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Abstract: Mercury (Hg) is a toxic metal that accumulates in organisms and biomagnifies along food webs; hence,
long‐lived predators such as seabirds are at risk as a result of high Hg bioaccumulation. Seabirds have been widely used to
monitor the contamination of marine ecosystems. In the present study, we investigated Hg concentrations in blood, muscle,
and feathers of 7 procellariform seabirds breeding on the Chatham Islands, New Zealand. Using bulk and compound‐specific
stable isotope ratios of carbon and nitrogen as a proxy of trophic position and distribution, we also tested whether Hg
contamination is related to the species‐specific feeding ecology. Mercury exposure varied widely within the seabird com-
munity. The highest contaminated species, the Magenta petrel, had approximately 29 times more Hg in its blood than the
broad‐billed prion, and approximately 35 times more Hg in its feathers than the grey‐backed storm petrel. Variations of Hg
concentrations in blood and feathers were significantly and positively linked to feeding habitats and trophic position,
highlighting the occurrence of efficient Hg biomagnification processes along the food web. Species and feeding habitats
were the 2 main drivers of Hg exposure within the seabird community. The Pterodroma species had high blood and feather
Hg concentrations, which can be caused by their specific physiology and/or because of their foraging behavior during the
interbreeding period (i.e., from the Tasman Sea to the Humboldt Current system). These 2 threatened species are at risk of
suffering detrimental effects from Hg contamination and further studies are required to investigate potential negative
impacts, especially on their reproduction capability. Environ Toxicol Chem 2021;40:454–472. © 2020 The Authors. Envi-
ronmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Mercury (Hg) is a toxic and pervasive metal that occurs

naturally in the environment; it is emitted from topsoil, vol-
canoes, and other geothermal sources (Pirrone et al. 2010).

However, anthropogenic activities have substantially modified
the cycling of this trace element on a global scale, mainly
through the combustion of fossil fuels, industrial and
agricultural pollution, waste incineration, and gold mining
(Eagles‐Smith et al. 2018). In combination, these human‐
induced perturbations are currently responsible for two‐thirds
of the global Hg emissions (Pacyna et al. 2006). Mercury
is non‐essential and can lead—even at low doses—to
broad deleterious effects in biota by altering the functioning
of the nervous, reproductive, and immune systems (Wolfe
et al. 1998; Tan et al. 2009). The elemental form of this metal
(Hg0) is highly volatile and has a long atmospheric residence
time of approximately 1 yr (Saiz‐Lopez et al. 2018). Con-
sequently, it is transported by atmospheric winds over long
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distances across the globe, and high concentrations of Hg can
also be found in remote environments (Fitzgerald et al. 1998).

In marine ecosystems, which are known to be major re-
positories of environmental contaminants, anthropogenic
emissions have tripled the Hg concentrations in surface waters
compared with those before the Anthropocene (Lamborg
et al. 2014). The key source of Hg in the ocean is the atmos-
pheric deposition of its inorganic form (HgII; Fitzgerald
et al. 2007). In the water column, biotic and abiotic reactions
contribute to HgII turning into other chemical forms of Hg.
For instance, reactions with microorganisms can lead to the
methylation of Hg (Hsu‐Kim et al. 2013; Villar et al. 2020) to form
methylmercury (MeHg), one of the most toxic species of Hg
because of its high bioavailability and affinity for proteins
(Rabenstein 1978a, 1978b). In this organic form, Hg accumulates
in organisms over time and biomagnifies along food webs;
thus, predators exhibit higher concentrations than their prey
(Dietz et al. 2000).

Because seabirds are long‐lived mesopredators or top
predators, they accumulate high levels of Hg; hence, they have
been widely used as sentinels for monitoring contamination in
marine food webs (e.g., Gilbertson et al. 1987; Burger 1993;
Monteiro and Furness 1995; Blévin et al. 2013; Carravieri
et al. 2016). Mercury contamination in seabirds occurs mainly
via food intake (Atwell et al. 1998; Burger and Gochfeld 2004),
and because Hg is not homogeneously distributed in marine
ecosystems (Monteiro et al. 1996; Choy et al. 2009; Blum
et al. 2013), trophic ecology has been proven to be the main
driver of intra‐ and inter‐species variations of Hg concentrations
(Bearhop et al. 2000a; Anderson et al. 2009; Carravieri
et al. 2014a). For example, Hg bioaccumulation is enhanced in
the mesopelagic zone as a result of high levels in prey (Monteiro
et al. 1996; Chouvelon et al. 2012) and water chemistry
controlling Hg speciation and uptake at the base of the food
webs (Lavoie et al. 2013; Renedo et al. 2020). Furthermore,
despite the poleward increase of Hg concentrations in surface
waters (Cossa et al. 2011), previous studies in the Southern
Ocean have reported higher Hg levels in seabirds foraging in
subtropical waters than in seabirds foraging in sub‐Antarctic and
Antarctic waters (e.g., Carravieri et al. 2014b, 2017, 2020a;
Cherel et al. 2018). This unexpected pattern has been attributed
to the higher complexity, and thus Hg biomagnification, of food
webs at lower latitudes (Carravieri et al. 2017).

When seabirds forage on contaminated prey, Hg is ab-
sorbed through the digestive tract and transported via the
bloodstream to internal tissues where it is stored, mainly into
the liver, kidneys and muscles (Walker et al. 2012). Stored
MeHg can be remobilized into the circulatory system at a later
time and excreted into the growing feathers during the moult
(Furness et al. 1986; Renedo et al. 2021). Feathers are inert and
preserve their chemical signature when completely grown
(Inger and Bearhop 2008). The principal route of Hg excretion
in most seabird species is thought to be through the feathers
(Monteiro and Furness 1995), reflecting long‐term Hg exposure
(Braune and Gaskin 1987; Albert et al. 2019). Recent inves-
tigation, however, documented a significant influence of recent
food intake on feather Hg concentrations in some seabird

groups (e.g., albatrosses; Cherel et al. 2018). In contrast, Hg
concentrations in blood provide information about short‐term
Hg exposure (some weeks–a few months; Monteiro and
Furness 2001). Nearly all Hg in blood, feathers, and muscle of
seabirds is present in the form of MeHg (Thompson et al. 1990;
Bond and Diamond 2009; Renedo et al. 2017); accordingly,
total Hg concentration is often used as a proxy for this highly
bioavailable chemical form, and will hereafter be referred as Hg
concentration.

Among seabirds, Procellariiformes display a wide range
of trophic positions—from zooplankton‐eaters to apex
predators—and feed in different habitats over a large latitudinal
gradient (Croxall and Prince 1980; Anderson et al. 2009).
Procellariiformes are therefore ideal models for the assessment
of Hg biomagnification in marine food webs. Earlier studies
have reported very large Hg contamination levels within this
order that were explained by diet and feeding habitat (Becker
et al. 2002; Bocher et al. 2003; Anderson et al. 2009; Carravieri
et al. 2014a, 2014b; Cherel et al. 2018). A recent investigation
found elevated Hg concentrations in the feathers of grey‐faced
petrel (Pterodroma gouldi) breeding in northern New Zealand
(Lyver et al. 2017), similar to the levels detected in albatrosses,
which are known to have the highest Hg levels recorded for any
bird group (Cherel et al. 2018). Nevertheless, little data about
Hg concentrations in seabird tissues are available in the liter-
ature for this region (Lock et al. 1992; Stewart et al. 1999; Lyver
et al. 2017).

