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Summary 

Poliovirus (PV) translation and replication can occur in neuronal cells where it causes 

degeneration and lysis of cells leading to paralytic poliomyelitis. Other cell types are much 

less affected by PV infection and do not support translation and replication of the virus as 

well. Apart from the poliospecific receptor, the reasons for the tissue preference of poliovirus 

may be found in its translation initiation via an internal ribosome entry site (IRES), which in 

addition to cellular initiation factors uses proteins normally not involved in translation to 

achieve efficient translation (ITAFs). Several ITAFs are known, but neither do these known 

factors explain the tissue specificity of poliovirus nor are they sufficient to initiate translation at 

the PV IRES using only purified components. Additional factors may be present in cells, 

especially in neuronal cells, that are both necessary for translation initiation on the PV IRES.  

One potential new factor, ErB3 binding protein (EbP1), was identified here to bind to the PV 

IRES. Translation initiation complexes were formed with labelled Poliovirus IRES RNA in an 

in vitro reconstitution system. A double labeled RNA allowed to identify 48S complexes in 

sucrose gradients and to enrich proteins present in these complexes. As controls RNAs 

containing the IRESs of Hepatitis C virus (HCV) and encephalomyocarditis virus (EMCV) 

were used. One protein, specific for PV and EMCV was identified in the light RNA peak but 

not in the 48S peak. It was identified by mass spectrometry as EbP1, which is a known ITAF 

for the IRES of Foot-and-mouth-disease virus. However, its role in PV translation initiation 

seems to be inhibiting rather than stimulating since it could not be found in 48S complexes. 

Additionally I identified a neuron specific microRNA (miRNA) that stimulates translation at the 

Poliovirus IRES. By screening the poliovirus IRES sequence for potential target sites for 

miRNAs that are preferentially expressed in neuronal cells, I found sequences partially 

complementary to three neuron-specific miRNAs, miRNA-127, miRNA-326 and miRNA-422a. 

These miRNAs were co-transfected into cultured cell-lines together with a poliovirus IRES 

reporter RNA. Of these miRNAs, only miRNA-326 enhanced poliovirus translation efficiency. 

The target site for miRNA-326 is located in a loop of the central IRES domain IV. 

Mutagenesis of this miRNA-326 target site disabled the stimulation by added miRNA-326, 

indicating a physical interaction of miRNA-326 with the poliovirus IRES. However, this 

mutation could only be partially rescued by a miRNA with a complementary mutation in the 

seed sequence of miRNA-326. Since two binding sites of miRNA-326 in the 5’ untranslated 

region of PV are identical with binding sites for the known ITAF PCBP2, a connection 

between those two factors may be assumed.  
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Zusammenfassung 

Poliovirus (PV) Translation und Replikation findet in neuronalen Zellen statt. Infizierte Zellen 

werden degradiert oder lysiert, was zum Krankheitsbild der Kinderlähmung führt. Andere 

Gewebe sind von Polioinfektionen weit weniger betroffen, da sie Translation und Replikation 

des Virus nicht unterstützen. Der Grund für die Gewebespezifität von Poliovirus liegt neben 

dem Rezeptor auch an der Initiation der Translation, die mit Hilfe einer internen Ribosomen 

Eintrittsstelle (IRES) realisiert wird. IRES abhängige Translation benötigt neben zellulären 

Initiationsfaktoren auch andere zelluläre Proteine (ITAFs), welche normalerweise nicht an der 

Translation beteiligt sind. Mehrere ITAFs für PV sind bekannt, allerdings kann durch sie weder 

die Gewebespezifität von PV erklärt werden, noch sind all diese Faktoren ausreichend, um in 

aufgereinigter Form Translation durch die PV IRES zu initiieren. Es muss also noch weitere 

Faktoren geben, die für die Translation durch die PV IRES in neuronalen Zellen notwendig 

sind. 

Ein neuer potentieller ITAF, ErB3-binding protein (EbP1), wurde in dieser Arbeit identifiziert. 

Dafür wurden Translationsinitiationskomplexe an der PV IRES gebildet. Eine doppelte 

Markierung erlaubt sowohl die Identifikation der 48S Komplexe im Gradienten, als auch eine 

Isolierung von RNA bindenden Proteinen aus diesen Komplexen. Als Kontrolle wurden RNAs 

mit der Hepatitis C Virus und der Encephalomyocarditis Virus (EMCV) IRES eingesetzt. Ein 

Protein konnte in den leichten Sucrose Fraktionen an der PV und EMCV IRES beobachtet 

werden, jedoch nicht in den 48S Komplexen. Dieses Protein wurde durch 

Massenspektrometrie als EbP1 identifiziert. EbP1 wurde bereits als ITAF für das Maul- und 

Klauenseuche Virus identifiziert.  

Zusätzlich wurde eine neuronen-spezifische mikroRNA (miRNA) identifiziert, welche die 

Translation an der PV IRES stimuliert. Dafür wurden mehrere neuronen-spezifische miRNAs, 

miRNA-127, miRNA-326 und miRNA-422a ausgewählt, die Bindestellen in der PV IRES 

haben. Diese miRNAs wurden zusammen mit einem PV IRES Reporterkonstrukt in Zelllinien 

transfiziert. Nur miRNA-326 zeigte eine Stimulation der Translation. Die Bindestelle für miRNA-

326 befindet sich in einer nicht gepaarten Region innerhalb von Domäne IV in der Mitte der PV 

IRES. Mutagenese dieser miRNA-326 Bindestelle verhinderte die Stimulation durch miRNA-

326. Der Effekt konnte jedoch mit einer kompensatorisch mutierten miRNA nur teilweise 

wieder hergestellt werden. Beide Bindestellen für miRNA-326 in der PV IRES sind mit 

Bindestellen für den ITAF PCBP2 identisch, daher kann ein Zusammenspiel dieser beiden 

Faktoren in der Translation angenommen werden. 
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Introduction 

Poliovirus 

Poliovirus belongs to the group of picornaviruses; positive strand RNA viruses that include 

several human and animal pathogens, e.g. human rhinovirus (HRV), Hepatitis A virus (HAV), 

Encephalomyocarditis virus (EMCV) and foot-and-mouth disease virus (FMDV).  

Poliovirus (PV) causes poliomyelitis, a severe motor neuronal disease, resulting in paralysis. 

The virus is transmitted fecal-orally and primarily infects gut cells. In less than 1 % of cases 

the infection spreads to the nervous system (Racaniello 2006), where it causes severe and 

permanent damage to motor neurons (Colbere-Garapin et al. 1989, Wood & Macadam 1997). 

Poliovirus (PV) infects only humans (LaMonica et al. 1986), even though some old world 

primates can be infected experimentally (Racaniello 2006).  

The Poliovirus RNA genome (figure 1) contains a long 5’ untranslated region (UTR or NTR) of 

approximately 750 nucleotides (nts), 450 of which form an internal ribosome entry site (IRES), 

followed by a single open reading frame (ORF) coding for the viral polyprotein which cleaves 

itself into 11 structural and non-structural proteins (Shih et al. 1978). The coding region is 

followed by a short 3‘ UTR of 65 nts (Waggoner & Sarnow 1998) and a polyA tail of 84 As 

(Semler et al. 1984). A more detailed explanation of structure and function of the internal 

ribosome entry site (IRES) will be given later in the text and in figure 3. 

 
 

Figure 1 : Organization of Poliovirus (PV) genomic RNA, NTR: non-translated region, VP: viral protein. 

Picture from DeJesus et al. 2007 
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Translation initiation 

Protein biosynthesis is a universal process, necessary for all organisms on earth. RNA gets 

translated into proteins almost identically in eukaryotes, archea and bacteria (Kyrpides et al. 

1998, Koonin et al. 2001, Laursen et al. 2005). Translation is divided into four parts: initiation, 

elongation, termination and ribosome recycling (Pacheco & Martinez-Salas 2010). Initiation is 

the rate-limiting step and therefore the most regulated one. It involves many factors and 

differs widely between the kingdoms of life (Kyprides et al. 1998). 

Eukaryotic cap-dependent translation initiation 

Most cellular mRNAs have a 5’ cap structure, a methylated guanosine at the very 5’ end of 

the mRNA (Shatkin et al. 1976, Sonenberg et al. 1979). The cap is added during transcription 

in the nucleus and serves a double function. It protects the mRNA from degradation and 

allows ribosomes to bind to the mRNA. 

The cap is recognized by the eukaryotic initiation factor (eIF) 4F, which consists of 3 subunits, 

eIF4A, 4E and 4G (figure 2). Simultaneously the eukaryotic initiation factor eIF2 together with 

the starter methionyl- t-RNA and GTP form a ternary complex. The ternary complex then joins 

with eIF3 (Asano et al. 2000), eIF1, eIF1A and the 40S ribosomal subunit to form the 43S 

pre-initiation complex (Hinnebusch 2006). Binding of the 43S pre-initiation complex to the 

capped RNA via interaction of eIF4G and eIF3 leads to the 48S pre-initiation complex. eIF4G 

is connected to the mRNA via eIF4E, the cap-binding moiety of eIF4F, therefore connecting 

the 40S ribosomal subunit to the mRNA via eIF3. 

The complex then scans along the mRNA towards the 3’ end until it reaches the start codon, 

AUG, in a favorable Kozak-environment (Kozak 1989) normally 50-100 nts downstream of the 

cap. After recognition of the AUG eIF2 hydrolyses GTP, regulated by eIF1 and eIF5 

(Unbehaun et al. 2004, Hinnebusch 2006), then most initiation factors dissociate and subunit 

joining takes place with the help of eIF5 and 5B (Unbehaun et al. 2004), resulting in the 

formation of the 80S ribosome and beginning of elongation. 

Several alternative modes of translation initiation exists in eukaryotic cells, such as 

prokaryotic Shine-Dalgarno-like sequences in mitochondria and chloroplasts, ribosome 

shunting upon infection by adenoviruses (Yueh et al. 1996) or internal ribosome entry by 

picornaviruses (Jang et al. 1988) and other viral and cellular mRNAs. 
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Figure 2 : Scheme of cap-dependent translation. Picture from Jackson et al. 2010  

 

IRES-dependent translation initiation 

Picornaviruses and several other (+) strand RNA viruses e.g. Hepatitis C virus (HCV) 

translate via an internal ribosome entry site (IRES), a highly structured element in the 5’- 

untranslated region (UTR) of the virus RNA that allows ribosomes to bind and commence 

translation without the 5’-7-methyl-guanosin cap, m7cap (Pelletier & Sonenberg 1988, Jang et 

al. 1990, Chen & Sarnow 1995). This mechanism of translation initiation can be found in 

almost all classes of (+) strand RNA viruses, even in plant viruses (Dorokhov et al.2002, 

Dreher & Miller 2006). 
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IRESs differ in their sequence even within types, but secondary structures allow grouping 

them (Pilipenko et al. 1989). To date there are four different types of viral IRESs (Martinez-

Salas et al. 2008, Filbin & Kieft 2009, Hellen 2009) with very different requirements for 

initiation factors. These differ from m7caps as well as from each other, e.g. the Type 4 cricket 

paralysis virus intergenic (IGN) IRES (Wilson et al. 2000a) does not require any factors 

(Wilson et al. 2000b, Pfingsten et al. 2006, Schüler et al. 2006), while the Type 1 PV IRES 

needs all initiation factors, except for eIF4E (Pestova et al. 1996), plus additional IRES trans-

acting factors (ITAFs) (Hellen & Sarnow 2001, Pacheco et al. 2008).  

The IRES elements of picornaviruses consist of 450 to 900 nucleotides (nts) and form five 

(Cardioviruses) or six (Enteroviruses) stem loops (Nicholson et al. 1991, Jackson et al. 2010). 

Each stem loop is subject to binding by different proteins, either sequence or structure 

dependent (Jang et al. 1990). Stem loop I, the clover leaf, is not part of the IRES but 

necessary for viral replication and with only minimal influence on viral translation (Simoes & 

Sarnow 1991).  

The structure of IRESs and RNA-RNA interactions between stem loops is necessary for 

translation initiation on IRESs (Ramos et al. 1999, Martinez-Salas 2008), especially on IRESs 

that do not require protein factors, like the CrPV IGN IRES (Wilson et al. 2000a). 

Common to all picornaviral IRESs is a polypyrimidine stretch at their 3’ end some 20 nt 

upstream of the initiator codon AUG (Belsham & Sonenberg 1996, Jang 2006), which is 

crucial for translation (Nicholson et al. 1991). Type I IRESs, such as the poliovirus IRES, 

direct the ribosome to a first AUG downstream of the IRES (Pelletier et al. 1988), from which 

it scans along the RNA until it reaches a second AUG where translation is initiated (Belsham 

1992, Bonnal et al. 2005, Jackson et al. 2010). The reason for this process is still unknown. 

Type II IRESs, such as the EMCV IRES, initiate translation directly at the first AUG after the 

polypyrimidine tract, even though several AUGs are present within the IRES (Andreev et al. 

2007). 
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Figure 3 : Translation initiation at picornaviral IRES elements type 1 (PV) and type 2 (EMCV). Picture 

from Jackson et al. 2010 

 

Compared to cap-dependent translation initiation, IRES-dependent translation is inefficient 

(Andreev et al. 2007), but under certain conditions viral IRESs outperform cap-dependent 

translation. These conditions are normally induced by viral infection. For example, under high 

salt conditions IRESs are more efficient than capped RNAs as shown for the Foot-and- 

mouth-disease virus (FDMV) IRES by Niepmann (2003) and for PV and EMCV by Carrasco 

and Smith (1976). Some viruses like EMCV and PV change membrane permeability (Aldabe 

et al. 1996) resulting in an influx of salts, which could decrease cap-dependent translation, 

but leaves IRES directed translation unaffected or even stimulated (Niepmann 2003, 

Jünneman et al. 2007).   

IRES dependent translation initiation is in most cases independent of the cap-binding 

complex eIF4F; PV translates even during mitosis when cellular translation is switched off 

due to phosphorylation of eIF4E binding proteins (eIF4E-BPs) (Hellen & Sarnow 2001). 

Poliovirus and other picornaviruses take advantage of their independence from the cap 

binding protein eIF4F, by cleaving its scaffold, eIF4G (Gradi et al. 1998), therefore separating 

the cap binding part eIF4E from the helicase eIF4A and eIF3 binding part (Ventoso et al. 

1998). However, PV still needs eIF4A, eIF3 and the N-terminal part of eIF4G (p100) for 

efficient translation (Jackson 2005).  

 

IRESs have been identified in the 5’ UTR of several cellular proteins (Bernstein et al. 1997, 

Spriggs et al. 2008), which initiate translation in a way very similar to viral IRESs. Those 

elements are useful for the cell to keep housekeeping proteins active during stress (apoptosis 

(Holcik et al. 2003), hypoxia (Lang et al. 2002) or viral infections (Sarnow 1989, Johannes et 

al. 1999)). Consequently those IRESs are typically found at mRNAs important for the basic 
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functions of the cells, like X-linked inhibitor of apoptosis (XIAP) (Holcik et al. 2000), the 

transcription factor c-myc (Martinez-Salas et al. 2001) or the RNA-chaperone unr (Cornelis et 

al. 2005). An alternative explanation for the existence of cellular IRESs states that they 

regulate the expression of different isoformal proteins from the same mRNA (Yaman et al. 

2003, Bonnal et al. 2005, Tinton et al. 2005).  

The function of long cellular 5’ UTR as IRES elements was first called in question by several 

articles indicating cryptic promoters or splice sites in dicistronic constructs (e.g. Baranik et al. 

2008) when using DNA transfection. Later Han & Zhang (2002) and Andreev et al. (2009) 

who used RNA transfection or monocistronic constructs found that cellular IRESs perform 

very weak compared to viral IRESs. The function of cellular IRESs cannot be eliminated by 

deleting parts of the IRES (Tinton et al. 2005, Zhang et al. 2010), which can be done with viral 

IRESs (Nicholson et al. 1991), indicating that cellular IRESs might function differently from 

viral IRESs (Martinez-Salas et al. 2001) or that their activity might be an experimental artifact 

(Kozak 2008).  

Translation of viral proteins   

The RNA genomes of picornaviruses are rather small, due to the limited amount of space in 

viral particles and the high mutation rate of RNA (Drake & Holland 1999, Shulman et al. 

2000). Consequently picornaviruses only possess a limited amount of proteins, which does 

not include all factors necessary for translation and replication of the viral genome, packing 

and release of the virus particle. Hence all picornaviruses need to use cellular proteins to aid 

in translation and replication of their genome. To synthesize viral proteins picornaviruses use 

canonical translation initiation factors as well as other cellular proteins normally not involved 

in translation, IRES trans-acting factors, ITAFs (Belsham et al. 2000). 

During infection the cellular cap-dependent translation is often suspended by the virus 

(Etchinson et al. 1984). This leaves initiation factors and ribosomes free to translate 

exclusively viral proteins, which are not cap-dependent but initiate translation via an internal 

ribosome entry site, IRES (Jang et al. 1990). 

Shut-off of cellular cap-dependent translation can be induced in several ways:  

A viral protease (Protease 2A in Poliovirus) cleaves the eukaryotic initiation factor (eIF) 4G 

and therefore inhibits binding of initiation factors and ribosomes to mRNA (Lamphear et al. 

1995, Ohlmann et al. 1995), since the cap-binding complex eIF4F cannot be formed. 

Dephosphorylation of 4E-BPs (eIF4E binding proteins) after FMDV infections has a similar 

negative effect on the formation of the eIF4F complex (Gingras et al. 1996) by sequestering 

eIF4E.  
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All these mechanisms only take effect after the first rounds of translation of viral proteins are 

completed. During these first rounds virus RNA competes with cellular mRNAs for factors and 

ribosomes and may be subject to the inert immune response of the cell. 

Several viruses show tissue tropism. They translate, replicate and cause disease in distinct 

tissues, for example Poliovirus (PV) only causes damage to motor neurons (Johnson 1982). 

This is due to specific receptors on the cell surface used by the virus (Ren et al. 1990, 

Morrison et al. 1994), as well as the use of tissue specific cellular proteins for viral translation 

and replication (Hellen and Sarnow 2001). Transgenic mice expressing the PV receptor 

CD155 (Koike et al. 1991) ubiquitously, nevertheless only show replication of PV in neurons 

and muscles (Freistadt et al. 1990, Ren et al. 1992). Upon transfection, circumventing the 

need for receptors on the cell surface, PV RNA was translated differently in different cell lines, 

and with highest efficiency in neuronal cells (Bormann et al. 1997). 

These studies indicate the use of specific cellular proteins by the IRES, which determine 

tissue specificity. The factors play a role in canonical cap-dependent translation initiation or 

origin from a different part of the RNA-metabolism. 
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Cellular proteins involved in viral translation 

Initiation factors 

Up to eleven different canonical translation initiation factors (eIF) are thought to be involved in 

the cap-dependent initiation of translation on cellular mRNAs. For this study the focus is on 

eIF3, eIF4F and eIF4B since they are shown to bind to IRES elements (Ochs et al. 2002, 

2003), and their role in IRES dependent initiation most likely does not differ from their role in 

cap-dependent initiation. For an overview of initiation factors see table 1 and figure 2. 

 

Initiation factor  Subunits/ molecular 
weight 

Function  

eIF1 1 / 13 kDa Stimulates binding of eIF2 to 40S subunit, 
inhibits GTP hydrolysis by eIF2 

eIF1A 1 / 16 kDa Stimulates binding of eIF2 to 40S subunit 
eIF2 3 / 36, 38, 51 kDa Binds met-t-RNA and 40 S subunit 
eIF2B 5/ 34, 39, 50, 60, 80 kDa Promotes GDP-GTP exchange on eIF2 
eIF3 13 / total app. 750 kDa  Binds other initiation factors and auxiliary 

proteins, as well as RNA and ribosomal 
subunits 

eIF4A 1 / 46 kDa RNA-helicase 
eIF4B 1 / 70 kDa Co-factor of eIF4A 
eIF4E 1 / 25 kDa Cap-binding 
eIF4F 3 / 25, 46, 170 kDa Connecting capped RNA to pre-initiation 

complex, unwinding of RNA secondary 
structures, consists of eIF4A, 4E and 4G 

eIF4G 1/ 170 KDa Formation of eIF4F with eIF4A and 4E, 
connecting of eIF3 and PABP to mRNA 

eIF4H 1 / 27 kDa Co-factor of eIF4A 
eIF5 1 / 50 kDa Induces GTP hydrolysis by eIF2 
eIF5B 1 / 139 kDa Subunit joining 
 

Table 1 : Canonical initiation factors and their functions in cap-dependent translation initiation (adapted 

from Jackson et al. 2010). 

eIF3 

eIF3 is a protein consisting, in mammals, of 11-13 subunits ranging in size from 28 to 170 

kDa, which together form a 650-800 kDa complex (LeFebvre et al. 2004, Dong & Zang 2006, 

Hinnebusch 2006, Masutani et al. 2007). Only six of these subunits seem to be absolutely 

necessary for translation, p170, p116, p110, p48, p47 and p40, they form the core of eIF3 

(Masutani et al. 2007). eIF3 from budding yeast (S.cerevisiae) consists of only 6 subunits and 

is able to function in vitro with only five, however deletion mutants of eIF3 subunits in yeast 

show a temperature sensitive growth phenotype (Methot et al. 1997). This indicates a 
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regulatory function for other non-essential subunits in higher eukaryotes, as p40 in sucrose-

starved Arabidopsis thaliana (Roy et al. 2010) and spore formation in S. pombe (Ray et al. 

2008). Concurring with these results Masutani et al. (2007) and Hinnebusch (2006) suggest a 

different composition of core eIF3 for different RNAs or modes of initiation.  

eIF3 binds to the 40S ribosomal subunit (Benne & Hershey 1976, Unbehaun et al. 2004) and 

via eIF4F to the 5’ cap (Lefebvre et al. 2004), therefore connecting the ribosomal subunit to 

the mRNA. It also connects other initiation factors, such as eIF1, eIF2, eIF5 (Phan et al. 

1998) and eIF4B in the scanning pre-initiation complex and during subunit joining (Pestova et 

al. 1998, Jivotovskaya et al. 2005). Its connection to the 40S subunit inhibits premature 

subunit joining since it masks the binding site for the 60S subunit (Hinnebusch 2006). eIF3 is 

also involved in ribosome recycling, since it binds to 40S subunits after ribosome disassembly 

at termination (Kolupaeva et al. 2005) preventing formation of empty ribosomes. Thus, eIF3 is 

involved in almost every step of translation (Hinnebusch 2006) and serves as a scaffold for 

other proteins and RNAs, since it does not show any enzymatic activity on its own. Taken this 

important role of eIF3 it is remarkable that no homologue of eIF3 was found in bacteria 

(Nielsen et al. 2004). 

 eIF3 was shown to bind directly to IRES elements (Lopez de Quinto et al. 2001, 

Siridechadilok et al. 2005). Its RNA binding ability was mapped to subunit p116 (Methot et al. 

1997) and p110 (Lopez de Quinto et al. 2001). Even IRESs with a low demand for cellular 

factors, like HCV, need eIF3 to completely initiate translation (Martinez-Salas et al. 2001). 

A different composition of eIF3 for IRES dependent translation as compared to cap-

dependent translation is possible (Dong & Zhang 2006), since sequestering the eIF3 subunit 

p48 by the cellular stress-induced protein p56 did not inhibit IRES dependent translation on 

the EMCV IRES, but cap-dependent translation (Hui et al. 2003). 

eIF4F 

eIF4F is a heterotrimeric protein, consisting of 3 distinct subunits, eIF4A, eIF4G and eIF4E 

(Yoder-Hill et al. 1993). eIF4E is the cap-binding protein (Tahara et al. 1981), that guides the 

pre-initiation complex to the mRNA. eIF4A is an ATP-dependent RNA helicase belonging to 

the family of DEAD-box helicases. eIF4G is a scaffold protein that connects eIF4E, eIF4A and 

eIF3. To initiate translation the eIF4F complex is assembled after eIF4E is phosphorylated by 

a mitogen activated kinase (Mnk) (Pyronnet et al.1999, Joshi et al. 2010).  

eIF4E is the crucial factor in cap-dependent translation, since it is the only protein that binds 

to the cap and therefore the mRNA (Sonenberg et al. 1978). Formation of eIF4F is highly 

regulated, eIF4E needs to be phosphorylated before efficient binding can take place 
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(Pyronnet et al. 1999). This is done by a mitogen activated kinase (Mnk) which is bound to 

eIF4G and is therefore in close proximity of eIF4E in the eIF4F complex (Knauf et al. 2001). 

Additionally eIF4E and through it the formation of eIF4F is regulated by eIF4E binding 

proteins (eIF4E-BP) which compete for binding with eIF4G (Scheper & Proud 2002). 

 

eIF4G is a scaffold protein with no enzymatic activity of its own that is able to bind several 

other proteins at the same time as well as to bind RNA via an RNA binding domain at the C-

terminal end (Wells et al. 1998, Kolupaeva et al. 2003, Dreher & Miller 2006). Before 

assembly of eIF4F eIF4G is phosphorylated as well as eIF4E (Raught et al. 2000). 

During translation initiation eIF4G connects eIF4E and eIF4A to form eIF4F, as well as 

binding to eIF3 to connect the ribosome to the mRNA (Morino et al. 2000). It also binds the 

polyA binding protein (PABP) circularizing the mRNA (Tarun et al.1997). Additionally eIF4G is 

able to interact with several other proteins, e.g. HSP101 (Dreher & Miller 2006) or Mnk 

(Hinton et al. 2006). 

eIF4G has several interaction domains (Figure 4): PABP and eIF4E binding at the N-

terminus, two eIF4A binding sites, eIF3 and Mnk at the C-terminus (Wells et al. 1998, 

Belsham & Sonenberg 2000, Hinton et al. 2006, Marintchev et al. 2009).  

 

 

 

Figure 4 : eIF4G with its binding partners, the cutting site for polioviral protease 2A is marked Picture 

from Belsham & Sonenberg 2000. 

 

Upon infection eIF4G is cleaved by PV protease 2A (Ventoso et al. 1998) and other viral 

proteases (Figure 4). Only the C-terminal part of eIF4G (p100) is necessary for IRES 

dependent translation since it binds directly to IRESs (Ohlmann et al. 1995, Ochs et al. 2003, 
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de Breyne et al. 2006) where it induces conformational changes (Kolupaeva et al. 2003 for 

EMCV, de Breyne et al. 2006 for PV, Weinlich et al. 2009 for HCV).  

At least at the EMCV IRES eIF4G (p100) has an additional function, connecting eIF4A 

(Lomaki et al. 2000) and eIF3 (Hinton et al. 2006) with each other and the IRES. Together 

with eIF3 and eIF4A, eIF4G (p100) directs the 40S ribosomal subunit to the RNA resulting in 

formation of the 48S pre-initiation complex (Hinton et al. 2006). 

 

eIF4A, the last member of the three subunit complex eIF4F, is a DEAD-box RNA helicase 

(Rogers et al. 1999). It is able to unwind double stranded RNA both in 5’� 3’ and in 3’�5’ 

direction (Rogers et al. 2001). eIF4A is very important during scanning since it unwinds 

secondary structures in the 5’ UTR of mRNAs allowing the pre-initiation complex to move 

along the mRNA from the cap to the AUG starting codon. eIF4A can act as a RNA-helicase 

on its own, but binding to eIF4G increases its activity (Marintchev et al. 2009), as does 

binding of its co-factors eIF4B and eIF4H (Rogers et al. 1999, 2001) or PABP (Bi et al. 2000).  

eIF4A was shown to bind directly to IRES elements. It most likely acts as a helicase in IRES-

dependent translation as well, opening secondary and tertiary structures to expose or hide 

binding sites for initiation factors and other proteins (Kolupaeva et al. 2003). eIF4A is 

absolutely necessary for translation initiation at  type I and II IRESs (Pause et al. 1994). 

eIF4B 

The dimeric protein eIF4B (Methot et al. 1996a) is a co-factor of eIF4A (Altmann et al. 1995, 

Rogers et al. 2001). It stimulates its helicase activity (Methot et al. 1994) and binding to the 

IRES (Kolupaeva et al. 2003). Nevertheless eIF4B also possesses a RNA recognition motif 

and a RNA binding domain of its own (Methot et al. 1994, Rogers et al. 2001) and binds to 

RNA (Altmann et al. 1995). 

eIF4B binds to the PV IRES, more precisely to stem loops IV and V (Ochs et al. 2002). While 

binding to stem loop V is essential for IRES activity, binding to stem loop IV is not (Ochs et al. 

2002). Binding to the IRES by eIF4B may help connecting the ribosome to the IRES, since 

eIF4B binds 18S rRNA (Methot et al. 1996b) as well as the p170 subunit of eIF3 (Bushell et 

al. 2001, Ochs et al. 2002). eIF4B connecting to the IRES seems to be sequence specific 

since even one nucleotide changes severely impairs eIF4B binding to the PV IRES (Ochs et 

al. 2002, 2003). 

Another function of eIF4B in viral translation initiation may be the interaction of eIF4B with 

PABP (Bushell et al. 2001) and the consequent circularization of mRNA when eIF4G is 

cleaved and circularization in the normal way (eIF4G-PABP) is impossible.  
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Taken all this together there is a high redundancy in factor binding since almost every 

initiation factor interacts with every other initiation factor on some level. Initiation factors not 

only interact with each other and mutually modulate their functions, but also bind to a variety 

of cellular proteins (Pyronnet et al. 1999, Bushell et al. 2001, Dreher & Miller 2006). 

IRES trans-acting factors (ITAFs) 

In some cases, e.g. PV, FMDV or EMDV (encephalomyocarditis virus), more than the 

canonical factors are necessary for successful initiation of translation on IRES elements. 

These other factors are cellular proteins not used in cap-dependent initiation but involved in 

IRES-mediated translation. They are called IRES trans-acting factors (ITAFs). ITAFs are 

normally involved in other aspects of RNA metabolism, such as transcription, splicing or as 

chaperones for mRNA. They can form and act as homo- or heterodimers (Pilipenko et al. 

2000) and interact with each other as well as with initiation factors and viral proteins.  

Some ITAFs are not essential for IRES dependent translation but simply enhance translation 

efficiency. Nevertheless without them the efficiency of IRES dependent translation initiation 

would be too low to be physiologically relevant (e.g. Pestova et al. 1996). Some of them are 

located in the nucleus (Detjen et al. 1978) in uninfected cells, but since infection with PV 

causes severe damage to the cell, including destruction of nuclear pore complexes and 

cleavage of nuclear localization signals (NLS) by viral proteases (Shiroki et al. 1999), this 

leads to a redistribution of factors from the nucleus to the cytoplasm. Different IRESs have 

different requirements for ITAFs (Pacheco et al. 2008), sometimes even closely related 

viruses need a different set of ITAFs, leading to tissue tropism (Gromeier et al. 2000) of the 

virus.  

La 

La was first identified as an autoantigen in people suffering from systemic lupus 

erythematosus (Izumi et al. 2004). It contains one highly specific domain, the La-motif and 

two other classical RNA recognition motifs (Pudi et al. 2003). The La-motif by itself is not able 

to bind RNA (Izumi et al. 2004) but enhances binding of the other RNA-binding motifs 

tremendously through its aromatic surface residues (Dong et al. 2004). La is highly abundant 

in cells (Wollin & Cedervall 2002) and mostly located in the nucleus (Meerovitch et al. 1993).  

La plays an important role in PV translation; it was one of the first ITAFs identified 

(Meerovitch et al. 1989). In vitro experiments with translation are very often conducted in 

rabbit reticulocyte lysate (RRL), which does not contain significant amounts of La (Meerovitch 

et al. 1993). Therefore RRL needs to be supplemented with HeLa extract (Kim & Jang 1999) 
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or purified La (Shiroki et al. 1999) for translation to occur efficiently at the PV IRES. This was 

the first hint that La is a necessary factor for efficient PV translation. 

There are studies indicating binding of La to the PV IRES at stem loop IV (Meerovitch et al. 

1989, 1993, Das et al. 1994) and stimulating translation initiation at the PV IRES directly 

(Craig et al. 1997, Isoyama et al. 1999, Shiroki et al. 1999). In contrast Kim & Jang (1999) 

showed that La enhances translation initiation at the EMCV IRES elements synergistically 

with the polypyrimidine tract binding protein (PTB), but not by itself. Moreover La competes 

with PTB in binding to the EMCV IRES, since binding of La can be inhibited by an excess of 

PTB, concluding that La is not a necessary ITAF for all (+) RNA viruses (Meerovitch et al. 

1993, Kim & Jang 1999). 

PAPB PolyA binding protein 

Cellular mRNAs as well as some viral RNAs have polyA tails of various lengths (Munroe & 

Jacobson 1990). These polyA stretches protect the mRNA from degradation (Ross 1995) and 

are implicated in circularization of mRNAs (Gallie 1991 and figure 5) and consequent 

regulation of translation. 

The polyA binding protein (PABP) binds to these polyA tails, which protects them from 

nucleases. Since it only needs 8-20 As to bind (Herold et al. 2001, Patel et al. 2005) several 

PABPs bind to a polyA tail simultaneously. The 72 kDa protein PABP contains four RNA 

recognition motifs (RRMs) (Grange et al. 1987), a eIF4G binding domain and a proline-rich C-

terminal domain responsible for several protein–protein interactions (Deo et al. 2001, Kozlov 

et al. 2002, Mangus et al. 2003).  

PABP stimulates cap-dependent (Kavejian et al. 2005) and IRES-dependent translation 

(Paulous et al. 2003, Thoma et al. 2004), most likely through the circularization of mRNA 

(Jackson et al. 2010) via its interaction with eIF4G (Le et al. 1997), eIF4A (Searfoss et al. 

2001) or PCBP2 (Wang et al. 1999), which all bind to mRNAs at their 5’ end, therefore their 

interaction with PABP bridges 5’ and 3’ end of mRNAs (Jackson et al. 2010). Stimulation of 

translation by PABP still occurs when eIF4G is cleaved due to PV or FMDV infection (Thoma 

et al. 2004) or even when a single point mutation destroys the affinity of PABP for eIF4G 

(Tarun et al. 1997, Kavejian et al. 2005), rendering circularization via eIF4G-PABP binding 

impossible (Searfoss et al. 2001). However since PABP also interacts with eIF4A and 

PCBP2, which bind to the IRES as well, circularization may still occur (Alvarez et al. 2005). 

Upon PV infection PABP is cleaved between the RNA binding domains and the protein 

interacting C-terminus by the viral proteases 2A (Joachims et al. 1999, Kerekatte et al. 1999, 
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Deo et al. 2001) and 3C (Herold et al. 2001, Kuyumcu-Martinez et al. 2002). However viral 

proteases never completely degrade PABP during infection (Kuyumcu-Martinez et al. 2002).  

In bloodcells, PABP, together with the poly-r(C) binding protein (PCBP2), forms an important 

part of the α-globin stability complex that protects RNA from deadenylation by RNases (Weiss 

et al. 1995, Wang et al. 1999). It is therefore present in RRL. 

PCBP2 Poly-r(C) binding protein 

PCBP2 was identified as hnRNP E (heterogeneous ribonucleoprotein E), a nuclear protein 

that binds to poly(C) stretches (Leffers et al. 1995). Together with PABP it is part of the α-

globin stability complex (Weiss et al. 1995, Kiledijan et al. 1995, Wang et al. 1999) and is 

therefore present in RRL (Makeyev et al. 2002). Structurally PCBP2 consists of 3 KH 

domains (hnRNP K homology) connected by flexible linkers (Blyn et al. 1995, Leffers et al. 

1995, Sean et al. 2008). Only KH1 is able to bind to the PV 5’ UTR (Silvera et al. 1999, Spear 

et al. 2008) by itself, inhibiting translation rather than stimulating it (Spear et al. 2008).  

PCBP2 plays an important role in the switch from PV translation to replication. It is able to 

bind at two sites in the PV 5’ UTR, the clover leaf (stem loop I) and stem loop IV in the IRES. 

