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Abstract

Background: Ridge regression models can be used for predicting heterosis and hybrid performance. Their
application to mRNA transcription profiles has not yet been investigated. Our objective was to compare the
prediction accuracy of models employing mRNA transcription profiles with that of models employing genome-wide
markers using a data set of 98 maize hybrids from a breeding program.

Results: We predicted hybrid performance and mid-parent heterosis for grain yield and grain dry matter content and
employed cross validation to assess the prediction accuracy. Prediction with a ridge regression model using random
effects for mRNA transcription profiles resulted in similar prediction accuracies than employing the model to DNA
markers. For hybrids, of which none of the parental inbred lines was part of the training set, the ridge regression
model did not reach the prediction accuracy that was obtained with a model using transcriptome-based distances.

Conclusion: We conclude that mRNA transcription profiles are a promising alternative to DNA markers for hybrid
prediction, but further studies with larger data sets are required to investigate the superiority of alternative prediction

models.

Background
The resources for field trials in a hybrid breeding program
are restricted and only a fraction of all possible hybrids
that could potentially be generated by crossing the inbred
lines developed in each cycle of the breeding program
can be phenotypically evaluated. The principle of hybrid
prediction is to link the performance of phenotypically
evaluated hybrids to predictors, such as DNA markers
or mRNA transcription profiles, that can be assessed in
the parental lines of the hybrids. For each state of the
predictor, its effect on the phenotype is estimated and
these effects are then used to predict the performance of
new hybrids.

DNA markers were employed for hybrid prediction in
maize and proved to be superior to prediction approaches
based solely on pedigree and phenotypic data [1-5]. First

*Correspondence: matthias.frisch@uni-giessen.de

Tinstitute of Agronomy and Plant Breeding I, Justus Liebig University, 35392
Giessen, Germany

Full list of author information is available at the end of the article

( BioNMed Central

results on using the mRNA transcriptome for hybrid pre-
diction with distance-based approaches [6] or regression-
based approaches [7] showed promising results. Genome-
wide prediction of general combining ability (GCA) or
testcross performance [8—10] can be regarded as a special
case of hybrid prediction where one parental component
(the tester) is known and the effects of the predictors
assessed at the second parental component are used for
hybrid prediction. In this context, first results of using
metabolites as predictors were successful [10] but showed
a lower prediction accuracy than using SNP markers as
predictors.

Two important situations can be distinguished in hybrid
prediction. The first is that the parental lines of a poten-
tial hybrid have already been evaluated for testcross
performance with other lines of the breeding pool. If
such testcross data are available for both parental lines
but the hybrid itself is not yet generated, then we refer to
the hybrid as type 2 hybrid (testcross data for two par-
ents available). The second situation is that the parental
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lines are entirely new and have not yet been evalu-
ated in any test cross. Such hybrids are referred to as
type O hybrids (testcross data for none of the parents
available). The application of ridge regression models in
combination with mRNA transcription profiles for the
prediction of type 0 and type 2 hybrids has not yet been
investigated.

The goal of our study was to investigate the prediction
of grain yield and grain dry matter content using field data
of 98 maize hybrids and AFLP (amplified fragment length
polymorphism) marker data as well as mRNA transcrip-
tion profiles of their 21 parental lines. In particular, our
objectives were to (1) assess the accuracy of predicting
hybrid performance with a random effects model using
mRNA transcription profiles, (2) investigate the num-
ber of mRNA transcripts that are required for precise
hybrid prediction, (3) compare the prediction accuracy
of a random model employing mRNA with the predic-
tion accuracy obtained with AFLP markers as well as the
prediction accuracy of previously published approaches,
and (4) draw conclusions on possible application in breed-
ing programs for prediction of hybrid performance and
heterosis of type 2 and type 0 hybrids.

Methods

Field data

The field data were presented in detail by [11], where the
factorial we used for the present study was referred to as
Experiment 1. Here we give only a brief overview. Seven
flint and 14 dent elite inbreds developed in the maize
breeding program of the University of Hohenheim were
used as parental inbreds for 98 = 7 x 14 factorial crosses
between both groups of inbreds. The inbreds comprised
eight dent lines with Iowa Stiff Stalk Synthetic background
and six with Iodent background. Four flint lines had a
European Flint background and three a Flint/Lancaster
background.