The aim of the present study was to document Hg con-
centrations in blood, muscle, and feathers of adult seabirds
belonging to 7 procellariform species breeding sympatrically in
the Chatham Islands, New Zealand. We examined the influence
of feeding ecology on Hg exposure using bulk stable isotope
ratios of carbon (δ13C) as a proxy of the feeding habitat, and
bulk stable isotope ratios of nitrogen (δ15N) and compound‐
specific isotopic analyses of amino acids (CSIA‐AA) as proxies
of the trophic position. Seabird δ13C signatures indicate their
latitudinal feeding grounds and depict neritic versus oceanic
foragers (Cherel and Hobson 2007; Jaeger et al. 2010),
whereas δ15N values increase with trophic position (DeNiro and
Epstein 1981; McClelland and Montoya 2002; Cherel
et al. 2010). In addition, we tested the influence of Hg con-
centrations on stress levels via the determination of white
blood cell profiles on blood smears. Acute or chronic stress can
influence white blood cell profiles of individuals, notably the
number of leucocytes or the heterophil:lymphocyte ratios that
reflect immune status in birds (Vleck et al. 2000). Individuals
experiencing stress exhibit higher heterophil:lymphocyte
ratios (Gross and Siegel 1983). The determination of hetero-
phil:lymphocyte ratios is broadly used to study immune status
in birds; however, this method has not been tested yet to
evaluate a potential Hg‐induced immuno‐modulation.

Considering that the species investigated present distinct
foraging strategies, we made the following 4 predictions.
1) Because Hg biomagnifies along food webs, seabird Hg
concentrations should be positively correlated to their trophic
positions. 2) Given that Hg is not homogeneously distributed in
the ocean, seabirds feeding on mesopelagic prey should be
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more contaminated than seabirds feeding on epipelagic prey,
and species foraging at lower latitudes are expected to be
exposed to higher Hg levels. 3) Pterodroma petrels are oceanic
and rely extensively on mesopelagic fish and cephalopods that
are enriched in MeHg (Monteiro et al. 1996; Bustamante
et al. 2006). Pterodroma petrels from other regions of the world
were found to have high Hg levels (Carravieri et al. 2014a).
Accordingly, we predicted that the Pterodroma petrels in the
present study have the highest Hg concentrations among
the Chatham Islands seabird community. 4) Finally, high
blood Hg concentrations should be associated with an
increased stress level; therefore, we expected a species‐
specific positive correlation between Hg concentrations and
heterophil:lymphocyte ratios and/or number of leucocytes.

MATERIALS AND METHODS
Study area, species, and sample collection

All fieldwork was carried out in 2015 at 2 different sites in the
Chatham Islands, New Zealand: the Tuku (southern part) of the
main Chatham Island (Rekohu/Wharekauri 44°04′S, 176°36′W),
and on South East Island (Hokorereoro/Rangatira 44°20′S,
176°10′W). We collected samples of the Magenta petrel
(Pterodroma magentae), a New Zealand endemic species also
known as the Chatham Island Taiko, in the Tuku from the end of
September to mid‐October. The Magenta petrel is one of the
world's rarest seabirds with an estimated population size of
150 to 200 birds, including only 80 to 100 mature individuals
(Taylor et al. 2012). On South East Island, we sampled 6 breeding
seabird species from November to December: broad‐billed prion
(Pachyptila vittata), Chatham petrel (Pterodroma axillaris),
common diving petrel (Pelecanoides urinatrix), grey‐backed
storm petrel (Garrodia nereis), sooty shearwater (Ardenna
grisea) and white‐faced storm petrel (Pelagodroma marina).
These species feed on a broad diversity of prey types and use
contrasting feeding habitats (Table 1).

Adult birds were generally captured by hand in the colony
when arriving from foraging after nightfall, except for Magenta
petrels that were captured during daylight hours within their
artificial breeding burrows. All birds were released at the
location of capture immediately after sampling. Blood and
feather samples were collected for 7 to 11 individuals per spe-
cies. Body feathers were plucked and conserved in sealed plastic
bags until analysis. Measurements were performed on body
feathers that are commonly considered as the best feather type
to collect because they are more representative of the entire
plumage than other feather types and more homogeneous
(Furness et al. 1986). Body feathers were sampled on the flank
for broad‐billed prion, Magenta petrel, and white‐faced storm
petrel, and under the tail for Chatham petrel, common diving
petrel, grey‐backed storm petrel, and sooty shearwater. Blood
samples were collected from the brachial vein with a capillary
after puncture with a needle. Whole blood was centrifuged and
red blood cells—in which Hg preferentially partitions (Tavares
et al. 2013)—were used to perform the analyses. Whole blood
and blood cells display very similar isotopic signatures (Cherel
et al. 2005). In addition, broad‐billed prion and white‐faced
storm petrel muscle was sampled from individuals found dead,
trapped in the vegetation. Blood and muscle samples were
stored at –20 °C before the analyses. Mercury and bulk stable
isotope analyses were performed on the same samples.
Compound‐specific isotopic analyses of amino acids require a
substantial sample mass (~4mg); therefore, whenever possible,
analyses were performed on the same samples as the Hg and
bulk stable isotope analyses; if those samples were not sub-
stantial enough, samples from other individuals were analyzed.

Preparation of the samples
One body feather per individual was analyzed for Magenta

petrels. For the other species, between 2 and 4 feathers were

TABLE 1: Foraging habitats and main prey types consumed by the Chatham Islands seabird species included in the present study

Species Abbreviation
Foraging habitat

(horizontal)
Foraging

habitat (vertical) Main prey types References

Broad‐billed prion
(Pachyptila vittata)

BBP Neritic, oceanic Epipelagic Crustaceans Imber (1981), Richdale (1944),
Klages and Cooper (1992),
Grecian et al. (2016)

Chatham petrel
(Pterodroma axillaris)

CHPE Oceanic Epipelagic Cephalopods, fishes Heather and Robertson (2005),
BirdLife International (2018a)

Common diving petrel
(Pelecanoides urinatrix)

CODP Neritic Epipelagic Crustaceans Payne and Prince (1979), Ridoux
(1994), Reid et al. (1997),
Bocher et al. (2000a, 2001),
Schumann et al. (2008)

Grey‐backed storm petrel
(Garrodia nereis)

GBSP Neritic Epipelagic Crustaceans Imber (1981), Ridoux (1994)

Magenta petrel
(Pterodroma magentae)

MAPE Oceanic Epipelagic and
mesopelagic

Cephalopods, fishes Heather and Robertson (2005),
BirdLife International (2018b),
Taylor (unpublished data)

Sooty shearwater
(Ardenna grisea)

SOSH Oceanic, neritic Epipelagic Crustaceans, cephalopods,
fishes

Cruz et al. (2001), Kitson
et al. (2000)

White‐faced storm petrel
(Pelagodroma marina)

WFSP Oceanic, neritic Epipelagic Fishes, crustaceans Imber (1981), Spear and
Ainley (2007)
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pooled per individual. Pooling feathers limits potential differ-
ences in trace element concentrations among feathers of the
same individual. To remove surface contaminants, feathers
of each individual were separately cleaned in a chlor-
oform:methanol solution (2:1, v/v; after cutting off the calamus
and afterfeather), placed in an ultrasonic bath for 3min, and
rinsed in 2 successive baths of methanol. Feathers were then
oven‐dried for 48 h at 45 °C and cut into tiny fragments with
stainless steel scissors to obtain a homogenous powder. Blood
cells and muscle samples were freeze‐dried and ground into a
fine powder with a spatula and stainless steel scissors. Prepa-
ration of the samples as well as Hg and bulk stable isotope
analyses were performed at the University of La Rochelle in
France, whereas CSIA‐AA were conducted at the University of
California Davis Stable Isotope Facility, Davis, CA, USA.

Bulk stable isotope analyses
Lipids are impoverished in 13C compared with other tissue

components (DeNiro and Epstein 1977). To allow comparison
of δ13C values among species and individuals without detri-
mental impact of potential variable lipid contents, fat extraction
was conducted on muscle samples using cyclohexane as de-
scribed in Chouvelon et al. (2011). Similar to feathers, blood
has consistently low ratios of mass percentages in C and N
(C:N< 4.0; Post et al. 2007) because of low lipid content.
Thus, these tissues do not require lipid extraction (Bearhop
et al. 2000b).

To perform stable isotope analyses, 0.2 to 0.4mg of
subsample were weighed in tin cups. Carbon and nitrogen
ratios were determined with a continuous‐flow mass spec-
trometer (Thermo Scientific Delta V Advantage) coupled with
an elemental analyzer (Thermo Scientific Flash EA 1112).
Measurements of internal laboratory standards were con-
ducted using acetanilide and peptone and indicated an ex-
perimental precision of±0.15‰ for both elements. Results are
expressed in parts per thousand (‰) in the usual δ notation,
relative to Vienna Pee Dee Belemnite for δ13C and atmospheric
N2 for δ15N, according to Equation 1.

