all the polynomial densities

%Hspred,suff
is l the polynomial of the sum has degree r + l + 3.

• If and only if at least one density %Hspred,pref
or %Hspred,suff

for one state s

and a corresponding predecessor spred is superpolynomial, the whole sum is
superpolynomial.

The state s is some state of automaton H and is specified in Formula 5.11. Here, s
is an accepting state of H for which Case 3b or Case 3d is applied. The state spred

belongs to the set Preds.

Proof. At first, %Hspred,pref
(i) to be constant is considered, which means that we have

%Hspred,pref
(i) = c1 for all i > n0 ≥ 0 for a fixed n0. If also the density %Hspred,suff

(i)

is constant, that is %Hspred,suff
(j) = c2 for all j > n1 ≥ 0 for a fixed n1, this leads to

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · j =

n∑
i=0

c1 ·
n−i∑
j=0

c2 · j

=c1 · c2

n∑
i=0

n−i∑
j=0

j = c1 · c2

n∑
i=0

Θ(i2) = Θ(n3),

which is a cubic polynomial in n.

Measuring Defects in Finite Automata

5.2. The Paramerized Prefix Distance 141

In case that the density %Hspred,suff
(j) is a polynomial p(j) =

∑l
k=0 ck · jk for

constants ck of degree l ≥ 1, this gives

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · j =
n∑
i=0

c1 ·
n−i∑
j=0

Θ(jl) · j

=
n∑
i=0

c1 ·
n−i∑
j=0

Θ(jl+1) =
n∑
i=0

c1 ·Θ(il+2) = Θ(nl+3)

which is a polynomial in n of degree l + 3.
For a superpolynomial density %Hspred,suff

(j), the sum is also superpolynomial.

This combination leads to

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · j =
n∑
i=0

c1 ·
n−i∑
j=0

Ω(jl) · j

=
n∑
i=0

c1 ·
n−i∑
j=0

Ω(jl+1) =
n∑
i=0

c1 · Ω(jl+2) = Ω(nl+3)

for all l ≥ 0.
Considering %Hspred,pref

(i) to be a polynomial p(i) =
∑l

k=0 ck · ik for constants ck

of degree r ≥ 1, first let %Hspred,suff
(j) be constant, that means %Hspred,suff

(j) = c1 for

all i > n0 ≥ 0 for a fixed n0. Then

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · j =
n∑
i=0

Θ(ir) ·
n−i∑
j=0

c1 · j

=c2 ·
n∑
i=0

Θ(ir)
n−i∑
j=0

j = c2 ·
n∑
i=0

Θ(ir) ·Θ(i2) = c2 ·
n∑
i=0

Θ(ir+2)

= Θ(nr+3)

is obtained, which is a polynomial in n of degree r + 3.
Having that %Hspred,suff

(j) is also a polynomial p(j) =
∑l

k=0 ck · jk for constants ck

of degree l ≥ 1, this provides

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · j =
n∑
i=0

Θ(ir) ·
n−i∑
j=0

Θ(jl) · j

=

n∑
i=0

Θ(ir) ·
n−i∑
j=0

Θ(jl+1) =

n∑
i=0

Θ(ir) ·Θ(il+2) =

n∑
i=0

Θ(ir+l+2)

=Θ(nr+l+3),

which is a polynomial in n of degree r + l + 3.

Measuring Defects in Finite Automata

142 5.2. The Paramerized Prefix Distance

The last case for polynomial density %Hspred,pref
(i) is that %Hspred,suff

(j) is super-

polynomial. The following then holds true:

n∑
i=0

%Hspred,pref
(i) ·

n−i∑
j=0

%spred,suff(j) · j =
n∑
i=0

Θ(ir) ·
n−i∑
j=0

Ω(jl) · j

=

n∑
i=0

Θ(ir) ·
n−i∑
j=0

Ω(jl+1) =

n∑
i=0

Θ(ir) · Ω(il+2) =

n∑
i=0

Ω(ir+l+2)

=Ω(nr+l+3)

which is superpolynomial in n for all l ≥ 1.
The last case for %Hspred,pref

(i) is the superpolynomial one. This does not need

any further investigations since even if the inner sum is a constant c, the outer sum
gives a superpolynomial:

n∑
i=0

Ω(il) · c = Ω(nl+1),

which is superpolynomial in n for all l ≥ 1.
This also shows that for all possible densities, if the language L(A2) is not finite,

the sum is not constant. Like in Theorem 5.2.23, the Formula 5.13 can only be
constant, if L(A2) is finite. Then there exist only finitely many summands for all
word lengths n. For all n greater than or equal to the length of the longest words
in L(A2), the sum will not change anymore and is fixed to some constant.

