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Abstract
A stack augmented generalization of cellular automata, the pushdown
cellular automata, are investigated. We are studying the language accept-
ing capabilities of such devices. Closure properties of real-time, linear-time
and unrestricted time language families are shown. The relationships of
these families with each other and to languages of sequential automata are
considered.

1 Introduction

Linear arrays of automata can be understood as models for massively parallel
computers. Various types of finite state machine arrays have been studied for a
long time (see e.g. [2, 3,4, 6,7, 8,14, 15,17, 20, 23, 24, 25]). Mainly they differ in
how the automata are interconnected and in how the input is supplied. Here we
are investigating arrays with a very simple interconnection pattern. Each node
is connected to its (one or two) immediate neighbors only. They are usually
called cellular automata (CA) if the input is supplied in parallel and iterative
arrays (IA) in case of sequential input to a designated single automaton. We will
use the notion one-way (OCA) if the single automata (cells) are connected to its
left immediate neighbor only. Moreover, our cells are not finite state machines.
We study linear arrays of deterministic pushdown automata. Accordingly our
models are called pushdown cellular automata (PDCA) resp. iterative pushdown
arrays (IPDA). On a first glance the automata are more complex than their
“classical” counterpart. On the other hand if computational universality should
be obtained in the classical case we have to consider infinite arrays, the so-called
cellular spaces or unbounded cellular automata, whereas in case of pushdown
cellular automata arrays of at least length two are sufficient.
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We establish the relationships to various other models by studying the power
of the arrays as language acceptors. We focus our attention on real-time, linear-
time and unrestricted time computations.

It is known that the real-time OCA languages form a proper subset of the
real-time CA languages [20] which again are equal to the linear-time OCA
languages [4]. On the other hand it is a long standing open problem whether
the real-time CAs are less powerful than the linear-time CAs or not [2]. Closely
related to that problem are the open problems of whether the real-time CA
languages are closed under reversal or concatenation [21]. In this coherency
Ibarra and Jiang [14] have shown that the closure under reversal would imply
the closure under concatenation and that the concatenation of two real-time
CA languages is a linear-time language.

In case of one-way information flow the closure of real-time OCA languages
under reversal was shown in [4], whereas Terrier [23] proved that these languages
are not closed under concatenation. The relationships to iterative arrays are
as follows: The real-time IAs are less powerful than the real-time CAs [14] and
the linear-time TA languages are equal to the linear-time CA languages. Cole
[6] proved that the real-time IA languages are neither closed under reversal
nor under concatenation. Additionally, it is known that the real-time IAs are
incomparable to the real-time OCAs [20, 4].

Smith [21] raised the still open problem whether the context-free languages
are contained in the real-time CA languages. The question was answered for
several subsets of the context-free languages. E.g. it was shown in [13] that
every semi-linear language is real-time acceptable by CAs. Furthermore it is
known that the real-time OCA languages [23] and the real-time IA languages
[6] are incomparable to the context-free languages.

Here we will show a number of results about the capabilities, relationships
to other types of acceptors and closure properties of PDCAs, OPDCAs and
IPDAs. Our paper is organized as follows:

Additional to the present it consists of four sections. In section 2 preliminary
some definitions of acceptors are reviewed and notations are declared. Section
3 is divided into two subsections. The first one defines formally the model
pushdown cellular automaton and how it can accept languages. The second
one gives some important technical results needed in later sections. In section 4
we compare pushdown cellular automata to their classical counterparts as well
as to sequential Turing machines and linear bounded automata. In section 5
various closure properties of the considered language families are obtained.



2 Preliminaries

Although our main interest in the present paper is on pushdown cellular auto-
mata we will review the notions (one-way) cellular automaton and iterative ar-
ray shortly. One of the reasons to do so is that we want to compare pushdown
cellular automata with such devices. Another one is that pushdown cellular
automata are in some sense generalizations of classical cellular automata.

A cellular automaton (CA) is a linear array of identical finite state ma-
chines, sometimes called cells, each of which is connected to its both immediate
neighbors. All cells work synchronously at discrete time steps. With an eye
towards language recognition more formally a cellular automaton is a system
(S,0,#, F), where S is the finite nonempty set of states, F' C S is the set of
final states, o : S — S is the local transition function which ensures that a
cell is in the boundary state # at time step t iff it is at time step ¢t + 1. The
local transition function induces a length preserving mapping 7 : ST — ST
according to the following:

VneN,i e {1,2,...,n}:Vs; € S:

T(s1) = o(#,s1,#)
T(s1-+8,) = o(#,81,52)0(81,82,83)  0(Sn—1,5n,#)
Let M = (S,0,#,F) be a CA, L C A" a formal language and ¢t : N — IN
a function. L is accepted by M in time ¢ (with respect to F') iff A C S and

L={a;-ay,| 7Tn(7-t(n)(a1...an)) cF
AV < t(n) : 7 (T (a1 ay,)) ¢ F}
mi(ay -+ an) := a; selects the ith component of a; - - - a, and 7" denotes the
k-fold composition of 7.

#f o)) qos il ol { #]

Figure 1: A cellular automaton.