( )δ δ = − ×
R

R
C or N 1 1013 15 sample

standard

3 (1)

where R is 13C/12C or 15N/14N, respectively.

CSIA‐AA
Compound‐specific isotopic analyses of amino acids

methods are based on the absence of change in δ15N values of
some amino acids between a prey and its consumer (source
amino acids; e.g., phenylalanine), whereas other amino acids
display consistently large increases (trophic amino acids; e.g.,
glutamic acid). When compared with bulk isotopic analysis, the
2 main interests of the approaches are: 1) the quantification of
both baseline and trophic δ15N values on the same consumer
tissue sample, and 2) the relative estimation of trophic position

of consumers by subtracting baseline to trophic δ15N values.
Despite the great advantages of this technique, few studies
have yet used it to study the influence of foraging ecology on
Hg concentrations in seabirds (Elliott and Elliott 2016; Gagné
et al. 2019; Carravieri et al. 2020b).

Linear models derived from CSIA‐AA were used to de-
termine more precise trophic positions than bulk δ15N values
can provide. These linear models also cope better with
15N baseline variations among ecosystems (McClelland and
Montoya 2002).

Compound‐specific isotopic analyses of amino acids were
carried out according to Walsh et al. (2014) and Yarnes and
Herszage (2017) using a Thermo GC‐C‐IRMS system composed
of a Trace Ultra GC gas chromatograph (Thermo Electron) cou-
pled with a Delta V Plus isotope ratio mass spectrometer through
GC IsoLink interface (Thermo Electron). Compound identification
support was provided by a Varian CP3800 gas chromatograph
coupled with a Saturn 2200 ion trap MS/MS (Varian). Proteins
were hydrolyzed in a subsample of approximately 4mg with
6M HCl during 70min at 150 °C, under N2 headspace, which
enabled their chromatographic separation in a DB‐23 (Agilent
Technologies) column (30m, 0.25‐mm outer diameter [OD],
0.25‐mm film; constant flow 1.6mL/min). The derivatives were
methoxycarbonyl amino acid methyl esters. Each compound was
then combusted at 1000 °C with Ni/NiO/CuO catalyst and in-
troduced into the isotope ratio mass spectrometer. Laboratory
standard measurements, previously calibrated against National
Institute of Standards and Technology Standard Reference
Materials, indicated standard deviations of <0.3‰ for δ13C
and δ15N values. Laboratory reference materials and expected
values were bovine liver (δ13C= –21.7‰; δ15N= 7.7‰),
USGS‐41 glutamic acid (δ13C= 37.6‰; δ15N= 47.6‰), Nylon5
(δ13C= –27.7‰; δ15N= –10.3‰), and glutamic acid (δ13C=
–16.7‰; δ15N= –6.8‰). Specifically, standard deviations in the
analytical run for the reference standards were 0.12 (δ13C)
and 0.08 (δ15N) for bovine liver; 0.24 (δ13C) and 0.09 (δ15N) for
USGS‐41 glutamic acid; 0.15 (δ13C) and 0.13 (δ15N) for Nylon5;
and 0.05 (δ13C) and 0.24 (δ15N) for glutamic acid. Five samples
per tissue were analyzed for each species.

The calculation of the trophic position with CSIA‐AA (TPCSIA)
differed from Quillfeldt et al. (2017) for 3 reasons. 1) In that
paper only feathers were analyzed. 2) The formula used by
Quillfeldt et al. (2017) was derived from a source with a typo-
graphical error (Equation 2 in McMahon et al. 2015) and thus
had to be corrected in the present study. 3) More specific
trophic discrimination factor (TDF) values have become avail-
able. Trophic positions derived from CSIA‐AA are hereafter
referred to as TPCSIA.

Trophic positions derived from CSIA‐AA were calculated
from the nitrogen stable isotope values of glutamic acid
(Glx, i.e. glutamic acid and glutamine) and phenylalanine
(Phe; Chikaraishi et al. 2009), using a multi‐trophic discrim-
ination factor approach, which accounts for the fact that
TDFGlx‐Phe is not constant across all trophic positions (e.g.,
Hoen et al. 2014). We applied a TDFGlx‐Phe for plankton of
6.2‰ (McMahon and McCarthy 2016). In birds, lower TDF
values have recently been found: 3.5‰ for feathers of

Mercury concentrations in Chatham Islands seabirds—Environmental Toxicology and Chemistry, 2021;40:454–472 457

wileyonlinelibrary.com/ETC © 2020 The Authors



Gentoo penguins (McMahon et al. 2015), and 4.1‰ for
muscle of American kestrels (Hebert et al. 2016). To analyze
seabird feathers and muscle, it would therefore seem
appropriate to use a multi‐TDFGlx‐Phe (Hoen et al. 2014;
Equations 2 and 3), where 6.2‰ is the overall mean TDF
across a wide range of taxa, diet types, and modes of
nitrogen excretion (McMahon and McCarthy 2016), 3.5 or
4.1 ‰ is the TDF for seabird feathers or bird muscle,
respectively, and 3.4‰ is the difference in δ15N values
between glutamic acid and phenylalanine in primary
producers (plankton).

[ ] = + − − −
TP feathers 2

Glx Phe 3.5‰ 3.4‰
6.2‰

CSIA (2)

[ ] = + − − −
TP muscle 2

Glx Phe 4.1‰ 3.4‰
6.2‰

CSIA (3)

For red blood cells, we applied a TDF of 4‰ (Equation 4).

[ ] = + − − −
TP blood 2

Glx Phe 4‰ 3.4‰
6.2‰

CSIA (4)

This value was derived from a comparison of the TPCSIA values
of feathers and red blood cells grown at the same time in
thin‐billed prion chicks for different TDF values (Quillfeldt and
Masello 2020), given that both tissues should reflect the same
trophic position of the birds, and a similar time frame of
2 to 4 wk (Quillfeldt et al. 2008). Undertail covert feathers are
50 to 60mm in length and take approximately the same time to
grow (Quillfeldt and Masello 2020).

Calculation of trophic positions from linear
regression models

The marine baseline δ15N ratio can be influenced by factors
such as latitude and primary productivity, and change over time
(Post 2002; McMahon et al. 2013). However, ecotoxicological
studies frequently use δ15N values to compare populations
foraging across large geographic scales without considering
disparities in baseline values between food webs (Brasso and
Polito 2013). In the Southern Hemisphere, a latitudinal enrich-
ment in δ15N baseline values occurs from the Antarctic to the
subtropical waters, potentially resulting in a bias when using
raw δ15N values to compare the diet of species foraging in
different habitats (Jaeger et al. 2010).

A substantial spread was observed in looking at the rela-
tionship between 2 indicators of the trophic position in blood,
muscle, and feather samples (bulk δ15N and TPCSIA); this was
potentially caused by the fact that the seabird species inves-
tigated feed across large geographic scales. In the present
study, to address this bias we proposed to calculate the trophic
positions of the birds by applying linear regression models to
study the relationship between TPCSIA and bulk stable isotope
values (δ13C and δ15N). Trophic positions calculated with linear
models are hereafter referred to as TPLM. Raw δ15N values and
TPLM will be compared in their ability to explain variations of Hg
concentrations in seabirds.

Linear regression models were used to study the
relationship between TPCSIA and bulk stable isotope values
(δ13C and δ15N). Models were applied separately for
blood and muscle samples, both reflecting short‐term food
intake and having similar TDF (Hebert et al. 2016; Quillfeldt
and Masello 2020) and for feather samples, providing in-
formation about the trophic ecology at the time of the moult.
Equations 5 and 6 were derived from these linear models.

δ[ ] = − − ×

+ × δ

TP blood, muscle 0.4298 0.1441 C

0.1189 N

LM
13

15 (5)

[ ] = − × δ + × δTP feathers 1.2990 0.0962 C 0.0671 NLM
13 15

(6)

These equations were then used to calculate trophic positions
for all samples, using bulk stable isotope values. Detailed in-
formation regarding the calculation of trophic positions from
linear regression models can be found in Supplemental Data.