Investigating Formula 5.14, the census function directly gives the class for the
sum, which means if censHs(n) is constant, the sum is constant. If it is polynomial,
so is the sum, and if it is superpolynomial, the sum is also superpolynomial.

Proposition 5.2.25. The sum given in Formula 5.14 is constant if censHs(n) is
constant, it is polynomial, if censHs(n) is polynomial, and it is superpolynomial, if
censHs(n) is superpolynomial. The state s is some state of automaton H and is
specified in Formula 5.11. Here, s is an accepting state of H for which Case 3c is
applied.

All the results of this section can be summarised to the following theorem.

Theorem 5.2.8. The sum provided in Formula 5.11 is polynomial, if at least one
of the investigated sums is polynomial but none is superpolynomial. Its degree is the
one of the polynomial of the highest degree that occurs in one of the summands. If at
least one of the summands is superpolynomial, also the whole sum is superpolynomial.
The sum can only be constant if the language accepted by automaton H is finite, that
is the language accepted by the DFA A1 is finite.

The next theorem follows directly from Theorem 5.2.8.

Theorem 5.2.9. The parameterized prefix distance can only be constant, polyno-
mial, or superpolynomial.

Measuring Defects in Finite Automata

5.3. The Parameterized Suffix Distance 143

5.3 The Parameterized Suffix Distance

The parameterized suffix distance suff-Dn is defined analogously to the parameter-
ized prefix distance. Only the underlying distance for words is changed from the
prefix to the suffix distance dsuff . Of course, this also changes the distance of a word
to a language to the distance suff-d:

suff-D(n,L1, L2) :=
∑
w∈L1,

0≤|w|≤n

suff-d(w,L2) +
∑
w∈L2,

0≤|w|≤n

suff-d(w,L1).

The following lemma is the base of all the results for the parameterized suffix
language.

Lemma 5.3.1. Let L1 and L2 be two languages over a common alphabet Σ. For
two words v ∈ L1 and w ∈ L2 it holds true that

dsuff(v, w) = dpref(v
R, wR).

Proof.

dsuff(v, w) = |v|+ |w| − 2 max{|u| | v, w ∈ Σ∗u}
=
∣∣vR∣∣+

∣∣wR∣∣− 2 max{|u| | v, w ∈ Σ∗u}R

=
∣∣vR∣∣+

∣∣wR∣∣− 2 max{
∣∣uR∣∣ | vR, wR ∈ (Σ∗u)R}

=
∣∣vR∣∣+

∣∣wR∣∣− 2 max{
∣∣uR∣∣ | vR, wR ∈ uRΣ∗}

= dpref(v
R, wR).

Therefore, all of the results for the parameterized suffix distance in this section
are directly inherited from the parameterized prefix distance.

Proposition 5.3.1. Let L1, L2 ⊆ Σ∗ be two languages so that L1 ⊆ L2.

1. For a word v ∈ L2 \ L1, let L′1 = L1 ∪ {v} and L′2 = L2 \ {v}. Then

suff-D(n,L1, L2) > suff-D(n,L′1, L2) and
suff-D(n,L1, L2) > suff-D(n,L1, L

′
2).

2. For a word v ∈ Σ∗ \ L2, let L′2 = L2 ∪ {v}. Then

suff-D(n,L1, L2) < suff-D(n,L1, L
′
2).

3. For a word v ∈ L1, let L′1 = L1 \ {v}. Then

suff-D(n,L1, L2) < suff-D(n,L′1, L2).

Measuring Defects in Finite Automata

144 5.3. The Parameterized Suffix Distance

5.3.1 Upper and Lower Bounds

Proposition 5.3.2. Let L1, L2 ⊆ Σ∗ be two non-empty languages,

m = min{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }}, and

M = max{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }}.

Then suff-D(n,L1, L2) ≤
n∑

i=m

|Σ|i · (i+M).

Lemma 5.3.2. Let L1, L2 be languages with

m = min{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }} and

M = max{min{ |w| | w ∈ L1 },min{ |w| | w ∈ L2 }}.

Then the upper bound of Proposition 5.3.2 is met only if (i) each word w ∈ L1 ∪L2

contributes |w|+M to the prefix distance, (ii) L1∩L2 = ∅ if m ≥ 1, and L1∩L2 ⊆ {λ}
if m = 0, and (iii) L1 ∪ L2 = {w ∈ Σ∗ | |w| ≥ m }.

