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Atherosclerosis  

 

Cardiovascular diseases, such as myocardial infarction, stroke, and peripheral vascular 

insufficiency are currently the leading cause of death in the United States, Europe, and part of 

Asia1-3. Atherosclerosis, a progressive inflammatory disorder which is characterized by the 

accumulation of lipids and fibrous elements in the artery vessel wall, is the primary cause for 

this growing burden4-6. For a detailed composition of the vessel wall, the reader is refered to Box 

1, page 2. Atherosclerosis develops over decades, however, it has its start already during 

childhood and young adolescence7. Interestingly, earliest lesions seen with atherosclerosis in 

arteries are distributed randomly throughout the arterial tree, whereas advanced states are 

commonly found at sites with turbulent blood flow, such as bifurcations and branches, as well as 

at curved sections8-10. 

Atherosclerosis is a multifactorial disease. Identified risk factors associated with this disease 

include hyperlipidemia, hypercholesterolemia, hypertension, diabetes mellitus, alcohol use, 

tobacco use and physical inactivity, but also age, gender and genetic predisposition11. More 

recently, different other risk factors have also been identified, such as elevated plasma levels of 

apolipoprotein A12, homocysteine13, 14, plasminogen activator inhibitor 1 (PAI-1)15 and 

fibrinogen16. 

 

Box 1 | Structure of an artery  
 

The arterial wall is composed of three layers consisting of 
different cell types and connective tissue: the tunica intima, 
the tunica media and the tunica adventitia. 
 
Tunica intima: 
The innermost zone consists of a single layer of endothelial 
cells on the luminal side, a subendothelial layer of 
connective tissues and a layer of elastic fibers - known as 
the internal elastic lamina - on the peripheral side.  
 
Tunica media: 
This layer consists of numerous layers of vascular smooth 
muscle cells (VSMCs) as wells as elastic and collagen 
fibers. It is covered by the external elastic membrane, which 
is composed of elastic fibers and notably thinner than the 
internal elastic lamina. 
 
Tunica adventitia: 
The adventitia is the outer layer and consists of an 
extracellular connective tissue matrix containing blood 
vessels, some smooth muscle cells, nerve fibers and 
fibroblasts. 
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Figure 1.  Structure of an artery 
The picture was adapted from Fox17 
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The pathogenesis of atherosclerosis  

In 1973, the "Response to injury hypothesis" was raised by Ross et al. describing the induction 

of atherosclerosis as a response to endothelial denudation18. This hypothesis has been tested 

and modified over the past 35 years and the most recent version represented in Figure 2 -

Figure 5 stresses endothelial dysfunction rather than denudation initiating the chronic 

inflammatory process. 

Endothelial injury induced by the above mentioned risk factors can lead to endothelial 

dysfunction19, 20. This dysfunction is characterized by alteration in permeability of the lining 

endothelial cells which leads to an accumulation of lipids and lipoprotein particles (mainly low-

density lipoprotein (LDL)) in the subendothelial space of the intima4, 21. It has subsequently been 

shown that LDL undergoes modification by oxidation in the vessel wall22-24, and that the 

generated, minimally oxidized LDL (oxLDL) either directly attracts monocytes25 or stimulates the 

overlying endothelial cells to produce various pro-inflammatory molecules22, 26. In summary, 

these molecules include growth factors such as macrophage colony-stimulating factor (M-CSF), 

chemotactic proteins such as monocyte chemoattractant protein-1 (MCP-1), and adhesion 

molecules such as vascular cell adhesion molecule-1 (VCAM-1). A release of these proteins 

results in the recruitment of leukocytes to the vessel wall21 (Figure 2). VCAM-1 for example 

binds monocytes and T-lymphocytes, two types of leukocytes mainly found in early 

atherosclerotic plaques27, 28.  

 

 

 
 

 
Figure 2.  Endothelial dysfunction in 
atherosclerosis 
 

The earliest alterations in the endothelium 
include enhanced permeability for LDL 
resulting finally in the upregulation of 
adhesion molecules. This then initiates the 
recruitment and transmigration of leukocytes 
into the vessel wall (see text). Picture 
adapted from4. 

 

 

 

Once adhered to the arterial endothelium, leukocytes penetrate the endothelium lining and 

accumulate within the intima, a process that requires a MCP-1 gradient29. OxLDL in the vessel 

wall stimulates the immigrated monocytes to convert into activated macrophages, which then 

take up the modified lipoprotein particles via their scavenger receptors, thus becoming large 

foam cells30, 31. Experiments have shown that atherosclerotic lesions are four to ten times 
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smaller in mice with reduced numbers of macrophages, indicating a central role for this cell type 

in the development of atherosclerosis32. 

The foam cells are joined by T-lymphocytes, which are activated by a series of cytokines, 

including tumor necrosis factor alpha (TNF-α), interleukin 2 (IL-2) and granulocyte-macrophage 

colony-stimulating factor (GM-CSF). Consequently, T-lymphocytes secrete chemokines such as 

interferon gamma (IFN-γ) and lymphotoxin by themselves. Both cytokines were verified to play 

important roles in the development of atherosclerotic disorders33. The continuous accumulation 

of foam cells within the intima finally leads to the first ubiquitous lesion of atherosclerosis, the 

so-called fatty streak4. 

  

 

 
Figure 3. Fatty-streak formation during 
atherosclerosis 

 

Fatty streak formation is characterized by 
the continuous accumulation of foam cells in 
the vessel wall. Foam cells derive from both 
monocytes and macrophages which take up 
oxLDL via endocytosis. Additionally, various 
growth factors, including PDGF and TGF, 
stimulate the smooth muscle cells to migrate 
into the fatty streak. Activated T-cells 
release a series of cytokines, such as IFN γ 
and lymphotoxin. Picture adapted from4. 

 

 

 

The fatty streak can then progress to an intermediate, fibrofatty lesion if the offending ris 

factor(s) continue(s) to be present. At this state the macrophages and T-lymphocytes release 

several growth factors and cytokines, such as platelet-derived growth factor (PDGF) and 

transforming growth factor (TGF), thus amplifying the pro-inflammatory signals by further 

recruiting blood monocytes34, 35. However, besides monocyte recruitment, the chemokines 

stimulate both endothelial cells (ECs) and vascular smooth muscle cell (VSMC) of the vessel 

wall to release cytokines by themselves (Figure 3). In addition, VSMCs are activated to replicate 

and migrate out of the media4, 36. 

Ultimately, the inflammatory and proliferative process leads to the progression of the 

atherosclerotic lesion to an advanced, complicated state called fibrous plaque (Figure 4). At that 

time, the lesion has a complex structure and contains multiple layers of VSMCs, both lipid-laden 

macrophages and VSMCs, T-lymphocytes, connective tissue, as well as lipids and varying 

amounts of cell debris from both apoptotic and necrotic cells in the centre of the plaque, called 

the lipid core. Because of remodeling processes the formation of a fibrous cap occurs which 

overlies the lipid core21.  
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Figure 4.  Formation of an advanced, 
complicated atherosclerotic lesion  
 

Advanced atherosclerotic lesions are 
characterized by a fibrous cap - consisting 
mainly of VSMCs - which covers a necrotic 
core. The core itself mainly consists of 
leukocytes, lipids and cell debris. Picture 
adapted from4. 

 

 

The fibrous cap consists of numerous VSMCs surrounded by a connective tissue matrix 

containing collagen, elastic fibers, and proteoglycans, but may sometimes also contain 

monocyte-derived macrophages and some T-lymphocytes37. Importantly, it prevents contact 

between the pro-thrombotic material in the atherosclerotic lesion and the blood. 

 

Although advanced lesions can become large enough to block blood flow (stenosis), the 

most important notable clinical complications are related to plaque rupture, which happens 

when the mechanical stresses in the fibrous cap exceed a critical level that the cap tissue can 

withstand38. In this context, it was shown that plaques that have ruptured and caused fatal 

thrombosis often revealed thin fibrous caps39, 40. The biomechanical strength and stability of the 

fibrous cap originates from interstitial collagen. However, during the inflammatory response 

thinning of the cap is induced on several levels: On the one hand VSMC-mediated synthesis of 

new collagen fibers is blocked due to the production of IFN-γ from activated T-lymphocytes, and 

on the other hand existing collagen is degraded via collagen-degrading enzymes (such as 

members of the matrix metalloproteinase (MMP) family) that are produced by macrophages 

  

 

 
 

Figure 5.  Unstable fibrous plaques in 
atherosclerosis 
 

Rupture of the atherosclerotic plaque results 
due to constant thinning of the fibrous cap. 
Collagen-degrading enzymes as well as the 
reduced production of collagen fibers are 
responsible for the thinning of the fibrous 
cap. Additionally, VSMC apoptosis also 
contributes to this vulnerability. Picture 
adapted from4. 
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(reviewed in21). Additionally, apoptosis of VSMCs in the plaque also contributes to plaque 

vulnerability as described below. 

Once the fibrous cap ruptures, exposure of the pro-thrombotic necrotic core content to the 

blood causes sudden thrombus formation and thrombus-mediated acute coronary events, as for 

example myocardial infarction or stroke41 (Figure 5). Responsible for this is on the one hand the 

collagen in the plaque’s extracellular matrix, which triggers platelet activation and on the other 

hand the tissue factors produced by macrophages and VSMCs, which activates the coagulation 

cascade42. 

 

 

Restenosis 

 

Plaque formation during atherosclerosis does not always lead to plaque rupture and “acute 

coronary syndrome” (ACS) but can cause narrowing of the arteries (stenosis) resulting in an 

insufficient blood supply (see above). Patients suffering from coronary artery stenosis will 

experience angina pectoris (chest pain). Percutaneous transluminal coronary angioplasty 

(PTCA), also termed percutaneous coronary intervention (PCI), is a well-established technique 

for the treatment of vascular occlusions and was first performed in man 1977 by Andreas 

Grüntzig43. Unfortunately, its success is often limited by the subsequent re-occlusion 

(restenosis) of the dilatated artery, which is primarily due to neointimal hyperplasia. Indeed, 30–

40% of patients that have undergone PTCA will develop restenosis within the first 6 months 

upon surgery44, 45, thus generating high costs for additional surgery procedures (e.g. 

revascularization or bypass surgery). With the deployment of stents in the mid 1980`s, the 

incidence of restenosis is now about 20%, but still an unacceptably high rate44. Stents are small 

wire-mesh tubes or "scaffolds" introduced into the blood vessel to eliminate the problem of early 

recoil after angioplasty (Figure 6). Unfortunately, the clinical problem of in-stent restenosis still 

remains46. Recently, the concept of using drug-eluting stents coated with anti-proliferative and 

anti-inflammatory agents that could potentially inhibit neointimal hyperplasia has emerged47. 

Use of these agents, such as macrolide sirolimus (rapamycin) and taxane paclitaxel48, 49, 

significantly lowered the rate of in-stent restenosis (<10%), but implicated several other 

problems such as in-stent thrombosis, polymer hypersensitivity and retarded healing due to 

delayed re-endothelialization50, 51. 

 

The pathogenesis of restenosis 

Mechanical injury through balloon angioplasty (with cell loss in the intima and media, elastic 

lamina fragmentation and a general damage of tissue architecture) triggers a healing response 

of the arterial wall, resulting in restenosis. The excessive pathological repair begins immediately 
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after the initial injury and may last for weeks or months. It has been well characterized in various 

animal models of balloon denudation52. The exact pathophysiology of restenosis has still not 

been fully established but it has been suggested that this disease comprises three main 

processes: early elastic recoil, neointimal hyperplasia and vessel remodeling53-55.  

Elastic recoil occurs within the first hours after vessel dilation (Figure 6). In response to 

stretching the vessel, the elastic fibers within the vessel wall start to recoil back to their original 

state. This event leads to an immediate luminal diameter loss and defines the beginning of 

restenosis56. 

Vessel injury due to stretching results in endothelial denudation, exposing the subendothelial 

components of the vessel to the blood, thus promoting aggregation of leukocytes and platelets, 

as well as induction of the coagulation cascade57. Activated platelets release cytokines in order 

to recruit leukocyte to the place of injury and additionally express adhesion molecules (e.g. 

P-selectin) for leukocyte binding. Consequently, mononuclear leukocytes enter the arterial wall 

and subsequently transform into macrophages. These activated macrophages produce 

cytokines and growth factors by themselves, which is pivotal for amplifying the inflammatory 

response58. 

Together, all inflammatory cells release chemotactic factors such as PDGF, basic fibroblast 

growth factor (bFGF), transforming growth factor β (TGF-β), thrombin, and angiotensin II59, 60 

that stimulate VSMC migration out of the media within hours after arterial injury61. Once arrived 

in the intima, VSMCs subsequently proliferate and secrete extra-cellular matrix (ECM) proteins 

building up a neointimal tissue, a process which is known as neointimal hyperplasia (Figure 6)36, 

62. This tissue then spreads into the vessel lumen, thus narrowing the lumen diameter. Typically, 

intimal hyperplasia occurs in areas where re-endothelialization is retarded revealing that the 

endothelium modulates the migratory and proliferative activity of the underlying VSMCs63. 

Nevertheless, proliferation of VSMCs is not only affected by chemotactic factors, but recent 

publications provide evidence for mechanic stress-induced VSMC proliferation at the place of  
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Figure 6.  Development of restenosis after angioplasty 
 

Restenosis after angioplasty comprises three processes: Early recoil within one hour after dilatation, 
vascular remodeling and neointima formation during the next one to six months. 
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endothelial denudation64. Sedding et al. demonstrated that mechanical force activates integrin- 

mediated phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling in VSMCs resulting in cell cycle 

entry and progression65, 66. Interestingly, caveolin-1, a major constituent of caveolae 

(= invaginations of the plasma membrane), is required for efficient signaling in these cells by 

creating an active c-Src kinase/PI3K/Akt module66.  

The dynamic process of VSMC migration requires ECM protein degradation and re-

synthesis. For example, the production of MMPs by macrophages is upregulated during the 

inflammatory process, leading to matrix remodeling and initiates VSMC migration67.  

 

Several studies have demonstrated that, additionally to VSMCs, myofibroblasts in the 

adventitia also respond to the inflammatory cytokines, causing their proliferation and migration 

into the intimal tissue. This contributes to the enlargement of the adventitia as well as to 

collagen synthesis within the media (Figure 6)68, 69. The role of both the adventitia and collagen 

in the remodeling of the arterial wall has been increasingly recognized and postulated to play a 

key role in late lumen loss during restenosis70, 71. However, still little is known about the 

molecular mechanisms involved in this process. Figure 7 shows the mentioned neointimal 

tissue within a murine artery generated upon endovascular arterial injury. 
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Figure 7.  Morphology of a diseased murine artery 
 

Histological transverse section of a murine femoral artery with 
significant luminal narrowing caused by restenosis after 
intravascular arterial injury. Abbreviations: A, adventitia; EEL, 
external elastic lamina; M, media; IEL, internal elastic lamina; NI, 
neointima; EC, endothelial cells. Picture from Sedding et al.. 
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Vascular smooth muscle cells  

 

Atherosclerosis, restenosis and pulmonary hypertension (see Box 2, page 9) are complex 

diseases, in which VSMCs are the predominant cell type and an important actor. In healthy 

adult arteries, VSMCs are normally in a quiescent, fully differentiated state, and are part of the 

vessel wall media (see Figure 1 in Box 1). They provide structural integrity and have the ability 

to dilate and constrict the vessel wall, thereby regulating blood flow. Walker and coworkers first 

described the phenotype of VSMC obtained from the rat media as a spindle-shaped phenotype, 

with the classic "hill-and-valley" growth pattern72. Likewise, arteries of various other species - 

including humans - show this kind of medial VSMC phenotype. 

During vessel development in the embryo, as well as in the above named disease states the 

situation changes and arterial VSMCs undergo a process often referred to as phenotypic 

 
 

Box 2 | Pulmonary hypertension  
  

Hyperplasia and VSMC migration are features involved in atherosclerosis/restenosis as well as in 
pulmonary vascular diseases, such as pulmonary hypertension (PHT). The normal pulmonary 
circulation is an uncommonly low pressure and low resistance system, whose function is to optimize 
blood and tissue oxygenation73. The cardiovascular syndrome of PHT is defined clinically as a 
condition of elevated pulmonary arterial pressure and/or pulmonary vascular resistance due to both 
vessel wall remodeling and increase in vascular constriction. PHT leads to right heart failure because 
of right ventricular hypertrophy, which finally leads to premature death. A typical indicator for severe, 
advanced PHT - as it is also for atherosclerosis and restenosis - is remodeling of the arterial vessel 
wall74. A variety of stimuli are known to initiate this pathophysiological process, including chronic 
hypoxia, increased pulmonary blood flow, anorectic and other drugs, as well as different idiopathic 
causes73. Histologically, pulmonary vascular remodeling is displayed by intimal proliferation, medial 
and adventitial hypertrophy and hyperplasia, muscularization of peripheral vessels such as arterioles, 
and vaso-occlusive plexiform lesions75.  
 Pulmonary artery smooth muscle cells (PASMCs) in the lung artery wall contribute primarily to 
these remodeling processes. Their function is modulated by e.g. growth factors, contractile agonists 
and inflammatory mediators released by different cell types in response to the above mentioned PHT 
triggers. First, PASMCs re-enter the cell cycle, subsequently proliferate, migrate and secrete ECM 
proteins. The changes within the vessel wall lead to a decrease in lumen diameter and to an increase 
in vascular resistance to blood flow due to an attenuated vasodilatory capacity. Consequently, this 
leads to a persistence of high blood pressure.  
 The detailed molecular mechanisms that control vascular remodeling remain unknown to date. 
However, recent studies by Goncharova et al. revealed a role for the PI3K/Akt pathway in mediating 
proliferation and migration of human PASMCs. This pathway is demonstrably important in a variety of 
vaso-proliferative disorders, as for example in the already mentioned atherosclerosis and restenosis. 
For a detailed description of the PI3K/Akt pathway the reader is refered to the capital “The 
phosphatidylinositol 3-kinase/Akt pathway” in the main text. Fouty and coworkers observed that 
overexpression of the Akt downstream target p27KIP1, an inhibitor of cyclin-dependent kinases (see Box 
3, page 15) decreased PASMC proliferation73. These results were verified by other investigators76. 
Unpublished data from our group revealed the involvement of FoxO transcription factor in PHT, which 
is not surprisingly given that FoxOs are direct Akt-targets and regulate p27KIP1 transcription as it is 
reviewed in the introduction part of this thesis (see below). The present PhD study further examines 
FoxO´s regulatory function on PASMC behavior. Determining the molecular pathways that are 
responsible for mediating PASMC behavior will help us to identify new therapeutic approaches for 
treating PHT. 
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modulation. A switch from the quiescent contractile phenotype to an altered “synthetic” one 

characterizes this process. VSMCs of this population are present in the intima after balloon 

angioplasty and are morphologically distinct from their medial counterparts72, 77. They show an 

epitheloid phenotype, and the cells grow as a monolayer exhibiting a cobblestone morphology 

at confluence72, 77.  

Functionally, these cells enter the cell cycle (see Box 3, page 15), acquire the capacity to 

proliferate dramatically, migrate and synthesize ECM proteins thereby generating new tissue78. 

Besides these functions, this type of VSMC significantly attenuates expression of SMC-specific 

marker genes, such as smooth muscle α-actin, smooth muscle myosin heavy chain (MHC), 

caldesmon etc.79. For further information on VSMC diversity, the reader is referred to recent 

reviews80, 81. The activator(s) triggering the process of phenotypic modulation in vivo is/are still 

unclear. However, it is believed that injurious stimuli-mediated changes in the vessel wall 

environment and in the ECM are responsible for it.  

The origin of intimal VSMCs has been an issue of debate and until recently, the prevailing 

theory was that after induction of mitogenic stimuli, VSMCs migrate out of the vessel’s media 

into the intima4, 36. However, this theory has been challenged by recent studies in animal models 

of vessel injury and in human allograft studies, where it is proposed that intimal VSMCs 

originate from diverse other sources besides the media. For example, intimal VSMCs may 

originate from circulating bone marrow-derived progenitor cells (see review Sata et al.82). Work 

from our group could demonstrate the potential of circulating human endothelial progenitor cells 

(EPCs) to transdifferentiate into functionally active VSMCs in vitro and in vivo (Sedding et al., 

personal communication). Additionally, both fibroblasts from the adventitia and ECs are able to 

transdifferentiate into VSMCs during restenosis, respectively83. The contribution of each of 

these possibilities is, nevertheless, controversial and a subject of debate. The only thing that 

has been proven yet is that VSMCs of the arterial wall are biologically heterogeneous.  

 

Response to injury and inflammation 

Activation and migration  

Activation and migration of VSMCs from the media to the intima plays an essential role in 

pathologic processes, such as intimal hyperplasia and atherosclerosis. For example, at least 

20% to 40% of medial VSMCs are activated in response to balloon injury and enter the cell 

cycle84. These cells then transmigrate through breaks in the internal elastic membrane into the 

innermost area of the vessel. Nearly 50% of these migrating cells continue to proliferate for 

several cycles and generate new tissue, whereas the rest does not synthesize DNA85. 

Therefore, migration and proliferation should thus be considered as two distinct mechanisms 

leading to neointimal thickening85. 
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Successful cell migration is induced by a myriad of extracellular influences such as growth 

factors, ECM proteins, and interaction with cell surface receptors - particularly integrins - which 

activate a complex array of intracellular signal transduction pathways86. These processes result 

in VSMC focal adhesion turnover, actin filament polymerization, proteolysis of the ECM, and 

directed migration along gradients of different chemoattractant stimuli. 

 

Growth factors 

Multiple growth factors, which serve as mitogens and chemoattractants, have been shown to 

stimulate VSMC migration both in a paracrine and an autocrine mechanism85, 86. Vascular injury 

results in the local release of these factors. The plasma contains norepinephrine, lipoprotein A, 

angiotensin II, epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). The last 

three, together with bFGF, are also released by ECs. Thrombin from the thrombus formed after 

endothelial denudation itself has strong mitogenic properties and stimulates EC- and VSMC-

mediated PDGF expression and release. Moreover, activated platelets release at least five 

mitogens for VSMCs, including serotonin, thromboxane A2, TGF-β, bFGF and PDGF87. 

Although they constitute a minority population in the injured vessel – in comparison to all other 

cell types -, macrophages synthesize a wide variety of growth factors, including PDGF, bFGF, 

TGF-β, TGF-α, IL-1, and EGF85. 

It is important not to underestimate the effect of the VSMCs themselves on growth factor 

release. TGF-β and EGF, stimulate VSMCs to secrete the potent chemoattractant fibronectin. 

Additionally, angiotensin II, EGF, IGF-1 and bFGF are released by VSMCs. Through the release 

of these factors, VSMCs may - in a paracrine fashion - indirectly induce their own migration as 

well as other cellular processes that are important for the pathophysiology of vascular diseases 

(Figure 8).  

However, of all the mentioned growth factors, PDGF is the most well described and likely 

most important one. Sedding et al. reported recently, that the factor VII activating protease 

(FSAP), a plasma protein, reduces neointima formation in a mouse model at sites of injury via 

inactivating PDGF. In comparison to the wild-type FSAP, a mutated form failed to reduce VSMC 

migration and proliferation in the vessel wall during repair mechanisms88.  

As it was already mentioned, proliferation is also influenced by PDGF. Even so, in contrast 

to proliferation, migration is an earlier response to PDGF and is stimulated by lower 

concentrations than those needed for cell division85. 
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Figure 8. VSMCs secrete various mediators affecting their own cell behavior  
 

VSMCs mediate their own migration on the one hand by releasing factors for matrix alterations and on the 
other hand by secreting mitogens and chemoattractants important for locomotion (see text for further 
information). However, many of these mediators simultaneously affect proliferation, apoptosis, 
inflammation and contraction pf VSMCs. For example, several growth factors stimulate VSMC 
proliferation, migration and apoptosis. The picture was adapted from Dzau et al.45. 

 

 

ECM and Proteinases 

Migration of VSMCs requires proteolysis or digestion and remodeling of the surrounding ECM. 

In the normal vessel wall ECM is composed predominately of collagen, elastin, proteoglycans, 

and glycoproteins. After arterial injury, the kind, quantity, and distribution of these matrix 

proteins changes: collagen, glycoproteins and hyaluronic acid are expressed to a greater 

extent. Expression of CD44 on the VSMC membrane - a receptor for hyaluronic acid - has been 

shown to be upregulated in the neointima, and interaction between hyaluronic acid and CD44 

was proven to stimulate VSMC migration89. In addition to CD44, migrating VSMCs express 

another hyaluronic receptor called receptor for hyaluronic acid–mediated motility or shortly 

RHAMM89, 90. Apart from serving only structural function, certain ECM proteins itself, such as 

collagen I and IV and fibronectin, are as potent as PDGF in stimulating VSMC locomotion91. 

For ECM degradation different proteolytic systems including MMPs and serine proteinases 

of the urokinase-type plasminogen activator system are essential. Proteinases are a family of 

enzymes produced by a variety of cell types and are activated in response to vascular injury. In 

vascular diseases MMP-2 and MMP-9 are of special interest, since type IV collagen is the main 

substrate of both gelatinases. Type IV collagen is a basal membrane component which has to 

be degraded to enable the migration of VSMCs86. All MMPs are secreted as inactive zymogens 

and have to be cleaved, for example by plasmin – a serine proteinase of the urokinase-type 
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plasminogen activator system – in order to be activated. MMP gene expression is induced by 

cytokines and the growth factors bFGF and VEGF. 