Mercury analyses
Mercury concentrations were determined on aliquots with

an Advanced Mercury Analyzer spectrophotometer, Altec AMA‐
254 (aliquots of blood ~2mgdry wt; feathers ~1mgdry wt;
and muscle ~5mg dry wt) as described in Bustamante et al.
(2006). Measurements were repeated 2 to 3 times for each
sample, until the relative standard deviation was <10%.
For each set of samples, accuracy and reproducibility of the
results were tested by preparing analytical blanks and per-
forming replicate measurements of certified reference mate-
rials (TORT‐2: lobster hepatopancreas, certified concentration
0.27± 0.06 μg g–1 dry wt; DOLT‐5: dogfish liver, certified con-
centration 0.44± 0.18 μg g–1 dry wt; National Research Council
of Canada). Measured Hg concentrations for the certified
reference materials were 0.26± 0.02 μg g–1 dry weight (n= 18)
and 0.38± 0.01 μg g–1 dry weight (n= 7) for TORT‐2 and
DOLT‐5, respectively, corresponding to a recovery rate of
96± 7% for TORT‐2 and 100± 2% for DOLT‐5. The limit of
detection was 0.005 μg g–1 dry weight. Mercury concentrations
were expressed in μg g–1 dry weight.

Determination of blood cell profiles
Blood smears were fixed in methanol (100%) for 30 s, air‐

dried, stained in a diluted Giemsa solution (ratio of 1:5), rinsed
with desalted water, and finally air‐dried. The stained blood
smears were examined under an optical microscope (Zeiss
Axiolab) at a magnification of ×1000 with oil immersion. Het-
erophils and lymphocytes were counted according to the cri-
teria of Hawkey et al. (1989) until the cumulative total was at
least 100 leucocytes. In addition, the number of leucocytes per
10 000 erythrocytes was calculated by counting the number of
all erythrocytes every 10th microscopic visual field, and multi-
plying the mean number of erythrocytes per field by the
number of microscopic visual fields that were scanned until
100 leucocytes had been reached for each sample—a method
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having a high repeatability according to Lobato et al. (2005). All
cell counts were done by a single observer.

Statistical analyses
Statistical analyses were performed using R Ver 3.6.1 (R

Development Core Team 2019). Normal distribution of the
data and homogeneity of variances were checked using
Shapiro–Wilk and Fisher (muscle values) or Bartlett tests (blood
and feather values), respectively. Blood and feather Hg
concentrations were transformed with log10(Hgblood) and
log10(Hgfeathers+ 1), respectively, to reduce skewness and het-
erogeneity before carrying out statistical analyses. According
to the results, parametric or nonparametric tests were
performed.

Species differences in Hg, δ13C, δ15N, and TPLM were tested
using t tests or Mann–Whitney (muscle values), or analysis of
variance (ANOVA) or Kruskal–Wallis tests (blood and feather
values). Then, post hoc tests were conducted with Tukey mul-
tiple comparisons tests or pairwise comparisons using Dunn's
test for multiple comparisons of independent samples
(correcting p values with the Bonferroni method). Different
tissue types assimilate isotopes in a different way (i.e., isotopic
routing; Martinez del Rio et al. 2009) hence comparisons were
carried out on the same tissue type.

Univariate analyses using Pearson correlation rank tests were
conducted to study the relationships between Hg concen-
trations and continuous explanatory variables (δ13C, δ15N, or
TPLM) and between feeding habitat (δ13C) and diet (δ15N),
separately for each tissue type. The correlation between δ13C
and TPLM was not investigated because the latter value was
calculated using linear regression models including δ13C
values; therefore, these 2 parameters were not independent.
The relationship between blood Hg concentrations and heter-
ophil:lymphocyte ratios and between Hg concentrations and
the number of leucocytes per 10 000 erythrocytes was also
tested with Pearson correlations, separately for each species
because the values were species‐specific.

Multifactorial analyses were carried out to test the influence
of species, foraging habitat (δ13C), and diet (δ15N and TPLM) on
Hg concentrations using generalized linear models. Models
were applied separately to blood, feather, and muscle data.
Generalized linear models with a normal distribution and an
identity‐link function were parameterized as follows: Hg con-
centrations as the response variable; species as a factor; and
δ13C, δ15N, and TPLM as continuous covariates. Biologically
relevant models were constructed incorporating the different
variables and their interactions. Significantly correlated con-
tinuous variables (δ13C and δ15N) were not included in the same
models. Also, δ13C and TPLM were not included in the same
models because they were not independent—as was the case
for δ15N and TPLM. Akaike information criterion adjusted for
small sample sizes (AICC) was used to select the most parsi-
monious models (Burnham and Anderson 2002). The model
with the lowest AICC value was considered to be the most
accurate. The models with AICC values differing by less than
2 are fairly similar in their ability to describe the data, and the

model including the least number of parameters was consid-
ered as the most accurate according to the principle of parsi-
mony. Akaike weight was calculated to assess the likelihood of
the models (Johnson and Omland 2004), and model fit was
checked by residual analysis.

Differences were considered significant with p< 0.05.
Values were mean ± standard deviation.

RESULTS
Hg concentrations and inter‐specific
comparisons

Blood and feather Hg concentrations varied widely within the
Chatham Island seabird community (Table 2), with mean
values ranging in blood from 0.40± 0.09 µg g–1 dry weight
in broad‐billed prions to 11.72± 3.58 µg g–1 dry weight in
Magenta petrels, and in feathers from 0.49± 0.23 µg g–1 dry
weight in grey‐backed storm petrels to 34.14± 6.83 µg g–1 dry
weight in Chatham petrels. In blood, the lowest Hg concen-
tration occurred in a broad‐billed prion (0.28 µg g–1 dry wt), and
in feathers in a common diving petrel (0.12 µg g–1 dry wt). The
highest blood and feather Hg concentrations were both re-
corded in Magenta petrels, 16.68 and 43.25 µg g–1 dry weight,
respectively. Muscle Hg concentrations ranged from
0.21 µg g–1 dry weight in a broad‐billed prion to 0.56 µg g–1

dry weight in a white‐faced storm petrel. Mean Hg muscle values
were 0.37± 0.09 µg g–1 dry weight in broad‐billed prions, and
0.44± 0.10 µg g–1 dry weight in white‐faced storm petrels. Inter‐
specific Hg concentration differences were significant both in
blood (ANOVA, F6,58= 160.6, p< 0.001) and in feathers
(ANOVA, F6,60= 241.4, p< 0.001), whereas muscle values
were not found to vary significantly between the 2 species
investigated (t test, t= –1.6, df= 17.9, p= 0.124; Figure 1).

Stable isotopes
Foraging habitats (δ13C) varied significantly among seabird

species (blood, Kruskal–Wallis test, H= 34.2, df= 6, p< 0.001;
feathers, Kruskal–Wallis test, H= 69.2, df= 6, p< 0.001;
muscle, t test, t= –3.1, df= 17, p= 0.006; Table 2; Figure 2).
Trophic positions also showed inter‐specific differences, as
reflected by δ15N values (blood, Kruskal–Wallis test, H= 54.6,
df= 6, p< 0.001; feathers, Kruskal–Wallis test, H= 56.8, df = 6,
p< 0.001; muscle, t test, t= –5.1, df= 16.6, p< 0.001) and
TPLM (blood, Kruskal–Wallis test, H= 58.1, df= 6, p< 0.001;
feathers, Kruskal–Wallis test, H= 43.1, df= 6, p< 0.001;
muscle, Mann–Whitney test, W= 12, p= 0.005; Table 2;
Figure 2).

Relationships between foraging habitat (δ13C) and trophic
position (δ13C or TPLM) show a global trophic resource parti-
tioning among the community—as highlighted by standard
ellipse areas (SEAc) corrected for small sample size (repre-
senting trophic niche width; Figure 3). Blood values indicate
that common diving petrels and the 2 storm petrel species
(grey‐backed and white‐faced storm petrels) share similar iso-
topic niches during the incubation and chick‐rearing periods,
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potentially competing for the same crustacean prey species in
the vicinity of the Chatham Islands. However, common diving
petrels often dive at 10m below the water surface (Bocher
et al. 2000b; Taylor 2008), whereas storm petrels obtain prey at
the sea surface. Broad‐billed prions and sooty shearwaters also
share similar trophic niches during the inter‐breeding season,
as indicated by their feather isotopic signatures. Chatham and
Magenta petrels share similar trophic niches during both
breeding and inter‐breeding seasons.