Its affinity to the clover leaf structure is low in early stages of infection, but increases in later 

stages due to formation of a ternary complex together with the viral protein 3CD (Parsley et 

al. 1997, Spear et al. 2008) and cleavage of KH domain 3, which is necessary for binding of 

stem loop IV but not stem loop I (Walter et al. 2002, Perera et al. 2007). The ternary complex 

of PCBP2, stem loop I and 3CD initiates replication by the viral polymerase 3C from the 3’ 

end of the PV RNA (Barton et al. 1999), maybe through interaction with PABP (Wang et al. 

1999, Herold et al. 2001). During early stages of infection PCBP2 binds to stem loop IV of the 

IRES with high affinity (Sean et al. 2008) and is thought to enhance translation by recruiting 

ribosomes to the AUG starting codon.  

The binding site of PCBP2 at the PV IRES was mapped in more detail to the top of stem loop 

IV, especially a C-rich region around nt 332 in a loop structure (Gamarnik et al. 2000). 

Addition of PCBP2 to in vitro translation reaction in RRL stimulates translation initiated at the 

PV IRES and other type 1 picornaviral IRESs, but not type 2 IRESs like EMCV (Sean et al. 

2008).  

PTB Polypyrimidine tract binding protein 

PTB was the first ITAF identified to bind to the PV IRES (Hellen et al. 1993), more precisely to 

a bulge structure in stem loop V (Ochs et al. 2002). It was first identified as another hnRNP, 

hnRNP I, which is, in uninfected cells, located in the nucleus and involved in pre-mRNA 
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processing (Ghetti et al. 1992). It binds indiscriminately to polypyrimidine stretches which are 

an important feature of picornaviral IRESs (Jackson & Kaminski 1995) as well as introns 

(Padgett et al. 1986). By binding to polypyrimidine stretches of pre-mRNA PTB masks 

alternative splice sites and suppresses splice variants (Perez et al. 1997, Sharma et al. 

2005). PTB contains a total of four RNA recognition motifs (RRMs). Two are located in its C-

terminus (Bothwell et al. 1991, Gosert et al. 2000) and two weaker ones in the N-terminus. .   

PTB enhances translation on the PV and HAV IRESs in cells (Gosert et al. 2000) by 

stabilizing IRES structure, essentially acting as a chaperone for the PV IRES (Niepmann et al. 

1997, Song et al. 2005, Pacheco & Martinez-Salas 2010).  

PTB is present in RRL. Depletion of PTB from RRL severely decreased translation efficiency 

on the PV and EMCV IRES (Kim & Jang 1999), but addition of un-physiological amounts (> 5 

µg/ml) of recombinant PTB decreased translation as well. There seems to be a window of 

acceptable concentrations. Addition of La (Kim & Jang 1999) but not unr (Hunt et al. 1998) 

diminished the effect of PTB at un-physiological concentrations, therefore confirming the fact 

that some factor in HeLa extract enhances binding of PTB to RNA (Oh et al. 1998). 

Unr  

Unr (upstream of n-ras) (Jeffers et al. 1990) is a chaperone with five cold shock domains, 

which are basically nucleic acid binding domains (Jacquemin-Sablon et al. 1994). In 

uninfected cells unr serves as a scaffold protein protecting mRNAs and as a regulator of 

apoptosis (Dormoy-Raclet et al. 2007). It binds to single stranded and purin-rich RNAs, but 

not to polyA stretches or tails (Jacquemin-Sablon et al. 1994, Triqueneaux et al. 1999, Patel 

et al. 2005). 

Unr is expressed ubiquitously in the cytoplasm (Jeffers et al. 1990, Jacquemin-Sablon et al. 

1994). However, its concentration in RRL is rather low (Hunt et al. 1998, Dormoy-Raclet et al. 

2005).  

Unr is always in close contact with its binding partner unrip (unr interacting protein, 38kDa) 

(Hunt et al. 1998), which is implied to be involved in assembly of snRNPs (Carissimi et al. 

2005). 
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ITAF Cellular 
function(s) 

Binding to 
PV IRES 

Stimulation 
of PV IRES 

Stimulates 
IRESs 

No effect on 
IRES 

PTB Splice regulation + + HAV 
HCV 
HRV 
FMDV 
(EMCV) 

Cellular 
IRESs TMEV  

La Chaperon + + HCV   
HRV 
cellular 
IRESs 

 EMCV 

PCBP2 Chaperon/ 
translational 
regulator 

+ + HAV 
HCV 
HRV 

EMCV 
FMDV 
 

PABP Chaperon/enhancer - + HAV 
Cellular 
IRESs 

 

unr Chaperon +  + (-) HRV 
cellular 
IRES 

EMCV FMDV 

DAP5 Scaffold   cellular 
IRESs 

EMCV 

DHX29 Helicase   cellular 
IRESs 

 

GAPDH Glycolysis    HAV  
Gemin5 snRNP assembly   FMDV 

HCV 
 

hnRNP A Shuttling, splicing, 
telomeric capping 

  HCV 
HRV 

EMCV FMDV 
Cellular 
IRESs 
 

hnRNP C Shuttling, splicing    HCV 
cellular 
IRESs 

 

hnRNP D Shuttling   HCV Cellular 
IRESs 

hnRNP K Chaperon     
hnRNP L Splicing   HCV  
HSP101 Chaperon   TMV  
ITAF45/EpB1 Transcription   FMDV EMCV 
nucleolin Chaperon/Helicase - + FMDV 

HCV 
 

SRp20 Splicing  - +   
unrip snRNP assembly - +   
 

Table 2 : Identified IRES trans-acting factors (ITAFs) from the literature cited in the text 
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Other potential ITAFs 

All ITAFs I mentioned so far are well studied and proven to interact with at least one kind of 

picornaviral IRES apart from the PV IRES in multiple studies. They are also expressed almost 

ubiquitously and none of them can be the sole reason for the tissue tropism of PV. 

However, there are many other potential ITAFs (Pacheco & Martinez-Salas 2010), which are 

not well studied or their role in IRES dependent translation has only been discovered recently 

(table 2).  

• There is for example ITAF45/EpB1 which together with PTB is necessary for translation on the 

FMDV IRES (Pillipenko et al. 2000, Monie et al. 2007) and interacts with the EMCV IRES 

(Bonnal et al. 2005). 

• Heterogenous nuclear riboproteins (hnRNPs), a class of at least 20 proteins, are involved in 

maturation of mRNA, export from the nucleus and protection from nucleases (Mili et al. 2001). 

Some of them are already well established as ITAFs, such as PTB and PCBP2 (hnRNP E 

and I), but several more may be involved in IRES-dependent translation initiation. Cellular 

IRESs are often regulated by hnRNPs. hnRNP A is a negative regulator of the cellular IRES 

in the XIAP (X-linked inhibitor of apoptosis) mRNA (Lewis et al. 2007) and capped mRNAs 

(Svitkin et al. 1996). Regarding translation initiation at viral IRESs, hnRNP A was shown to 

stimulate translation at the HRV (Cammas et al. 2007) but not FMDV (Pacheco et al. 2008) 

IRES. 

• Another nuclear protein implicated as a potential ITAF is nucleolin, the major protein in the 

nucleolus, the place of transcription and assembly of ribosomal RNAs (Ginisty et al. 1999). 

However, during PV and CBV3 infection it relocates to the cytoplasm (Waggoner & Sarnow 

1998, Rassmann et al. 2006). Nucleolin binds to the 3’ UTR of PV and enhances translation 

and replication (Waggoner & Sarnow 1998) However, the PV 3’ UTR shows significant effects 

on translation controlled by the PV and HRV IRES (Dobrikova et al. 2003). Nucleolin was also 

identified to bind to the FMDV IRES (Pacheco et al. 2008), but no functional tests were 

performed.  

• Proteins which are partial homologues of initiations factors, such as DAP5 (Imataka et al. 

1997), a homologue of eIF4G (Dormoy-Raclet et al. 2005), or DHX 29, another DEAD box 

helicase (Jackson et al. 2010), interact with IRESs and cellular mRNAs (Hundsdoerfer et al. 

2005) to enhance translation efficiency and may functionally replace initiation factors. Late in 

HCV infection the function of eIF4A is taken by the viral helicase NS3 (Du et al. 2002). 

• Gemin5 is in uninfected cells involved in snRNP assembly as part of the survival of motor 

neurons complex (Battle et al. 2006). It binds to the IRES of FMDV (Pacheco et al. 2008) and 
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HCV (Pacheco et al. 2009) and inhibits translation in both cases (Pacheco et al. 2009). 

Binding to the PV IRES was not shown yet, but its specific binding motif AUUUUUG (Battle et 

al. 2006) can be found in the PV IRES. 

 

Another way proteins could act as ITAFs is by modulating binding of initiation factors and 

known ITAFs to the IRES, e.g. SRp20 interacts with the KH3 domain of PCBP2 and is 

necessary for stimulation of PV IRES translation by PCBP2 (Bedard et al. 2007) without 

binding to the IRES. Other proteins could have similar modulating functions, maybe in 

addition to their RNA binding. 

 

Interaction of ITAFs and initiation factors 

Effects of an ITAF or initiation factor on the IRES may depend on their interaction partners, 

the cellular localization or position in the cell cycle, and can be diametrical (Pacheco & 

Martinez-Salas 2010). 

Proteins binding to IRES elements interact firstly with RNA, the IRES. But they also interact 

with each other and enhance or inhibit binding of other proteins to the IRES. Sometimes the 

whole is more than the sum of its parts, e.g. PTB, unr and PCBP2 act synergistically on the 

HRV IRES (Hunt et al. 1998).  

However, negative regulation occurs as well. La binding to the EMCV IRES is inhibited by 

PTB at physiological salt concentrations (Kim & Jang 1999). Additionally, upon binding of 

factors and under changing salt conditions, IRESs undergo structural changes (Martinez-

Salas et al. 2001), exposing or hiding potential binding sites for other factors. 

Some ITAFs interact with each other during their cellular function, e.g. PCBP2 and PABP are 

both part of the α-globin mRNA stability complex (Wang et al. 1999), and unr and PABP 

interact on the autoregulatory sequence of PABP mRNA (Patel et al. 2005). La stimulates 

binding of PABP to polyA tails (Svitkin et al. 2009). 

Protein-protein interactions that circularize mRNAs, PABP with eIF4G (Kavejian et al. 2005), 

with eIF4B (Bushell et al. 2001) and others are very important for cellular as well as viral 

mRNAs and will be explained in detail in the next chapter. 

Circularization of mRNAs 

mRNAs are thought to be circular (Wells et al. 1998, Prevot ez al. 2003). There are several 

mechanisms for mRNAs to achieve circularization (figure 5).  
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By far the most common one is the interaction of the cap structure and the polyA tail via 

interaction of the polyA-binding protein (PABP) and eIF4G (Le et al. 1997, Jackson et al. 

2010). The function of PABP can be taken by other proteins, such as SLIP1, which connects 

eIF4G to the 3’ UTR of histone mRNA (Cakmakci et al. 2008). HCV, a virus without polyA tail, 

achieves circularization via dimerisation of IGF2bp which binds sequences in the 5’ and 3’ 

UTR (Weinlich et al. 2009). Other flaviviruses, e.g. Dengue virus, use direct base pairing 

between complementary sequences in the 5’ and 3’ UTR (Alvarez et al. 2005) completely 

circumventing the need for proteins.  

 

 
 

Figure 5 : Circularization of mRNA via interaction of PABP with eIF4G and eIF4B. Picture from Spriggs 

et al. 2008. 

 

The reasons for circularization of mRNA are not fully explained yet. We know that circular 

RNAs are protected from exonucleases and that circularization enhances translation (Munroe 

& Jacobson 1990, Gallie 1991).  

There are two theories on the mechanism of enhancement:  

By circularization, the end of the mRNA comes in close proximity to the cap, so that 

terminating ribosomes form a high local ribosome density and immediate re-initiation 

becomes easier (Mangus et al. 2003, Bradrick et al. 2006, Lloyd 2006). This theory is 

especially interesting since stimulation by polyA tails is observed strongest in depleted extract 

under highly competitive circumstances (Gallie 1991).The proximity of cap and 3’ end of the 

coding region also facilitates reconnection of eIF4F if it loses contact with the cap (Jackson et 

al. 2010) during initiation. 

Circularization may be a signal to the cap via the eIF4G-PABP interaction that the RNA is not 

degraded at the 3’ end and translation can start, since translation of truncated mRNAs would 
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lead to non-functional proteins. Binding of PABP leads to conformational changes of eIF4G 

and eIF4E resulting in enhanced cap-binding by eIF4E (Borman et al. 2000). Addition of 

PABP enhances formation of 48S complexes at the CBV3 IRES (Bradrick et al. 2007) and at 

capped RNA (Kahvejian et al. 2005), indicating a role for PABP and polyA tails at the level of 

translation initiation. 

During PV infection PABP and eIF4G are cleaved (Deo et al. 2001), and PABP is no longer 

able to connect to viral RNA via eIF4G (Hellen & Sarnow 2001). This may open the loop and 

act as a signal to stop translation and commence replication. 

microRNAs 

Since their discovery in the early 90s (Lee et al. 1993) microRNAs (miRNAs) were shown to 

be involved in almost any kind of gene regulation (e.g. Cannell et al. 2008, Kozak 2008). 

miRNAs are rather conserved (Friedman et al. 2008), for most of them homologues can be 

found between humans and mice (Lagos-Quintana et al. 2003) or even C. elegans and D. 

melanogaster (van Rji et al. 2006). miRNAs or at least small regulatory RNAs have even 

been identified in archea and bacteria (Repoila et al. 2003, Berghoff et al. 2009) and in the 

genomes of viruses (Bogerd et al. 2010). miRNAs bind to their target mRNA, in most cases, 

at the 3’ UTR (Yekta et al. 2004). One specific miRNA can have several 100 target mRNAs 

(Friedman et al. 2009), and one mRNA can be targeted by several different miRNAs (Farh et 

al. 2005). 

Regarding the abundance and importance of miRNAs in cells it is very likely that viruses as 

well as cellular mRNAs are targeted by miRNAs, either as part of the innate immune 

response (Bagasra & Prilliman 2004, Baulcombe 2004, Lecellier et al. 2005, van Rji et al. 

2006, Pedersen et al. 2007) or employed by the virus to enhance their translation (Henke, 

Goergen et al.  2008) or replication efficiency (Jopling et al. 2005).  

 

There are two different modes of action for miRNAs. Either the siRNA pathway, where 

mRNAs are marked by perfect binding of small RNAs for degradation (Bernstein et al. 2001, 

Hauser et al. 2009) or the miRNA pathway, where translation of mRNAs is inhibited (Kozlov 

et al. 2010) or stimulated (Orom et al. 2008) by the binding of a small part of the miRNA, the 

seed sequence (Petersen et al. 2006, Henke, Goergen et al. 2008). Incomplete binding of the 

miRNA to its mRNA target is the main difference between the miRNA pathway and the siRNA 

pathway (Kelly & Russel 2009), where the entire sequence of the siRNA binds to the mRNA, 

inducing the RNA-induced silencing complex (RISC) via double stranded RNA (Hammond et 

al. 2001, Rhoades et al. 2002). 
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In cells miRNAs are transcribed in the nucleus (figure 6) from intronic or intergenic regions as 

pri-miRNA by RNA-Polymerase II. Pri-miRNAs can be up to several thousand nucleotides 

long (Jones-Rhoads et al. 2006) and contain one or more imperfect 80 nt stem loops, which 

are subsequently cleaved off by the RNase Drosha (Gregory et al. 2005, Lagos-Quintana et 

al.  2002, 2003). The resulting short stem loops (pre-miRNAs) are then exported into the 

cytoplasm by exportin 5 (Kai et al. 2010). Here they are further processed by another RNase, 

DICER, which cleaves the loop, leading to a double stranded RNA intermediate, which is 

introduced into the RNA-induced silencing complex (RISC) and separated into two short 

single stranded RNAs (Bartel 2009). One is the mature miRNA, the active strand or guide 

strand, which stays in the RISC (Schwarz et al. 2003, Wang et al. 2008). The other one is 

named the passenger strand and is usually discarded and degraded (Hutvagner et al. 2001, 

Wang et al. 2008). In some cases both strands can act as a mature miRNA, like miRNA 422a. 

In this case incorporation into RISC seems to be a stochastic process (Schwarz et al. 2003). 

Choice of the guide strand is dependent on strength of 5’ pairing of the double stranded 

intermediate (Schwarz et al. 2003). 

 
 

Figure 6 : Biosynthesis of miRNA and formation of RISC. Picture from Kai & Pasquinelli 2010. 

 

The seed sequence of miRNAs, usually nucleotides 2 - 8, pairs in a Watson-Crick manner 

with the 3’ UTR of mRNAs (Nielsen et al. 2007, Bartel 2009). The remainder of the miRNA 

serves as binding partners for argonaut proteins as part of RISC that further process the 

mRNA (e.g. Hammond et al. 2001). There are several possibilities what happens to the 
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mRNA after binding of miRNAs (Zinovyev et al. 2010). It is either degraded (Yekta et al. 2004, 

Fabian et al. 2009), stored in P-bodies, thus delaying translation of a particular mRNA (Pillai 

et al. 2007, Kozlov et al. 2010), or ribosomes are stalled (Nottrot et al. 2006, figure 7). 

  

 
 

Figure 7 : Possible mechanisms for miRNA induced translation repression. Picture from Pillai et al. 

2007. 

 

There are several theories regarding the seed sequence necessary for miRNA binding 

leading to effects. The consensus at the moment is that at least 6 nt need to pair in a Watson-

Crick manner. The target site should be in an AU rich environment (Sun et al. 2010) and 

should not be in a highly structured area or too close to the polyA tail and the translation 

termination signal (Bartel 2009, Hauser et al. 2009). 

Some miRNAs are expressed ubiquitously, but other show very strong tissue specificity, e.g. 

miRNA-122 is almost exclusively expressed in liver tissue (Lagos-Quintana et al. 2002), while 

miRNA-21 is expressed everywhere, except in neuronal tissue (Lagos-Quintana et al. 2003). 

The specificity is part of regulatory potential of miRNAs (Kelly & Russel 2009). miRNA 

expression changes during development (Lagos-Quintana et al. 2001) and under stress 

(Sunkar & Zhu 2004) which led to the original name small temporal RNAs (stRNA). Especially 

the distribution of miRNAs in neuronal tissue is studied, since they are implicated in regulation 
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of neuron proliferation and axon movement (Landgraf et al. 2007). Several miRNAs were 

identified in high through-put screens to be brain-specific, they can even be mapped directly 

to one brain region, e.g. let 7c is mainly expressed in the midbrain (Lagos-Quintana et al. 

2002). 

Regarding the ubiquitous distribution and strong regulation of miRNAs in neuronal cells, it is 

possible that one or more miRNAs act as ITAFs for the PV IRES, either stimulating or 

inhibiting translation initiation.   

Indirect effects of miRNA on PV IRES dependent translation may also occur via interaction of 

miRNAs with known ITAFs, for example alternative splicing of PTB is regulated by the 

neuronal miRNA-124 (Makeyev et al. 2007) and miRNA-326.  

Aim of this study 

Poliovirus translation and replication can occur in neuronal cells where it causes degeneration 

and lysis of cells and consequent irreversible paralysis of the infected person. Other cell types 

are much less affected by PV infection and do not support translation of the virus as well. The 

reasons for the tissue preference of poliovirus may be found in its translation via an internal 

ribosome entry site (IRES), which in addition to cellular initiation factors uses proteins 

normally not involved in translation to achieve efficient translation. Several such factors are 

known, but neither do these known factors explain the tissue specificity of poliovirus, nor are 

they sufficient to initiate translation at the PV IRES using only purified components. Additional 

factors must be present in cells, especially in neuronal cells, that are necessary for translation 

initiation on the PV IRES. The goal of my PhD work was, to identify those factors as well as 

additional roles for and interactions of known factors. Thus I tried to gain further insights in the 

mechanisms of translation initiation at the prototypical picornavirus IRES of Poliovirus and the 

tissue specificity of the virus. 
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Materials and Methods  

Purification of eukaryotic initiation factors from Rabbit Reticulocyte 

Lysate (RRL) 

 

Several purification methods were tested, but did not yield the desired result, pure initiation 

factors. The method described here was established by Prof. Shatsky in his laboratory at the 

Belozersky Institute for Physio-Chemical Biology at the Moscow State University and 

performed there. 

Buffers 

Resuspension buffer    Buffer A     

20 mM  Tris-HCl (pH 7.6)  20 mM  Tris-HCl (pH 7.6) 

0.1 mM  EDTA    0.1 mM  EDTA 

1 mM   DTT    1 mM   DTT 

10 mM  KCl    10 %   Glycerol 

0.25 mM  Sucrose   KCl (50, 100, 300, 400, 500,1000 mM) 

1 mM   MgCl2 

Column materials 

DEAE (DE-52)     Whatmann 

Phosphocellulose (PC-11)   Whatmann 

Cap-Sepharose    Roche 

MonoQ     GE-Healthcare 

Determination of protein concentration using absorbance 

Protein concentration was determined by measuring the absorbance of light with a 

wavelength of 280 nm (OD280) by the solution. The protein solution was filled into a 1 ml UV-

permeable cuvette and absorbance was detected using a photometer. Protein concentration 

was estimated using a formula derived from the Lambert-Beer law:  

Concentration (mg/ml) = Absorbance / path length (cm).  

Since with the path length was 1 cm in this photometer the measured absorbance roughly 

equals the protein concentration. 
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The specific absorption coefficient found in the Lambert-Beer law is set to one, since it differs 

widely between different proteins and in a mixture of proteins. 

Highly concentrated protein solutions were diluted 1:10. 

Preparation of ribosomal salt wash (RSW) 

RRL was centrifuged at 40’000 rpm (rotor Ti45 in a Beckman ultracentrifuge) for 4 h, the 

supernatant was discarded (or stored at -80 °C for further use) and the pellets containing the 

ribosomes were resuspended in resuspension buffer.  

500 mM MgCl2 was added to a final concentration of 3 mM. The KCl concentration of the 

resuspended ribosomes was adjusted with 3 M KCl to 500 mM KCl. The high concentration of 

salts dissociates proteins from the ribosomes but leaves the ribosomal subunits intact. 

By centrifugation at 41’000 rpm (Ti45) for 4 h ribosomes were pelleted while the dissociated 

proteins remained in the supernatant. The supernatant after this step is the ribosomal salt 

wash (RSW). 

Ammonium sulfate precipitation 

Solid ammonium sulfate (calculated using table in appendix) was added slowly to the RSW at 

4 °C with continuous stirring. Precipitated protein s were pelleted at 10’000 rpm for 30 min at 4 

°C in a Beckmann centrifuge (rotor JA-20). 40 %, 40 -50 % and 50-70 % fractions were 

obtained. Ammonium sulfate precipitates can be stored at 4 °C and were used to transport 

RSW to Moscow. 

Ion-exchange chromatography 

The 40 % ammonium sulfate precipitates were dissolved in A-100 and dialyzed against A-50 

over night at 4 °C. 

After short centrifugation the cleared solution was applied to a DEAE sepharose column 

equilibrated with A-100 using a peristaltic pump with a flow rate of 2 ml /min. The column was 

washed with A-100 until the OD280 reached baseline. Buffer was switched to A-300 to elute 

proteins. 8 ml fractions were collected until the OD280 reached baseline. 

The fractions containing most protein (cut-off OD280 = 1) were pooled, diluted 1:3 with A-0 and 

applied to a PC column, equilibrated with A-100, using a peristaltic pump with a flow rate of 2 

ml/min. The column was washed with A-100 until the OD280 reached baseline. Then proteins 

were eluted using A-400. 8 ml fractions were collected until the OD280 reached baseline. 

The fractions of the A-400 elution containing most protein (cut-off OD280 = 0.6) were 

precipitated with 50 % ammonium sulfate, resuspended in A-500a and dialyzed over night 
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against A-500a. Precipitation and dialysis remove glycerol as well as concentrate the 

proteins. 

Sucrose gradients 

Sucrose solutions from 5 % (w/w) to 20 % (w/w) were prepared in A-500a and four 28 ml 

gradients were poured using a gradient mixer. 3.2 ml of the dialyzed protein preparation were 

pipetted on top of each gradient and the gradients were centrifuged for 32 h at 24’000 rpm 

(rotor SW 27) in a Beckmann ultracentrifuge. Gradients were then fractionated (1.2 ml 

fractions) and the OD280 measured. Two peaks can be identified, the first one containing eIF3 

while the second one contains eIF4F and 4B.  

Ion-exchange chromatography 

Fractions from sucrose gradients containing eIF3 were pooled and applied to a MonoQ 

column equilibrated with A-0 on an Äkta FPLC-machine. The column was eluted with a 

gradient of KCl from 0 mM to 500 mM and peak fractions were tested using SDS-PAGE. This 

resulted in the elution of pure eIF3. 

Cap-Sepharose 

Fractions from sucrose gradients containing eIF4F and 4B were pooled and precipitated with 

concentrated ammonium sulfate solution. The ammonium sulfate precipitate was 

resuspended in A-100 containing 1 mM Mg-acetate and applied to a Cap-Sepharose column 

equilibrated with A-100 containing 1 mM Mg-acetate. To ensure binding of eIF4F via its cap-

binding moiety eIF4E to the column the flow-through was reapplied to the column twice. The 

column was washed with 6 column volumes of A-100 containing 1 mM Mg-acetate and 100 

µM GTP. Pure eIF4F was eluted with 100 µM m7GTP in A-100 containing 1 mM Mg-acetate 

and then dialyzed against A-100 over night at 4 °C.   

eIF4B can be obtained from the flow through via ion-exchange chromatography or may be 

prepared recombinantly. 

Purification of recombinant proteins  

Columns  

Phenyl-Sepharose    GE Healthcare 

MonoQ     GE Healthcare 

MonoS      GE Healthcare 
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Ni-NTA     Qiagen 

Talon beads     BD-Bioscience 

Buffers  

Standard lysis buffer     Standard washing buffer 

20 mM  Tris-HCl (pH 7.5)  20 mM  Tris-HCl (pH 7.5) 

300 mM  NaCl 

0.1 mM EDTA 

 

PCBP2 lysis buffer    PCBP2 elution buffer 

20 mM  Tris-HCl (pH 7.9)  20 mM  Tris-HCl (pH 7.9) 

250 mM NaCl    250 mM  NaCl 

60 mM    Imidazol   200 mM  Imidazol 

10 %  Glycerol   10 %        Glycerol 

 

Unr lysis buffer    unr resuspension buffers 

20 mM  Tris-HCl (pH 8)  20 mM  Tris-HCl (pH 8)  

100 mM NaCl    150 mM NaCl 

10 %  Glycerol   10 %  Glycerol 

1 mM  Beta-mercaptoethanol 

             Urea (8.5 M, 6 M, 4 M, 3 M, 2 M, 1 M) 

 

Buffer for separating gel   Buffer for stacking gel 

375 mM Tris-HCl (pH 8.8)  125 mM  Tris-HCl (pH 6.8)  

0.1 %   SDS     0.1 %   SDS 

 

Tris-Glycine buffer    Protein loading buffer 

25 mM  Tris-HCl (pH 8.4)  350 mM  Tris (pH 6.8)  

192 mM  Glycin     0.1 %   SDS      

1.66 mM  DTT    0.12 %  Bromphenolblue 

30 %   Glycerin  

1 %  β-Mercaptoethanol 
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Coomassie stain    Destaining solution 

50 %  Ethanol   5 %  Ethanol 

10 %  Acetic acid   7.5 %  Acetic acid 

0.12 %  Coomassie brilliant blue 

 

Silver stain solution (SSS) 1   Silver stain solution (SSS) 2 

5 mM  Na2CO3   10 mM  AgNO3 

4.5 mM K3(FeCN)6 

20 mM  Na2S2O3 

 

Silver stain solution (SSS) 3 

2.5 %  Na2CO3 

0.4 %  formaline 

 

Cathode buffer (western blot)   Anode buffer 1 (western blot)   

25 mM  Tris-HCl (pH 9,4)   0.3 M   Tris-HCl (pH 10.4) 

40 mM  Glycin     10 %   Methanol 

10 %   Methanol 

 

Anode buffer 2 (western blot)   TBS-T 

25 mM  Tris-HCl (pH 10.4)   10 mM  Tris-HCl (pH 8,0) 

10 %   Methanol   150 mM  NaCl 

      0.1 %  Tween 20 

Plasmids 

All recombinant proteins are N-terminally His-tagged. 

pCITE PV1 VP1-2A    from T. Skern 

pET15b (eIF4A)    from I. Shatsky 

pET15b (eIF4A R362Q)   from I. Shatsky 

pET15b (eIF4B)    from I. Shatsky 

pET15b (p100)    from I. Shatsky 

pET22b PCBP2    from B. Semler 

pLaGST     from A. Bindereif 

pRSET-unr     from H. Jacquemin-Sablon 

pQE30/PTB     from E. Tzima  
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Antibiotics  

Ampicillin (amp)    Sigma      

Tetracyclin (tet)    Roth 

Kanamycin (kan)    Invitrogen 

Antibodies 

Anti eIF4B     Whatmann 

Anti eIF4G     GE Healthcare 

Anti eIF4A     Whatmann 

Anti p110     prepared by Elena Tzima 

Anti p170     gift from Shatsky lab 

Anti His-tag     GE Healthcare 

Anti PTB     prepared by Elena Tzima 

Anti PCPB2     antibodies online 

Anti unr     antibodies online 

Anti La      antibodies online 

Anti rabbit (secondary)   Whatmann 

Anti mouse (secondary)   Whatmann 

Bacterial Strains  

E.coli XL1-blue 

E.coli BL21 

E.coli BL21 gold 

E.coli BL21 plyss 

Expression 

ITAFs can be expressed recombinantly in E.coli. Since these proteins are RNA binding 

proteins, they can have toxic effects on the bacterial host when expressed in abundance. 

Bacteria therefore often store recombinant protein in insoluble inclusion bodies or modify the 

plasmid so the protein is not expressed at all. The expression and purification conditions had 

to be optimized for each protein. 

 

PTB 

pQE30 containing PTB was transformed into E.coli XL1-blue cells and a culture grown over 

night in LB medium containing 250 µg/ml ampicillin (amp) at 37 °C. The overnight culture was 
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diluted 1:1’000 with LB medium containing amp and grown at 37 °C until the OD 600 reached 

0.6; then expression of PTB was induced with 100 mM IPTG. The expression continued for 3 

hours at 37 °C before cells were harvested. 

Cells were pelleted at 5’000 rpm for 15 min in a Beckmann centrifuge (rotor JA14) and 

resuspended with standard washing buffer, pelleted again and resuspended with standard 

lysis buffer. Cells were then lysed by sonication (2 min). Lysates were cleared by 

centrifugation for 20 min at 12’000 rpm in a Beckmann centrifuge (rotor JA20). 

Lysates were directly transferred onto NiNTA beads equilibrated with standard lysis buffer 

and incubated at 4 °C for 30 min. Beads were then w ashed thrice with standard lysis buffer 

before PTB was eluted with standard lysis buffer containing 100 mM imidazol. 

Quality and quantity of recombinant PTB was checked on SDS-PAGE. 

 

PCBP2 

This protocol is modified from Blyn et al. (1997). peT22b PCPB2 was transformed into E.coli 

BL21plyss cells and a culture grown over night in LB medium containing 250 µg/ ml amp at 

37 °C. The overnight culture was diluted 1:1’000 wi th LB medium containing amp and grown 

at 37 °C until the OD 600 reached 0.4; then expression of PCBP2 was induced with 100 mM 

IPTG. The expression continued for 4 hours at 28 °C  before cells were harvested. 

Cells were pelleted at 5’000 rpm for 15 min in a Beckmann centrifuge (rotor JA14), 

resuspended in PCBP2 lysis buffer. Cells were then lysed by sonication (2 min). Lysates 

were cleared by 20 min centrifugation at 12’000 rpm in a Beckmann centrifuge (rotor JA20). 

Lysates were precipitated with 20 % ammonium sulfate at 4 °C, centrifuged at 5’000 rpm in a 

Beckmann centrifuge (rotor JA20) and pellets resuspended in PCPB2 lysis buffer. Then the 

solution was transferred onto equilibrated TALON beads and incubated at 4 °C for 30 min. 

Beads were transferred to a column and connected to a peristaltic pump. The column was 

washed thrice with PCBP2 lysis buffer before PCBP2 was eluted with PCBP2 elution buffer. 

Quality and quantity of recombinant PCBP2 was checked on SDS-PAGE. 

 

Unr 

pRSET-unr was transformed into E.coli BL21 cells and a culture grown over night in LB 

medium containing 250 µg/ml amp at 37 °C. The overn ight culture was diluted 1:1’000 with 

LB medium containing amp and grown at 37 °C until t he OD600 reached 0.6; then cells were 

pelleted and medium removed. Cells were resuspended in LB medium containing amp and 

expression of unr was induced with 100 mM IPTG. The expression continued for 2 hours at 

37 °C before cells were harvested. 
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Cells were pelleted at 5’000 rpm for 15 min in a Beckmann centrifuge (rotor JA14), 

resuspended in unr lysis buffer and frozen at -20 °C for 16 h. Cells were then lysed by 

sonication (5 min). Lysates were cleared by 20 min centrifugation at 12’000 rpm in a 

Beckmann centrifuge (rotor JA20) and the supernatant was discarded.  

The cell debris containing inclusion bodies was resuspended in unr resuspension buffer 

containing 8.5 M urea at room temperature. The resuspension was incubated with NiNTA 

beads at room temperature for 12 h. Beads were then poured into a column and connected to 

a peristaltic pump that ran at 1.5 ml/min. The column was washed with unr-resuspension 

buffer containing 8.5 M urea for 15 min. Then the column was washed with unr- resuspension 

buffer containing only 6 M urea for 10 min, and then the column was washed with unr-

resuspension buffer containing 4 M urea, then 3 M urea. After washing with resuspension 

buffer containing 3 M urea the column was transferred to a cold room and all subsequent 

steps were performed at 4 °C. The column was washed  with unr-resupension buffer 

containing 2 M, 1 M and 0 M urea for 10 min each. Then unr was eluted with unr elution 

buffer. 

Quality and quantity of unr was checked on SDS-PAGE. 

 

La 

pLaGST contains 2 tags for purification, a C-terminal GST-tag and an N-terminal His-tag. 

pLaGST was transformed into E.coli BL21 cells and a culture grown over night in LB medium 

containing 50 µg/ml kanamycine (kan) at 37 °C. The overnight culture was diluted 1:1’000 

with LB medium containing 50 µg/ml kan and grown at 37 °C until the OD 600 reached 0.8; 

then expression of La was induced with 100 mM IPTG. The expression continued for 4 hours 

at 37 °C before cells were harvested. 

Cells were pelleted at 5’000 rpm for 15 min in a Beckmann centrifuge (rotor JA14) and 

resuspended with standard washing buffer, pelleted again and resuspended in standard lysis 

buffer. Cells were then lysed by sonication (2.5 min). Lysates were cleared by 20 min 

centrifugation at 12’000 rpm in a Beckmann centrifuge (rotor JA20). 

Lysates were directly transferred onto equilibrated NiNTA beads and incubated at 4 °C for 30 

min. Beads were transferred to a column and connected to a peristaltic pump. The column 

was washed thrice with standard lysis buffer before La was eluted with standard lysis buffer 

containing 100 mM imidazol. 

Quality and quantity of recombinant La was checked on SDS-PAGE. 
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eIF4B, eIF4A and eIF4A R362Q 

peT15b was transformed into E.coli BL21 cells and a culture grown over night in LB medium 

containing 250 µg/ml amp at 37 °C. The overnight cu lture was diluted 1:1’000 with LB 

medium containing 250 µg/ml amp and grown at 37 °C until the OD600 reached 0.8; then 

expression was induced with 100 mM IPTG. The expression continued for 4 hours at 37 °C 

before cells were harvested. 