Besides the indirect activation of MMPs, plasmin can directly digest ECM components 

enzymatically, including fibrin, fibronectin, laminin and the protein core of proteoglycans. The 

protease is released as plasminogen into the circulation and activated by tissue-type 

plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA). Most migrating cells 

express uPA and sometimes tPA, and thereby facilitating migration85. Like MMP-expression, 

expression of both plasminogen activators is affected by VEGF and bFGF. 

 

Cell adhesion molecules 

A dynamic interaction between transmembrane adhesive receptors on the VSMC cell surface 

and ECM components is another key process in VSMC locomotion and migration. There are 

several cell adhesion molecules (CAMs) known which are subdivided into four protein families: 

the integrins, the immunoglobulin superfamily (IgSF), the cadherins and the selectins. However, 

the integrins were shown to be the most important subtype of CAMs involved in VSMC 

migration during vessel dysfunction. 

 

Integrins 

Integrins are heterodimer receptors located on almost every cell type and composed of one 

α- and one β-subunit, that can be combined to form more than 20 different types of integrin 

receptors. VSMCs are particularly known to express β1- and β3-subunits92. The β1-integrin 

subunit is constitutively expressed and abundant on quiescent VSMCs. The β3-subunit is 

upregulated during vascular remodeling processes as well as in the presence of TGF-β and 

PDGF, and focused on the leading edge of migrating cells. Several different α-subtypes are 

expressed including αv and α1. Nevertheless, αvβ3 appears to be the major migration promoting 

receptor on VSMCs, attaching to osteopontin, a phosphoprotein with adhesive and chemotactic 

properties that is associated with arterial VSMC migration under pathological conditions89. 

Osteopontin was recently shown to be expressed in diseased vessels by macrophages, VSMCs 

and ECs93. ReoPro (also called Abciximab), an antibody against all β3-integrins, inhibits in-stent 

neointimal hyperplasia after PTCA in humans, partially by preventing VSMC migration from the 

media to the intima92. 

 

Proliferation 

After being migrated to the intima, many of the neointimal VSMCs continue to proliferate 

excessively for several cycles. Proliferation is characterized by the transition of cells through the 

cell cycle and is triggered by numerous growth factors and cytokines. Different cell types (e.g. 

inflammatory cells) involved in the pathological process of vasculo-proliferative diseases create 
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a mitogenic milieu essential for proliferation (see above). For example, activated macrophages 

were already mentioned to synthesize PDGF, which stimulates VSMC migration85. However, 

PDGF can also directly promote excessive intimal VSMC proliferation94. Another very important 

growth factor for stimulating VSMC proliferation is bFGF, which is synthesized by most of the 

cell types found in atherosclerotic and restenotic areas. As it was shown in the rat model by 

Lindner and colleagues, dying vascular cells release bFGF, which in turn initiates proliferation of 

VSMCs in the media95. Previous work performed during my diploma thesis could also 

demonstrate the effect of bFGF on human VSMC proliferation (unpublished data). Intimal 

proliferation of VSMCs also occurs under the influence of numerous other growth factors as for 

example TGF-β, IGF-1, and angiotensin II45.  

Furthermore, cytokine- or sheer stress-induced secretion of nitric oxide (NO) by ECs results 

in attenuated VSMC proliferation96. Loss of the endothelium after physical or biochemical injury 

results on the one hand in loss of endothelium-derived NO production and on the other hand in 

loss of its homeostatic function. This may explain the effect of re-endothelialization of the 

denuded vessel on blocking neointima formation63. 

Vascular proliferation requires DNA replication, and is therefore dependent on cell cycle 

transition (see Box 3, page 15). As in all mammalian cells, proliferation of VSMCs is primarily 

controlled at the site of cell cycle entry, the so-called G0/G1- to S-phase transition. Numerous 

growth factors, amongst them PDGF and bFGF, initiate different signaling cascades leading to 

transcription of early genes that allow cell cycle entry78. Other factors, including EGF and IGF-1, 

however, stimulate progression of the cells toward the S-phase78 (see Figure 9). One important 

signaling cascade activated by growth factors in VSMCs during proliferation is the already 

mentioned PI3K/Akt pathway97, which is described in further details in chapter “The 

phosphatidylinositol 3-kinase/Akt pathway”. Activation of this pathway induces e.g. 

accumulation of cyclin D and downregulation of the “gatekeeper” p27KIP1, thus, providing 

requirements for cell cycle progression into S phase98. Interestingly, activation and progression 

of the cell cycle machinery in plaque VSMCs does not always induce cell division, but was 

recently also shown to induce programmed cell death99. 

 

Apoptosis 

An outstanding feature of blood vessel remodeling, both during normal development and 

pathological disorders, is the apoptotic cell death of VSMCs in the vessel wall100-102. Cell death 

in atherosclerotic lesions was first recognized by R. Virchow 150 years ago in 1858103. Since 

1995, several research laboratories reported on apoptosis of VSMCs implicated in 

atherosclerosis and restenosis38, 104-109. 
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Box 3 | The mammalian cell cycle  
  

FoxO, p53FoxO, p53

 

 
Figure 9.  Scheme of the cell cycle 
  

Cell cycle progression is regulated by holoenzymes 
composed of CDKs and a regulatory subunit called 
cyclins. CKIs negatively regulate the activation of CDKs. 
See text for details. Adapted from45. 

 

The cell cycle comprises a highly conserved, 
coordinated set of events resulting in cell 
growth and division of a mother cell into two 
daughter cells. It consists of four different 
phases: G1-phase, S-phase, G2-phase and 
M-phase45, 78. During the S-phase 
(S=synthesis), the DNA is replicated, whereas 
during the M (Mitosis)-phase, the 
chromosomes and the cytoplasm are divided 
between the two daughter cells. G1 and G2, 
the so called “Gap”-phases, separate S and M 
and represent times where the cells carries on 
its normal metabolic functions. Non-dividing 
cells, or quiescent cells, have entered a state 
called G0-phase. Several checkpoints at the 
G1/S and G2/M transition ensure controlled 
cell cycle progression110. The one regulating 
S-Phase entry is called restriction point and is 
located at the end of the G1-phase. Here the 
cell decides whether it should divide, or enter 
a resting stage. The second checkpoint can 
be found at the end of G2-phase. As soon as 
 

the cell is ready for mitosis this checkpoint triggers the start of the M-phase. Progression through each 
cell cycle phase depends on cyclin-dependent kinases (CDKs), which themselves have to be activated 
by a special class of proteins called cyclins110. In mammals, the cyclins have been named A, B, D and 
E, whereas the proteins of the CDK superfamily are indicated as CDK followed by a number. Each 
phase of the cell cycle involves different cyclin-CDK complexes (see Figure 9). Triggers for transition 
through the G1- and S-phases are both the augmented accumulation of cyclin D-CDK4 and cyclin 
E-CDK2 complexes, as well as rising levels of proliferating cell nuclear antigen (PCNA)110. Cyclin 
A-CDK2 and cyclin B-CDK1 complexes regulate the subsequent G2/M transition110. A family of 
regulatory proteins that plays a key role in preventing CDK activity is the cyclin-dependent kinase 
inhibitor family (CKI) which comprises two classes: The INK proteins, which disable activation of CDK4 
and CDK6, and the CIP/KIP proteins, such as p27KIP1 and p21CIP1, which negatively regulate cell cycle 
progression by targeting diverse cyclin-CDK complexes. Different transcription factors transactivate 
CDKs and CKIs. For example, active p53 causes G1-phase arrest by inducing expression of p21CIP1, 
which in turn inhibits the activity of the G1-specific cyclin-CDK complexes. Conversely, the E2F family 
of transcription factors together with retinoblastoma (RB) protein controls expression of genes in S-
phase. FoxO transcription factors are other important regulators, similar to p53, as recently shown by 
our group. Their influence will be discussed in more detail below. 
 

 

 

The term of apoptosis was first introduced by Kerr and coworkers in 1972111 and describes a 

special kind of spontaneous cell death, which has to be distinguished from necrosis. During the 

development of apoptosis, all cell types go through a series of morphological changes, 

beginning with shrinkage of the cell membrane and continuing with margination and 

condensation of the nuclear chromatin, as well as cellular fragmentation and, ultimately, the 

engulfment of the apoptotic bodies by adjacent neighboring cells38. All three of the major cell 

types found in atherosclerotic lesions (macrophages, VSMCs, and ECs) can undergo apoptosis. 

Nevertheless, the main subject of this thesis is about VSMCs, and therefore I will focus only on 

VSMC apoptosis and its contribution to atherosclerosis, restenosis and PHT. 
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During atherosclerosis development, the frequency of apoptotic VSMC cell death seems to 

increase as the plaques proceeds. Early lesions tend to have only few apoptotic VSMCs as 

compared to normal vessels, however, the apoptotic rate further increases in advanced 

atherosclerotic plaques38. Moreover, it has been observed that there is an exceeding number of 

VSMC dying of apoptosis in unstable atherosclerotic lesions than in stable lesions of human 

coronary arteries105, 112, 113. As already mentioned above, VSMCs from atherosclerotic plaques 

exhibiting an epitheloid phenotype are more prone to apoptosis than normal VSMCs due to a 

higher sensitivity to DNA damage inducing agents. Additionally, these cells show strong 

expression of the pro-apoptotic protein Bax, whereas expression of anti-apoptotic members of 

the Bcl-2 family can only be seen in intimal VSMCs38. Taken together, this may contribute to an 

increase of apoptosis in advanced atherosclerotic lesion. 

In early atherosclerotic lesions apoptosis of VSMCs seems to be protective due to inducing 

regression of thickened arterial walls. Nevertheless, in an advanced state cell death of VSMCs 

in the fibrous cap has detrimental effects on the plaque stability104, 106, 108. Responsible for a 

possible plaque rupture is not only a decrease in cellular density, but - because VSMCs 

produce collagen fibers - loss of VSMCs will reduce the biosynthesis of new interstitial collagen 

fibers and subsequently, the mechanical integrity will be lost with time38. 

In animal models, a burst of apoptotic cell death occurs as an early phenomenon in the 

media and as a late event in the developing neointima after balloon angioplasty114. Similar in 

humans, apoptotic VSMCs are detected in restenotic lesion following angioplasty at a greater 

frequency than that observed in the normal artery wall. Apoptosis of VSMCs also participates in 

development of aneurysms38.  

 

Several inducers of VSMC apoptosis in the mentioned diseases have been identified in the 

last years. These factors include mechanical force, modified lipids (oxLDL, oxysterols), free 

radicals (reactive oxygen species (ROS), nitric oxide (NO)), radiation (UV-, X- and γ-radiation), 

Fas ligand (FasL) and inflammatory cytokines produced by activated immune cells.  

Atherosclerotic lesions contain oxLDL, which seems to be a major cytotoxic component in 

atherosclerosis24. Typically, cholesterol and its esters have only little pro-apoptotic effects, 

however in an oxidized state they become cytotoxic. Thus, some of these oxygenated 

derivatives in the oxLDL particles are suggested to be at least in part responsible for the pro-

apoptotic effect of oxLDL101. The molecular mechanisms by which oxLDL may induce apoptosis 

have not been completely understood, but it seems that downregulation of Bcl-2 and activation 

of caspase 3 plays a role in this process115. Interestingly, recent studies revealed that only high 

concentrations of oxLDL are pro-apoptotic, whereas low concentrations are mitogenic for 

VSMCs. 
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Excessive production of ROS (e.g. hydrogen peroxide (H2O2)) in the atheromatous plaque 

also induce local VSMCs to commit suicide116. Interestingly, some studies have shown the 

multiple effect of H2O2 on VSMCs: whereas low concentrations of H2O2 and short exposure 

promotes cell growth, prolonged exposure to higher levels of oxidant stress leads to cell 

death116.  

Besides being involved in regulating VSMC proliferation96, NO at high concentrations leads 

to apoptosis of the target cells101. NO synthesis by ECs and macrophages is induced by several 

cytokines from the inflammatory response. The pro-apoptotic effect of NO is noticeably 

augmented when NO reacts with other types of ROS and thereby creates the cytotoxic nitrogen 

reactive intermediate, peroxynitrite (NO3
-)101. The molecules involved in NO-induced apoptotic 

signaling pathways are not completely known, however they include cyclic GMP and p5338. 

Recently it was shown by Boyle et al., that NO enhances Fas/FasL interaction, which is further 

described below117.  

Macrophages in the atherosclerotic plaque have already been mentioned to produce pro-

inflammatory cytokines, TNF and IL-185. However, INF-γ is also released by activated 

T-lymphocytes33. Together, these cytokines can synergistically induce apoptosis in VSMCs, as 

well as migration and proliferation (see above) by activating several intracellular pathways101. 

Additionally to these cytokines, macrophages and T-lymphocytes can produce other 

bioactive substances, such as granzymes and perforin, which induce death of target cells101. 

Macrophages and T-lymphocytes can promote VSMC apoptosis also by direct cell-cell 

interaction. Both cell types release FasL, which binds to its receptor Fas (CD95), a member of 

the TNF receptor superfamily, on the VSMC membrane. Surface Fas antigen ligation with FasL 

leads to the subsequent activation of the Fas/FasL-caspase death pathway resulting in 

apoptosis101, 102 (Figure 10). Interestingly, VSMCs were also displayed to express FasL which is 

believed to be responsible for the elimination of T cell in atherosclerotic lesions100, 118. 

Two other receptor-ligand couples play also important roles in modulating apoptotic 

processes in VSMCs: TNF-α and its receptor TNF receptor-1 (TNFR1)101, 102, as well as TRAIL 

(TNF-related apoptosis-inducing ligand) and its receptor TRAIL-R2 (DR5)119. Like FasL, both 

receptors belong to the TNF receptor superfamily. Ligand binding activates the initiator 

molecule caspase 2 and 8, respectively (Figure 10). Caspases form a family of highly 

conserved aspartate-specific cysteinyl proteases that initiate and execute the program of cell 

death120. Activated caspase 2 and 8 activate other downstream effector caspases (caspase 3, 

6, 7) that are directly responsible for the proteolytic cleavage of cytoskeletal components, 

nuclear proteins and lamins. Digestion of these factors leads to changes characteristic for 

apoptosis and, finally, to cell disassembly (Figure 10). 
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Figure 10.  Death receptor-mediated 
apoptotic pathway 
 
Activation of the cell membrane 
receptor FasL, TNFR1 and DR5 by 
their ligands leads to adaptor protein 
(e.g. FADD)-mediated recruitment and 
subsequent activation of initiator 
caspase 8. Active caspase 8 then 
activates downstream effector 
caspases (3, 6 and 7), which are 
responsible for the proteolytic 
cleavage of cytoskeletal components, 
nuclear proteins and lamins, leading to 
changes characteristic for apoptosis 
and, finally, to cell disassembly. 
Caspase 8 activation also leads to 
cleavage of Bid, which in turn 
translocates to the mitochondria and 
there interacts with other Bcl-2 family 
members (see Figure 11).  
 

 

 

Besides this extrinsic pathway another major pathway initiates apoptosis too: the 

mitochondrial or intrinsic pathway. In the mitochondrial pathway, apoptosis is initiated by the 

release of mitochondrial cytochrome c (cyt-c) and other pro-apoptotic molecules into the 

cytoplasm101, 102. The association of cyt-c with an adaptor molecule called Apaf-1 and 

pro-caspase 9 leads to the formation of active caspase 9. Together, these three proteins 

generate a so called "apoptosome", which orchestrates activation of several other caspases 

and, additionally, the biochemical execution of apoptotic cell death. The release of cyt-c from 

mitochondria is regulated by the balance of the pro- and anti-apoptotic proteins of the Bcl-2 

superfamily. Inhibitors of apoptosis are proteins such as Bcl-2, Bid and Bcl-xL, whereas Bax, 

Bad and Bim are inducers. Apoptotic stimuli attenuate Bcl-2 function and shift the balance within 

the Bcl-2 family towards the pro-apoptotic members (see Figure 11). It should be considered 

that even though the intrinsic and the extrinsic pathway are parallel and distinct, there is 

crosstalk between them121. 

 

Apart from death receptors and mitochondrial pathways, other signal transduction pathways, 

such as JNK, MAPK and PI3K are able to mediate apoptosis by affecting secondary signaling 

pathways which control cell-cycle regulators. Thereby, survival factors, such as PDGF, IGF-1 

and bFGF can affect both processes - cell proliferation and apoptosis -. However, interaction 

with the cell cycle in VSMCs of advanced lesions does not lead to proliferation, but to apoptotic 

cell death, partially by favoring the anti-apoptotic potential of the Bcl-2 family of proteins115. Low 

concentrations of various survival factors were shown to induce VSMC apoptosis, too106. 
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Figure 11.  Mitochondrial apoptotic 
pathway 
 

Anti-apoptotic members of the Bcl-2 family, 
such as Bcl-2 and Bcl-xL are located on the 
outer mitochondrial membrane. Apoptotic 
stimuli induce for example binding of pro-
apoptotic Bid (after cleavage by caspase 8) 
to Bcl-2, thereby inhibiting its protective 
function. This shift in balance between pro- 
and anti-apoptotic Bcl-2 family member 
leads to the release of mitochondrial 
cytochrome c. Cytochrome C, in concert 
with the adaptor protein Apaf binds pro-
caspase 9 forming an apoptosome, which 
cleaves pro-caspase 9. Activated 
caspase 9 activates caspase 3 and triggers 
the downstream caspase cascade leading 
to apoptosis. 
 

 

 

Among the common cell cycle regulators are the tumor suppressor gene p53 and the proto-

oncogene c-myc. p53 activity is associated with the upregulation of apoptotic cell death, thus 

having the function of an anti-oncogene. Wild-type p53 represses cell proliferation by 

maintaining cells with DNA damage in G1-phase allowing them to repair damaged DNA101. If 

DNA repair is inexecutable, p53-expressing cells resist the G1 block and enter the pathway 

leading to cell death122. Deletion of p53 inhibits apoptosis and strongly exacerbates 

atherosclerosis in different atherosclerosis-susceptible mouse models101. 

Depending on the levels of expression, the proto-oncogene c-myc has been implicated to 

both cell death and proliferation101. In VSMCs from human atherosclerotic plaques the c-myc 

oncogene is overexpressed resulting in a diminished growth rate as compared to “normal” 

VSMCs 115. Bennett and colleagues revealed that a deregulated expression of c-myc can 

promote apoptosis of VSMCs123, thus, c-myc has an important impact on the pathogenesis of 

atherosclerosis. 

 

Apoptosis of VSMCs itself has a number of deleterious effects102. First, apoptotic VSMCs 

expose phosphatidylserine (PS) on the cell surface, which is a critical event in their recognition 

by macrophages. Unfortunately, PS can promote both thrombin generation and activation of the 

coagulation cascade. Second, membrane-derived microparticles are released into the 

circulation by the apoptotic VSMCs. These microparticles remain pro-coagulant and are 

thrombogenic both locally and systemically. In patients with ACS, plasma levels of pro-
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coagulant microparticles were shown to be increased and thus may be linked with coronary 

re-occlusion102, 115. Third, VSMC apoptosis causes release of e.g. IL-1, MCP-1 and bFGF 

causing further stimulation of the inflammatory response. 

 

 

The phosphatidylinositol 3-kinase/Akt pathway  

 

VSMC growth, cell cycle entry, migration, and survival in vasculo-proliferative diseases are 

influenced by various environmental inducers, e.g. growth factors as reviewed in the previous 

three sections. But how do all these factors stimulate VSMCs and activate a coordinated set of 

events leading to changes in cell behavior? 

 

The phosphatidylinositol 3-kinases 

The trigger for stimulus-induced intracellular signal events is the acute phosphorylation of 

phosphatidylinositol lipids (PIs) at the D-3 hydroxyl group position of the inositol ring. The 

phosphorylated form then functions as a signaling intermediate in signal transduction cascades. 

A family of related enzymes that are able to phosphorylate PIs are the phosphatidylinositol 

3-kinases (PI3Ks) (reviewed in124). Various forms of PI3Ks exist in higher eukaryotes. Based on 

their structural and functional homologies they are divided into three classes: Class I, II and 

Class III. Class I enzymes are generally considered to preferentially phosphorylate the plasma 

lipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and, hence, synthesize 

phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) on the inner leaflet of the plasma 

membrane (Figure 12). 

Class I enzymes are further subdivided into two groups of PI3Ks, class Ia and Ib125. 

Whereas class Ia enzymes transmit regulatory signals which they receive from receptor protein 

tyrosine kinases, class Ib enzymes are linked to G-protein-coupled receptor systems125. Class Ia 

PI3Ks are cytosolic heterodimers composed of a p110 catalytic subunit and a regulatory subunit 

(p85, p55 or p50) with two Src-homology 2 (SH2)-domains. In quiescent cells, the regulatory 

subunit maintains the catalytic subunit in an inactive state. As soon as the SH2 domains of 

either p85, p55 or p50 directly interact with phospho-tyrosine residues of activated growth factor 

receptors or adaptor proteins, PI3K is targeted to the plasma membrane and p110 is activated 

to convert PI(4,5)P2125 (Figure 12).  

Growth factor receptors belong to the large family of receptor tyrosine kinases. 

Conformational changes within the intracellular domains of the receptor after ligand binding 

induce activation of intrinsic tyrosine kinases, thus leading to the auto-phosphorylation of 

tyrosine residues in the carboxy-terminal part of the receptor. These phosphotyrosine residues 

create new SH2-binding sites for e.g. binding of PI3K.  
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Recently, the potential role of PI3K as a mediator of restenosis has been depicted by Braun-

Dullaeus et al.. They found PI3K to increase protein levels of several cell cycle proteins in 

smooth muscle cells from coronary arteries upon growth factor stimulation and vessel 

denudation97. 

 

Hyperactivation of the PI3K pathway contributes to human cancers and plays an important 

role in diabetes mellitus type-II124. The tumor suppressor protein PTEN (phosphatase and tensin 

homologue deleted on chromosome 10) - a phosphatase that dephosphorylates PI(3,4,5)P3 at 

position 3  - antagonizes PI3K signaling (Figure 12). It was discovered to be a tumor-suppressor 

gene that is often mutated in different types of cancer, as for example in high-grade 

glioblastoma, breast and prostate cancer125. Another protein counterbalancing PI3K activity by 

dephosphorylating PI(3,4,5)P3 at the 5-position is SHIP (SH2-containing inositol 

phosphatase)125. 

 

Although the focus of this thesis deals with the stimulation of PI3K in response to mitogen-

induced receptor tyrosine kinases activation, the influence of mechanical forces on PI3K 

pathway stimulation should not be disregarded. Data from our group published within the last 4 

years indicate, that mechanical force rapidly activates the PI3K/Akt pathway in VSMCs and 

thereby triggers forkhead transcription factor–mediated downregulation of the cell cycle inhibitor 

p27KIP1 65 (for further detail see chapter “The Forkhead box O (FoxO) family of transcription 

factors“). In an advanced study, it was shown that the functional signaling complexes resulting 

in PI3-K/Akt activation during cyclic stretch are composed of the integrin receptor αVβ3 (see 

“Integrins”), caveolin-1, PI3K, and the non-receptor tyrosine kinase c-Src66. Nevertheless, the 

mechanosensitive signaling pathways being responsible for regulation of the cell cycle 

mechanisms are still poorly understood. 

 

The Akt kinase 

Generated PI(3,4,5)P3 acts as a intracellular second messenger molecule that allows the 

activation of PI-dependent kinases, such as the protein serine-threonine kinases Akt (also 

called protein kinase B (PKB)) and phosphoinositide-dependent kinase-1 (PDK-1), as well as 

activators of Rho family GTPases126. The proteins are recruited to the membrane by direct 

binding of their pleckstrin-homology (PH) domains to PI(3,4,5)P3 (Figure 12). Association of 

both proteins, Akt and PDK-1, with PI(3,4,5)P3 brings both proteins into close proximity and 

facilitates phosphorylation of Akt on threonin residue 308 (Thr308) by PDK-1. A second kinase 

recently discovered called PDK-2 triggers the phosphorylation of Ser473 in Akt. Phosphorylation 

of both residues leads to an increase in the catalytic activity of Akt127.  
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Recently, the role of tyrosine phosphorylation on Akt regulation was investigated. It was 

provided evidence, that the Src family of non-receptor tyrosine kinases are also involved in Akt 

activation due to phosphorylating tyrosine residues in the C-terminal motif of Akt 128, 129. 

 

Because Akt activity is dependent on PI3K, stimuli, which induce PI3K activity automatically, 

activate Akt as well. Active Akt triggers signals by phosphorylating a myriad of other proteins 

that affect cell cycle entry, cell growth and survival (see below). Most of these proteins are 

located into the cytoplasm. Nevertheless, phosphorylated Akt was shown to translocate to the 

nucleus within 5-10 min upon activation where it phosphorylates different intranuclear targets. 

Most of the known Akt-protein targets become inactivated by the phosphorylation event (for 

overview, see Figure 12). For example, Akt-mediated phosphorylation of the pro-apoptotic 

protein Bad creates a binding site for the 14-3-3 family of chaperon proteins and inhibits Bad 

from binding to Bcl-2 family members Bcl-2 and Bcl-xL. Thus Bcl-2 and Bcl-xL can execute their 

pro-survival function and Bad-induced apoptosis is inhibited130.  

 

Similarly, phosphorylation of the Forkhead box O (FoxO) family of transcription factors by 

Akt creates a binding site for the 14-3-3 proteins130 (for further details see “Regulation of FoxO 

function via phosphorylation”). Interestingly, Akt is also able to directly phosphorylate p27KIP1, a 

cell cycle inhibitor known to be transcriptionally regulated by the FoxO transcription factors131. 

