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Abstract: Epithelial–mesenchymal transition (EMT) is an important process of cell remodeling
characterized by the gradual loss of the epithelial phenotype and progressive gain of a mesenchymal
phenotype. EMT is not an all-or-nothing process, but instead a transition of epithelial to mesenchymal
cells with intermediate cell states. Recently, EMT was described in endometriosis, and many
EMT-specific pathways like Twist, Snail, Slug, Zinc finger E-box-binding homeobox 1/2 (ZEB1/2),
E/N-cadherin, keratins, and claudins are involved. However, as pointed out in this review, a
comparison of the eutopic endometrium of women with and without endometriosis yielded only
subtle changes of these EMT markers. Furthermore, only very few alterations in cell–cell contacts
could be found but without changes in the epithelial phenotype. This suggests only a partial
EMT which is not a prerequisite for the detachment of endometrial cells and, thus, not critical
for the first step(s) in the pathogenesis of endometriosis. In contrast, the majority of changes
in the EMT-related marker expression were found in the ectopic endometrium, especially in the three
endometriotic entities, ovarian, peritoneal, and deep infiltrating endometriosis (DIE), compared with
the eutopic endometrium. In this review, we examine the most important EMT pathways described
in endometriosis and propose that partial EMT might result from the interaction of endometrial
implants with their surrounding microenvironment.
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1. Endometriosis

Endometriosis is characterized by the presence of endometrial glands and stroma outside of
the uterine cavity [1], associated in many cases with pain and/or infertility [2,3]. However, irrespective
of location(s) or symptom(s), endometriotic glands almost always have an overtly endometrioid
appearance and histologically resemble uterine endometrial glands [1]. Despite this straightforward
definition, it is puzzling that endometriotic lesions show so many different facets, such as variations
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in color, depth of invasion, adhesions, formation of ovarian cysts, and different epithelial-to-stromal
cell ratios up to the extreme case of stromal endometriosis [4].

Retrograde menstruation followed by implantation of the endometrial tissue on different surfaces
in the pelvic cavity or extra-pelvic sites is generally accepted as the main cause of endometriosis [5].
The prevalence of retrograde menstruation ranges from 76% to 90% but with inconsistent results
whether it is higher in women with endometriosis compared to women without endometriosis [6–8].
Circulating endometrial cells (CECs) in peritoneal fluid (PF) of 56–79% of women were observed
during the follicular or menstrual phase [9–12]. In a few cases, CECs could also be detected in the PF,
but without apparent differences between women with or without endometriosis [12,13]. Interestingly,
an increased number of white and red blood cells in the PF are present during the menstrual phase,
indicating increased inflammation [13]. In contrast, significantly reduced numbers of uterine natural
killer cells were found in the menstrual effluent of patients with endometriosis compared to patients
without endometriosis [14].

Worldwide, the prevalence of endometriosis is reported to range from 1% to 10% [15–17].
This variation is due to different selections of patient populations and different tools for diagnosing
endometriosis with surgical visualization greatly increasing the rates [18]. As long as laparoscopy
is the only gold standard for the diagnosis of endometriosis and non-invasive biomarkers are
not available [19], the exact determination of the prevalence and incidence of endometriosis will
remain unsettled.

In a recent large survey, the anatomical localization of endometriotic lesions was determined
in n = 1101 patients with 3416 lesions (body mass index (BMI) 21.5; age 33.06 (15–63 years) [20].
The patients showed the majority of lesions in the ovary with 66.9% (56.3% left-sided), in the uterosacral
ligament with 45.51% (60.7% left-sided), in the ovarian fossa with 32.15% (67.5% left-sided), in the pouch
of Douglas with 29.25%, and in the bladder with 21.25% (57.76% left-sided), while 14.4% had DIE.
Another study with n = 1500 patients with 10,466 lesions with endometriosis stage IV revealed,
for example, 83.91% of lesions in the left broad ligament vs. 71.38% on the right site [21]. Similarly,
ovarian endometriosis was evident in 60.21% (left-sided) vs. 49.19% (right-sided). The anatomical
distribution and the predominantly left-sided localization were hypothesized to support the menstrual
reflux theory of Sampson [21,22].

Peritoneal endometriosis, ovarian endometriosis (endometrioma), and deep infiltrating endometriosis
are often classified as three distinct entities, which do not share a common pathogenesis [23]. Ovarian
endometriosis, in particular, is thought to be derived from metaplasia [23,24] via transdifferentiation of a
committed cell type (e.g., mesothelium) into an alternative cell type (e.g., endometrial epithelium).
The occurrence of endometriosis in patients with the Mayer–Rokitansky–Küster–Hauser (MRKH)
syndrome who often lack a uterus or endometrium is consistently proposed as evidence for metaplasia
as a cause of endometriosis, especially in the ovaries [23,24]. A critical evaluation of the literature about
MRKH showed that, whenever biopsies were performed, endometriosis never appeared without a uterus
and/or endometrium remnants [25]; however, this does not exclude other hypotheses as possible causes
of endometriosis.