If we restrict the flow of information to one-way (e.g. from left to right), the
resulting device is an one-way cellular automaton (OCA). I.e. the next state of
each cell depends on the state of the cell itself and the state of its left neighbor
only.

Iterative arrays (IA) consist of an infinite array of cells. They differ from
CAs in how the input symbols are supplied. Whereas in CAs we have a parallel
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Figure 2: An one-way cellular automaton.

input mode the symbols are fed serially to a distinguished cell in iterative arrays.
(E.g. this could be the cell at the origin if we identify the cells by integers.)
Formally an iterative array is a system (S, A, o, F, s9,ag), where S and F are
as for CAs. A is the finite nonempty set of input symbols containing ag the
end-of-input symbol. The local transition function ¢ maps from S U (S3 x A)
(depending on whether the cell is the distinguished one or not) to S. It satisfies
o(s0,80,80) = So. Due to this property sy € S is called the quiescent state
in which all cells are at time step 0. We assume that at the end of the input
the symbol a( appears infinitely often. The global transition 7 now maps from
ATS* to ATST as follows. For n > 0and m >0let aj -+ anb_m ---bg - by be
a word with symbols a; € A, 1 <i<n,and b; € S, —-m < j < m.

T (a1 Apbm b+ b) :=
{ a1 -+ - an—10(80, 50, b0)o (s0, bo, S0, an)o (bo, s0, S0) if m =0
ai--- an_lo(so, So,b_m) oo O'(b_l, b(), bl,an) v O'(bm, 80,80) ifm>0
A language L C (A\ {ap})" is accepted by an IA in time ¢ (with respect to
F) iff
L={ar - -an | WO(Tt(")(aB(")_nan ~-a18)) € F
AVE < t(n) : mo(TY (@™ "y -+ a150)) ¢ F}

—E-E-E-E-E-E-

A0} s0 S0} s [ so} {0} 50}

Figure 3: An iterative array.



The families of languages acceptable by CAs (OCAs, IAs) in time ¢(n) are
denoted by Z;)(CA) (Zjn)(OCA), Zn)(IA)). Of special interest are the
real-time languages which can be accepted within time rt(n) := n and the
linear-time languages .Zj; := Upen -Zhn- In case of unrestricted computation
time the subscript is omitted. We denote the regular languages by %3, the
context-free languages by % and the deterministic context-sensitive languages
by .,%1.

3 Some technical results on pushdown cellular auto-

mata

3.1 The model

In this subsection we will formally define what pushdown cellular automata are.
As mentioned above the main idea is to replace the finite automata which are
actually the cells by deterministic pushdown automata.

Definition 3.1
A pushdown cellular automaton (PDCA) is a system (S, T, 0, #, F, gg), where
a) S is the finite, nonempty set of states,
b) T is the finite, nonempty set of stack symbols,
c) # € S is the boundary state,
d) F C S is the set of final states,
e) go € ' is the bottom of stack symbol and
f) 0:5%xT — S x I'* is the local transition function satisfying
i) Vs1,89,83 € S,g €T : m(0(s1,82,83,9)) =# <= so=#
ii) Vs1,89,83,84 € S,9 €T : o(s1,82,83,9) = (84,7) =
(ve@\{aoh)* Ag#a) VvV (v=7"90A7 €@\ {o0})* Ag=00)

The second condition on the local transition ensures that the bottom of
stack symbol appears at each cell exactly once (i.e. at the bottom of its stack).
At each transition step each cell consumes the symbol at the top of its stack
(if it is not empty) and pushes a possibly empty string of stack symbols onto
it. Observe that a restriction of pushing at most two symbols at each time step
would neither reduce the computation power nor slowdown the computation
itself. We call PDCAs with this property stack normalized.

The length preserving global transition 7 : (S x I'")* — (S x I'")7T is
induced by ¢ as follows:



Let : 83 x 't — S x 't be defined as

6(51732733agm o '90) = (71—1(0-(81732753agm))77r2(0(51782a33agm))gm*1 "'90>7
thenVn € N,i € {1,...,n}: Vs; €S, 3, €T :

T((81,71)) = 6(# 817#af}/1)
T((s1,71) - (8ny7n)) = G(#,51,82,71)5 (81, 82, 83,72) - T(Sn—1, Sn, #, n)
Initially all stacks are empty. We often refer to configurations ¢; of PDCAs
at time steps i > 0. With ¢y := (a1,40) - - - (an, go) we define ¢;+1 := T (¢;) and
ci(j) = mj(ci)-
Definition 3.2 Let M = (S,T,0,#, F, gy) be a PDCA, L C A" a formal lan-

guage and t : IN — IN a function.
L is accepted by M in time t (with respect to F') iff A C S and

L={ar-an|m (M(Tt(")((al,go)"'(an,go)))) er
AV <t(n):m (Wn(Ttl((al,go) e (anaQO)))) ¢ F}

The definitions for one-way pushdown cellular automata (OPDCA) and it-
erative pushdown arrays (IPDA) are straightforward and omitted here.
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Figure 4: A pushdown cellular automaton.

3.2 Technical results

In this subsection we will prove some technical results meaningly on real-time
OPDCAs. This includes a property of unary languages and some example
languages. The lemmas are used in later sections to prove closure properties
and establish the relationships to other types of acceptors.