Phosphorylation of p27KIP1 causes its cytoplasmic sequestration and this limits the availability of 

p27KIP1 proteins to inhibit cell cycle progression. 

Controversial studies exist concerning the Akt-mediated phosphorylation of the cell cycle 

regulatory protein p21CIP1. Whereas one report suggested that p21CIP1 phosphorylation by Akt 

leads to its cytoplasmic sequestration132, two other groups confirmed p21CIP1 to be an Akt 

substrate, but – in contrast - did not observe cytoplasmic translocalization of p21CIP1 upon Akt 

activation133, 134. Thus, Akt promotes cell cycle progression on the one hand by inhibiting FoxO 

transcription factors and on the other hand by inhibiting their FoxO targets, such as p27KIP1 and 

p21CIP1. 

Another Akt substrate identified is glycogen synthase kinase 3 (GSK3). Phosphorylation 

inactivates GSK3, and therefore stabilizes or activates GSK3 targets such as cyclin D, c-Myc 

and glycogen synthase124.  

Phosphorylation and thereby activation of the serin/threonin kinase mammalian target of 

rapamycin (mTOR) has also been suggested by Akt125. Upon phosphorylation, mTOR arranges 

the release of eIF-4E (translation initiation factor), which leads to initiation of translation. In 

addition, activated mTOR catalyzes phosphorylation of the ribosomal S6 kinase p70S6K which 

in turn activates ribosomal S6 proteins and thereby enhances protein translation.  
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Akt does not only directly phosphorylate activator proteins, but also modifies other signaling 

pathways regulating proliferation, apoptosis and differentiation. For example, Akt interacts and 

phosphorylates Raf135, a key mediator that triggers signals from the GTP-binding protein Ras to 

MEK and ERK. Raf phosphorylation inhibits its activity due to the phosphorylation-dependent 

binding of 14-3-3 and thereby induces activation of the Raf-MEK-ERK signaling pathway. 

Through regulating Raf, Akt provides the opportunity for the PI3K pathway to interact with the 

Ras/MAPK pathway136. Recently, this inter-pathway crosstalk was presented evidence to guide 

the phenotypic modulation of VSMCs137. 

Additionally, Akt has also been implicated in the regulation of the NF-κB transcriptional 

pathway. Akt directly phosphorylates IKK (IκB kinase)138, which in turn phosphorylates IκB, a 

protein keeping the transcription factor NF-κB in an inactive state. Phosphorylated IκB releases 
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Figure 12. The phosphatidylinositol 3-kinase/Akt pathway 
 

Upon e.g. growth factor stimulation PI3K is activated and converts PIP2 to PIP3, therefore generating 
lipid second messengers. PIP3 triggers the phosphorylation and activation of Akt. Activated Akt regulates 
downstream target proteins that mainly act on cell survival and/or cell cycle progression/proliferation. Note 
that the figure shows only a small number of Akt targets. Cot, cancer Osaka thyroid; FoxO, forkhead 
transcription factor; GF, growth factor; GSK3, glycogen synthase kinase 3; IKK, IκB kinase; mTOR, 
mammalian target of rapamycin; PDK1, phosphoinositide-dependent kinase-1; PI3K, phosphatidylinositol 
3-kinase; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-trisphosphate; 
PTEN, phosphatase and tensin homologue deleted on chromosome 10; RTK, receptor tyrosine kinase. 
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NF-κB and is further rapidly degraded by the proteasome. Akt can also phosphorylate Cot 

(cancer Osaka thyroid)139, a MAP kinase kinase kinase. This phosphorylation does not affect its 

kinase activity but leads to activation of IKK kinases.  

Despite phosphorylating and regulating all these important factors, my thesis deals 

preferentially with the Akt-target proteins of the FoxO family. Their role and functions are further 

introduced in the next chapter. 

 

 

The forkhead box O (FoxO) family of transcription f actors 

 

An important Akt target is the forkhead box O (FoxO) family of transcription factors. They have 

important functions in processes like development, differentiation, proliferation, metabolism, 

apoptosis, DNA repair and stress resistance (reviewed in Burgering and Kops140). The 

importance of the different processes that are regulated by FoxO implicates that FoxO 

transcription factors are central players in controlling cell behavior. 

 

The forkhead box O family of transcription factors 

Forkhead box O (FoxO) transcription factors include an important subfamily within the 

superfamily of winged helix/forkhead class of transcription factors, which is characterized by a 

110-amino-acid, monomeric DNA binding domain termed the “forkhead box” or “Fox”141. In 

1989, Weigel and Jackle identified the first member of this class, a protein which was shown to 

be involved in Drosophila melanogaster embryonic development142. The Forkhead family can be 

found in all eukaryotes and plays a major role in central processes of life (reviewed in143). In 

humans, the forkhead transcription factor family is composed of 39 distinct members, that have 

been splitted into 19 subgroups classified from FoxA to FoxS. They regulate a wide range of 

processes, from organogenesis (FoxC) to language acquisition (FoxP)144. Interestingly, all 

members of class ‘O’ (FoxO) are regulated by the insulin/PI3K/Akt signaling pathway145. The 

first member of this class was identified in the nematode Caenorhabditis elegans (C. elegans) 

and named DAF-16. In this animal, the transcription factor has been investigated for its 

regulatory role in longevity and dauer formation146, 147. For further information on DAF-16 

signaling in C. elegans see “Regulation of FoxO function via phosphorylation”. 

 

In mammals, DAF-16 has four described orthologues: FoxO1a (forkhead related 

transcription factor; FKHR), FoxO3a (FKHR-like1; FKHRL1), FoxO4 (ALL1-fused-gene-from-

chromosome-X; AFX) and the recently cloned FoxO6148 comprising the FoxO subgroup. 

FoxO1a, FoxO3a and FoxO4 proteins are expressed to varying degrees in all mammalian 

tissues and have a predominant cytosolic localization upon Akt inactivation149-151, whereas 
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FoxO6 is mostly nuclear and mainly expressed in the brain148, 152. In humans, FoxO1a, FoxO3a 

and FoxO4 are ascribed to have tumor-suppressor functions, since all FoxO isoforms were 

identified at chromosomal translocations in different human tumors149, 153-157. The presence of 

multiple FoxO factors in mammals suggests possible redundancy among the family members. 

 

The in vivo physiological importance of FoxO transcription factors was shown to be 

functionally diverse in mammals as concluded from loss- and gain-of-function experiments in 

both transgenic and knockout mice158. Interestingly, the different FoxO-knockout mice 

generated until now show very distinct phenotypes. FoxO1a-deficient mice die on embryonic 

day 10.5 as a consequence of incomplete vascular development of both the embryo and yolk 

sac, thus indicating a fundamental role for FoxO1a in vasculogenesis158, 159. On the contrary, 

FoxO3a- and FoxO4-null mice were viable and showed no obvious failures compared to their 

littermate controls, indicating these two FoxO members not to be necessarily involved in the 

development of the vasculature158. Nevertheless, female FoxO3a-knockout mice suffer from 

age-related progressive infertility since a premature follicle activation causes early reduction of 

fertile oocytes158, 160. Additionally, these mice show less unimportant defects such as anemia 

and glucose uptake defects, as well as an increase in neutrophil apoptosis. No defects have 

been observed in FoxO4-/- mice yet158. FoxO6 knockout mice have not been developed to date. 

 

Besides containing the characteristic DNA-binding forkhead domain, the FoxOs harbor a 

transactivation domain, located in the N-terminal and C-terminal parts of the protein, 

respectively, as well as a nuclear localization signal (NLS) located in the C-terminal end of the 

forkhead domain161, 162, and a nuclear export signal (NES) (Figure 13). FoxO1a has an 

additional NLS163. Furthermore, all FoxOs contain multiple conserved Akt phosphorylation 

motifs. Interestingly, one of the Akt phosphorylation motifs is located within the conserved NLS 

region. Attaching a phosphate group to it inhibits re-import of FoxO factors to the nucleus, which 

has a major impact on FoxOs functional abilities (see below). 

 

FoxO target genes and its cellular function  

FoxO forkhead transcription factors have been shown to control different cell processes such as 

cell proliferation, differentiation, metabolism and survival or apoptosis via regulation of cell cycle 

progression164. They do so by regulating gene expression through binding to DNA promoter 

sequences related to the consensus sequence 5’-TTGTTTAC-3’  via their forkhead box150. This 

sequence was identified for DAF-16 for the first time and is therefore termed DBE for “DAF-16 

family protein-binding element”. Bioinformatic evidence indicates that a variety of FoxO target 

genes, which are depicted in Table 1 and described in more detail below, contain DBEs in their 

promoter regions165. FoxO factors bound to DNA typically act as potent transcriptional 
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activators166, 167, however, Ramaswamy and coworkers could also verify a repressing functions 

of these transcription factors168. 

 

DNA repair and detoxification under stress conditio ns 

Consistent with the hypothesis that FoxO-mediated cell cycle stop may allow time for repairing 

damaged DNA, the expression of active FoxO isotypes in mammalian cells leads to 

upregulation of several genes being involved in DNA repair168, 169, such as GADD45. Besides 

stimulating repair of damaged DNA, GADD45 also controls cell cycle transition at the G2/M 

boundary (see above). FoxO transcription factors were also shown to induce transcription of 

genes encoding free radical scavenging enzymes (e.g. catalase and manganese superoxide 

dismutase (MnSOD))168-171. MnSOD catalyzes the conversion of superoxide radicals into 

hydrogen peroxide, whereas catalase converts H2O2 into H2O and oxygen. With this, FoxOs 

enable detoxification of destructive ROS.  

Taken together, FoxO transcription factors increase cellular stress resistance by controlling 

two aspects: 1) repair of damages caused by ROS and 2) detoxification of ROS (reviewed in172).  

 

The protective effect of FoxO proteins against oxidative stress can perhaps best be 

observed during human pregnancy, when human endometrial stromal cells are exposed to a 

tremendous amount of ROS due to major fluctuations in oxygen concentration173. Through a 

process called decidualization, the human endometrial stroma transforms itself and thereby 

becomes resistant to oxidative stress-induced apoptosis. This differentiation process enables  

implantation of the embryo and depends on the induction of FoxO1a, which in turn upregulates 

expression of MnSOD173. 

 

Cell differentiation 

In differentiating erythroid cells, FoxO3a was revealed to promote differentiation, partially by 

inducing B-cell translocation gene 1 (BTG1) expression174. Furthermore, latest studies 

demonstrated FoxO3a to act as a transcriptional repressor due to the fact that this protein 

directly binds to the Id1 (inhibitor of differentiation 1) gene, a suppressor of erythroid 

differentiation175. However, in adipocytes and myoblasts, expression of a constitutively active 

FoxO1a form inhibits differentiation in vitro176, 177, revealing an opposite role of FoxO isoforms in 

the regulation of differentiation in different cell types. 

 

Glucose metabolism 

Forkhead transcription factors are also critical regulators of various enzymes involved in 

glucose metabolism (reviewed in178, 179). For instance, FoxO family members elicit 

gluconeogenesis by binding to the DBE located within the promoter regions of glucose-6-
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phosphatase (G6Pase)180, 181, as well as to the DBEs in phosphoenolpyruvate carboxykinase 

(PEPCK)182 leading to their upregulation. Whereas G6Pase is responsible for dephosphorylating 

glucose-6-phosphate, PEPCK decarboxylates oxaloacetate to phosphoenolpyruvate (PEP) in a 

GTP-dependent manner. During energy deprivation, FoxO1a increases pyruvate 

dehydrogenase kinase 4 (PDK4) expression 183. In liver as well as in the skeletal and heart 

muscle this enzyme helps to save glucose under fasting conditions.  

The mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2), an enzyme 

involved in ketone body synthesis in the liver, is another recently identified FoxO target involved 

in metabolism184. Keton bodies originate from plasma triglycerides, which are converted into 

fatty acids in part by the enzyme lipoprotein lipase (LPL), whose expression is in turn increased 

by FoxO1a185. 

Peroxisome proliferator-activated receptor (PPAR)-γ coactivator 1 (PGC-1), a transcriptional 

co-activator induced in the liver on fasting, also has a major role in gluconeogenesis. FoxO1a 

directly binds to the PGC-1 promoter, thus inducing PGC-1 expression186. PGC-1 itself  

regulates expression of e.g. PEPCK and G6Pase via coactivating FoxO1a187, 188. With having 

this information in mind, it can be concluded that FoxO1a and PGC-1 interact and together 

regulate gluconeogenesis. 

Recent literature shows that FoxO1a is also able to bind sequences in the IGF-binding 

protein 1 (IGFBP1) promoter, thus stimulating transcription of this gene189. Since FoxOs control 

expression of genes that are involved in gluconeogenesis and - in addition - suppress gene 

expression of essential regulators of glycolysis, pentose shunt and lipogenesis190, it can be 

hypothesized that FoxO activity induces a metabolic switch that is similar to low glucose and 

fasting conditions.  

 

Cell death 

FoxO transcription factors mediate regulation of various pro-apoptotic genes166, 191-195, thereby 

controlling the process of programmed cell death. Thus, one possible way by which cell survival 

can be promoted is by departing FoxO proteins away from death genes. As already mentioned 

above, apoptosis can be induced upon activation of FasL (or other receptors belonging to the 

TNF receptor superfamily) and upon release of cyt-c from mitochondria, respectively (Figure 10 

and Figure 11). FoxO3a binds to the promoter region of the FasL gene via three putative 

binding sites, thereby initiating increased FasL transcription166. Additionally, FoxO3a also 

enhances expression of TRAIL, another ligand for the apoptosis-inducing receptor DR5193 (see 

above). Subsequently to inducing activity of these receptors, caspases are stimulated which 

trigger the execution of programmed cell death. Functional active FoxO1a upregulates TRADD, 

the TNF receptor-associated death domain196. Together with other adaptor proteins, TRADD 

can lead to caspase 8 activation and thereby inducing apoptotic cell death.  
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Besides apoptosis-triggering receptors, mitochondrial release of cyt-c leads to subsequent 

apoptosis. Cyt-c release is induced by an inbalance of pro- and anti-apoptotic proteins of the 

Bcl-2 superfamily, with activated FoxOs shifting the balance towards the pro-apoptotic site. Bim, 

a pro-apoptotic Bcl-2 family member, is under direct transcriptional control of FoxO3a in 

different cell types191, 194. Another pro-apoptotic member of the Bcl-2 family identified as a FoxO 

target gene is bNIP3L (Bcl-2/adenovirus E1B 19 kDa interacting protein 3-like)195. In addition, 

FoxO4 binds and activates the promoter of the transcriptional repressor Bcl-6192. Upregulation 

of Bcl-6 expression leads to a subsequent transcriptional downregulation of Bcl-xL, thereby 

inducing cyt-c release from the mitochondria. Depending on the stimulus and cell-type, FoxO 

transcription factors initiate apoptotic cell death either via the intrinsic mitochondria-dependent 

mechanism or via the extracellular death receptor-dependent pathway. 

The reasons why some cell types generally committing suicide upon FoxO activation and 

others are going into cell cycle arrest164, 197 are not clear at the moment, and further studies 

need to be done on this subject to clear this problem. 

 

Other functions 

FoxO transcription factors are further involved in various processes, such as skeletal muscle 

atrophy originating from FoxO3a activated Atrogin-1198, neovascularisation and repressed 

endothelial nitric oxide synthase (eNOS) expression199. 

Recently, van der Heuvel and coworkers demonstrated a direct effect of FoxOs on 

caveolin-1 expression, a constituent of caveolae200. Results from our group suggest that 

caveolin-1 expression by activated FoxO1a may desensitize neointimal VSMCs to apoptotic 

stimuli, thereby contributing to the prevention of neointima formation and restenosis (Sedding et 

al., unpublished data). 

 

Protein partners of FoxOs  

During the last years it was shown that besides directly binding to specific promoter sequences, 

FoxO factors alter gene expression via interacting with other transcription factors. For example, 

FoxOs interact with CREB-binding protein (CBP) (see above) as well as with steroid receptor 

coactivator. However, until now these interactions were only demonstrated in vitro but not in 

vivo201. 

Recent research revealed that FoxO factors are also able to bind to nuclear hormone 

receptors including the androgen receptor (AR) and estrogen receptor (ER)202-204. FoxO proteins 

also interact with Smad transcription factors thereby regulating cellular processes205. In 

cooperation with FoxO, the Smad3/Smad4 complex can lead to p21CIP1 gene expression. 

STAT3-mediated expression is also controlled by FoxO factors. FoxO1a can interact with 

STAT3 thus enhancing STAT3-mediated expression206.  
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Target Gene Regulation Process Reference 

4EBP1  + cell growth 207, 208 

Atrogin-1  + muscle atrophy 198, 209, 210 

Bcl-6 + apoptosis 192 

Bim  + apoptosis 191, 194 

bNIP3L + apoptosis 195 

BTG1  + cell cycle/differentiation 174 

catalase  + oxidative stress 171 

caveolin-1  + signaling 200, 211 

Chop + cellular stress 212 

collagenase  + 
extracellular matrix 

degradation 
213 

Cyclin B  + cell cycle 214 

Cyclin D  - cell cycle 168, 215 

Cyclin G2  + cell cycle 216 

DDB1 + DNA repair 172 

eNOS - neovascularization 199 

ERα + cell cycle, apoptosis 204 

FasL  + apoptosis 166 

G6Pase  + metabolism 180, 217 

GADD45  + DNA repair/cell cycle 169, 218 

GILZ + apoptosis 219 
Glutathione 
transferase  

+ oxidative stress 220 

HIF1 - angiogenesis/metabolism 221 

HMGCS2  + metabolism 184 

HSP70 + apoptosis 222 

Id  - differentiation 175 

IGFBP1  + metabolism 189 

InsR  + signaling 208, 223 

LPL  + lipid metabolism 185 

MafA  + oxidative stress 224 

MnSOD  + oxidative stress 170 

MuRF1  + muscle atrophy 210 

NeuroD  + oxidative stress 224 

OLD1  + longevity 225 

p130  + cell cycle/quiescence 164 

p21CIP1  + cell cycle/differentiation 205 

p27KIP1  + cell cycle 226-228 

PA26 + oxidative stress 172 

PDK4  + metabolism 183 

PEPCK  + metabolism 182, 217 

PGC-1 + glucose metabolism 186 
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PGC1 + hepatic metabolism 186, 229 

Plk  + cell cycle 214 

PPARγ 1 and 2 - glucose metabolism 230 

Scl-1  + longevity/stress resistance 231 

SCP + 
lipid metabolism/stress 

resistance 
232 

SMURF2 + 
ubiquitin-mediated 

degradation 
221 

TRADD + apoptosis 196 

TRAIL + apoptosis 193 

 
Table 1. FoxO target genes and their cellular roles 

FoxO transcription factors regulate the transcription of numerous target genes either positively (+) or 
negatively (-). Note that this figure is expandable and does not include all known FoxO target genes.  
 

 

In response to different stress stimuli including nutrient deprivation, FoxO3a interacts with 

the tumor suppressor p53 both in vitro and in vivo233, 234. Based on the evidence that FoxO and 

p53 interact with each other, and the discovery of p53 and FoxO sharing several downstream 

targets such as p21CIP1 and GADD45, it can be suggested that these two proteins may modulate 

tumor suppression.  

Other transcription factors, such as Myc and NF-κB have also been implicated in regulating 

FoxO activity and target gene specificity to mediate cell fate decisions172. 

Last but not least, β-catenin has been shown to bind to FoxO transcription factors235. The 

binding of β-catenin to FoxO enhances the transcriptional activity of FoxO proteins, thereby 

inhibiting progression through the cell cycle235. Under conditions of oxidative stress, the 

interaction of β-catenin with FoxO transcription factors has been reported to increase235. 

 

Regulation of FoxO transcriptional activity via pos ttranslational modifications 

FoxO transcriptional regulators control diverse cell functions such as cell cycle progression, 

defense against oxidative damage, repair of damaged DNA and apoptotic cell death (see 

above). These divergent functions of FoxO proteins are tightly controlled by signal-induced, 

post-transcriptional modifications, including Akt-mediated and non-Akt-mediated 

phosphorylation, acetylation and ubiquitination, which have been reviewed extensively172, 236, 237. 

 

Regulation of FoxO function via phosphorylation 

FoxO transcription factors have been implicated with multiple signaling pathways, however in 

mammals modified FoxO function was mostly observed upon growth factor-induced signaling 

via the conserved PI3K/Akt pathway166, 167, 238-241
 (for further details on PI3K/Akt signaling 

pathway see chapter “The phosphatidylinositol 3-kinase/Akt pathway”).  

The initial evidence implicating FoxOs as a target of Akt came from genetic studies carried 
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out in C. elegans. DAF-16, the roundworm FoxO orthologues and direct downstream target of 

the PI3K/Akt signaling pathway, markedly extends lifespan in the nematode146, 147. Under 

unfavorable environmental conditions such as low food or high population density, C. elegans 

can enter a so-called dauer stage. Dauer stage is a phase of developmental arrest, which is 

characterized by low metabolic activity and enhanced resistance to stress. Entering this stage 

allows the nematode to live up to ten times longer than a “normal” littermate does. A pathway 

that regulates dauer stage in this animal was identified to be the growth factor receptor induced 

PI3K/Akt pathway (reviewed in Guarente and Kenyon242). Loss-of-function mutations in the 

insulin-receptor DAF-2, a known regulatory protein involved in activating the PI3K/Akt cascade, 

double the lifespan of the animal243. Nevertheless, life span extensions caused by daf-2 

mutations required the activity of DAF-16243. Several analyses indicated the transcriptional 

activity of DAF-16 to be repressed by the phosphorylative activity of the PI3K/Akt pathway, and 

that the DAF-16 sequence revealed four consensus sites for Akt phosphorylation140. Further 

studies in Drosophila melanogaster and different mammals have revealed identical pathways to 

that in the nematode. Thus, it can be concluded that PI3K/Akt/FoxO signaling pathways are 

conserved throughout evolution (reviewed in 140). 

 

Akt regulates FoxO activity in mammals via phosphorylation of three conserved residues 

(one threonine and two serine) in FoxO1a, 3a and 4 (FoxO1a: Thr24, Ser256, Ser319238-240; 

FoxO3a: Thr32, Ser253, Ser315166; FoxO4: Thr28, Ser193, Ser258167, 241
 and on two residues 

(one threonine Thr26 and one serine Ser184) in FoxO6244, respectively (Figure 13). Under 

conditions when Akt is inactive, FoxOs either interact with diverse DNA promoter sequences or 

shuttle between the cytoplasm and nucleus through an importin- and exportin-dependent 

nuclear transport mechanism161. Phosphorylation of the three residues in FoxO1a, FoxO3a and 

FoxO4 induces inhibition of FoxO transcriptional activity on the one hand by reducing the DNA 

binding capacity of the transcription factor and on the other hand by exclusion of the 

transcription factor from the nucleus via binding to 14-3-3 proteins.  

14-3-3 chaperone proteins are ubiquitously expressed conserved scaffolding proteins, which 

are able to bind many functionally diverse proteins, including enzymes, receptors and 

transcription factors, usually when they contain phosphorylated serine or threonine residues. In 

its unbound state, 14-3-3 can dynamically transit the nucleus245. Akt-mediated phosphorylation 

of FoxO transcription factors generates two consensus-binding sites for 14-3-3161. Exportins in 

the nuclear membrane mediate export of 14-3-3 proteins from the nucleus and therefore may 

also export FoxOs to the cytosol. 

Nevertheless, binding of the chaperone 14-3-3 seems not to be sufficient for nuclear export, 

but efficient translocation requires both active intrinsic NES sequences within the bound ligand 

and phosphorylation/14-3-3 binding245. Since one phosphorylation motif of the FoxOs is located 
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within the NLS sequence (as already mentioned above, Figure 13a), binding of the chaperone 

to the transcription factor does not only contribute to nuclear exclusion but also masks the NLS. 

Thus, once translocated to the cytoplasm 14-3-3 can sequester FoxO in that compartment166, 

246. Further details on FoxO shuttling from the nucleus to the cytoplasm and back are reviewed 

in162. 

For the constitutive nuclear transcription factor FoxO6, phosphorylation at the two specific 

Akt phosphorylation sites appears to decrease the transcriptional activity only by reducing DNA 

binding244. 

 

In addition to Akt, SGK (serum and glucocorticoid inducible kinase) - another 

serine/threonine-kinase activated by PDK-1 in response to growth factor/PI3K stimulation - is 

involved in phosphorylating FoxOs247 (Figure 13a). Surprisingly, Akt preferentially 

phosphorylates FoxO factors at different sites than SGK247. 

Insulin and other growth factors also induce the phosphorylation of adjacent on multiple 

other sites of FoxO transcription factors both in vitro and in vivo. For example, FoxO1a is 

phosphorylated at Ser329 by the dual tyrosine phosphorylated and regulated kinase 1 

(DYRK1)248, member of the MAP kinase family (Figure 13a). Phosphorylation upon growth 

factor stimulation “primes” FoxO1a for phosphorylation of two other serin residues (Ser322 and 

Ser325) by casein kinase (CK1)249 (Figure 13a). Interestingly, both phosphorylation events 

accelerate the Akt/SGK-induced FoxO-relocalization to the cytoplasm by increasing interaction 

of FoxO with Ran and Exportin/Crm1, two proteins responsible for nuclear export249. 

Nevertheless, FoxO function is only 'fine-tuned' by the CK1 and DYRK1, whereas the PI3K 

pathway remains the main regulator of FoxO function162.  