Cells were pelleted at 5’000 rpm for 15 min in a Beckmann centrifuge (rotor JA14) and 

resuspended with standard washing buffer, pelleted again and resuspended in standard lysis 

buffer. Cells were then lysed by sonication (2 min). Lysates were cleared by 20 min 

centrifugation at 12’000 rpm in a Beckmann centrifuge (rotor JA20). 

Lysates were directly transferred onto equilibrated NiNTA beads and incubated at 4 °C for 30 

min. Beads were transferred to a column and connected to a peristaltic pump running at 1.5 

ml/min. The column was washed thrice with standard lysis buffer before eIF4A or B was 

eluted with standard lysis buffer containing 100 mM imidazol. 

Quality and quantity of recombinant protein was checked on SDS-PAGE. 

 

eIF4G (p100) 

peT15b was transformed into E.coli BL21 cells and a culture grown over night in LB medium 

containing 250 µg/ml amp at 37 °C. The overnight cu lture was diluted 1:1’000 with LB 

medium containing 250 µg/ml amp and grown at 22 °C until the OD600 reached 0.5; then 

expression was induced with 100 mM IPTG. The expression continued for 4 hours at 22 °C, 

before cells were harvested. 

Cells were pelleted at 5’000 rpm for 15 min in a Beckmann centrifuge (rotor JA14) and 

resuspended with standard washing buffer, pelleted again and resuspended in standard lysis 

buffer. Cells were then lysed by sonication (2 min). Lysates were cleared by 20 min 

centrifugation at 12’000 rpm in a Beckmann centrifuge (rotor JA20). 

Lysates were directly transferred onto equilibrated NiNTA beads and incubated at 4 °C for 30 

min. Beads were transferred to a column and connected to a peristaltic pump running at 1.5 

ml/min. The column was washed thrice with standard lysis buffer before p100 was eluted with 

standard lysis buffer containing 100 mM imidazol. 

Quality and quantity of recombinant protein was checked on SDS-PAGE. 
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Transformation 

Electroporation 

Cells were grown in LB medium containing 15 µg/ml tetracyclin (tet) to an OD600 of 0.6. Then 

the medium was removed and cells were washed twice with cold ddH2O. Cells were 

resuspended in cold ddH2O and stored with 20 % Glycerol at -75 °C. 

50 µl cells, 1-5 µl Plasmid and 50 µl ddH2O were mixed in an electroporation cuvette and 

shocked with 2500 V for 10s. 800 µl LB medium was added to the cuvette, the mix 

transferred to an eppendorf tube and incubated at 37 °C for 1 h while shaking. Transformed 

cells were plated on LB-agar using the appropriate antibiotic.  

Heat shock  

Cells were grown in LB medium containing 15 µg/ml tetracyclin (tet) to an OD600 of 0.6. Then 

the medium was removed and cells were washed twice with cold 30 mM CaCl2. Cells were 

resuspended in cold 30 mM CaCl2 and stored with 20 % Glycerol at -75 °C. 

50 µl cells and 1-5 µl Plasmid were incubated on ice for 20 min. The cells were shocked at 42 

°C for 30 s, then cooled on ice for 2 min. 800 µl LB medium was added and the mixture was 

incubated at 37 °C for 1 h while shaking. Transform ed cells were plated on LB-Agar using the 

appropriate antibiotics.  

SDS-PAGE 

Acrylamide/bis-acrylamide (1:39) was mixed with separating gel buffer, 10 % APS and 

TEMED were added and a 12 % gel poured between two glass plates. After the separating 

gel polymerized, the 4 % stacking gel was prepared by mixing acrylamide/bis acrylamide 

(1:39) with stacking gel buffer, 10 % APS and TEMED. Samples were mixed with 4 x loading 

buffer and boiled at 95 °C for 5 min before loading  to the gel. Gels were run at 80 V for 1 h or 

until the blue loading dye ran out. 

Gels were then stained with coomassie stain for 30 min and destained over night in 

destaining solution. 

Silverstaining of SDS-PA Gels 

For very low amounts of protein gels were stained using the silver staining method developed 

by Samuel (1953).  

After running of SDS-PA Gels, the gel was incubated in 50 % ethanol for 30 min. 
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Then the gel was washed 5 times 5 min in ddH2O and incubated for 3 min in Silver stain 

solution (SSS) 1. After washing 4 times for 10 min with ddH2O gels were incubated for 30 min 

in SSS 2 and subsequently washed 3 times with 2.5 % sodium carbonate.  

Bands were visualized by incubation with SSS 3 until bands appear. Visualization reaction 

was stopped by addition of 10 % acetic acid after approximately 7 minutes. 

Western blot 

After SDS-PAGE proteins were transferred to nylon membranes via electroblotting. 

Following SDS-PAGE the gel was washed in cathode buffer for approximately 5 min. 

 

Blot sandwich was assembled in the following order: 

 

Anode 

3 layers of filter paper soaked in cathode buffer 

Gel soaked in cathode buffer 

Membrane wetted with 100 % methanol then soaked in anode buffer 2 

Filter paper soaked in anode buffer 2 

2 layers of filter paper soaked in anode buffer 1 

Cathode 

 

Proteins were transferred for 75 min at 143 mA. 

The membrane was then blocked over night with 5 % skim milk powder or Rotiblock at 4 °C. 

After blocking the membranes were washed twice for 5 min with TBS-T, followed by 

incubation at room temperature for 1 h with primary antibody diluted in 5 % skim milk or 

Rotiblock. Dilutions of antibodies were specific for each antibody, ranging from 1:500 to 

1:10’000.  

After incubation the membrane was washed 4 times for 10 min with TBS-T and then 

incubated with the secondary antibody in 5 % skim milk or Rotiblock for 1 h at room 

temperature. The secondary antibodies were diluted 1:10’000. 

Again membranes were washed for 4 times for 10 min with TBS-T before proteins were 

detected using the ECL detection kit on X-ray films. 
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Reconstitution of initiation complexes 

Buffers 

Gradient buffer     Sucrose buffer 

15 mM  Tris-HCl (pH 7.5)   50 mM  Tris-HCl (pH 8.4) 

0.5 mM MgCl2  ´   6 mM   MgCl2 

80 mM  KCl     60 mM  NaCl 

1 mM  DTT     10 mM  DTT 

 

TBE-buffer       TAE-buffer 

90 mM  Tris-Borat    40 mM  Tris-HCl (pH 7.5) 

2.5 mM  EDTA     40 mM  Na-acetate 

0.625 % Acetic acid    2 mM  EDTA 

       2.5 %  Acetic acid 

 

UV-crosslinking buffer 

5 mM  Tris-HCl (pH 7.4) 

5 mM  MgCl2 

5 mM  DTT 

5 mM  rATP 

5 mM  rGTP 

25 %  Glycerol 

Cell extracts 

Rabbit reticulocyte lysate  Promega 

 Green Hectars 

 prepared by Shatsky laboratory 

S30 ascites cell extract    prepared by Shatsky laboratory  

HeLa extract      Cilbiotech 

Plasmids 

PGL3 containing 

- PV IRES 

- EMCV IRES 

- β-actin 5’ UTR 
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Primers 

Forward primer:  

 

T7GL4 adds T7 promoter upstream of IRES, anneals to vector sequence                   5’ 

cgccgtaatacgactcactatagggagcttatcgataccgtcg 3’ 

 

Reverse primers: 

 

Flsh  binds at nt 100 in the firefly luciferase coding region 

5’ attgttccaggaaccagggcg 3‘ 

 

Flsh+A binds at nt 100 in the firefly luciferase coding region, adds 50 thymines to the 

end of the template resulting in a polyA tail on the RNA               

5’tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttattgttccaggaaccagggcg 3’ 

 

Actinshort binds at nt 200 in the firefly luciferase coding region 

5’ ggaacaacacttaaaatcgcagtatccggaatg 3’ 

 

Actinshort+A binds at nt 200 in the firefly luciferase coding region, adds 50 thymines to the 

end of the template resulting in a polyA tail on the RNA 

5’ttttttttttttttttttttttttttttttttttttttttttttttttttggaacaacacttaaaatcgcagtatccggaatg3’ 

Preparation of templates for transcription 

DNA template was prepared from PGL3 plasmids. Primers were designed to add a promoter 

for the T7 RNA polymerase to the 5’ end of the template. 

PCR reaction: 

100 ng  Template (plasmid) 

0.25 mM dNTPs 

1 x  Taq buffer 

2.5 mM MgCl2 

1 pmol  forward Primer  

1 pmol  reverse Primer  

3 u  Taq DNA-Polymerase 
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Cycling program: 

95 °C for 3 min 

80 °C for 1 min 

70 °C for 1 min 

64 °C for 1 min 

72 °C for 3 min  

95 °C for 45 s 

80 °C for 5 s 

75 °C for 5 s    33 cycles 

67 °C for 1 min 

72 °C for 1.5 min  

72 °C for 5 min 

4 °C    

Transcription with hot UTPs 

For capped RNA a 10 µl reaction was prepared using: 

1 µg  Template 

1 x  Capping mix 

0.5 mM m7GTPG 

1 x   transcription buffer 

2 µl   32P labelled UTPs 

20 u   T7 RNA polymerase 

 

The reaction was incubated at 37 °C for 1.5 h. 

 

For uncapped RNA a 10 µl reaction was prepared using: 

1 µg   Template  

0.25 mM  ATP, GTP, CTP mix or rNTPs 

1 x   transcription buffer containing MgCl2 

0.1 mM  UTP 

2 µl   32P labelled UTPs 

20 u  T7 RNA polymerase 

 

The reaction was incubated at 37 °C for 1 h. 

 



 

48 

 

If RNA was used to fish proteins 2 nmol of biotinylated UTP was added to this reaction. 

Lithiumchloride precipitation 

RNA was mixed with 1 volume of 4 M LiCl and incubated on ice for 1.5 h. After precipitation 

the tube was centrifuged at 4 °C for 15 min at 13.2 00 rpm in a benchtop centrifuge. The pellet 

was washed with 70 % Ethanol and air dried for 30 min at room temperature. The pellet was 

resolved in 1 volume of ddH2O or nuclease-free water. 

Sucrose Gradients 

For stepwise gradients sucrose solutions from 10 % to 35 % (in 5 % increments) were 

prepared and the gradients were poured in 2 ml steps. Balanced gradients were frozen at -20 

°C over night and slowly thawed in ice water before  loading. 

 

For linear gradients sucrose solutions from 5 % and 20 % were prepared in A-100 and 11 ml 

gradients poured using a gradient mixer. Linear gradients were used after cooling for 30 min 

at 4 °C. 

 

One 50 µl reaction of  

24 µl   RRL 

6 µl  HeLa extract 

1 mM  m7GTP  

1 x  gradient buffer  

10 mM  GMP-PNP 

 

was pipetted and incubated at 30 °C for 5 minutes. Radioactively labelled RNA was added 

and the reaction was incubated for an additional 10 min. Then the reactions were diluted 1:3 

using A-100 and loaded on the prepared gradients. 

Initiation complexes were separated by centrifugation for 5.5 h at 40’000 rpm (rotor SW28). 

After centrifugation gradients were fractionated into 500 µl fractions. Each fraction was mixed 

with 2 ml Rotiszint and radioactivity measured in a Scintillation-counter. 

When gradient fractions were needed for further protein analysis, radioactivity was counted in 

a Cherenkov counter, which allows fractions to be used for further experiments, since no 

scintillation enhancer has to be added. 

Measured values were normalised to total radioactivity per reaction. 
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RelE-assay 

RelE is a bacterial toxin that cleaves mRNA only in the P-site of ribosomes, which is an easy 

way to determine on which AUG codon translation initiated when ribosomes are stalled 

before subunit joining. 

Radioactively labeled RNA was used in a translation reaction. The reaction was stopped at 

the stage of 48S complexes by addition of GMP-PNP and complexes isolated via sucrose 

gradients. RNA from identified 48S complex is then digested by the bacterial toxin RelE. 1 µl 

(ca. 10 u) RelE is used to digest RNA in 100 µl of pooled fractions at 30 °C for 30 min.  

After digestion the RNA was cleaned with phenol-chloroform and precipitated in the presence 

of 0.25 mM rNTPs with 100 % Ethanol.  

Digested RNA as well as a control undigested RNA was then separated on a PA gel and 

bands were visualized on X-ray film or using a phosphoimager. Cleavage patterns of digested 

and undigested RNA were compared to a marker. 

Binding of biotinylated RNA to streptavidin beads 

Fractions derived from sucrose gradients or total RNA protein complexes from translation 

reactions were loaded on a streptavidin-Sepharose column.  

Streptavidin-sepharose beads were centrifuge at maximum 3’000 rpm in an Eppendorff 

benchtop centrifuge. 

The column was equilibrated with A-100 through extensive washing. Biotinylated RNA was 

allowed to bind for 1 hour at 4 °C while shaking.  

Beads were then washed twice with A-100 (+ 10mM Mg-acetate) and proteins were eluted 

with 3 µl of RNase A/RNase T1 mix in 60 µl of A-100. A second elution with 10 mM biotin in 

A-100 was performed when necessary. Eluted proteins were checked on SDS-PAGE. 

Depletion of HeLa extract 

Magnetic streptavidin-coupled beads were equilibrated with A-100 by extensive washing. 

Beads were incubated with an equal amount of HeLa extract for 15 min on ice to block 

unspecific binding sides. Excess HeLa extract was removed and beads were washed with A-

100 thrice. 

To deplete 30 µl of HeLa extract 3 µg biotinylated RNA and 30 µl of HeLa extract were mixed 

with 15 µl of blocked beads and incubated on ice while shaking. 

After incubation the depleted extract was removed and placed on ice while the beads were 

washed 3 times with A-100. Depleted extracts and beads were treated with micrococcal 

nuclease. 2.5 mM CaCl2 and 3 units of micrococcal nuclease were mixed with 40 µl of 
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depleted extract or beads in A-100 and incubated at room temperature. The nuclease 

digestion was stopped by adding 0.25 mM EGTA, which chelates the Ca2+ ions essential for 

micrococcal nuclease to work. 

UV-crosslinking 

Radioactively labeled RNA was mixed with cell extract (RRL or HeLa) or pure proteins in 

crosslinking buffer and incubated at 30 °C for 10 m in to allow protein binding to RNA. The mix 

was irradiated with UV light (260 nm and 320 nm) for 30 min on ice, irreversibly crosslinking 

RNA to proteins. After irradiation the mix was digested with RNase A for 1 h at 37 °C and 

proteins separated on SDS-PAGE. Proteins were fixed in the gel by incubating in destaining 

solution for 5 min and subsequently dried on filter paper. X-ray film was exposed to dried gels 

for 1-3 days at -70 °C to visualize bands.  

Translation of reporter constructs 

Buffers 

Hybridization buffer      20 x SSC 

2 %   DIG blocking reagent   3 M   NaCl 

5x   SSC     0.3 M   Na3C6H5O7 

0.035 %  Laurolylsarcosine  

0,02 %  SDS    

50 %   Formamide 

 

Maleic acid buffer     TAE-buffer 

100 mM Maleic acid    40 mM  Tris-HCl 

150 mM NaCl     40 mM  Na-acetate 

       2 mM  EDTA 

       2.5  %  acetic acid 

 

TBE-buffer      Passive lysis buffer 

90 mM  Tris-Borat    1 ml   5x passive lysis buffer 

2.5 mM  EDTA     4 ml   PBS 

0.625 % Acetic acid    
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Firefly luciferase buffer    PBS 

25 mM  Gly-Gly    137 mM  NaCl 

15 mM  MgSO4      2,7 mM KCl 

0.1 mM EDTA     4.3 mM  Na2HPO4 

33.3 mM DTT     1.5 mM  KH2PO4 

1 mM  rATP 

 

Firefly luciferase substrate    10 x capping mix 

470 µM Luciferin    0.5 mM rGTP 

20 mM  Tricine     5 mM rATP 

1,07 mM (MgCO3)4Mg(OH)2   5 mM rCTP 

2,67 mM MgSO4     5 mM rUTP 

0.1 mM EDTA 

33.3 mM DTT 

270 µM Coenzyme A 

530 µM rATP 

 

PA-Gel       FA-buffer 

7 M  urea     50 mM  EDTA 

15  %  acrylamide/bis-acrylamide  80  %  Formamide 

       0.1 %  Bromphenol blue 

       0.1 %  Xylenecyanol 

 

Plasmids  

pCITE PV1 VP1-2A     from T. Skern 

pD5       from C. Jünemann 

pGL3 containing     from I. Shatsky 

- Polio IRES + Luciferase 

- EMCV IRES + Luciferase 

- β-globin 5’ UTR + Luciferase 

- β-actin 5’ UTR + Luciferase   

pMPolio      from E. Tzima 
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Oligonucleotides 

Primers 

Mutation of miRNA-326mat binding site in PV IRES 

326mutIRESfwd 5’ctcaacgggcgagtgtagcttaggctg 3‘ 

Luciferase1400rev 5’gccacacccttaggtaaccca 3‘ 

PVIRESfwd 5‘gatttaggtgacactatagaatagatcttaaaac 3‘ 

326mutIRESrev 5‘cagcctaagctacactcgcccgttgag 3‘ 

 

Silent mutation of miRNA-326* binding site in firefly luciferase 

326mutLucifwd 5’catagaacggcttgcgtcaga 3‘ 

Luciferase1400rev 5’gccacacccttaggtaaccca 3‘ 

PVIRESfwd 5‘gatttaggtgacactatagaatagatcttaaaac 3‘ 

326mutLucirev 5‘tctgacgcatgccgttctatg3‘ 

 

Templates for transcription 

T7GL4      5’cgccgtaatacgactcactatagggagcttatcgataccgtcg 3‘ 

End of firefly  5’ ttaacttgtttattgcagcttataatgg 3’ 

End of firefly +A 5’ ttttttttttttttttttttttttttttttttttttttttttttttttttttaacttgtttattgcagcttataatgg 3’ 

 

miRNAs 

miRNA-127mat 5’ ucggauccgucugagcuuggcu 3’ 5'Phosphate 

miRNA-127* 5’ ccugcugaagcucagagggcucugauu 3’ 5'Phosphate 

miRNA-326mat 5’ ccucugggcccuuccuccag 3’ 5'Phosphate 

miRNA-326* 5’ ggaggcagggccuuugugaaggcg 3’ 5'Phosphate 

miRNA-422amat 5’ acuggacuuagggucagaaggc 3’ 5'Phosphate 

miRNA-422a* 5’ ucucugucccugagccaagc 3’ 5'Phosphate 

miRNA-

326matmutcomp 5’ ccucgccccccuuccuccag 3’ 5’Phosphate 

miRNA-

326*mutcomp 5’ ggaggcagggggggugggaaggcg 3’ 5’Phosphate 
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Probes 

U6 snRNA caggggccatgctaatcttctctgtatcg 

5'DIG 

3'DIG 

326 ctggaggaagggcccagagg 

5'DIG 

3'DIG 

422a ggccttctgaccctaagtccag 

5'DIG 

3'DIG 

127 agccaagctcagacggatccga 

5'DIG 

3'DIG 

Cell lines  

HeLa   

SH-SY5Y    gift from A. Brehm 

Lysates 

Rabbit Reticulocyte Lysate  Promega 

HeLa- extract   Cilbiotech  

Preparation of templates for in vitro transcription 

By digest 

DNA template was prepared by cutting the pMPolio or pD5 plasmid with SmaI 700 bp 

downstream of the luciferase gene and purifying the linearized plasmid from a 1 % agarose-

gel followed by phenol-chloroform extraction.  

By PCR 

DNA template was prepared from the pCITE or PGL3 containing the PV IRES plasmids using 

PCR. Primers were designed to add a promoter for the T7 RNA polymerase to the 5’ end of 

the template. 

 

PCR reaction: 

100 ng  Template (plasmid) 

0.25 mM  dNTPs 

1 x   Taq buffer 

2.5 mM  MgCl2 
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1 pmol  forward Primer  

1 pmol  reverse Primer  

5 u  Taq Polymerase 

 

Cycling program: 

95 °C for 3 min 

80 °C for 1 min 

70 °C for 1 min 

64 °C for 1 min 

72 °C for 3 min  

95 °C for 45 s 

80 °C for 5 s 

75 °C for 5 s    33 cycles 

67 °C for 1 min 

72 °C for 1.5 min  

72 °C for 5 min 

4 °C    

 

PCR products were cleaned using phenol-chloroform extraction. 

 

Phenol-Chloroform extraction 

DNA was mixed with 1 volume of phenol, centrifuged for 2 min and the aqueous upper phase 

transferred to a new Eppendorff tube. It was then mixed with 1 volume of a 1:1 

phenol:chloroform mix, centrifuged for 2 min and the aqueous upper phase transferred to a 

new eppendorff tube. 1 volume of chloroform was added, mixed, centrifuged for 2 min and 

the aqueous upper phase transferred to a new eppendorff tube.  

To this 1/10 volume of 3 M Na-acetate and 3 volumes of 100 % ethanol were added. Then 

the DNA was precipitated over night at -20 °C, foll owed by 30 min centrifugation at 13’000 

rpm. The pellet was washed twice with 500 µl of 70 % ethanol and air dried at room 

temperature for 30 min, before being solved in 50 µl of ddH2O. 

Preparation of miRNA duplexes 

Guide strand and passenger strand RNAs were purchased from biomers.net as single 

stranded RNA oligonucleotides. Guide strands are annotated with the suffix “mat”, and 

passenger strands are annotated with an asterisk “ * “. Equimolar amounts of the two strands 
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were hybridized by rapid heating to 80 °C in a wate r bath and slow cooling to room 

temperature. Double stranded RNAs were stored at -20 °C and used for 2-3 weeks. 

In vitro transcription 

For capped RNA a 10 µl reaction was prepared using: 

1 µg   Template (pD5 derived)  

1 x  Capping mix 

0.5 mM m7GTPG 

1 x   Transcription buffer 

20 u  T7 RNA polymerase 

 

The reaction was incubated at 37 °C for 1.5 h. 

 

For uncapped RNA a 10 µl reaction was prepared using: 

1 µg   Template (PV IRES, EMCV IRES, β-actin 5’ UTR, pD5) 

0.25 mM  rNTPs 

1 x   transcription buffer containing MgCl2 

20 u  T7 RNA polymerase 

 

The reaction was incubated at 37 °C for 1 h. 

 

Quality and quantity of the resulting RNA was controlled on 1 % agarose-gels. 

In vitro translation 

In vitro transcripted mRNA was mixed with RRL. The KCl concentration was adjusted to 135 

mM (Kozak 1989) by adding 2 M KCl, taking into account that the endogenous KCl 

concentration is approximately 113 mM K+ and IRESs are more efficient under high salt 

conditions. The reaction was incubated at 30 °C for  45 min and luciferase activity measured. 

For miRNA experiments single stranded (ss) miRNA was serially diluted to 400 ng/µl, 200 

ng/µl, 100 ng/µl and 50 ng/µl and 2 µl of each dilution added to the reaction.  

All reactions were performed in duplicates. 
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Tissue culture 

Cells were grown in DMEM with Penicillin/Streptamycine and 10 % fetal bovine serum (FBS) 

at 37 °C with 5 % CO 2. Cultures were passaged in 25 cm2 flasks. For transfections cells were 

plated on 24-well-plates, for northern blots cells were grown in 75 cm2 flasks. 

Transfection 

All transfections were performed in 24-well-plates in duplicate. 

Cells were transiently transfected using Lipofectamine 2000TM with a luciferase construct 

(IRES, capped or uncapped) mRNA and different amounts of miRNA.  

500 µl cells were plated into 24-well-plates with antibiotic-free DMEM, containing 10 % FBS 

and grown over night to approximately 80 % confluency. 50 µl of plain DMEM were mixed 

with 2 µl of Lipofectamine and incubated for 5 min at room temperature. mRNA and miRNA 

duplexes were mixed in 50 µl of plain DMEM, the two mixes were combined and incubated at 

room temperature for 20 min. Medium on the cells was changed to plain DMEM and the 

transfection mix was added. After 4 h of incubation at 37 °C with 5 % CO 2 cell viability was 

tested with the WST-1 assay. Subsequently cells were lysed using 150 µl of 1 x passive lysis 

buffer and luciferase activity was determined.  

WST-1 Test 

The WST-1 test measures the activity of enzymes from the respiratory chain and can 

therefore by used as a reliable measure of the overall cell viability in the well. 

The WST1 reagent was diluted with colorless DMEM 1:50. Growth medium was removed 

from the cells, and the cells were washed with PBS, before 200 µl of WST1/DMEM was 

added. After 30 min incubation with WST1, 100 µl of medium was transferred to a 96-well 

plate and color intensity was determined in a microplate reader at 450 nm. 

Luciferase reporter assay 

Luciferin was prepared in luciferase buffer and stored at -20 °C. Cell lysates were cleared by 

centrifugation at 4’000 rpm for 5 min at 4 °C. Luci ferase activity was measured using a 

Berthold luminometer with automatic injection of luciferin. 100 µl of luciferin solution was 

added to the sample and luminescence measured for 20 s, the measurement was repeated 

and both values were averaged. 
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Isolation of total small RNA from cells 

Cells were grown to 90 % confluency in 75 cm2 flasks. Medium was removed, cells were 

washed with PBS and subsequently lysed with lysis buffer supplied by the miRNA isolation kit 

from Roche. miRNAs were separated from long RNAs by precipitating mRNAs with ethanol, 

before binding to column. Not precipitated miRNAs were found in the flowthrough, were 

subsequently precipitated and bound to a new column, where they were eluted with ddH2O. 

The exact buffer composition is not disclosed since it is patented by Roche. I followed the 

instructions in the manual of the kit. 

PAGE 

15 % PA-Gels were prepared as described for SDS-PAGE and RNA samples mixed with FA-

buffer. Samples were loaded on gel and run at 20 mA until the blue dye band reached the 

middle ( ̴ 20 min)  of the gel if separating small RNAs and until the dye ran out ( ̴ 1 h) for long 

mRNAs. 

Northern Blot 

Blotting sandwich was assembled in the following order:  

 

Anode 

3 layers of filter paper soaked in TBE 

Membrane soaked in TBE 

PA-Gel 

3 layers of filter paper soaked in TBE 

Cathode 

 

After separation on PA-Gels RNAs were transferred to nylon membranes via semi-dry 

electroblotting at 150 mA for 55 min. RNA was crosslinked to the membrane by exposure to 

UV-light (260 nm) for 7 min. The membrane was then incubated at 68 °C with hybridization 

buffer for 1 h. During the incubation 10 µl of the appropriate DIG-labeled probe was boiled at 

95 °C for 1 min, then cooled down on ice for 5 min before being mixed with 25 ml of 

hybridization buffer. The probe-mix was added to the membrane and incubated at 68 °C over 

night (at least 12 hours). 

The membrane was then washed twice for 20 min with 2 x SSC containing 0.1 % SDS at       

68 °C, followed by washing it twice for 20 min with  0.5 x SSC containing 0.1 % SDS at 68 °C. 
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The membrane was blocked for 30 min at room temperature with 1.5 % skim milk powder in 

maleic acid and subsequently incubated for 1 h with ANTI-DIG antibodies in a dilution of 

1:10’000 in 1.5 % skim milk powder in maleic acid. 

The membrane wash washed thrice with 0.3 % tween in maleic acid buffer for 10 min before 

being incubated with DIG detection solution for 1 min. An X-ray film was applied to the 

membrane and exposed over night (10 - 24 h). 

Introduction of mutations into the pMPolio construct 

Two sites were identified for mutation, a miRNA-326mat binding site in the PV IRES and a 

miRNA-326* binding site in the firefly luciferase. Both mutations were achieved using the 

same approach. 

Two PCR reactions were performed using Pfu-DNA-Polymerase, starting or ending at the 

point of mutation (mutation primers). Designed mutation primers introduced the mutated 

sequence at the desired site, unchanged primers (outer primers) were used as forward and 

reverse primer respectively. The two PCR products from the first round were then used as 

template for a second round of PCR using the outer primers.  

 

 
 

Figure 1 : Schematic description of the mutation strategy used to mutate miRNA-326 binding sites in 

the PV IRES and firefly luciferase. 

 

The outer primers were chosen to include cutting sites for restriction endonucleases into the 

product. The product of the second round of PCR and the pMPolio plasmid were cut with 

those enzymes, then purified from 1 % agarose gels and the PCR product was ligated into 

the vector using T4-Ligase.  
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Plasmids were transformed into E.coli XL1-blue and plated on LB plates containing amp. Ten 

colonies were picked, grown in LB-medium containing amp, subsequently plasmids were 

prepared and send for sequencing with GATC company. 

Online tools 

General: 

http://www.ebi.ac.uk/clustalW/  

http://www.basic.northwestern.edu/biotools/oligocalc.htm  

miRNAs: 

http://www.vita.mbc.nctu.edu.tw 

http://www.microrna .org 

http://www.targetscan.org 

RNA/protein interaction: 

http://mfold.bioinfo.rpi.edu  

http://www.matrixscience.com 

Equipment  

ÄKTA FPLC System      GE Healthcare 

Benchtop centrifuge      Eppendorff 

Blotting membrane      Whatmann 

Centrifuge       Beckmann/Sorvall 

Clean Bench       Heraeus 

CO2-Incubator       Binder 

Developing equipment for films    Agfa     

Electric kettle       Ciatronic 

Electroporator       Bioline 

Gel-documentation      Biorad 

Gel running apparatus     von Keutz 

Geldryer       Beckmann 

Heating block       Kleinfeld 

Hybridiser       UVP  

Incubator        Certomat 

Luminometer        Berthold 

Magnetic stirrer      Bender & Hobein 

Micropipettes       Gilson 
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Microplate reader      BioTek 

Microscope       Leica 

Peristaltic pump      Gilson 

Photometer       Eppendorff 

Power supply       Pharmacia 

Semi-dry blotter      Biorad 

Shaker        Heidolph/CAT 

Sonicator       Biorad 

Scintillationcounter      Packard 

Thermocycler       Eppendorff/Biometra   

Ultracentrifuge       Beckmann 

UV lamp       Packard 

Rotors        Beckmann 

 SW27 

 SW40 

 Ti70 

Vortex        Bender & Hobein   

Waterbath       Julabo 

Chemicals  

All chemicals were purchased from Roth unless stated otherwise. 

Acrylamide/bis-acrylamide 

Agarose  

Ammonium sulfate 

Anisomycine 

Amoniumpersulfate 

Biotin        Roche 

Calciumchloride 

Chloroform       Sarstedt 

Dulbecco’s modified Eagle medium 

Dithiothreitol 

Ethylenediaminetetraacetic acid  

Ethanol 

Fetal bovine serum 

Formaline 
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GMP-PNP        Sigma 

Imidazol 

IPTG 

Lithium chloride 

Lipofectamine 2000TM      Invitrogene 

m7GTP        Jena Bioscience 

Magnesium acetate 

Magnesium chloride 

Medium Lucia Bertani        

Methanol 

Phenol 

Potassium chloride 

Rotiblock 

Rotiszint ™ 

Sodium dedocylsulfate 

Skim milk powder 

Sodium acetate 

Sodium carbonate 

Sucrose 

Tetramethylethyldiamine  

Tris 

Tween 20       Sigma 

Enzymes   

EcoRI        New England Biolabs (NEB) 

Pfu DNA polymerase      NEB 

RelE        gift from I. Shatsky 

RNase A       Fermentas 

RNase T1       Sigma 

SmaI        Fermentas 

SP6 RNA Polymerase     Fermentas 

T4 Ligase       NEB 

T7 RNA polymerase      Fermentas 

Taq DNA Polymerase      Promega 

XbaI        Fermentas 
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Consumables 

24-well plates       Sarstedt 

25 cm2 flasks        Greiner 

75 cm2 flasks       Greiner 

96-well plates       Sarstedt 

Blotting membrane      Whatmann    

Eppendorff tubes      Sarstedt 

Falcon tubes       BD Falcon 

LB agar plates       Virology 

Parafilm       American National Can 

Pipettes       BD Falcon 

Streptavidin coupled Sepharose beads   GE Healthcare 

Streptavidin coupled magnetic beads   Invitrogen 

Tips for micropipettes      Sarstedt 

Vivaspin concentrator columns (cut off 30’000 Da)  Sartorius 

X-ray film       Kodak 

Kits 

Miniprep KIT       Promega 

Maxiprep       Macherey Nagel 

Gel purification      GE Healthcare 

miRNA isolation      Roche 

DIG detection       GE Healthcare 

ECL detection       Whatm an/Promega 
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Results 

Purification of eukaryotic initiation factors 

Using the method established by Prof. Shatsky 

Eukaryotic initiation factors (eIFs), especially eIF3 and eIF4F, are large multi-subunit proteins, 

which are post-translationally modified (Raught et al. 2000) and assembled by partially 

unknown processes (Fraser et al. 2004). Therefore it is nearly impossible to prepare active 

proteins recombinantly in E.coli. Consequently native eIF3 and eIF4F were purified from 

rabbit reticulocyte lysate (RRL).  

Reticulocyte lysate is prepared by first injecting rabbits with phenylhydrazine hydrochloride 

which renders them anemic by destroying erythrocytes. This leads to an increased formation 

of erythrocyte progenitor cells, the reticulocytes (Borsook et al. 1952, Schreier & Staehelin 

1973). This procedure was performed by Green Hectares (Wisconsin, USA), the only 

company worldwide that supplies large amounts of untreated RRL directly to researchers.  

Erythrocytes and their progenitors, reticulocytes, are major places of protein synthesis; their 

main function is biosynthesis of hemoglobin, and they are therefore very suitable for 

purification of translation-related factors, such as ribosomes and eukaryotic initiation factors. 

There are several methods of purification of initiation factors described in the literature (e.g. 

Benne et al. 1976, 1977, 1978, Merrick 1979, see table 1).  

 

 

Article  Factor  Steps  Methods  Amount of starting 
material 

Merrick et al. 
1975 

eIF2 7 ASP, ion-exchanger, size 
exclusion 

600 rabbits 

Thomas et al. 
1979 

eIF2 5 Heparin sepharose, ASP, 
size exclusion, ion-exchanger 

4 l RRL 

Thomas et al. 
1979 

eIF3 5 ASP, ion-exchanger, sucrose 
gradient, Heparin-sepharose 

4 l RRL 

Benne et al. 
1976 

eIF3 5 ASP, ion-exchanger, sucrose 
and glycerol gradients 

90 rabbits 

Pestova et al. 
1996 

eIF3 5 ASP, ion-exchanger, sucrose 
gradient 

4 l RRL 

Benne et al. 
1978 

eIF3 5 ASP, ion-exchanger, sucrose 
and glycerol gradients 

120 rabbits 

Schreier, Erni, 
Staehelin 1977 

eIF4B 6 ASP, ion-exchanger, sucrose 
gradient 

270 ml RSW 

Thomas et al. 
1979 

eIF4B 5 Heparin-sepharose, ASP, 
sucrose gradient, ion-
exchanger 

4 l RRL 
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Pestova et al. 
1996 

eIF4F 5 ASP, ion-exchanger, sucrose 
gradient, cap-sepharose 

4 l RRL 

 

Table 1 : Different purification methods for eukaryotic initiation factors described in the literature, ASP: 

ammonium sulfate precipitation, RSW: ribosomal salt wash, RRL: rabbit reticulocyte lysate 

 

After several unsuccessful attempts, which will be described later, I purified factors using the 

protocol established in the laboratory of Prof. Shatsky at the Belozersky Institute for Physio-

chemical Biology at the Moscow State University in Russia (e.g. Pestova et al. 1996). This 

protocol is based on work by Schreier & Staehelin (1973 and 1977) and Benne & Hershey 

(1976). Purification of initiation factors using Prof. Shatsky’s protocol is described in the 

methods section and an overview is given in figure 1; results are presented here. 

 
Figure 1: Schematic description of the method used to purify eukaryotic initiation factors 3, 4B and 4F 

from RRL. Factors eIF1 and eIF2 may be purified using this method but have not been purified here. 