Proposition 5.3.3. For any M = m ≥ 0, there are binary regular languages

L1, L2 ⊆ {a, b}∗ so that suff-D(n,L1, L2) =
n∑

i=m

|Σ|i · (i+M), where m is the mini-

mum and M is the maximum of the lengths of the shortest words in L1 and L2.

Proposition 5.3.4. Let L1 ⊆ {a}∗ and L2 ⊆ {a}∗ be two non-empty unary lan-

guages. Then suff-D(n,L1, L2) ≤ n(n+1)
2 + 1.

Proposition 5.3.5. There are unary regular languages L1, L2 ⊆ {a}∗ so that their

suffix distance is suff-D(n,L1, L2) = n(n+1)
2 + 1.

5.3.2 Distances Below the Upper Bound

Proposition 5.3.6. There are regular languages L1 and L2 even over a binary
alphabet so that suff-D(n,L1, L2) ∈ Θ(n2n).

Proposition 5.3.7. Let c ≥ 1 be an integer. Then there are unary regular lan-
guages L1 and L2 so that suff-D(n,L1, L2) = c, for all n ≥ c.

Theorem 5.3.1. Let p(n) = xk · nk + xk−1 · nk−1 + · · · + x0 be a polynomial of
degree k ≥ 0 with integer coefficients xi, 0 ≤ i ≤ k, and xk ≥ 1. Then two regular
languages L1 and L2 over the alphabet {a, b} can effectively be constructed so that
suff-D(n,L1, L2) = p(n), for all n ≥ n0, where n0 is some constant.

Measuring Defects in Finite Automata

5.3. The Parameterized Suffix Distance 145

5.3.3 Decidability of the Order of the Distances

Theorem 5.3.2. Let L1 and L2 be two regular languages. Then it is decidable
whether the parameterized suffix distance suff-D(n,L1, L2) is ultimately constant.

Theorem 5.3.3. Let L1 and L2 be two regular languages. Then it is decidable
whether the parameterized suffix distance suff-D(n,L1, L2) is exponential.

Theorem 5.3.4. Let L1 and L2 be two regular languages and k ≥ 1 be a constant.
Then it is decidable whether the parameterized suffix distance suff-D(n,L1, L2) be-
longs to Ω(nk) ∩O(nk+1).

5.3.4 Calculation of the Suffix Distance

If the automaton H from Definition 5.2.3 is constructed based on the minimal
DFA accepting the languages L(A1)R and L(A2)R, the sum in Theorem 5.2.7 gives
the exact parameterized suffix distance of the languages L(A1) and L(A2). This
provides the following result.

Theorem 5.3.5. The parameterized suffix distance can only be constant, polyno-
mial, or superpolynomial.

Measuring Defects in Finite Automata

6 Concluding Remarks

In the beginning of this chapter, we will analyse the relation between the distances
defined in Chapter 5 and the defects considered in the previous chapters. After-
wards, we discuss a different definition of the languages L+, L−, and L? from Chap-
ter 4. This definition may be considered to be more detailed than the one already
researched in the previous chapter.

6.1 Parameterized Distances and Defects

In Chapters 3 and 4, we have analysed the effects on the number of states of minimal
deterministic finite automata for defects and languages related to these defects.
Chapter 5 deals with parameterized distances of two regular languages. The relation
between these distances and the defects is still missing.

The languages L+ and L? are used again, that were already introduced in Chap-
ter 4. To shortly recall the definitions of these languages, L+ is the set that collects
all words that are accepted by a defective finite automaton, that do not use the
defect while being processed by this automaton. The language L? collects all the
words, that are accepted or rejected by the defective automaton, and that use the
defect at least once while being processed.

Qualitative Results Stating qualitative conclusions for defects requires a possibil-
ity to somehow measure the degree of severity of the defects. This can be done for
example by using one of the parameterized distances, that were analysed in Chap-
ter 5. This requires not only the knowledge of the measure and of the defective
automaton, but also the language L(A) that is accepted by the original DFA from
which the defective one is retrieved. Then it is possible to measure the distance
between the languages L+ and L(A) respectively L? and L(A).

Depending on the purpose of the DFA, it is possible to value the sizes of the
distances. If the distance between L+ and L(A) is constant, then there only exist
finitely many words that differ. In this case, the defective automaton may still be
useful for some applications, if finitely many faults are tolerable. The same holds
true for constant distance of L? and L(A).