More recently, it has been shown that the IκB kinase (IKK) enzyme complex (part of the 

upstream NF-κB signal transduction cascade) induces the phosphorylation of FoxO3a at 

Ser644 (Figure 13a). This phosphorylated residue in the C-terminal of the transcription factor 

maps the protein for proteolytic degradation via the ubiquitin-dependent proteasome pathway 

leading to its inhibition250. However, Ser644 is only present in FoxO3a and since this residue is 

not present in other FoxO isoforms the influence of IKK on controlling other FoxOs still remains 

to be established. 

In addition to induction of phosphorylation by insulin or other growth factor signaling, the 

cyclin-dependent kinase 2 (CDK2) - a key regulator of DNA damage - also phosphorylates and 

thereby inactivates FoxO transcription factors251 (Figure 13a). However, this modification seems 

to be FoxO1a-specific. CDK2 functionality is often eliminated after DNA damage, thus leading to 

an increase in functionally active FoxO1a. Since activation of FoxO1a is essential for inducing 

transcription of pro-apoptotic genes such as Bim, TRAIL and FasL, inhibition of CDK2-
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dependent FoxO1a-phosphorylation represents a new pathway linking DNA damage to cell 

death251. 
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Figure 13 . Different post-translational modifications of the four FoxO isoforms 
 

FoxO transcription factor activity is regulated by phosphorylation and acetylation upon stress stimuli and 
growth factor stimulation. The forkhead box O transcription factors (FoxO) contain various domains: a 
forkhead or DNA-binding domain (FKH), a nuclear localization sequence (NLS) and a nuclear export 
sequence (NES) as well as a transactivation domain (TA). Modified residues are indicated and amino-
acid numbers are given for the individual isoforms. a) FoxO phosphorylation: The kinases responsible for 
the various phosphorylation events are indicated above the schematic protein structure. For further detail 
see text. b) FoxO Acetylation: Acetylation of specific FoxO residues has only been studied for the cyclic-
AMP responsive element binding (CREB)-binding protein (CBP) and not for other histone acetyl 
transferases. c) FoxO ubiquitination: Two potential monoubiquitination sites on FoxO4 are indicated. 
Unknown ubiquitinating or acetylating enzymes are indicated by question marks. Ac, acetylation; CDK2, 
cyclin-dependent kinase-2; cGK1, cGMP-dependent protein kinase-1; CK1, casein kinase-1; DYRK1, 
dual-specificity tyrosine (Y)-phosphorylation-regulated kinase-1; IKK, IΚB kinase; JNK, c-Jun N-terminal 
kinase; MST1, mammalian sterile 20 kinase-1; P, phosphorylation; SCFSkp2, the SKP1/cullin-1/F-box 
protein complex that contains the specific substrate-targeting F-box protein SKP2; SGK, serum- and 
glucocorticoid-inducible kinase; Ub, ubiquitination. 
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Research in mammalian myoblast revealed a regulatory activity of FoxO1a during 

myogenesis. In these cells, FoxO1a was shown to directly control expression of cyclic GMP- 

dependent protein kinase I (cGKI)252. However, in an autoregulatory loop cGKI itself 

phosphorylates FoxO1a leading to an abolished DNA binding capacity of the transcription factor 

(Figure 13a), thus exhibiting a novel feedback mechanism in myoblast cell fusion252. 

 

After having introduced all the phosphorylation events leading to FoxO inactivity and nuclear 

exclusion, it is noteworthy to mention that recently the phosphorylation of FoxO by JNK (c-Jun 

N-terminal kinase) was shown by Essers et al. to have the opposing effect: JNK-mediated 

phosphorylation induces FoxO-translocation from the cytoplasm to the nucleus253. Once in the 

nucleus, FoxO4 can upregulate stress-resistance genes such as MnSOD and catalase, by 

binding to its specific promoter regions. JNK belongs to the family of MAPK kinases and is 

activated upon stress stimuli. Mammalian FoxO4 is phosphorylated on Thr447 and Thr451 by 

the activated JNK253 (Figure 13a). Interestingly, these sites are neither conserved in other 

mammalian FoxO isoforms nor in the worm orthologue, even though all these FoxOs were 

demonstrated to be phosphorylated by JNK in vitro253, 254. Thus, it seems that JNK 

phosphorylates other FoxO transcription factors at sites that need to be investigated in the 

future. 

The opposing effect of growth factors and oxidative stress on FoxO subcellular localization is 

controlled by the phosphorylation of FoxO at different sites. Brunet and colleagues identified 

stress stimuli to override the effect of growth factors in mammalian cells when applied 

simultaneously, so that FoxO transcription factors are localized to the nucleus under these 

circumstances233. The detailed activities by which stress stimuli and JNK lead to FoxO 

relocalization to the nucleus are not yet known, however, recent studies identified 14-3-3 

proteins to play a role in this phenomenon. Upon phosphorylation by JNK, 14-3-3 chaperons 

release all their bound substrates, including FoxO transcription factors which then have the 

prerequisite to re-enter the nucleus255, 256. 

Lehtinen and coworkers could show that the mammalian sterile 20-like kinase 1 (MST1) 

mediates oxidative stress-induced cell death in primary mammalian neurons by binding and 

phosphorylating FoxOs directly in vitro and in vivo257 (Figure 13a). MST1 phosphorylation, 

exactly like JNK phosphorylation, activates FoxO, but how this activation occurs is still unclear. 

Additionally, MST1 regulates p38 and JNK pathways237, thus MST1 regulation of FoxO may 

also be mediated indirectly through JNK. 

 

Regulation of FoxO function via acetylation and dea cetylation   

In addition to regulation via phosphorylation, a second important posttranslational modification 

pathway that regulates FoxO transcriptional activity has been identified: 
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Acetylation/deacetylation. Acetylation is characterized through transfer of an acetyl moiety from 

acetyl-CoA to a substrate. Many proteins that can become acetylated belong to the family of 

histones and transcription factors. Since these proteins are involved in the regulation of 

transcription, enzymes controlling the acetylation/deacetylation status - the so-called 

acetyltransferases and deacetylases, respectively - have major roles in the control of cell fate 

(reviewed in Legube and Trouche, 2003258). 

In the past years, numerous enzymes that are able to catalyze the transfer of an acetyl 

group to a lysine residue in a substrate were discovered259. These acetylases can be subdivided 

into another group called histone acetyltransferases (HATs). For example CBP, p300 and PCAF 

(CBP-associated factor) belong to this group, even they were shown to acetylate non histone 

proteins, too.  

For mammalian FoxO transcription factors, several acetylases have been identified until 

today influencing the transcriptional regulation of FoxO downstream target genes in vitro and in 

vivo233, 260-265. The already mentioned, CBP, p300 and PCAF are able to directly acetylate FoxO 

factors at several conserved lysine residues, whereas p300 is also able to acetylate FoxO 

indirectly by recruiting PCAF. FoxO1a is acetylated at Lys242, Lys245, and Lys262261, whereas 

Fukuoka et al. identified three lysine residues Lys186, Lys189, and Lys408 in FoxO4 being 

acetylated260 (Figure 13b). FoxO3a is acetylated at 5 residues in the carboxyterminal part of the 

protein233 (Figure 13b). Several other FoxOs lysine residues have been determined by mass-

spectrometric analysis of being possible acetylation targets for yet unidentified HATs264. Some 

of these residues are conserved among all FoxO members. However, acetylation of most of 

these residues did not change FoxO transcriptional activity considerably260, 266. 

Acetylation of FoxO transcription factor occurs in response to insulin stimulation264 as well as 

after oxidative stress treatment233, 262, 263. In conclusion it can be said that both stimuli contribute 

to FoxO acetylation, although the kinetics of insulin-induced and stress-induced acetylation 

appear to differ237.  

 

The molecular mechanisms whereby HATs bind and modify FoxO factors are still unclear. 

However, it was shown that acetylation of FoxO proteins weakens their transactivation capacity. 

For example, acetylation of Lys242, Lys245 and Lys262 of FoxO1a has been shown to 

attenuate its sequence-specific DNA binding in vitro, whereas these modifications affected 

PI3K/Akt-mediate phosphorylation at Ser253 in vivo267. Several other studies also suggest that 

acetylation inhibits and deacetylation activates FoxO261, 263, 268-270. Thus, acetylation of proteins 

involved in the transcription process may lead to attenuated transcription. Paradoxically, under 

some circumstances acetylation of FoxO factors appears to induce their transcriptional activity, 

leading to an advanced FoxO target gene expression262, 271. Whether this effect is dependent on 
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the stimulus or is target gene specific needs to be determined. Nevertheless, this interesting 

observation accommodate with the next mentioned point. 

Alternatively to acetylate FoxOs, the acetyltransferases CBP, p300 and PCAF also function 

as transcriptional coactivators for FoxOs modulating its DNA binding ability. This leads to an 

increase in FoxO-dependent transcription. Both proteins interact with the C-terminal 

transactivator domain in the FoxO transcription factors. Binding to CBP/p300 is an initial step in 

assembling the transcriptional activation complex of FoxO, thus providing a connection between 

the basal transcriptional machinery and their regulators260, 263, 271. 

 

Histone deacetylases (HDACs) are enzymes that remove acetyl residues from proteins, thus 

inverting the acetylation process. Acetylated mammalian FoxOs are deacetylated in vitro and in 

vivo by SIRT1, a member of the mammalian Class III deacetylases (for details see “The 

mammalian NAD-dependent protein deacetylase SIRT1”). The lysine residues of FoxO1a that 

seem to be preferentially deacetylated by SIRT1 are Lys242, Lys245, and Lys262261. 

In addition to SIRT1, other histone deacetylases from HDACs class I and II may regulate 

FoxO activity because treatment of cells with inhibitors for these classes induces FoxO 

acetylation233, 262, 263, 267, 269 and affects FoxO localization269 as it was shown by others and by our 

group (for further detail see “Results”).  

Besides the two opposing concepts that FoxO acetylation either activates or inactivates 

FoxO function, a recent study declares that SIRT1 influences FoxO transcription factors in a 

context-specific manner, thus regulating the balance between pro-apoptotic and cell cycle arrest 

genes233. For example, it has been reported that SIRT1-activated FoxO promotes cell-cycle 

arrest by inducing p27KIP1 expression and cellular resistance to oxidative stress by upregulating 

levels of MnSOD and GADD45169, 218 (see above). Results verifying this concept were achieved 

in this thesis. However, the detailed mechanism by which SIRT1 differentially controls FoxO 

functions is not yet known and more work is needed to elucidate conclusively the role of 

acetylation and SIRT1 on FoxO function. 

 

Regulation of FoxO function via ubiquitination and degradation   

FoxO shuttling to the cytoplasm exposes FoxO proteins to a third system irreversible regulating 

their activity post-transcriptionally: The ubiquitination-dependent proteasomal degradation250, 272-

274. This system can be induced by growth factors through PI3K/Akt signaling272, 273 and also 

through IKK (see above)250 leading to polyubiquitination of FoxO transcription factors (see 

Figure 13c). The ubiquitin ligase acting on FoxO1a has been identified as Skp2, a member of 

the SCF (Skp1/Cul1/FoxO1a-box) E3 ubiquitin ligase complex274. Akt-mediated phosphorylation 

of Ser256 in FoxO1a is the primary event that generates a binding site for Skp2 (see Figure 

13a). After interaction with FoxO1a, Skp2 polyubiquitinates the transcription factor and thereby 
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induces its degradation leading to a dramatic decrease in the FoxO1a level. As a result of 

Skp2-mediated proteosomal degradation, FoxO1a transcriptional activity is downregulated. 

Nevertheless, Skp2 does not act on all FoxO members.  

For FoxO3a, the crucial kinase is IKK rather than Akt, and the relevant target residue is 

Ser644, attracting an yet unidentified ubiquitin ligase250 (Figure 13a). As already mentioned 

above, this serine residue is not conserved in other FoxO isoforms and organisms. Thus, there 

is no evidence for IKK of phosphorylating and controlling other FoxO proteins. However, the 

essential steps - phosphorylation-dependent ubiquitination followed by proteasomal degradation 

- are the same for all FoxO factors.  

 

Since cytosolic localization is the prerequisite for optimal degradation of FoxO1a, FoxO3a 

and FoxO4, the question arises how degradation of FoxO6 - the constitutive nuclear FoxO 

factor - occurs. It seems possible that FoxO6 is degraded by another system than the 

proteasome system, for example by protease cleavage (see below). However, the exact 

mechanisms remain to be identified.  

 

Degradation of polyubiquitinated FoxO is a constitutive, but slow process272, 273 with 

polyubiquitination detectable after ~12 hours. Recent research could show that FoxOs are not 

only polyubiquitinated but are also influenced by monoubiquitination, which is triggered by rising 

stress levels266. Monoubiquitination is an immediate process (~5 minutes after exposure to 

stress) leading to FoxO nuclear localization and stimulates its transcriptional activity. However, 

the mechanism that mediates this nuclear localization is unclear and the ubiquitin ligase (E3) 

catalyzing monoubiquitination has not been identified yet. USP7 (also known as herpesvirus-

associated ubiquitin-specific protease (HAUSP)) was shown to remove monoubiquitin but not 

polyubiquitin moieties from FoxOs266. Interestingly, acetylation and ubiquitination target the 

same amino-acid residues in FoxO transcription factors. For example, the lysine residues 199 

and 211 in FoxO4 can become both acetylated and ubiquitinated266 (Figure 13c), which 

suggests that competition between different lysine modifications can occur. If acetylation of 

FoxO lysines is the first event, functionality of the transcription factor is inhibited due to a 

weakened DNA-binding and/or renewed monoubiquitination is prevented267. 

Another system for degrading FoxO transcription factors - besides being processed by the 

ubiquitin system - is protease cleavage. FoxO3a can be cleaved by caspase 3-like proteases, 

yielding an NH2-terminal, and a COOH-terminal domain. A similar proteolytic-dependent way 

has been shown for FoxO1a regulation275. Similar to FoxO3a and FoxO1a, a proteolytic 

cleavage site has also been identified in FoxO4, but interestingly not in FoxO6276.  
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The current findings on FoxO regulation by posttranslational modification reveal that 

mitogens and oxidative stress counterbalance FoxO function through multiple mechanisms and 

dependent on the context the outcome may vary. 

 

 

The mammalian NAD-dependent protein deacetylase SIR T1  

 

The family of mammalian histone deacetylases 

The post-translational modification of FoxO transcription factors via acetylation is a dynamic 

process and the enzymes catalyzing the removal of acetyl moieties on FoxO lysines are called 

HDACs (see above). Originally, these proteins were identified for their ability to catalyze histone 

deacetylation and are therefore named histone deacetylases. Deacetylation of histones 

elevates the positive charge within the histone tails. In conclusion, this intensifies the histones´ 

affinity for DNA leading to gene silencing. However, in addition to histones, recent research 

identified several other proteins that can be deacetylated by HDACs, such as p53, E2F and the 

already mentioned FoxOs.  

To date, more than 12 human HDACs have been identified and are divided in 4 subgroups: 

class I, class II, class III and class IV HDACs277. The class I HDACs consists of HDAC1, 2, 3 

and 8, whereas HDAC4, 5, 6, 7, 9 and 10 belong to the class II HDACs. Class III HDACs are 

yeast Sir2 (silent mating type information regulator 2)-like sirtuins, which will be discussed later 

in this chapter 278. HDAC11 is at the moment the only known member of class IV HDACs (for a 

review see Blander et al.279).  

Class I HDACs (the yeast Rpd3-like histone deacetylases) show a predominant nuclear 

localization and because of their ubiquitinous expression pattern seem to be involved in general 

cellular processes277, 280. Class II enzymes shuttle between the cytoplasm and the nucleus via 

an interaction with 14-3-3 proteins (see above), and have a more restricted expression pattern 

suggesting to have tissue-specific functions during development of organisms. They show 

strong homology to yeast Hda1 family277, 280. Both, class I and II HDAC function can be potently 

inhibited by the small molecule inhibitor TSA (Trichostatin A), with an IC50 at low nanomolar 

concentrations for all classes of HDACs277, 280.  

 

The mammalian class III histone deacetylases (sirtu ins) 

The Sir2 family of histone deacetylases (typed class III HDACs) are structurally different from 

the other two HDAC classes, and are insensitive to TSA278. The Sir2 family is highly conserved 

in organisms ranging from bacteria to complex eukaryotes as e.g. humans281.  In humans, the 

class III HDAC is comprised of seven members called SIRT1 (sirtuin1) to SIRT7282. Each 
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member of this family shows sequence conservation in the 250 amino acid core domain281, 282, 

and some contain additional N- or C-terminal sequences. Out of all seven family members, 

SIRT1 is the closest homologue of yeast Sir2. SIRT1 is ubiquitously expressed and has been 

believed to be a nuclear protein. Nevertheless, recent reports also verified the cytoplasmic 

localization of SIRT1 in various tissues and cells. For example findings by Tanno and coworkers 

indicate a nucleocytoplasmic shuttling of SIRT1 during different stages of development and in 

response to physiological and pathological stimuli283. SIRT2, which is a cytosolic enzyme, 

controls mitotic exit and is involved in tubulin deacetylation. SIRT3, 4 and 5 are all three 

localized to mitochondria279. SIRT6 and SIRT7 are found in the nucleus, where SIRT6 is 

associated with heterochromatin and SIRT7 accumulates in nucleoli279. In summary, it is 

interesting to see that some of the mammalian Sir2-like proteins still have histone deacetylase 

activity, whereas other family member use non-histone proteins as a substrate. 

Sirtuins, as compared to Class I and II HDACs, have recently been shown to belong to a 

group of enzymes called ADP-ribosyl transferases: They possess nicotinamide adenine 

dinucleotide (NAD+)-dependent protein and histone deacetylation activity in vitro278, 284. Sirtuins 

couple deacetylation to the hydrolysis of NAD+, transferring the acetyl group from their protein 

substrate to ADP-ribose, thereby generating nicotinamide (NAM) and a novel metabolite, 

O-acetyl-ADP-ribose285, 286. O-acetyl-ADP-ribose itself may have a unique cellular function and 

seems to be an important regulator of physiology287, 288. Indeed, recent studies in yeast revealed 

that O-acetyl-ADP-ribose can initiate structural reorganization of the Sir complex that is  

responsible for silencing of chromatin288. 

Since SIRT1-mediated deacetylation is NAD+ dependent, it is linked to the metabolic state of 

the cell and can be regulated by environmental circumstances influencing NAD+/NADH ratio, or 

the NAM levels. For example caloric restriction affects the metabolic process by increasing the 

NAD+/NADH ratio, thus extending lifespan in a wide range of organisms from yeast to 

mammals289. This led to the hypothesis that caloric restriction may act via SIRT1 to enhance 

longevity. Fulco et al. showed that during human muscle differentiation the NAD+/NADH ratio 

diminishes thus leading to modified SIRT1 deacetylase activity290. Interestingly, not only SIRT1 

activity, but also SIRT1 levels were found to be increased upon caloric restriction in mammalian 

cells291. 

Studies from the Sinclair group have identified NAM as a potent inhibitor of SIRT1 both in 

vivo and in vitro292, 293. Unfortunately, as this compound is directly incorporated into the cell 

metabolism, it is not clear whether it is specific for a given sirtuin. High-throughput screenings 

have discovered several different chemical compounds specific for Sir2/SIRT1. For example, 

splitomicin294 as well as sirtinol295 are potent inhibitor of human sirtuins. For a review the reader 

is refered to296. 
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As mentioned above, elevated Sir2 activity promotes longevity. The plant polyphenol 

resveratrol being abundant for example in red wine, was discovered by Howitz and coworkers to 

increase SIRT1 activity in the budding yeast Saccharomyces cerevisiae resulting in increased 

yeast life span by 70%297. Since these observations in 2003, resveratrol has been revealed to 

extend the lifespan of different other species including C. elegans and D. melanogaster in a 

Sir2-dependent manner298, 299. A recent study identified resveratrol to improve health and 

survival of mice300. In human cell lines, treatment with low concentrations of resveratrol 

increased cell survival upon ionizing radiation-induced DNA damage297. Moreover, the 

acetylation of p53 at the known SIRT1 lysine residue 382, was decreased following resveratrol 

treatment297. Experiments presented in this study suggest that even in human tissues 

resveratrol activates SIRT1, thus amplify its protective effect (see “Results”-part of this thesis). 

These data suggest that even general health and lifetime extension by mitigation of age-

related diseases (e.g. cardiovascular diseases) in humans using resveratrol are attainable 

goals301. Since resveratrol is found in red wine this could be the explanation for the “French 

paradoxon”, the fact that red wine drinking people in France have relatively low coronary heart 

disease rates. Also for those who seek the “fountain of youth”, resveratrol or any other activator 

of SIRT1 is of special interest. Nevertheless, the mechanism of resveratrol - and other 

polyphenols – as well as its physiologic impact on SIRT1 activity is poorly understood and 

needs to be determined in the future. 

 

The biological function of SIRT1  

A role for Sir2 as a transcriptional silencer was unraveled by genetic studies in yeast. However, 

the deacetylase also enhances lifespan in yeast by inhibiting production of toxic 

extrachromosomal rDNA circles302. The replicative life span of the yeast was extended by 30% 

after introduction of a second copy of Sir2 into the genome303. Interestingly, subsequent studies 

revealed that the C. elegans Sir2-homologue also affects lifespan of the nematode, but by 

totally different mechanism. In C. elegans, an extra copy of Sir2 enhances longevity by 

stimulating the activity of the worm FoxO-homologue DAF-16304, 305 (see above). It does so by 

directly binding to DAF-16306, and not as previous studies suggested by downregulating insulin 

signaling304. Likewise, overexpression of the Sir2 protein in Drosophila significantly extended 

the lifespan of the fly307, however, the mechanism remain unknown. After mammalian SIRT1 

has already been implicated in stress resistance and numerous metabolic pathways, it will be 

interesting to know whether Sir2 also regulates the aging process of higher eukaryotes. 

As the name histone deacetylase implicates, SIRT1 was shown to deacetylate histones, 

such as histones H3 and H4279. Nevertheless, today more than 15 non-histone substrates are 

also known, of which some are further described below. However, even though SIRT1 

deacetylates a vast amount of proteins and was shown to have substrate specificity in vivo, a 
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recent study could not identify a specific amino acid sequence close to the acetylated lysines 

that are being catalyzed by the enzyme308. Thus, substrate recognition by SIRT1 does not 

dependent on the DNA sequence of the substrate but depends on other yet unknown principles. 

A review about the chemical and structural characteristics of SIRT1 was written by Sauve et 

al.296. 

SIRT1 targets participate in important biological processes as for example fat mobilization 

and differentiation. Recent studies revealed the repression of the fat regulator PPAR-γ by 

SIRT1 via interaction with the PPAR-γ cofactors NCoR (nuclear receptor co-repressor) and 

SMRT (silencing mediator of retinoid and thyroid hormone receptors) which leads to fat 

mobilization in white adipose tissue and reduced fat cell formation309. Since fat reduction is well-

known to extend mouse lifespan, the above mentioned influence of SIRT1 may contribute to the 

prolongation of lifespan. 

Also skeletal muscle differentiation is regulated by SIRT1. MyoD function, a muscle 

transcriptional regulator, is either directly attenuated by the sirtuin or via SIRT1-mediated 

deacetylation of another histone acetyltransferase called PCAF290. SIRT1 also controls glucose 

metabolism in the liver through deacetylating PGC-1310. Last but not least, SIRT1 function is 

also important in B cell differentiation (reviewed in279).  

Axonal protection and survival of neurons are other processes affected by SIRT1311. 

Transcription of human genes is repressed by SIRT1 at different levels: A the level of 

polymerase apparatus (TAFI68), as well as at the level of basal transcription factor (HES1 and 

HEY2) and repressor activity (CTIP2)279. 

SIRT1 promotes cell survival under stress conditions by deacetylating and repressing the 

proto-oncogene p53312-314. Results from these indicated studies were verified recently by new 

findings in SIRT1 knockout mice created by Cheng et al.: SIRT1-deficient animals show 

hyperacetylated p53 after DNA damage and display increased thymocyte apoptosis315. Two 

other independent groups also created SIRT1 knockout mice316. Both groups showed that 

SIRT1 -/- mice were viable but significantly smaller than their wildtype littermates at birth, and 

most of these animals did not reach adulthood due to early postnatal death. Once born, SIRT1 

null mice often survived to adulthood but had obvious developmental defects, such as delay in 

eyelid opening at time of birth. Knockout mice also revealed several organ defects: Whereas 

SIRT1 -/- mice generated by Cheng et al. showed cardiac and retina defects, McBurney and 

coworkers found defects in lung and pancreas316. Interestingly, both sexes of the knockout 

animals were sterile. Infertility in female SIRT1 null animals appeared to be due to failure in 

ovulation, whereas male infertility originated from a significant low number of mature sperms. 

 

Besides promoting cell survival, activation of SIRT1 can inhibit cell senescence by both 

repressing the tumor and growth suppressor promyelocytic leukemia protein (PML) and by 
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activating the catalytic subunit of hTERT (human telomerase reverse transcriptase)279. In 

addition, SIRT1 can modulate survival and cellular stress response through regulation of NF-ΚB 

signaling317, Ku70291, 318 and FoxO transcription factors233, 262. SIRT1-mediated deacetylation of 

FoxO by seems to mostly induce FoxO transcriptional activity or at least determines gene 

specificity of FoxO (as discussed above). 

SIRT1 does not only have a direct role on FoxO activity but also regulates PGC-1, 

p300/CBP and possibly PPAR which function as FoxO cofactors as mentioned in the chapter 

“The Forkhead box O (FoxO) family of transcription factors”. Notably, these proteins also affect 

gene transcription on their own as described in the above examples. SIRT1-mediated 

deacetylation of these cofactors affects their activity and seems to be context-dependent. 