Instead ASP fraction and phosphocellulose fractions were frozen and stored at -80°C.  

RSW: ribosomal salt wash, ASP: ammonium sulfate precipitation, PC: phosphocellulose, eIF: 

eukaryotic initiation factor 
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Large amounts (4 liters) of RRL were obtained from the company Green Hectares and 

ribosomal salt wash (RSW) was prepared reducing the volume to about 600 ml. 

Proteins in the RSW were differentially precipitated with ammonium sulfate (0 - 40 %, 40 - 50 

%, 50 - 70 %). The 40 % ammonium sulfate fraction was subjected to ion-exchange 

chromatography, first on an anion exchanger, DEAE cellulose (Figure 2). Peak-fractions 

eluted from the DEAE cellulose column containing initiation factors were then loaded on a 

cation exchanger, phosphocellulose (PC) (Figure 3). 

 
Figure 2 : Third step of purification of eukaryotic initiation factors. 40 % ammonium sulfate precipitates 

of RSW were subjected to a DEAE sepharose column. 8 ml fractions were collected. Elution with A-

300 (300 mM KCl) started at fraction 16, elution fractions (18 – 22) were pooled. 

 
Figure 3 : Fourth step of purification. Elution fractions from DEAE column were separated on a PC-

column. Fractions of 8 ml were collected. Elution with A-400 (400 mM KCl) started at fraction 26, 

elution fractions containing eIF3 and eIF4F and B (30 - 35) were pooled. Elution with A-1000 (1 M KCl) 

started at fraction 43; eIF2 may be purified from elution with A-1000 but it is not relevant for the 

purification described here. 

 



 

66 

 

After the ion-exchange steps the amount of total protein in the final elution was only about a 

third of the 40 % ammonium sulfate precipitate (200 mg, compared with a 600 mg in the 40 % 

ammonium sulfate precipitate). The bulk of proteins from RRL (mainly hemoglobin and 

lipoxygenase (Borsook et al. 1952)) was removed after these steps. 

Initiation factors were now almost pure. Consequently eIF3 and factors of the eIF4 family 

could be separated on 5 - 20 % sucrose gradients. Since the volume of the preparation was 

still rather high (7 ml), three or four gradients were run simultaneously. In figure 4 the 

reproducibility of sucrose gradients is shown. 

 

 
 

Figure 4:  Three different sucrose gradients (5 - 20 %) were run to separate proteins eluted from the 

PC-column (figure 3). Sucrose gradients separate eIF3 (first peak) from eIF4s (second peak). A total of 

200 mg of protein was loaded and 500 µl fractions obtained. 

 

Pure eIF4F could be isolated from the second (eIF4) peak using Cap-Sepharose (Figure 5) 

as described in the methods section. 

Unfortunately eIF4G was degraded in this preparation, resulting in purification of only the cap 

binding moiety eIF4E on the Cap-Sepharose, while eIF4A can be identified in the flow 

through.  
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Another preparation performed in Prof. Shatsky’s laboratory however led to the recovery of 

complete eIF4F. 

 

 

 

Figure 5 : Separation of fractions from purification of eIF4F via Cap-Sepharose on a 12 % SDS-PAGE 

Gel stained with coomassie: 

1 and 2: Elutions from column using m7GTP   

3, 5 and 6: Washes of column with A-100  

4: Marker  

7: Flow through containing eIF4A and eIF4B  

8: Sample loaded on the column containing eIF4A, 4B and 4E  

  

 

Pure eIF3 could be isolated from the first peak of the sucrose gradients (figure 4), 

unfortunately p170, the largest subunit of eIF3 was partially degraded as well (Figure 6 lanes 

5 and 6). In fractions containing low amounts of eIF3, p170 seems to be at least partially 

intact, even though the concentration compared to p110 is very low, indicating that only few 

molecules of complete eIF3 were present. In intact eIF3 p110 and p170 are present in 

equimolar amounts (Hinnebusch 2006). 
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Figure 6 : Purified eIF3 without subunit p170 in lanes 5 and 6. Fractions from purification of the eIF3 

peak of sucrose gradients on a MonoQ column, eluted with a linear gradient from 0 to 500 mM KCl 

(lane 1 (0 mM) to lane 9 (500 mM KCl)) were separated on a 12 % SDS-Gel and the gel stained with 

coomassie. Prominent subunits of eIF3 are marked on the right. 

 

All the degradation observed during this purification led me to check for protein integrity in the 

original RRL.  

I found by western blot that p170 (figure 7) as well as eIF4G was already partially degraded in 

the starting material. Several degradation products can be seen at lower molecular weights, 

the strong band at  ̴ 72 kDa however seems to be unspecific binding of the antibody raised 

against p170.  

 
 

Figure 7 : Western blot using primary antibodies against p170 (left) and p110 (right) subunits of eIF3 in 

complete RRL (RRL) and purified eIF3 (pure) from the same preparation of RRL. Secondary antibodies 

against mouse IgG were coupled with alkaline phosphatase for detection. 
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Degradation of p170 in RRL seems to be a rather common problem when purifying factors (I. 

Shatsky), therefore purification from a different source, like HeLa or Krebs cells would be 

preferable. This however proved impossible since it is very difficult to acquire the necessary 

amounts of cell extracts. 

Purification of initiation factors using Phenyl Sep harose 

Several methods of purification of native eukaryotic translation initiation factors from diverse 

sources have been published (summarized in table 1). All of the methods described up to 

date need to employ at least five purification steps to result in reasonably pure eIF3 and 

eIF4F. All of them use a combination of separation by charge (ion-exchangers) and size 

(gradients, size exclusion columns). Even though separation by thiolgroups (Safer et al. 

1976) and hypoxyapatite, which is a modification of ion-exchange chromatography, have 

been tried, they did not proof effective enough to become part of an established protocol. 

I tried a new approach, separating proteins by the hydrophobicity of their side chains on a 

Phenyl Sepharose column. In principle this method is similar to precipitation with ammonium 

sulfate, a step that is included in almost all established purification protocols (e.g. Benne et al. 

1976, 1977, 1978, see table 1).  

Fractionation by ammonium sulfate precipitation however is rather imprecise since only large 

increments (0 - 40 %, 40 - 50 %, 50 - 70 %) can be used, resulting in eIF3 and proteins from 

the eIF4 family precipitating together in the 0 - 40 % ammonium sulfate fraction. Instead of 

using ammonium sulfate I used a Phenyl Sepharose column. Hydrophobic side chains of 

amino acids form complexes around the phenyl moiety of the column, essentially precipitating 

at the column. Decreasing the salt content (starting from 1.7 M ammonium sulfate) of the 

buffer then elutes the proteins by changing their hydrophobicity due to decreased ionic 

strength of the buffer, releasing them from the phenyl-group. The salt concentration can be 

controlled rather tightly using an ÄKTA FPLC machine with computer-controlled buffer mixer, 

therefore it should be possible to elute initiation factors at their perfect salt conditions, 

resulting in reasonably pure factors after just one step of purification. 
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Figure 8 : Purification of initiation factors using Phenyl Sepharose. Proteins were loaded to the column 

at 1.7 M ammonium sulfate ((NH4)2SO4). The percentage of ammonium sulfate in the elution buffer was 

lowered in 10 % increments by adding an identical buffer without ammonium sulfate resulting in 

proteins being separated by their hydrophobicity. Protein content of fractions was measured in relative 

absorbance units (mAU) at 320 and 280 nm. Initiations factors were identified in the fractions using 

western blot detecting with antibodies against part of eIF4F, eIF4G, and a subunit of eIF3, p110. 

 

 

 

Figure 9 : Western blot to identify eIF3 subunit p110 in elution fraction from Phenyl Sepharose column 

as described in figure 8. Detected bands are marked with a black square. Fractions were separated on 

12 % SDS-PAGE gels and transferred to a phosphocellulose membrane, primary antibody was raised 

against p110 in mouse and detected using a secondary anti-mouse IgG antibody coupled to alkaline 

phosphatase. 
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Figure 10 : Western blot to identify eIF4F subunit 4G in elution fraction from Phenyl Sepharose column 

as described in figure 8. eIF4G and degradation products can be detected. Fractions were separated 

on 12 % SDS-PAGE gels and transferred to a phosphocellulose membrane by semi-dry electroblotting. 

Primary antibody was raised against eIF4G in rabbit and detected using a secondary anti rabbit IgG 

antibody coupled to alkaline phosphatase. 

 

However, this attempt on purification was not successful, since initiation factors could be 

detected over several fractions (Figure 8, 9 and 10) indicating that they do not have a distinct 

perfect salt condition. This is not surprising taking into account, that eIF3 and eIF4F are large 

multi-subunit proteins with different local charges and hydrophobicity. This result shows a 

similar salt preference of factors as the established ammonium sulfate precipitation, where 

eIF3 and eIF4F precipitate between 0 and 40 % of ammonium sulfate, however it suggests 

that a higher increment of ammonium sulfate (up to 45 % or 50 %) may be better to include 

all of the eIF4F present in RSW. 

If using hydrophobic interaction chromatography additional steps of ion-exchange and maybe 

size exclusion are necessary to gain pure factors. This method is therefore no improvement 

over established methods using simple ammonium sulfate precipitation. 

To reach the aforementioned conclusion many experiments were necessary, since one major 

problem was that I started initial experiments with a very low amount of RRL (5 - 10 ml) or 

RSW (1.2 - 3 ml), when compared to established protocols (Table 1) resulting in no peaks 

above background level and not enough material eluted to be detected on SDS-PAGE or 

even western blot. After noticing this problem I attempted purification (shown in figure 8) with 

RSW from 1.2 liters of RRL resulting in factors only just detectable by western blot and not 
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seen as distinct bands on coomassie SDS-PAGE. 1.2 l of RRL is still at the low end of the 

amounts used in previously published protocols, so the low yield is not surprising. It is 

expected that about 67 % of factors present in RRL can be isolated to purity (Safer et al. 

1975) the rest is lost in void volumes and on columns. Therefore it is crucial to start with 

enough material, that 67 % of initiation factors are still enough to be detectable. 

In order not to waste more expensive RRL I decided to take advantage of an already well 

established protocol and the expertise offered by Prof. Shatsky as described above. 

Purification of ITAFs 

IRES trans-acting factors (ITAFs) are proteins normally not involved in translation, but in 

other parts of the RNA metabolism, like splicing or shuttling. ITAFs are per definition RNA 

binding proteins. Most of them do not bind sequence-specific, but bind to RNA in general or 

on common motifs, for example PABP binds to the polyA tail. Expression of some of them in 

E.coli was therefore challenging, since they prove toxic to the cells and were expressed only 

in small amounts (PCBP2, La) or sequestered into inclusion bodies (unr). For each protein a 

separate expression and purification protocol had to be established (see Materials and 

Methods). Variations in growth temperature, OD600 at time of induction, concentration of IPTG 

and different strains of E.coli were used to optimize expression. However unr had to be 

purified from inclusion bodies, while PCBP2 could only be bound to Ni-NTA beads when an 

additional step of ammonium sulfate precipitation was used to concentrate proteins before 

incubation with beads. Finally all ITAFs were purified and tested on SDS-PAGE gels.  

 

 

Figure 11 : Three known ITAFs, unrip, PTB and La-GST, as well as the initiation factor eIF4A were 

expressed recombinantly and purified using His-Tag affinity chromatography. Elutions from beads were 

separated on a 12 % SDS-PAGE gel and stained with coomassie. 
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Conclusion 

All factors necessary for future experiments, reconstitution and UV crosslinks could be 

obtained in high quality and sufficient quantities. This took longer than expected due to an 

unsuccessful attempted to establish a new purification protocol for initiation factors. 

Recombinant expression of initiation factors and ITAFs was optimized and purification 

protocols established.  

How to reconstitute the poliovirus IRES? 

Reconstitution of an mRNA means, in this case, initiation of translation up to the stage of 

48S-initiation complexes or 80S ribosomes without formation of peptide bonds and 

elongation. Formed ribosomal complexes are visualized by toe-printing or sucrose gradient 

centrifugation. 

The reconstitution is, under ideal conditions, performed using only purified factors as done 

with the EMCV (Pestova et al. 1996) and HCV IRES (Pestova et al. 1998) and capped beta-

globin mRNA (Dimitriev et al. 2003). Use of purified components (initiation factors, ribosomes, 

t-RNA) allows to establish the minimal factor requirement of an IRES element to initiate 

translation.  

Reconstitution of the PV IRES from purified components has not been successful up to now. 

As a type 1 IRES, PV IRES has a large requirement for trans-acting factors, which are 

present in HeLa extract but not in RRL (Dorner et al. 1984). All ITAFs identified for the PV 

IRES can be prepared recombinantly or purified from cell extracts and were used in 

reconstitution assays. A combination of all known ITAFs with all eIFs, t-RNA and purified 

ribosomes did not lead to a functional reconstitution of the PV IRES from pure components. 

The PV IRES can be reconstituted however using RRL supplemented with HeLa extract (e.g. 

Figure 12), indicating the presence of one or more additional ITAF(s) in HeLa extract. Before 

another attempt on reconstitution with purified components can be undertaken the missing 

ITAF(s) have to be identified. I tried to find those components using two different approaches, 

first isolation of proteins bound to the PV IRES in 48S complexes after sucrose gradient 

centrifugation and second depletion of HeLa cell extract with the PV IRES bound to magnetic 

beads. 

Isolation of proteins from 48S complexes 

ITAFs and initiation factors bound to the PV IRES for translation initiation are present in the 

48S initiation complex when bound to the starting codon AUG before subunit joining. To be 

able to purify proteins from 48S initiation complexes translation reactions were stopped by 
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GMP-PNP (Hinton et al. 2007) which inhibits the function of eIF2 and therefore subunit joining 

and dissociation of factors. The initiation process is halted at the stage of 48S complexes and 

these complexes are accumulated. The complexes can then be separated on sucrose 

gradients (5 - 20 % sucrose). Visualization of complexes in sucrose gradient fractions was 

achieved by labeling RNA with radioactive UTPs. After fractionation of the gradient the 

amount of radioactivity in each fraction can be used to identify 48S complexes.  

Using biotinylated PV-IRES mRNA all proteins bound to the mRNA can be linked to a 

Streptavidin column via the biotin-tags on the mRNA and can then be eluted by cleaving the 

mRNA with RNases. mRNA in 48S complexes was selected via the gradient profiles and 

subsequently used in binding assays. To distinguish between mRNA present in 48S 

complexes and mRNA with bound proteins just present in those fractions and to certainly 

identify complexes in the gradient, a dominant negative mutant of eIF4A R362Q (Pause et al. 

1994) was added to a control reaction. This mutant reversibly inhibits any translation initiation 

dependent on eIF4A by competing with the wild type form, leading to gradient profiles without 

48S complexes (figure 12). 

 

 
 

Figure 12 : 5-20 % sucrose gradient separating 48S complexes in an optimized translation reaction on 

the PV IRES in RRL supplemented with 20 % Hela extract inhibited (diamonds) and not inhibited 

(triangles) by the dominant negative mutant of eIF4A, R362Q. 48S complexes are present in fractions 

11-14, the relative counts per minutes (rel.cpm) were normalized on total radioactivity in the gradient. 
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Optimization of translation initiation 

The first step was to optimize the translation reaction for maximum yield of initiation 

complexes.  

As a template for initiation I used short in vitro transcribed RNAs in which the reporter firefly 

luciferase was only partly (100 nt) present after the PV IRES. This enables a good separation 

of 48S complexes from mRNPs (Hinton et al. 2007). mRNA was labeled with two differently 

modified UTPs, α-32P radioactive UTPs and biotinylated UTPs. Radioactive UTPs were 

necessary to visualize gradient profiles. The biotin-tag was added to purify proteins in a later 

step. 

Since the goal was to “fish” proteins using biotin-tags, internally biotinylated mRNAs were 

employed for optimization. No significant difference in formation of 48S complexes could be 

found between biotinylated and non-biotinylated RNA indicating that the effect of biotin on 

secondary structure of the IRES and formation of 48S complexes is negligible (Figure 13) at 

the used concentration of biotinUTP in the RNA.  

When translation reaction, inhibited with GMP-PNP, are separated on 5 - 20 % sucrose 

gradients, two forms of RNA-protein complexes can be observed, 48S initiation complexes (at 

middle sucrose-concentration) and 20S mRNP complexes (at low sucrose-concentrations). In 

most cases the mRNP complexes are much more pronounced than 48S complexes.  

 

 
 

Figure 13 : 5 - 20 % sucrose gradient separating 48S complexes in a not yet optimized translation 

reaction with RRL supplemented with 20 % Hela extract using biotinylated (triangles) and not 

biotinylated (diamonds) PV IRES mRNA. 48S complexes are present in fractions 11-14. The relative 

counts per minutes (rel.cpm) in each fraction were normalized on total radioactivity in the gradient. 
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Consistent with previous studies (Brown & Ehrenfeld 1979, Dorner et al.1984) I found that 

addition of 20 % HeLa extract vastly increased translation efficiency in RRL (figure 14), since 

several known ITAFs like La and unr are missing from RRL, but are present in HeLa extract. 

HeLa extract itself is not able to support translation, most likely due to high amounts of 

RNases present in the extract (figure 14 and 15).   

 

 

 

Figure 14 : Translation efficiency at the PV IRES in RRL, RRL supplemented with 20 % of HeLa extract 

and pure HeLa extract; measured as relative light units produced by firefly luciferase activity from an in 

vitro translation reaction using a firefly luciferase reporter under the control of the PV IRES. The 

experiment was performed twice in triplicate. 

 

The effect of HeLa extract on the formation of 48S complexes was additionally tested by 

sucrose gradient to exclude an effect of HeLa extract on other stages of translation. Here the 

short RNA without the full length luciferase reporter ORFs was used and translation inhibited 

at the 48S stage using GMP-PNP. As seen in figure 15 almost no initiation complexes were 

formed when using not supplemented RRL or pure HeLa extract. When using pure HeLa 

extract most radioactivity and therefore RNA was detected in the very light fractions of the 

gradient, indicating that not even RNA-protein complexes without ribosomal subunits were 

formed. This is most likely due to degradation of RNA in HeLa extract by endogenous 

RNases. 
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Figure 15 : Formation of 48S complexes in RRL (squares), RRL supplemented with 20 % HeLa extract 

(diamonds) and HeLa extract (triangles). Initiation reaction was stalled by addition of GMP-PNP and 

48S complexes were enriched. Reaction mixture was separated on 5 % to 20 % sucrose gradients, 

48S complexes can be seen at fractions 11-13. The relative counts per minutes per fraction (rel. cpm) 

were normalized to total radioactivity in the gradient. 

 

 

Commercially available RRL is treated with micrococcal nuclease to eliminate endogenous 

mRNAs which would compete with reporter constructs for factors, ribosomes and amino acids 

(Pelham & Jackson 1976). But even nuclease treated RRL still contains capped mRNAs or 

fragments thereof, which compete with the IRES for initiation factors and ribosomal subunits. 

These mRNAs are mostly globin mRNAs, which are very stable and protected from RNases 

by the globin stability complex (Weiss & Liebhaber 1995) and therefore hard to completely 

eliminate by RNase digestion without also eliminating ribosomal RNAs. Addition of m7GTP, 

which inhibits cap-dependent, but not IRES dependent translation by inhibiting binding of 

eIF4E to the cap, allows the IRES to prevail in this competition for ribosomes and factors 

(Svitkin et al. 1996, Bi & Goss 2000, figure 16). 

Additionally, it is known that polyA tails stimulate translation of mRNAs (Gallie 1991). Since 

PV naturally has a polyA tail (Semler et al. 1984), addition of 50 As to the 3’ end of the 

construct increased translation efficiency (figure 16) as well as the yield of 48S complexes in 

the gradients (Bergamini et al. 2000, Paulous et al. 2003, figure 17 and 18 on the next page). 
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Figure 16 : Addition of m7GTP and adding of 50As to the end of the mRNA controlled by the PV IRES 

stimulated translation efficiency of a firefly luciferase reporter construct in not supplemented RRL five 

and four fold respectively. Experiments were performed twice in duplicate. 

 

PolyA did not stimulate formation of 48S complexes at the EMCV IRES (Figure 18). Even 

though several cases of stimulation of translation on the EMCV IRES by polyA tails have 

been described (Hruby & Roberts 1977, Bergamini et al. 2000) in the literature, this could not 

be repeated here.  

 

 

 

Figure 17 : Effect of a polyA50 tail on formation of 48S complexes. Translation initiation was performed 

using short in vitro transcribed mRNAs with (diamonds) or without (squares) addition of 50 As at the 3’ 

end. Translation was inhibited at the stage of 48S initiation complexes by addition of GMP-PNP and 

complexes separated on 10 - 35 % sucrose gradients. 
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Figure 18 : Summary of five gradients separating 48S complexes assembled at the PV IRES 

(performed as described in figure 17) and two gradients separating 48S complexes assembled at the 

EMCV IRES. A significant stimulation of PV IRES dependent translation by polyA50 tail can be seen, 

significance was tested using ANOVA p=0.02. 

 

After optimizing the translation conditions the optimal amount of RNA in one reaction needed 

to be elucidated; different amounts of mRNA were tested (figure 19) and an optimal amount 

of 0.5 µg RNA in a 50 µl reaction was chosen as a compromise between low yield at higher 

RNA concentration (purple line) versus low amount of total RNA (red line) being able to bind 

to Streptavidin beads.  

 
Figure 19 : Formation of 48S complexes on the PV IRES in RRL supplemented with 20 % HeLa extract 

with 0.2 µg (red), 0.5 µg (green) and 1 µg (purple) of PV IRES RNA added to 50 µl of translation 

reaction. Translation reactions were stopped by addition of GMP-PNP and separated on 5 % to 20 % 

sucrose gradients. 
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Using 0.5 µg of mRNA addition of p100, a fragment of eIF4G, which is produced in infected 

cells by the viral protease 2A, lead to an increased formation of 48S complexes (as described 

in Ohlmann et al. 1995, Borman et al. 1997, Roberts et al. 1998, figure 20). 

 

 

 

Figure 20 : Formation of 48S complexes in RRL supplemented with 20 % HeLa extract with (diamonds) 

or without (crosses) addition of recombinant eIF4G (p100). As a control, translation reaction was 

inhibited using the dominant negative mutant of eIF4A R362Q (squares). Initiation was stopped by 

addition of GMP-PNP and translation reactions separated on 5 % to 20 % sucrose gradients. 

 

Reconstituting the PV IRES from a polyadenylated construct in RRL supplemented with 20 % 

HeLa extract, addition of m7GTP and eIF4G (p100), yielded an amount of 48S complexes 

much larger than described previously (Ochs et al. 1999, 2002). The amount of proteins 

(initiation factors and ITAFs) in the 48S peak was therefore thought sufficient to isolate 

unknown proteins that are part of the 48S initiation complex with biotinylated mRNA.  

To further increase the amount of protein obtained in the 48S peak, peak fractions from three 

gradients run simultaneously were combined or the reaction was up-scaled to the volume 

limits of the centrifugation tube (300 µl). 

Optimisation of binding to beads 

48S complexes from sucrose gradients were bound to Streptavidin Sepharose beads via the 

internal biotin-tags in the PV-RNA and proteins eluted from the beads using RNase A, RNase 

T1 or a mix of both RNases. Digestion of the RNA releasing only proteins from the beads that 

are bound to RNA even though parts of the RNA remained bound. Proteins binding 
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unspecifically to Sepharose beads or biotin are retained on the beads. Eluted proteins were 

then separated by SDS-PAGE and stained with the very sensitive silver staining method. 

As a first step to optimize elution several RNases were tested using radioactive EMCV RNA 

bound directly to beads (figure 21). After elution radioactivity in the eluate was measured and 

compared to radioactivity still bound to the beads. A mix of the two most active RNases A and 

T1 was used in experiments. However performance of RNases on naked RNA does not 

necessarily reflect performance when proteins are bound to the RNA masking potential 

cleavage sites. 

 

 
 

Figure 21 : Elution of radioactive EMCV IRES RNA from Streptavidin beads using different RNases 

(S1, V1, A and T1). Under the conditions tested (A-100, no blocking, incubation at 37 °C) RNase T1 

performed best. 

 

Further optimization of elution was addition of 2 mM Biotin and 5 mM EDTA to the elution 

buffer and increasing the Mg2+ concentration in the wash buffer to 10 mM to freeze 

complexes and stabilize RNA-protein bounds. 

Formation and purification of ITAFs from 48S complexes was verified by western blot against 

the known ITAF, PABP. PABP could be detected in 48S and RNP complexes (figure 22) 

formed at the PV and EMCV IRES, but not in complexes formed at the HCV IRES. In contrast 

to the picornaviral IRES constructs (PV and EMCV), the construct used to assemble 

complexes at the HCV IRES was not polyadenylated, since HCV does not have a polyA tail, 

but rather a long and structured 3’ UTR (Bung, Bochhaeva et al. 2010). 
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Figure 22:   Western blot with an antibody raised against recombinant PABP in rabbit. Translation 

reactions were assembled in RRL supplemented with 20 % HeLa extract using biotinylated PV-IRES 

RNA. Then they were either separated into 48S complexes and RNPs on 5 - 20 % sucrose gradients 

or directly bound to Streptavidin beads as total mRNP complexes. 

1: Molecular weight marker 

2: 48S peaks formed at the EMCV IRES 

3: Total mRNP complexes formed at the EMCV IRES 

4: Total mRNP complexes formed at the HCV IRES 

5: Total mRNP complexes formed at the PV IRES 

6: Total mRNP complexes formed at the PV IRES (no HeLa extract) 

Conclusion 

Formation of 48S complexes at the PV IRES is rather low in RRL, therefore the protocol was 

optimized by addition of HeLa extract, m7GTP and eIF4G(p100). Polyadenylation of the used 

construct also increased formation of 48S complexes. These 48S complexes were formed 

using double labeled RNA. Radioactive UTPs were used to identify peaks in sucrose 

gradients and biotin-UTPs were used to enrich RNA binding proteins from the peaks. A 

protocol for formation of complexes and enrichment using Streptavidin beads was 

established.  

Proteins bound to the HCV IRES 

Translation initiation at the HCV IRES is much simpler than on the PV or EMCV IRESs. 48S 

complexes can be reconstituted at it just from purified ribosomes and eIF3 without any 

additional components.  

In a translation reaction initiated with only 40S ribosomal subunits and eIF3, 48S initiation 

complexes form at the HCV IRES but cannot complete translation initiation since 80S 

subunits, eIF2 and loaded t-RNAs are missing. When incubating those partial translation 
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reaction using biotinylated HCV RNA and purified components directly with Streptavidin 

beads, 48S complexes as well as RNPs (eIF3 bound to RNA without 40S subunits) will bind 

to the beads and can be eluted using RNase. Ribosomal proteins, as well as subunits of 

eIF3, can be identified on silver stained SDS-PAGE gel (figure 23 and 24). Not biotinylated 

HCV IRES RNA was used to control for unspecific binding and elution of proteins to the 

beads. Purified eIF3 (-p170) and pure 40S ribosomal subunits were loaded on the gel for 

comparison (figure 23, lanes 1 and 9).  

 

 
 

Figure 23 : Reconstitution of HCV IRES from purified components (40S ribosomal subunits and eIF3 (-

p170)). Initiation reaction was stopped after 15 min by cooling. Then the reaction was incubated with 

Streptavidin beads and proteins were eluted with RNase A and T1 mix.  

beads: beads incubated with extract without RNA (lanes 2 and 6), 

HCV: beads incubated with extract containing not biotinylated HCV IRES RNA (lanes 4 and 7),  

HCV Bio: beads incubated with extract containing biotinylated HCV IRES RNA (lanes 3 and 8),  

pure 40S subunits and eIF3 (-p170) were loaded on the gel as controls (lanes 1 and 8) 

Proteins separated on 15 % SDS-PAGE gel and stained using the silver staining protocol described in 

the methods section. 

 

Since binding and elution from Streptavidin beads was sufficiently efficient I next used 

extracts to assemble 48S complexes at the HCV IRES. When using extract (RRL + 20 % 

HeLa) instead of purified component several additional bands can be seen on the gel (figure 

24). Especially interesting is the band at  ̴ 45kDa present in samples when reconstituted from 

extract, but not from purified components.  



 

84 

 

To further investigate the  ̴ 45kDa protein found in complexes at the HCV IRES from RRL but 

not from purified components I performed a sucrose gradient using biotinylated HCV IRES 

RNA as a template for translation initiation (figure 26 - 28). 

Another additional band can be seen at  ̴ 72kDa, which seems to be part of the ribosome, 

since it can be also seen when loading purified 40S ribosomes. It cannot be seen in 

complexes assembled from pure 40S subunits and eIF3 (-p170). Since silver staining 

visualizes RNA as well as proteins this band might consist of RNA accumulating at the HCV 

IRES construct, either from the ribosome or from untreated RRL. This band could not be 

observed on a coomassie stained gel (figure 25), since coomassie does not stain RNA.  

 

 
 

Figure 24 : Reconstitution of HCV IRES from purified components (40S ribosomal subunits and eIF3 (-

p170), lanes 4-7) and extract (RRL +20 % HeLa, lane 1 and 2). Translation reaction was stopped after 

15 min then incubated with Streptavidin beads and proteins were eluted with RNase A and T1 mix. 

Proteins were separated on a 15 % SDS-PAGE gel and the gel stained using the silver staining 

protocol. 

HCV: not biotinylated HCV IRES, HCV Bio: biotinylated HCV IRES, pure 40S subunits were loaded on 

the gel as controls (lane 3).  

Beads used to purify proteins were eluted a second time by boiling with SDS sample buffer (lanes 9 

and 10). Pure: beads from samples seen in lane 4; RRL: beads from samples seen in lane 2. 
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As shown in figure 24 (lanes 9 and 10) elution from the beads by RNase is incomplete and a 

second elution using SDS-PAGE sample buffer leads to a much higher yield of proteins as 

seen in lanes 9 and 10 in figure 24. Boiling with SDS sample buffer however elutes proteins 

bound unspecifically to the beads as well as disrupting the biotin-Streptavidin bond, therefore 

eluting RNA and bound proteins. Unfortunately these elutions then include proteins 

unspecifically bound to the beads and not only RNA binding proteins. 

Proteins bound to picornavirus IRESs 

As done on the HCV IRES (figure 24), I reconstituted the PV and EMCV IRES using RRL 

supplemented with 20 % HeLa extract. Addition of m7GTP and eIF4G (p100) ensured efficient 

formation of 48S complexes, as described above. Using biotinylated RNA to initiate 

translation, whole reactions were incubated with Streptavidin beads and proteins eluted using 

RNase T1 with addition of 2 mM Biotin and 5 mM EDTA. Proteins were separated on 15 % 

SDS-PAGE Gel and the gel stained with coomassie.  

The overall patterns of proteins eluted from translation reaction initiated on all three IRESs 

are very similar; however there are some slight but important differences (figure 25 lanes 2-

5). 

The 45 kDa protein observed when translation is initiated at the HCV IRES in RRL 

supplemented with HeLa (figure 24, lane 2) can be observed here again (figure 25, lane 3). A 

band with identical size can be seen when initiating at the PV IRES (figure 25, lane 5), but not 

on the EMCV IRES (figure 25, lane 4). A strong band at ̴ 50 kDa may be a picornavirus 

specific ITAF, since it can only be observed at the EMCV and PV (lane 4 and 5) but not at the 

HCV IRES (lane 3). Those bands were excised from the gel and sent to the protein analysis 

facility at Moscow State University for mass-spectrometric analysis. 

Another PV specific band was observed at  ̴ 100 KDa. It may also be present in EMCV but is 

much weaker.  
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Figure 25 : Reconstitution of HCV, EMCV and PV IRESs from extract (RRL + 20 % HeLa),translation 

initiation reaction in the presence of GMP-PNP was stopped after 15 min by cooling. Then the reaction 

mixture was incubated with Streptavidin beads and proteins were eluted with RNase T1, as a control 

not biotinylated PV RNA was used (C). Proteins were separated on a 15 % SDS-PAGE gel and stained 

with coomassie. 

Analysis of proteins using sucrose gradients 

To further analyze those protein patterns, radioactive and biotin labeled HCV, PV and EMCV 

RNA was used to initiate translation. Translation reactions were then separated on 5-20 % 

sucrose gradients (figure 26). 

 
 

Figure 26 : Formation of 48S complexes in an optimized RRL-based system using three different viral 

IRESs, PV (blue), EMCV (red) and HCV (green). Translation reaction was stopped at the stage of 48S 

complexes by addition of GMP-PNP and complexes were separated on 5 - 20 % sucrose gradients. 
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Formation of 48S complexes can be observed with all used IRESs to varying degrees. As 

expected the EMCV IRES (red line in figure 26) performed best under the used conditions, 

which were optimized for translation at the related PV IRES. The HCV IRES is approximately 

300 nts smaller than the PV and EMCV IRESs resulting in a slight shift of the 48S peak with 

HCV RNA towards lower sucrose density.  

The stability of RNA after the gradient was tested on a 8 % polyacrylamide gel before using 

the biotinylated RNA to extract proteins from complexes. All three RNAs were reasonably 

stable with slight degradation after translation initiation and sucrose gradients (figure 27).  

 

 

Figure 27 : RNA stability in 48S complex tested after 5 - 20 % sucrose gradient and compared to RNA 

not subjected to extracts and gradient. Radioactively labeled RNAs were separated on a 8 % PA gel 

and the dried gel used to expose a phosphoimager cassette. The amount of input RNA equals the 

amount of RNA used in one gradient. 

Isolation of proteins from 48S complexes 

After verification of RNA quality the biotinylated RNAs from the 48S and RNP peaks (figure 

26) were used to extract proteins using Streptavidin beads. Proteins were eluted from beads 

using RNase T1 and separated on a 15 % SDS-PAGE gel. The band observed in translation 

reaction at the HCV and PV IRES at 45 kDa (figure 25) can be seen in the 48S complexes 

(figure 28) although due to different running and staining procedures it appears to be slightly 

lower (40 - 42 kDa). 

Another band at 120 kDa can also be observed in translation reactions at the PV and HCV 

but not the EMCV IRES. Since the concentration of acrylamide and the running parameters of 

this gel were optimized for separation of proteins in the range of 30 – 80 kDa, proteins with 

higher molecular weights were not well separated. I focused on smaller proteins falling into 

the size range well separated on the gel. Another experiment with different separation 

conditions could not be performed due to time and material constrains. 
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The 50 kDa band observed specifically for EMCV and PV (figure 25) is found in the RNP 

peak, but is absent in the 48S fractions (figure 28), indicating that this protein is not involved 

in formation of 48S complexes and may even be an inhibitor of translation initiation at 

picornaviral IRESs. The largest amount of proteins was eluted from the RNP peak formed at 

the PV IRES, due to it being the largest peak of the gradient (figure 26). This may be the 

reason why two PV specific bands at 100 and 125 kDa can be observed in the RNP peak but 

not in the 48S peak. Unfortunately the bands detected in the 48S peaks assembled on all 

three IRESs proofed too weak for mass-spectrometric analysis. 

  

 

 

Figure 28 : Separation of proteins extracted from sucrose gradient (figure 26) on a 15 % SDS-PAGE 

gel and stained using the silver staining protocol. Peak fractions from the 48S and RNP peak 

respectively were combined and incubated with Streptavidin beads, proteins were eluted from beads 

using RNase T1 and 2 mM biotin. Proteins (p45 and p50) chosen for further analysis are indicated by 

black squares.  

 

However since the same bands were observed on the gel prepared from total complexes at 

all three IRES (figure 25), the bands from the first gel were excised and sent for mass-

spectrometric analysis.  
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Results of mass spectrometry 

Band excised from coomassie stained SDS-PAGE gels (figure 25) were sent to the Mass 

spectrometry facility at Moscow State University. The results were analyzed using MASCOT 

at http://www.matrixscience.com. In total 4 bands were sent for mass spectrometry, p45 from 

the 48S peak of translation reactions initiated at the PV and HCV IRES and p50 from the 

RNP peak of translation reactions initiated at the PV and EMCV IRES (figures 25 and 28).  