In case that the distance of L+ and L(A) is polynomial, there exist infinitely, but
not superpolynomially many words that differ in these two languages. Then the
defective automaton may also still be useful. But for a superpolynomial distance
of L+ and L(A), in general, the defective automaton cannot be used anymore, since
there exist to many differences between the languages of the original and the de-
fective automaton. Even if the distance between L? and L(A) is superpolynomial,

146

6.1. Parameterized Distances and Defects 147

the defective automaton may not be useful anymore, since then there may be su-
perpolynomially many words accepted that do not belong to L(A). This massively
changes the language.

Quantitative Results Let A be a minimal DFA, and A′ be the defective automaton
retrieved from A by some defect. For any of the defects considered in the former
chapters, it is possible to construct a DFA B that only accepts the words of L(A′)
that belong to L+. To be able to do this, the defect needs to be known, and also
which of the transitions or states the defect affects. Having this information, the
automaton for L+ can be constructed from automaton A′ by simply deleting the
defective transitions and states. This automaton is a DFA, but it does not need to
be minimal and not even complete.

Definition 6.1.1. Let A denote a minimal DFA, and let A′ be the automaton
resulting from A by some defect. The automaton accepting L+ of automaton A′
is denoted by B. For a fixed number n ≥ 0, censn,g is the number of words up to
length n that belong to L+, that is

censn,+ = censB(n),

and
censn,o = censA(n)

denotes the number of words up to length n, that are accepted by A. Then,

censn,diff := censn,o− censn,+

gives the number of words of language L(A), that are not accepted by B up to the
fixed length n. These words may still be accepted by A′, but, in any case, the defect
is used while processing such a word.

Fact 6.1.1. The smaller censdiff is, the more words of L(A) are accepted by the
defective automaton A′ without using the defect.

This does not necessarily mean, that the languages are equal. This is not true,
since it is possible that by L?, a big number of words is inserted to the lan-
guage L(A′), that do not belong to L(A). This means, the symmetric difference
of the languages L(A) and L(A′) may consist of infinitely many words.

From all of this, we can deduce, that the use of only the census function as a
measure for the difference of the languages L(A) and L(A′), is not sufficient to
make valuable predications about the usability of the defective automaton.

Combined Results The combination of the two measures census and distance es-
tablishes the possibility to decide the degree of severity of the defect and the use-
fulness of the defective automaton. For example it may be possible that censn,diff

is big for some n ≥ 0, which means that a lot of words of L(A) are not accepted

Measuring Defects in Finite Automata

148 6.2. A Different Definition of L+, L− and L?

anymore in the defective automaton not using the defect, but pref-D(n,L+, L(A)) is
small, perhaps only linear. Then the defect seems to affect only some short suffixes
of some words. This may be tolerable. For example natural languages are fault
tolerable up to a certain degree, since the suffix of a word is not that important for
the comprehension of a word.

6.2 A Different Definition of L+, L− and L?

In Chapter 4, the language L+ was defined to be the collection of all words accepted
by the defective automaton, that do not use the defect. The language L− was defined
quite similar, but concerned the rejected words. The language L? contained all of
the words processed by the defective automaton using the defect.

To be able to construct these languages, it is necessary to know the defect. It
does not suffice to know only the type of defect, but it is also needed to know which
state is affected by this defect. This means, the special state needs to be known that
is defective or for which a transition is defective. For the defects that concern the
transitions, this state can always be determined. But for the defects that affect the
acceptance property of a state, in general, it is impossible to determine the defective
state.

Knowing only the type of defect responsible for the given defective automaton, we
can try to correct the defect. We can construct all possible deterministic automata,
from which the resulting defective one can be received by precisely the known defect.
There only exist finitely many of these automata for each of the possible defects. In
the following, we will consider this fact for all of the defects separately. Based on
these corrected automata, the language L+ is defined to be the set of words accepted
by all of these automata. Language L− collects all words that are rejected by all of
these corrected automata, and, finally, L? is the language that is accepted or rejected
by only some of these automata. Formally, let A1,A2, . . . ,Ak denote the different
corrected automata, k ≥ 1. Then L+ can be denoted by L(A1)∩L(A2)∩· · ·∩L(Ak),
the language L− is L(A1) ∩ L(A2) ∩ · · · ∩ L(Ak), where L(Ai) = Σ∗ \ L(Ai) is the
complement of L(Ai), that means all words rejected by automaton Ai, and L? can be
considered to be Σ∗ \ (L+∪L−), where Σ is the underlying alphabet of the defective
automaton. The language L? can also be expressed by

(L(A1) ∩ L(A2) ∩ · · · ∩ L(Ak)) ∪
(
L(A1) ∩ L(A2) ∩ · · · ∩ L(Ak)

)
=
(
L(A1) ∪ L(A2) ∪ · · · ∪ L(Ak)

)
∩ (L(A1) ∪ L(A2) ∪ · · · ∪ L(Ak)) .