Taken together, it can be said that activation of SIRT1 seems to work in various ways to 

reduce cell ageing, and increases cell survival by attenuating apoptosis and elevating defense 

and repair mechanisms. 

 

Cellular aging and cellular stresses cause diminished function of all organs, including the 

heart and the vasculature319. Thus, with age the incidence of cardiovascular diseases increases 

dramatically. In the blood vessels, medial VSMCs are especially affected by aging. Change of 

their properties (proliferation, migration and apoptosis) contributes to vascular remodelling and 

atherosclerosis (see chapter “Vascular smooth muscle cells“).  

Since SIRT1 – as it was shown above - is involved in controlling both cellular aging and 

stresses, studying its function in VSMCs with regard to cardiovascular diseases seems to be 

promising for a more detailed understanding of the pathophysiology of the vasculature as well 

as for determining future therapeutic strategies. 
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Materials  

Chemicals 

Product Source Cat.No. 

10% Non-immune goat 
serum Zymed Laboratories Inc, San Fransisco, CA, USA 50-197 

2-Mercaptoethanol Sigma-Aldrich Chemie GmbH, Munich, Germany M-3148 

2-Propanol 
Riedel-de Haën Sigma-Aldrich Laborchemikalien 

GmbH, Seelze, Germany 
59304 

5x siRNA Buffer Dharmacon, Inc., Chicago, IL, USA 
B-002000-UB-

100 
Acetic acid 100% Merck KGaA, Darmstadt, Germany 1.00063 

Acetone 
Riedel-de Haën Sigma-Aldrich Laborchemikalien 

GmbH, Seelze, Germany 
32201 

Albumin Fraktion V Carl Roth GmbH + Co. KG, Karlsruhe, Germany 8076.2 
Antibody diluent Zymed Laboratories Inc, San Fransisco, CA, USA 00-3118 
Aqua ad iniectabilia 
(H2Odd) 

Baxter Deutschland GmbH, Unterschleißheim, 
Germany 

001428 

Blotting Grade Blocker 
Non-fat dry milk 

Bio-Rad Laboratories, Hercules, CA, USA 170-6406 

Bovine serum albumine 
(Fraction V) 

Carl Roth GmbH + Co. KG, Karlsruhe, Germany 8076.2 

Bromphenol blue Sigma-Aldrich Chemie GmbH, Munich, Germany B-8026 
Calcium chloride (CaCl2) Merck KGaA, Darmstadt, Germany 1.02382.1000 
Chloroform Sigma-Aldrich Chemie GmbH, Munich, Germany C7559 
CompleteTM Protease 
Inhibitor Cocktail Tablets 

Roche Diagnostic GmbH, Mannheim, Germany 1697498 

Dimethylsulfoxide (DMSO) Sigma-Aldrich Chemie GmbH, Munich, Germany D-4540 
DL-Dithiothreitol Sigma-Aldrich Chemie GmbH, Munich, Germany D-9163 
Dulbecco´s phosphate 
buffered saline (PBS) 10x PAA Laboratories GmbH, Pasching, Austria H15-011 

Dulbecco´s phosphate 
buffered saline (PBS) 1x 

PAA Laboratories GmbH, Pasching, Austria H15-002 

Dynabeads Protein G Dynal Biotech GmbH, Hamburg, Germany 100.03 
Eosin Y Disoldium salt Sigma-Aldrich Chemie GmbH, Munich, Germany E-4382 

Ethanol 
Riedel-de Haën Sigma-Aldrich Laborchemikalien 

GmbH, Seelze, Germany 
32205 

Fetal bovine serum (FBS) Invitrogen GmbH, Karlsruhe, Germany 10500-064 
Gelatin Sigma-Aldrich Chemie GmbH, Munich, Germany G-2500 
Glycerol Sigma-Aldrich Chemie GmbH, Munich, Germany G-6279 
Glycine Carl Roth GmbH + Co. KG, Karlsruhe, Germany 3908.2 
Hematoxylin solution Merck KGaA, Darmstadt, Germany 1.05174 
Hepes Sigma-Aldrich Chemie GmbH, Munich, Germany H-3375 
Histofix 4 % (PFA) Carl Roth GmbH + Co. KG, Karlsruhe, Germany P087.3 
Hoechst 33342 (10 mg/ml) Molecular Probes, Eugene, Oregon, USA H-3570 
Hydrochloric acid (HCl) Merck KGaA, Darmstadt, Germany 1.09057 
Hydrogen Peroxide (H2O2) 
3% 

Otto Fischer GmbH & Co. KG, Saarbrücken, 
Germany 

6305046 

L-Glutamine PAA Laboratories GmbH, Pasching, Austria M11-004 
Lipofectamine 2000 Invitrogen GmbH, Karlsruhe, Germany 52758 
Magnesium chloride 
(MgCl2) 

Sigma-Aldrich Chemie GmbH, Munich, Germany M8266 
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Methanol 
Riedel-de Haën Sigma-Aldrich Laborchemikalien 

GmbH, Seelze, Germany 
65543 

Nicotinamide (NAM) Sigma-Aldrich Chemie GmbH, Munich, Germany N-3376 
Normal goat serum (NGS) Invitrogen GmbH, Karlsruhe, Germany 16210-064 
OptiMEM I Invitrogen GmbH, Karlsruhe, Germany 31985-047 
Penicillin / Streptomycin PAA Laboratories GmbH, Pasching, Austria P11-010 
Phloxine B Sigma-Aldrich Chemie GmbH, Munich, Germany P-4030 
Ponceau S Solution Sigma-Aldrich Chemie GmbH, Munich, Germany P-7170 
Potassium chloride (KCl) Sigma-Aldrich Chemie GmbH, Munich, Germany P9333 
Propidium Iodide Solution 
(PI) (1.0 mg/ml) 

Sigma-Aldrich Chemie GmbH, Munich, Germany P-4864 

Psammaplysene A 
kindly provided by J. Clardy, Harvard Medical 

School, Boston, MA, USA  

Recombinant Human 
PDGF-BB 

R&D Systems GmbH, Wiesbaden, Germany 220-BB 

Resveratrol Sigma-Aldrich Chemie GmbH, Munich, Germany R5010 
RNAse A Invitrogen GmbH, Karlsruhe, Germany 12091-039 
RNase ZAP Sigma-Aldrich Chemie GmbH, Munich, Germany R-2020 
Sirtinol Axxora Deutschland GmbH, Grünberg, Germany ALX-270-308 
Sodium azide (NaN3) Sigma-Aldrich Chemie GmbH, Munich, Germany S-2002 
Sodium chloride (NaCl) Carl Roth GmbH + Co. KG, Karlsruhe, Germany 3957.1 

Sodium chloride solution 
Baxter Deutschland GmbH, Unterschleissheim, 

Germany 001498 

Sodium deoxycholate Sigma-Aldrich Chemie GmbH, Munich, Germany D6750 
Sodium dodecyl sulfate 
(SDS) 

Carl Roth GmbH + Co. KG, Karlsruhe, Germany 2326.2 

Sodium dodecyl sulfate 
solution 10% (w/v) 

Bio-Rad Laboratories, Hercules, CA, USA 161-0416 

Sodium hydroxide solution 
(NaOH) 

Merck KGaA, Darmstadt, Germany 1.09137 

Splitomicin Axxora Deutschland GmbH, Grünberg, Germany ALX-270-380 
Sulfuric acid (H2SO4) Sigma-Aldrich Chemie GmbH, Munich, Germany 433217 

Tissue TekTM 
Sakura Finetek Europe B.V., Zoetenwounde, 

Netherlands 4583 

Trichstatin A (TSA) Sigma-Aldrich Chemie GmbH, Munich, Germany T8552 
Tris Carl Roth GmbH + Co. KG, Karlsruhe, Germany 4855.2 
Triton X 100 Sigma-Aldrich Chemie GmbH, Munich, Germany T-9284 
Trizma® hydrochloride 
(Tris-HCl) 

Sigma-Aldrich Chemie GmbH, Munich, Germany T5941 

Trypan blue solution (0.4%) Sigma-Aldrich Chemie GmbH, Munich, Germany T-8154 
Trypsin/EDTA Cambrex BioScience, Inc,  Walkerville, MD, USA CC-5012 
Tween 20 Sigma-Aldrich Chemie GmbH, Munich, Germany P-1379 
Ultrapure DNase/RNase-
Free Distilled Water Invitrogen GmbH, Karlsruhe, Germany 10977-035 

Vectashield Mounting 
Medium 

Vector Laboratories, Inc., Burlingame, CA, USA H-1000 

Xylenes 
Riedel-de Haën Sigma-Aldrich Laborchemikalien 

GmbH, Seelze, Germany 95692 

Table 2. List of chemicals 

 

 



Materials and Methods   

 

46 

Antibodies 

Primary antibodies 

Antibody Source Isotype Company Cat.No. 

α-Smooth Muscle 
Actin 

mouse 
IgG monoclonal 
Cy3 conjugated 

Sigma-Aldrich Chemie GmbH, 
Munich, Germany 

C 6198 

β-tubulin mouse IgG monoclonal 
Sigma Chemical 

Co, St Louis, MO, USA 
T 4026 

Acetylated-Lysine  rabbit IgG polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
9441 

Acetylated-p53 
(Lys382)   

rabbit IgG polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
2525 

Bim (H-191)  rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-11425 

Caveolin-1 (N-20) rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-894 

CDK4 (C-22) rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-260 

Cleaved Caspase-3 
(Asp175)  

rabbit IgG polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
9661 

Cleaved PARP 
(Asp214) 

rabbit IgG Polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
9541 

Cyclin A rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-751 

Cyclin B rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-595 

Cyclin D1 rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-753 

Cyclin E rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-481 

FasL rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-834 

FoxO1a  rabbit IgG polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
9462 

FoxO3a  rabbit IgG polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
9467 

GADD45α (C-20)  rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-792 

MnSOD rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-30080 

p21 (C-19) rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-397 

p27 (F-8) mouse IgG monoclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-1641 

p53 (FL-393) rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-6243 

PARP rabbit IgG polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
9542 

phospho-Akt 
(Ser475) 

rabbit IgG polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
9271 

phospho-FoxO1a 
(Ser256) 

rabbit IgG polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
9461 

phospho-Rb rabbit IgG polyclonal 
Cell Signaling Technology, Inc., 

Beverly, MA, USA 
9308 
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SIRT1 mouse IgG monoclonal 
Upstate Biotechnology, Lake Placid, 

NY, USA 
05-707 

SIRT1 (H-300) rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-15404 

SIRT1 (H-300) rabbit 
IgG polyclonal 

biotin conjugated 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-13404 

Vinculin (H-300) rabbit IgG polyclonal 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-5573 

Table 3. List of primary antibodies 

 

 

Secondary antibodies 

Antibody Source Conjugate Company Cat.No. 

Anti-mouse IgG sheep HRP 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-2005 

Anti-mouse IgG goat Alexa Fluor 488 
Molecular Probes, Eugene, Oregon, 

USA 
A-11029 

Anti-rabbit IgG goat HRP 
Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA 
sc-2004 

Anti-rabbit IgG goat Alexa Fluor 488 
Molecular Probes, Eugene, Oregon, 

USA 
A-11034 

Anti-rabbit IgG donkey Cy5 
Dianova GmbH, Hamburg, 

Germany 
711-176-

152 

Streptavidin-Cy3 
(ZyMax Grade) 

 Cy3 
Zymed Laboratories Inc, San 

Fransisco, CA, USA 
43-8315 

Table 4. List of secondary antibodies 

 

 

Small interfering RNAs (siRNAs) 

Gene Species siRNA-duplex sequence  

SIRT1  human 
FWD 5´ -TTG AGG CCA GAG TCT GAG GT- 3´ 
REV 5´ -CTC CGA GAT AGC AGG GAA TG- 3 

siCONTROL Non-
Targeting siRNA #2 

human           www.dharmacon.com 

Table 5. List of siRNAs for transient gene downregulation 

 

 

Primer 

Gene Species Primer sequence for reverse transcriptase PCR  

SIRT1 human 
FWD 5´ -GTC GTA CAA GTT GTC GGC CAG - 3´ 
REV 5´ -CCC ATT GTC TCC TTC CCC AG- 3´ 

18S human 
FWD  5´ -TTG AGG CCA GAG TCT GAG GT- 3´ 
REV  5´ -CTC CGA GAT AGC AGG GAA TG- 3´ 

Table 6. List of primer for reverse transcriptase PCR 
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Methods  

Cell culture 

All cells were cultured in an incubator at 37°C and  5% CO2. For harvesting and passaging, cells 

were washed twice with PBS and detached using trypsin/EDTA. All plastic ware was purchased 

from Costar (Cambridge, MA, USA) and NUNC (Wiesbaden, Germany), respectively. 

 

Human coronary artery smooth muscle cells (HCASMC) 

Human coronary artery smooth muscle cells (HCASMC) were purchased from Clonetics 

(Cat.No. CC-2683, Cambrex, Walkersville, MD, USA) and were cultured by using Smooth 

Muscle Cell Growth Medium 2 (Cat.No. C-22262, PromoCell, Heidelberg, Germany) 

supplemented with penicillin (10´000 U/ml) and streptomycin (10´000 µg/ml). For some 

experiments silencing of cells for 72 h in Smooth Muscle Cell Basal Medium 2 (Cat.No. 

C-22062, PromoCell, Heidelberg, Germany) was necessary. The cells were used exclusively 

until passage 6. 

 

Mouse embryonic fibroblasts (MEF) 

Mouse embryonic fibroblasts (MEF) derived from SIRT1 knockout mice (S1KO) or from wild-

type littermates (WT) were generously provided by Dr. Raul Mostoslavsky (Howard Hughes 

Medical Institute, Children’s Hospital, Center for Blood Research, and Department of Genetics, 

Harvard University Medical School, Boston, MA, USA). The cells were grown in DMEM/HAM´s 

F-12 with L-Glutamine supplemented with 10% FBS and penicillin/streptomycin (10´000 U/ml 

und 10´000 µg/ml) and 0.0008% 2-Mercaptoethanol. In case of starvation, the cells were kept in 

DMEM/HAM´s F-12 with L-Glutamine without FBS for 12 h before use. 

 

Mouse vascular smooth muscle cells 

Mouse vascular smooth muscle cells were derived from male C57/BL6 mice and isolated by the 

explant method, as previously described66. Cells were cultured in DMEM/HAM´s F-12 

supplemented with 10% FBS and penicillin/streptomycin (10´000 U/ml and 10´000 µg/ml). For 

all experiments reported in this study, only passages 4 to 10 were used. Quiescence, when 

indicated, was achieved by serum withdrawal for 48 h. 

 

Rat vascular smooth muscle cells  

Primary cultures of rat vascular smooth muscle cells were isolated by enzymatic dissociation 

from the aorta of non-treated or monocrotaline-treated Sprague-Dawley rats as described 

elsewhere320. Studies were conducted on cells (passage 4 to 10) after they had achieved 

confluence in 10% FBS/DMEM/HAM´s F-12 medium plus penicillin/streptomycin (10´000 U/ml 

and 10´000 µg/ml). To achieve quiescence, serum withdrawal for 48 h was performed. 
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Rat pulmonary artery smooth muscle cells (PASMC)  

Rat pulmonary artery smooth muscle cells (PASMC) were kindly provided by Dr. Soni 

Pullamsetti (University of Giessen Lung Center (UGLC), Medical Clinic II/V, Giessen, Germany). 

The cells were cultured in DMEM/HAM´s F-12 supplemented with L-Glutamine, 10% FCS and 

penicillin/streptomycin (10´000 U/ml and 10´000 µg/ml), and used between passage 3-6. 

Serum-starvation was performed for 24 h in DMEM/HAM´s F-12 plus L-Glutamine. 

 

Cryoconservation and thawing of cells 

For deep-freezing, cells in passage 3 grown in a 75 cm2 tissue culture flask were trypsinized 

with 1 ml trypsin/EDTA, neutralized with 10 ml serum-containing medium and centrifuged for 

5 min at 1000 rpm. Supernatant was discarded completely and the cell-pellet was resuspended 

in “freezing” medium (growth medium + 5% DMSO). 2.5 ml “freezing” medium was used for one 

75 cm2 flask. Cryogenic vial with 0.8 ml aliquots (~ 5x 105 cells) were frozen first at -80°C and 

then transferred to -120°C after 24 h.  

For thawing, one vial was taken out of -120°C, its content was melt as soon as possible and 

plated in pre-warmed growth medium at 37°C into a 7 5 cm2 tissue culture flask. After attached 

of the cells, the medium was changed to remove the remaining DMSO. 

 

RNA interference 

HCASMCs at ~50% confluency were transiently transfected with the indicated siRNA duplex by 

using Lipofectamine 2000 (Cat.No. 11668-027; Invitrogen GmbH, Karlsruhe, Germany) 

according to the manufacturer’s instructions. For one well of a 24-well plate, siRNA was diluted 

in 50 µl in OptiMEM I Reduced Serum Medium. Regarding to its silencing efficiency, siRNA was 

used at a final concentration of 10 nM. The amount of Lipofectamine 2000 used for one 

transfection was 0.5 µl diluted in 50 µl OptiMEM I. After a 15 min incubation time, the diluted 

siRNA was combined with diluted Lipofectamine 2000, and incubated for an additional 15 min at 

room temperature. The 100 µl complex-solution was afterwards combined with 400 µl growth 

medium (without antibiotics) and added to each well containing cells. After 24 h, medium was 

changed. Recommended transfection controls were performed with each siRNA experiment: a) 

non transfected cells; b) mock transfection (without siRNA, but with lipid carrier) for detection of 

cellular effects caused by the transfection event itself and c) transfection with a non-targeting 

siRNA (siControl) for detecting off-target effects. Experiments with transfected cells were 

performed between 48-72 h post-transfection. Transfection conditions used for all experiments 

were established by me in preparation to the final experiments. 
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Cell transduction with adenoviruses 

Rat PASMCs cultured in growth medium were infected with a non-replicative control-adenovirus 

(Ad-GFP), or Ad-FoxO1a;AAA (encoding a constitutive inactive FoxO1a form plus GFP-tag) at 

100 multiplicity of infection (MOI) after reaching 70% confluency. Both types of adenovirus were 

a gift from Prof. William Sellers, (Dana-Farber Cancer Institute, Boston, MA, USA). Cells were 

grown for an additional 48 h in serum-containing medium and afterwards used for the assays 

indicated in the text. 

 

Quantification of cell proliferation 

The quantification of cell proliferation was determined by measuring the incorporation of the 

pyrimidine analogue 5-bromo-2’-deoxyuridine (BrdU) instead of thymidine into the genomic DNA 

of proliferating cells. Therefore, the colorimetric Cell Proliferation ELISA from Roche (Cat.No. 

11647229001, Roche Diagnostics, Mannheim, Germany) was used according to the 

manufacturer’s instruction. In brief, cells grown in 96-well plates were incubated with BrdU 

labeling solution (final concentration: 10 µM) for the last 6 h of their cultivation. The labeling 

medium was then removed by tapping off and the cells were fixed with FixDenat for 30 min at 

room temperature. After thoroughly removing FixDenat solution by flicking off and tapping, the 

cells were stored at either 4°C or the assay was ca rried on immediately with incubating the cells 

with anti-BrdU-POD working solution for 2 h at room temperature. After removal of the antibody 

conjugate by flicking off, the cells were rinsed three times with washing solution before 

substrate solution was added and then incubated at room temperature until color development 

was sufficient for photometric detection. 1 M H2SO4  was added to each well and after gently 

shaking for 20 sec the absorbance was measured in an ELISA reader at 450 nm against blank 

measurements (BrdU-medium), with a reference wavelength of 620 nm. 

 

Quantification of cell numbers  

The quantification of cell population numbers was colorimetrically assayed by using the Cell 

Proliferation Reagent WST-1 from Roche (Cat.No. 11644807001, Roche Diagnostics, 

Mannheim, Germany). WST-1 is a stable tetrazolium salt which is cleaved to a soluble formazan 

by a complex cellular mechanism that occurs only in healthy, metabolically active cells. 

Therefore, the amount of formazan dye formed directly correlates to the number of viable cells 

in the culture. For the experiments, cells grown in 96-well microtiter plates were incubated to 

70% confluency and then treated with different agents as indicated. After treatment, the ready-

to-use WST-1 reagent was added to the wells at a 1:10 dilution and incubated at 37°C until 

color development was sufficient for photometric detection. Absorbance was measured at 

450 nm against WST-1-containing medium as a blank, with a reference wavelength of 620 nm. 
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Cell migration assays 

Chemotactic cell migration was studied by using a 12-well modified Boyden Chamber Migration 

Assay. This system consists of 8 µm-pore size porous transwell polycarbonate membrane 

inserts from Corning (Cat.No. 3468098; Fisher Scientific GmbH, Schwerte, Germany) which 

were coated with 1.5% gelatin for 2 h at 37°C from both sides before use. The transwells were 

washed once with PBS and placed into a 12-well plate (Cat.No. 3468071; Fisher Scientific 

GmbH, Schwerte, Germany) containing 600 µl serum-free medium supplemented with the 

chemoattractant PDGF-BB (20 ng/ml) and 20% FBS, respectively. Addition of the 

chemoattractant only to the lower compartment establishes a gradient and cell migration 

through the pores of the membrane is stimulated. 

Cells grown in 100-mm dishes were washed twice with PBS and harvested by trypsinization. 

The cell suspension was centrifuged for 5 min and 1000 rpm at room temperature. The cell 

pellet was resuspended in 10 ml serum free medium and centrifugation step was repeated. 

Afterwards the cell pellet was resuspended in 1 ml serum free medium and cell number was 

counted using a standard hemocytometer. Cellular density was adjusted to 5x 105 cells/ml and 

100 µl cell suspension (=50´000 cells) was added to the upper compartment. Migration was 

allowed to proceed for the indicated time points at 37°C, 5% CO 2 in a humidified incubator. After 

incubation, non-migrated cells located on the upper side of the membrane were scraped off with 

cotton swabs and remaining medium on the lower side of the insert membranes was carefully 

dapped off. The inserts were then transferred into a new 12-well plate containing 150 µl growth 

medium supplemented with 10% WST-1. It had to be taken care that the whole membrane was 

submerged in the medium. The plate was incubated at 37°C and 5% CO 2 until yellow color 

development of the medium was sufficient for photometric detection. The amount of formazan 

dye directly correlates to the number of migrated cells. 50 µl of the cell medium was then 

transferred to a fresh 96-er well plate and measurement was done at 450 nm against medium 

containing WST-1 as a blank, with a reference wavelength of 620 nm. 

 

Quantification of apoptotic cell death rates 

Apoptotic cells were analyzed using the Cell Death Detection ELISA Plus (Cat.No. 

11774425001, Roche Diagnostics, Mannheim, Germany) which is a photometric enzyme-

immunoassay kit for in vitro qualitative and quantitative determination of apoptotic cells. The 

assay was performed according to the manufacturer’s instructions. In brief, cells grown in 

96-well plates (under the conditions indicated) were centrifuged at 200 x g for 10 min at room 

temperature. Supernatants were carefully aspired without shaking the pellet at the bottom and 

cells were lysed with Lysis Buffer for 30 min at room temperature. This step was followed by 

centrifugation at 200 x g for 10 min at room temperature. 20 µl of the lysate was then 

transferred into the microtiter plate provided with the assay and 80 µl of freshly prepared 



Materials and Methods   

 

52 

Immunoreagent was added. The plate was incubated at room temperature for 2 h under gently 

shaking. The solution was then removed by tapping and each well was rinsed 3x with 250 µl of 

the provided Incubation Buffer. Afterwards 100 µl ABTS solution was pipetted into each well and 

incubated on a plate shaker until color development was sufficient for photometric analysis. 

Measurement was done at 405 nm against ABTS solution as a blank, with a reference 

wavelength of 490 nm.  

 

Forkhead transcription factor activity assays 

In vitro FoxO activity assay was performed by using the commercially available activity assay 

TransAMTM FKHR Transcription Factor Assay Kit (Cat.No. 46396; Active Motif Europe, 

Rixensart, Belgium). Briefly, HCASMCs or PASMCs were grown on 100-mm dishes and treated 

as indicated. Nuclear extract was prepared by using NE-PER® Nuclear and Cytoplasmic 

Extraction Reagents (Cat.No. 78833, Pierce Biotechnology/Perbio Science Deutschland GmbH, 

Bonn, Germany) and protein concentrations were measured with the DC Protein Assay (see 

below). The activity assay was performed as described in the manual. In brief, 40 µl Complete 

Binding Buffer was added to each well of the provided microwells and 10 µl of nuclear extract 

(= 15 µg nuclear extract) was added followed by incubation for 1 h at room temperature with 

mild agitation. For blank controls, 10 µl of Complete Lysis Buffer was added. Each well was 

washed 3x with 200 µl Wash Buffer before adding 100 µl diluted FoxO1a (1:500). The wells 

were incubated for 1 h at room temperature. After another washing step, 100 µl of diluted HRP-

conjugated antibody was added to all wells being used for 1 h. The wells were washed 4x and 

100 µl Developing Solution was added per well and incubated until color development was 

sufficient. 100 µl Stop Solution was added and absorbance was measured at 450 nm with a 

reference wavelength of 620 nm. The plate reader was blanked using the blank wells. 

 

Flow cytometric cell cycle analysis  

Cell cycle distribution (G0/G1, S, and G2/M phases) was analyzed by flow cytometry (FACS). 