P45 was in both cases identified as cytoplasmic actin, a precursor of actin fibers in the 

cytoskeleton. Since actin is one of the most abundant proteins in the cell a contamination of 

the samples is rather likely. Separation of the band observed at 45 kDa on a 2D-Gel could 

allow further insight into its composition. It is possible, even likely that another protein of the 

same size can be detected there. 

P50 was in both cases identified as ITAF45/PA2G4/EbP1 a known ITAF for FMDV, which has 

not been described for PV or EMCV. ITAF45/PA2G4/EbP1 stimulates translation at the FMDV 

IRES (Monie et al. 2007) and was shown to interact with the EMCV IRES, but not to stimulate 

it (Bonnal et al. 2005). The fact that ITAF45/PA2G4/EbP1 was detected in the RNP peak, but 

not in the 48S peak, indicates binding of ITAF45/PA2G4/EbP1 to the IRESs but not 

necessarily stimulation of formation of 48S complexes. 

ITAF45/PA2G4/EbP1 is in uninfected cells a transcription factor probably involved in rRNA 

processing (Strausberg et al. 2001, Squatrito et al. 2004) but is known to shuttle between 

nucleus and cytoplasm (Squatrito et al. 2004), where it interacts with the ErbB3 receptor 

(Zhang et al. 2008). EbP1 was implicated in growth regulation (Squatrito et al. 2004) and 

translation initiation via phosphorylation of eIF2.  

However, the influence of both factors or at least of p50 in PV translation needs to be tested 

by functional assays using recombinant or purified protein in an in vitro translation system like 

RRL. 

Conclusion 

48S complexes were formed at the PV, HCV and EMCV IRES using double labeled RNAs. 

Using the biotin-tag proteins bound to the RNAs could be identified. A picornavirus-specific 

protein, EbP1, was identified in the RNP peak at the PV and EMCV IRES. Another factor, 

cytoplasmic β-actin, was identified at the PV and HCV IRES exclusively in 48S peaks. 

Depletion of HeLa extract 

Poliovirus does not translate well in the in vitro translation system RRL. Supplementing RRL 

with HeLa extract leads to a significant increase in translation of reporter mRNAs under the 

control of the PV IRES (Dorner et al. 1984). This effect is due to ITAFs present in the extract. 
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Two of them have been identified (La and unr), but there are most likely others. Using 

internally biotinylated PV IRES RNA coupled to magnetic Streptavidin beads I successfully 

depleted HeLa extract of RNA binding proteins (figure 29) to identify proteins necessary for 

the stimulatory effects of HeLa extract. 

 

 

 

Figure 29 : Translation reaction of a PV IRES Luciferase reporter in RRL supplemented with 20 % Hela 

extract depleted of RNA binding proteins. Depletion was achieved either using the PV IRES bound to 

Streptavidin coupled magnetic beads or just beads (mock depleted). Luciferase activity was 

determined and compared to activity in not supplemented RRL. 

 

After successful depletion I tried to restore the stimulatory activity of HeLa extract by adding 

proteins, which were eluted from the beads used to deplete the extract. Those were eluted by 

digestion with micrococcal nuclease, since this nuclease can be easily inhibited by addition of 

EGTA. Unfortunately addition of elution fractions did not restore the stimulating activity of 

HeLa extract (figure 30). I hypothesized that proteins bound only weakly to the RNA via 

protein-protein interactions might be washed off during the procedure, so I added the washes 

to RRL, which also did not result in stimulation (figure 30). Next I combined washes and 

elution fractions, since RNA-binding ITAFs like La are expected to be present in the elution 

but not in the washes. Even a combination of washes with elution did not stimulate translation 

at the PV IRES in RRL (figure 30). 
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Figure 30 : Translation reaction with the PV IRES luciferase construct in RRL supplemented with 20 % 

Hela extract depleted of RNA binding proteins. Depletion was achieved with the PV-IRES bound to 

Streptavidin coupled magnetic beads or just beads (mock depleted). Additionally RRL was 

supplemented with 20 % elutions and washes from beads used to deplete. Luciferase activity was 

determined and compared to activity in not supplemented RRL in percent. 

 

The stimulating activity of HeLa extract on translation under the control of the PV IRES could 

be depleted by binding this activity to PV IRES coupled beads. The activity could not be 

restored by elutions from the beads. It is possible that this factor is not an RNA binding 

protein but a factor that facilitates binding of other ITAFs to the IRES, as described for SrP20 

(Bedard et al. 2007) and NF45 (Merrill & Gromeier 2006). Most likely however the stimulating 

factor together with the known ITAFs unr and La could not be eluted from the beads using 

RNase. In conclusion this approach did not yield any new hints on the nature of the missing 

ITAF(s). 

Influence of polyA tail on initiation of translation 

During optimization of translation initiation to identify proteins bound to the PV IRES, I 

discovered that addition of 50As to the 3’ UTR of an mRNA controlled by the PV IRES has a 

pronounced effect on formation of 48S complexes on the PV IRES but not the EMCV IRES 

(figure 18). Stimulation of translation by polyA has been known for a long time (Gallie 1991, 
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Bergamini et al. 2000 and figure 16), but the exact mechanisms are still to be elucidated. The 

effect may be due to protection of the mRNA from degradation, ribosome recycling or a signal 

about mRNA 3’ end stability to the 5’ end by induction of conformational changes in initiation 

factors. Using GMP-PNP to stop ribosomes at the 48S stage I discovered a pronounced 

effect of the polyA tail on this early step of translation (Figure 17 and 18). 

To control if this effect may be an artifact resulting from the use of GMP-PNP I used a 

different inhibitor, anisomycine, which stops translation at the 80S stage (figure 31). 

 

 

 

Figure 31 : Translation initiation at the PV IRES with (diamonds) and without (squares) addition of 50 

As to the 3’ end of the RNA, translation reaction were stopped at the stage of 80S ribosomes by 

addition of anisomycine and separated on 10-35 % sucrose gradients. 

 

With anisomycin as inhibitor the stimulation by polyA50 tail could be seen even more 

pronounced as when using GMP-PNP (compare figures 17 and 31). I was not able to detect 

any peaks in sucrose gradients when not accumulating complexes by addition of inhibitors 

since PV initiates translation rather inefficiently in RRL, even when supplemented with 20 % 

HeLa extract. Artificial effects of the inhibitors can therefore not be excluded. 

To further investigate the mode of action by polyA tails I compared the amount of 48S 

complexes formed at different time points, from 30 s to 10 min, in the presence of GMP-PNP 

to stall 48S complexes. Translation initiation was stopped at the appropriate time point by 

addition of unphysiological amounts (30 mM) of MgCl2 which stabilizes existing complexes 

and prevents empty ribosomal subunits from binding to RNA (figure 32). 
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Figure 32 : Formation of 48S complexes at the PV IRES over ten minutes; subunit joining was inhibited 

by GMP-PNP. Formation of 48S complexes was stopped at appropriate time points by addition of 30 

mM MgCl2 and immediate cooling of the reaction to 0 °C. Tra nslation reactions were separated on 10-

35 % sucrose gradients. 

 

Three independent repeats of the time course experiment with and without polyA50 were 

performed and results combined in figure 33. The results indicate that formation of 48S 

complexes in both cases, with and without polyA50 is complete after 2 minutes and that on 

RNA with polyA tail more 48S complexes can form (figure 33). Since I used GMP-PNP to stall 

48S complexes, only one complex can form per RNA molecule. Equal amounts of RNA were 

used, so the higher amount of radioactivity accumulating in the 48S peak with polyA indicates 

that formation of 48S complexes is much more efficient with polyA. Formation of 48S 

complexes seems to be more efficient when using polyA tails, as seen in figure 17, where the 

amount of mRNPs decreases with addition of polyA tails. In this system, supplemented 

treated RRL, ribosomes and initiation factors are limited, and are more efficiently connected 

to RNAs with polyA. 
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Figure 33 : Summary of three independent time course experiments initiating translation at the PV 

IRES with (squares) and without (diamonds) addition of 50 As. Subunit joining was inhibited using 

GMP-PNP and separated on 5 - 20% sucrose gradients. Rel.cpm in 48S complexes was calculated 

using the area under the curve in 48S complexes. 

Conclusion 

PolyA tails have a significant effect on translation initiation at the PV IRES, but not at the 

closely related EMCV IRES. With polyA tails significantly more initiation complexes form, 

while the rate of formation is not influenced. 

UV-crosslinking of La to the PV IRES 

As outlined in the proposal of my project the purpose of purifying eukaryotic initiation factors 

(eIFs) and ITAFs was to further investigate their binding to the PV IRES and interaction with 

each other while binding using UV-crosslinking. Purification of eIFs took longer than 

anticipated in the plan of the PhD project and other approaches to find the missing ITAFs 

were tried first as described above. Consequently only very few crosslinks were performed; 

investigating the synergistic effects between the La autoantigen, PTB and eIF4A.  

A short radioactively labeled RNA was synthesized by in vitro transcription consisting of the 

PV IRES and 250 nt of the luciferase ORF. The construct was incubated with pure protein 

preparations in different combinations. Proteins bound to the RNA were irreversibly 

crosslinked to U-residues by UV light.  

The antiautogen La is cross-linked to the PV IRES when incubated with PV RNA by itself 

(figure 34), but not when incubated in direct competition with PTB or recombinant eIF4A. In 
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mix with PTB La binding to the IRES is barely detectable, while it is completely absent in an 

equimolar La/eIF4A mixture.  

  

 
 

Figure 34 : UV-crosslinking of purified recombinant La, eIF4A and PTB to PV IRES RNA. Different 

equimolar combinations of proteins were tested. Crosslinking was performed for 30 min with UV light of 

the wavelength 320 nm and proteins separated on 12 % SDS-PAGE. X-ray film was exposed to the 

dried gel for 3 days at 4°C. 

 

La binding to the PV IRES is strongly influenced by other factors binding at the same position 

(PTB) or changing the secondary structure of the IRES (eIF4A). To further investigate La 

binding to the IRES different concentrations of La and competitors need to be tested. 

Interactions between ITAFs are very interesting but hard to investigate in purified systems, 

since interactions in vivo are most likely very different from interactions in vitro or with purified 

components. 

 

Meanwhile, however, the search for new ITAFs continued and maybe the elusive factor is not 

a protein after all.  
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Effects of miRNAs on translation initiation at the PV IRES 

Identification of neuron-specific miRNAs 

miRNAs, which potentially bind to the PV IRES were identified using ViTa 

(www.vita.mbc.nctu.edu.tw accessed on 18.6.2008). ViTa uses the algorithms of Miranda and 

targetscan (Lewis et al. 2003) on a database which is compiled from miRNBase, miRNA-

Map, ICTVdB, VBRC and VirGen. The output of ViTa is an interactive graphic (figure 35), 

which due to its interactivity cannot be displayed in all details here. For clarity the results are 

compiled in the following table showing all miRNAs identified to bind to the IRES-region of the 

PV genome.  

miRNA Binding site Specificity Sequence Literature 

18b 4-27 placenta 5'- UAAGGUGCAUCUAGUGCAGUUA -3' O’Donnell et al.  
2005  

20a 149-172 bladder 5'- UAAAGUGCUUAUAGUGCAGGUAG -3' Lagos-
Quintana et al. 
2001  

107 446-465 brain, 
kidney 

5'- AGCAGCAUUGUACAGGGCUAUCA -3' Mourelatos et 
al. 2002  

127 209-227, 
517-540 

brain,  
placenta 

5‘-UCGGAUCCGUCUGAGCUUGGCU-3‘ 
 

Lagos -
Quintana et al. 
2002  

130b 266-288 placenta,
brain 

5'- CAGUGCAAUGAUGAAAGGGCAU -3' Weber et al. 
2005  

210 503-523 lung 5'- CUGUGCGUGUGACAGCGGCUGA -3' Lim et al. 2003  
221 294-312 prostate 5' AGCUACAUUGUCUGCUGGGUUUC 3' Lim et al.  2003 
301 270-288 brain  5' CAGUGCAAUAGUAUUGUCAAAGC 3' Lu et al. 2005  
302a 152-171 stem cells 5' UAAACGUGGAUGUACUUGCUUU 3' Weber et al. 

2005 
324-5p 3-22 brain, 

prostate, 
placenta 

5‘ CCACUGCCCCAGGUGCUGCUGG 3‘ Kim et al.  
2004 

326 2-12  
297-304 

brain, 
neuronal  

5‘ CCUCUGGGCCCUUCCUCCAG 3‘ Kim et al. 2004 

346 348-373 brain  5‘ UGUCUGCCCGCAUGCCUGCCUCU 3‘ Kim et al. 2004 
422a 505-529 

(874-903) 
brain, 
muscle 

5‘ CUGGACUUAGGGUCAGAAGGCC 3‘ Kasashima et 
al. 2004 

422b 505-529 
(874-903) 

muscle 5' CUGGACUUGGAGUCAGAAGGCC 3' Kasashima et 
al. 2004 

452* 308-329 placenta 5' UCAGUCUCAUCUGCAAAGAAG  3' Bentwich et al. 
2005 

Table 2  : miRNAs identified to bind the PV IRES (nt 1-793), obtained from ViTA www.Vita.org on 

18.6.2008. Information about specificity were obtained using the miRNbase at www.microrna.org on 

19.6.2008 and on 26.1.2010. Brain-specific miRNAs are indicated in bold, miRNAs chosen for further 

studies are indicated in red. 
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Figure 35 : Graphic output of ViTa depicting all miRNAs bound to the poliovirus genome as colored 

dots with no apparent colorcode. On the ViTa website each dot represents a link to another page, 

which contains further information about this particular miRNA and its binding site.  

The IRES region is marked with a black square. All miRNAs present in the black square are listed in 

table 2. 

 

Three miRNAs, miRNA-127, 326 and 422a were chosen for their binding sites and exclusive 

neuron specificity (table 2 and figure 35). Their binding sites were located in the structural 

model of the PV-IRES based on work by Pilipenko et al. (1989) (figure 36). Both miRNA-326 

and miRNA-422a bind to the IRES in predicted loop structures, while the predicted miRNA-

127 binding site is located in a paired region in the stem of loop III.  
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Figure 36 : Computer-based model of PV IRES modified from Pilipenko et al. (1989); miRNA-binding 

sites are indicated. Stem loop I with another binding site for miRNA-326 is missing from this model 

since it is not part of the IRES. 

 

The chosen miRNAs were further characterized using Miranda and other miRNA databases. 

miRNA-127 was identified in humans using northern blot and RT-PCR by Lagos-Quintana et 

al. (2002), where it was described as neuronal. However, Landgraf et al. (2007) showed a 

more ubiquitous distribution for miRNA-127 using more sensitive sequencing and blotting 

techniques. It is especially abundant in spleen (Kelly & Russel 2009). miRNA-127 was 

mapped to an intergenic region on chromosome 14. Both strands of the duplex are 

recognized miRNAs, miRNA-127-3p and miRNA-127-5p. The miRNA-127, which has a 

binding site at the PV IRES is miRNA-127-3p. miRNA-127 is a mammalian-specific miRNA, 

no homologues can be found in Drosophila melanogaster or Xenopus laevis (Friedman et al. 

2008). The natural targets of miRNA-127 are among others a mRNA coding for a lysine 

methyltransferase and the mitogen-activated kinase 4 (MAPK4). 
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miRNA-326 was identified as neuron specific in rats and mice (Kim et al. 2004) and identified 

in humans using computer-based genome searches, which were later verified experimentally 

(Landgraf et al. 2007). It was mapped to chromosome 11, where it is expressed in intron 1 of 

beta-arrestin, a protein involved in desensitation of G-coupled receptors. In rat brain miRNA-

326 is especially abundant during neuronal growth, indicating a developmentally regulated 

expression and activity pattern. Its natural targets are diverse mRNAs, whose proteins are 

mostly involved in growth and expression regulation, like the orthopedia homeobox gene and 

MAPK4. miRNA-326 also affects mRNAs of proteins involved in PV translation, such as the 

known ITAF PTB and eIF4B. 

miRNA-422a was first identified via computer-based genome analysis as a paralogue of 

miRNA-422b in humans and later verified experimentally and mapped to an intergenic region 

on chromosome 15 (Landgraf et al. 2007). Its natural targets are mRNAs coding for e.g. 

polyA polymerase A and the H3 Histone. 

Effect of miRNA-326* on luciferase reporter in RRL 

All identified neuronal miRNAs were ordered from biomers.net. For each duplex the guide 

(mat) and the passenger strand (*) were synthesized by biomers.net. Both strands were then 

tested independently as single stranded RNAs in the in vitro system RRL and as duplex in 

HeLa and SH-SY5Y cells.  

All miRNAs were tested with the pMPolio construct (Ochs et al. 2003), consisting of the PV 

IRES and the firefly luciferase (deWet et al. 1997), and pD5 which contains the firefly 

luciferase with a short vector-derived 5’ UTR between the T7 promoter and the beginning of 

the ORF (figure 37). 

 
Figure 37 : RNA constructs used for in vitro translation and transfections. pD5 was capped for 

transfection but not for in vitro translation. DNA templates were derived from plasmids by digestion and 

RNA was transcribed in vitro using SP6 polymerase. 
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Results obtained in vitro using RRL were inconclusive. Only addition of miRNA-326* showed 

a significant dose-dependent decrease in translation efficiency (figure 38). However this 

inhibiting effect could also be seen using the pD5 control (figure 39) and is therefore most 

likely not an effect of the miRNA-326* on the PV IRES, but an effect of this miRNA on the 

luciferase reporter. 

 

Figure 38 : Influence of ss miRNAs on translation of the PV IRES luciferase construct in RRL. All 

values are depicted in relation to activity with no addition of miRNA which is set to 100 %. An inhibiting 

effect of miRNA-326* can be seen (waves). The experiment was performed twice in duplicates 

therefore no standard deviation can be calculated. 

 
 

Figure 39 : Effect of ss miRNAs on translation of the pD5 luciferase control construct in RRL. All values 

are depicted in relation to translation without addition of miRNA which is set to 100 %. An inhibiting 

effect by miRNA-326* can be seen here as well (waves) as in figure 36. Values are missing for some 

miRNAs when experiments were not performed at these concentrations. The experiment was 

performed twice in duplicates therefore no standard deviation can be calculated.  
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This suspected effect of miRNA-326* on the reporter was further investigated and confirmed 

by the inhibition of the pD5 reporter by miRNA-326 duplex when transfected into HeLa cells 

(figure 40). 

There will be a more detailed discussion of the effect of miRNA-326* on the reporter in a later 

chapter.  

 

 

 

Figure 40 : Influence of miRNA-326 duplex on translation of the pD5 luciferase control construct when 

co-transfected into HeLa cells. All values are depicted in relation to reaction without addition of miRNA 

which is set to 100 %. The experiment was performed twice in duplicates therefore no standard 

deviation can be calculated. 

Effects of neuronal miRNAs on translation initiatio n at the PV IRES in cell 

lines 

Since it was shown that RRL is not a good system to study PV (Svitkin et al. 1996) and 

miRNA-interaction in general (Fabian et al. 2009, Goergen & Niepmann unpublished results), 

characterization of miRNA effects on the PV IRES was undertaken in cell lines. Two cell lines 

were chosen for this study, HeLa cells and the neuroblastoma cell line SH-SY5Y (LaMonica & 

Racaniello 1989). 

I used RNA transfection to avoid artifacts stemming from transcription (e.g. via cryptic 

promoters) and cellular responses to artificial DNA in the cytoplasm and nucleus. Poliovirus is 

a (+) strand RNA virus (Semler et al. 1984); its (+) ss RNA genome serves as a template for 

translation in the cytoplasm of the infected cell. Thus it is a functional mRNA upon infection 
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without the need for nuclear events for successful translation initiation. Also miRNAs normally 

act on mature mRNA in the cytoplasm. Thus transfection of RNA is both more natural and 

convenient, in particular since miRNAs can be transfected together with its desired target 

mRNA (Lytle et al. 2007).  

miRNA-duplexes were generated from in vitro synthesized single stranded miRNAs 

(biomers.net) to be used in transfection experiments. The double stranded RNAs mimic 

cleavage products of DICER and can be incorporated into the RISC (Lytle et al. 2007).  

miRNA-127 

miRNA-127 duplex and PV IRES luciferase RNA were transfected into SH-SY5Y cells using 

Lipofectamine 2000™ and luciferase activity was determined 4 h after transfection. 

Luciferase values were normalized to metabolic activity as a measure of cell viability 

determined by the WST1 test. 

No significant effect of miRNA-127 on translation at the PV IRES could be detected (figure 

41). 

 

 

 

Figure 41 : Effect of miRNA-127 on translation of the PV IRES luciferase construct when transfected in 

SH-SY5Y cells. All values are depicted in relation to reactions without addition of miRNA which is set to 

100 % and normalized to cell viability measured by WST1. The experiment was performed three times 

in duplicates. 

miRNA-422a 

The influence of miRNA-422a on translation on the PV IRES was examined in cultured cells 

only very briefly since the results in RRL and computer-based analysis of the firefly luciferase 

coding region (figure 49) hinted a strong effect of miRNA-422a on the firefly luciferase 

reporter. 
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The inhibiting effect can be seen in cells (figure 42) as well as rather weakly in RRL (figure 38 

and 39). miRNA-422a inhibits translation of the PV IRES (figure 38 and 42, 43) as well as of 

the pD5 reporter (figure 39 and 44). Therefore miRNA-422a was excluded from further 

studies. 

 

Figure 42 : Effect of miRNA-422a on translation of the PV IRES luciferase mRNA when transfected in 

SH-SY5Y cells. All values are depicted in relation to translation without addition of miRNA which is set 

to 100 %. Depicted values are the result of two independent experiments performed in duplicates, 

therefore no standard deviation can be calculated.  

 

 

Figure 43 : Effect of miRNA-422a on translation of the PV IRES luciferase mRNA when transfected in 

HeLa cells. All values are depicted in relation to translation with no addition of miRNA which is set to 

100 %. Depicted values are the result of two independent experiments performed in duplicates, 

therefore no standard deviation can be calculated. 
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Figure 44 : Influence of miRNA-422a on translation of the pD5 luciferase control mRNA when 

transfected in HeLa cells. All values are depicted in relation to reaction without addition of miRNA 

which is set to 100 %. The experiment was performed once in duplicates. 

miRNA-326 

miRNA-326 duplex was transfected into HeLa and SH-SY5Y cells and luciferase activity was 

determined. miRNA-326 stimulates translation on the PV IRES in both cell lines slightly but 

significantly (figure 45 and 46), even though the inhibitory effect on the pD5 reporter can be 

detected in cells (figure 40) and can be assumed to be present in the PV IRES-firefly 

luciferase construct as well. 

 
Figure 45 : Effect of miRNA-326 on translation of the PV IRES luciferase construct when transfected in 

HeLa cells. All values are depicted in relation to translation reaction without addition of miRNA which is 

set to 100 %. Depicted values are the result of five independent experiments performed in duplicates. 



 

105 

 

 

 

Figure 46 : Effect of miRNA-326 on translation of the PV IRES luciferase mRNA when transfected in 

SH-SY5Y cells. All values are depicted in relation to reactions without addition of miRNA which is set to 

100 %. Depicted values are the result of three independent experiments performed in duplicates. 

Mutation of the miRNA-326 binding site in stem loop IV of the PV IRES 

To confirm that the stimulating effect of miRNA-326 duplex is due to a genuine miRNA effect 

rather than an unspecific effect resulting from the presence of exogenous double stranded 

RNA in the cell, the binding site for miRNA-326 in the PV IRES was mutated using site-

directed mutagenesis. Care was taken not to interrupt the loop structure of the IRES at this 

point by avoiding introducing pairing nucleotides.  

 
Figure 47 : Mutation introduced into stem loop IV of the PV IRES by site-directed mutagenesis (B). The 

miRNA-326 binding site (CCCAGAG) was replaced by a not pairing sequence (GGGCGAG). Care was 

taken not to interrupt the loop structure by introducing pairing nucleotides. A complementary mutated 

seed sequence was introduced into miRNA-326 (C). 
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The stimulating activity of miRNA-326 could not be observed with the mutated construct 

(figure 47B and 48) indicating a specific effect of miRNA-326 rather than an unspecific effect 

by ds RNA. 

 
 

Figure 48 : Effect of miRNA-326 on translation of the PV IRES luciferase mRNA with the binding site 

for miRNA-326 in the IRES mutated. RNAs were transfected into HeLa cells. All values are depicted in 

relation to reactions without addition of miRNA which is set to 100 %. Depicted values are the result of 

three independent experiments performed in duplicates. 

 

A compensatory mutation was included in the miRNA (miRNA-326 comp, figure 47C) and the 

mutated miRNA transfected into HeLa cells together with the mutated IRES. 

The observed effect was a dose-dependent stimulation of about 1.4 fold at highest miRNA-

326 comp concentrations. This stimulation is not as pronounced as the effect observed with 

the wild type IRES stimulated by wild type miRNA-326 in HeLa cells. However, the miRNA-

326 binding site mutant in the PV IRES could at least be partially rescued by addition of 

complementary mutated miRNA-326 (miRNA-326 comp). 
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Figure 49 : Effect of miRNA-326comp on translation of the PV IRES luciferase mRNA with the binding 

site for miRNA-326 mutated. RNAs were transfected into HeLa cells. All values are depicted in relation 

to reactions without addition of miRNA which is set to 100 %. Depicted values are the result of four 

independent experiments performed in duplicates. 

 

However, the mutated PV IRES showed a much lower overall translational activity than the 

wild type PV IRES in initiating translation of the reporter protein (figure 50).  

 
 

Figure 50 : Effect of mutation in the PV IRES (miRNA-326 binding site) on translation efficiency of the 

PV IRES luciferase mRNA co-transfected with miRNA-326. Equal amounts of RNAs were transfected 

into HeLa cells.  
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Since the miRNA-326 binding site in stem loop IV (figure 47) is identical with a binding site for 

PCBP2 (Gamarnik et al. 2000) it is not surprising that translation efficiency is reduced when 

this ITAF is no longer able to bind efficiently.  

Conclusion 

miRNA-326 stimulates translation at the PV IRES. This effect can be diminished by mutating 

the binding site for miRNA-326 in the IRES. The mutant can be partially rescued by a 

complementary mutated miRNA. miRNA-127 and miRNA-422a had no significant effect on 

translation initiation at the PV IRES. 

Mutation of miRNA-binding sites in the luciferase coding sequence 

Negative controls (pD5) showed a severe inhibitory effect of miRNA-326* on firefly luciferase 

in RRL as well as when transfected into HeLa cells (figure 39 and 40).  

Therefore binding sites for the seed region of miRNAs, 6 or 7 nts pairing, in the coding region 

of the firefly luciferase were identified by manual search using microsoft word. Neither 

miRNA-127mat nor its passenger strand miRNA-127* can bind in the firefly luciferase ORF, 

so miRNA-127 may serve as a negative control for unspecific inhibition by small double 

stranded RNAs.  

As for miRNA-326, one binding site (6 nts) for the passenger strand miRNA-326* was 

identified, with an A at position 1 making it a 7mer-A1 site (Wu & Belasco 2005, Grimson et 

al. 2007). Additionally several 5 nt binding sites for miRNA-326* and miRNA-326mat (figure 

51). The 6 nt binding site for miRNA-326* could be mutated without changing the amino acid 

composition of the firefly luciferase. 

Several binding sites for miRNA-422a could be identified (figure 51), which cannot all be 

mutated silently so miRNA-422a was excluded from further experiments since there was no 

possible way to exclude an effect on the reporter. 
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     91 aagagatacgccctggttcctggaacaattgcttttacagatgca 

        K  R  Y  A  L  V  P  G  T  I  A  F  T  D  A  

    136 catatcgaggtgaacatcacgtacgcggaatacttcgaaatgtcc 

        H  I  E  V  N  I  T  Y  A  E  Y  F  E  M  S  

    181 gttcggttggcagaagctatgaaacgatatgggctgaatacaaat 

        V  R  L  A  E  A  M  K  R  Y  G  L  N  T  N  

    226 cacagaatcgtcgtatgcagtgaaaactctcttcaattctttatg 

        H  R  I  V  V  C  S  E  N  S  L  Q  F  F  M  

    271 ccggtgttgggcgcgttatttatcggagttgcagttgcgcccgcg 

        P  V  L  G  A  L  F  I  G  V  A  V  A  P  A  

    316 aacgacatttataatgaacgtgaattgctcaacagtatgaacatt 

        N  D  I  Y  N  E  R  E  L  L  N  S  M  N  I  

    361 tcgcagcctaccgtagtgtttgtttccaaaaaggggttgcaaaaa 

        S  Q  P  T  V  V  F  V  S  K  K  G  L  Q  K  

    406 attttgaacgtgcaaaaaaaattaccaataatccagaaaattatt 

        I  L  N  V  Q  K  K  L  P  I  I  Q  K  I  I  

    451 atcatggattctaaaacggattaccagggatttcagtcgatgtac 

        I  M  D  S  K  T  D  Y  Q  G  F  Q  S  M  Y  

    496 acgttcgtcacatctcatctacctcccggttttaatgaatacgat 

        T  F  V  T  S  H  L  P  P  G  F  N  E  Y  D  

    541 tttgtaccagagtcctttgatcgtgacaaaacaattgcactgata 

        F  V  P  E  S  F  D  R  D  K  T  I  A  L  I  

    586 atgaattcctctggatctactgggttacctaagggtgtggccctt 

        M  N  S  S  G  S  T  G  L  P  K  G  V  A  L  

    631 ccgcatagaactgcctgcgtcagattctcgcatgccagagatcct 

        P  H  R  T  A  C  V  R  F  S  H  A  R  D  P  

    676 atttttggcaatcaaatcattccggatactgcgattttaagtgtt 

        I  F  G  N  Q  I  I  P  D  T  A  I  L  S  V  

    721 gttccattccatcacggttttggaatgtttactacactcggatat 

        V  P  F  H  H  G  F  G  M  F  T  T  L  G  Y  

 

 

Figure 51 : Part of the DNA sequence of firefly luciferase with translation into amino acid sequence. 

Potential binding site (5 nts) for miRNA-326mat is marked in green, the potential binding site (6 nts +A) 

for miRNA-326* is marked with a blue box, a further potential binding site (5 nts) for miRNA-326* is 

marked in blue, a potential binding site (6 nts) for miRNA-422a is marked with a red box. 

 

The 6 nt binding site for miRNA-326* was mutated using site directed mutagenesis without 

changing the amino acid composition of the firefly luciferase reporter. The changed reporter 

was named silent mut326 to distinguish between the construct mutated in the IRES (as 

described above) and in the reporter. In vitro translation assays with the mutated reporter 

were performed in RRL (figure 52). The mutation does not have an effect on luciferase 

activity of the reporter. 
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Unfortunately the inhibiting effect of miRNA-326* was not diminished at high concentrations 

of miRNA, but rather enhanced. At low miRNA concentrations (25 ng and 50 ng) however no 

inhibition of translation efficiency at the mutated reporter can be observed (figure 52). 

 

 

Figure 52 : Influence of miRNA-326* on translation of the PV IRES luciferase mRNA with and without 

the silent mutation in RRL. All values are depicted in relation to reactions without addition of miRNA 

which is set to 100 %. Depicted values are the result of two independent experiments performed in 

duplicates therefore no standard deviation can be calculated. 

Conclusion 

There may be an effect of miRNA-326* on the firefly luciferase reporter coding region, 

however this effect cannot be diminished by mutating the binding site for miRNA-326* in the 

firefly luciferase coding region. The described results are therefore rather disheartening since 

an inhibitory effect of miRNA-326 on the reporter may mask a stronger stimulatory effect on 

the PV IRES.  
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Discussion 

Purification of initiation factors and IRES trans-acting factors 

(ITAFs) 

 

All initiation factors and ITAFs could be purified or expressed recombinantly. This took much 

longer than expected, due to unsuccessful attempts to establish a new purification protocol 

and long waiting periods for the starting material, rabbit reticulocyte lysate (RRL). To produce 

and ship the amounts necessary for purification of initiation factors, 3-6 months of processing 

time have to be taken into account. Taken all this together the unfortunate result is that I 

could not perform most of the experiments planned with the purified. However, a protocol for 

successful purification of eukaryotic initiation factors was established in the Niepmann Lab as 

described in methods and results (figure 1). 

Initiation factors are conserved proteins in eukaryotes, and rabbit factors can substitute for 

human and even yeast factors without complications (Brown-Luedi et al. 1982). RRL is the 

most convenient starting material available and purification protocols from RRL are well 

established in several laboratories, e.g. Prof. Shatsky’s lab.   

In all protocols described in the literature about 30 – 40 % of initiation factors present in RRL 

are lost during purification (Safer et al. 1975). The total amount of proteins lost is constant, 

since it is due to irreversible absorption on beads and in void volumes of the columns. The 

percentage of loss increases when using less material, since net absorption does not change. 

Due to the loss it is important to start purification from sufficient material, at least three liters 

of RRL, in order to avoid loss of all initiation factors early during purification. 

Using Prof. Shatsky’s protocol (e.g. Pestova et al. 1996) I purified eIF3 without the p170 

subunit (eIF3 (-p170), figure 6). eIF3 (-p170) still binds to the PV and HCV IRES and addition 

of eIF3 (-p170) to RRL allows IRES dependent translation (HCV, figure 23). Although it was 

shown that p170 is involved in binding to the 40S subunit, this function is shared with p110 

(Hinnebusch 2006), which was still present in the preparation. Concluding from the fact that 

only deletion of both subunits (p110 and p170) in yeast proved to be lethal but not deletion of 

either one of them (Jivotovskaya et al. 2005), eIF3 seems to be functional even with 

degraded p170 as long as complete p110 is present. Fraser et al. (2004) showed binding of 

the eIF3 core (p170, p116, p110, p48, p47 and p40) and eIF3 p35 to the 40S subunit with 

degraded eIF3 p170, however they did not examine translation. P170 was shown to bind only 
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p116 directly (Methot et al. 1997, Fraser et al. 2004) and the other factors may be able to 

form a functional complex with or around degraded p170.  

P170 in my eIF3 preparation may be functionally and structurally intact due to secondary and 

tertiary structure bounds (disulfide bounds, hydrogen bounds, hydrophobic or van-der-Waals 

interactions), which are destroyed when denaturing the protein for SDS-PAGE. In conclusion, 

it is unexpected but not impossible that eIF3 without p170 is still active in IRES dependent 

translation (Pulido et al. 2007) and it would be interesting to further investigate this 

phenomenon.  

During the purification described in the methods and results eIF4G was also degraded 

leading to a loss of eIF4A and eIF4G on the Cap-Sepharose column (figure 5), since only the 

cap-binding moiety of eIF4F, eIF4E, was retained. Dissociation of eIF4F during purification on 

ion-exchangers has been observed before (Meyer et al. 1981, Wyckoff et al. 1990). Since it 

was planned to purify eIF4B from the flow through of the Cap-Sepharose column, a 

contamination of the flow through with eIF4A was rendering this approach impossible, since 

both proteins elute together from ion-exchange columns. As a consequence functional eIF4A 

(Nielsen et al. 1985, Yoder-Hill et al. 1993) and eIF4B were produced recombinantly.  

In conclusion eIF3 and eIF4E could be obtained in highly pure form (Kemper et al. 1976) 

during my preparation and other factors obtained during prior purifications were given to me 

by Prof. Shatsky (complete eIF3 and eIF4F, as well as native eIF4B) or prepared 

recombinantly (eIF4A and eIF4B). These factors were used in UV-crosslinking experiments 

(figure 31) and to reconstitute the HCV IRES from purified components (figure 21). 

UV-crosslinks 

In order to investigate a possible synergistic effect of ITAFs binding to the PV IRES a short 

radioactively labeled RNA was constructed and incubated with pure protein preparations. 