Measures of uncertainty and central tendency of Bayesian
standard ellipse areas (SEAB) in blood and feathers tend to
indicate that Magenta petrels and sooty shearwaters are gen-
eralist predators during breeding and inter‐breeding periods.
The other species are more specialized predators all year
round, apart from common diving petrels that seem to display
a specialized diet while breeding and a more generalist feeding
behavior during the inter‐breeding season (Figure 4). Moulting
common diving petrels may be less proficient at diving as they

lose wing feathers, and may be more opportunistic and take
prey that is present on the sea surface.

The overall correlation between the foraging habitat (δ13C)
and the diet (δ15N) was significant in all tissue types: blood
(Pearson's correlation, r= 0.46, P< 0.001, n= 69), feathers
(Pearson's correlation, r= 0.73, P< 0.001, n= 69), and
muscle (Pearson's correlation, r= 0.46, P= 0.042, n= 20;
Table 3). At the species level, this correlation was only found in
common diving petrel and sooty shearwater in blood, and in
sooty shearwater and white‐faced storm petrel in feathers.

Influence of feeding ecology on Hg
concentrations

Overall Hg concentrations were significantly and positively
correlated with δ13C values in blood (Pearson's correlation,
r= 0.25, t= 2.0, P= 0.047, n= 65), feathers (Pearson's

TABLE 2: δ13C, δ15N, trophic positions inferred from CSIA‐AA methods,a trophic positions inferred from linear models,b Hg concentrations,
heterophil:lymphocyte ratios, and number of leucocytes per 10 000 erythrocytes of the 7 Procellariiformes species from the Chatham Islands, New
Zealandc

Speciesd Tissue n δ13C (‰) δ15N (‰) TPCSIA TPLM Hg (µg g–1 dry wt) H:L
Leucocytes/10 000

erythrocytes

BBP Blood 9 –19.08± 0.16 8.03± 0.58 NA 3.27± 0.06 0.40± 0.09 (0.28–0.57) 0.89± 0.69 36± 11
Feathers 10 –17.57± 0.32 13.64± 0.82 3.55± 0.10 3.90± 0.06 1.00± 0.39 (0.33–1.53)
Muscle 10 –19.70± 0.53 8.12± 0.88 3.15± 0.17 3.37± 0.15 0.37± 0.09 (0.24–0.53)

CHPE Blood 9 –18.47± 0.23 14.77± 0.98 3.96± 0.07 3.99± 0.11 4.27± 0.93 (2.32–5.22) 0.57± 0.43 48± 17
Feathers 10 –15.74± 0.38 18.07± 1.36 4.18± 0.11 4.03± 0.10 9.56± 2.38 (6.53–13.23)

CODP Blood 10 –19.12± 0.53 9.35± 0.74 3.37± 0.23 3.44± 0.05 0.94± 0.16 (0.78–1.29) 0.93± 0.50 34± 10
Feathers 10 –21.37± 1.77 8.05± 1.19 3.81± 0.24 3.90± 0.15 0.98± 0.55 (0.12–1.71)

GBSP Blood 10 –18.98± 0.14 9.76± 0.45 3.54± 0.12 3.47± 0.06 0.56± 0.16 (0.43–0.84) 1.34± 1.02 29± 12
Feathers 10 –17.74± 0.21 9.53± 0.33 3.82± 0.13 3.65± 0.03 0.49± 0.23 (0.13–0.99)

MAPE Blood 7 –18.54± 0.61 14.57± 1.51 4.06± 0.10 3.97± 0.16 11.72± 3.58 (7.92–16.67) NA NA
Feathers 8 –16.28± 0.79 17.30± 3.40 4.21± 0.10 4.03± 0.19 34.14± 6.83 (27.34–45.69)

SOSH Blood 10 –20.42± 1.27 10.32± 0.86 3.85± 0.13 3.74± 0.14 1.13± 0.39 (0.63–1.91) 1.52± 0.50 61± 15
Feathers 10 –18.56± 1.19 12.87± 2.23 3.87± 0.15 3.95± 0.09 2.74± 0.80 (1.31–4.42)

WFSP Blood 10 –19.14± 0.23 9.82± 0.39 NA 3.50± 0.05 0.93± 0.26 (0.52–1.43) 3.77± 2.03 84± 45
Feathers 10 –16.55± 0.26 12.04± 1.58 3.52± 0.40 3.70± 0.09 1.66± 0.51 (1.05–2.61)
Muscle 10 –19.03± 0.44 9.88± 0.65 NA 3.49± 0.07 0.44± 0.10 (0.21–0.56)

aTPCSIA, n= 5 per tissue for each species.
bTPLM.
cValues are mean± standard deviation, with ranges in parentheses for Hg concentrations.
dSee Table 1 for species abbreviations.
δ13C and δ15N= stable isotope signatures of carbon and nitrogen; CSIA‐AA= compound‐specific isotopic analyses of amino acids; TPCSIA= trophic positions inferred
from CSIA‐AA; TPLM= trophic positions inferred from linear models; H:L ratios= heterophil:lymphocyte ratios; ‰= parts per thousand; NA= not available.

FIGURE 1: Interspecific comparisons of Hg concentrations in blood, feathers, and muscle (see Table 1 for species abbreviations). Quartiles are
represented by the upper and lower hinges; maximum and minimum values are the vertical lines; and the median value is the bold line. Red circles
represent the mean, whereas black open circles are outliers. Horizontal black lines represent statistically homogeneous groups determined by
analysis of variance followed by Tukey honest significant difference test for blood and feathers, and t test for muscle.
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correlation, r= 0.44, t= 4.0, P< 0.001, n= 68), and muscle
(Pearson's correlation, r= 0.45, t= 2.1, P= 0.047, n= 20). Mer-
cury values were also significantly and positively correlated with
δ15N values in blood (Pearson's correlation, r= 0.86, t= 13.8,
P< 0.001, n = 65) and feathers (Pearson correlation, r= 0.71,
t= 8.1, P< 0.001, n= 68) but not in muscle (Pearson's correla-
tion, r= 0.29, t= 1.3, P= 0.215, n= 20). In the same way, Hg
concentrations were positively correlated with TPLM in blood
(Pearson's correlation, r= 0.84, t= 12.1, P< 0.001, n= 65),
feathers (Pearson's correlation, r= 0.55, t= 5.3, P< 0.001, n= 67)
but not in muscle samples (Pearson's correlation, r= 0.01, t= 0.1,
P= 0.953, n= 20). Relationships between Hg concentrations and
feeding habitats (δ13C) or diet (δ15N or TPLM) in blood, feathers,
and muscle are presented in Figures 5 and 6.

In multivariate analyses, the most parsimonious generalized
linear models selected by AICC values showed that the species
and the feeding habitat (δ13C) are the main drivers of Hg con-
centrations, both in blood and feathers (Table 4). In muscle
samples, models including feeding habitat and species were fairly
similar in their ability to describe the data, with ΔAICC values
differing by less than 2 (Table 4) but both had a low likelihood.

Influence of Hg on blood cell profiles
The number of leucocytes per 10 000 erythrocytes and the

heterophil:lymphocyte ratio were determined on blood smears
of all species except the Magenta petrel (Table 2). No sig-
nificant correlation was detected between the number of
leucocytes per 10 000 erythrocytes and blood Hg values
(Pearson's correlations, all P> 0.05). Similarly, no significant
correlation was found between heterophil:lymphocyte ratios
and Hg levels in blood (Pearson's correlations, all P> 0.05)
except in broad‐billed prions (Pearson's correlation, r= –0.76,
t= –3.1, P= 0.018, n= 9).