It is well-known that a formal language over an one-letter alphabet is context-
free iff it is regular [9, 19]. In [20] Seidel has shown: if such a language can
be accepted by an OCA in real-time, then it is regular, too. We now turn



to prove a similar result for OPDCAs, from which follows that in case of un-

ary languages a single finite state machine has the same accepting power as a
real-time OPDCA.

Lemma 3.1
A formal language over an one-letter alphabet belongs to .Z,,(OPDCA) iff it is

regular.

Proof. Let L be a language over A = {a} and M = (S,I',0,#,F,gy) an
OPDCA accepting it in real-time. At first we are giving the construction of
a deterministic pushdown automaton (PDA) B = (S’, A,T, 4, F', sq, go) which
accepts L with respect to F/ C S’. sy € S’ denotes the starting state of B
and its (partial) transition function ¢ maps from S’ x (AU{e}) xT to S’ x I'*,
where additionally to the condition on the bottom of stack symbol the following
holds: If for any s € S" and g € T the value §(s, ¢, g) is defined then (s, a, g) is
undefined. (¢ denotes the empty word.)

At each time step the configuration of a PDA is a triple (s,w, ), where s €
S’ is the actual state, w € A* the remaining input and v € I'" the content of the
stack. The automaton computes the configuration (s, w, 8v) from (s, wiw, g7)
iff 6(s,w1,9) = (s',8). We write (s, wiw, gy) — (s, w, B7) for short.
Construction:
Let 1 ¢ S be a symbol not belonging to S.

S = (SuU{1})? s0 = (1,1), F':={se S |m(s) € F},

0 is defined as follows:

S(s0,2,90) 1= ( (2 m(o((2).0))): 0

Let si be an abbreviation for o((s, s),g). Vs,§ € S,g €I':
5((s,3),a,g) = ((m(si), m(o((3,m(si)), ma(si)))) 7r2(si)>

Correctness:
We claim: An input is accepted by M iff it is by B. Since B is a PDA L is
then context-free and as stated above regular.

Proof of the claim.
‘=" Let for n € IN w = a" be a word accepted by M in real-time. Assume
until time step n M computes the following sequence of configurations:

t=0: (aago)n
O<t<n: (Ttla")/tl) te (Tttafytt)(st’ﬁt)(nit)
t:n: (Tn17fyn1)”'(rnn7fynn)



For 1 <t <mn (ry,v,) and (s, B;) can be specified by

o((#,2),90) ift=1

_ ol
(Ttt7f}/tt> - {0_(
o
o

(

(re—1, 4+8t—1),Pe—1) otherwise
(a,a),90) ift=1
(

St—1,8t-1),i—1) otherwise

(st,8t) = {

Since w is accepted by M it must hold ry,, € F.

Given w as input to B from the construction of § we obtain:
((17 1)7ana90) l_ ((a, Tll)aa(n_l)ago) }_ ((317T22)7a(n_2)761) ln—_2
((Sn—17 Tnn)7 g, ﬁn—l)

After n time steps B stops since ¢ is not defined for empty input. From
m2(8p—1,Tn,) = Tn, € F follows (s,_1,m,,) € F'. Consequently w is accepted
by B.

‘=" Let w = a" be a word accepted by B. Assume under input w automaton
B computes the following sequence of configurations:

((1 1) n’go) l_ ((31’8/1)’6_(”—1)’71) l_ ((32’812)’a(n_2)572) }ﬂ

(($n, 8h),€,7n), where s, € F'.

Since 6((1,1),2a,90) = ((a,m1(c((#,2),90))),g0) we obtain vy; = go, s1 = a and
s1 = mi(o((#,2),90))-

Because of the construction of § we obtain from

6(((se:81),2,7)) = ((st4158041),ve41) for £ > 11 s = mi(o((se,8), 1)),
St41 = m1(0((st; St41), Ye+1)) and yeq1 = ma(o((st, 8¢), 7))

Consequently,
s2 = m1(0((a,2), go)), SI2 = 771(0-((8117 52),72)) and 2 = m2(0((a, a), go))-
Therefore, M will compute the configurations as follows.

t=0: (a,g0)"

t=1: (s}, )(s2,792)" Y
t=2:  (,)(sh, )(s3,73)" 2

t=n—1:  (, ) ($ho1, )(Sn:7m)
t=mn: (a)(S'Im)
Since s/, belongs to F' the OPDCA M accepts in real-time. From ‘<=’ and

‘—>’ the assertion follows. a

The next lemmas show that several languages are belonging to .%,;(OPDCA).
Due to lack of space and for readability the presentation of proofs is somewhat



informal. It takes advantage from the well-known concept of propagating pulses
or signals [22] and of building the state set from some smaller state sets assum-
ing the control units of the single cells consist of separate registers. The ith
register of all cells together then are called ith track.

Lemma 3.2 {(ab)” | n € N} € .%,(OPDCA)

Proof. The algorithm is based on the fact that the distances between two
consecutive square numbers are growing by two from number to number. The
leftmost cell initiates a right propagating signal at time step 1. On its way to
the right it checks whether the input is of the form (ab)™.