In addition to the implantation hypothesis [5] or metaplasia theory [23], alternative hypotheses
such as the genetic/epigenetic theory [26], circulating stem/progenitor cells [27], repeated tissue
injury and repair (ReTIAR) caused by uterine hyperperistalsis [28], and a fetal [29] or adolescent [30]
origin were also suggested. Many arguments were put forward to criticize the implantation hypothesis
such as the occurrence of extra-pelvic endometriosis [31]; however, as clearly shown in a recent
review [32], Sampson already mentioned the vascular spread. In addition to this recent reappraisal
of Sampson’s work, Shakiba et al. [33] showed that patients with hysterectomy combined with
laparoscopy experience a dramatically lower recurrence rate of 96.0%, 91.7%, and 91.7% compared to
laparoscopy alone with a recurrence rate of 79.0%, 53.3%, and 44.6% after two, five, and seven years,
respectively. These data indicate that hysterectomy is associated with a low reoperation rate and that
the endometrium is the main reason for endometriosis. Again, this does not exclude other hypotheses
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in the pathogenesis of endometriosis. Remarkably, recently, it was found that the time to recurrence is
independent of the three endometriotic subtypes (ovarian, peritoneal, and DIE) at first surgery [34].

Although the hypothesis of Sampson [5,31] provides a reasonable explanation for the cellular
spread, it is still unclear why only 1–10% of women develop endometriosis [15–17] despite
the high prevalence of retrograde menstruation ranging from 76% to 90% [6–8]. Several additional
hypotheses such as inflammation, oxidative stress [35], disturbance of the peritoneal barrier [36],
and genetic/epigenetic changes [26] were put forward to explain this discrepancy.

It is often described that the eutopic endometrium with and without endometriosis is
different [37,38], thus suggesting that the first steps in the pathogenesis of endometriosis might already
happen in the endometrium. One of the mechanisms which are suggested to participate at the onset of
endometriosis is epithelial–mesenchymal transition (EMT). To the best of our knowledge, the first evidence of
EMT in endometriosis was found with endometrial epithelial cells in vitro [39] and later also in vivo alongside
the reverse process of mesenchymal–epithelial transition (MET) in human tissue [40].

In this review, we examine the most important EMT pathways involved in human endometriosis,
and we only consider pathways investigated in at least three studies. Reviews of other endometrial
functions such as decidualization, regeneration, embryo implantation, or adenomyosis in connection
with EMT can be found elsewhere [41,42].

2. Epithelial–Mesenchymal Transition

EMT is an important conserved mechanism during morphogenesis and organogenesis [43].
In the adult organism, EMT is involved in wound healing, fibrosis, tissue regeneration, inflammation.
and cancer metastasis [44–46]. EMT programs are classified into three types: (1) type I EMT occurs
during embryonic development, (2) type II EMT characterizes wound healing and tissue regeneration,
and (3) type III EMT is observed during carcinoma progression [45].

The multi-stage process of EMT comprises the gradual remodeling of epithelial cell architecture
and functional capabilities such as loss of epithelial markers resulting in disruption of cell–cell contacts,
remodeling of the cytoskeleton, and loss of apical-basal polarity accompanied by the acquisition of
mesenchymal markers [43–47]. These changes often cause a mesenchymal phenotype with spindle-like
cell shape, as well as increased cell migration, invasion, and cell survival (resistance to anoikis),
triggered by several growth factors, cytokines, and numerous transcription factors (Figure 1) [47,48].

The hypothesis that EMT and MET drive the invasion-metastasis cascade was pursued for a long
time; however, recent data challenge the role of EMT as a crucial effector of cancer metastasis [47,49,50].
For instance, inhibition of ZEB1/2 by microRNA (miRNA) did not impair metastasis of mouse mammary
tumors to the lung [51]. Similarly, loss of either Snail or Twist in pancreatic epithelium suppressed
EMT in the primary tumor, and a similar number of metastases in the liver, lungs, and spleen could be
observed [52]. Remarkably, both studies reported a higher resistance of cancer cells to chemotherapy
because of EMT [51,52]. Another study showed that the EMT transcription factor Twist actually
requires intact adherens junctions (E-cadherin) in order to mediate local invasion in breast cancer [53].

Accumulating evidence from the analysis of circulating tumor cells (CTCs) demonstrated
the significant heterogeneity of EMT markers supporting the concept of EMT as an important feature of
invasive cancer cells [54]. In particular, CTCs with a hybrid epithelial/mesenchymal phenotype showed
the highest plasticity to generate an aggressive CTC population which is resistant to chemotherapy
and capable of metastatic outgrowth [55]. Thus, it is becoming increasingly clear that EMT and MET
are not binary processes, but instead show many hybrids of epithelial/mesenchymal phenotypes with
(semi)-stable intermediates [43,44].
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Figure 1. Scheme of the epithelial–mesenchymal transition (EMT)/mesenchymal–epithelial transition
(MET) program. Epithelial cells are defined primarily by their cell–cell contacts consisting of tight
junctions, adherens junctions, and desmosomes. The contact to the underlying basement membrane
is mediated by hemidesmosomes. Proteins associated mainly with the epithelial state modulate cell
polarity and cell–cell contact (green box). Induction of EMT by various stimuli results in expression
of the EMT transcription factors (TFs) (Zinc finger E-box-binding homeobox (ZEB), Snail, T Twist),
red box), which inhibit the expression of “epithelial genes” (green box) and activate the expression of
“mesenchymal genes” (red box). The subsequent cellular changes like disassembly of epithelial cell–cell
contacts, loss of apical-basal cell polarity, and degradation of the underlying basement membrane are
achieved via repression of crumbs, Protein associated with LIN-7 (PALS1)-associated tight junction
protein (PATJ), and lethal giant larvae (LGL), which regulate tight junction formation and apical-basal
polarity (orange box). During EMT, cells acquire motility and invasive capabilities. MET can reverse
EMT and cells revert to an epithelial state. The whole process is neither black and white nor always
complete, but it can show intermediate states (orange box). Modified from Dongre and Weinberg [46].