This means, L? collects all the words of the repaired automata, that are accepted
or rejected by at least one but not by all of the automata at the same time.

In the following, we assume again that only one occurrence of one type of defect
lead to the given defective automaton. Based on this assumption, upper bounds for
the number of states for minimal DFA accepting the so defined languages L+, L− re-
sprectively L? can be derived from upper bounds for the constructions of minimal

Measuring Defects in Finite Automata

6.2. A Different Definition of L+, L− and L? 149

DFA accepting the union, intersection, and the complement of regular languages.
These bounds are m · n for the union and the intersection, if the united or inter-
sected minimal DFA consist of m respectively n states. For the complement of a
DFA with n states, this bound is n.

All of the repaired automata will be DFA. Their equivalent minimal DFA have at
most equally many states. Let k ≥ 1 denote the number of repaired automata, n
the number of states of the original automaton, F the set of accepting states of the
original automaton, and Σ the alphabet of the automata. For all defect, the minimal
DFA accepting L+ has at most nk states, the one accepting L− also nk states, and
the minimal DFA accepting L? consists of at most n2k states. In the following, we
will determine the number k for each defect separately.

Exchange Symbol For this type of defect, we already know that there exists one
state s with an undefined transition for precisely one symbol a, and two transitions
on the same symbol b. The correction is done by replacing the symbol b of one of
the transitions of state s by the symbol a. This leads to at most two different and
perhaps minimal DFA.

Insert Transition There also exist at most two repaired automata for this defect.
An automaton with this type of defect consists of one state with no undefined
transition, but two transitions on the same symbol. To repair this defect, one of
these two transitions needs to be deleted.

Flip Transition The flipped transition can be recognised and repaired by exchang-
ing the source and target of this transition. Therefore, there only exists one repaired
automaton.

Delete Transition For a deleted transition, there exists one state in the defective
automaton with one undefined transition. So the source of the deleted transition
can be recognised. The correction of this defect leads to n different automata, since
there exist n possible targets for the transition that needs to be inserted.

Delete Accepting State The deletion of an accepting state leads to undefined
transitions in the defective automaton. When inserting a new accepting state, the
resulting automaton has n states again, just like the original automaton. This new
state is the target for all of the missing transitions of the defective automaton. But
the targets of the transitions starting in this new state are still unknown. This leads
to a number of

(
n
|Σ|
)

different repaired automata.

Delete Non-Accepting State For this defect, there also exist at most
(
n
|Σ|
)

different
repaired automata. The correction is done quite similar to the one for the defect
delete accepting state.

Measuring Defects in Finite Automata

150 6.3. Future Research

L+ L− L?

Delete Transition nn nn n2n

Insert Transition n2 n2 n4

Flip Transition n n n2

Exchange Symbol n2 n2 n4

Delete Non-Acc. State n(n
|Σ|) n(n

|Σ|) n
2(n
|Σ|)

Delete Accepting State n(n
|Σ|) n(n

|Σ|) n
2(n
|Σ|)

Remove Acceptance nn−(|F |−1) nn−(|F |−1) n2(n−(|F |−1))

Add Acceptance n|F |+1 n|F |+1 n2(|F |+1)

Table 6.1: Upper bounds for the number of states of minimal DFA accepting the
languages L+, L−, and L? for the different defects, where n is the num-
ber of states of the original DFA, Σ is its alphabet, and F is the set of
accepting states of the original DFA.

Remove Acceptance This defect is corrected by adding the property of acceptance
to one of the non-accepting states of the defective automaton. This leads to a number
of n− (|F | − 1) repaired automata.

Add Acceptance The correction of this defect is done by removing the acceptance
for one of the accepting states of the defective automaton. Therefore, there possibly
exist |F |+ 1 many repaired automata.

Tabular 6.1 summarises the results.

6.3 Future Research

In the future, the relation of the distances and the defects should be further re-
searched. The question for the existence of distance classes for the different defects
may be considered. This means, when fixing one type of defect, which distance
classes can be reached (linear, polynomial, exponential). Perhaps in this direction,
there exist better possiblities to decide if a defective automaton can still be used for
some applications.

Of course, the parameterized distance can also be considered to be defined for
other word distances like the edit distance or the Hamming distance. Maybe these
distances lead to other distance classes besides linear, polynomial, and exponential.