For the present we are assuming that at time step t = 2k%, k > 1, the
stack of each a-cell contains (k + 1)2 — k? symbols whereas the stack of each
b-cell is empty. The automaton continually performs the following task: The
stack content of each a-cell is successively transfered to the stack of the right
neighboring b-cell. This is done in (k+1)2 —k? time steps. Subsequently during
another (k + 1)2 — k2 time steps the stack content of each b-cell is transfered
to the stack of its right neighbor (an a-cell), whereby two additional symbols
are pushed. Therefore, time step 2k% + 2((k + 1)2 — k?) = 2(k + 1)? is the first
time after ¢+ = 2k? at which the stacks of the b-cells get empty. On the other
hand, the OPDCA can easily be constructed such that our assumption holds for
k =1. A cell enters an accepting state if and only if it is a b-cell which receives
the r-signal for the first time at a time step at which is stack gets empty. O

Using a similar technique we can show that there are languages in .%Z,,(OPDCA)
the words of which are characterizable by ‘exponential’ lengths.

Lemma 3.3 {(ab)*" | n € N} € .%,:(OPDCA)

Proof. The proof is only a slight modification of the previous one. In this
case we are assuming that at time 2%, k > 1, the stack of each a-cell contains
2k=1 symbols whereas the stack of each b-cell is empty. Now the stack content
of the a-cell is successively moved to the b-cells (in 2°~! time steps). When the
b-cells subsequently transfer their stack symbols to the a-cells (in another 2¥—!
time steps), these push two symbols for every received symbol. Therefore, at
time 2% 4+ 2. 2F=1 = 2k+1 4 p_cell can enter an accepting state if it receives the

r-signal for the first time. O
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Figure 5: Excerpt of a sequence of configurations to lemma 3.3. R marks an accepting
state.

Lemma 3.4 L = {a22n b" | n € N} € £.,(OPDCA)

Proof. At first the construction of an OPDCA M, which accepts L in real-time
is given. Subsequently we will prove its correctness.
S:={#,e,1,0,%,|,T,F} X {#,e,pu,po} x {#,a,b,r} x {#,¢,0,1,2,3,4},
I':= {mg}, go = g, boundary state: (#,#,#,#), F:={ses|
mi(s) =T}

Let w = w1 - - - wy, be an input word, then we define the initial configuration
fori € {1,...,n} as ¢o(i) := ((e, e, wi, e), g).

The local transition function is defined as follows
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o(((p1,p2,P3,p4), (a1, 92,43,44)), h) = ((¢1, 45, G5, 44), ¥), Where:

(F

\ g1
pu

po
\ g2

(0

% = 2
3
4

\ g4

mh
Y o= {5
h

Observe, on the first track F is computed if the input string on the third track
contains the substring ba. Subsequently the symbol F would be sent to the right
border one cell per time step. Since the corresponding states are not accepting

ifps=b A gz3=a
Vpr=FV ¢g=F
Vps=# ANg3=D>b
ifgn=e AN gg=b A p3g=a
if g e{*!} AN p1 #F
ifqu=1 AN pi #ZFA
(a=3V g2=po A pr=+ A h=g)
ifqn =0 AN p1 #ZFA
(@@=3V @a=po Api=x A h=g)
ifqr #F A p1t #ZFA
(=!'ANps=r Agg=aV qg=T)
otherwise
ifgo=e N g3=Db
Vpre{x!} N ga=po AN h=g
if g =pu A p1 € {,!}
otherwise
ifgs=1r V ps=#
otherwise
ifga=e AN (g3=2aV gg=Db A p3=Db)
ifgu=e N qg3=b AN ps=a
Vag=24
ifQ4:1
ifQ4:2
ifQ4=3
otherwise

ifgre{0,1} AN ge=pu A p1¢{*!} N q=0

ifgg=po Apre€{x!} AN h#g
otherwise

the automaton accepts input of structure a™b* only.

During the computation the content of the third track is shifted to the right
at each time step, whereby the leftmost cell writes an r into its third register

respectively.

We assume the cells containing an initial b in their third registers are

numbered 1,2, ... from left to right.
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Figure 6: Excerpt of a sequence of configurations to lemma 3.4.

Cell 1 can identify itself. During the computation it cyclically writes the

symbols 1, 2, 3 and 4 into its fourth register. At time 0 the first registers of all

ymbol e, which is replaced by 1 at time i. We call this

cells 7 > 1 contain the s

the activation of cell . Furthermore, at time step 1 all cells write the symbol

pu into their second registers.
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We claim: if the input string is sufficiently long, then

! ifnzl)

Vn,i € IN: (t:i—1+n221 = m(m(ct(i))):{* fn>1

holds.

Proof of the claim. 1=1:

Cell 1 generates the symbol 1 on the first and fourth track respectively. Sub-
sequently it writes cyclically 2, 3, 4 and 1 in its fourth register. At time step 4
the symbol !, at time step 5 the symbol 0 is written on the first track. During
the remaining computation the first register is filled with * iff the fourth one is
filled with 4.

t— 1+ 1:

At time ¢ + 1 cell ¢ + 1 is activated and ¢;11(1 + 1) = ((1,pu,a,0),g) holds.
Subsequently at each time step a symbol m is additionally pushed onto the stack
until cell ¢ writes a ! or * into its first register. This happens at time i — 1 + 22
at the first. Therefore, the stack of cell i+1 contains i — 1422 — (i+1) = 22" —2
symbols m.