Many proteins and signaling pathways were found to be involved in EMT. Loss of E-cadherin,
which as a transmembrane protein connects epithelial cells together at adherens junctions, is considered
to be a fundamental event in EMT [56]. Several transcription factors (TFs) repress E-cadherin directly
or indirectly such as Snail1, Slug, ZEB1/2, Twist, Goosecoid, and fork-head box protein C2 (FOXC2) [57].
These factors may regulate each other in a hierarchical pattern where Snail1 and Slug are initially
induced, leading to the activation of the above-mentioned factors [57]. Interestingly, they also
modulate expression of claudins and desmosomes, thus facilitating EMT. For example, Slug and Snail
repress claudin-1 messenger RNA (mRNA) and protein expression in vitro [58] and Slug triggers
desmosomal disruption, the first and necessary phase of EMT [59]. Although Slug induced ZEB1
and fibronectin expression [60], it did not trigger the second phase consisting of cell motility, repression
of cytokeratin expression, and activation of vimentin expression [59].

3. Mesenchymal–Epithelial Transition (MET)

MET, the reverse process of EMT, is less well characterized, and its role in metastatic outgrowth is
still unresolved [60]. Cells that undergo EMT proliferate less and, thus, cannot colonize the metastatic
site. Up to date, the carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5)
was identified so far as a possible regulator of MET and metastatic colonization [61]. Additionally,
the transcription factors ovo-like transcriptional repressor (Ovol1/2) and grainyhead-like (GRHL2),
also known as phenotypic stability factors, were reported to regulate MET via ZEB1 [62,63]. However,
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neither Ovol1/2 nor GRHL2 were analyzed in endometriosis, and the involvement of MET in peritoneal
endometriosis was only described in one report [40].

4. Materials and Methods

In PubMed, we searched for articles describing an association between EMT and endometriosis
(Figure S1, Supplementary Materials). Thus, we performed a systematic retrospective literature review.
We looked for the following keywords: E/N-cadherin, Snail1, Slug (also known as Snail2), Twist, Ovol1/2,
GRHL2, claudin(s), occludin, integrin(s), keratin(s), vimentin, transforming growth factors-beta
(TGF-βs), epidermal growth factor (EGF), hepatocyte growth factor (HGF), phosphatidylinositol
3′ kinase/Ak strain transforming (PI3K/Akt), mitogen-activated protein kinase (MAPK), Wingless
Int-1 (Wnt)/β-catenin, notch, estrogen receptor-alpha (ER-α), Crumbs, Hedgehog signaling pathway,
nuclear factor kappa B (NF-κB), activating transcription factor 2 (ATF2), Protein associated with
LIN-7 (PALS1)-associated tight junction protein (PATJ), lethal giant larvae (LGL), and fibronectin.
Only manuscripts showing immunohistochemistry of eutopic and ectopic endometrium together
with a scoring system and at least three studies published were included in this review. Most often,
the scoring system of − (0), + (1), ++ (2), and +++ (3), but very rarely the Histological Score (HSCORE),
was used for evaluation of immunohistochemical staining. Information about hormonal contraception
is not included because no studies compared it with no treatment. Sometimes, we had to deduce
the immunohistochemical values from the graphs. In these cases, we could only give approximate
values, and we calculated the p-values by ourselves (both marked by brackets). Non-parametric
comparisons between two groups were done with the Mann-Whitney test and those between three or
more groups were done with the Kruskal-Wallis test.

5. The Role of EMT in Endometriosis

In the last few years, numerous manuscripts were published suggesting the involvement of
EMT in the pathogenesis of endometriosis [41,42]. In this section, we examine the most important
EMT-related factors involved in endometriosis.

5.1. Epithelial Markers

5.1.1. E-Cadherin (Cadherin-1) in Endometriosis

Loss of cell–cell adhesion mediated by or associated with decreased E-cadherin protein abundance
was shown to transform cells to spindle-like mesenchymal cells and enhance their migratory
and invasive behavior [64,65].

E-cadherin was the most frequently analyzed EMT marker in endometriosis. In 13 out of 16
manuscripts, information about the cycle phases in the normal endometrium was provided; however,
cycle-specific differences were not analyzed (Table 1). Only one study reported no cycle-specific
differences [66], but it was not included in Table 1, because no comparison between eutopic and ectopic
endometrium was provided. In seven out of 16 studies, a comparison of eutopic endometrium in cases
with and without endometriosis showed no significant differences, except for two reports claiming
a significant reduction [67,68] (Table 1). Comparison of peritoneal and/or ovarian endometriosis to
eutopic endometrium revealed in nearly all studies a reduced E-cadherin expression and a significant
difference between ectopic endometrium (especially peritoneal and ovarian) and eutopic endometrium
(Table 1). In only one manuscript, the three different endometriotic entities were evaluated, and they
demonstrated a higher E-cadherin protein expression in DIE compared to ovarian and peritoneal
endometriosis, which was even higher compared to eutopic menstrual endometrium [40].
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Table 1. Immunohistochemistry of E-cadherin in eutopic and ectopic endometrium.

Eutopic Endometrium Ectopic Endometrium (Entities)

Refs All (n) Without EM With EM Scores p-Value All (n) Ov. EM PE DIE Scores p-Value

[69] 16 8 8 100% n.d. 16 n.d. 8 n.d. −16.70% n.d.

[70] 19 n.sp. n.sp. 2.2 P/2.8 S n.d. 10 n.sp. n.sp. n.sp. 2.7 P/3.2 S n.d.

[71] 26 n.sp. n.sp. 99% n.d. 9 n.sp. n.sp. n.sp. 33% n.d.