For the defect of insertion of a transition, it is still an open problem if the upper
bound of 2n − 1 is reachable for binary alphabet. In this thesis, the tightness of
this bound was only shown for unary and at least ternary alphabets. It may also be
possible to improve the bounds for finite languages. For the defects insert transition,
flip transition, or exchang symbol, the upper bounds were only shown to be tight in
the order of magnitude.

Measuring Defects in Finite Automata

6.3. Future Research 151

It would also be possible to consider defects different to the ones considered in
this thesis. One source for such defects may be applications where DFA need to be
exchanged in some way.

Measuring Defects in Finite Automata

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

[2] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and
Compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

[3] Henning Bordihn, Markus Holzer, and Martin Kutrib. Determinization of fi-
nite automata accepting subregular languages. Theoretical Computer Science,
410(35):3209 – 3222, 2009.

[4] Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. Mathematical Theory of Automata, 12:529–561, 1962.

[5] Janusz A. Brzozowski. Quotient complexity of regular languages. Journal of
Automata, Languages and Combinatorics, 15(1/2):71–89, 2010.

[6] Janusz A. Brzozowski, Galina Jirásková, Baiyu Li, and Joshua Smith. Quotient
complexity of bifix-, factor-, and subword-free regular languages. In Automata
and Formal Languages, 13th International Conference, AFL 2011, Debrecen,
Hungary, August 17-22, 2011, Proceedings., pages 123–137, 2011.

[7] Janusz A. Brzozowski, Galina Jirásková, and Chenglong Zou. Quotient com-
plexity of closed languages. Theory Comput. Syst., 54(2):277–292, 2014.

[8] Janusz A. Brzozowski and Bo Liu. Quotient complexity of star-free languages.
International Journal of Foundations of Computer Science, 23(6):1261–1276,
2012.

[9] Janusz A. Brzozowski and University of Waterloo. Department of Computer Sci-
ence. Open Problems about Regular Languages. University of Waterloo Com-
puter Science Department. Department of Computer Science, University of Wa-
terloo, 1980.

[10] Janusz A. Brzozowski and M. Yoeli. Digital networks. Prentice-Hall series in
automatic computation. Prentice-Hall, 1976.

[11] Cezar Câmpeanu, Karel Čulik, Kai Salomaa, and S. Yu. State complexity of
basic operations on finite languages. In Oliver Boldt and Helmut Jürgensen,
editors, Workshop on Implementing Automata (WIA 1999), volume 2214 of
LNCS, pages 60–70. Springer, 2001.

152

Bibliography 153

[12] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, 1981.

[13] Christian Choffrut and Giovanni Pighizzini. Distances between languages and
reflexivity of relations. Theor. Comput. Sci., 286:117–138, 2002.

[14] Noam Chomsky. Three models for the description of language. IRE Transac-
tions on Information Theory, 2:113–124, 1956.

[15] Noam Chomsky. On certain formal properties of grammars. Information and
Control, 2:137–167, 1959.

[16] Marek Chrobak. Finite automata and unary languages. Theoretical Computer
Science, 47(3):149–158, 1986.

[17] Marek Chrobak. Errata to: "finite automata and unary lan-
guages". Theor. Comput. Sci., 302(1-3):497–498, 2003.

[18] Aldo de Luca and Stefano Varricchio. On noncounting regular classes. Theo-
retical Computer Science, 100(1):67 – 104, 1992.

[19] Yuan Gao, Nelma Moreira, Rogério Reis, and Sheng Yu. A survey on opera-
tional state complexity. CoRR, abs/1509.03254, 2015.

[20] Viliam Geffert. (non)determinism and the size of one-way finite automata. In
Carlo Mereghetti, Beatrice Palano, Giovanni Pighizzini, and Detlef Wotschke,
editors, DCFS, pages 23–37. Universit degli Studi di Milano, Milan, Italy, 2005.

[21] Viliam Geffert. Magic numbers in the state hierarchy of finite automata. In-
formation and Computation, 205(11):1652–1670, 2007.

[22] Seymour Ginsburg and Sheila Greibach. Deterministic context free languages.
Information and Control, 9(6):620 – 648, 1966.

[23] Leonard H. Haines. Generation and Recognition of Formal Languages. PhD
Thesis, Massachusetts Institute of Technology, Deparment of Mathematics,
Cambridge, Massachusetts, USA, 1965.

[24] Kosaburo Hashiguchi. Algorithms for determining relative star height and star
height. Information and Computation, 78(2):124 – 169, 1988.