At the next time step (t =i + 22i) cell i + 1 writes the symbol po into its
second register preserving the stack. From now on a stack symbol is erased iff
the first register of cell ¢ contains a *. This happens every 22" time steps. After
popping 22 — 2 symbols the stack gets empty. Subsequently cell ¢ + 1 waits
further 22 time steps with an empty stack until cell ¢ has generated another *,
which happens at time step 1 —1+ 22 ¢ (22i — 2)22i +922 =i 1422V Since
now cell i + 1 writes a ! into its first register (time ¢t =i + 22(i+1)) our assertion
follows for n = 1:

Ci+22(i+1) (Z + 1) = ((!vpuv a, 0)7 g) and Ci+1+22(i+1) (Z + 1) = ((0,pu, a, 0)7 g)'

But the state differs from the state at time 7 4+ 1 in that the symbol 0 is on the
first track instead of symbol 1. This causes the generation of ! instead of *, and
the whole cycle will be repeated.

It remains to show how an input string is accepted. The symbol T is gener-
ated by one of the cells iff its first register contains a ! exactly at that time step
the leftmost a passes through its third register. Let a”b" be the input string.
The symbol ! is generated by cell ¢ at time 1 —1 +22" once. The leftmost a needs
m + 1 — 1 time steps to reach cell ;. Hence, the input is accepted iff m = 2%
and ¢ is the number of the rightmost cell holds. O

The next lemma concerns CA, OCA and TA languages. Since it does not
hold for OPDCAs it is an important tool for proving results in the next section.
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Lemma 3.5 Let w be an arbitrary but fixed word over an alphabet A, a the
symbol of a singleton and f : IN — IN a mapping. For POLY € {CA, OCA, IA}
holds

L = {w/™ | n € N} € %,(POLY) = Ly = {af(®) | n € N} € .%.,(POLY)

Proof. Without loss of generality let w = wy - -+ wy. From an acceptor M for
Ly we construct an acceptor M’ for Ly by splitting the finite control of each cell
into k separate registers from which we are initially assume that they contain
the symbols w; to wg. Since originally all cells get the same input symbol we
are allowed to do so. Now the recognizer for L; can be simulated, whereby each
cell simulates k cells in its k registers. If M = (S, 0,#, F) is the recognizer for
Ly we (partially) construct M’ = (S', o', #, F') as follows: S’ := Sk, # := #*
F':={s eSS |m(s) e F}.

Up to now we did not consider the speed of simulation. Since we have to
achieve real-time but internally deal with k-fold input lengths we have to speed
up the internal simulation k& times. Of course, this is possible since the state
after k time steps is unambiguous determined by the states of the k nearest
neighbors (in any possible direction) and each cell can derive these (internal)
states by inspecting the registers of its immediate neighbors. O

Since in the lemma above w is a fixed word we can also prove its reversal.

4 Relations to other language families

We are now investigating the relationships to several real-time language families
and language families acceptable without any time restriction. The accepting
devices are sequential machines as well as various parallel automata.

Trivially, .%,,(OPDCA) C %,,(PDCA) holds. The next lemma shows that

the inclusion is a proper one.

Theorem 4.1 %,,(OPDCA) C .Z,.(PDCA)

Proof. It is sufficient to show that the inclusion is proper. The language L =
{a? | p € IN is prime} is a real-time IA language [8]. Due to .Z+(IA) C £+(CA)
[4] it is a real-time CA language and for structural reasons a real-time PDCA
language. From lemma 3.1 it follows that L does not belong to £..,(OPDCA)

since it is not regular.
a
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In the previous theorem it was shown that restricting the communication
to one-way in case of pushdown cellular automata the accepting power is re-
duced. The next theorem shows that reducing structural properties instead
(i.e. removing the stacks) would reduce the accepting power, too.

Theorem 4.2 %,,(OCA) C Z,,(OPDCA)

Proof. Again, it suffices to show that the inclusion is proper. The languages
from lemma 3.2 and lemma 3.3 are real-time OPDCA languages. From lemma
3.5 it follows that they are not real-time OCA languages since otherwise {a"” |
n € N} and {a?” | n € IN} would be regular. O

Next we compare real-time OPDCAs to sequential automata.

Theorem 4.3 %, (OPDCA) C 4

Proof. Let M be an OPDCA accepting a language L in real-time. Assume
M is stack normalized and the cells are numbered from left to right. The proof
turns on constructing a (deterministic) linear bounded automaton (LBA) B
that accepts L, too. In [18, 16] it was shown that L then is a context-sensitive
language.

A linear bounded automaton is simply an one-tape Turing machine the tape
of which is restricted to the portion containing the input string. For a formal
definition see e.g. [12, 19].

The LBA B uses four tracks; first it simulates one step of cell 1 of M, second
two steps of cell 2 and so on. Obviously, it is possible to determine the OPDCA
states m1(co(i+1)),...,mi(ciy1(i+1)) provided its states w1 (co(4)), ..., m1(ci())
are known.