Proteins bound to the RNA were irreversibly crosslinked by UV light. As shown in figure 34 

the La autoantigen binds to the PV IRES to a much lesser extend when competing for binding 

sites with PTB or eIF4A.  

Interaction of La with the PV IRES is dependent on the polypyrimidine tract (Haller et al. 

1995) which is also recognized by PTB, indicating that both factors compete for the same 

binding site as described for the EMCV IRES by Kim & Jang (1999).  PTB binding to the 

IRES remained unchanged when competing with La, while the band showing La binding to 

the IRES is much weaker than when La binds by itself. PTB may have a stronger affinity to 

the IRES than La and therefore out-competes La in a purified system with RNA as the limiting 

factor. However I did not have the time to try different concentrations of competitor PTB and 
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La, which would be useful, since PTB is known to inhibit translation initiation at the PV IRES 

at unphysiologically high concentration, which can be rescued by La (Kim & Jang 1999). This 

effect may be shown in crosslinks and further insights in the mechanism may be gained. 

Competition with eIF4A totally abrogated La binding to the IRES, which may be explained by 

unwinding of secondary structures by eIF4A removing the synergy between stem loops 

(Haller et al. 1995) necessary for La binding. Since UV crosslinks as performed here do not 

freeze RNA-protein interactions in time, it is cannot be excluded that La binding to the PV 

IRES occurs before unwinding of secondary structures by eIF4A. Unwinding may displace La 

from the IRES. This could be further studied by addition of eIF4A after formation of the 

crosslink.  

Taken together these results indicate a change of IRES structure by eIF4A during translation 

initiation (Martinez-Salas et al. 2010), which may influence binding of La and other ITAFs as 

well as initiation factors and ribosomal subunits. 

eIF4A is necessary for translation initiation at the PV IRES, as shown by the use of a 

dominant negative mutant of eIF4A as an inhibitor of translation (Pause et al. 1994). Binding 

of eIF4A was shown here by UV-crosslink (figure 31), which concurs with the functional role 

for eIF4A in IRES dependent translation initiation.  

Stimulation of translation initiation by PolyA tails 

The poliovirus genome is naturally polyadenylated (Semler et al. 1984) and the polyA tail 

plays a role in infectivity of the virus (Sarnow 1989b). PolyA tails stimulate cap-dependent 

(Wells et al. 1998) and IRES-dependent (Bergamini et al. 2000, Thoma et al. 2004) 

translation. Naturally poliovirus has a polyA tail of 50-200 As (Ahlquist et al. 1979, Semler et 

al. 1984, Kavejian et al. 2004).  

Cellular mRNAs are quasi-circular, due to interaction of the polyA binding protein (PABP) and 

the initiation factor eIF4G (Wells et al. 1998), but interactions between other 5’ and 3’ end 

binding proteins contribute to circularization as well (Jackson et al. 2010). During PV infection 

eIF4G is cleaved, thus the PABP binding part is no longer connected to the mRNA (Belsham 

& Sonenberg 2000), therefore circularization of PV mRNA must occur using a different 

mechanism. 

There are two possible stages of translation which the polyA tail can influence:  

Ribosome recycling: terminating ribosomes can easy re-initiate and commence a new round 

of translation due to close proximity of cap and termination signal and subsequent elevated 

local concentration of factors and ribosomal subunits (Mangus et al. 2003).  
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Initiation: Connection of both ends sends a signal to the 5’ end that the mRNA is complete 

and may be translated into a complete polypeptide chain. This signal is achieved through 

conformational changes of eIF4G and eIF4E by binding to PABP (Borman et al. 2000). 

My results indicate that polyA tails play an important role in initiation (figures 17 and 31) at the 

PV IRES. Translation initiation was stopped at the 48S stage or 80S stage (figures 17 and 31 

respectively), elongation and termination did not take place, so the observed effect is solely 

on translation initiation. However an effect on termination and ribosome recycling cannot be 

examined with this experimental set-up. This additional effect is rather likely since translation 

efficiency was stimulated fourfold by addition of a polyA50 tail (figure 16) while formation of 

48S complexes was increased by only 30% (figure 17). The remaining stimulation may be 

due to an effect of polyA tails on elongation, termination or ribosome recycling. 

Consistent with this the formation of 48S complexes at the EMCV IRES was not stimulated at 

all by addition of a 50A polyA tail, while several articles describe stimulation of translation 

under the control of the EMCV IRES by addition of polyA tails (Hruby & Roberts 1977, 

Bergamini et al. 2000). Possibly the stimulating effect on the EMCV IRES is solely on 

ribosome recycling rather than translation initiation. 

To distinguish those two possibilities further experiments are necessary, for example 

separation of initiation complexes on sucrose gradients without inhibitors. This is rather 

difficult for translation initiation at the PV IRES since complexes form rather poorly (Ochs et 

al. 2002), but can be easily achieved for the EMCV IRES (Pestova et al. 1998).  

Stimulation of formation of 48S complexes by addition of the polyA binding protein (PABP) to 

IRES dependent (Bradrick et al. 2007) and cap-dependent translation (Munroe et al. 1990, 

Kahvejian et al. 2005) was observed, indicating a role for PABP and subsequently polyA tails 

at the level of translation initiation. Excess of 40S subunits decrease the stimulating effect of 

polyA tails on capped mRNAs (Searfoss et al. 2001), which is another indication that polyA 

tails play a role in initiation under competitive conditions. 

Even when using purified components (purified ribosomes, initiation factors and t-RNAs) on 

IRESs that do not need anything but ribosomes, like the CrPV IGN IRES, a lot of RNA ( ̴ 50 

%) remains outside of initiation complexes (Pause et al. 1994). When using polyadenylated 

mRNAs however more complexes are formed and subsequently RNA-Protein complexes 

without ribosomes decrease (figures 32 and 33). The effect of the polyA tail on translation on 

the PV IRES seems to be on the efficiency of complex formation and maybe displacement of 

endogenous inhibitors, which normally interfere with formation of 48S complexes and 

accumulate in the 20S RNP peak. 
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Identification of new ITAFs 

Since the first reconstitutions of IRES elements from purified factors by Pestova et al. (1996 & 

1998) several unsuccessful and unpublished attempts have been undertaken to reconstitute 

the prototypical IRES of poliovirus. 

The first IRES which was reconstituted using only purified factors was the EMCV IRES 

(Pestova et al. 1996). Successful initiation was shown by toeprinting using 48S complexes 

stalled by GMP-PNP. Besides ribosomes and t-RNA, initiation factors eIF2, eIF3, eIF4B, 

eIF4F and PTB were the minimal requirement for initiation up to the formation of 48S 

complexes. The type III HCV and classical swine fever (CSFV) IRESs were reconstituted in 

1998 (Pestova et al. 1998) and have even lower requirements: only ribosomes and eIF3 are 

sufficient to form 48S complexes, eIF2 needs to be added for subunit joining. Cap-dependent 

translation initiation has also been reconstituted from purified components (Dimitriev et al. 

2003, Svitkin et al. 2009), requiring all known initiation factors but no additional proteins. 

However so far this approach was not successful with the PV IRES, since its requirements for 

ITAFs are very high and not all of them are known. 

In order to identify new proteins, which might act as ITAFs for the PV IRES, 48S complexes 

were assembled using RRL supplemented with HeLa extract and several other compounds 

that enhance translation initiation, as described in the results section. The yield of 48S 

complexes was improved tremendously during my work, about 40 % of radioactively labeled 

RNA was incorporated into 48S complexes (figure 20), which is comparable to the 30 % 

incorporated at the EMCV IRES in Pestova et al. (1996) and is a vast improvement over 

previously published 48S complexes at the PV IRES (e.g. Ochs et al. 2002). 

Isolation of proteins 

The RNA used to form initiation complexes was internally labeled with biotinylated UTPs and 

can therefore be bound to streptavidin beads. Proteins bound to the IRES in 48S complexes 

are consequently retained on the beads as well. Proteins were eluted from beads using a 

combination of RNases and boiling the beads with SDS-PAGE sample buffer. 

Similar approaches using biotinylated IRES RNAs bound to beads to identify ITAFs on 

picornavirus IRESs have been employed before (Blyn et al. 1995, Kim et al. 2004, Pacheco 

et al. 2008). However in those studies only parts of the IRES were used (Blyn et al. 1995) and 

all proteins bound to the IRES and beads (Pacheco et al. 2008) were investigated, not only 

those which are part of the 48S complex. Using biotinylated RNA Blyn et al. (1995) identified 

PCBP2 and two other proteins (40 and 42 kDa) that bind to stem loop IV of the PV IRES from 

RRL. Pacheco et al. (2008) identified several RNA binding proteins from cell extracts, by 
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coupling the FMDV IRES to Oligo-dt beads, but did not verify their results in functional 

assays. One study that verified its results by siRNA was Kim et al. (2004), who identified 

NSAP1 to bind to the IRES of HCV, a pestivirus, using biotinylated RNA. 

In all described studies in vitro transcribed biotinylated RNA was bound to Streptavidin beads 

first and only then incubated with different lysates. Given the size of beads and the almost 

irreversible interaction between streptavidin and biotin this approach may result in the 

identification of any RNA binding proteins, but not necessarily in formation of initiation 

complexes on IRESs bound to Streptavidin beads. The identified proteins may not have an 

influence on IRES activity but just bind to it or to any RNA. A similar case was described for 

PTB (Back et al. 2002), which binds to the EMCV IRES but does not stimulate or inhibit its 

translation (Belsham & Sonenberg 1996). Since none of the studies used unrelated RNA, like 

the uncapped β-globin 5’ UTR or a random RNA sequence of comparable length, identified 

proteins cannot be connected to translation initiation without doubt. Thus, in order to avoid 

identification of RNA binding proteins that are not part of the initiation complex, I allowed 

formation of 48S complexes on biotinylated RNA (figure 13) before incubation with 

Streptavidin beads. Separating complexes on sucrose gradients before binding to the beads 

ensures that proteins, which are part of the 48S initiation complex, can be purified separately 

from RNA binding proteins in the RNP complexes, which contain IRES-RNA complexes not 

functionally associated with ribosomes. 

I did not expect to be able to detect initiation factors (figure 28) since they are known to 

dissociate from 48S complexes during sucrose gradient centrifugation (Jivotovskaya et al. 

2005) especially on IRESs (Kolupaeva et al. 2005). However subunits of eIF3 can be clearly 

seen when separating complexes formed at the HCV IRES (figure 23).  

Due to the low protein content of my elutions it was difficult to even identify known ITAFs on 

stained SDS-PAGE gels (figure 28). However I succeeded to identify a protein band of 

approximately 45 kDa that appeared in 48S complexes when assembled at the HCV IRES 

from extracts but not from purified components (figure 24). It appears to be present in 48S 

complexes assembled at the HCV and PV IRES (figure 28), but not in RNP complexes. 

Therefore this protein is most likely involved in formation of 48S complexes and translation 

initiation. The band at 45 kDa could also be seen clearly on coomassie stained SDS-PAGE 

gels (figure 25) when using translation reactions on the HCV and PV IRES without separation 

on sucrose gradients, since no RNA and proteins are lost due to the gradient and subsequent 

fractionation. The coomassie stained band was excised from the gel and analyzed using 

mass spectrometry.  
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Moreover another interesting band at about 50 kDa can be seen at the picornaviral IRESs 

EMCV and PV. It is not present with the HCV IRES (figure 25), indicating a protein specific for 

picornaviruses IRESs. This protein is present in RNP complexes but not in 48S complexes. It 

may be a picornavirus-specific inhibitor of translation. These bands were excised from the 

coomassie-stained SDS-PAGE gel (figure 28) as well and analyzed using mass 

spectrometry.   

P45- cytoplasmic β-actin 

The band seen at about 45 kDa at the PV and HCV IRES was identified as cytoplasmic β-

actin, which is the monomeric form of β-actin-polymeres that form the actin tubules of the 

cytoskeleton. Since this protein is very abundant in lysates it is most likely an artifact of 

isolation and analysis. However association of viral translation and replication with parts of 

the cytoskeleton has been observed before (Pincheira et al. 2001). Picornaviruses are known 

to change the structure of the cytoskeleton (Rassmann et al. 2006) to construct an 

environment beneficial to their replication (Suhy et al. 2000). Although all described changes 

are due to interaction with tubulin but not actin, it is still possible that this interaction is 

physiological relevant. Β-actin needs to be identified as an ITAF at least twice more before an 

artifact can be excluded with confidence. 

P50- ErB3 binding protein (EbP1) 

The picornavirus-specific band was identified as the ErB3 binding protein, EbP1, which is 

also known as ITAF45 (Pilipenko et al. 2000). ErB3 is an epidermal receptor tyrosine kinase 

(Honda et al. 2007) and is regulated by EbP1 and 2, transcription factors probably involved in 

rRNA processing (Strausberg et al. 2001). EbP1 is known to shuttle between nucleus and 

cytoplasm (Squatrito et al. 2004), where it interacts with the ErbB3 receptor (Zhang et al. 

2008). EbP1 was implicated in regulation of cap-dependent translation initiation via 

phosphorylation of eIF2. EbP1 or ITAF45
 is absolutely required for translation initiation at the 

FMDV IRES (Andreev et al. 2007). It was shown to enhance translation efficiency at the 

FMDV but not the EMCV IRES (Bonnal et al. 2005). Since EbP1 was detected in RNP-

complexes but not in 48S complexes, it is possible that this protein binds to IRES structures 

(PV and EMCV), but does not have an effect on formation of 48S complexes, as described 

for PTB and the EMCV IRES before (Back et al. 2002). Functional assays using recombinant 

or native EbP1 in an in vitro translation system could help to clear this point. 
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Depletion 

Another approach to gain further insight into the nature of the elusive ITAF was depletion of 

HeLa extract using PV IRES RNA. The depleted extract and beads were treated with the Ca2+ 

dependent micrococcal nuclease and the RNase inhibited by addition of EGTA (Pelham & 

Jackson 1976).  

It was possible to deplete HeLa extract of its stimulatory effect on the PV IRES using this 

approach (figure 29), but the activity could not be restored by proteins eluted from the beads 

by RNase (figure 30). It is possible that the missing ITAF is not an RNA binding protein, but a 

protein interacting with an RNA binding protein, as described for SRp20 and PCBP2 by 

Bedard et al. (2007). These proteins could be lost during washing of the beads, however 

washes were not able to stimulate translation since known RNA-binding ITAFs, like PTB and 

La remain bound to the beads.  

In conclusion, depletion did not reveal any novel ITAFs for the PV IRES or a new effect of 

combination of ITAFs. No novel reason for the tissue specificity of poliovirus could be 

identified. So, maybe the missing factor is not a protein at all, but something completely 

different, like a microRNA. 

Effect of microRNAs on poliovirus translation initiation 

MicroRNAs (miRNAs) play an important role in gene regulation in the cell (Pillai et al. 2007). 

Viruses infecting mammalian cells are also subject to regulation by miRNAs (Pedersen et al. 

2007, Kelly et al. 2010). These miRNAs can act as inhibitors and enhancers of translation of 

viral mRNAs (Pedersen et al. 2007, Henke, Goergen et al. 2008). Since several miRNAs are 

expressed in a tissue specific manner (Langraf et al. 2007) it can be assumed that they play a 

role in defining the tissue type. Consequently I speculated if miRNAs may be a reason for the 

preferential translation of PV RNA in neuronal cells.  

Identification of neuron-specific miRNAs 

Several neuron-specific miRNAs were identified that potentially bind to the PV IRES using 

ViTa. The output of the program is an interactive picture depicting all miRNAs binding to the 

PV genome (Figure 35), the locations of the IRES (nt 1-nt 793), coding region (nt 794-nt 

7372) and 3’ UTR (nt 7373-nt 7440) were entered manually. It is noted that the first 130 nt of 

the PV 5’ UTR are not strictly speaking part of the IRES (Nicholson et al. 1991), but form a 

cloverleaf structure essential for replication. Three miRNAs, miRNA-127, miRNA-326 and 

miRNA-422a were chosen for their binding sites in the PV IRES and their specificity for brain 

or neuronal tissue (figure 36).  
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Stimulation of translation by miRNA-326 

Cell lines are a much more natural experimental set-up than the in vitro translation system 

RRL. I used the neuroblastoma cell line SH-SY5Y which has already been described as 

suitable for poliovirus translation and replication (LaMonica & Racaniello 1989), as well as 

HeLa cells.  

miRNA-326 stimulated translation by the PV IRES in HeLa cells approximately two fold 

(figure 45). The stimulation of translation in the neuroblastoma cell line SH-SY5Y was about 

1.6 fold (figure 46). This may be due to an internal factor in neuronal cells or endogenous 

miRNA-326 in SH-SY5Y cells and is consistent with the fact that the Sabin strains replicate 

much worse in SH-SY5Y than in HeLa cells (LaMonica & Racaniello 1989). 

The majority of miRNA-effects described to today are inhibitory (Bartel 2009) and most 

miRNA targets are in unstructured regions of the 3’ UTR of mRNAs (Lewis et al. 2005). The 

stimulation observed with miRNA-326 is therefore unusual in two ways: The binding site is in 

a structured region of the 5’UTR, and the effect is stimulating rather than inhibiting.  

A few cases of stimulatory effects on translation by miRNA have been described (Vasudevan 

et al. 2007, Orom et al. 2008, Henke, Goergen et al. 2008). In two of them (Orom et al. 2008 

and Henke, Goergen et al. 2008) the stimulating miRNAs (miRNA-10a and miRNA-122, 

respectively) bind to the 5’ UTR of the mRNA for several ribosomal proteins (Orom et al. 

2008) and the HCV polyprotein (Henke, Goergen et al. 2008). In contrast Vasudevan et al. 

(2007) describe binding of the miRNA let7 to the 3’ UTR of mRNAs upon cell cycle arrest.  

Vasudevan et al. (2007) showed the involvement of argonaut proteins (ago) and therefore the 

RNA induced silencing complex (RISC) in the stimulatory effect of let7 and miRNA-369-3p by 

western blot. On the other hand, Barnes et al. (2009) showed that RNAi against Ago2 in 

HeLa cells has no effect on PV replication and therefore translation. Both observations taken 

together may lead to the conclusion that the effect of miRNA-326 on PV differs 

mechanistically from the effect described by Vasudevan et al. (2007) and may not involve 

agos and RISC. 

All described miRNAs as well as miRNA-326 decrease translation of some of their target 

mRNAs in a “normal” miRNA-way (Farh et al. 2005, Landgraf et al. 2007, Vasudevan et al. 

2007, Orom et al. 2008). The stimulatory role seems to be an additional function only 

executed under special circumstances, like cell stress (Orom et al. 2008) and cell cycle arrest 

(Vasudevan et al. 2007). PV genomic RNA is not a natural target of miRNA-326 and this case 

might as well be hijacking of an established cellular mechanism by the virus for its own 

protein synthesis, similar to the use of ITAFs for translation initiation (Hellen & Sarnow 2001). 
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The binding site for miRNA-326 in the IRES was identified in a bulge in stem loop IV (figure 

36). It was subsequently mutated from ACCCCA to ACGGGC. Care was taken not to destroy 

the bulge, which may be necessary for PV IRES activity (Ochs et al. 2002). The mutant was 

less active then the wild type (figure 50). Maybe the mutation had an effect on secondary 

structure and slightly altered IRES structure, despite all efforts to avoid this effect.. A mutation 

described by Gamarik et al. (2000) at the same position decreased binding of PCBP2 to the 

PV IRES.  

Surprisingly a second binding site for miRNA-326 in the PV 5’ UTR (table 2) also coincides 

with a binding site of PCBP2. This second binding site is part of the clover leaf structure 

necessary for replication but not translation of PV RNA (Gamarnik & Andino 1998, Gamarnik 

et al. 2000, see figure D1). miRNA-326 may interfere with PCBP2 binding to the IRES or the 

clover leaf or both. Direct binding of the seed sequence of miRNA-326 to the clover leaf is not 

likely, because the binding site is completely paired (figure D1).  

 

 
 

Figure D1 :  PV 5’ UTR stem loop IV (IRES) and stem loop I clover leaf with miRNA-326 and PCBP2 

binding sites. Stem loop IV from Gamarnik & Andino 2000, Stem loop I adapted from Parsley et al. 

1997  

 

Binding of PCBP2 to the IRES stimulates translation while binding of PCBP2 to the clover leaf 

enhances replication efficiency and inhibits translation (Gamarnik et al. 2000). PCBP2 

consists of three KH-domains (Blyn et al. 1995), one of them (KH1) inhibits translation when 

binding to the PV 5’ UTR by itself (Silvera et al. 1999). There are three regions in stem loop 
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IV of the PV IRES that are necessary for PCBP2 binding (Gamarnik et al. 2000), only one of 

them is covered by miRNA-326. This may impair PCBP2 binding to the IRES, but most likely 

does not totally abolish it. However, if this binding site coincides with the binding site of the 

inhibitory KH domain of PCBP2 (Silvera et al. 1999), masking of the binding site by miRNA-

326 may have a stimulatory effect on translation initiation at the PV IRES. 

This effect would be independent from the RISC or other normal miRNA-pathways. It could 

be tested experimentally by testing if the stimulation by miRNA-326 also occurs in PCBP2 

depleted extract or with an IRES construct that does not contain the clover leaf and therefore 

the miRNA-326 binding site outside of the IRES. UV-crosslinking of PCBP2 and single 

PCBP2 KH domains to the IRES in the presence and absence of miRNA-326 is an easier 

method to verify an interaction of PCBP2, miRNA-326 and PV RNA. 

Mutation of nts 299 to 302 in the PV IRES, removing the miRNA-326 binding site, also 

abolished the stimulatory effect by miRNA-326. This could be partially restored by a 

compensatory miRNA. If the effect was solely based on competition with PCBP2 binding, 

mutations in the mRNA and miRNA should not have an effect. Mutation of the same 

nucleotides by Gamarnik et al. (2000) impaired PCBP2 binding to the PV IRES as shown by 

RNA mobility shift assays. The mutated PV IRES was less active then the wildtype (figure 

50), indicating an effect of impaired PCBP2 binding. Involvement of another miRNA-based 

mechanism is possible and can be tested for by western blots against ago proteins involved 

in formation of the RISC. 

No effect on translation by miRNA-127 and 422a 

miRNA-127 did not show any effect on translation controlled by the PV IRES. It is possible 

that this miRNA cannot reach its predicted target site, since the target site is paired as part of 

the stem of stemloop IV (figure 36). All other known target sites for miRNAs are in 

unstructured regions and secondary structure of RNA is thought to block miRNA-action 

(Bartel 2004, Grimson et al. 2007, Sun et al. 2009, Hauser et al. 2009). 

The target site for miRNA-422a is also located in a bulge and unpaired. Co-transfection of 

miRNA-422a with the PV IRES reporter however showed a slight inhibitory effect in HeLa as 

well as in SH-SY5Y cells, but since it cannot be ruled out that this effect is on the reporter 

rather than on the IRES, no conclusions can be drawn.  

Effect of miRNAs on PV IRES reporter constructs in RRL 

The activity of ss miRNA in RRL was investigated. RRL is a highly promiscuous translation 

system, in which almost all cellular RNAs can be translated with high efficiency independent 

of cap or IRES structures (Pelham & Jackson 1976, Svitkin et al. 1996, Kayes et al. 2009). 
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However, viral RNAs, especially those under the control of picornaviral IRESs, do not 

translate well in RRL (Jang 2006). Important ITAFs are missing and need to be supplemented 

by addition of HeLa extract (Dorner et al. 1984) or purified components. 

Several newer publications also indicate that RRL may not be a good system to study 

miRNAs since important proteins of the RISC seem to be present only in low abundance 

(Wang et al. 2006, Fabian et al. 2009). All results obtained in RRL are therefore to be 

examined with caution. 

miRNA-binding site in luciferase 

After the observation that miRNA-326* inhibits translation on the negative control pD5 

(luciferase only) in RRL (figure 43 and 44), I identified several potential binding sites for 

miRNAs in the firefly luciferase (figure 51), but also in renilla luciferase and lux, a luciferase 

originating from the bacterium Vibrio harveyi.  Most of the identified binding sites did not pair 

completely with the seed sequence of the miRNA but only with 5 or 6 pairing nucleotides. 

Only miRNA-326* had one site with full complementarity in the seed region. 

Since neither miRNA-127mat nor its passenger strand miRNA-127* have a binding site in the 

firefly luciferase reporter, they can serve as controls for unspecific effects of short ss RNAs 

on the translation of the reporter. Neither of them inhibits the pD5 construct in RRL, an 

unspecific effect by ssRNA can therefore be ruled out. 

For a miRNA to have an effect on mRNA at least 6 nucleotides have to pair in a Watson-Crick 

fashion (Ambros 2004, Lewis et al. 2005, Wu & Belasco 2005, Bartel 2009). 5 or even 4 

pairing bases in active miRNAs have been observed, but require additional binding of the 3’ 

UTR of the miRNA to the mRNA (Brennecke et al. 2005) which is not the case with the 

binding sites identified for miRNA-326mat and miRNA-326* in the luciferase reporter. I 

concluded that only one binding site for miRNA-326* is relevant for the effect on the reporter, 

which could be mutated without changing the amino acid sequence of the protein.  

Most miRNAs investigated so far act on the 3’ UTR of their target mRNAs. Nevertheless 

several sRNAs, the bacterial equivalent of miRNAs, act on the coding regions of their targets 

(Bouvier et al. 2008). Experimentally introduced miRNA binding sites in an extended version 

of the firefly luciferase were not able to inhibit translation (Gu et al. 2008), while miRNA 

binding sites introduced in the coding region of the PV polyprotein to achieve attenuation 

proved functional (Wilson & Richardson 2005, Barnes et al. 2008). However, Grimson et al. 

(2007) found single binding sites in the coding regions of mRNA to be unable to bind miRNAs 

using microarrays. Thus binding and effects of miRNA in ORFs of mRNAs seem to be an 

exception rather than the rule, but they can and do occur. Therefore it is possible that the full 

seed binding site for miRNA-326* have an effect on the luciferase reporter. 
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After silent mutation of the binding site for miRNA-326* in the firefly luciferase coding region 

the activity of the luciferase protein was not changed compared to the wildtype. However, the 

inhibiting effect of miRNA-326* in RRL was abrogated at low concentrations of miRNA-326*, 

but was even stronger at high concentrations (figure 52).  

Maybe the incomplete binding sites (5 nts) are only targeted when a surplus of miRNA is 

present. To completely rule out this possibility all miRNA-326 binding sites in the luciferase 

have to be mutated, which is not possible without changing the amino acid composition of the 

reporter. 

Conclusion 

miRNA-326 has a stimulatory effect on translation on the PV IRES, which can be abrogated 

by mutating the binding site in the IRES. The other chosen miRNAs had no effect on 

translation via the PV IRES. The effect of miRNA-326* in the luciferase reporter could not be 

removed completely and might still interfere with the effect on the IRES. Several possible 

mechanisms of action by miRNA-326 have been speculated about above. Since miRNA-326 

is developmentally regulated and poliomyelitis is a disease which mainly targets children, a 

role for miRNA-326 in tissue specificity and infection patterns is possible.  

Conclusion and outlook 

During my thesis I identified novel factors that influence translation initiation under the control 

of the Poliovirus IRES. This was done to further elucidate translation initiation on the 

prototypical IRES and gain further insight in the mechanisms of translation initiation in 

general. It was also done for the more practical reason to identify factors responsible for 

tissue tropism of poliovirus. 

I optimized translation initiation at the PV IRES so that in vitro reconstitution improved 

tremendously. This was done in order to identify new protein factors which influence 

translation and lead to identification of EbP1, a known ITAF for the FMDV IRES. However, 

EbP1 might not be an enhancer, but rather an inhibitor of PV IRES dependent translation. 

Additionally I identified a neuron-specific miRNA that stimulates translation by an unknown 

mechanism, which may not be a normal miRNA/RISC mechanism but part of an interaction 

between miRNA and ITAFs. 

A more elaborate experimental setup including the PV 3’UTR (Dobrikova et al. 2003) and 

some viral proteins, like protease 2A and 3CD, could help to further elucidate potential 

interactions of PCBP2 and miRNA-326 as well as the effect of EbP1 on PV IRES dependent 

translation. Even though the 3’ UTR seems to not have a strong effect on translation 

efficiency (Brown et al. 2004), it binds the known ITAF nucleolin, which stimulates translation 
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(Waggoner & Sarnow 1998), and “normal” miRNA interactions occur on the 3’UTR of 

mRNAs. Therefore use of a construct containing the 3’UTR of poliovirus would be helpful to 

gain insights into the mechanisms of translation initiation. 

Effects of ITAFs and miRNA may be linked to each other as described by Makeyev et al. 

(2007) where translation of proteins in brain is upregulated by miRNA-124 through 

downregulation of PTB, which in turn inhibits alternative splicing.  

The results obtained do not fully explain tissue tropism of poliovirus. However, I identified 

several novel regulatory factors involved in translation initiation at the PV IRES and maybe 

the effect of miRNA-326 on translation at the PV IRES is a small step on the way to explain 

the tissue tropism of poliovirus. This opened a lot of new and exciting questions which remain 

to be answered in the future.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

125 

 

Literatur 

(1989). Nomenclature of initiation, elongation and termination factors for translation in eukaryotes. 
Recommendations 1988. Nomenclature Committee of the International Union of Biochemistry 
(NC-IUB). Eur J Biochem 186, 1-3. 

Ahlquist, P. & Kaesberg, P. (1979). Determination of the length distribution of poly(A) at the 3' terminus 
of the virion RNAs of EMC virus, poliovirus, rhinovirus, RAV-61 and CPMV and of mouse 
globin mRNA. Nucleic Acids Res 7, 1195-1204. 

Aldabe, R., Barco, A. & Carrasco, L. (1996). Membrane permeabilization by poliovirus proteins 2B and 
2BC. J Biol Chem 271, 23134-23137. 

Altmann, M., Wittmer, B., Methot, N., Sonenberg, N. & Trachsel, H. (1995). The Saccharomyces 
cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA 
annealing activity. Embo J 14, 3820-3827. 

Alvarez, D. E., Lodeiro, M. F., Luduena, S. J., Pietrasanta, L. I. & Gamarnik, A. V. (2005). Long-range 
RNA-RNA interactions circularize the dengue virus genome. J Virol 79, 6631-6643. 

Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355. 
Andreev, D. E., Dmitriev, S. E., Terenin, I. M., Prassolov, V. S., Merrick, W. C. & Shatsky, I. N. (2009). 

Differential contribution of the m7G-cap to the 5' end-dependent translation initiation of 
mammalian mRNAs. Nucleic Acids Res 37, 6135-6147. 

Andreev, D. E., Fernandez-Miragall, O., Ramajo, J., Dmitriev, S. E., Terenin, I. M., Martinez-Salas, E. 
& Shatsky, I. N. (2007). Differential factor requirement to assemble translation initiation 
complexes at the alternative start codons of foot-and-mouth disease virus RNA. Rna 13, 1366-
1374. 

Asano, K., Clayton, J., Shalev, A. & Hinnebusch, A. G. (2000). A multifactor complex of eukaryotic 
initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation 
initiation intermediate in vivo. Genes Dev 14, 2534-2546. 

Baan, R. A., Keller, P. B. & Dahlberg, A. E. (1981). Isolation of eukaryotic initiation factor 2 from yeast 
Saccharomyces cerevisiae. J Biol Chem 256, 1063-1066. 

Back, S. H., Kim, Y. K., Kim, W. J., Cho, S., Oh, H. R., Kim, J. E. & Jang, S. K. (2002). Translation of 
polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by 
polioviral 3C(pro). J Virol 76, 2529-2542. 

Bagasra, O. & Prilliman, K. R. (2004). RNA interference: the molecular immune system. J Mol Histol 
35, 545-553. 

Baranick, B. T., Lemp, N. A., Nagashima, J., Hiraoka, K., Kasahara, N. & Logg, C. R. (2008). Splicing 
mediates the activity of four putative cellular internal ribosome entry sites. Proc Natl Acad Sci 
U S A 105, 4733-4738. 

Barnes, D., Kunitomi, M., Vignuzzi, M., Saksela, K. & Andino, R. (2008). Harnessing endogenous 
miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. 
Cell Host Microbe 4, 239-248. 

Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. 
Barton, D. J., Morasco, B. J. & Flanegan, J. B. (1999). Translating ribosomes inhibit poliovirus 

negative-strand RNA synthesis. J Virol 73, 10104-10112. 
Battle, D. J., Lau, C. K., Wan, L., Deng, H., Lotti, F. & Dreyfuss, G. (2006). The Gemin5 protein of the 

SMN complex identifies snRNAs. Mol Cell 23, 273-279. 
Baulcombe, D. (2004). RNA silencing in plants. Nature 431, 356-363. 
Bedard, K. M., Daijogo, S. & Semler, B. L. (2007). A nucleo-cytoplasmic SR protein functions in viral 

IRES-mediated translation initiation. Embo J 26, 459-467. 
Bedard, K. M., Walter, B. L. & Semler, B. L. (2004). Multimerization of poly(rC) binding protein 2 is 

required for translation initiation mediated by a viral IRES. Rna 10, 1266-1276. 
Belsham, G. J. (1992). Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA 

are selected following internal entry and scanning of ribosomes in vivo. Embo J 11, 1105-1110. 
Belsham, G. J. & Sonenberg, N. (1996). RNA-protein interactions in regulation of picornavirus RNA 

translation. Microbiol Rev 60, 499-511. 
Belsham, G. J. & Sonenberg, N. (2000). Picornavirus RNA translation: roles for cellular proteins. 

Trends Microbiol 8, 330-335. 
Benne, R., Edman, J., Traut, R. R. & Hershey, J. W. (1978). Phosphorylation of eukaryotic protein 

synthesis initiation factors. Proc Natl Acad Sci U S A 75, 108-112. 



 

126 

 

Benne, R. & Hershey, J. W. (1976). Purification and characterization of initiation factor IF-E3 from 
rabbit reticulocytes. Proc Natl Acad Sci U S A 73, 3005-3009. 

Benne, R., Luedi, M. & Hershey, J. W. (1977). Purification and characterization of initiation factors IF-
E4 and IF-E6 from rabbit reticulocytes. J Biol Chem 252, 5798-5803. 

Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., 
Meiri, E., Sharon, E., Spector, Y. & Bentwich, Z. (2005). Identification of hundreds of 
conserved and nonconserved human microRNAs. Nat Genet 37, 766-770. 

Bergamini, G., Preiss, T. & Hentze, M. W. (2000). Picornavirus IRESes and the poly(A) tail jointly 
promote cap-independent translation in a mammalian cell-free system. Rna 6, 1781-1790. 

Berghoff, B. A., Glaeser, J., Sharma, C. M., Vogel, J. & Klug, G. (2009). Photooxidative stress-induced 
and abundant small RNAs in Rhodobacter sphaeroides. Mol Microbiol 74, 1497-1512. 

Bernstein, E., Denli, A. M. & Hannon, G. J. (2001). The rest is silence. Rna 7, 1509-1521. 
Bernstein, J., Sella, O., Le, S. Y. & Elroy-Stein, O. (1997). PDGF2/c-sis mRNA leader contains a 

differentiation-linked internal ribosomal entry site (D-IRES). J Biol Chem 272, 9356-9362. 
Bi, X. & Goss, D. J. (2000). Wheat germ poly(A)-binding protein increases the ATPase and the RNA 

helicase activity of translation initiation factors eIF4A, eIF4B, and eIF-iso4F. J Biol Chem 275, 
17740-17746. 

Blyn, L. B., Chen, R., Semler, B. L. & Ehrenfeld, E. (1995). Host cell proteins binding to domain IV of 
the 5' noncoding region of poliovirus RNA. J Virol 69, 4381-4389. 

Blyn, L. B., Towner, J. S., Semler, B. L. & Ehrenfeld, E. (1997). Requirement of poly(rC) binding protein 
2 for translation of poliovirus RNA. J Virol 71, 6243-6246. 