HCASMCs and PASMCs, respectively, grown on 100 mm-dishes, were treated as indicated and 

harvested by trypsinization. The cells were washed once with ice-cold PBS, fixed in 10 ml 75% 

ice-cold methanol and kept frozen at -20°C until FA CS analysis. Two hours prior to FACS 

analysis, the cells were spun down, washed 1x with PBS and incubated for 1 h at 37°C in PBS 

containing 100 µg/ml RNAse A, 10 µg/ml propidium iodide (PI) and 3% FBS. After two washing 

steps with PBS, cells were resuspended in 500 µl PI-PBS and analyzed for DNA content. 

Samples were analyzed using standard methods on a BD FACScanTM flow cytometer (BD 

Biosciences, Becton Dickinson GmbH, Heidelberg, Germany). Duplet discrimination prior to cell 

cycle analysis was performed by blotting fluorescence-width vs. fluorescence-area. Data were 
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computer analyzed using commercially available “BD CellQuestTM Pro” Version 5.2.1 software 

(BD Biosciences, Becton Dickinson GmbH, Heidelberg, Germany). 

 

Fluorescence resonance energy transfer (FRET) 

Fluorescence resonance energy transfer (FRET), also named Foerster-resonance-energy-

transfer, is a powerful technique for detecting molecular interactions of two proteins during 

biological reactions both in vivo and in vitro321. FRET describes the non-radiative energy 

transfer from an excited donor fluorophore to a second fluorophore (acceptor fluorophore). 

Excitation of a donor fluorophore elevates it to a higher energy state and its subsequent return 

to the ground state normally leads to emission of light at a characteristic emission spectrum. If 

another fluorophore is in close proximity to the donor (1 - 10 nm) - and its absorption spectrum 

overlaps the emission spectrum of the donor - energy from the donor is possibly transferred to 

the so-called acceptor fluorophore322.  

There are 22 different techniques for quantifying FRET signals322, however, for my 

experiments the method of “FRET acceptor bleaching” was used. This method involves the 

measurement of changes in donor fluorescence, both in the presence and absence of an 

acceptor. It is performed by comparing the intensity of donor fluorescence in the same sample 

before and after destroying the acceptor fluorophore by laser-mediated photo bleaching. If a 

FRET signal was initially measured, an augmentation in donor fluorescence will emerge upon 

photo bleaching of the acceptor323 (Figure 14). The change in fluorescence-intensity can be 

described either as FRET efficiency (FRETeff) or as increase in donor fluorescence (∆IF). 

The transfer efficiency of energy is measured as: FRETeff = ((Dpost -Dpre)/Dpost ) x 100; 

the increase in donor fluorescence as: ∆IF = Dpost -Dpre 

 
   

FoxO SIRT1

<10 nm

Cy5Cy3

FoxO SIRT1

Cy5Cy3

FoxO SIRT1

Cy5Cy3

 

Figure 14. A model for FRET acceptor bleaching 
 

a) Excitation of the donor at a wavelength of 543 nm. If the distance between donor and acceptor is less 
than 10 nm, non-radiative energy transfer occurs and the acceptor emits light at 639-738 nm. The donor 
emits only some light at 555–620 nm. b) Bleaching of the acceptor. c) The bleached acceptor-fluorophore 
is not able to accept light from the donor. Therefore, the emitted light from the donor strongly increases. 

a b c 
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Dpost is the intensity of the donor fluorescence after photo bleaching of the acceptor, and Dpre the 

intensity of donor fluorescence before acceptor photo bleaching. Positive FRETeff and ∆IF are 

noted when Dpost > Dpre.
324 For my experiments, always ∆IF is indicated to describe FRET 

signal, because compared to FRETeff, ∆IF has a higher specifity and sensitivity than FRETeff, 

and therefore can better distinguish between a real FRET phenomenon and control experiments 

(Dr. Gabi Krasteva, personal communication). 

For FRET analysis, the native proteins have to be labeled with fluorophore-coupled 

antibodies for the specific proteins. It is important to choose an acceptor fluorophore whose 

absorption spectrum overlaps the fluorescence emission spectrum of the donor (see above, and  

Figure 15). For my experiments, the Cy3-Cy5 donor-acceptor pair, which was already shown 

to be reliable and relatively stable325, 326, was used.  

Figure 15 shows the overlap of the Cy3 emission spectrum and the red Cy5 absorption 

spectrum; this pair supports a strong FRET interaction. 

 
 

 

 

Figure 15. Schematic representation of the 
spectral overlap integral 
 

Cy3 has its absorption maximum at 550 nm (blue 
line) and an emission-maximum at 570 nm (red line), 
whereas Cy5 has an absorption maximum at 650 nm 
(blue line) and emits maximal light at 670 nm 
(redline). The absorption spectrum of the acceptor 
fluorophore must overlap the emission spectrum of 
the donor fluorophore. By using appropriate filter-
sets, both spectra can easily be separated from each 
other (picture see 327). 
 

 

 

Double-labeling immunofluorescence for FRET-CLSM an alysis 

HCASMCs were grown on 8-well chamberslides until 70% confluency. All chambers were then 

maintained in serum free medium for 72 h to silence the cells. After serum starvation, 

HCASMCs were stimulated with either 20% FBS in growth medium, 1 mM H2O2 in serum-free 

medium or kept quiescent for 30 min. The chamberslides were fixed with 4% Histofix for 10 min, 

washed 3x 10 min with PBS and 5 min with H2Odd. The cells were dried at room temperature 

for 10 min and then incubated for 1 h in blocking solution (5% normal goat serum containing 

1% BSA in PBS). Primary antibodies against FoxO1a or FoxO3a were diluted in dilution buffer 

(PBS containing 0.01 % NaN3 and 4.48 g/l NaCl) 1:25 and 1:100, respectively, and applied 

overnight at room temperature. After a washing step of 3x 10 min in PBS, Cy5-conjugated 

donkey anti-rabbit-Ig (1:500) was applied in dilution buffer for 1 h at room temperature. This 

incubation was followed by a second washing step of 3x 10 min with PBS, a post-fixation step 

for 5 min in 4% P Histofix, and a third washing step of 3x 10 min with PBS. The slides were then 
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incubated overnight at room temperature with a biotin-conjugated antibody for SIRT1 diluted 

1:10 in the buffer described above. The species-specificity of this secondary reagent was 

controlled by overnight incubation of some slides with PBS instead of anti-SIRT1 antibody. 

Omission of the primary antibody for SIRT1 excludes cross-reactivity of both secondary 

antibodies with each other. The next day the slides were washed 3x 10 min with PBS (control 

slides and FRET slides in separate cuvettes), and the Cy3-conjugated anti-biotin-IgG was 

applied 1:2´500 in dilution buffer for 30 min at room temperature. Again, the slides were rinsed 

3x 10 min with PBS, post-fixed for 5 min in 4% PFA followed by 3 washing steps à 10 min in 

PBS. The cells were coverslipped with Mowiol 4-88, pH 8.6 (kindly provided by Dr. Gabi 

Krasteva).  

 

FRET Detection  

Slides with double-labeled HCASMCs were analyzed with an epifluorescence microscope 

(Zeiss, Jena, Germany) using suitable filter sets for both Cy3 and Cy5, and with a confocal laser 

scanning microscope (CLSM; Leica-TCS SP2 AOBS; Leica, Mannheim, Germany). FRET was 

quantified upon acceptor photo bleaching at a 63x magnification using the CLSM. The CLSM 

was adjusted as follows: Excitation of Cy3: 51% He/Ne-laser power (543 nm), detection at 

555-620 nm; Excitation of Cy5: 20% He/Ne-laser power (633 nm), detection at 639-738 nm. A 

region of interest (“ROI”) was determined and in that region the acceptor fluorophore (Cy5) was 

photobleached 10x using the 633 nm He/Ne-laser at 100% activity and maximal zoom thus 

destroying Cy5. Pictures of the Cy3- and Cy5-fluorescence were taken simultaneously before 

and after bleaching. To reduce the background noise, the pictures were scanned three times 

and the mean in signal intensity was calculated. Changes in the Cy3 signal (∆IF) were 

evaluated in the photobleached area (see above). To control the stability of the system, 

fluorescence of adjacent regions of the bleached ROI region was determined. If a FRETeff ≥ 2% 

was measured, this run was excluded from further analysis. For each condition at least 20 

measurements out of 5 independent immunocytochemistry-experiments were performed. 

 

Statistical analyses 

Differences among two experimental groups and their appropriate control groups in the FRET-

experiments were evaluated with the Kruskal-Wallis test subsequently followed by Mann-

Whitney test using software SPSS, version 11.5.1 (SPSS GmbH Software, Munich, Germany), 

with results being highly significant at p ≤ 0.001. 
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Mouse femoral artery angioplasty 

Animals  

Adult male C57/BL6 mice were purchased from Charles River (Quebec, Canada). All 

procedures involving experimental animals were performed in accordance with protocols 

approved by the institutional committee for animal research of the Giessen University and 

complied with the ‘‘Guide for the Care and Use of Laboratory Animals’’ (NIH publication No. 86-

23, revised 1985). 

 

Mouse femoral artery injury model 

Mice used for surgical procedures were anesthetized by intramuscular injection of 2.5 µg 

xylazine (Rompun® 2%, Bayer Vital GmbH, Leverkusen, Germany), 3 mg ketamine (Ketamine 

Inresa 50 mg/ml; INRESA Arzneimittel GmbH, Freiburg; Germany) and 5 µg atropine 

(Atropinsulfate-solution 0.5 mg/ml, Fresenius KABI Deutschland GmbH, Bad Homburg, 

Germany) diluted in 0.9% sodium chloride solution into the right upper leg. Surgery was carried 

out using a dissecting microscope (Leica S4 E, Leica Mikrosysteme Vertrieb GmbH, Bensheim, 

Germany). Following anesthesia, the mice were fixed with tape and underwent transluminal 

mechanical injury of the left femoral artery by insertion of a straight spring wire (0.38 mm in 

diameter, Cook, Bloomington, IN, USA) for > 5 mm towards the iliac artery. This method was 

previously described by Sata et al.328 and modified by our group as described below. In brief, 

the fur on the left hind limb in the region of operation was carefully removed with a scissor and 

afterwards the region of operation was disinfected. The skin was cut off from the distal end of 

the leg in proximal direction for approximately 1 cm. Then the preparation of the femoral 

vessel/nerve strand was carried out. First of all the accompanying femoral nerve was carefully 

separated, and then the femoral vein was isolated from the artery by blunted dissection up to 

where the profunda femoris artery branches off the femoral artery. Therefore connective tissues 

around the artery was carefully removed with microsurgery forceps (Dumont S.A., Switzerland). 

This process was followed by preparation of the profunda femoris artery towards the external 

iliac artery. The nerve and vein accompanying the A. profunda femoris were also separated 

from the artery to prevent their injury during operation. The profunda femoris artery was then 

ligated distally (Ligation I) with Ethilon 6-0 silk sutures (Johnson & Johnson Intl, St-Stevens- 

Woluwe, Belgium) after isolation from nerve and vein (Figure 16). In addition, the femoral artery 

was looped proximally (Ligation III) and distally (Ligation II) with 6-0 silk suture for temporally 

controlling blood flow during the dilatation process (Figure 16). As with all ligations it had to be 

taken care that the blood flow was not interrupted untimely and as a result ischemia would 

occur in the distal tissue regions of the vessel. In preparation of the following dilatation, the 

ligations were stretched to prevent blood flow. The exposed A. profunda femoris branch was 

dilated by topical application of xylocaine (Xylocain® 2 %, AstraZeneca GmbH, Wedel, 
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Germany). Transverse arterioctomy was performed in the A. profunda femoris with Vannas style 

iris spring scissor (Aesculap AG & Co KG, Tuttlingen, Germany) (Figure 16). 
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A.Femoralis
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A.Femoralis
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femoris

A. superficialis
femoris

  

Figure 16. The endovascular injury of the murine femoral artery (Part 1) 
 

The left femoral artery was exposed by blunted dissection, looped proximally and distally with a 6-0 silk 
suture for temporally controlling blood flow during the dilatation process (a, b). The femoralis profunda 
branch was isolated and ligated distally. Transverse arterioctomy was performed in the femoralis 
profunda branch (Picture modified after Sata et al.328) 
 

 

Microsurgery forceps (Aesculap AG & Co. KG, Tuttlingen, Germany) were used to extend the 

arterioctomy through which a straight spring wire (0.38 mm in diameter, No. C-SF-15-15, 

COOK, Bloomington, IN, USA) was carefully introduced into the femoral artery for more than 

5 mm toward the iliac artery (Figure 17). 

The wire was left in the artery for approximately 1 min to denude and dilatate the artery. 

After removal of the wire, the profunda femoris artery was secured at its proximal end with a silk 

suture (Figure 17). Subsequently, blood flow in the femoral artery was reconstituted by unfasten 
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Figure 17. The endovascular injury of the murine femoral artery (Part 2) 
 

Microsurgery forceps were used to extend the arterioctomy through which a 0.38 mm straight wire was 
introduced for more than 5 mm into the femoral artery toward the iliac artery (a, b). The wire was left in 
the artery for 1 minute to denude and dilate the artery. (Picture modified after Sata et al.328) 

a 

 

b 

 

a 

 

b 
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the silk sutures in the proximal (Ligation III) and distal (Ligation II) part of the artery. The skin 

transection was sealed with a 6-0 Prolene® silk suture (Figure 18). 

During the whole surgery it was necessary to take care that the tissue was moistened with 

xylocaine. After surgery the mouse was defixed and awaked under red light. 
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Figure 18. The endovascular injury of the murine femoral artery (Part 3) 
 

After removal of the wire, the proximal part of the A profunda femoris was tied off. Blood flow of the 
femoral artery was restored (a, b). (Picture modified after Sata et al.328) 
 

 

Injection of adenovirus 

After removal of the wire out of the femoral artery and restoration of blood flow, replication-

incompetent adenovirus encoding SIRT1, a constitutively inactive SIRT1-mutant H355A 

(recently generated by our group) or a control-adenovirus was mixed with 45 µl of a 20% 

thermosensitive polymer (Pluronic F-127, Cat.No. P2443, Sigma Aldrich; Munich, Germany) to a 

final concentration of 1x 108 pfu/ml. The gel was placed around the dilatated artery and left. The 

adenoviruses had been previously tested for efficient infection and transgene expression in 

VSMCs and in HEK cells.  

 

Application of Psammaplysene A  

Immediately after dilatation, the artery was covered with 45 µl of a 20% thermosensitive polymer 

(Pluronic F-127, Cat.No. P2443, Sigma Aldrich; Munich, Germany) containing 10 µM 

Psammaplysene A (kindly provided by J. Clardy, Harvard Medical School, Boston, MA, USA). 

The gel was left around the artery and released its substrate over the next 21 days. 

 

Vessel Harvesting 

At the timepoints indicated below, the mice were killed by an overdose of isoflurane (Isofluran-

Baxter, Baxter Deutschland GmbH, Unterschleissheim, Germany). At death, the mice were 

perfused via the left ventricle with 2% PFA in PBS (pH 7.4). The femoral arteries were carefully 

a 

 

b 

 



Materials and Methods   

 

59 

excised, rinsed in PBS to remove remained blood and post-fixed in 2% PFA overnight at 4°C. 

The following day, the dilated arteries were embedded in Tissue Tek® snap-frozen in liquid 

nitrogen and stored at -80°C until use.  

 

Morphometric Analysis 

Frozen and embedded arteries were sectioned on a Leica cryostat (LEICA CM 1900, Leica 

Mikrosysteme Vertrieb GmbH, Bensheim, Germany). The cross-sections (6 µm) were placed on 

poly-L-lysine coated slides for subsequent immunohistochemical stainings. For morphometric 

analyses, hematoxylin and eosin staining was performed (for protocol see below). All sections 

were examined under a Leica DMRB microscope (Leica Mikrosysteme Vertrieb GmbH, 

Bensheim, Germany) and morphometric analysis was performed using KS300 imaging software 

(Carl Zeiss, Hallbermoos, Germany). The external elastic lamina, internal elastic lamina, and the 

lumen circumfences, as well as medial and neointimal area of three sections per artery were 

measured.  

 

Histological and Immunohistochemical techniques 

Immunocytochemical analysis of human and mouse cell s 

Immunocytochemical analysis was used for detecting SIRT1 or FoxOs in human and mouse 

cells. Cells grown on coverslips were fixed in 4% PFA for 10 min at room temperature, 

rehydrated and permeabilized with 0.3% Triton-X in PBS for 15 min, and blocked for 1 h with 

10% ready-to-use normal goat serum solution. The primary antibody was diluted in read-to-use 

antibody diluent (SIRT1 1:100, FoxO1a 1:50, FoxO3a 1:100) and incubated overnight at room 

temperature. Subsequently to rinsing 3x 5 min with PBS, cells were incubated with secondary 

antibody (anti-rabbit Alexa 488 or anti-mouse Alexa 488) diluted 1:200 in antibody diluent for 1 h 

at room temperature in the dark. Prior to mounting with Vectashield® Mounting Medium, cells 

were stained with Dapi. Cells were analyzed by fluorescent light microscopy (DMRB, Leica, 

Mannheim, Germany). 

 

Immunohistochemical analysis of SIRT1 expression in  mouse tissues 

SIRT1 expression in cells of the mouse femoral artery was detected by fluorescence staining. 

Cryosection slides were fixed in 4% PFA for 15 min at room temperature, rehydrated and 

permeabilized with 0.3% Triton-X in PBS for 15 min and blocked for 1 h with 10% ready-to-use 

normal goat serum solution. The primary antibody was diluted in read-to-use antibody diluent 

(SIRT1 1:50) and incubated overnight at room temperature. Subsequently to rinsing 3x 5 min 

with PBS, cells were incubated with a mix of secondary antibody (anti-rabbit Alexa 488, 1:200) 

and Cy3-couped anti-smooth muscle cell actin antibody (1:200) diluted in antibody diluent for 

1 h at room temperature in the dark. Prior to mounting with Vectashield® Mounting Medium, cells 
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were washed 3x 5 min with PBS and stained with Dapi. Cells were analyzed by fluorescent light 

microscopy (DMRB, Leica, Mannheim, Germany). 

 

Immunohistochemical analysis of SIRT1 expression in  human tissues 

SIRT1 expression in diverse human tissues was analyzed using broad spectrum Histostain-SAP 

Kit from Zymed Laboratories (Cat.No. 95-9842, Zymed Laboratories Inc, South San Fransisco, 

Ca, USA). Cryosection slides from the indicated tissues were fixed with acetone at 4°C for a 

period of 10 min and then stained according to manufacturers instructions. In brief, slide were 

rehydrated with PBS for 15 min and incubated with Blocking Solution (Reagent 1A) for 10 min at 

room temperature. Primary rabbit anti-SIRT1 antibody was applied in ready-to-use antibody 

diluent (1:100) and incubated in a moist chamber overnight at room temperature. The slides 

were then rinsed with PBS (3x 2 min). Biotinylated Second Antibody (Reagent 1B) was added to 

each section and incubated for 10 min at room temperature followed by a washing step (3x 

2 min). Enzyme Conjugate (Reagent 2) was applied to the tissues for 10 min, slides were rinsed 

3x 2 min with PBS and Substrate-Chromogen Mixture was then added for 10 min. Each section 

was washed well with H2Odd and counterstained with Counterstain (Reagent 4). The slides 

were rinsed twice with 100% ethanol, cleared in xylene and coversliped with Mounting Solution 

(Reagent 5). Stainings were evaluated using an epifluorescence microscope (DMRB, Leica, 

Mannheim, Germany). Negative controls were performed using only the secondary antibody. 

 

Hematoxylin and Eosin (H & E) Staining 

Hematoxylin and eosin staining was used on tissues for staining nuclei (blue, hematoxylin) and 

cytoplasm (red, eosin). Cryoslides were fixed in 4% PFA at room temperature for 10 min and 

rehydrated with PBS for 15 min. Hematoxylin staining was performed using Gill’s hematoxylin III 

(Cat.No. 5174, Merck, Darmstadt, Germany) for 6 sec and non-specific hematoxylin staining 

was removed by a rinse of the slides with acetic acid. The slides were washed in running tap 

water for 10 min and then immersed in eosin stain for 5 sec. The eosin staining solution was 

prepared as follows:  

 

Eosin Staining 
Solution (for 1 l) 

 100 ml Eosin (1 g Eosin Y on 100 ml H2Odd),  
 10 ml Phloxin (1 g Phloxin B on 100 ml H2Odd), 780 ml 95% 
 ethanol, 4 ml acetic acid 

 

 

This step was followed by dehydration in ascending alcohol solutions: 2 min 96% isopropyl 

alcohol supplemented with 0.6% acetic acid and twice with 100% isopropyl alcohol for 2 min 

each. The slides were mounted with Vectashield Mounting Medium and observed under the 

microscope (DMRB, Leica, Mannheim, Germany). 
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PCNA (Proliferating Cell Nuclear Antigen) staining of mice tissue sections 

To detect proliferating VSMCs in neointimal tissue, mouse artery cross-sections were stained 

for the proliferating cell nuclear antigen (PCNA) by using Zymed’s PCNA staining kit (Cat.No. 

93-1143, Zymed Laboratories Inc, South San Fransisco, Ca, USA) according to the 

manufacturers instructions. In brief, tissue cross-sections were fixed in 4°C acetone for 10 min 

and then blocked with Blocking Solution (Reagent 1) for 10 min at room temperature. The 

biotinylated mouse anti-PCNA primary antibody (Reagent 2) was applied for 60 min at room 

temperature to the sections. This step was followed by rinsing with PBS 3x 2 min and 

application of the Strepdavidine Peroxidase (Reagent 3) for 10 min at room temperature. The 

slides were washed 3x 2 min with PBS and the DAB chromogen mix was added for 5 min. For 

hematoxylin counterstaining, the slides were covered with Reagent 5 for 2 min and 

subsequently washed with H2Odd until sections turn blue. The slides were dehydrate in a 

graded series of alcohol, and cleared with xylene before covered with Histomount (Reagent 6) 

and coverslip. 

 

Co-immunoprecipitation (Co-IP) 

HCASMCs were cultured in 100-mm dishes until 80% confluency and then incubated for 12 h in 

the absence or presence of the compounds/H2O2 indicated. For cell lysate preparation, dished 

were washed 2x with ice-cold PBS and lysed with 500 µl of Co-IP lysis buffer on ice for 30 min. 

Samples were centrifuged at 13´000 rpm for 15 min at 4°C and supernatants were collected.  

 

Co-IP 
Lysis Buffer 

50 mM Tris HCl pH 8.2, 100 mM NaCl, 2 mM EGTA, 10 mM NaF, 
40 mM β-glyceroposphate, 0.4% Triton-X, 10 mM NAM, 10 µM TSA, 
1% freshly prepared Complete Protease Inhibitor Cocktail  

 

 

Protein concentrations were measured and samples were adjusted to 300 µg protein in 400 µl 

lysis buffer per sample. The samples were precleared with 5 µl Dynabeads® Protein G (Cat.No. 

100.03; Dynal Biotech GmbH, Hamburg, Germany) and incubated with rotating mixing for 

30 min at 4°C. The supernatant was afterwards trans ferred to a new tube and incubated with an 

antibody for acetylated-lysines (1 µg antibody per 100 µl lysate) or with a normal rabbit IgG 

control antibody (Cat.No sc-2027, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) under 

the same conditions as before. After incubation for 2.5 h, 15 µl of the beads were added for an 

additional hour. The immune complexes were collected using a magnet and supernatant was 

discarded. After washing 3x with 1 ml lysis buffer the immune complexes were collected and 

finally resuspended in 40 µl lysis buffer. The samples were separated on SDS-PAGE after 

boiling for 5 min. The blots were probed with an antibody for FoxO1a. 
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Detection and analysis of proteins 

Total protein extraction from cultured cells  

For whole-cell extracts, adherent cells grown on 60-mm and 100-mm dishes, respectively, were 

washed twice with ice-cold PBS and lysed on ice with RIPA Lysis Buffer. Cells were then 

collected by scraping, transferred to a prechilled microcentrifuge tube, homogenized by 

vortexing and incubated on ice for 30 min.  

 

RIPA Buffer 
 PBS, 1% NP-40, 0,5% sodium deoxycholate, 0.1% SDS,  
 1% freshly prepared Complete Protease Inhibitor Cocktail  

 

 

Cell lysates were clarified by centrifugation (15 min, 13´000 rpm, 4°C) and supernatants 

containing total protein extracts were either stored at -80°C or used immediately for further 

experiments.  

 

Quantification of protein concentration according t o DC Protein Assay  

Protein concentrations were determined using the colorimetric assay DC Protein Assay from 

BioRad (Cat.No. 500-0111, BioRad, Munich, Germany), according to manufacturer’s 

instructions. Briefly, 2.5 µl protein solution was mixed with 2.5 µl H2Odd and pipetted into one 

well of a 96-well microplate. 25 µl of Working Reagent (20 µl Reagent S per each ml Reagent A) 

was added. Finally 200 µl Reagent B was added per well and the plate was incubated at room 

temperature with mild agitation for 10 min. Absorbance was read at 620 nm. The whole assay 

used is based upon the Lowry assay and uses BSA as a standard. The absorbance values of 

different amounts of BSA were used to generate a standard calibration curve. Concentrations of 

the unknown protein samples were determined by comparison with the standard curve.  

For avoiding inexactness each measurement was carried out in duplicate and the mean value 

was generated. 

 

Sodium Dodecyl Sulfate -Polyacrylamide Gel Electrop horesis (SDS-PAGE) 

Denaturating Sodium Dodecyl Sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed essentially as described by Laemmli et al. 1970329 for separating proteins according 

to their molecular weight. Ready Gel Tris-HCl gels compatible for Mini Protean 3 

Electrophoresis Cell (BioRad, Munich, Germany) were purchased from BioRad (5%: Cat.No. 