On the first track B stores the input word, on the second it simulates the
stack of the actually simulated cell. Since M is stack-normalized during the
computation the content of stacks will not exceed the track capacity.

On the third track the sequence of states which would be computed by the
actually simulated cell are stored. Since M works in real-time they fit onto the
track.

After the LBA has computed the first ¢ states of cell 7 it copies the content
of the third track onto the fourth one, erases the third one and starts the
simulation of cell ¢ + 1.

Finally, B accepts its input w if m1(cjy|(Jw[)) € F holds, i.e. the OPDCA
M would have accepted w, too.
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Up to now we obtained .%;(OPDCA) C 4. But from lemma 3.1 and
the proof of theorem 4.1 we know that the (deterministic) context-sensitive
language {a” | p € IN is prime} does not belong to .%..(OPDCA) and, hence,
that the inclusion is a proper one. O

Obviously, every regular language can be accepted by an OCA in real-time.
So, besides others, we have %3 C .%,+(OCA) C %4,+(OPDCA) C .%4.

An online Turing machine (TM) consists of a control unit (i.e. a determ-
inistic finite automaton) and a read/write head which operates on an infinite
storage tape. Initially the storage tape is filled with blank symbols. At each
time step the finite control fetches an input symbol, reads the symbol on the
actual head position, (possibly) writes a new symbol to the actual head posi-
tion, changes its internal state and moves the head one square to the right or
left or not at all. An input of length n is accepted by a TM in real-time, if the
machine stops after n steps in an accepting state.

Theorem 4.4 There exists a language not acceptable in real-time by any
OPDCA, which is a real-time TM language.

Proof. {a" |n € IN} is a real-time online TM language. From lemma 3.1 it
follows that L cannot be accepted by any OPDCA in real-time since it is not
regular. O

Theorem 4.5 There exists a language not acceptable in real-time by any on-
line TM, which is a real-time OPDCA language.

Proof. Hartmanis and Stearns [11] have proved that the language {yzdzz® |
xz € {0,1}*,y,z € {e} U{{0,1,d}*d}} cannot be accepted in real-time by any
online TM. Dyer [7] has shown that it belongs to .Z+(OCA). The assertion

then follows from theorem 4.2. O

Corollary 4.1 .£;(OPDCA) and .Z,+(TM) are incomparable.

The relationship between %,..(CA) and .%..,(OPDCA) is not completely
known. It is an open problem whether the inclusion of the following theorem is
a proper one or whether both families are incomparable.

Theorem 4.6 There is a language not accepted in real-time by any OPDCA
which is a real-time CA language.
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Proof. {a?" | n € IN} is a real-time TA language and because of %;(IA) C
Z+(CA) it is a real-time CA language [4]. Due to lemma 3.1 it does not belong
to Z(OPDCA) since it is not regular. O

Since %+(CA) = %, (OCA) [4] and %, (OCA) C %, (OPDCA) we have:

Corollary 4.2 %,,(OPDCA) C %,(OPDCA) C ¢ (OPDCA)

Cole [6] has shown that the context-free language {vv' | v,v" € {0,1}* A
v' = v'® A |v'| > 3} is not acceptable in real-time by any n-dimensional iterative
array. The generalization of iterative arrays to n dimensions is straightforward.
We can utilize this result for proving:

Theorem 4.7 %, (IPDA) and the context-free languages are incomparable.

Proof. Asmentioned above L = {a?" | n € IN} is a real-time TA and therefore
a real-time IPDA language. But L is not context-free.

On the other hand we may regard an (1-dimensional) IPDA as a restricted
2-dimensional IA as follows. The finite control of cell ¢ of the IPDA is simulated
by cell (i,0) of the IA. For all ; € IN the IA cells (i,7),j < 0, are idle and the
IA cells (4,7),j > 0, are simulating the stack of IPDA cell i. From Cole’s result
we conclude that there is a context-free language not belonging to .Z,.(IPDA).
O

It should be stated that we can also prove the previous theorem by adapting
Cole’s argumentation directly to IPDAs.

Theorem 4.8 Z,(IPDA) and .%,;(OCA) are incomparable.

Proof. Again, the real-time IPDA language {a®" | n € IN} is not a real-time
OCA language.

Dyer [7] has shown that {vv’ | v,o’ € {0,1}* A v/ = VB A /| > 3} €
Z+(OCA) which does not belong to n-dimensional .%,;(IA). Consequently it
is not real-time acceptable by IPDAs. O

With lemma 3.1 and theorem 4.2 it follows immediately:
Corollary 4.3 %,,(IPDA) and .%,;,(OPDCA) are incomparable.
Corollary 4.4 £,,(IA) and %£,;(OPDCA) are incomparable.

Theorem 4.9 Z,(IPDA) C . (IPDA)
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Proof. If we consider iterative pushdown arrays without any time restriction
arbitrary online Turing machines can be simulated. We conclude .# (IPDA)
equals the family of recursively enumerable languages. O

Since a time unrestricted PDCA with at least two cells can perform any
computation of a two-stack automaton it accepts exactly the recursively enu-
merable languages, too.