Bogerd, H. P., Karnowski, H. W., Cai, X., Shin, J., Pohlers, M. & Cullen, B. R. A mammalian 
herpesvirus uses noncanonical expression and processing mechanisms to generate viral 
MicroRNAs. Mol Cell 37, 135-142. 

Bonnal, S., Pileur, F., Orsini, C., Parker, F., Pujol, F., Prats, A. C. & Vagner, S. (2005). Heterogeneous 
nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that 
modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol 
Chem 280, 4144-4153. 

Borman, A. M., Le Mercier, P., Girard, M. & Kean, K. M. (1997). Comparison of picornaviral IRES-
driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 25, 
925-932. 

Borman, A. M., Michel, Y. M. & Kean, K. M. (2000). Biochemical characterisation of cap-poly(A) 
synergy in rabbit reticulocyte lysates: the eIF4G-PABP interaction increases the functional 
affinity of eIF4E for the capped mRNA 5'-end. Nucleic Acids Res 28, 4068-4075. 

Borsook, H., Deasy, C. L., Haagensmit, A. J., Keighley, G. & Lowy, P. H. (1952). Incorporation in vitro 
of labeled amino acids into proteins of rabbit reticulocytes. J Biol Chem 196, 669-694. 

Bothwell, A. L., Ballard, D. W., Philbrick, W. M., Lindwall, G., Maher, S. E., Bridgett, M. M., Jamison, S. 
F. & Garcia-Blanco, M. A. (1991). Murine polypyrimidine tract binding protein. Purification, 
cloning, and mapping of the RNA binding domain. J Biol Chem 266, 24657-24663. 

Boussadia, O., Niepmann, M., Creancier, L., Prats, A. C., Dautry, F. & Jacquemin-Sablon, H. (2003). 
Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites 
of both rhinovirus and poliovirus. J Virol 77, 3353-3359. 

Boutz, P. L., Chawla, G., Stoilov, P. & Black, D. L. (2007). MicroRNAs regulate the expression of the 
alternative splicing factor nPTB during muscle development. Genes Dev 21, 71-84. 

Bouvier, M., Sharma, C. M., Mika, F., Nierhaus, K. H. & Vogel, J. (2008). Small RNA binding to 5' 
mRNA coding region inhibits translational initiation. Mol Cell 32, 827-837. 

Bradrick, S. S., Walters, R. W. & Gromeier, M. (2006). The hepatitis C virus 3'-untranslated region or a 
poly(A) tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Res 
34, 1293-1303. 

Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. (2005). Principles of microRNA-target 
recognition. PLoS Biol 3, e85. 

Brown, B. A. & Ehrenfeld, E. (1979). Translation of poliovirus RNA in vitro: changes in cleavage pattern 
and initiation sites by ribosomal salt wash. Virology 97, 396-405. 

Brown, D. M., Kauder, S. E., Cornell, C. T., Jang, G. M., Racaniello, V. R. & Semler, B. L. (2004). Cell-
dependent role for the poliovirus 3' noncoding region in positive-strand RNA synthesis. J Virol 
78, 1344-1351. 

Brown-Luedi, M. L., Meyer, L. J., Milburn, S. C., Yau, P. M., Corbett, S. & Hershey, J. W. (1982). 
Protein synthesis initiation factors from human HeLa cells and rabbit reticulocytes are similar: 



 

127 

 

comparison of protein structure, activities, and immunochemical properties. Biochemistry 21, 
4202-4206. 

Bugler, B., Bourbon, H., Lapeyre, B., Wallace, M. O., Chang, J. H., Amalric, F. & Olson, M. O. (1987). 
RNA binding fragments from nucleolin contain the ribonucleoprotein consensus sequence. J 
Biol Chem 262, 10922-10925. 

Bung, C., Bochkaeva, Z., Terenin, I., Zinovkin, R., Shatsky, I. N. & Niepmann, M. Influence of the 
hepatitis C virus 3'-untranslated region on IRES-dependent and cap-dependent translation 
initiation. FEBS Lett 584, 837-842. 

Bushell, M., Wood, W., Carpenter, G., Pain, V. M., Morley, S. J. & Clemens, M. J. (2001). Disruption of 
the interaction of mammalian protein synthesis eukaryotic initiation factor 4B with the poly(A)-
binding protein by caspase- and viral protease-mediated cleavages. J Biol Chem 276, 23922-
23928. 

Cakmakci, N. G., Lerner, R. S., Wagner, E. J., Zheng, L. & Marzluff, W. F. (2008). SLIP1, a factor 
required for activation of histone mRNA translation by the stem-loop binding protein. Mol Cell 
Biol 28, 1182-1194. 

Cammas, A., Pileur, F., Bonnal, S., Lewis, S. M., Leveque, N., Holcik, M. & Vagner, S. (2007). 
Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation 
initiation of specific mRNAs. Mol Biol Cell 18, 5048-5059. 

Cannell, I. G., Kong, Y. W. & Bushell, M. (2008). How do microRNAs regulate gene expression? 
Biochem Soc Trans 36, 1224-1231. 

Carissimi, C., Baccon, J., Straccia, M., Chiarella, P., Maiolica, A., Sawyer, A., Rappsilber, J. & 
Pellizzoni, L. (2005). Unrip is a component of SMN complexes active in snRNP assembly. 
FEBS Lett 579, 2348-2354. 

Carrasco, L. & Smith, A. E. (1976). Sodium ions and the shut-off of host cell protein synthesis by 
picornaviruses. Nature 264, 807-809. 

Chen, C. Y. & Sarnow, P. (1998). Internal ribosome entry sites tests with circular mRNAs. Methods Mol 
Biol 77, 355-363. 

Clarkson, B. K., Gilbert, W. V. & Doudna, J. A. Functional overlap between eIF4G isoforms in 
Saccharomyces cerevisiae. PLoS One 5, e9114. 

Colbere-Garapin, F., Christodoulou, C., Crainic, R. & Pelletier, I. (1989). Persistent poliovirus infection 
of human neuroblastoma cells. Proc Natl Acad Sci U S A 86, 7590-7594. 

Cornelis, S., Tinton, S. A., Schepens, B., Bruynooghe, Y. & Beyaert, R. (2005). UNR translation can be 
driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. 
Nucleic Acids Res 33, 3095-3108. 

Coward, P. & Dasgupta, A. (1992). Yeast cells are incapable of translating RNAs containing the 
poliovirus 5' untranslated region: evidence for a translational inhibitor. J Virol 66, 286-295. 

Craig, A. W., Svitkin, Y. V., Lee, H. S., Belsham, G. J. & Sonenberg, N. (1997). The La autoantigen 
contains a dimerization domain that is essential for enhancing translation. Mol Cell Biol 17, 
163-169. 

Dahl, H. H., Truelsen, E. & Blair, G. E. (1977). The purification and properties of two low-molecular-
weight proteins required for the initiation of translation in ascites tumour cells. Eur J Biochem 
77, 209-216. 

Das, S., Coward, P. & Dasgupta, A. (1994). A small yeast RNA selectively inhibits internal initiation of 
translation programmed by poliovirus RNA: specific interaction with cellular proteins that bind 
to the viral 5'-untranslated region. J Virol 68, 7200-7211. 

Das, S., Kenan, D. J., Bocskai, D., Keene, J. D. & Dasgupta, A. (1996). Sequences within a small 
yeast RNA required for inhibition of internal initiation of translation: interaction with La and 
other cellular proteins influences its inhibitory activity. J Virol 70, 1624-1632. 

de Breyne, S., Yu, Y., Unbehaun, A., Pestova, T. V. & Hellen, C. U. (2009). Direct functional interaction 
of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proc Natl Acad Sci U S A 
106, 9197-9202. 

De Jesus, N. H. (2007). Epidemics to eradication: the modern history of poliomyelitis. Virol J 4, 70. 
de Verdugo, U. R., Selinka, H. C., Huber, M., Kramer, B., Kellermann, J., Hofschneider, P. H. & 

Kandolf, R. (1995). Characterization of a 100-kilodalton binding protein for the six serotypes of 
coxsackie B viruses. J Virol 69, 6751-6757. 

de Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R. & Subramani, S. (1987). Firefly luciferase gene: 
structure and expression in mammalian cells. Mol Cell Biol 7, 725-737. 



 

128 

 

Deo, R. C., Sonenberg, N. & Burley, S. K. (2001). X-ray structure of the human hyperplastic discs 
protein: an ortholog of the C-terminal domain of poly(A)-binding protein. Proc Natl Acad Sci U 
S A 98, 4414-4419. 

Detjen, B. M., Lucas, J. & Wimmer, E. (1978). Poliovirus single-stranded RNA and double-stranded 
RNA: differential infectivity in enucleate cells. J Virol 27, 582-586. 

Dmitriev, S. E., Terenin, I. M., Dunaevsky, Y. E., Merrick, W. C. & Shatsky, I. N. (2003). Assembly of 
48S translation initiation complexes from purified components with mRNAs that have some 
base pairing within their 5' untranslated regions. Mol Cell Biol 23, 8925-8933. 

Dobrikova, E., Florez, P., Bradrick, S. & Gromeier, M. (2003). Activity of a type 1 picornavirus internal 
ribosomal entry site is determined by sequences within the 3' nontranslated region. Proc Natl 
Acad Sci U S A 100, 15125-15130. 

Dong, G., Chakshusmathi, G., Wolin, S. L. & Reinisch, K. M. (2004). Structure of the La motif: a 
winged helix domain mediates RNA binding via a conserved aromatic patch. Embo J 23, 1000-
1007. 

Dong, Z. & Zhang, J. T. (2006). Initiation factor eIF3 and regulation of mRNA translation, cell growth, 
and cancer. Crit Rev Oncol Hematol 59, 169-180. 

Dormoy-Raclet, V., Markovits, J., Jacquemin-Sablon, A. & Jacquemin-Sablon, H. (2005). Regulation of 
Unr expression by 5'- and 3'-untranslated regions of its mRNA through modulation of stability 
and IRES mediated translation. RNA Biol 2, e27-35. 

Dormoy-Raclet, V., Markovits, J., Malato, Y., Huet, S., Lagarde, P., Montaudon, D., Jacquemin-Sablon, 
A. & Jacquemin-Sablon, H. (2007). Unr, a cytoplasmic RNA-binding protein with cold-shock 
domains, is involved in control of apoptosis in ES and HuH7 cells. Oncogene 26, 2595-2605. 

Dorner, A. J., Semler, B. L., Jackson, R. J., Hanecak, R., Duprey, E. & Wimmer, E. (1984). In vitro 
translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol 
50, 507-514. 

Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., Merits, A., Gleba, Y. 
Y., Hohn, T. & Atabekov, J. G. (2002). Polypurine (A)-rich sequences promote cross-kingdom 
conservation of internal ribosome entry. Proc Natl Acad Sci U S A 99, 5301-5306. 

Drake, J. W. & Holland, J. J. (1999). Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96, 
13910-13913. 

Dreher, T. W. & Miller, W. A. (2006). Translational control in positive strand RNA plant viruses. Virology 
344, 185-197. 

Du, M. X., Johnson, R. B., Sun, X. L., Staschke, K. A., Colacino, J. & Wang, Q. M. (2002). 
Comparative characterization of two DEAD-box RNA helicases in superfamily II: human 
translation-initiation factor 4A and hepatitis C virus non-structural protein 3 (NS3) helicase. 
Biochem J 363, 147-155. 

Etchison, D., Hansen, J., Ehrenfeld, E., Edery, I., Sonenberg, N., Milburn, S. & Hershey, J. W. (1984). 
Demonstration in vitro that eucaryotic initiation factor 3 is active but that a cap-binding protein 
complex is inactive in poliovirus-infected HeLa cells. J Virol 51, 832-837. 

Fabian, M. R., Mathonnet, G., Sundermeier, T., Mathys, H., Zipprich, J. T., Svitkin, Y. V., Rivas, F., 
Jinek, M., Wohlschlegel, J., Doudna, J. A., Chen, C. Y., Shyu, A. B., Yates, J. R., 3rd, Hannon, 
G. J., Filipowicz, W., Duchaine, T. F. & Sonenberg, N. (2009). Mammalian miRNA RISC 
recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35, 868-880. 

Farh, K. K., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., Lim, L. P., Burge, C. B. & Bartel, D. P. 
(2005). The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. 
Science 310, 1817-1821. 

Filbin, M. E. & Kieft, J. S. (2009). Toward a structural understanding of IRES RNA function. Curr Opin 
Struct Biol 19, 267-276. 

Fraser, C. S., Lee, J. Y., Mayeur, G. L., Bushell, M., Doudna, J. A. & Hershey, J. W. (2004). The j-
subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and 
its subcomplexes to 40 S ribosomal subunits in vitro. J Biol Chem 279, 8946-8956. 

Freistadt, M. S., Kaplan, G. & Racaniello, V. R. (1990). Heterogeneous expression of poliovirus 
receptor-related proteins in human cells and tissues. Mol Cell Biol 10, 5700-5706. 

Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. (2009). Most mammalian mRNAs are 
conserved targets of microRNAs. Genome Res 19, 92-105. 

Gallie, D. R. (1991). The cap and poly(A) tail function synergistically to regulate mRNA translational 
efficiency. Genes Dev 5, 2108-2116. 



 

129 

 

Gamarnik, A. V. & Andino, R. (1996). Replication of poliovirus in Xenopus oocytes requires two human 
factors. Embo J 15, 5988-5998. 

Gamarnik, A. V. & Andino, R. (1998). Switch from translation to RNA replication in a positive-stranded 
RNA virus. Genes Dev 12, 2293-2304. 

Gamarnik, A. V. & Andino, R. (2000). Interactions of viral protein 3CD and poly(rC) binding protein with 
the 5' untranslated region of the poliovirus genome. J Virol 74, 2219-2226. 

Georgescu, M. M., Balanant, J., Macadam, A., Otelea, D., Combiescu, M., Combiescu, A. A., Crainic, 
R. & Delpeyroux, F. (1997). Evolution of the Sabin type 1 poliovirus in humans: 
characterization of strains isolated from patients with vaccine-associated paralytic 
poliomyelitis. J Virol 71, 7758-7768. 

Ghetti, A., Pinol-Roma, S., Michael, W. M., Morandi, C. & Dreyfuss, G. (1992). hnRNP I, the 
polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. 
Nucleic Acids Res 20, 3671-3678. 

Gil, A., Sharp, P. A., Jamison, S. F. & Garcia-Blanco, M. A. (1991). Characterization of cDNAs 
encoding the polypyrimidine tract-binding protein. Genes Dev 5, 1224-1236. 

Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A. & Sonenberg, N. (1996). Activation of the 
translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and 
poliovirus. Proc Natl Acad Sci U S A 93, 5578-5583. 

Ginisty, H., Sicard, H., Roger, B. & Bouvet, P. (1999). Structure and functions of nucleolin. J Cell Sci 
112 ( Pt 6), 761-772. 

Goodfellow, I., Chaudhry, Y., Gioldasi, I., Gerondopoulos, A., Natoni, A., Labrie, L., Laliberte, J. F. & 
Roberts, L. (2005). Calicivirus translation initiation requires an interaction between VPg and 
eIF 4 E. EMBO Rep 6, 968-972. 

Gorlach, M., Burd, C. G. & Dreyfuss, G. (1994). The determinants of RNA-binding specificity of the 
heterogeneous nuclear ribonucleoprotein C proteins. J Biol Chem 269, 23074-23078. 

Gosert, R., Chang, K. H., Rijnbrand, R., Yi, M., Sangar, D. V. & Lemon, S. M. (2000). Transient 
expression of cellular polypyrimidine-tract binding protein stimulates cap-independent 
translation directed by both picornaviral and flaviviral internal ribosome entry sites In vivo. Mol 
Cell Biol 20, 1583-1595. 

Gradi, A., Svitkin, Y. V., Imataka, H. & Sonenberg, N. (1998). Proteolysis of human eukaryotic 
translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein 
synthesis after poliovirus infection. Proc Natl Acad Sci U S A 95, 11089-11094. 

Grange, T., de Sa, C. M., Oddos, J. & Pictet, R. (1987). Human mRNA polyadenylate binding protein: 
evolutionary conservation of a nucleic acid binding motif. Nucleic Acids Res 15, 4771-4787. 

Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N. & Shiekhattar, R. 
(2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-
240. 

Grifo, J. A., Tahara, S. M., Morgan, M. A., Shatkin, A. J. & Merrick, W. C. (1983). New initiation factor 
activity required for globin mRNA translation. J Biol Chem 258, 5804-5810. 

Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P. & Bartel, D. P. (2007). 
MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27, 
91-105. 

Gromeier, M., Lachmann, S., Rosenfeld, M. R., Gutin, P. H. & Wimmer, E. (2000). Intergeneric 
poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A 97, 
6803-6808. 

Gross, J. D., Moerke, N. J., von der Haar, T., Lugovskoy, A. A., Sachs, A. B., McCarthy, J. E. & 
Wagner, G. (2003). Ribosome loading onto the mRNA cap is driven by conformational 
coupling between eIF4G and eIF4E. Cell 115, 739-750. 

Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M. A. (2009). Biological basis for restriction of microRNA 
targets to the 3' untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16, 144-150. 

Guo, J., Hui, D. J., Merrick, W. C. & Sen, G. C. (2000). A new pathway of translational regulation 
mediated by eukaryotic initiation factor 3. Embo J 19, 6891-6899. 

Gustin, K. E. & Sarnow, P. (2001). Effects of poliovirus infection on nucleo-cytoplasmic trafficking and 
nuclear pore complex composition. Embo J 20, 240-249. 

Hahm, B., Kim, Y. K., Kim, J. H., Kim, T. Y. & Jang, S. K. (1998). Heterogeneous nuclear 
ribonucleoprotein L interacts with the 3' border of the internal ribosomal entry site of hepatitis C 
virus. J Virol 72, 8782-8788. 



 

130 

 

Haller, A. A. & Semler, B. L. (1995). Stem-loop structure synergy in binding cellular proteins to the 5' 
noncoding region of poliovirus RNA. Virology 206, 923-934. 

Haller, A. A., Stewart, S. R. & Semler, B. L. (1996). Attenuation stem-loop lesions in the 5' noncoding 
region of poliovirus RNA: neuronal cell-specific translation defects. J Virol 70, 1467-1474. 

Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. (2001). Argonaute2, a 
link between genetic and biochemical analyses of RNAi. Science 293, 1146-1150. 

Han, B. & Zhang, J. T. (2002). Regulation of gene expression by internal ribosome entry sites or cryptic 
promoters: the eIF4G story. Mol Cell Biol 22, 7372-7384. 

Hausser, J., Landthaler, M., Jaskiewicz, L., Gaidatzis, D. & Zavolan, M. (2009). Relative contribution of 
sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes 
and the degradation of miRNA targets. Genome Res 19, 2009-2020. 

Hellen, C. U. (2009). IRES-induced conformational changes in the ribosome and the mechanism of 
translation initiation by internal ribosomal entry. Biochim Biophys Acta 1789, 558-570. 

Hellen, C. U. & Sarnow, P. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes 
Dev 15, 1593-1612. 

Hellen, C. U., Witherell, G. W., Schmid, M., Shin, S. H., Pestova, T. V., Gil, A. & Wimmer, E. (1993). A 
cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal 
ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci U 
S A 90, 7642-7646. 

Henke, J. I., Goergen, D., Zheng, J., Song, Y., Schüttler, C. G., Fehr, C., Jünemann, C. & Niepmann, 
M. (2008). microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27, 3300-
3310. 

Herold, J. & Andino, R. (2001). Poliovirus RNA replication requires genome circularization through a 
protein-protein bridge. Mol Cell 7, 581-591. 

Hinnebusch, A. G. (2006). eIF3: a versatile scaffold for translation initiation complexes. Trends 
Biochem Sci 31, 553-562. 

Hinton, T. M., Coldwell, M. J., Carpenter, G. A., Morley, S. J. & Pain, V. M. (2007). Functional analysis 
of individual binding activities of the scaffold protein eIF4G. J Biol Chem 282, 1695-1708. 

Holcik, M., Gordon, B. W. & Korneluk, R. G. (2003). The internal ribosome entry site-mediated 
translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear 
ribonucleoproteins C1 and C2. Mol Cell Biol 23, 280-288. 

Holcik, M., Sonenberg, N. & Korneluk, R. G. (2000). Internal ribosome initiation of translation and the 
control of cell death. Trends Genet 16, 469-473. 

Honda, A., Okamoto, T. & Ishihama, A. (2007). Host factor Ebp1: selective inhibitor of influenza virus 
transcriptase. Genes Cells 12, 133-142. 

Hruby, D. E. & Roberts, W. K. (1977). Encephalomyocarditis virus RNA. II. Polyadenylic acid 
requirement for efficient translation. J Virol 23, 338-344. 

Hui, D. J., Bhasker, C. R., Merrick, W. C. & Sen, G. C. (2003). Viral stress-inducible protein p56 inhibits 
translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP.Met-tRNAi. J 
Biol Chem 278, 39477-39482. 

Hundsdoerfer, P., Thoma, C. & Hentze, M. W. (2005). Eukaryotic translation initiation factor 4GI and 
p97 promote cellular internal ribosome entry sequence-driven translation. Proc Natl Acad Sci U 
S A 102, 13421-13426. 

Hunt, S. L., Hsuan, J. J., Totty, N. & Jackson, R. J. (1999). unr, a cellular cytoplasmic RNA-binding 
protein with five cold-shock domains, is required for internal initiation of translation of human 
rhinovirus RNA. Genes Dev 13, 437-448. 

Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T. & Zamore, P. D. (2001). A 
cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small 
temporal RNA. Science 293, 834-838. 

Igarashi, H., Yoshino, Y., Miyazawa, M., Horie, H., Ohka, S. & Nomoto, A. 2A protease is not a 
prerequisite for poliovirus replication. J Virol. 

Imataka, H., Olsen, H. S. & Sonenberg, N. (1997). A new translational regulator with homology to 
eukaryotic translation initiation factor 4G. Embo J 16, 817-825. 

Isoyama, T., Kamoshita, N., Yasui, K., Iwai, A., Shiroki, K., Toyoda, H., Yamada, A., Takasaki, Y. & 
Nomoto, A. (1999). Lower concentration of La protein required for internal ribosome entry on 
hepatitis C virus RNA than on poliovirus RNA. J Gen Virol 80 ( Pt 9), 2319-2327. 



 

131 

 

Izumi, R. E., Das, S., Barat, B., Raychaudhuri, S. & Dasgupta, A. (2004). A peptide from autoantigen 
La blocks poliovirus and hepatitis C virus cap-independent translation and reveals a single 
tyrosine critical for La RNA binding and translation stimulation. J Virol 78, 3763-3776. 

Jackson, R. J. (2005). Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem 
Soc Trans 33, 1231-1241. 

Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and 
principles of its regulation. Nat Rev Mol Cell Biol 11, 113-127. 

Jackson, R. J. & Kaminski, A. (1995). Internal initiation of translation in eukaryotes: the picornavirus 
paradigm and beyond. Rna 1, 985-1000. 

Jacquemin-Sablon, H., Triqueneaux, G., Deschamps, S., le Maire, M., Doniger, J. & Dautry, F. (1994). 
Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains. 
Nucleic Acids Res 22, 2643-2650. 

Jang, S. K. (2006). Internal initiation: IRES elements of picornaviruses and hepatitis c virus. Virus Res 
119, 2-15. 

Jang, S. K. & Wimmer, E. (1990). Cap-independent translation of encephalomyocarditis virus RNA: 
structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD 
RNA-binding protein. Genes Dev 4, 1560-1572. 

Jeffers, M., Paciucci, R. & Pellicer, A. (1990). Characterization of unr; a gene closely linked to N-ras. 
Nucleic Acids Res 18, 4891-4899. 

Jivotovskaya, A. V., Valasek, L., Hinnebusch, A. G. & Nielsen, K. H. (2006). Eukaryotic translation 
initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of 
eIF4G in yeast. Mol Cell Biol 26, 1355-1372. 

Joachims, M., Van Breugel, P. C. & Lloyd, R. E. (1999). Cleavage of poly(A)-binding protein by 
enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 73, 718-727. 

Johannes, G., Carter, M. S., Eisen, M. B., Brown, P. O. & Sarnow, P. (1999). Identification of 
eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations 
using a cDNA microarray. Proc Natl Acad Sci U S A 96, 13118-13123. 

Johnson, R. T. (1982). Selective vulnerability of neural cells to viral infections. Adv Neurol 36, 331-337. 
Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. (2006). MicroRNAS and their regulatory roles in 

plants. Annu Rev Plant Biol 57, 19-53. 
Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. (2005). Modulation of hepatitis C 

virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577-1581. 
Joshi, S., Kaur, S., Kroczynska, B. & Platanias, L. C. Mechanisms of mRNA translation of interferon 

stimulated genes. Cytokine. 
Jünemann, C., Song, Y., Bassili, G., Goergen, D., Henke, J. & Niepmann, M. (2007). Picornavirus 

internal ribosome entry site elements can stimulate translation of upstream genes. J Biol Chem 
282, 132-141. 

Kahvejian, A., Svitkin, Y. V., Sukarieh, R., M'Boutchou, M. N. & Sonenberg, N. (2005). Mammalian 
poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple 
mechanisms. Genes Dev 19, 104-113. 

Kai, Z. S. & Pasquinelli, A. E. MicroRNA assassins: factors that regulate the disappearance of 
miRNAs. Nat Struct Mol Biol 17, 5-10. 

Kaminski, A. & Jackson, R. J. (1998). The polypyrimidine tract binding protein (PTB) requirement for 
internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. Rna 4, 
626-638. 

Kaminski, A., Poyry, T. A., Skene, P. J. & Jackson, R. J. The mechanism of initiation site selection 
promoted by the human rhinovirus 2 IRES. J Virol. 

Karim, M. M., Svitkin, Y. V., Kahvejian, A., De Crescenzo, G., Costa-Mattioli, M. & Sonenberg, N. 
(2006). A mechanism of translational repression by competition of Paip2 with eIF4G for poly(A) 
binding protein (PABP) binding. Proc Natl Acad Sci U S A 103, 9494-9499. 

Kasashima, K., Nakamura, Y. & Kozu, T. (2004). Altered expression profiles of microRNAs during 
TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun 322, 403-410. 

Kauder, S. E. & Racaniello, V. R. (2004). Poliovirus tropism and attenuation are determined after 
internal ribosome entry. J Clin Invest 113, 1743-1753. 

Kelly, E. J. & Russell, S. J. (2009). MicroRNAs and the regulation of vector tropism. Mol Ther 17, 409-
416. 

Kemper, W. M., Berry, K. W. & Merrick, W. C. (1976). Purification and properties of rabbit reticulocyte 
protein synthesis initiation factors M2Balpha and M2Bbeta. J Biol Chem 251, 5551-5557. 



 

132 

 

Kerekatte, V., Keiper, B. D., Badorff, C., Cai, A., Knowlton, K. U. & Rhoads, R. E. (1999). Cleavage of 
Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism 
for host protein synthesis shutoff? J Virol 73, 709-717. 

Khaleghpour, K., Svitkin, Y. V., Craig, A. W., DeMaria, C. T., Deo, R. C., Burley, S. K. & Sonenberg, N. 
(2001). Translational repression by a novel partner of human poly(A) binding protein, Paip2. 
Mol Cell 7, 205-216. 

Kiledjian, M., Wang, X. & Liebhaber, S. A. (1995). Identification of two KH domain proteins in the 
alpha-globin mRNP stability complex. Embo J 14, 4357-4364. 

Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M. & Ruvkun, G. (2004). 
Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. 
Proc Natl Acad Sci U S A 101, 360-365. 

Kim, J. H., Paek, K. Y., Choi, K., Kim, T. D., Hahm, B., Kim, K. T. & Jang, S. K. (2003). Heterogeneous 
nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-
dependent manner. Mol Cell Biol 23, 708-720. 

Kim, Y. K. & Jang, S. K. (1999). La protein is required for efficient translation driven by 
encephalomyocarditis virus internal ribosomal entry site. J Gen Virol 80 ( Pt 12), 3159-3166. 

Knauf, U., Tschopp, C. & Gram, H. (2001). Negative regulation of protein translation by mitogen-
activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol 21, 5500-5511. 

Koike, S., Ise, I. & Nomoto, A. (1991). Functional domains of the poliovirus receptor. Proc Natl Acad 
Sci U S A 88, 4104-4108. 

Kolupaeva, V. G., Unbehaun, A., Lomakin, I. B., Hellen, C. U. & Pestova, T. V. (2005). Binding of 
eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation 
and anti-association. Rna 11, 470-486. 

Koonin, E. V., Wolf, Y. I. & Aravind, L. (2001). Prediction of the archaeal exosome and its connections 
with the proteasome and the translation and transcription machineries by a comparative-
genomic approach. Genome Res 11, 240-252. 

Kozak, M. (1989). Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free 
translation systems. Mol Cell Biol 9, 5073-5080. 

Kozak, M. (2008). Faulty old ideas about translational regulation paved the way for current confusion 
about how microRNAs function. Gene 423, 108-115. 

Kozlov, G., Safaee, N., Rosenauer, A. & Gehring, K. Structural basis of binding of P-body-associated 
proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. J Biol Chem 285, 
13599-13606. 

Kozlov, G., Siddiqui, N., Coillet-Matillon, S., Trempe, J. F., Ekiel, I., Sprules, T. & Gehring, K. (2002). 
Solution structure of the orphan PABC domain from Saccharomyces cerevisiae poly(A)-binding 
protein. J Biol Chem 277, 22822-22828. 

Kuyumcu-Martinez, N. M., Joachims, M. & Lloyd, R. E. (2002). Efficient cleavage of ribosome-
associated poly(A)-binding protein by enterovirus 3C protease. J Virol 76, 2062-2074. 

Kyrpides, N. C. & Woese, C. R. (1998). Universally conserved translation initiation factors. Proc Natl 
Acad Sci U S A 95, 224-228. 

La Monica, N., Meriam, C. & Racaniello, V. R. (1986). Mapping of sequences required for mouse 
neurovirulence of poliovirus type 2 Lansing. J Virol 57, 515-525. 

La Monica, N. & Racaniello, V. R. (1989). Differences in replication of attenuated and neurovirulent 
polioviruses in human neuroblastoma cell line SH-SY5Y. J Virol 63, 2357-2360. 

Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. (2001). Identification of novel genes 
coding for small expressed RNAs. Science 294, 853-858. 

Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. (2003). New microRNAs from 
mouse and human. Rna 9, 175-179. 

Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W. & Tuschl, T. (2002). Identification 
of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739. 

Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. (1995). Mapping of functional domains in 
eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. 
Implications for cap-dependent and cap-independent translational initiation. J Biol Chem 270, 
21975-21983. 

Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, 
A. O., Landthaler, M., Lin, C., Socci, N. D., Hermida, L., Fulci, V., Chiaretti, S., Foa, R., 
Schliwka, J., Fuchs, U., Novosel, A., Muller, R. U., Schermer, B., Bissels, U., Inman, J., Phan, 
Q., Chien, M., Weir, D. B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H. I., Hornung, V., 



 

133 

 

Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C. E., 
Nagle, J. W., Ju, J., Papavasiliou, F. N., Benzing, T., Lichter, P., Tam, W., Brownstein, M. J., 
Bosio, A., Borkhardt, A., Russo, J. J., Sander, C., Zavolan, M. & Tuschl, T. (2007). A 
mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 
1401-1414. 

Lang, K. J., Kappel, A. & Goodall, G. J. (2002). Hypoxia-inducible factor-1alpha mRNA contains an 
internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol 
Biol Cell 13, 1792-1801. 

Laursen, B. S., Sorensen, H. P., Mortensen, K. K. & Sperling-Petersen, H. U. (2005). Initiation of 
protein synthesis in bacteria. Microbiol Mol Biol Rev 69, 101-123. 

Le, H., Tanguay, R. L., Balasta, M. L., Wei, C. C., Browning, K. S., Metz, A. M., Goss, D. J. & Gallie, D. 
R. (1997). Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding 
protein and increase its RNA binding activity. J Biol Chem 272, 16247-16255. 

Lee, R. C., Feinbaum, R. L. & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes 
small RNAs with antisense complementarity to lin-14. Cell 75, 843-854. 

LeFebvre, A. K., Korneeva, N. L., Trutschl, M., Cvek, U., Duzan, R. D., Bradley, C. A., Hershey, J. W. 
& Rhoads, R. E. (2006). Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e 
subunit. J Biol Chem 281, 22917-22932. 

Leffers, H., Dejgaard, K. & Celis, J. E. (1995). Characterisation of two major cellular poly(rC)-binding 
human proteins, each containing three K-homologous (KH) domains. Eur J Biochem 230, 447-
453. 

Lewis, B. P., Burge, C. B. & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, 
indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. 

Lewis, S. M., Veyrier, A., Hosszu Ungureanu, N., Bonnal, S., Vagner, S. & Holcik, M. (2007). 
Subcellular relocalization of a trans-acting factor regulates XIAP IRES-dependent translation. 
Mol Biol Cell 18, 1302-1311. 

Li, W., Belsham, G. J. & Proud, C. G. (2001a). Eukaryotic initiation factors 4A (eIF4A) and 4G (eIF4G) 
mutually interact in a 1:1 ratio in vivo. J Biol Chem 276, 29111-29115. 

Li, W., Ross-Smith, N., Proud, C. G. & Belsham, G. J. (2001b). Cleavage of translation initiation factor 
4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: identification of the 
eIF4AI cleavage site. FEBS Lett 507, 1-5. 

Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D. P. (2003). Vertebrate microRNA genes. 
Science 299, 1540. 

Lloyd, R. E. (2006). Translational control by viral proteinases. Virus Res 119, 76-88. 
Lomakin, I. B., Hellen, C. U. & Pestova, T. V. (2000). Physical association of eukaryotic initiation factor 

4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site 
of encephalomyocarditis virus and is required for internal initiation of translation. Mol Cell Biol 
20, 6019-6029. 

Lopez de Quinto, S., Lafuente, E. & Martinez-Salas, E. (2001). IRES interaction with translation 
initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and 
eIF4GII. Rna 7, 1213-1226. 

Lu, C., Tej, S. S., Luo, S., Haudenschild, C. D., Meyers, B. C. & Green, P. J. (2005). Elucidation of the 
small RNA component of the transcriptome. Science 309, 1567-1569. 

Lytle, J. R., Yario, T. A. & Steitz, J. A. (2007). Target mRNAs are repressed as efficiently by 
microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci U S A 104, 9667-
9672. 

Makeyev, A. V., Eastmond, D. L. & Liebhaber, S. A. (2002). Targeting a KH-domain protein with RNA 
decoys. Rna 8, 1160-1173. 

Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. (2007). The MicroRNA miR-124 promotes 
neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27, 
435-448. 

Mangus, D. A. & van Hoof, A. (2003). Making and breaking the message. Genome Biol 4, 346. 
Marintchev, A., Edmonds, K. A., Marintcheva, B., Hendrickson, E., Oberer, M., Suzuki, C., Herdy, B., 

Sonenberg, N. & Wagner, G. (2009). Topology and regulation of the human eIF4A/4G/4H 
helicase complex in translation initiation. Cell 136, 447-460. 

Martinez-Salas, E. (2008). The impact of RNA structure on picornavirus IRES activity. Trends Microbiol 
16, 230-237. 



 

134 

 

Martinez-Salas, E., Pacheco, A., Serrano, P. & Fernandez, N. (2008). New insights into internal 
ribosome entry site elements relevant for viral gene expression. J Gen Virol 89, 611-626. 

Martinez-Salas, E., Ramos, R., Lafuente, E. & Lopez de Quinto, S. (2001). Functional interactions in 
internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 82, 973-
984. 

Masutani, M., Sonenberg, N., Yokoyama, S. & Imataka, H. (2007). Reconstitution reveals the 
functional core of mammalian eIF3. Embo J 26, 3373-3383. 