DISCUSSION
Mercury concentrations varied considerably among Chatham

Islands seabirds, where Hg concentrations in blood were ap-
proximately 29 times higher and Hg levels in feathers were ap-
proximately 35 times higher in Magenta petrels than in the least
contaminated species. We recorded the lowest concentrations
of Hg in blood and feathers in seabirds feeding mainly on

FIGURE 2: Interspecific comparisons of feeding habitats (δ13C) and trophic positions inferred from bulk stable isotopes (δ15N) or derived from
compound‐specific analyses of amino acids via linear regression models (TPLM) in blood, feathers, and muscle samples (see Table 1 for species
abbreviations). Quartiles are represented by upper and lower hinges; vertical lines are maximum and minimum values; and bold line denotes
median value. Red circles represent the mean; black open circles are outliers. Horizontal black lines represent statistically homogeneous groups
determined by Kruskal‐Wallis tests followed by pairwise comparisons using Dunn's test for multiple comparisons of independent samples for blood
and feathers, and t tests or Mann–Whitney tests for muscle.
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FIGURE 3: Relationships between foraging habitat (δ13C) and trophic position (δ15N or TPLM) in blood, feathers, and muscle (see Table 1 for species
abbreviations). Standard ellipse areas corrected for small sample size were estimated using stable isotope Bayesian ellipses in R (Jackson
et al. 2011).

FIGURE 4: Measures of uncertainty and central tendency of Bayesian standard ellipse areas (SEAB) based on: (A) Feeding habitats (δ13C‰) and
trophic positions inferred from bulk stable isotopes (δ15N‰), or (B) Feeding habitats (δ13C) and trophic positions derived from compound‐specific
analyses of amino acids via linear regression models (TPLM) in blood, feathers, and muscle of the 7 seabird species from the Chatham Islands, New
Zealand (see Table 1 for species abbreviations). Black dots represent their mode; shaded boxes display 50, 75, and 95% credible intervals from dark
to light gray, respectively; red dots identify standard ellipse areas corrected for small sample size (SEAc) estimates.
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crustaceans—broad‐billed prions, common diving petrels, grey‐
backed storm petrels, and white‐faced storm petrels. Sooty
shearwaters that feed both in neritic and oceanic waters all year‐
round and on a broader prey spectrum had intermediate Hg
levels. The highest Hg concentrations in blood and feathers
were recorded in the 2 gadfly petrels or Pterodroma species,
namely Magenta and Chatham petrels, which are oceanic for-
agers with a cephalopod‐ and fish‐based diet (Table 1). Variation
displayed in Hg concentrations in blood and feathers among the
Chatham Island seabirds can be explained by the different
feeding habits and locations of the different species. Muscle
samples could be opportunistically obtained in only 2 of the
7 species investigated. Mercury concentrations in muscle were
relatively low and were correlated with feeding habitat but not
with diet. Multivariate analyses failed to explain the variations in
muscle Hg concentrations by differences in feeding ecology or
species' affiliations.

Muscle is considered as a temporary storage tissue for Hg
that is subsequently excreted in the feathers during the moult
(Lewis and Furness 1991). Indeed, the plumage is the main

route for Hg elimination (Monteiro and Furness 1995; Albert
et al. 2019). However, feather Hg represents the exposure
since the previous moult, whereas stable isotope values reflect
the diet at the time of feather synthesis; thus, there is a mis-
match between both parameters (Bond 2010). Apart from the
breeding period, seabirds are no longer restricted to the vi-
cinity of the breeding colony and several species present a very
large foraging range. Hence, it is difficult to properly determine
a specific foraging area for migrating birds and caution is re-
quired when trying to interpret dietary Hg exposure using
stable isotopes as a proxy in adult feathers (Bond 2010;
Carravieri et al. 2013). In contrast, stable isotopes in blood
provide information about the foraging ecology 1 to 2mo
before sampling (Bearhop et al. 2002; Vander Zanden et al.
2015), which is approximately the biological half‐life of Hg in
this tissue type (Monteiro and Furness 2001).

The high Hg concentrations detected in blood and feathers
of Magenta and Chatham petrels potentially put these 2
threatened species at risk of suffering detrimental effects from
Hg exposure (Eisler 1987; Burger and Gochfeld 1997; Evers

TABLE 3: Pearson's correlations between δ13C and δ15N in blood, feathers, and muscle of the 7 seabird species from the Chatham Islandsa,b

Blood Feathers Muscle

Species n r p n r p n r p

BBP 9 0.54 0.135 10 0.14 0.702 10 –0.29 0.424
CHPE 9 0.18 0.640 9 0.20 0.597 NA NA NA
CODP 10 0.85 0.002 10 0.51 0.129 NA NA NA
GBSP 10 –0.40 0.250 10 –0.11 0.768 NA NA NA
MAPE 11 0.42 0.196 10 0.58 0.080 NA NA NA
SOSH 10 0.68 0.030 10 0.82 0.004 NA NA NA
WFSP 10 0.12 0.736 10 0.66 0.039 10 0.49 0.146
Overall 69 0.46 <0.001 69 0.73 <0.001 20 0.46 0.042

aSignificant correlations appear in italics.
bSee Table 1 for species abbreviations.
δ13C and δ15N= stable isotope signatures of carbon and nitrogen; NA= not available.

FIGURE 5: Relationships between Hg concentrations in blood, feathers, and muscle and trophic habitat (δ13C) of seabirds breeding in the Chatham
Islands, New Zealand (see Table 1 for species abbreviations). Standard ellipse areas corrected for small sample size were estimated using stable
isotope Bayesian ellipses in R (Jackson et al. 2011).
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et al. 2008; Tartu et al. 2013; Costantini et al. 2014; Goutte
et al. 2014; Tartu et al. 2015; Ackerman et al. 2016).

Influence of trophic position on Hg
concentrations

Mercury concentrations in blood and feathers were sig-
nificantly and positively correlated with trophic levels, attesting
to the occurrence of efficient Hg biomagnification processes

within the food web. The 2 different methods used in the
present study to infer trophic levels (raw δ15N and TPLM) no-
ticeably led to similar conclusions regarding the diet of the
birds and its influence on Hg concentrations.

Blood and feather stable isotope analyses revealed that
Chatham and Magenta petrels share the same isotopic niche
and therefore potentially the same trophic niche, with Magenta
petrels having a larger isotopic niche than Chatham petrels.
Both species had the highest trophic positions among the
species breeding in the Chatham Islands, which confirms their

FIGURE 6: Relationships between Hg concentrations and trophic positions inferred from bulk stable isotope analyses (δ15N‰) or derived from
compound‐specific analyses of amino acids via linear regression models (TPLM) in blood, feathers, and muscle (see Table 1 for species abbrevia-
tions). Standard ellipse areas corrected for small sample size were estimated using stable isotope Bayesian ellipses in R (Jackson et al. 2011).
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fish‐ and cephalopod‐based diet. Nevertheless, Magenta pet-
rels interestingly had much higher blood and feather Hg con-
centrations than Chatham petrels. Despite their similar trophic
positions, Chatham and Magenta petrels seem to target dis-
tinct prey species. Chatham petrels are likely to forage on ju-
venile squids, nocturnally rising myctophids, and small
zooplankton, mainly at night during the moult and both day
and night during breeding (G. Taylor, unpublished data).
Magenta petrels can cut up larger squids floating dead on the
surface and forage on squid and fish both day and night
throughout the year (G. Taylor, unpublished data). Indeed, the
consumption of some specific prey types (e.g., mesopelagic
fishes and large cephalopods) seems to be a more important
factor in explaining Hg exposure than trophic position
(Thompson et al. 1998; Blévin et al. 2013). In addition,
Chatham petrel has a length of 30 cm and a weight of 200 g
on average, whereas Magenta petrel is slightly bigger, with
a length of 38 cm and a weight of 475 g (Heather and
Robertson 2005). This size difference allows Magenta petrels
to feed on larger prey than Chatham petrels, and can partly
explain the variation in Hg levels recorded between these
2 species because Hg body burdens are highly and positively
correlated to size and age in fishes (Kojadinovic et al. 2006).