The factorial crosses were evaluated in 2002 at six
agroecologically diverse locations in Germany (Bad
Krozingen, Eckartsweier, Hohenheim, Landau, Sunching,
Vechta). The trials were evaluated in two-row plots using
a designs with two to three replications. Hybrid perfor-
mance for grain yield was assessed in Mg ha~! adjusted to
155 g kg~! grain moisture and for grain dry matter con-
tent in percent. The mean hybrid performance for grain
yield was 11.72 Mg ha~! and for grain dry matter content
67.7 % with broad sense heritabilities of 0.80 (grain yield)
and 0.91 (grain dry matter content). The GCA (general
combining ability) and SCA (specific combining ability)
variance components as well as their interactions with
the locations were significantly different from zero (¢ =
0.05) for both traits. The ratios of SCA:GCA variance
components were 1.12 (grain yield) and 0.42 (grain dry
matter content).
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AFLP marker data

The inbred lines were assayed for AFLP markers with 20
primer combinations as described in detail by [11]. After
removing markers with more than 10 % missing values
and a gene diversity smaller than 0.2 the number of 970
high quality markers remained for the analysis.

Gene expression data

Five seedlings of each of the 21 diverse dent and flint
maize inbred lines were grown for seven days under
controlled conditions (25 °C 16 h day, 21 °C 8 h
night, 70 % air humidity). Whole seedling tissue of five
biological replicates was frozen in liquid nitrogen, homog-
enized, and pooled before target labeling and hybridiza-
tion. Total RNA was isolated, precipitated with LiCl
(8M) and purified with the “NucleoSpin RNA Clean-
up Kit” (Macherey-Nagel, Diiren, Germany) and used
to synthesize aminoallyl-labeled RNA (aaRNA) following
the “Amino Allyl MessageAmp aRNA” System protocol
(Applied Biosystems/Ambion, Austin, USA). aaRNA was
coupled with fluorescence dyes Cy3 or Cy5 (GE Health-
care, Chalfont St. Giles, UK) and purified with RNeasy
MinElute Kit (Qiagen, Hilden, Germany). The 46k array
from the maize oligonucleotide array project [12], GEO
platform GPL6438 was hybridized according to the man-
ufacturer instructions. The micro-arrays were scanned
(AppliedPrecision ArrayWorx Scanner, Applied Precision
Inc., USA) and data was evaluated using GenePix Pro 4.0
(Molecular Devices, Sunnyvale, USA). For the micro-array
experiment, an interwoven loop design [13] was applied.
It resulted in 63 hybridizations of dent and flint lines by
sampling each dent line five times and each flint line eight
times.

For experimental validation of the micro-array exper-
iment, two genes in eight different lines were evaluated
by Quantitative RT-PCR, essentially in accordance with
the micro-array data. For the validation of micro-array
expression pattern copy DNA from total RNA of the
inbred lines S028, F047, L024, S058, S044, PO33, L043,
and F039 was produced with Superscript II (Thermo
Fisher Scientific) according to the manufacturer’s proto-
col. Quantitative RT-PCR was conducted for the genes
GRMZM2G057829, GRMZM2G021406 and the actin
gene (accession number JO1238) with the primer pairs
5-‘GAAACCATAACAGACGCGTCATCACATC-3'/5'-
CAGCAGGAGCAGAAGAGGGAAAAG-3,5-TAGGC
TGCTATTTGGGCACTTAGTTTTAC-3‘/5-CCAGTAC
GGGAGACATGTAGAGTTC-35 and 5“TCCTGACACT
GAAGTACCCGATTGA-3'/5-CGTTGTAGAAGGTGT
GATGCCAGTT-3! respectively, with the iCycler iQ
(BIORAD, Germany) and the qPCR MasterMix Plus for
SYBR Green I (Reference: RT-SN2X- 03 + NRFL, Euro-
gentec, Seraing, Belgium) in triplicates. Actin expression
values were used for data normalization before relative
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expression levels between lines were calculated. The
micro-array data have been deposited in Gene Expression
Omnibus (GEO) under the series accession GSE17754.
The gene-oriented probes together with spike-in probes
were tested for statistically significant differential expres-
sion across all comparisons with a moderated F-test and
subsequently with a nested F-test for each comparison of
parental lines. The limma package [14] was applied for
the tests. A false discovery rate [15] of 0.01 for all genes
showing a fold change of at least 1.3 and log-2 expres-
sion intensity of at least 8 was used to detect significant
differential expression between inbred lines [16]. In total,
10,810 genes were differentially expressed in at least one
pair of parental lines of the factorial crosses. We refer to
this set of predictors as ‘mRNA10k, random samples of
1000 out of the 10,810 genes are referred to as ‘mRNAr1k’