161-1154; 7.5%: Cat.No.161-1154; 12%: Cat.No. 161-1156, BioRad, Munich, Germany). The 

acrylamide content of SDS-PAGE gels was varied according to the size of the protein being 

examined. 10-30 µg protein were denaturated by boiling at 99°C for 5 min in 10x SDS PAGE 

Loading Buffer before separation on an SDS-PAGE gel.  
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Samples and pre-stained protein marker standard (Cat.No. 27-2110, Peqlab Biotechnologie 

GmbH, Erlangen, Germany) were loaded simultaneously on the same gel and electrophoresis 

was performed for approximately 1 h at 120 V in electrophoresis buffer.  

 

10x SDS-PAGE 
Loading Buffer 

 625 mM Tris-HCl pH 6.8, 20% SDS, 50% glycerol,  
 0.3% bromophenol blue, 9% 2-mercaptoethanol 

 

1x SDS-PAGE 
Electrophoresis 
Buffer 

  25 mM Tris, 250 mM glycine pH 8.3, 1% SDS 

 

 

Transfer and blotting of proteins 

Following electrophoresis, proteins separated by SDS-PAGE were transferred from the gel to a 

PVDF-Plus Membrane (0.45 µm) (Cat.No. PV4HY320F2, Osmonics Inc., Moers, Germany). The 

membrane was pre-treated with 100% methanol for 1 min, rinsed with water and subsequently 

soaked with Transfer Buffer together with two fiber pads (Cat.No. 170-3933, BioRad, Munich, 

Germany) and two thick whatman papers (Cat.No. 3030-6185, Whatman plc, Kent, UK). The gel 

was pre-equilibrated in Transfer Buffer prior to electrophoretic transfer. 

 

1x Transfer Buffer 
 25 mM Tris, 192 mM glycine pH 8.3, 20% methanol, 
 0.1% SDS 

 

 

The transfer was performed using a wet transfer system (Mini Trans-Blot Cell, Cat.No. 

170-3930, BioRad, Munich, Germany). In this system gel, membrane, fiber pads and whatman 

papers were arranged as a sandwich in a cassette which is placed in a module compatible with 

the Mini Trans-Blot Cell. The complete tank was filled with Transfer Buffer and transfer was run 

for 1 h at 100 V. 

 

Ponceau S staining of proteins 

After blotting, the membrane was stained with Ponceau S reagent (Cat.No. P-7170, Sigma-

Aldrich Chemie GmbH, Munich, Germany) to ensure proper transfer of proteins onto the 

membrane. The membrane was destained with H2Odd and rinsed several times with PBS-T 

solution. 

 

PBS-T  PBS, 0.1% Tween 20 
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Immunodetection of proteins  

After decolorization the membrane was blocked with 5% Skim Milk Solution for 1 h at room 

temperature with mild agitation.  

 

5% Skim Milk 
Solution 

 PBS, 0.1% Tween 20, 5% Skim Milk Powder 

 

 

This step was followed by incubation with the primary antibody against the desired protein in 

5% Skim Milk Solution overnight with gentle shaking at 4°C. The following day the membrane 

was washed three times for 10 min at room temperature with PBS-T. Detection was performed 

with HRP-conjugated secondary antibody in 5% Skim Milk Solution. After incubation for 1 h at 

room temperature, three washing steps of 10 min with PBS-T and rinsing with PBS were 

followed. The membrane was incubated for 5 min with chemiluminescence ECL Plus Western 

Blotting Detection Solution (Cat.No. RPN2132, Amersham Biosciences Europe GmbH, 

Freiburg, Germany). Membranes were exposed to audiographic films (Hyperfilm ECL, Cat.No. 

RPN3103K, Amersham Biosciences Europe GmbH, Freiburg, Germany) or X-Ray films (Cat.No. 

Agfa Curix HT 1.000G Plus, Agfa-Gevaert N.V., Mortsel, Belgium) using a Hypercassette 

(Cat.No. RPN12649, Amersham Biosciences Europe GmbH, Freiburg, Germany). The 

membrane was reprobed several times and therefore needed to be stripped of bound antibody 

by submerging in Restore Western Blotting Stripping Buffer (Cat.No. 21059, Pierce 

Biotechnology Inc., Rockford, IL, USA) for 30 min at 37°C according to manufacturer’s 

instructions. Afterwards the membrane was blocked again with 5% Skim Milk Solution and 

incubated with a new antibody as described before. 

For detection of phosphorylated proteins the buffers were substituted. Instead of using 

PBS-T for washing, TBS-T was used. 

 

TBS-T  20 mM Tris pH 7.6, 140mM NaCl, 0.1% Tween 20 

 

Likewise, the membrane was blocked with 5% BSA in TBS-T and the antibodies were 

diluted in 5% BSA in TBS-T. 

 

Synthesis of RNA 

All works, which were necessary for in vitro-synthesis of RNA, were done under RNase-free 

conditions. All liquid solutions used were DEPC-treated.  
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RNA Isolation 

RNA of cells grown in 60-mm dishes was extracted using peqGOLD RNAPureTM (Cat.No. 

30-1020, Peqlab Biotechnologie GmbH, Erlangen, Germany). Therefore, the cell medium was 

aspirated under the hood and cells were lysed in 1 ml peqGOLD RNAPureTM. Afterwards, the 

samples were incubation at room temperature for 5 min to permit complete dissociation of 

nucleo-protein complexes. Then 0.2 ml chloroform was added and tubes were shaked 

vigorously by hand for 15 sec. After incubating the samples for 10 min at room temperature, 

they were centrifuged at 13´000 x g for 5 min at room temperature.  Following centrifugation, the 

mixture separates into a lower yellow phenol-chloroform phase, an interphase, and a colorless 

upper aqueous phase, which exclusively contains the RNA. The aqueous phase was 

transferred to a fresh tube and RNA was precipitated by mixing with 0.5 ml isopropyl alcohol. 

The samples were incubate at room temperature for 10 min and then centrifuged at 13´000 x g 

for 10 min at 4°C. The RNA precipitated and formed a gel-like pellet on the bottom of the tube. 

The supernatant was removed and the RNA pellet was washed twice with 1 ml cold 75% 

ethanol followed by centrifugation at 13´000 x g for 10 min at 4°C. At the end of the procedure, 

the RNA pellet was air-dried for 5-10 min. For redissolvation, total RNA was dissolve 1:30 in 

RNAse/DNAse-free water and stored at -80°C until us age. 

 

Determination of RNA concentration 

The concentration of isolated RNA was determined by measuring the absorbance at 260 nm in 

a spectrophotometer. Therefore, 6 µl of the RNA-solution were diluted in 294 µl RNAse/DNAse-

free water and RNA concentration was measured using quartz cuvettes versus 300 µl water as 

blank.  

 

First-strand cDNA synthesis 

For analyzing gene expression, the RNA of interest first needs to be reverse transcribed into 

cDNA. First strand cDNA was synthesized by using Moloney Murine Leukemia Virus Reverse 

Transcriptase (M-MLV) Kit (Cat.No. 28025-013, Invitrogen GmbH, Karlsruhe, Germany). 1 µg of 

total RNA was diluted with DEPC-treated water to a final volume of 13.5 µl and 10.5 µl of cDNA 

Synthesis-Mix was added. 

Finally, 1 µl M-MLV Reverse Transcriptase was added per sample and the mixture was 

incubated at 37°C for 1 h. The reaction was stopped  by incubation for 15 min at 99°C and 

samples were stored at -80°C. 
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cDNA Synthesis-
Mix (1x) 

 5 µl  
 2.5 µl 
 0.5 µl 
 
 1.5 µl 
 
 
 1 µl 

First-Strand Buffer   
0.1 M DTT  
RNasin (Cat.No. N2511, Promega GmbH, 
Mannheim, Germany) 
primer “random” (Cat.No. 11034731001, 
Roche Diagnostics GmbH, Mannheim, 
Germany) 
10 mM dNTP Mix (Cat.No. 11581295001, 
Roche Diagnostics GmbH, Mannheim, 
Germany) 

 

 

Polymerase Chain Reaction (PCR) 

Expression of endogenous mRNA was determined by reverse transcription of total RNA 

followed by Polymerase Chain Reaction Analysis (PCR) using Taq-DNA Polymerase. The 

method of polymerase chain reaction is used for amplification of specific cDNAs.  

The Taq DNA polymerase was already part of a commercially available ready-to-use PCR-

Master-Mix S from Peqlab (Cat.No. 01-1410, Peqlab Biotechnology GmbH, Erlangen, 

Germany). PCR-Master-Mix S is supplied at 2x final concentration, with the final reaction 

concentrations as follows: 5 units/µl Tag-DNA-Polymerase, 0.4 mM dNTPs, 20 mM Tris-HCL 

(pH 8.8 at 25°C), 100 mM KCl, 0.02% Tween 20 and 3 mM MgCl2.  

The PCR-reaction mix was prepared as follows:  

 

PCR-Reaction Mix 
(1x) 

 5 µl  
   0.7 µl 
   0.7 µl 
   2.6 µl 

PCR-Master-Mix S  
primer forward (10 pmol/µl) 
primer reverse (10 pmol/µl 
DEPC-treated H2O 

 

 

1 µl cDNA was added to a total reaction volume of 10 µl.  

Primer, number of PCR cycles and annealing temperatures chosen for PCR depended on the 

cDNA sequence to be amplified. 

One representative PCR cycle for SIRT1 is shown below:  

 

Preheating 
Denaturation 
Annealing 
Elongation 
Extension 
 

 94 °C 
 94 °C 
 56 °C 
 68 °C 
 68 °C 
 4 °C 

2 min 
20 sec 
20 sec 
30 sec 
7 min 
∞ 

            25 cycles 
 

 

 

All Polymerase Chain Reaction amplifications were carried out on a thermocycler GeneAmp® 

PCR System 2400 (PerkinElmer LAS (Germany) GmbH, Rodgau, Germany). 
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Agarose gel electrophoresis 

Analysis of DNA fragments from PCR were performed by agarose gel electrophoresis. 1% 

agarose gels were prepared by dissolving 0.5 g agarose (Cat.No. 155109-027, GibcoBRL, 

Eggenstein, Germany) in 50 ml of TAE Buffer. 

 

1x TAE Buffer  0.04 M Trisacetate, 0.0001 M EDTA  

 

 

The agarose was melted using a microwave oven. After the agarose was cooled down to 

approximately 50°C, 0.5 µl ethidium bromide was add ed and the whole fluid was poured into a 

gel-cast for letting it solidify. PCR products were combined with 2.5 µl 5x DNA Loading buffer. 

EZ LoadTM DNA molecular weight marker (Cat.No. 170-8353, BioRad) was used as loading 

marker. 

 

5x DNA Loading 
Buffer 

 625 mM Tris-HCl pH 6.8, 20% SDS, 50% glycerol,  
 0.3% bromophenol blue, 9% 2-mercaptoethanol 

 

 

Electrophoretic separation was carried out at 133 V and 200 mA on a Consort E452 power 

supply. The PCR products were visualized on an ultraviolet transilluminator TM-36 (UVP, 

Upland, CA, USA) and images captured using a Polaroid GelCam (Polaroid GmbH, Dreieich-

Sprendlingen, Germany). 

 

Statistical analysis 

Data were stored and analyzed on personal computers using Excel 2003 (Microsoft) and Sigma 

Plot 8.0 with Sigma Stat 2.03 (Systat Software GmbH, Erkrath, Germany). Data between the 

study groups were analyzed by ANOVA followed by pairwise comparison with Fisher´s least 

significance test. All data are represented as mean and standard deviation. Probability values 

are indicated for each experiment. 
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Psammaplysene A and its analogues regulate HCASMC b ehavior in 

vitro and in vivo 

 

Recently we were able to demonstrate the forkhead transcription factor FoxO1a to be a key 

regulator of arterial VSMC proliferation, migration and apoptosis in vitro and in vivo (Sedding et 

al., unpublished data). Especially the impact of phosphorylated FoxO1a on VSMC homeostasis 

was demonstrated. My thesis now further implies FoxO1a to represent an attractive target for 

future therapeutic strategies in the prevention of vasculo-proliferative diseases. In the first part 

of my thesis, I demonstrate the effect of potential FoxO1a-targeting drugs on VSMC behavior 

both in vitro and in vivo and reveal the importance of FoxO1a´s nuclear localization for its 

activity. 

 

Expression of FoxO1a in HCASMCs  

Previous studies in various cell types reported growth factor-induced phosphorylation of 

FoxO1a transcription factors via the intracellular phosphatidylinositol 3-kinase (PI3K)/protein 

kinase B (Akt)-signaling pathway166, 167, 238, 239. Akt-mediated phosphorylation leads to 

translocation of FoxO1a from the nucleus to the cytoplasm followed by its inactivation. To my 
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Figure 19. Serum induces nuclear exclusion 
of FoxO1a proteins in HCASMCs 
 

a, b) HCASMCs were serum-starved for 72 h, 
stimulated in the absence or presence of 20% 
FBS for 30 min and immunostained with an 
antibody to FoxO1a. DAPI was used to 
visualize nuclear DNA. a) Representative 
 

images of FoxO1a´s cellular distribution in HCASMCs. Immunofluorescence experiments were carried out 
at least in triplicate. b) Quantification of FoxO1a nuclear-cytoplasmic distribution in HCASMCs treated 
with or without serum for 30 min. Mean percentage values and standard deviations from > 300 cells out of 
three independent experiments are shown (*p< 0.001 vs respective serum-starved control (t-test)). N, 
nucleus; C, cytoplasm. c) Cell lysates of HCASMCs held quiescent for 72 h in basal medium or exposed 
to 20% FBS in growth medium for the indicated timeperiods were processed to Western blot analysis for 
phospho-Akt and phospho-FoxO1a. Detection of β-tubulin served as loading control. The blot shown is 
representative of three independent experiments. 

a b 

c 
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knowledge, there are no publications demonstrating FoxO1a function in the human vascular 

system yet, thus, first the cellular distribution of FoxO1a in quiescent and serum-stimulated 

HCASMCs was determined by immunocytochemistry. FoxO1a localized primarily to the nucleus 

in the absence of serum (89% nuclear and 11% cytoplasmic), whereas in the presence of FBS 

the cellular distribution is almost reversed (39% nuclear and 61% cytoplasmic) (Figure 19a, b). 

These data are consistent to unpublished data from our group concerning FoxO1a localization 

in mouse VSMCs. 

 

To gain more insight in whether the observed translocation in response to serum stimulation 

correlates with FoxO1a phosphorylation in a PI3K/Akt-dependent manner, phosphorylation of 

both Akt and FoxO1a was analyzed in cultured HCASMCs stimulated with 20% FBS. Within 

20 min upon serum-stimulation, phosphorylation of Akt and FoxO1a was initiated (Figure 19c). 

These effects were PI3K dependent because inhibition of PI3K using the pharmacological 

inhibitors LY294002 or wortmannin blocked FoxO phosphorylation and nuclear export (Sedding 

et al., unpublished data).  

Together my data indicate that FoxO1a´s subcellular localization is regulated by post-

transcriptional modification (phosphorylation) in HCASMCs. 

 

Psammaplysene A renders FoxO1a nuclear localization  in HCASMCs 

Recently, Psammaplysene A, a natural product from the marine sponge Psammaplysilla sp. 

was identified in a high-throughput screen to promote retention of FoxO1a in the nucleus of 

cells with PTEN loss-of-function mutations330, 331 (Figure 20). Psammaplysene A was shown to 

be PI3K/Akt signaling pathway specific in these cells, however, the targets as well as possible 

cellular impacts of the sponge compound have not been studied yet. Since we previously 

identified FoxO1a to have a central role in the pathogenesis of neointima formation (Sedding et 

al., unpublished data), stabilization of this transcription factor may represent a new therapeutic 

strategy towards the prevention of vasculo-proliferative diseases.  
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Figure 20. Structure of Psammaplysene A 
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In order to determine whether Psammaplysene A promotes retention of FoxO1a in the 

nucleus of growing HCASMCs, cells were serum-starved to allow for adequate silencing and 

then pre-treated with the Psammaplysene A at the concentrations indicated. Stimulation of the 

cells was performed with 20% FBS followed by immunostaining and imaging. Despite serum-

stimulation, which was previously shown to stimulate FoxO1a translocation to the cytoplasm 

(Figure 19a, b and Figure 21a, b), endogenous FoxO1a was localized partially to the nucleus of 

Psammaplysene A-treated HCASMCs (Figure 21a, b). This effect was stronger with increasing 

Psammaplysene A concentrations (5 µM and 10 µM) (Figure 21a, b).  

These data indicate that treatment of serum-stimulated HCASMCs with Psammaplysene A 

results in FoxO1a nuclear sequestration.  
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Figure 21. Effect of Psammaplysene A on 
FoxO1a localization in HCASMCs 
 
HCASMCs were serum-starved for 72 h in 
basal medium and pre-incubated for 1 h with 
or without Psammaplysene A (P.A.) at 
different concentrations (5 µM, 10 µM). 
Subsequently, cells were stimulated with 
20% FBS for 30 min and cellular distribution 
of endogenous FoxO1a was determined by 
immunostaining with a specific antibody for 
FoxO1a (a). A co-staining with DAPI was 
used to visualize nuclei. Pictures were made 
using a fluorescence microscopy. ICC 
experiments were carried out at least in 
triplicate. b) Based on FoxO1a 
immunostaining, quantitative analysis of 
FoxO1a´s nuclear distribution was performed 
by counting at least > 200 nuclei from two 
independent preparations. Data represent 
mean and error bars. Statistical significance 
was determined by ANOVA (*p< 0.001, 
**p< 0.02 vs FBS-stimulated HCASMCs). 

 

 

Psammaplysene A-treatment inhibits HCASMC prolifera tion 

Since Psammaplysene A-treatment inhibited translocation of FoxO1a from the nucleus to the 

cytoplasm in FBS-stimulated HCASMCs, the question arose whether Psammaplysene A-

mediated FoxO1a retention modulates HCASMC homeostasis. First of all, Psammaplysene A 

was tested at different concentrations for its ability to influence HCASMC growth. Interestingly, 

treatment with increasing concentrations of Psammaplysene A resulted in a dose-dependent 

decrease in cell number (Figure 22a).  

b 

a 
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Furthermore, different Psammaplysene A concentrations were analyzed for their effect on 

inhibiting DNA replication of HCASMCs. Figure 22b illustrates results from BrdU incorporation 

assays. Treatment with 5 µM Psammaplysene A inhibited DNA synthesis by ~45% as compared 

to non-treated FBS-stimulated HCASMCs, therefore almost halved the proliferation rate. 

Treatment with 10 µM Psammaplysene A completely abolished BrdU incorporation. These data 

are consistent with studies from Kau et al. in cells with PTEN loss-of-function mutations, where 
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Figure 22. Effect of Psammaplysene A on HCASMC proliferation, migration and apoptosis 
 

a) HCASMCs were plated and grown for 20 h in medium supplemented with 20% FBS plus various 
concentrations of Psammaplysene A (P.A.). Quiescent cells were used as control. Cell numbers were 
analyzed by WST-1 assay. Data represent mean OD values of four measurements plus standard 
deviations. Statistical significance was determined by ANOVA (*p< 0.001 vs FBS). b) Cells were treated 
as in (a) and grown for 14 h in FBS- and Psammaplysene A-containing medium. Afterwards, BrdU was 
added to the medium of both starved and stimulated cells for 6 h and its incorporation was measured by 
ELISA. Data of the graph represent mean OD values of BrdU-positive cells. The same experiment was 
performed at least trice with the same results. The standard error for each value is shown. Statistical 
significance was determined by ANOVA (*p< 0.001, **p< 0.01 vs FBS alone; n=4). c) HCASMCs were 
cultured as in a) and cytoplasmic accumulation of mono- and oligonucleosomes was quantified by ELISA. 
Mean OD values of both untreated serum-starved and FBS-stimulated HCASMCs were designated as 
controls (*p< 0.001, **p< 0.02 vs FBS; n=3). The experiment was repeated trice with the same results. d) 
HCASMCs were silenced for 60 h and pre-incubated with or without the indicated concentrations of 
Psammaplysene A for additional 12 h. The cells were allowed to migrate along a 20% FBS-gradient for 
6 h in a modified Boyden-chamber model. The amount of migrated cells was evaluated by WST-1 assay. 
Data shown are representatives of three independent experiments with similar results and represent 
mean OD values and standard deviations. Statistical significance was determined by ANOVA (*p< 0.01 vs 
FBS; n=3). 

c d 

a b 
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Psammaplysene A was able to inhibit cell proliferation with an IC50 of 5-10 µM330.  

Taken together, I consider that the observed decrease in HCASMC growth released by 

increasing Psammaplysene A concentrations is, at least partially, due to a Psammaplysene A-

dependent inhibition of DNA replication.  

 

Moreover, cell death detection ELISAs revealed that the observed reduction in HCASMC 

cell number in response to a 5 µM Psammaplysene A-treatment was not due to an strong 

increase in apoptotic cell death (Figure 22c), suggesting that at this concentration 

Psammaplysene A is mainly responsible for inhibiting cell proliferation (Figure 22b), but not for 

inducing apoptosis. At 10 µM, the situation changed and lack of HCASMC growth (Figure 22a) 

was due to both a strong inhibition of cell cycle progression (Figure 22b) and a significant 

increase in apoptotic cell death (Figure 22c). Complementing the assay’s results, HCASMCs 

treated with 10 µM Psammaplysene A revealed the presence of intracellular blebbing, cell 

shrinkage and detachment (data not shown).  

The significant increase in apoptotic cell fragmentation in response to 10 µM 

Psammaplysene A-treatment was also documented by FACS analysis as shown in Figure 23e: 

The amount of small DNA fragments was visibly increased after treatment with 10 µM 

Psammaplysene A as compared to treatment with 5 µM Psammaplysene A. 

 

In order to investigate whether Psammaplysene A inhibits chemotactic cell migration, 

migration assays were performed with HCASMCs incubated in the presence or absence of 

Psammaplysene A. FBS was used for stimulating directed cell migration. The marine sponge 

extract significantly attenuated FBS-induced HCASMC migration along the chemotactic gradient 

in a dose-dependent manner, with Psammaplysene A at 10 µM almost completely inhibiting 

chemotaxis (Figure 22d). 

Altogether, these results demonstrate Psammaplysene A to have a regulatory function on 

HCASMC behavior, simultaneously modulating proliferation, migration and apoptosis. Whether 

FoxO1a´s nuclear retention plays a role in this observation will be explored in the later parts of 

the thesis. 

 

Psammaplysene A blocks cell cycle entry of HCASMCs in G0/G1-phase  

To further examine the role of Psammaplysene A on cell cycle progression, serum-stimulated 

HCASMCs were exposed to different concentrations of Psammaplysene A for 24 h. Serum- 

starvation was used to arrest cell cycle. Fluorescence-activated cell sorting (FACS) analyses of 

quiescent HCASMCs revealed a block in G0/G1-phase (Figure 23a). FBS-stimulation did not 

affect progression of HCASMCs through G1/S, therefore the cells subsequently enter the G2/M-

phase of the cell cycle (Figure 23b). Importantly, FACS analyses of HCASMCs incubated with 
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increasing concentrations of Psammaplysene A showed that treatment of the cells with the 

marine sponge compound led to the accumulation of cells in G1 dose-dependently, even if the 

cells were stimulated by serum to enter the cell cycle (Figure 23c-e). Thus, these cells failed to 

progress through the G1/S transition as growth factor stimulated cells usually do. 

Psammaplysene A at a concentration of 10 µM showed the strongest effect. 

With this experiment, earlier results determined by BrdU incorporation were confirmed and 

altogether, the results suggest that Psammaplysene A inhibits HCASMC proliferation primarily 

by inhibiting S-phase entry.  

 

no serum serum
a

+ P.A.

2.5 µM 5 µM 10 µM

b

c d e
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Figure 23. Psammaplysene A blocks HCASMC cycle progression in G0/G1-phase  
 

HCASMCs were cultured as indicated below and subsequently fixed with methanol. Quiescent cells were 
used as controls. Fixed cells were stained with propidium iodide, and cell cycle progression was analyzed 
by fluorescence-activated cell sorting (FACS) as described in “Materials and Methods”. Typical cell cycle 
histograms are recorded. (a) Silenced HCASMCs. Different cells were released from G0/G1-phase block 
by culturing for 24 h in the absence (b) or presence (c-e) of Psammaplysene A (P.A.; 2.5 µM, 5 µM and 
10 µM) in 20% FBS-supplemented growth medium. 
 

 

Psammaplysene A does not affect FoxO1a binding to s pecific promoter regions 

In order to gain deeper insight into the mechanism by which Psammaplysene A affects FoxO1a 

function, endogenous FoxO1a activity was determined using a commercially available FoxO1a 

activity assay for measuring the binding capacity of FoxO1a to its specific promoter sequences. 

Quiescent HCASMCs revealed strong FoxO1a binding activity as shown in Figure 24a and b. 

Stimulation of HCASMCs with FBS resulted in a decline of FoxO1a activity as compared to 

silenced ones (Figure 24a, b). Since Psammaplysene A was able to both retain FoxO1a in the 

nucleus of serum-stimulated HCASMCs and mimicking a silenced cell state, I expected 

FoxO1a, at least partially, maintained bound to its specific promoters regions under 

Psammaplysene A-treatment. Thus, genes such as p27KIP1 should be transcribed despite serum 

stimulation, and its product should contribute to cell cycle arrest in G0/G1 as observed by FACS 
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(Figure 23). Surprisingly, Psammaplysene A did not increase FoxO1a activity in 

Psammaplysene A-treated HCASMCs as compared to untreated stimulated ones - neither at a 

concentration of 5 µM (Figure 24a) nor at 10 µM (Figure 24b). 