[72] 18 n.d. 18 100% n.d. 18 n.d. 18 n.d. 89% n.d.

[73] 49 25 24 2.24 a/1.83 b (n.s.) 21 n.d. 21 n.d. (0.52 c) (<0.001 a,b/c)

[74] 7 n.sp. n.sp. (1.71 a) n.d. 11 11 n.d. n.d. (0.82 b) (0.0025 a/b)

[75] 15 15 n.d. 92% a n.d. 23 n.d. 23 n.d. 50% b <0.01 a/b

[76] 10 n.sp. n.sp 91% n.d. 15 n.sp. n.sp. n.sp. 85% n.s.

[40] 32 14 18 11.2 a n.s. 199 55 30 red, 46 black 68 3.3 b/2.9 red c/19.4 black d/20.3 e

0.03 a/d

0.005 a/e

0.0001 b,c/d

0.0001 b,c/e

[77] 12 12 n.d. 2.58 n.d. 25 9 9 9 2.76 all three n.s.

[78] 41 20 21 8.35 a/7.24 b n.s. 21 21 n.d. n.d. 5.14 c

0.0325 a/c

0.0089 b/c

<0.01 a,b/c

[79] 40 40 n.d. (~0.35) n.d. 40 40 n.d. n.d. (~0.05) ≤0.05

[67] 23 12 11 (~38 a/~20 b) ≤0.05 a/b 11 11 n.d. n.d. (~18 **) <0.01 a/c

[68] 60 30 30 (1.83 a/0.73 b) (0.001 a/b) 30 30 n.d. n.d. (0.27 c) ≤0.05 a,b/c

[80] 42 21 21 6.38 a/7.43 b n.s. 21 21 n.d. n.d. 3.86 c
≤0.05 a/c

<0.01 b/c

[81] 110 50 60 (~7.3 a/7.2 b) n.s. 65 65 n.d. n.d. (~5.0 c) ≤0.05 a,b/c

Refs, references; % denotes the percentage of stained samples; EM, endometriosis; Ov. EM, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis; n.d.,
not done; n.sp., not specified; n.s., not significant; P, proliferative; S, secretory. Superscript letters denote the statistical comparisons.
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5.1.1.1. β-Catenin in Endometriosis

Wnt/β-catenin signaling could inhibit E-cadherin expression through EMT transcription factors
(EMT-TFs) Twist and Slug [57]. Thus, we analyzed β-catenin expression in eutopic and ectopic
endometrium, and we could only identify four reports (Table 2). Unfortunately, no information about
the cycle-dependency was published. In two studies, a comparison of eutopic endometrium with
and without endometriosis demonstrated no differences in β-catenin expression [73,80]. In three
reports, a significantly lower β-catenin expression in ectopic compared to eutopic endometrium
was found (Table 2). In contrast, one study reported an even higher β-catenin expression in ectopic
endometrium [80].

Table 2. Immunohistochemistry of β-catenin in eutopic and ectopic endometrium.

Eutopic Endometrium Ectopic Endometrium (Entities)

Refs All (n) Without EM With EM Scores p-Value All (n) Ov. EM PE DIE Scores p-Value

[73] 49 25 24 1.8 a/1.58 b (n.s.) 21 n.d. 21 n.d. (0.76 c) (≤0.05 b/c)

(<0.001 a/c)

[74] 7 n.sp. n.sp. (1.71 a) n.d. 11 11 n.d. n.d. (0.91 b) (0.0095 a/b)

[76] 10 n.sp. n.sp 91% n.d. 15 n.sp. n.sp. n.sp. 72% 0.002

[80] 42 21 21
14.3%/23.8%

n.s. 21 21 n.d. n.d.
61.9% n.d.

≤0.05 b/c

2.57 a/3.62 b 7.14 <0.01 a/c

Refs, references; % denotes the percentage of stained patients (p); EM, endometriosis; Ov. EM, ovarian endometriosis;
PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis; n.d., not done; n.sp., not specified; n.s.,
not significant. Superscript letters denote the statistical comparisons.

Similarly to E-cadherin, theβ-catenin expression pattern in eutopic endometrium with and without
endometriosis did not reveal too many differences. Although E-cadherin and β-catenin expression is
decreased in ectopic endometrium, it remains to be elucidated whether endometrial epithelial cell–cell
contacts are also impaired.

5.1.2. Cell–Cell Contacts (Claudins) in Endometriosis

As mentioned above, EMT-TFs also regulate claudin expression. Since the loss of cell–cell contacts
is a prerequisite for the loss of the epithelial phenotype [45,46], we address in this section whether
claudin expression is altered in endometriosis.

Human endometrium expresses claudins-1–5, 7, and 10 [82]. Up to now, only four studies were
published regarding claudin expression in endometriosis with their findings summarized in Table 3.
In contrast to one study showing cycle-dependent differences of mRNA expression of claudins [80],
three studies found no differences in expression of claudins-2–4 and 11 [83–86]. Again, no significant
differences between the eutopic endometrium of women with and without endometriosis could be
shown for claudins-2–4, 7, and 11 (Table 3).

In contrast to claudins-2, 5, 7, and 11, which are not significantly different in the ectopic
endometrium compared to eutopic endometrium [83–86], claudin-1 and claudin-4 are significantly
different, showing a decreased protein presence in peritoneal endometriosis [83]. Furthermore,
claudin-4 was found to also be different in ovarian endometriosis [84,85] (Table 3). Instead, data
for claudin-3 are controversial; whereas Pan et al. [84] found a reduced protein presence in ovarian
endometriosis, Hoerscher et al. [86] did not identify any changes, but in contrast identified claudin-3
expression in nearly all glands in the ectopic endometrium.