Prediction model

To estimate the predictor effects, we used a linear model
that relates the phenotype of a hybrid to the marker geno-
type or mRNA transcription profiles that were observed
in the two parental lines of the hybrid:

y=18+Fu+Mv+e 1)

uj~N (0, O'f2> vj ~ N (0, a,%l) e ~ N (0, 062)
y is the response vector consisting of the hybrid perfor-
mance of the i = 1...x hybrids, 1 is a vector of 1’s, and
Bo a fixed intercept. u and v are the vectors of the genetic
effects of thej = 1. .. p predictors in the female and male
parent, respectively. The design matrices F and M consist
of values f;; and m1;; that code the observation of the jth
predictor at the ith hybrid. For marker data, f;; or m;; is
1 if the AFLP band was observed in a parent and 0 oth-
erwise. For mRNA, the design matrices contain the gene
expression of gene j in the parents of the ith hybrid, the
columns of the design matrices F and M were normalized.
For F the normalization was carried out according to
0:
fij = max LJ(O ) (2)
kel

where o0;; are non-normalized original values for gene
expression, and s is the number of parental lines used as
female parents. For M the normalization was carried out
analogously.

The variances 6f2, 62, and 62 were estimated by
restricted maximum likelihood (REML). Then the effects
u and v were obtained by solving the mixed model
equations [17].

With this model the genotypic value of hybrids can be
predicted as

¥ = 1u + Fa+ M9 (3)
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where F* and M* are the design matrices for the predictors
observed at the parental lines of the hybrid. The GCA of
inbred lines can be predicted as

g; =Fa or g, =MV 4)
Assessment of prediction accuracy
The prediction accuracy for type 2 hybrids was evaluated
with the cross-validation procedure of [3]. The estimation
set consisted of the marker or mRNA data of three ran-
domly chosen flint and five randomly chosen dent lines
and the field data of their hybrids, and the validation set
consisted of the remaining hybrids of the 7 x 14 factorial.
Both parental lines of an untested hybrid in the validation
set are also parents of hybrids belonging to the estimation
set. Hence, testcross data are available for both parental
lines of a hybrid. The principle is illustrated in Fig. 1a.

For type 0 hybrids, the estimation set consisted of five
randomly chosen flint lines and ten randomly chosen dent
lines and their hybrids. The validation set consisted of
the hybrids of the remaining two flint and four dent lines
of the 7 x 14 factorial. Hence, testcross data were not
available for any of the two parental lines of a hybrid
(Fig. 1b).

For each prediction model to be evaluated, cross-
validation was carried out for 1000 runs. In each run the
correlation r(y, ) between the predicted and the observed
hybrid yield and the average prediction error Y |y; —y;|/n
was assessed. The distribution of these measures over the
1000 replications was then used to compare the prediction
models.

Results
For prediction of hybrid performance, the median of the
correlations r(y,y) between observed and predicted val-
ues in cross validation with type 2 hybrids was between
0.74 and 0.75 for grain yield and between 0.88 and 0.99
for grain dry matter content (Fig. 2). The differences in
the median of the correlation between prediction with
AFLPs, with all 10k mRNAs (mRNA10k), and with ran-
dom samples of 1k out of the 10k mRNAs (mRNAr1k)
were negligible. Prediction with mRNAs had a slightly
smaller variation around the median than prediction with
AFLPs. The average absolute prediction errors |y — | had
about the same sizes for prediction with AFLDPs, all 10k
mRNAs and random samples of 1k out of the 10k mRNAs.
For type O hybrids, the correlations between observed
and predicted hybrid performance for both traits were
lower than for type 2 hybrids. The median of the corre-
lations in cross validation was between 0.54 and 0.56 for
grain yield and between 0.29 and 0.41 for grain dry matter
content. Differences in the median between the predic-
tor sets AFLP, nRNA10k, and mRNAr1k were small. The
ranges of the correlations were very large, and in some
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set, V: hybrids of the validation set