Meerovitch, K., Svitkin, Y. V., Lee, H. S., Lejbkowicz, F., Kenan, D. J., Chan, E. K., Agol, V. I., Keene, 
J. D. & Sonenberg, N. (1993). La autoantigen enhances and corrects aberrant translation of 
poliovirus RNA in reticulocyte lysate. J Virol 67, 3798-3807. 

Merrick, W. C. (1979). Purification of protein synthesis initiation factors from rabbit reticulocytes. 
Methods Enzymol 60, 101-108. 

Merrick, W. C., Kemper, W. M. & Anderson, W. F. (1975). Purification and characterization of 
homogeneous initiation factor M2A from rabbit reticulocytes. J Biol Chem 250, 5556-5562. 

Merrill, M. K. & Gromeier, M. (2006). The double-stranded RNA binding protein 76:NF45 heterodimer 
inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J Virol 80, 
6936-6942. 

Methot, N., Pause, A., Hershey, J. W. & Sonenberg, N. (1994). The translation initiation factor eIF-4B 
contains an RNA-binding region that is distinct and independent from its ribonucleoprotein 
consensus sequence. Mol Cell Biol 14, 2307-2316. 

Methot, N., Pickett, G., Keene, J. D. & Sonenberg, N. (1996a). In vitro RNA selection identifies RNA 
ligands that specifically bind to eukaryotic translation initiation factor 4B: the role of the RNA 
remotif. Rna 2, 38-50. 

Methot, N., Rom, E., Olsen, H. & Sonenberg, N. (1997). The human homologue of the yeast Prt1 
protein is an integral part of the eukaryotic initiation factor 3 complex and interacts with p170. J 
Biol Chem 272, 1110-1116. 

Methot, N., Song, M. S. & Sonenberg, N. (1996b). A region rich in aspartic acid, arginine, tyrosine, and 
glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction 
with eIF3. Mol Cell Biol 16, 5328-5334. 

Meyer, K., Petersen, A., Niepmann, M. & Beck, E. (1995). Interaction of eukaryotic initiation factor eIF-
4B with a picornavirus internal translation initiation site. J Virol 69, 2819-2824. 

Mili, S., Shu, H. J., Zhao, Y. & Pinol-Roma, S. (2001). Distinct RNP complexes of shuttling hnRNP 
proteins with pre-mRNA and mRNA: candidate intermediates in formation and export of 
mRNA. Mol Cell Biol 21, 7307-7319. 

Monie, T. P., Perrin, A. J., Birtley, J. R., Sweeney, T. R., Karakasiliotis, I., Chaudhry, Y., Roberts, L. O., 
Matthews, S., Goodfellow, I. G. & Curry, S. (2007). Structural insights into the transcriptional 
and translational roles of Ebp1. Embo J 26, 3936-3944. 

Morino, S., Imataka, H., Svitkin, Y. V., Pestova, T. V. & Sonenberg, N. (2000). Eukaryotic translation 
initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core 
domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory 
region. Mol Cell Biol 20, 468-477. 

Morrison, M. E., He, Y. J., Wien, M. W., Hogle, J. M. & Racaniello, V. R. (1994). Homolog-scanning 
mutagenesis reveals poliovirus receptor residues important for virus binding and replication. J 
Virol 68, 2578-2588. 

Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M. & 
Dreyfuss, G. (2002). miRNPs: a novel class of ribonucleoproteins containing numerous 
microRNAs. Genes Dev 16, 720-728. 

Munroe, D. & Jacobson, A. (1990). mRNA poly(A) tail, a 3' enhancer of translational initiation. Mol Cell 
Biol 10, 3441-3455. 

Nicholson, R., Pelletier, J., Le, S. Y. & Sonenberg, N. (1991). Structural and functional analysis of the 
ribosome landing pad of poliovirus type 2: in vivo translation studies. J Virol 65, 5886-5894. 

Nielsen, C. B., Shomron, N., Sandberg, R., Hornstein, E., Kitzman, J. & Burge, C. B. (2007). 
Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. Rna 13, 
1894-1910. 

Nielsen, K. H., Szamecz, B., Valasek, L., Jivotovskaya, A., Shin, B. S. & Hinnebusch, A. G. (2004). 
Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 
translational control. Embo J 23, 1166-1177. 



 

135 

 

Nielsen, P. J., McMaster, G. K. & Trachsel, H. (1985). Cloning of eukaryotic protein synthesis initiation 
factor genes: isolation and characterization of cDNA clones encoding factor eIF-4A. Nucleic 
Acids Res 13, 6867-6880. 

Niepmann, M. (2003). Effects of potassium and chloride on ribosome association with the RNA of foot-
and-mouth disease virus. Virus Res 93, 71-78. 

Niepmann, M., Petersen, A., Meyer, K. & Beck, E. (1997). Functional involvement of polypyrimidine 
tract-binding protein in translation initiation complexes with the internal ribosome entry site of 
foot-and-mouth disease virus. J Virol 71, 8330-8339. 

Nottrott, S., Simard, M. J. & Richter, J. D. (2006). Human let-7a miRNA blocks protein production on 
actively translating polyribosomes. Nat Struct Mol Biol 13, 1108-1114. 

Ochs, K., Rust, R. C. & Niepmann, M. (1999). Translation initiation factor eIF4B interacts with a 
picornavirus internal ribosome entry site in both 48S and 80S initiation complexes 
independently of initiator AUG location. J Virol 73, 7505-7514. 

Ochs, K., Saleh, L., Bassili, G., Sonntag, V. H., Zeller, A. & Niepmann, M. (2002). Interaction of 
translation initiation factor eIF4B with the poliovirus internal ribosome entry site. J Virol 76, 
2113-2122. 

Ochs, K., Zeller, A., Saleh, L., Bassili, G., Song, Y., Sonntag, A. & Niepmann, M. (2003). Impaired 
binding of standard initiation factors mediates poliovirus translation attenuation. J Virol 77, 115-
122. 

O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. (2005). c-Myc-regulated 
microRNAs modulate E2F1 expression. Nature 435, 839-843. 

Oh, Y. L., Hahm, B., Kim, Y. K., Lee, H. K., Lee, J. W., Song, O., Tsukiyama-Kohara, K., Kohara, M., 
Nomoto, A. & Jang, S. K. (1998). Determination of functional domains in polypyrimidine-tract-
binding protein. Biochem J 331 ( Pt 1), 169-175. 

Ohlmann, T., Rau, M., Morley, S. J. & Pain, V. M. (1995). Proteolytic cleavage of initiation factor eIF-4 
gamma in the reticulocyte lysate inhibits translation of capped mRNAs but enhances that of 
uncapped mRNAs. Nucleic Acids Res 23, 334-340. 

Orom, U. A., Nielsen, F. C. & Lund, A. H. (2008). MicroRNA-10a binds the 5'UTR of ribosomal protein 
mRNAs and enhances their translation. Mol Cell 30, 460-471. 

Ostareck, D. H., Ostareck-Lederer, A., Wilm, M., Thiele, B. J., Mann, M. & Hentze, M. W. (1997). 
mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase 
translation from the 3' end. Cell 89, 597-606. 

Pacheco, A., Lopez de Quinto, S., Ramajo, J., Fernandez, N. & Martinez-Salas, E. (2009). A novel role 
for Gemin5 in mRNA translation. Nucleic Acids Res 37, 582-590. 

Pacheco, A. & Martinez-Salas, E. Insights into the biology of IRES elements through riboproteomic 
approaches. J Biomed Biotechnol 2010, 458927. 

Pacheco, A., Reigadas, S. & Martinez-Salas, E. (2008). Riboproteomic analysis of polypeptides 
interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA. 
Proteomics 8, 4782-4790. 

Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S. & Sharp, P. A. (1986). Splicing of 
messenger RNA precursors. Annu Rev Biochem 55, 1119-1150. 

Paek, K. Y., Kim, C. S., Park, S. M., Kim, J. H. & Jang, S. K. (2008). RNA-binding protein hnRNP D 
modulates internal ribosome entry site-dependent translation of hepatitis C virus RNA. J Virol 
82, 12082-12093. 

Parsley, T. B., Towner, J. S., Blyn, L. B., Ehrenfeld, E. & Semler, B. L. (1997). Poly (rC) binding protein 
2 forms a ternary complex with the 5'-terminal sequences of poliovirus RNA and the viral 3CD 
proteinase. Rna 3, 1124-1134. 

Patel, G. P., Ma, S. & Bag, J. (2005). The autoregulatory translational control element of poly(A)-
binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res 33, 
7074-7089. 

Paulous, S., Malnou, C. E., Michel, Y. M., Kean, K. M. & Borman, A. M. (2003). Comparison of the 
capacity of different viral internal ribosome entry segments to direct translation initiation in 
poly(A)-dependent reticulocyte lysates. Nucleic Acids Res 31, 722-733. 

Pause, A., Methot, N., Svitkin, Y., Merrick, W. C. & Sonenberg, N. (1994). Dominant negative mutants 
of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-
dependent and cap-independent initiation of translation. Embo J 13, 1205-1215. 

Pedersen, I. M., Cheng, G., Wieland, S., Volinia, S., Croce, C. M., Chisari, F. V. & David, M. (2007). 
Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449, 919-922. 



 

136 

 

Pelham, H. R. & Jackson, R. J. (1976). An efficient mRNA-dependent translation system from 
reticulocyte lysates. Eur J Biochem 67, 247-256. 

Pelletier, J. & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a 
sequence derived from poliovirus RNA. Nature 334, 320-325. 

Perera, R., Daijogo, S., Walter, B. L., Nguyen, J. H. & Semler, B. L. (2007). Cellular protein 
modification by poliovirus: the two faces of poly(rC)-binding protein. J Virol 81, 8919-8932. 

Perez, I., Lin, C. H., McAfee, J. G. & Patton, J. G. (1997). Mutation of PTB binding sites causes 
misregulation of alternative 3' splice site selection in vivo. Rna 3, 764-778. 

Pestova, E. V., Havarstein, L. S. & Morrison, D. A. (1996a). Regulation of competence for genetic 
transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a 
two-component regulatory system. Mol Microbiol 21, 853-862. 

Pestova, T. V., Hellen, C. U. & Shatsky, I. N. (1996b). Canonical eukaryotic initiation factors determine 
initiation of translation by internal ribosomal entry. Mol Cell Biol 16, 6859-6869. 

Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. (1998). A prokaryotic-like 
mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal 
translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12, 67-83. 

Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. (2006). Short RNAs repress translation 
after initiation in mammalian cells. Mol Cell 21, 533-542. 

Pfingsten, J. S., Costantino, D. A. & Kieft, J. S. (2006). Structural basis for ribosome recruitment and 
manipulation by a viral IRES RNA. Science 314, 1450-1454. 

Phan, L., Zhang, X., Asano, K., Anderson, J., Vornlocher, H. P., Greenberg, J. R., Qin, J. & 
Hinnebusch, A. G. (1998). Identification of a translation initiation factor 3 (eIF3) core complex, 
conserved in yeast and mammals, that interacts with eIF5. Mol Cell Biol 18, 4935-4946. 

Pilipenko, E. V., Blinov, V. M., Chernov, B. K., Dmitrieva, T. M. & Agol, V. I. (1989). Conservation of the 
secondary structure elements of the 5'-untranslated region of cardio- and aphthovirus RNAs. 
Nucleic Acids Res 17, 5701-5711. 

Pilipenko, E. V., Pestova, T. V., Kolupaeva, V. G., Khitrina, E. V., Poperechnaya, A. N., Agol, V. I. & 
Hellen, C. U. (2000). A cell cycle-dependent protein serves as a template-specific translation 
initiation factor. Genes Dev 14, 2028-2045. 

Pilipenko, E. V., Viktorova, E. G., Guest, S. T., Agol, V. I. & Roos, R. P. (2001). Cell-specific proteins 
regulate viral RNA translation and virus-induced disease. Embo J 20, 6899-6908. 

Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. (2007). Repression of protein synthesis by miRNAs: 
how many mechanisms? Trends Cell Biol 17, 118-126. 

Pincheira, R., Chen, Q., Huang, Z. & Zhang, J. T. (2001). Two subcellular localizations of eIF3 p170 
and its interaction with membrane-bound microfilaments: implications for alternative functions 
of p170. Eur J Cell Biol 80, 410-418. 

Polydorides, A. D., Okano, H. J., Yang, Y. Y., Stefani, G. & Darnell, R. B. (2000). A brain-enriched 
polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific 
alternative splicing. Proc Natl Acad Sci U S A 97, 6350-6355. 

Poyry, T., Kinnunen, L. & Hovi, T. (1992). Genetic variation in vivo and proposed functional domains of 
the 5' noncoding region of poliovirus RNA. J Virol 66, 5313-5319. 

Prevot, D., Darlix, J. L. & Ohlmann, T. (2003). Conducting the initiation of protein synthesis: the role of 
eIF4G. Biol Cell 95, 141-156. 

Proweller, A. & Butler, J. S. (1996). Ribosomal association of poly(A)-binding protein in poly(A)-
deficient Saccharomyces cerevisiae. J Biol Chem 271, 10859-10865. 

Pudi, R., Abhiman, S., Srinivasan, N. & Das, S. (2003). Hepatitis C virus internal ribosome entry site-
mediated translation is stimulated by specific interaction of independent regions of human La 
autoantigen. J Biol Chem 278, 12231-12240. 

Pyronnet, S., Dostie, J. & Sonenberg, N. (2001). Suppression of cap-dependent translation in mitosis. 
Genes Dev 15, 2083-2093. 

Pyronnet, S., Imataka, H., Gingras, A. C., Fukunaga, R., Hunter, T. & Sonenberg, N. (1999). Human 
eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. Embo 
J 18, 270-279. 

Racaniello, V. R. (2006). One hundred years of poliovirus pathogenesis. Virology 344, 9-16. 
Ramos, R. & Martinez-Salas, E. (1999). Long-range RNA interactions between structural domains of 

the aphthovirus internal ribosome entry site (IRES). Rna 5, 1374-1383. 



 

137 

 

Rassmann, A., Henke, A., Zobawa, M., Carlsohn, M., Saluz, H. P., Grabley, S., Lottspeich, F. & 
Munder, T. (2006). Proteome alterations in human host cells infected with coxsackievirus B3. J 
Gen Virol 87, 2631-2638. 

Raught, B., Gingras, A. C., Gygi, S. P., Imataka, H., Morino, S., Gradi, A., Aebersold, R. & Sonenberg, 
N. (2000). Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic 
translation initiation factor 4GI. Embo J 19, 434-444. 

Ray, A., Bandyopadhyay, A., Matsumoto, T., Deng, H. & Maitra, U. (2008). Fission yeast translation 
initiation factor 3 subunit eIF3h is not essential for global translation initiation, but deletion of 
eif3h+ affects spore formation. Yeast 25, 809-823. 

Ren, R. & Racaniello, V. R. (1992). Human poliovirus receptor gene expression and poliovirus tissue 
tropism in transgenic mice. J Virol 66, 296-304. 

Ren, R. B., Costantini, F., Gorgacz, E. J., Lee, J. J. & Racaniello, V. R. (1990). Transgenic mice 
expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63, 353-362. 

Repoila, F., Majdalani, N. & Gottesman, S. (2003). Small non-coding RNAs, co-ordinators of 
adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 48, 855-861. 

Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B. & Bartel, D. P. (2002). Prediction of 
plant microRNA targets. Cell 110, 513-520. 

Roberts, L. O., Seamons, R. A. & Belsham, G. J. (1998). Recognition of picornavirus internal ribosome 
entry sites within cells; influence of cellular and viral proteins. Rna 4, 520-529. 

Rodriguez Pulido, M., Serrano, P., Saiz, M. & Martinez-Salas, E. (2007). Foot-and-mouth disease virus 
infection induces proteolytic cleavage of PTB, eIF3a,b, and PABP RNA-binding proteins. 
Virology 364, 466-474. 

Rogers, G. W., Jr., Lima, W. F. & Merrick, W. C. (2001a). Further characterization of the helicase 
activity of eIF4A. Substrate specificity. J Biol Chem 276, 12598-12608. 

Rogers, G. W., Jr., Richter, N. J., Lima, W. F. & Merrick, W. C. (2001b). Modulation of the helicase 
activity of eIF4A by eIF4B, eIF4H, and eIF4F. J Biol Chem 276, 30914-30922. 

Rogers, G. W., Jr., Richter, N. J. & Merrick, W. C. (1999). Biochemical and kinetic characterization of 
the RNA helicase activity of eukaryotic initiation factor 4A. J Biol Chem 274, 12236-12244. 

Ross, J. (1995). mRNA stability in mammalian cells. Microbiol Rev 59, 423-450. 
Roy, B., Vaughn, J. N., Kim, B. H., Zhou, F., Gilchrist, M. A. & Von Arnim, A. G. The h subunit of eIF3 

promotes reinitiation competence during translation of mRNAs harboring upstream open 
reading frames. Rna 16, 748-761. 

Sabin, A. B. (1954). Noncytopathogenic variants of poliomyelitis viruses and resistance to 
superinfection in tissue culture. Science 120, 357. 

Safer, B., Adams, S. L., Kemper, W. M., Berry, K. W., Lloyd, M. & Merrick, W. C. (1976). Purification 
and characterization of two initiation factors required for maximal activity of a highly 
fractionated globin mRNA translation system. Proc Natl Acad Sci U S A 73, 2584-2588. 

Safer, B., Anderson, W. F. & Merrick, W. C. (1975). Purification and physical properties of 
homogeneous initiation factor MP from rabbit reticulocytes. J Biol Chem 250, 9067-9075. 

Samuel, E. P. (1953). The mechanism of silver staining. J Anat 87, 278-287. 
Sarnow, P. (1989). Translation of glucose-regulated protein 78/immunoglobulin heavy-chain binding 

protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent 
translation of cellular mRNAs is inhibited. Proc Natl Acad Sci U S A 86, 5795-5799. 

Sawicka, K., Bushell, M., Spriggs, K. A. & Willis, A. E. (2008). Polypyrimidine-tract-binding protein: a 
multifunctional RNA-binding protein. Biochem Soc Trans 36, 641-647. 

Scheper, G. C. & Proud, C. G. (2002). Does phosphorylation of the cap-binding protein eIF4E play a 
role in translation initiation? Eur J Biochem 269, 5350-5359. 

Schreier, M. H., Erni, B. & Staehelin, T. (1977). Initiation of mammalian protein synthesis. I. Purification 
and characterization of seven initiation factors. J Mol Biol 116, 727-753. 

Schreier, M. H. & Staehelin, T. (1973). Translation of duck-globin messenger RNA in a partially purified 
mammalian cell-free system. Eur J Biochem 34, 213-218. 

Schuler, M., Connell, S. R., Lescoute, A., Giesebrecht, J., Dabrowski, M., Schroeer, B., Mielke, T., 
Penczek, P. A., Westhof, E. & Spahn, C. M. (2006). Structure of the ribosome-bound cricket 
paralysis virus IRES RNA. Nat Struct Mol Biol 13, 1092-1096. 

Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. & Zamore, P. D. (2003). Asymmetry in the 
assembly of the RNAi enzyme complex. Cell 115, 199-208. 

Sean, P., Nguyen, J. H. & Semler, B. L. (2008). The linker domain of poly(rC) binding protein 2 is a 
major determinant in poliovirus cap-independent translation. Virology 378, 243-253. 



 

138 

 

Searfoss, A., Dever, T. E. & Wickner, R. (2001). Linking the 3' poly(A) tail to the subunit joining step of 
translation initiation: relations of Pab1p, eukaryotic translation initiation factor 5b (Fun12p), and 
Ski2p-Slh1p. Mol Cell Biol 21, 4900-4908. 

Semler, B. L., Dorner, A. J. & Wimmer, E. (1984). Production of infectious poliovirus from cloned cDNA 
is dramatically increased by SV40 transcription and replication signals. Nucleic Acids Res 12, 
5123-5141. 

Sharma, S., Falick, A. M. & Black, D. L. (2005). Polypyrimidine tract binding protein blocks the 5' splice 
site-dependent assembly of U2AF and the prespliceosomal E complex. Mol Cell 19, 485-496. 

Shatkin, A. J., Banerjee, A. K., Both, G. W., Furuichi, Y. & Muthukrishnan, S. (1976). Dependence of 
translation on 5'-terminal methylation of mRNA. Fed Proc 35, 2214-2217. 

Shih, D. S., Shih, C. T., Kew, O., Pallansch, M., Rueckert, R. & Kaesberg, P. (1978). Cell-free 
synthesis and processing of the proteins of poliovirus. Proc Natl Acad Sci U S A 75, 5807-
5811. 

Shiroki, K., Isoyama, T., Kuge, S., Ishii, T., Ohmi, S., Hata, S., Suzuki, K., Takasaki, Y. & Nomoto, A. 
(1999). Intracellular redistribution of truncated La protein produced by poliovirus 3Cpro-
mediated cleavage. J Virol 73, 2193-2200. 

Shulman, L. M., Handsher, R., Yang, C. F., Yang, S. J., Manor, J., Vonsover, A., Grossman, Z., 
Pallansch, M., Mendelson, E. & Kew, O. M. (2000). Resolution of the pathways of poliovirus 
type 1 transmission during an outbreak. J Clin Microbiol 38, 945-952. 

Silvera, D., Gamarnik, A. V. & Andino, R. (1999). The N-terminal K homology domain of the poly(rC)-
binding protein is a major determinant for binding to the poliovirus 5'-untranslated region and 
acts as an inhibitor of viral translation. J Biol Chem 274, 38163-38170. 

Simoes, E. A. & Sarnow, P. (1991). An RNA hairpin at the extreme 5' end of the poliovirus RNA 
genome modulates viral translation in human cells. J Virol 65, 913-921. 

Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A. & Nogales, E. (2005). Structural roles for 
human translation factor eIF3 in initiation of protein synthesis. Science 310, 1513-1515. 

Sonenberg, N., Morgan, M. A., Merrick, W. C. & Shatkin, A. J. (1978). A polypeptide in eukaryotic 
initiation factors that crosslinks specifically to the 5'-terminal cap in mRNA. Proc Natl Acad Sci 
U S A 75, 4843-4847. 

Sonenberg, N., Morgan, M. A., Testa, D., Colonno, R. J. & Shatkin, A. J. (1979). Interaction of a limited 
set of proteins with different mRNAs and protection of 5'-caps against pyrophosphatase 
digestion in initiation complexes. Nucleic Acids Res 7, 15-29. 

Song, Y., Tzima, E., Ochs, K., Bassili, G., Trusheim, H., Linder, M., Preissner, K. T. & Niepmann, M. 
(2005). Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in 
picornavirus translation. Rna 11, 1809-1824. 

Spear, A., Sharma, N. & Flanegan, J. B. (2008). Protein-RNA tethering: the role of poly(C) binding 
protein 2 in poliovirus RNA replication. Virology 374, 280-291. 

Spriggs, K. A., Stoneley, M., Bushell, M. & Willis, A. E. (2008). Re-programming of translation following 
cell stress allows IRES-mediated translation to predominate. Biol Cell 100, 27-38. 

Squatrito, M., Mancino, M., Donzelli, M., Areces, L. B. & Draetta, G. F. (2004). EBP1 is a nucleolar 
growth-regulating protein that is part of pre-ribosomal ribonucleoprotein complexes. Oncogene 
23, 4454-4465. 

Stefanovic, B., Hellerbrand, C., Holcik, M., Briendl, M., Aliebhaber, S. & Brenner, D. A. (1997). 
Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells. Mol Cell Biol 
17, 5201-5209. 

Strausberg, R. L., Greenhut, S. F., Grouse, L. H., Schaefer, C. F. & Buetow, K. H. (2001). In silico 
analysis of cancer through the Cancer Genome Anatomy Project. Trends Cell Biol 11, S66-71. 

Suhy, D. A., Giddings, T. H., Jr. & Kirkegaard, K. (2000). Remodeling the endoplasmic reticulum by 
poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced 
vesicles. J Virol 74, 8953-8965. 

Sun, G., Li, H. & Rossi, J. J. Sequence context outside the target region influences the effectiveness of 
miR-223 target sites in the RhoB 3'UTR. Nucleic Acids Res 38, 239-252. 

Sunkar, R. & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from 
Arabidopsis. Plant Cell 16, 2001-2019. 

Svitkin, Y. V., Evdokimova, V. M., Brasey, A., Pestova, T. V., Fantus, D., Yanagiya, A., Imataka, H., 
Skabkin, M. A., Ovchinnikov, L. P., Merrick, W. C. & Sonenberg, N. (2009). General RNA-
binding proteins have a function in poly(A)-binding protein-dependent translation. Embo J 28, 
58-68. 



 

139 

 

Svitkin, Y. V., Gradi, A., Imataka, H., Morino, S. & Sonenberg, N. (1999). Eukaryotic initiation factor 
4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis 
after human rhinovirus infection. J Virol 73, 3467-3472. 

Svitkin, Y. V., Ovchinnikov, L. P., Dreyfuss, G. & Sonenberg, N. (1996). General RNA binding proteins 
render translation cap dependent. Embo J 15, 7147-7155. 

Tahara, S. M. & Traugh, J. A. (1981). Cyclic Nucleotide-independent protein kinases from rabbit 
reticulocytes. Identification and characterization of a protein kinase activated by proteolysis. J 
Biol Chem 256, 11558-11564. 

Tarun, S. Z., Jr., Wells, S. E., Deardorff, J. A. & Sachs, A. B. (1997). Translation initiation factor eIF4G 
mediates in vitro poly(A) tail-dependent translation. Proc Natl Acad Sci U S A 94, 9046-9051. 

Taylor, M. P., Burgon, T. B., Kirkegaard, K. & Jackson, W. T. (2009). Role of microtubules in 
extracellular release of poliovirus. J Virol 83, 6599-6609. 

Thoma, C., Bergamini, G., Galy, B., Hundsdoerfer, P. & Hentze, M. W. (2004). Enhancement of IRES-
mediated translation of the c-myc and BiP mRNAs by the poly(A) tail is independent of intact 
eIF4G and PABP. Mol Cell 15, 925-935. 

Thomas, A., Goumans, H., Amesz, H., Benne, R. & Voorma, H. O. (1979). A comparison of the 
initiation factors of eukaryotic protein synthesis from ribosomes and from the postribosomal 
supernatant. Eur J Biochem 98, 329-337. 

Tinton, S. A., Schepens, B., Bruynooghe, Y., Beyaert, R. & Cornelis, S. (2005). Regulation of the cell-
cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr 
(upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2alpha. 
Biochem J 385, 155-163. 

Trachsel, H., Erni, B., Schreier, M. H., Braun, L. & Staehelin, T. (1979). Purification of seven protein 
synthesis initiation factors from Krebs II ascites cells. Biochim Biophys Acta 561, 484-490. 

Triqueneaux, G., Velten, M., Franzon, P., Dautry, F. & Jacquemin-Sablon, H. (1999). RNA binding 
specificity of Unr, a protein with five cold shock domains. Nucleic Acids Res 27, 1926-1934. 

Trotta, R., Vignudelli, T., Candini, O., Intine, R. V., Pecorari, L., Guerzoni, C., Santilli, G., Byrom, M. 
W., Goldoni, S., Ford, L. P., Caligiuri, M. A., Maraia, R. J., Perrotti, D. & Calabretta, B. (2003). 
BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 3, 145-160. 

Unbehaun, A., Borukhov, S. I., Hellen, C. U. & Pestova, T. V. (2004). Release of initiation factors from 
48S complexes during ribosomal subunit joining and the link between establishment of codon-
anticodon base-pairing and hydrolysis of eIF2-bound GTP. Genes Dev 18, 3078-3093. 

van Rij, R. P., Saleh, M. C., Berry, B., Foo, C., Houk, A., Antoniewski, C. & Andino, R. (2006). The 
RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila 
melanogaster. Genes Dev 20, 2985-2995. 

Vasudevan, S., Tong, Y. & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can 
up-regulate translation. Science 318, 1931-1934. 

Ventoso, I., Barco, A. & Carrasco, L. (1998). Mutational analysis of poliovirus 2Apro. Distinct inhibitory 
functions of 2apro on translation and transcription. J Biol Chem 273, 27960-27967. 

Waggoner, S. & Sarnow, P. (1998). Viral ribonucleoprotein complex formation and nucleolar-
cytoplasmic relocalization of nucleolin in poliovirus-infected cells. J Virol 72, 6699-6709. 

Walter, B. L., Parsley, T. B., Ehrenfeld, E. & Semler, B. L. (2002). Distinct poly(rC) binding protein KH 
domain determinants for poliovirus translation initiation and viral RNA replication. J Virol 76, 
12008-12022. 

Wang, B., Love, T. M., Call, M. E., Doench, J. G. & Novina, C. D. (2006). Recapitulation of short RNA-
directed translational gene silencing in vitro. Mol Cell 22, 553-560. 

Wang, B., Yanez, A. & Novina, C. D. (2008). MicroRNA-repressed mRNAs contain 40S but not 60S 
components. Proc Natl Acad Sci U S A 105, 5343-5348. 

Wang, Z., Day, N., Trifillis, P. & Kiledjian, M. (1999). An mRNA stability complex functions with poly(A)-
binding protein to stabilize mRNA in vitro. Mol Cell Biol 19, 4552-4560. 

Weber, M. J. (2005). New human and mouse microRNA genes found by homology search. Febs J 272, 
59-73. 

Weinlich, S., Huttelmaier, S., Schierhorn, A., Behrens, S. E., Ostareck-Lederer, A. & Ostareck, D. H. 
(2009). IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3'UTR. Rna 15, 
1528-1542. 

Weiss, I. M. & Liebhaber, S. A. (1995). Erythroid cell-specific mRNA stability elements in the alpha 2-
globin 3' nontranslated region. Mol Cell Biol 15, 2457-2465. 



 

140 

 

Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. (1998). Circularization of mRNA by eukaryotic 
translation initiation factors. Mol Cell 2, 135-140. 

Wilson, J. A. & Richardson, C. D. (2005). Hepatitis C virus replicons escape RNA interference induced 
by a short interfering RNA directed against the NS5b coding region. J Virol 79, 7050-7058. 

Wilson, J. E., Pestova, T. V., Hellen, C. U. & Sarnow, P. (2000a). Initiation of protein synthesis from the 
A site of the ribosome. Cell 102, 511-520. 

Wilson, J. E., Powell, M. J., Hoover, S. E. & Sarnow, P. (2000b). Naturally occurring dicistronic cricket 
paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol 20, 4990-
4999. 

Wolin, S. L. & Cedervall, T. (2002). The La protein. Annu Rev Biochem 71, 375-403. 
Wood, D. J. & Macadam, A. J. (1997). Laboratory tests for live attenuated poliovirus vaccines. 

Biologicals 25, 3-15. 
Wu, L. & Belasco, J. G. (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal 

differentiation of embryonal carcinoma cells. Mol Cell Biol 25, 9198-9208. 
Wyckoff, E. E., Hershey, J. W. & Ehrenfeld, E. (1990). Eukaryotic initiation factor 3 is required for 

poliovirus 2A protease-induced cleavage of the p220 component of eukaryotic initiation factor 
4F. Proc Natl Acad Sci U S A 87, 9529-9533. 

Yaman, I., Fernandez, J., Liu, H., Caprara, M., Komar, A. A., Koromilas, A. E., Zhou, L., Snider, M. D., 
Scheuner, D., Kaufman, R. J. & Hatzoglou, M. (2003). The zipper model of translational 
control: a small upstream ORF is the switch that controls structural remodeling of an mRNA 
leader. Cell 113, 519-531. 

Yekta, S., Shih, I. H. & Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 
304, 594-596. 

Yoder-Hill, J., Pause, A., Sonenberg, N. & Merrick, W. C. (1993). The p46 subunit of eukaryotic 
initiation factor (eIF)-4F exchanges with eIF-4A. J Biol Chem 268, 5566-5573. 

Yueh, A. & Schneider, R. J. (1996). Selective translation initiation by ribosome jumping in adenovirus-
infected and heat-shocked cells. Genes Dev 10, 1557-1567. 

Zhang, B., Morace, G., Gauss-Muller, V. & Kusov, Y. (2007). Poly(A) binding protein, C-terminally 
truncated by the hepatitis A virus proteinase 3C, inhibits viral translation. Nucleic Acids Res 35, 
5975-5984. 

Zhang, W., Wang, X., Xiao, Z., Liu, W., Chen, B. & Dai, J. Mapping of the minimal internal ribosome 
entry site element in the human embryonic stem cell gene OCT4B mRNA. Biochem Biophys 
Res Commun 394, 750-754. 

Zhang, Y., Linn, D., Liu, Z., Melamed, J., Tavora, F., Young, C. Y., Burger, A. M. & Hamburger, A. W. 
(2008). EBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in 
hormone resistance. Mol Cancer Ther 7, 3176-3186. 

Zinovyev, A., Morozova, N., Nonne, N., Barillot, E., Harel-Bellan, A. & Gorban, A. N. Dynamical 
modeling of microRNA action on the protein translation process. BMC Syst Biol 4, 13. 

 
 
 

 

 

 

 

 



 

141 

 

Appendix 

Plasmid maps 

Maps of plasmids used to generate templates for in vitro transcription of mRNA, which were 

then used for transfection and in vitro translation (figure 1 and 2). Figure 3 shows the plasmid 

used to generate RNA for sucrose gradient centrifugation. This system uses a pGL3 

backbone which has different 5’UTRs inserted before a firefly luciferase reporter. 
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Figure 1: Plasmid pMPolio, used to generate template for RNA in vitro transcription by digestion with 

SmaI. 

 

 

                             

 

 

 

Figure 2: Plasmid pD5, used to generate templates for in vitro transcription of firefly luciferase control 

construct by digestion with SmaI 
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Figure 3: Plasmid pGL3 used with IRESs of PV, EMCV, HCV or the 5’ UTR of beta-actin 
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Ammonium sulfate precipitation 

 

 

Northern blots against miRNA-326 in cells 

To identify endogenous miRNA-326 northern blots were performed using a DIG labeled RNA 

probe complementary to full length miRNA-326 mat. Total small RNA was isolated from HeLa 

and SH-SY5Y cells and transferred to a nylon membrane with semi-dry electroblotting. To 

control for RNA quality and normalise different amounts of RNA between cell lines, U6 

snRNA (Lim et al. 2003) was detected using a DIG-labeled U6 probe (figure 53). 

No miRNA-326 could be detected in either cell line owing either to the low sensitivity of the 

technique or the fact that the neuron specific miRNA-326 is not expressed in either cell line. 

 

 
Figure 53 : Northern blot, detecting miRNA-326 (2) and U6 snRNA (1) in total small RNA isolated from 

106 SH-SY5Y and HeLa cells with DIG-labeled probes. 
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Discussion 

Northern blots performed using a DIG labeled probe against miRNA-326 mat failed to detect 

endogenous miRNA-in SH-SY5Y or HeLa cells (see appendix).  

miRNA-326 is expressed in a developmentally regulated manner, especially abundant during 

neuronal growth (Landgraf et al. 2007). SH-SY5Y however are differentiated cells, so miRNA-

326 may not be expressed in high amounts here. 

Newborn transgenic mice are especially susceptible for PV infection (Kauder & Rancaniello 

2004) maybe because in their developing brain miRNA-326 is upregulated. The paralytic 

effects of PV infection occur mainly in children (Colbere-Garapin et al. 1989), this may be due 

to the development of neurons and coupled to the expression of miRNA-326. This can be 

explained by the fact that infection of differentiated neuronal cells with poliovirus always lead 

to cell lysis while a percentage of undifferentiated cells are able to sustain a persistent 

infection. Rapid cell lysis leads to clearance of infection before permanent damage can be 

done to the nervous system (Benton et al. 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

146 

 

Eidesstattliche Erklärung 

Ich erkläre, die vorgelegte Dissertation selbstständig und ohne unerlaubte Hilfe angefertigt zu 

haben. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften 

entnommen sind, sind als solche gekennzeichnet. Bei den von mir durchgeführten und in der 

Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher 

Praxis eingehalten. 

 

Gießen, Mai 2010 

 

 

Juliane Hirnet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