Although, for claudin-11, no differences in the HSCORE could be found between eutopic
and ectopic endometrium, a significant switch of claudin-11 localization to a basal or basolateral
localization in ovarian, peritoneal, and DIE could be observed [85]. In particular, in ovarian
endometriosis, a shift to a more basal or basolateral localization was prominent compared to a
preferential apicolateral localization in eutopic endometrium [85].
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Table 3. Immunohistochemistry of claudins in eutopic and ectopic endometrium.

Eutopic Endometrium (Phases) Ectopic Endometrium (Entities)

Refs All (n) Without EM With EM Scores p-Value All (n) Ov. EM PE DIE Scores p-Value

Claudin-1
[83] 22 13 9 (2.05 a both) n.d. 17 n.d. 17 n.d. (1.47 b) (0.0187 a/b)

Claudin-2

[86] 26
P, S 12 14 165 P/178 S

176/189
n.s.
n.s. 19 6 6 7 179/220/209 n.s.

Claudin-3

[83] 22 13 9 (2.27 both) n.d. (20) n.d. (20) n.d. (2.0) n.s.

[84] 62
P, S 35 27 0.53 P/0.6 S0.57

a/0.59 b
n.s.
n.s. 35 35 n.d. n.d. 0.17 c ≤0.05 a/c

≤0.05 b/c

[86] 51
P, S 19 32 268 P/253

S261/270
n.s.
n.s. 62 20 17 25 266/263/286 n.s.

Claudin-4

[83] 20 n.sp. n.sp. (2.3 a all) n.d. 20 n.d. 20 n.d. (1.4) (0.0031 b)

[84] 62
P, S 35 27 0.6 P/0.85 S

0.74 a/0.7 b n.s. 35 35 n.d. n.d. 0.20 c ≤0.05 a/c

≤0.05 b/c

Claudin-5
[83] 21 n.sp. n.sp. (1.9 all) n.d. 19 n.d. 19 n.d. (1.42) (n.s.)

Claudin-7

[83] 19 n.sp n.sp (2.21 all) n.d. 21 n.d. 21 n.d. (1.81) (n.s.)

[85] 49
P, S 18 31 232 P/249 S

241/237
n.s.
n.s. 62 20 17 25 235/278/257 n.s.

Claudin-11

[85] 49
P, S 18 31 185 P/187 S

186/169 n.s. 62 20 17 25 125/182/159 n.s.

Refs, references; EM, endometriosis; Ov. EM, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep
infiltrating endometriosis; n.d., not done; n. sp, not specified; n.s., not significant; P, proliferative; S, secretory.
Superscript letters denote the statistical comparisons.

Taken together, the analysis of claudins in endometriosis showed only the loss of few claudins,
but not of all, especially in the eutopic endometrium.

5.2. Mesenchymal EMT Markers

5.2.1. Snail and Slug (Snail2) in Endometriosis

We identified four manuscripts showing Snail localization in eutopic and ectopic endometrium
(Table 4). Only one study [66], reporting no differences in cycle-dependent expression, was not
included, because no comparison between eutopic and ectopic endometrium was provided. In one
study, a comparison of eutopic endometrium with and without endometriosis revealed an identical
percentage of Snail-positive epithelial cells [80], again questioning EMT at the endometrial stage.
In three out of four studies, Snail protein presence was higher in the ectopic endometrium, especially
in ovarian endometriosis, as reported in two studies [79,80] (Table 4).

Table 4. Immunohistochemistry of Snail in eutopic and ectopic endometrium.

Eutopic Endometrium (Phases) Ectopic Endometrium

Refs All (n) Without EM With EM Scores p-Value All (n) Ov. EM PE DIE Scores p-Value

[77] 12 12 n.d. 1.58 a n.d. 24 n.sp. n.sp. n.sp. 1.96 b 0.027 a/b

[87] 10 10 n.d. 100% p n.d. 7 6 lesions n.d. 5
lesions 100% p n.d.

[79] 40 40 n.d. (~0.04) n.d. 40 40 n.d. n.d. (~0.52) <0.001

[80] 42 21 21 19% a/19% b

3.43 d/2.71 e n.s. 21 21 n.d. n.d. 57.1% c

5.86 f
≤0.05 a,b/c

≤0.01 e/f

Refs, references; % denotes the percentage of stained samples; EM, endometriosis; Ov. EM, ovarian endometriosis;
PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis; n.d., not done; n. sp, not specified; n.s.,
not significant. Superscript letters denote the statistical comparisons.

For Slug, we could identify only one report, demonstrating no increase [77].
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5.2.2. ZEB1 in Endometriosis

Localization of ZEB1 was presented in only three studies (Table 5). In one study, no cycle-dependent
changes were reported, as well as no differences in the eutopic endometrium in cases with and without
endometriosis [87]. In contrast, Wu et al. [67] found an eight-fold increase in ZEB1 abundance
in the eutopic endometrium of cases with endometriosis. However, all three reports agree that ZEB1 is
significantly upregulated in the ectopic endometrium, especially in DIE [87,88] (Table 5).

Table 5. Immunohistochemistry of ZEB1 and Twist in eutopic and ectopic endometrium.