[25] Markus Holzer, Sebastian Jakobi, and Martin Kutrib. The magic number prob-
lem for subregular language families. International Journal of Foundations of
Computer Science, 23(1):115–131, 2012.

[26] Markus Holzer and Martin Kutrib. State complexity of basic operations on
nondeterministic finite automata. In Implementation and Application of Au-
tomata, 7th International Conference, CIAA 2002, Tours, France, July 3-5,
2002, Revised Papers, pages 148–157, 2002.

Measuring Defects in Finite Automata

154 Bibliography

[27] Markus Holzer and Martin Kutrib. Descriptional and computational complexity
of finite automataa survey. Information and Computation, 209(3):456 – 470,
2011. Special Issue: 3rd International Conference on Language and Automata
Theory and Applications (LATA 2009).

[28] Markus Holzer and Martin Kutrib. Descriptional Complexity An Introductory
Survey, chapter 1, pages 1–58. Imperial College Press, 2011.

[29] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
automata theory, languages, and computation - international edition (2. ed).
Addison-Wesley, 2003.

[30] David A. Huffman. The synthesis of sequential switching circuits. Journal of
the Franklin Institute, 257:161 – 190, 1954.

[31] Kazuo Iwama, Yahiko Kambayashi, and Kazuya Takaki. Tight bounds on the
number of states of {DFAs} that are equivalent to n-state {NFAs}. Theoretical
Computer Science, 237:485 – 494, 2000.

[32] Kazuo Iwama, Akihiro Matsuura, and Mike Paterson. A family of nfas which
need 2n−α deterministic states. Theoretical Computer Science, 301:451 – 462,
2003.

[33] Jozef Jirásek, Galina Jirásková, and Alexander Szabari. Deterministic blow-
ups of minimal nondeterministic finite automata over a fixed alphabet. In
Developments in Language Theory, 11th International Conference, DLT 2007,
Turku, Finland, July 3-6, 2007, Proceedings, pages 254–265, 2007.

[34] Galina Jirásková. Note on minimal finite automata. In Ji Sgall, Ale Pultr, and
Petr Kolman, editors, Mathematical Foundations of Computer Science 2001,
volume 2136 of Lecture Notes in Computer Science, pages 421–431. Springer
Berlin Heidelberg, 2001.

[35] Galina Jirásková. On the state complexity of complements, stars, and reversals
of regular languages. In Masami Ito and Masafumi Toyama, editors, Develop-
ments in Language Theory, volume 5257 of Lecture Notes in Computer Science,
pages 431–442. Springer Berlin Heidelberg, 2008.

[36] Galina Jirásková. Concatenation of regular languages and descriptional com-
plexity. In Anna Frid, Andrey Morozov, Andrey Rybalchenko, and KlausW.
Wagner, editors, Computer Science - Theory and Applications, volume 5675 of
Lecture Notes in Computer Science, pages 203–214. Springer Berlin Heidelberg,
2009.

[37] Galina Jirásková. Magic numbers and ternary alphabet. In Volker Diekert
and Dirk Nowotka, editors, Developments in Language Theory, volume 5583 of
Lecture Notes in Computer Science, pages 300–311. Springer Berlin Heidelberg,
2009.

Measuring Defects in Finite Automata

Bibliography 155

[38] Galina Jirásková and Juraj Sebej. Note on reversal of binary regular languages.
In DCFS, volume 6808 of Lecture Notes in Computer Science, pages 212–221.
Springer, 2011.

[39] Galina Jirskov. State complexity of some operations on binary regular lan-
guages. Theoretical Computer Science, 330(2):287 – 298, 2005.

[40] Christos Kapoutsis. Algorithms and lower bounds in finite automata size com-
plexity. Phd Thesis, 2006.

[41] Stephen C. Kleene. Representation of events in nerve nets and finite automata.
In Claude Shannon and John McCarthy, editors, Automata Studies, volume
AM-34, pages 3–41. Princeton University Press, Princeton, USA, 1956.

[42] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast Pattern
Matching in Strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[43] S.-Y. Kuroda. Classes of languages and linear-bounded automata. Information
and Control, 7(2):207 – 223, 1964.

[44] Martin Kutrib. The phenomenon of non-recursive trade-offs. International
Journal of Foundations of Computer Science, 16(5):957–973, 2005.