Influence of feeding habitats on Hg
concentrations

Blood Hg concentrations and foraging habitats of Chatham
Island seabirds during the breeding season are in good
agreement with our hypothesis that oceanic seabirds feeding
on mesopelagic prey are more Hg‐contaminated than birds
relying on epipelagic prey caught in neritic waters (Monteiro
et al. 1996; Ochoa‐Acuña et al. 2002; Carravieri et al. 2014a).

At‐sea tracking of breeding sooty shearwaters revealed their
ability to alternate short provisioning trips (1–3 d) in the vicinity of
the colony and longer trips (5–15 d) along the Antarctic Polar

Front, which reduces competition close to the breeding grounds
and allows vast colonies to persist (Weimerskirch 1998; Shaffer
et al. 2009). A broad range of δ13C blood values was found for
this species, which can be related to the latitudinal gradient
in δ13C values between subtropical and Antarctic waters
(Cherel and Hobson 2007; Jaeger et al. 2010). Our findings are in
good agreement with the δ13C isoscapes already available in the
literature for the Southern Indian Ocean. Except for sooty
shearwaters, seabird species breeding in the Chatham Islands
had blood δ13C signatures typical of the subtropical zone.

Taking into account the latitudinal δ13C isoscapes available
for marine predators in the Southern Ocean (Cherel and
Hobson 2007; Jaeger et al. 2010), the positive correlation be-
tween Hg concentrations and δ13C values tends to confirm that
species foraging in cold sub‐Antarctic waters were less prone
to contamination than species foraging in warmer subtropical
waters. Despite the poleward increase in surface waters Hg
concentrations (Cossa et al. 2011), previous investigations
considering a larger latitudinal range from the Antarctic to the
subtropics found the same contamination pattern (Blévin
et al. 2013; Carravieri et al. 2017, 2020b), which was attributed
to the higher complexity of food webs at lower latitudes
(Carravieri et al. 2014b).

Previous investigations using geolocation‐immersion log-
gers have shown that, during breeding, Chatham petrels
forage between the subtropical convergence and the sub‐
Antarctic front during the pre‐laying exodus and the incubation
period. They are restricted to the Bollons Seamount south of
the Chatham Islands during the chick‐rearing period. During
the non‐breeding period, they migrate to the eastern South
Pacific Ocean, to the outer edge of the Humboldt Current
system adjacent to Peru and Chile (Rayner et al. 2012), a region
renowned for its high biological productivity and characterized
by complex food webs. Magenta petrels forage south and
east of the Chatham Islands during the breeding season (Imber
et al. 1994) and disperse widely during the inter‐breeding
period across the Pacific Ocean from the Tasman Sea to
the South American west coast, foraging at relatively low
latitudes (Giglioli and Salvadori 1869; Taylor 2013; G. Taylor,
unpublished data).

The New Zealand region and the Pacific Ocean are char-
acterized by numerous geothermal features, natural sources of
Hg emission (Weissberg and Zobel 1973; Weissberg and
Rohde 1978; Chrystall and Rumsby 2009). Seabirds in New
Zealand are therefore potentially exposed to higher Hg levels
during the breeding season in comparison with birds breeding
at sites with a lower geothermal activity. The very high Hg
concentrations detected in Pterodroma species breeding in
New Zealand could partly result from the substantial geo-
thermal Hg emissions in this region. Research addressing the
Hg contamination in chicks rather than in adults is recom-
mended to better investigate the Hg bioavailability to top
predators in the New Zealand region (Blévin et al. 2013;
Carravieri et al. 2016).

The eastern boundary Humboldt Current is responsible for
the transport of cold, low‐salinity, and nutrient‐rich waters from
high to low latitudes off the western coast of South America

TABLE 4: Akaike information criterion corrected for small sample size
model ranking constructed incorporating the different variables and
their interactions for blood, feather, and muscle Hg concentrations
within the Chatham Islands' avian community.a,b,c,d

Models Number of parameters AICC ΔAICC wi

BLOOD (n= 65)
Species + δ13C 9 –87.6 0.0 0.58
FEATHERS (n= 67)
Species+ δ13C 9 –129.5 0.0 0.90
MUSCLE (n= 20)
δ13C 3 –32.8 0.0 0.35
Null 2 –31.1 1.7 0.15
Species 3 –31.0 1.8 0.14

aModels are GLMs with a normal distribution and an identity link function.
bModel with ΔAICC= 0.00 is considered the best fit to the data.
cModels differing by <2 are fairly similar in their ability to describe the data.
dOnly models with ΔAICC< 2 are shown in this table.
AICC=Akaike information criterion corrected for small sample size; ΔAICC=
scaled AICC; wi=Akaike weight (likelihood of the model, with sum for all models
∑wi= 1.00, see Johnson and Omland 2004); GLMs= generalized linear models;
δ13C= stable isotope signature of carbon.
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(Acha et al. 2004). The upwelling ecosystems in this region are
recognized as the most productive systems of the World
Ocean. They support a remarkably high primary production
that is decomposed in the water column—a process requiring
the consumption of dissolved oxygen. The high oxygen de-
mand participates in the production of a subsurface and mid‐
water oxygen minimum zone (<20 µmol kg–1) in the continental
margins off Peru and northern Chile (Cline and Richards 1972;
Codispoti and Christensen 1985; Minami and Ogi 1997;
Fuenzalida et al. 2009). In this type of naturally hypoxic envi-
ronment, the methylation of Hg by anaerobic microorganisms
(Hsu‐Kim et al. 2013) could be enhanced, making Hg highly
bioavailable for marine organisms (Stewart et al. 1999). A re-
cent investigation of Hg speciation and distribution across the
eastern South Pacific Ocean revealed the enrichment in total
Hg in the Peru upwelling region, with monoMeHg accounting
for up to 20% of the upwelling flux. Methylated Hg concen-
trations were greatest in the suboxic oxygen minimum zone
underlying productive surface waters (Bowman et al. 2016).
A high Hg bioavailability in the Humboldt Current system
region could partly explain the high Hg concentrations re-
corded in Magenta and Chatham petrels. However, an earlier
study comparing the trophic characteristics of ecosystems
in explaining the differences in Hg bioaccumulation and
biomagnification among food webs and systems found that
organisms from oligotrophic waters—with a low primary
production—tend to bioaccumulate more Hg than organisms
from highly productive ecosystems (Chouvelon et al. 2018).
The high productivity of the Humboldt Current system is likely
to result in a dilution of Hg in the system and would limit marine
predator's exposure. Very few data are available regarding the
Hg exposure of seabirds foraging in the Humboldt Current
region (Gochfeld 1980; Álvarez‐Varas et al. 2018). Relatively
low Hg breast feather levels between 0.5 and 2.0 µg g–1 dry
weight were found in piscivorous species sampled on the
Peruvian coast (Gochfeld 1980). However, upwelling regions
are predicted to grow in size and intensity during this century
(Capone and Hutchins 2013), potentially increasing the flux of
Hg near the coasts of Peru and Chile (Bowman et al. 2016). The
high marine productivity in the eastern South Pacific Ocean
sustains many populations of seabird species and has allowed
the development of some of the world's largest fisheries
(Swartz et al. 2010). Thus, monitoring the degree of Hg
bioavailability in this area is of concern, both for biodiversity
conservation and public health issues.

Comparison with other breeding sites and
seabird species

For most of the species investigated in the present study,
only feather Hg concentrations were reported previously in the
literature. To the best of our knowledge, the present study is
the first to report blood and muscle Hg concentrations for
these Procellariiformes, as well as feather Hg concentrations in
Chatham and Magenta petrels. At the species level, feather Hg
concentrations of Chatham Islands seabirds globally fall

within the concentration range already documented at other
breeding sites from the subtropical to the Antarctic zones
(Table 5; Ochoa‐Acuña et al. 2002; Anderson et al. 2009;
Carravieri et al. 2014a, 2014b, 2014c; Becker et al. 2002, 2016;
Lyver et al. 2017). These results suggest that these species may
forage in marine habitats of similar Hg bioavailability during the
inter‐breeding period when they moult at sea, and moderate
Hg variations observed may arise from inter‐site dietary
differences.