a 3/5 cross validation of type 2 hybrids

Fig. 1 Cross validation schemes. a Evaluation of prediction accuracy for untested hybrids in an incomplete factorial. The hybrids in the validation set
are of type 2. b Evaluation of prediction accuracy for hybrids derived from parental lines of which no testcross data are available. The hybrids in the
validation set are of type 0. DO1-D14: parental dent lines in random order, FO1-F07: parental flint lines in random order, E: hybrids of the estimation

cross validation runs, even large negative correlations
were observed. The average absolute prediction errors
were greater than for type 2 hybrids and showed similar
values for AFLPs and mRNA.

For prediction of mid-parent heterosis, the median of
r(y,y) with type 2 hybrids was between 0.81 and 0.82
for grain yield and between 0.90 and 0.91 for grain dry
matter content (Fig. 3). The differences between the pre-
dictor sets AFLP, mRNA10k, mRNArlk were negligible.
The average absolute prediction error |y —j| had about the
same sizes for the three predictor sets.

For type 0 hybrids, the correlations between observed
and predicted mid-parent heterosis were between 0.26
and 0.4 for grain yield. For grain dry matter content
no correlation between observed and predicted values in
cross validation was observed.

In additional analyses we investigated the effect of fur-
ther reducing the number of predictor variables below
1000. A decline of the prediction accuracy was observed
for both traits (results not shown), which is in line with
the results of [6].

We further investigated a ridge regression model in
which we included 1000 random mRNAs and in addition
the AFLP markers as predictors. We found no situation
where combining the predictor sets resulted in a greater

prediction accuracy than using them individually (results
not shown).

Discussion

Properties of the linear model

In a simple GCA/SCA model yf,y = & + g + gm + Spim +
esnr the performance of the rth replication of a hybrid is
denoted by yj,,. Factors gr and g;, describe the GCA val-
ues of the parental lines, and s, is the SCA of the cross.
In the linear model of Eq. 1, the GCA values are split into
components that can be assigned to individual predictors,
Fv splits up gr and Mu splits up gy,

Heterosis, and in consequence high hybrid perfor-
mance, can be explained by dominant gene action at a
large number of loci. Therefore, it is essential that mod-
els that attempt to predict hybrid performance include the
effect of dominant gene action. The #; and v; in Eq. 1 can
be interpreted in the sense of average effects (using the
terminology of [18] p. 112ff) of the corresponding predic-
tors. Average effects cover the effect a of additive gene
action, and in addition they partially cover the effect d of
dominant gene action (cf. Eq. 7.4a and 7.4b of [18], p. 113).
The amount of the dominant gene action that is captured
depends on the differences in the allele frequencies, and
takes its minimum of zero for allele frequencies of 1/2. We
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Fig. 2 Prediction accuracy for hybrid performance of type 2 hybrids (left, in light gray) and type 0 hybrids (right, in dark gray). Correlations r(y, §)
between observed and predicted grain yield and grain dry matter content, and average absolute prediction error |y — §| for the predictor sets AFLP
(970 AFLP markers), mRNAr1k (1000 random mRNA transcripts), mMRNA10k (10,810 mRNA transcripts). The boxplots show the distributions for 1000

cross validation runs, u are the arithmetic means and Z the medians

hypothesize, that the differences in the allele frequencies
in the heterotic pools of our factorial are so large that the
average values include to a large extend the effect of domi-
nant gene action. This is supported by the high prediction
accuracies observed.

The SCA is neglected in Eq. 1. Extensions that include
the SCA are straightforward from a formal point of view
(Eq. 4 in [4]). The dissection of the SCA into components
that can be assigned to individual predictors results in
effects that can be interpreted in the sense of dominance
deviations (cf. Table 7.3 of [18], p. 118). Dominance devia-
tions cover the residual part of the effect of dominant gene
action d, that is not covered by the average effects. Sim-
ulations have shown that the gain in prediction accuracy
of models that include dominance deviations is small for
divergent heterotic pools [4], because the major part of the

effect of dominant gene action d is already covered by the
average effects.

It remains open, and requires the analysis of further
experimental data sets, whether including SCA in pre-
diction models can actually improve hybrid prediction.
In the data set investigated here, the high correlations
of up to r(y,%) = 0.9 between observations and predic-
tions leave only little room for improving the GCA-based
approach.