Corollary 4.5 . (IPDA) = ¥ (PDCA)

With corollary 4.2 we obtain .%,,(OPDCA) C ¢ (OPDCA) C .# (PDCA).
It is an open problem whether the second inclusion is a proper one. For struc-
tural reasons we get £ (OCA) C . (OPDCA) C . (PDCA). From the fact
Z (OCA) C Z (CA) = £ [21] it can easily be seen that at least one of the
inclusions is a proper one, but up to now we do not know which of them.

5 Closure properties

Splitting the finite control of cells into two separate registers which simulate
one specific acceptor respectively, it is easily seen that .Z,(OCA) is closed
under intersection, union and set difference. To construct an acceptor for the
complement it suffices to send a signal with suitable speed from left to right
which causes the right border cell to accept if the input would not accepted and
vice versa. Hence, .Z,;(OCA) is closed under complement. Since the two track
technique is not applicable to pushdown cellular automata (we cannot simulate
two stacks by just one, otherwise the context-free languages would be closed
under e.g. intersection) it seems to be even hard to prove closure or non-closure
under boolean operations.

It is also known that .%.;(OCA) is closed under reversal [4], which is a long
standing open problem for .%,;(CA).

In order to proof that .%.;(OPDCA) is not closed under reversal we consider
the stack depth of single cells.

Definition 5.1 Let M be an OPDCA. The stack depth at time ¢ for all cells i
is defined according to sd(i,t) = |ma(ci(2))].
The time steps at which cell i has stack depth u are sd=!(i,u) = {t | sd(i,t) =

We are interested in the behavior of a single pushdown cell fetching a con-
stant input. In what follows we assume OPDCAs are stack normalized.
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Lemma 5.1 Let ¢ be a single pushdown cell fetching an infinite constant input.
If the stack depth of i is unbounded then Yu € IN : |sd~!(i,u)| < oo holds.

Proof. Contrary to the assertion suppose there is a stack depth « which occurs
infinitely often for cell 7. Say, at time steps ty, < ty, < -+ <ty, <ty <
At the latest at time t,, with u, = |I'|*-|S| there is a t € {tu,,...,tu, ,} for
which ¢;(i) = c¢,, (i) holds. Therefore, the behavior of cell i would become
cyclically and, hence, the stack depth would be bounded by max{sd(:,t) | ¢t <
ty, } which leads to a contradiction. O

Now we know that for such a cell ¢ a stack depth w occurs lastly at a time
max(sd =1 (i, u)).

Lemma 5.2 Let max(sd~!(i,u)) < t < max(sd~!(i,u + 1)), then sd(i,t) <
u+|S| - |T| holds.

Proof. Contrary to the assertion assume there is a t for which sd(i,t) >
u+|T'| -S| holds. Then for all v’ with v < v’ < u+|S|- || there is a maximal
t' <t for which |ma(cy(i))| = v’ A |ma(cp11(i))| > u'. At constant input there
are |S| - |['| different arguments to the local transformation and therefore, there
are at least two of the time steps t' for which these arguments are equal. Since
the t' were chosen maximal with respect to the stack depth, the behavior of the
cell will become cyclically and the stack depth u + 1 will not occur any more.
This is a contradiction to the assertion ¢ < max(sd *(i,u + 1)). O

From the lemmas above we derive max(sd '(i,u + 1)) — max(sd 1(i,u)) <
|S|-|T|ISIT]. Therefore, the stack depth would cyclically grow because there are
only |S|-|T'| different constellations in which a stack depth u can occur the last
time. That is starting at stack depth w the cell run through cycles in which the
stack depth grow after the stack depth u + |S| - |I'| has occured the last time.

Altogether we state that a single cell fetching a constant input will be cyc-
lically at time step |S| - |T| - |S| - [T|IS"T] at the latest. Especially, the cycle
length depends on S and I" only.

Theorem 5.1 Let f: IN — IN be a mapping for which

n(n+1)? 0
im —— =0,

holds, then I = {b"a/(™) | n € N} ¢ %.,(OPDCA).
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Figure 7: Configurations to the proof of theorem 5.1.

Proof. Contrary to the assertion assume there is an OPDCA M accepting L
in real-time. An initial configuration and a configuration at time ¢t =m + 1 <
n+ f(n) are depicted in figure 7. The dark bordered areas contain the relevant
information. The right f(n)—(m+1) a-cells have to behave as shown above for
cells with a constant input. Therefore, assuming a sufficiently long input the
automata in that area will become cyclically at latest at time step z(|S|,|T|),
where z is a constant depending on |S| and |T'|. One can imagine the n+1 cells
in the middle altogether form a super-cell which moves one cell to the right at
each time step. The state set of the super-cell contains at most |S|"t! - ||’
states. Since on its way to the right the super-cell meets only cells which behave
cyclically it will be cyclically at latest after 2'(n, [S|,|T|) = 2(|S|,|T|) - |S|**! -
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2
|F|n2 time steps, too. From the assertion lim,_, % =0 and
z- S |]_“|n2 < z -max{|S], |F|}n2+n+1 — - max{|S], \F|}(”+1)2_”
< 2 max{| S, [*D” < (2 max{|], [0J}) 0+

it follows

VIS,IT| € N: 3neN: Vie N: f(n+1i) > (z-max{|S],|T|})"+titD)’,
Especially, f(n + i) > 2'(n + ,|S|,|T'|). We conclude that for such inputs
b"a/(") € L the inputs p"al(Ma? (mISLT) would be accepted, too, from which
a contradiction follows. O

Now we are prepared to prove the following.