Muscle Hg concentrations in zooplankton‐eating species
from the Kerguelen Islands in the southern Indian Ocean were
similar to those found in broad‐billed prions and white‐faced
storm petrels breeding in the Chatham Islands. The Kerguelen
Islands species were thin‐billed prion (Pachyptila belcheri:
0.26± 0.19 µgg–1 dry wt, n= 5), Antarctic prion (Pachyptila
desolata: 0.08± 0.00 µgg–1 dry wt, n= 2; 0.28± 0.06 µgg–1

drywt, n= 10), South Georgian diving petrel (Pelecanoides
georgicus: 0.17± 0.13 µgg–1 dry wt, n= 5), and common diving
petrel (P. urinatrix: 0.20± 0.13 µgg–1 dry wt, n= 13; Bocher
et al. 2003; Fromant et al. 2016). Species with a broader prey
spectrum feeding on both fish and krill such as blue petrel
(Halobaena caerulea) and white‐chinned petrel (Procellaria
aequinoctialis) had slightly higher muscle Hg concentrations:
1.76± 0.91 µgg–1 dry weight, n= 10 and 2.86± 0.80 µgg–1 dry
weight, n= 32, respectively (Bocher et al. 2003; Cipro et al. 2014).

Blood and feather Hg concentrations in the Chatham and
Magenta petrels are among the highest ever recorded in
seabirds around the world (Cherel et al. 2018). Feather Hg
concentrations vary widely among Pterodroma species, from
0.96 ± 0.31 µg g–1 dry weight in Barau's petrel (P. baraui)
breeding at Réunion Island in the Indian Ocean (Kojadinovic
et al. 2007) to 36.48 ± 9.59 µg g–1 dry weight in grey‐faced
petrels breeding in northern New Zealand (Lyver et al. 2017;
Table 6). Despite this high variation among species, gadfly
petrels consistently rank among the most Hg‐contaminated
species in all the different environments where they have
been studied (Carravieri et al. 2014a). However, the available
dataset for the genus Pterodroma (reviewed in Table 6) re-
mains largely incomplete because many species have not
been sampled, and for several species sample sizes are rela-
tively low (n< 5). Most gadfly petrels are top predators with a
cephalopod‐ or fish‐based diet and are therefore prone to
bioaccumulating high concentrations of Hg. Their high trophic
position may be the major factor explaining their consistent
high Hg concentrations but phylogeny could also influence
Hg concentrations. Even though the main route for Hg con-
tamination in seabirds is via food intake (Atwell et al. 1998;
Burger and Gochfeld 2004), the mechanism underlying bio-
accumulation remains poorly understood. Several factors can
lead to variation in Hg burdens: phylogeny (physiology and
detoxification capabilities; Bearhop et al. 2000a; Cherel
et al. 2018), tissue type, and life history traits (nutritional
condition, age, and breeding status; Ramos et al. 2013;
Carravieri et al. 2014b). Pterodroma species are characterized
by the presence of helicoidal upper intestines unlike most
seabird species with intestines formed of a simple tube
(Imber 1985). Pterodroma species specialize in foraging over
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deep ocean basins in lower productivity zones where they
exploit scarce and unpredictable oceanic resources at great
distances from the colony (Rayner et al. 2012; Taylor
et al. 2020). The remarkable coiled structure of their intestines
presumably allows the birds to grind out every drop of nu-
trients from the scattered prey that they feed on. A potential
enhanced assimilation efficiency of Hg through helicoidal in-
testines in comparison with tube‐like intestines could partly
explain the consistently high concentrations recorded in these
species. Approximately 70% of gadfly petrel species are
listed as endangered species in the International Union for
Conservation of Nature Red List; however, little is known
about the ecology of most species and the anthropogenic
pressures they may face. Further research addressing their
exposure to Hg and other environmental contaminants is re-
quired to determine whether these contaminants could con-
tribute to the decline of their populations through long‐term
effects on reproduction.

Potential adverse effects
Interpreting the impact of observed contaminant

concentrations on wild organisms to establish threshold
values can be challenging, especially because these animals
are potentially exposed to diverse stress factors in their
environment or to a cocktail of pollutants (e.g., Goutte et al.
2014). Sensitivity to contaminants varies among species, sex,
and age class (Burger and Gochfeld 2004; Heinz et al. 2009;
Tartu et al. 2015), and few data are available on Hg threshold
values inducing detrimental effects on birds (Eisler 1987;
Evers et al. 2008; Goutte et al. 2015; Tartu et al. 2015).
Seabirds nevertheless present efficient detoxification
processes and therefore may be able to cope with higher
Hg exposure than terrestrial birds (Scheuhammer 1987;
Carravieri et al. 2017).

Exposure to elevated Hg concentrations has been asso-
ciated with developmental, behavioral, and physiological im-
pairments in seabirds (Eisler 1987; Burger and Gochfeld 1997;
Evers et al. 2008; Tartu et al. 2013, 2015). Laboratory and field
studies indicate that concentrations higher than 5 μg g–1 dry
weight in feathers can affect reproduction because they are
associated with increased hatching failure and sterility in various
species (Eisler 1987). In blood, a threshold Hg concentration of
1 µg g–1 wet weight (~4 μg g–1 dry wt) has been proposed by
Ackerman et al. (2016), based on a review of the literature.

Chatham and Magenta petrels breeding in the Chatham
Islands showed Hg concentrations exceeding the threshold
values and are therefore at risk to suffer detrimental effects
from Hg exposure. However, we found no evidence that Hg
exposure of Chatham Island seabirds affected their immune
system. Unfortunately, no blood smears were available for the
Magenta petrel, the species exhibiting the highest Hg con-
centrations. Even in low concentrations, Hg is known to be
immunotoxic in experimental birds (Spalding et al. 2000). Either
the heterophil:lymphocyte ratio counting is an ineffective
method in demonstrating immunomodulation induced by Hg
or the concentrations to which the seabirds are naturally ex-
posed are below threshold effect levels. Nevertheless, the
particularly elevated Hg concentrations recorded in Magenta
petrels are of concern, given the rarity of the species and its
classification as critically endangered (80–100 mature in-
dividuals; Taylor et al. 2012) because it may affect other func-
tions such as reproduction. Research addressing the potential
Hg impacts on physiology and breeding behavior of adult
Magenta petrels and on hatching and fledging success of their
chicks is strongly recommended while considering long‐term
population management. More research on Hg concentrations
in other New Zealand species of Pterodroma petrels is also
recommended because the 2 species with the highest reported
Hg concentrations (grey‐faced petrels and Magenta petrels;
Table 6) occur in this region.

TABLE 5: Synthesis of Hg concentrationsa recorded in feathers of adult seabird species investigated in the Chatham Islands and other breeding
sites

Common name Location Year Hg n References

Broad‐billed prion Chatham Islands 2015 1.00± 0.39 10 Present study
Gough Island 2009 0.75± 0.62 10 Becker et al. 2016

Common diving petrel Chatham Islands 2015 0.98± 0.55 10 Present study
Gough Island 2009 0.58± 0.19 10 Becker et al. 2016
Kerguelen Islands 2003–2011 1.06± 0.54 29 Carravieri et al. 2014a, 2014b, 2014c
Northern New Zealand 2011–2013 3.36± 2.02 30 Lyver et al. 2017
South Georgia 1998 0.59± 0.15 2 Becker et al. 2002
South Georgia 2001–2002 2.90± 1.63 15 Anderson et al. 2009

Grey‐backed storm petrel Chatham Islands 2015 0.49± 0.23 10 Present study
Gough Island 2009 1.98± 2.07 2 Becker et al. 2016
Kerguelen Islands 2003–2011 0.51± 0.44 23 Carravieri et al. 2014a, 2014b, 2014c
Marion Island 2011 0.54 1 Becker et al. 2016

Sooty shearwater Chatham Islands 2015 2.74± 0.80 10 Present study
Chilean coast 1995 1.30± 0.20 2 females Ochoa‐Acuña et al. 2002
Chilean coast 1995 1.90± 0.30 6 males Ochoa‐Acuña et al. 2002

White‐faced storm petrel Chatham Islands 2015 1.66± 0.51 10 Present study
Gough Island 2009 1.41± 0.44 10 Becker et al. 2016

aMean ± standard deviation; µg g–1 dry weight.
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