Prediction accuracy compared with older approaches

In earlier investigations on marker-based [11] and
transcriptome-based [6, 7] prediction of hybrid perfor-
mance, we used the same set of hybrids as here. This
allows a direct comparison of the accuracy of the different
prediction methods.
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In the SM-TEAM approach of [11], first all markers are
tested for association with the target trait and then a fixed
linear model for the selected markers is fitted. This proce-
dure is in analogy to the QTL-mapping approach, whereas
a random model in which all markers remain (Eq. 1) can
be regarded as a genome-wide prediction approach, as
employed in recent studies on genomic selection. Hence,
the theoretical advantages of the genome-wide prediction
model, such as less bias in the effect estimates, should
result in better statistical properties of the approach pre-
sented here compared with the approach of [11]. The
correlation between predicted and observed hybrid per-
formance for grain yield of type 2 hybrids obtained
by the SM-TEAM approach was 0.65 (Figure 6 in [6]).
The random effects model with AFLPs had a median of
the correlation of 0.75 (Fig. 2). In consequence, with the

present factorial, the ridge regression model applied to
DNA marker data had a greater prediction accuracy than
the earlier SM-TEAM model.

Transcriptome-based distances reached a prediction
accuracy of about 0.8 for hybrid performance and mid
parent heterosis of grain yield in type 2 hybrids (Figure
6 in [6]). This value is similar to the prediction accu-
racy reached by the ridge regression model (Fig. 3) for
mid-parent heterosis. However, for hybrid performance,
the ridge regression model showed only a correlation of
0.75 (Fig. 2), and, hence could not reach the prediction
accuracies of the transcriptome-based distance model.

For prediction of hybrid performance for grain yield of
type 0 hybrids, the transcriptome-based distances reached
amedian of the correlation between observations and pre-
dictions of 0.7 (Figure 3 in [7]). This was considerably
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greater than the regression-based methods investigated in
[7]. For the ridge regression model, a median of the corre-
lation of about 0.55 was reached (Fig. 2). In consequence,
for the prediction of type 0 hybrids the transcriptome-
based distance model, which employs marker selection,
resulted in considerably better predictions than the ridge
regression model of this study.

Application in breeding programs

For application of hybrid prediction in breeding programs,
it is of central importance that a prediction approach pro-
vides a sufficiently high prediction accuracy. For indirect
selection approaches, a correlation of 0.7 to 0.9 between
the trait for which selection is carried out and the target
trait is usually regarded as highly promising and applica-
ble in practice. Hence, the prediction accuracies for type
2 observed in this study can be regarded as suitable for
practical applications.

The prediction accuracy of employing the ridge regres-
sion model to mRNAs was comparable to that obtained
with AFLP markers in the investigated data set. The accu-
racies for prediction of grain yield and grain dry matter
content in type 2 hybrids (Figs. 2 and 3) which were
achieved with mRNA data suggest than mRNA can be an
alternative to DNA markers in hybrid prediction.

The number of mRNAs required for a high prediction
accuracy plays a central role for the costs of assess-
ing the transcription profiles of selection candidates. For
both traits and for both types of hybrids, the differences
between using 1000 randomly chosen mRNAs or 10,000
mRNAs were negligible. This indicates, that high num-
bers of mRNA are not necessarily required for hybrid
prediction, and that transcription profiling with limited
resources might result in prediction accuracies that can be
successfully used for indirect selection.

The ridge regression model employed in this study was
in summary more precise than the older SM-TEAM pre-
diction model. However it was not superior to the tran-
scriptome based distances suggested by [6]. In particular
for prediction of type 0 hybrids, the transcriptome-based
distances might be the more promising approach. Further
studies with larger data sets are required to verify these
trends.

Conclusions

Hybrid prediction has the potential to greatly enhance
the efficiency of hybrid breeding. In maize breeding, the
doubled haploid technology can generate large numbers
of candidate lines that surpass the field capacity by far.
Thus, reliable hybrid prediction can be used to increase
the selection intensity and hence the response to selection.
The data structure of the factorial used in this study is
typical for testing experimental hybrids in late stages of a
maize hybrid breeding program, and hence the successful
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application of hybrid prediction with mRNA and ridge
regression prediction models can be also expected with
other data sets of similar genetic structure.
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