Theorem 5.2 .%,;(OPDCA) is not closed under reversal.

Proof. Due to lemma 3.4 L = {a22nbn | n € N} € %.(OPDCA). Lf =
{b"a?” | n € IN} ¢ %,(OPDCA) can be seen as follows: n("+1)* = 2(n+1)*log; n

. n+1 2-lo n .
and lim,_ oo 2(2% = 0. From theorem 5.1 follows the assertion. O

Corollary 5.1 Neither {azzn b" | n € IN} nor its reversal {b”a22n | n € IN} are
real-time OCA languages.

Now some closure properties concerning homomorphisms are shown.

Theorem 5.3 .Z,;,(OPDCA) is not closed under e-free homomorphism.

Proof. Due to lemma 3.2 L = {(ab)"" | n € IN} belongs to .Z,,(OPDCA). We
define an e-free homomorphism h as h(e) := ¢, h(a) := h(b) := a. Under h the

homomorphic image of L is {a2 | n € IN} which is not regular and therefore
not a member of %;(OPDCA). O

Corollary 5.2 £,,(OPDCA) is not closed under arbitrary homomorphism and
substitution.

Theorem 5.4 Z,,(OPDCA) is not closed under inverse homomorphism.

Proof. Define h(c) := ¢ and h(a) := ab. Due to lemma 3.2 L = {(ab)"’ | n €
IN} € %,,(OPDCA). But {a" | n € IN} the image under homomorphism h of
which is L is not a real-time OPDCA language. O
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If the accepting node may take notice of the time step when the acceptance
should take place, the corresponding language family is closed under comple-
ment.

Theorem 5.5 Let ¥ € IN,k > 1, be a constant and ¢(n) := k - n; then
Zyn)(OPDCA), Z(,,)(PDCA) and Z(,,)(IPDA) are closed under complement.

Proof. A corresponding PDCA or OPDCA acceptor sends at initial time a
signal from the left border to the accepting node the speed of which is % At
its arrival the automaton accepts if the acceptor for the language rejects and
vice versa.

An TA acceptor at first has to store its input additionally to its basic com-
putation in n consecutive cells. Subsequently it can send a signal from the
origin to the cell containing the nth input symbol. This altogether takes 2n
time steps. From now on the array behaves as described for CAs except that
the speed of the signal is k_iz For the special cases k£ = 1,2 we can provide
special mechanisms the details of which are omitted. O

If we consider a pushdown cellular automata language and a language not
concerned with a pushdown memory acceptor the two track technique can be
used to show some closures. For example .Z,,(OPDCA) is closed under intersec-
tion, union and set difference with real-time OCA languages. The same holds
for .Z,+(IPDA) and real-time TA languages and .Z,;(PDCA) and real-time CA
languages. Furthermore it holds for the linear-time language families, too. In
case of £ (PDCA) and .%;(IPDA) we can generalize the results.

Theorem 5.6 £;(PDCA) and .%;(IPDA) are closed under intersection, union
and set difference, respectively.

Proof. Closure under union: The usual technique of simulating the two
computations in parallel and combining both results with logical or cannot be
applied. But in linear-time it is possible to compose both computations in
a sequential manner [1]. After finishing the simulation of the first acceptor
the result is stored in a special register. Subsequently the second acceptor is
simulated.

Closure under intersection: Because L; N Ly = L; U Ly and the closure under
complement and union the assertion follows.

Closure under set difference: Because Ly \ L1 = Ly N L and the closure under
complement and intersection the assertion follows. O
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Smith [21] has shown that .Z};(CA) is closed under reversal.

Theorem 5.7 4;(PDCA) and .£;(IPDA) are closed under reversal.

Proof. A corresponding acceptor at first reverses its input resp. reads its
input into n consecutive cells and simulates the acceptor for the mirror image
subsequently. O

The next result excludes the simultaneous closure under two operations.

Theorem 5.8 .4;(OPDCA) and .%,+(PDCA) are not simultaneous closed un-
der homomorphism and intersection.

Proof. The Dyck languages are real-time OCA languages [7] and therefore
real-time OPDCA and real-time PDCA languages. Chomsky [5] has shown that
every context-free language is the homomorphic image of the intersection of a
regular language and a Dyck language.

Contrary to the assertion we assume .Z,(OPDCA) and .%;(PDCA) are
closed under intersection and homomorphism. Since they contain the regular
as well as the Dyck languages they contain the context-free languages.

Ginsburg, Greibach and Harrison [10] have shown that every recursively enu-
merable language is the homomorphic image of the intersection of two context-
free languages. Due to our assumption all recursively enumerable languages
have to be contained in .%,.;(OPDCA) and .£};(PDCA) from which a contradic-
tion follows. O

Theorem 5.9 Z;(PDCA) is not closed under homomorphism.
Proof. Since %;(PDCA) contains the regular and Dyck languages and is

closed under intersection it would contain all recursively enumerable languages
if it would be closed under homomorphism. O

Corollary 5.3 £ (PDCA) is not closed under substitution.
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