Eutopic Endometrium Ectopic Endometrium (Entities)

Refs All (n) Without EM With EM Scores p-Value All (n) Ov. EM PE DIE Scores p-Value

ZEB1

[87] 10 10 n.d. 0% a s n.d. 7 6 lesions n.d. 5
lesions 45% b s 0.0039 a/b

[67] 23 12 11 ~(25 a/200) <0.001 11 11 n.d. n.d. (~125 b) ≤0.05 a/b

[88] 50 20 30 104/71
84 a both n.s. 75 30 lesions 21

lesions
27

lesions 145/138/202 b <0.001 a/b

Twist

[77] 13 13 n.d. 1.31 a n.d. 26 9 9 9 2.42 b all <0.001 a/b

[89] 119 50 69 (~17% with EM) n.d. 86 n.sp. n.sp. n.sp. (~50%) <0.001

[90] 119 50 69 (~3.0/~1.8 a) 0.001 90 n.sp. n.sp. n.sp. (~3.0 b) <0.001 a/b

[68] 60 30
Infertile 30 (0.17 a/0.47 b) n.s. 30 30 n.d. n.d. (1.67 c) (<0.001 a,b/c)

ZEB1, Zinc finger E-box binding homeobox; Refs, references; % denotes the percentage of stained samples (s), EM,
endometriosis; Ov. EM, ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis;
n.d., not done; n. sp, not specified; Superscript letters denote the statistical comparisons.

5.2.3. Twist in Endometriosis

Although no cycle-dependency was analyzed, the comparison between the eutopic endometrium
of cases with and without endometriosis showed either an increase [68] or a reduction [90] in Twist
protein expression in cases with endometriosis (Table 5). All studies reported an increased Twist
expression in ectopic compared to eutopic endometrium [68,77,89,90].

5.2.4. Vimentin in Endometriosis

All in all, we could identify seven studies with vimentin, showing somewhat heterogeneous
results (Table 6). In contrast to a significant cycle-dependent decrease in the secretory phase [91,92],
one report found no differences [88]. The comparison between the eutopic endometrium of cases with
and without endometriosis was either significant [67] or not significant [78,88]. Similarly controversial
are the comparisons of ectopic with eutopic endometrium; three reports found a decrease in eutopic
endometrium [78,88,92], and one report found a decrease and an increase in eutopic endometrium [40].
Whereas four reports identified a significant vimentin increase in ovarian endometriosis [67,78,79],
two studies reported a decrease [88,92].
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Table 6. Immunohistochemistry of vimentin in eutopic and ectopic endometrium.

Eutopic Endometrium (Phases) Ectopic Endometrium (Entities)

Refs All (n) Without EM with EM Scores p-Value All (n) Ov. EM PE DIE Scores p-Value

[91] 29
P, S 29 n.d. 188 a P, 140 ES

93 b LS <0.01 a/b 31 n.d. 31 black n.d. 63 P, 80 ES, 55 LS n.s.

[92] 20 n.d. 20 342 a P, 252 b S <0.01 a/b 20 20 n.d. n.d. 185 c P, 130 d S ≤0.05 c/d

[40] 32 14 18 10.5 a n.d. 199 55 30 red
46 black 68 1.5 b/34.3 red c/63.4

black d/20.5 e
<0.0001 a/c,d,e

<0.0001 b/c,d,e

[78] 41 20 21 10% a/23.8% b n.s. 21 21 n.d. n.d. 61.9% c 0.0278 b/c

0.0009 a/c

[79] 40 40 n.d. (~0.23) n.d. 40 40 n.d. n.d. (~0.44) <0.01

[67] 23 12 11 (~20 a/~90) 0.01 11 11 n.d. n.d. (~95 b) <0.01 a/b

[88] 50 20 30 65/76
72 a both n.s. 78 30 27 21 15 b/46 c/94 <0.01 a/b

<0.001 b/c

Refs, references; % denotes the percentage of stained samples; EM, endometriosis; Ov. EM., ovarian endometriosis; PE, peritoneal endometriosis; DIE, deep infiltrating endometriosis; n.d.,
not done; n. sp., not specified; n.s., not significant; P, proliferative; S, secretory; ES, early secretory; LS, late secretory. Superscript letters denote the statistical comparisons.
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5.2.5. N-Cadherin (Cadherin-2) in Endometriosis

Decreased expression of E-cadherin is often associated with an increased expression of
N-cadherin [93]. In one report, a significantly reduced N-cadherin expression in the secretory
compared to the proliferative phase was reported [94] (Table 7), whereas Qi et al. [66] identified no
differences. Two studies found no differences in the eutopic endometrium of cases with endometriosis
compared to cases without endometriosis [40,78]. The majority of studies presented an increased
N-cadherin expression in the ectopic compared to the eutopic endometrium [40,68,77,78]. In contrast,
one report could not identify any changes [75].

Table 7. Immunohistochemistry of N-cadherin in eutopic and ectopic endometrium.

Eutopic Endometrium Ectopic Endometrium (Entities)

Refs All (n) Without EM With EM Scores p-Value All (n) Ov. EM PE DIE Scores p-Value

[94] 26 26 n.d. 4.2 a P/1.5 b S <0.01 a/b 34 n.d. 13 21 1.7 c/2.9 d
≤0.05 a/c

[68] 60 30 30 10%/30% 0.1 a/0.3 b n.d. 30 30 n.d. n.d. 60%
0.77 c

≤0.05 b/c

<0.001 a/c

[78] 40 20 21 5% a/9.5% b

1.75 a/1.38 b n.s. >0.05 a/b 21 21 n.d. n.d. 38.1%
3.67 c

0.02 a/c

<0.05 a,b/c

[77] 13 13 n.d. (1.85 a) n.d. 27 9 9 9 (2.54 b) (0.005 a/b)

[40] 32 14 18 0/0 a n.s. 199 55 b 30 c red,
46 d black 68 e 1.2 b/3.9 c/

1.7 d/1.3 e

0.0001 a/c

0.0006 c/d

0.006 a/e

[75] 15 15 n.d. 100%/93% n.d. 23 n.d. 23 n.d. 100%/89% n.s.