[45] Martin Kutrib, Katja Meckel, and Matthias Wendlandt. Parameterized prefix
distance between regular languages. In SOFSEM 2014: Theory and Practice of
Computer Science - 40th International Conference on Current Trends in Theory
and Practice of Computer Science, Nový Smokovec, Slovakia, January 26-29,
2014, Proceedings, pages 419–430, 2014.

[46] Peter S. Landweber. Three theorems on phrase structure grammars of type 1.
Information and Control, 6(2):131 – 136, 1963.

[47] Harry R. Lewis and Christos H. Papadimitriou. Elements of the theory of
computation (2. ed.). Prentice Hall, 1998.

[48] Oleg B. Lupanov. A comparison of two types of finite sources. Problemy Kiber-
netiki, 9:321–326, 1963. (in Russian).

[49] Akihiro Matsuura and Yusuke Saito. Equivalent transformation of minimal
finite automata over a two-letter alphabet. In Cezar Câmpeanu and Giovanni
Pighizzini, editors, DCFS, pages 224–232. University of Prince Edward Island,
2008.

[50] George H. Mealy. A method for synthesizing sequential circuits. The Bell
Systems Technical Journal, 34(5):1045–1079, 1955.

[51] Albert R. Meyer and Michael J. Fischer. Economy of description by automata,
grammars, and formal systems. In 12th Annual Symposium on Switching and

Measuring Defects in Finite Automata

156 Bibliography

Automata Theory, East Lansing, Michigan, USA, October 13-15, 1971, pages
188–191, 1971.

[52] Mehryar Mohri. On the use of sequential transducers in natural language pro-
cessing. In Emmanuel Roche and Yves Shabes, editors, Finite-State Language
Processing, chapter 12, pages 355–381. MIT Press, Cambridge, MA, USA, 1997.

[53] Edward F. Moore. Gedanken-experiments on sequential machines. In Claude
Shannon and John McCarthy, editors, Automata Studies, volume AM-34, pages
129–153. Princeton University Press, Princeton, NJ, 1956.

[54] Frank R. Moore. On the bounds for state-set size in the proofs of equivalence
between deterministic, nondeterministic, and two-way finite automata. IEEE
Transaction on Computing, 20:1211–1219, 1971.

[55] John R. Myhill. Finite automata and the representation of events. Technical
Report WADD TR-57-624, Wright Patterson Air Force Base, Ohio, USA, 1957.

[56] John R. Myhill. Linear bounded automata. Technical report, Wright Patterson
Air Force Base, Ohio, USA, 1960.

[57] Anil Nerode. Linear automaton transformations. Proceedings of the American
Mathematical Society, 9(4):541–544, 1958.

[58] Michael O. Rabin and Dana S. Scott. Finite automata and their decision prob-
lems. IBM J. Res. Dev., 3:114–125, 1959.

[59] Bala Ravikumar. Some applications of a technique of sakoda and sipser.
SIGACT News, 21(4):73–77, 1990.

[60] Bala Ravikumar and Oscar H. Ibarra. Relating the type of ambiguity of fi-
nite automata to the succinctness of their representation. SIAM J. Comput.,
18(6):1263–1282, 1989.

[61] Kai Salomaa and Sheng Yu. NFA to DFA transformation for finite languages
over arbitrary alphabets. Journal of Automata, Languages and Combinatorics,
2(3):177–186, 1997.

[62] Marcel P. Schützenberger. On context-free languages and push-down automata.
Information and Control, 6(3):246 – 264, 1963.

[63] Peter W. Shor. A counterexample to the triangle conjecture. Journal of Com-
binatorial Theory, Series A, 38(1):110 – 112, 1985.

[64] Angelika Steger. Diskrete Strukturen (Band 1). Springer-Verlag, 2001.

[65] Andrew Szilard, Sheng Yu, Kaizhong Zhang, and Jeffrey Shallit. Characterizing
regular languages with polynomial densities. In MFCS, volume 629, pages 494–
503, 1992.

Measuring Defects in Finite Automata

Bibliography 157

[66] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–
265, 1936.

[67] Sheng Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Hand-
book of Formal Languages, volume 1, chapter 2, pages 41–110. Springer, Berlin,
1997.

[68] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of some ba-
sic operations on regular languages. Theoretical Computer Science, 125(2):315
– 328, 1994.

Measuring Defects in Finite Automata

Ich erkläre:

Ich habe die vorgelegte Dissertation selbständig und ohne unerlaubte fremde Hilfe
und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe.
Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnom-
men sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche
kenntlich gemacht.
Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen
habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der ”Satzung
der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis”
niedergelegt sind, eingehalten.

Wetzlar, Dezember 2015

(Katja Meckel)