Refs, references; % denotes the percentage of stained samples; EM, endometriosis; Ov. EM, ovarian endometriosis; PE,
peritoneal endometriosis; DIE, deep infiltrating endometriosis; n.d., not done; n.sp., not specified; n.s., not significant;
P, proliferative; S, secretory. Superscript letters denote the statistical comparisons.

Remarkably, the mesenchymal marker N-cadherin was also not differentially expressed
in the eutopic endometrium of cases with and without endometriosis.

6. EMT in Endometriosis—When Does It Happen?

6.1. Summary of the Epithelial EMT Markers in Endometriosis

We found that the cycles (25/28 = 89.3%) and hormonal treatments (13/28 = 46.4%) are often but
not always reported. Furthermore, in eight reports [84–88,91,92,94], proliferative and secretory phases
were compared. Thus, this review has some limitations; however, despite these shortcomings, several
conclusions can be clearly drawn from the present investigation.

Taken together, in most studies (14/16 = 87.5%), no significant differences in E-cadherin (6/8),
β-catenin (2/2) and claudins (6/6) in the eutopic endometrium with or without endometriosis could
be identified (Tables 1–3). Thus, we can conclude with a high probability that the epithelial
phenotype is retained in the endometrium of cases with endometriosis and, therefore, EMT is
not a prerequisite for the dissemination of endometrial cells. In contrast, the comparison of the ectopic
with the eutopic endometrium paints a different picture. Many studies showed a decreased expression
of E-cadherin (10/12 = 83.3%) and β-catenin (4/4 = 100%) in the ectopic compared to the eutopic
endometrium. Despite this clearly reduced expression, the claudin-dependent tight junctions are mostly
retained in the ectopic endometrium (7/11 = 63.6%), as well as in the three different entities (Table 3).
In contrast, the three endometriotic entities showed a different pattern of E-cadherin expression with
a higher abundance in DIE and black peritoneal lesions compared to ovarian and peritoneal lesions
(Table 1).

From all the above, we conclude that cell–cell contacts remain nearly intact in the ectopic
endometrium despite the loss in expression of E-cadherin and β-catenin. This suggests that at least
a partial EMT with retained cell–cell contacts takes place in the ectopic endometrium, possibly after
implantation. However, this partial EMT does not include any loss of the epithelial phenotype.
Our conclusions are new and clearly different to the observations with cancer cells, where EMT is
considered to be a prerequisite of dissemination [45].
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Up to date, a detailed molecular signature and morphological features as robust hallmarks to
define partial EMT remain to be identified, and it is still unclear whether these partial EMT states are
metastable or transient snapshots [95]. Furthermore, the co-expression of epithelial and mesenchymal
markers in the same cell or in a subset of cells remains to be clarified. In the case of a partial EMT
in endometriosis, we observed a strong expression of cell–cell contacts in nearly all endometrial
and endometriotic glands, as well as in nearly all epithelial cells [85,86,88], thus suggesting that
the partial EMT might occur in the same cell(s).

Further in line with our assumptions of a partial EMT in the pathogenesis of endometriosis are
recent observations on somatic mutations in the eutopic and ectopic endometrium. The findings that
endometrial stromata do not share mutations with the epithelium neither in the eutopic or in the ectopic
endometrium [96] clearly suggest that endometrial epithelial cells do not transform into stromal cells.
Our hypothesis of a partial EMT is in agreement with these observations, because we demonstrate that
epithelial cells do not lose their epithelial phenotype and show only a partial gain of mesenchymal
marker expression. Recently, it was shown that the clonal expansion of endometriotic lesions is driven
by mutations in cancer-associated genes with a higher distribution compared to normal endometrial
epithelium [97]. The clonality of endometriotic lesions is in accordance with our assumption that
epithelial cells do not transform into stromal cells. Similarly, the higher distribution of mutations
in cancer-associated genes in endometriotic lesions [97] is comparable to our observation that most of
the changes in EMT markers might occur after implantation.

From all these assumptions, it is now clear why we did not include in this review comparative
studies involving endometrial and endometriotic cells. Since most of the EMT changes occur after
implantation, the comparison between these two distinct cell types would not have provided any
information about the first steps in the pathogenesis of endometriosis.

6.2. Summary of the Mesenchymal EMT Markers in Endometriosis

We found only in very few reports a slight gain in expression of mesenchymal EMT markers
in the eutopic endometrium with and without endometriosis (2/11 = 18%, Tables 4–7). In contrast,
the mesenchymal markers in the ectopic endometrium compared to the eutopic endometrium
demonstrated an increase in the majority of studies (22/24 = 92%; Tables 4–7), which is much
higher compared to 18% in the eutopic endometrium. Among the endometriotic entities, a remarkable
difference could be identified in 4/4 (100%) studies.

Thus, the decreased expression of epithelial EMT markers is inversely correlated to the increased
expression of mesenchymal EMT markers in the ectopic endometrium. This strengthens our previous
assumptions that most of the EMT-like changes occur after implantation (Figure 2).

6.3. Perspectives and Clinical Relevance of EMT in Endometriosis

According to our assumptions, we predict that the analysis of CECs from patients with and without
endometriosis will not reveal too many differences with respect to EMT marker expression, although
this analysis is necessary. The distinct EMT patterns in the three endometriotic entities suggest that
there might be differences such as inflammation or other factors in the distinct host tissues of women
with endometriosis compared to healthy women, thereby causing EMT after implantation. Various
aspects of the different microenvironments on the lesions [98,99], as well as the different rates of
somatic mutations or genetic/epigenetic incidents of the endometriotic lesions compared to the eutopic
endometrium [26,96], seem to be mainly responsible for their heterogeneity and, thus, for the clinical
symptoms of endometriosis. In other words, we believe that we should focus more on characterization
of the “soil” instead of the “seed” to treat women susceptible for endometriosis before they get
the disease. The implications for the clinicians are obvious; endometriosis should be better prevented
by the use of mechanical barriers such as for example levonorgestrel-releasing intrauterine devices
(LNG-IUDs), which are also helpful in reduction of recurrence [100]. Furthermore, the total ablation of
the endometrium in women without the wish to conceive should be used more often [32]. Furthermore,
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reduction of repetitive stress, reduction of microtrauma, and prevention of peritoneal inflammation
may be useful [26].J. Clin. Med. 2020, 9, x FOR PEER REVIEW 12 of 19 
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Figure 2. EMT in endometriosis. At the level of the endometrium, the epithelial EMT markers showed
no differences in 87.5% of the studies, whereas the mesenchymal markers showed differences only
in 18% of the studies when the eutopic endometrium of patients with and without endometriosis
was compared. This suggests a partial EMT with only negligible loss of cell–cell contacts. A decreased
protein expression of E-cadherin was found in 83.3% of the studies, but differences in the eutopic
endometrium and the ectopic endometrium could be shown in 36.4% of the studies with claudins.
The mesenchymal markers in the ectopic endometrium were different in 92% of the studies compared
to the eutopic endometrium. Thus, we suggest that, after implantation, EMT was still partial with only
a negligible loss of cell–cell contacts but with a strong gain in the expression of mesenchymal markers.
In summary, EMT in endometriosis occurs mainly after implantation.

7. Conclusions

The vast majority of studies showed only very little evidence of EMT at the level of the endometrium
(Tables 1–7); thus, we suggest that EMT is not involved in the early steps of endometriosis such
as loss of cell–cell contacts followed by dissemination of endometrial cells. While tumor cells need
strategies such as EMT in order to escape tight epithelial structures to metastasize, the detachment
of endometrial cells is facilitated by the physiological breakdown during menstruation. Indeed,
endometrial single cells, clumps of cells, cells with stem cell-like features, and gland-like structures of
epithelial and stromal/mesenchymal phenotype, were observed in peripheral blood and menstrual
effluent [101–103].

Currently, we cannot answer the question whether EMT occurs during dissemination of
endometrial cells. However, we suppose that not too many differences will be observed, because,
until now, the few studies on CECs observed only negligible qualitative differences between women with
or without endometriosis [104,105]. Although two reports claimed to have identified more stromal [106]
or more epithelial and mesenchymal CECs [107] in the peripheral blood, no differences were observed
when CECs were examined in the PF of women with or without endometriosis [12,13]. Remarkably,
CECs can induce EMT in mesothelial cells [108,109], thus highlighting the importance of the mesothelial
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barrier in the pathogenesis of endometriosis [36,110]. Therefore, we suggest that future studies should
focus on the characterization of CECs with mesenchymal and epithelial markers, but more importantly
on an analysis of differences in the “soil” of women with and without endometriosis.

Most studies showed a clear expression of EMT markers in the ectopic endometrium.
The differential expression of EMT markers in ovarian, peritoneal, and deep infiltrating endometriosis is
limited by the fact that all three entities are rarely investigated together. In contrast, ectopic endometrial
epithelial cells retain their expression of various epithelial markers such as most claudins (Table 3)
and cytokeratins [88,92], thereby not losing their epithelial phenotype. As shown with an in vitro
invasion assay, the integrity of the tissue architecture (epithelial and stromal unit) was pivotal for
the ability of the endometrium to infiltrate and to form lesions [111]. Subtle changes in the expression
of cell–cell contacts and more pronounced changes in the presence of EMT markers suggest only a
partial EMT occurring in the ectopic endometrium. This is further emphasized by the analysis of
somatic mutations which clearly excluded a complete transition of endometrial epithelial to stromal
cells [96], but not a partial EMT. We are inclined to assume that the partial EMT, which seems to be
distinctly different in the three endometriotic entities, is a result of the interaction of the endometriotic
implant with the different environments (e.g., peritoneal fluid, ovarian hormones, or different tissue
environment) as suggested by Koninckx et al. [98,99]. Furthermore, EMT of the ectopic endometrium
might also be partially responsible at least for the diversity in the three entities. Similarly, Feider et
al. [112] and Guo [113] also mentioned that the differences between eutopic and ectopic endometrium
might be due to their immediate environment rather than inherent differences between eutopic
and ectopic endometrium. This does not exclude the possibility of inherited (somatic) mutations with
additional genetic and epigenetic incidents in cystic ovarian endometriosis and DIE, as proposed
by the genetic/epigenetic theory [26]; however, it remains unclear whether these changes occur
preferentially in the endometrial epithelial or stromal cells.

Taken together (Figure 2), we suggest the following:

• EMT in endometriosis is not involved as a main factor in the dissemination of endometrial cells;
• Only a partial EMT takes place after implantation with no significant loss of cell–cell contacts

and no loss of the epithelial phenotype;
• The partial EMT results from the different microenvironments at the distinct integration sites of

the endometrial implants;
• This is a new type of EMT which we term type IV.
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