These data indicate that Psammaplysene A-mediated nuclear localization of FoxO1a is not 

sufficient to re-establish direct binding of FoxO1a to promoter regions of known target genes.  
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Figure 24. Effect of Psammaplysene A on FoxO1a activity 
 

Endogenous FoxO1a activity was measured with a commercially available in vitro assay using nuclear 
HCASMC lysates. Briefly, HCASMCs were serum-starved for 60 h, pre-treated with or without 
Psammaplysene A (P.A.; 5 µM, 10 µM) for 16 h, and subsequently stimulated with 20% FBS for 30 min. 
Nuclear extracts were prepared as described elsewhere and 15 µg per condition was used to analyze 
FoxO1a activity. Results are means and standard deviations from duplicate measurements, and 
representative of at least two independent experiments. Data were analyzed by ANOVA (non-significant 
(n.s.) > 0.08 vs FBS alone). a) HCASMCs were treated with Psammaplysene A at 5 µM. b) HCASMCs 
were treated with Psammaplysene A at 10 µM. 
 

 

Psammaplysene A blocks growth factor-induced cyclin  D1 expression 

Earlier experiments demonstrated the marine sponge compound Psammaplysene A to 

undoubtedly affect HCASMC cell cycle progression. In order to understand how 

Psammaplysene A inhibits G1/S-phase transition without affecting FoxO1a promoter binding, 

expression levels of numerous cell cycle regulators were analyzed. Total cellular proteins were 

prepared and subjected to immunoblotting assays for p27KIP1, cyclin D1, CDK4, cyclin A and B, 

phospho-retinoblastoma protein (phospho-pRb) and proliferating cell nuclear antigen (PCNA). 

p27KIP1 as a direct FoxO1a target gene was efficiently downregulated as FBS-stimulated cells 

progressed through G1-phase (Figure 25a). Likewise, Psammaplysene A-treated cells showed 

significant downregulation of p27KIP1 (Figure 25a), which was not surprisingly, since the 

compound was demonstrated not to increase binding of FoxO1a to its specific promoter 

sequences despite serum stimulation (Figure 24). CDK4 levels remained unchanged under all 

tested conditions (Figure 25a). Cyclin D1 was strongly expressed in FBS-stimulated HCASMCs, 

as well as in growing HCASMCs treated with 2.5 µM and 5 µM Psammaplysene A, respectively 

(Figure 25a). In sharp contrast, cyclin D1 was almost undetectable in cells treated with 10 µM of 

a b 
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the marine sponge compound (Figure 25a). Since the phosphorylation of pRb is initiated by 

cyclin D1-CDK4 complexes, decreases in cyclin D1-CDK4 levels due to low cyclin D1 levels in 

10 µM Psammaplysene A-treated cells resulted in hypo-phosphorylated pRb levels (Figure 

25a). However, even in HCASMCs treated with 2.5 µM or 5 µM Psammaplysene A, a slight 

decrease in phospho-pRb levels as compared to FBS alone was observed. Hypo-

phosphorylated pRb binds and inhibits E2F transcription factors. Consequently, expression of 

the E2F-dependent target cyclin A was inhibited too (Figure 25a). Cyclin B, a critical regulator of 

the G2/M transition was also undetectable in cells incubated with 10µM Psammaplysene A 

(Figure 25a). The expression of PCNA as a DNA synthesis marker was also analyzed in 

HCASMCs to demonstrate proliferation (Figure 25a).  

 

To determine whether Psammaplysene A was likely to act upstream of FoxO1a in the 

PI3K/Akt/FoxO1a signaling pathway, cell extracts were analyzed by immunoblotting for 

phospho-Akt (Figure 25b). None of the compounds concentrations inhibited FBS-induced Akt 

phosphorylation, suggesting that Psammaplysene A does not affect the pathway upstream of 

FoxO1a. Likewise, changes in the expression level of phospho-FoxO1a were not observed after 

Psammaplysene A-treatment (Figure 25b). 
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Figure 25. Effect of Psammaplysene A on different cell cycle regulators 
 

a) HCASMCs were subjected to serum starvation for 60 h, pre-treated with or without Psammaplysene A 
(P.A.; 2.5 µM, 5 µM or 10 µM) for 12 h, and subsequently exposed to medium containing 20% FBS and/or 
Psammaplysene A at the indicated concentrations for 24 h. Total cellular protein extracts were prepared 
and subjected to immunoblot assay. Protein expression associated with cell cycle progression was 
studied by using specific antibodies for p27KIP1, CDK4, cyclin D1, cyclin A and B, phospho-Rb, and PCNA. 
b) HCASMCs were cultured as in (a), however, cells were lysed already after 20 min of stimulation with 
FBS +/- Psammaplysene A. Phospho-Akt and phospho-FoxO1a expression levels were analyzed by 
Western blot with specific antibodies. Vinculin was used as loading control. 

a b 
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Taken together, the Western blot results are consistent with data revealing Psammaplysene 

A to downregulate HCASMC growth by attenuating cell cycle progression. Treatment with 

Psammaplysene A at 10 µM negatively regulates expression of cyclin D1, thus, 

Psammaplysene A-induced decreases in cyclin D1 levels consequently inhibit G1 cell cycle 

progression and therefore also affect protein expression of other downstream cell cycle 

regulators. Since FoxO1a is known to be involved in regulating cyclin D1 expression indirectly 
168, 215, 332, an effect of Psammaplysene A on FoxO1a activity with regard to cyclin D1 regulation 

seems to be possible, even this Psammaplysene A-mediated modification does not affect direct 

target gene expression. 

 

Psammaplysene A inhibits neointima formation in wir e-injured mouse femoral 

arteries  

Psammaplysene A was recently shown to inhibit VSMC proliferation in vitro by decreasing 

cyclin D1 protein levels. Next, the marine sponge extract was analyzed for influencing 

neointimal hyperplasia in an in vivo mouse femoral artery model. Psammaplysene A was 

directly delivered to the wire-denudated mouse femoral artery. Representative photo-

micrographs of hematoxylin/eosin-stained femoral artery cross-sections 21 days following injury 

are shown in Figure 26. A significant concentric neointima was evident in non-treated arteries, 

clearly defined by the internal and external elastic laminae. Psammaplysene A-treatment at a 

concentration of 10 µM significantly attenuated neointima formation in this in vivo model. 

Histomorphological analysis of neointima/media (I/M) ratios of six independent experiments was 

performed (data not shown), however, since out of six animals two comprised thrombotic clots 

within their denudated vessels – which makes an exact analysis impossible – a significant result 

could not be made. Nevertheless, preliminary data out of 4 animals revealed that the I/M ratio of 

Psammaplysene A-treated arteries was apparently reduced as compared to control vessels, 

possibly due to diminished VSMC proliferation upon Psammaplysene A-treatment. 

 
 

WT Psammaplysene A

 
   

 

 

Figure 26. Psammaplysene A prevents 
neointima formation in vivo  
 

a) Representative cross sections of mouse femoral 
arteries of both control-mice and Psammaplysene 
A -treated mice 21 days after dilatation are shown. 
The sections were stained with hematoxylin and 
eosin, and examined by light microscopy. 

 

 

As suggested by the in vitro data, Psammaplysene A´s potency to prevent neointima 

formation seemed to result from an anti-proliferative effect as determined by qualitative PCNA-

staining of Psammaplysene A-treated arteries 21 days following injury (Figure 27). In comparison 
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to control arteries, the number of PCNA-positive VSMCs in Psammaplysene A arteries was 

significantly decreased.  

Taken together, these data suggest that attenuation of neointimal hyperplasia by treatment 

with Psammaplysene A is mediated, at least partially, through inhibition of VSMC proliferation. 

 

Control Psammaplysene A

a

b

c

d  

 
 
 
 
 
 
 

Figure 27. Psammaplysene A modulates 
cellular proliferation in vivo   
 

In vivo cell proliferation was detected by using 
Zymed’s PCNA staining kit in femoral artery 
sections of non-treated (a and b) and 
Psammaplysene A-treated (10 µM) vessels (c and 
d) at day 21 after wire-injury. c and d are high-
magnification images of the boxed regions shown 
on low magnification images of the complete vessel 
(a and c). 
 

 

 

Psammaplysene A-analogues modulate HCASMC prolifera tion 

Psammaplysene A was shown in the above experiments to modulate the PI3K/Akt/FoxO1a 

pathway and therefore treatment with this compound may represent a new therapeutic strategy 

towards the prevention of vasculo-proliferative diseases. Unfortunately, there is only limited 

supply of this marine sponge extract. To overcome this problem Georgiades et al. developed a 

method to efficiently synthesize this compound333. With the development of this strategy, it was 

also possible to synthesis different Psammaplysene A-analogues334. In cooperation with our lab, 

a focused library of 28 Psammaplysene-like molecules was screened in diverse biological 

assays. First of all, the 28 compounds were analyzed for modulating BrdU incorporation into the 

DNA of serum-stimulated HCASMCs. Since the aim of this experiment was to identify molecules  
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Figure 28. Psammaplysene A-analogues modulate HCASMC proliferation  
 

HCASMCs were cultured in serum-containing medium for 20 h with or without the different 
Psammaplysene A-like molecules or Psammaplysene A (P.A.) at the indicated concentrations. Quiescent 
cells were used as control. BrdU incorporation was determined by ELISA. Mean absorbance values plus 
standard deviation of three independent experiments are presented in the graphs. Statistical significance 
was determined by ANOVA (*p< 0.001 vs FBS alone; n=12). 
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that are more potent than Psammaplysene A, each compound was tested at the concentrations 

which were earlier shown for Psammaplysene A to affect DNA synthesis: 1 µM, 5 µM and 

10 µM. Some of the Psammaplysene A-analogues showed almost no effect on inhibiting cell 

cycle progression at the tested concentrations, such as A14, K15, K16 and L1. Most of the 

compounds inhibited BrdU incorporation comparable to Psammaplysene A. Only a compound 

named F10 was able to decrease HCASMC proliferation significantly at a concentration of 1 µM 

and more importantly, completely inhibited proliferation already at a concentration of 5 µM. 

Thus, this compound was the only one out of the 28 tested which was able to inhibit HCASMC 

proliferation more potently than Psammaplysene A does.  

Therefore, my further studies concentrated on examining the effect of F10 on modulating 

HCASMCs behavior in more detail. 

 

FoxO1a localizes to the nucleus of serum-stimulated  HCASMCs upon F10-

treatment 

In order to determine whether F10, similar to Psammaplysene A, promotes retention of FoxO1a 

to the nuclei of growing HCASMCs, silenced HCASMCs were treated with either 2.5 µM F10 or 

5 µM F10 and stimulated with 20% FBS before immunostaining and imaging. As it was 

previously shown for Psammaplysene A, F10 inhibited FBS-mediated FoxO1a translocation to 

the cytoplasm, at least partially, at a concentration of 2.5 µM (Figure 29a). The effect of 5 µM 

F10 in retaining FoxO1a´s nuclear localization was significantly higher to that of the lower 
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Figure 29. Effect of F10 on FoxO1a 
localization in HCASMCs 
 

HCASMCs were silenced for 72 h in basal 
medium, treated for 1 h with or without 
2.5 µM and 5 µM F10, respectively, and then 
stimulated for 30 min with 20% FBS. Each 
ICC experiment was repeated trice a) 
Cellular distribution of endogenous FoxO1a 
was determined by immunostaining with a 
specific antibody for FoxO1a and co-staining 
with DAPI was used to visualize nuclei. 
Images were made by using a fluorescence 
microscopy. b) Quantitative analysis of 
FoxO1a´s nuclear distribution was performed 
by counting at least 200 nuclei from two 
independent preparations. Data represent 
mean and error bars. Statistical significance 
was determined by ANOVA (*p< 0.001 vs 
FBS-stimulated HCASMCs). 

b 

a 
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concentration (Figure 29b): Approximately 77% of the cells treated with 5 µM F10 express 

FoxO1a within their nuclei despite the presence of serum in the medium. 

These data reveal that besides Psammaplysene A, the Psammaplysene A-analogue F10 is 

also able to inhibit FoxO1a translocation in serum-stimulated HCASMCs. 

 

F10-treatment inhibits HCASMC proliferation but doe s not induce apoptosis 

Since F10-treatment was already shown in the Psammaplysene A-analogues-screening to 

inhibit BrdU-incorporation into the DNA of HCASMCs, I next analyzed its attenuating effect on 

HCASMC proliferation in more detail. F10 at the indicated concentration was applied to 

HCASMCs and cell numbers were examined 24 h post-treatment using WST-1 assays (Figure 

30a). Treatment with the Psammaplysene A-analogue attenuated HCASMC growth dose-

dependently, with concentrations > 5 µM revealing cell numbers comparable to silenced cells.  
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Figure 30. Effect of F10 on HCASMC proliferation 
and apoptosis 
 

a) HCASMCs were silenced for 72 h in basal 
medium or grown for 24 h in medium supplemented 
with 20% FBS plus different concentrations of F10. 
Cell numbers were analyzed by WST-1 assay. Data 
represented in the graph are mean OD values and 
standard deviations. Statistical significance was 
determined by ANOVA (*p< 0.001, **p< 0.02 vs FBS 
alone, n=4). The experiment was repeated trice with 
comparable results. b) HCASMCs were cultured as 
in (a) for 18 h. BrdU was added to the cells and 
cultured for an additional 6 h. BrdU incorporation 
was measured by ELISA. Data represent mean  
 

OD values and standard errors of BrdU-positive cells of one representative experiment, which was 
repeated three times with the same results. Statistical significance was determined by ANOVA. 
(*p< 0.001, **p< 0.02 vs FBS alone; n=3). c) HCASMCs were cultured as in a) and cytoplasmic 
accumulation of mononucleosomes and oligonucleosomes was quantified by Cell Death Detection ELISA. 
Mean OD values of both untreated serum-starved and FBS-stimulated HCASMCs were designated as 
controls. Statistical significance was determined by ANOVA (non-significant (n.s.) > 0.5 vs FBS-control; 
n=3).  
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To investigate whether reduction in cell numbers upon F10-treatment was due to a decrease 

in cell proliferation, BrdU incorporation was examined after application of F10. As previously 

shown, already at low concentrations F10 significantly attenuated DNA synthesis of FBS-

stimulated HCASMCs. 2.5 µM F10 decreased FBS-induced proliferation by ~ 50% (Figure 30b) 

whereas concentrations above 5 µM inhibited BrdU incorporation completely (Figure 30b).  

 

To exclude F10 of inducing apoptotic cell death at the concentrations previously tested on 

manipulating HCASMC proliferation and cell number, the compound was applied to HCASMCs 

and amounts of mono- and oligonucleosomes within the cells cytoplasm were measured using 

commercially available cell death detection ELISAs (Figure 30c). Interestingly, F10 neither at 

2.5 µM nor at 5 µM significantly induced apoptosis in HCASMCs.   

Thus, in contrast to what was shown for Psammaplysene A, a decrease in HCASMC cell 

numbers upon F10-treatment is only due to reduced DNA synthesis rates but not to apoptotic 

cell death. 

 

Combined treatment with Psammaplysene A and F10 inh ibits HCASMC 

proliferation at low concentrations 

Both Psammaplysene A and the Psammaplysene A-like compound F10 were shown to inhibit 

HCASMC proliferation. Next, I was interested in the combinative effect of both agents on 

modulating HCASMC proliferation. Therefore, HCASMCs were treated with different 

compositions of the two compounds and DNA replication was measured by BrdU incorporation 

ELISA. As it was illustrated in Figure 31, HCASMCs treated with a combination of 2.5 µM 

Psammaplysene A and 2.5 µM F10 revealed BrdU incorporation rates similar to that of 

quiescent cells. It is noteworthy to mention that neither 2.5 µM Psammaplysene A alone nor 

2.5 µM F10 alone completely inhibited cell proliferation. However, a combinative treatment with 

both agents was able to prevent HCASMC proliferation to almost 100%.  
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Figure 31. Effect of a Psammaplysene A 
/F10 combination on HCASMC 
proliferation 
 

HCASMCs were treated with or without 
different combinations of Psammaplysene A 
(P.A.) and F10 in 20% FBS-containing 
medium for 16 h, before BrdU was added for 
additional 6 h. BrdU incorporation was 
measured by ELISA. Silenced cells were 
used as controls. Data in the graph represent 
the mean OD values and error bars. 
Statistical significance was determined by 
ANOVA (*p< 0.001, **p< 0.01 vs FBS-
stimulated HCASMCs; n=4). 
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Thus, single doses of each compound can be reduced by applying Psammaplysene A and F10 

simultaneously. 

With this part of my thesis I was able to show recent discoveries concerning the inhibition of 

VSMC proliferation in vitro and in vivo by the natural product Psammaplysene A from the 

marine sponge Psammaplysilla sp.. The Psammaplysene A-analogue F10 similarly affects 

VSMC behavior and importantly, both compounds are specific to the PI3K/Akt/FoxO1a signaling 

pathway and regulate FoxO1a´s nucleocytoplasmic localization. It seems that both molecules 

somehow influence FoxO1a function since cyclin D1 is downregulated in serum-stimulated cells 

upon Psammaplysene A-treatment. Nevertheless, the direct target of Psammaplysene A and 

F10 is still unknown, and further studies need to explore their detailed molecular mode of action.  
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FoxO1a regulates PASMC proliferation, migration and  apoptosis  

 

Besides atherosclerosis and restenosis, pulmonary hypertension (PHT) is another progressive, 

proliferative vascular disorder resulting from continuous vasoconstriction and structural 

remodeling of artery vessels (see Introduction)75. The structural changes occurring in the vessel 

include, among other things, VSMC migration and proliferation. The major signaling pathway 

being responsible for initiating pathological changes in VSMC behavior was recently shown to 

be PI3K/Akt-dependent73, 335. Since our group previously demonstrated FoxO1a´s regulatory 

function on HCASMCs (Sedding et al., unpublished data), its effect on pulmonary artery smooth 

muscle cells (PASMCs) was investigated in close collaboration with Dr. Soni Pullamsetti from 

the University of Giessen Lung Center (UGLC). Our latest results are comprised in the next part 

of this thesis.  

 

FoxO1a translocates from the nucleus to the cytopla sm in response to serum 

stimulation 

The expression level of endogenous FoxO1a in rat PASMCs was analyzed by 

immunocytochemistry and, as it was previously shown for VSMCs from coronary arteries 

(Figure 19), FoxO1a is expressed in the nucleus of silenced PASMCs and translocates to the 

cytoplasm in response to serum simulation (Figure 32). In vivo expression of FoxO1a in nuclei 

of VSMCs of native pulmonary vessels was also immunohistochemically identified (Dr. 

Pullamsetti, personal communication). 

 

FoxO1a   Dapi Overlay

no serum

serum

 

 
Figure 32. Intracellular expression of FoxO1a 
in PASMCs  
 

Rat PASMCs were serum-starved (24 h) or 
cultured in serum containing medium. 
Immunostaining with a specific antibody for 
FoxO1a revealed FoxO1a distribution within the 
cells. Nuclear DNA was stained with DAPI. The 
pictures shown are representative photographs 

 

 

FoxO1a regulates PASMC proliferation, apoptosis and  migration 

To study the function of FoxO1a in PASMCs, the cells were transduced with recombinant 

adenoviruses encoding a non-phosphorylatable, constitutively active mutant of FoxO1a (Ad-

FoxO1a;AAA). The inactive FoxO1a mutant was created by alanine substitution of the three Akt 

phosphorylation sites (T24A, S256A, S319A = FoxO1a;AAA) as previously described168 (Figure 

33). The amount of replication defective adenoviral vector necessary for efficient transient 

expression of FoxO1a;AAA was carefully evaluated previously by our group (Sedding et al.,-
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unpublished data). Additionally, Sedding et al. provided evidence that expression of the 

adenoviral construct was detectable in VSMCs at least 72 h post-transduction. 
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Figure 33. Cloning and mutagenesis of the 
constitutively active FoxO1a  
 

A non-phosphorylatable, constitutively active mutant of 
FoxO1a was created by alanine substitution of the three 
Akt phosphorylation sites (T24A, S256A, S319A = 
FoxO1a;AAA). Subsequently, recombinant Ad-
FoxO1a;AAA adenovirus was generated.  

 

 

PASMC cultures were transduced either with Ad-FoxO1a;AAA or a GFP-encoding control 

adenovirus (Ad-GFP). Non-transduced PASMCs, either serum-starved or cultured in FBS-

containing medium, were used as controls. The effect of Ad-GFP- and Ad-FoxO1a;AAA-

transduction on PASMC number was investigated by using WST-1 assay. Results are shown in 

Figure 34a. While upon serum stimulation cell numbers significantly increased in both control 

cells and cells expressing GFP, PASMCs transduced with Ad-FoxO1a;AAA failed to grow. 

Furthermore, serum-starved PASMCs revealed only a marginally fewer amount of viable cells 

than Ad-FoxO1a;AAA-transduced cells do in response to FBS stimulation (Figure 34a).  

The observed reduction in cell number of PASMCs forced to express FoxO1a;AAA as 

compared to Ad-GFP-transduced cells was, at least partially, due to a FoxO1a;AAA-dependent 

inhibition of cell proliferation as it was measured by BrdU incorporation assays. 48 h post-

transduction, FoxO1a;AAA-expressing PASMCs showed a decline in DNA replication by 71% 

as compared to Ad-GFP-transduced cells (Figure 34b). Since the measured BrdU incorporation 

rate of Ad-GFP-transduced PASMCs is comparable to growing control PASMCs, it was 

provided evidence that the transduction-process itself had no impact on the cells ability to 

replicate DNA (Figure 34b). 

 

Furthermore, migration along a chemotactic PDGF-BB-gradient was examined by using a 

modified Boyden chamber model. PDGF-BB induced chemotaxis of non-transduced PASMCs, 

whereas absence of the chemoattractant resulted in an almost complete loss of PASMC 

migration (Figure 34c). Ad-FoxO1a;AAA but not Ad-GFP significantly inhibited PDGF-BB-

induced PASMC chemotaxis; the migration rate of PASMCs overexpressing the constitutive 

active FoxO1a was comparable to that of non-migrating cells (no chemoattractive stimuli) 

(Figure 34c).  

 



Results   

 

86 

In order to ask whether, in addition to suppressing proliferation, FoxO1a affects apoptotic 

cell functions too, cytoplasmic accumulation of mono- and oligonucleosomes in both transduced 

and non-transduced PASMCs was measured using Cell Death Detection ELISAs. Cells 

expressing FoxO1a;AAA revealed significant high numbers of cleaved DNA particles as 

compared to Ad-GFP- and non-transduced controls (224% increase compared to Ad-GFP) 

(Figure 34d). As it will be shown for HCASMCs later (Figure 56), stressing PASMCs by serum-

deprivation enhanced apoptotic cell death rates (Figure 34d). Completing these results, 

PASMCs expressing FoxO1a;AAA consistently indicated the presence of intracellular 

cytoplasmic blebbing, cell shrinkage, nuclear condensation and membrane detachment from the 

surrounding cells as determined by morphology (data not shown).  
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Figure 34. FoxO1a regulates PASMC proliferation, migration and apoptosis 

PASMCs transduced with FoxO1a;AAA or a control vector (Ad-GFP) were incubated in growth medium 
for 48 h. Non-transduced PASMCs either serum-starved for 24 h or growing were used as controls. Data 
represent mean and standard deviations of three to six measurements. Each experimental set was 
repeated at least three times with similar results. Statistical significance was determined by ANOVA. a)  
Total cell numbers were evaluated 48 h post-transduction by WST-1 assay (*p< 0.001; n=6). b)  48 h 
post-transduction, PASMCs were grown for 6 h in the presence of BrdU and proliferation was measured 
by ELISA (*p< 0.001; n=4). c) 48 h post-transduction PASMCs were plated on gelatine-coated 
polycarbonate membranes and allowed to migrate for 24 h along a PDGF-BB gradient (20ng/ml). Cell 
number of migrated cells was determined by WST-1 assay (*p< 0.02; n=3). d)  Cytoplasmic accumulation 
of mono- and oligonucleosomes was evaluated by Cell Death Detection ELISA of the four different 
already mentioned cell populations 48 h post-transduction (*p< 0.001; n=3).  

c d 

a b 
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Taken together, these results suggest that FoxO1a is a key-regulator of PASMC function, 

simultaneously modulating proliferation, apoptosis and migration. Furthermore, the presented 

absence of high cell numbers in Ad-FoxO1a;AAA-transduced PASMC cultures seems to be due 

to a combined effect of growth inhibition and an augmented apoptotic rate. 

 

FoxO1a induces PASMCs apoptosis via upregulating ca veolin-1 expression 

Recently Sedding et al. could identify caveolin-1 to be transcriptionally regulated by FoxO1a in 

VSMCs of coronary arteries, and that the pro-apoptotic effect of activated FoxO1a is, at least 

partly, mediated by upregulating caveolin-1 protein levels in these cells (Sedding et al., 

unpublished data). Thus, I hypothesized FoxO1a to control programmed cell death in PASMCs 

via regulating caveolin-1 as well. Following Ad-FoxO1a;AAA transduction, caveolin-1 protein 

levels significantly increased as determined by immunoblotting (Figure 35). Other genes 

potentially involved in PASMC apoptosis were evaluated too. Interestingly, neither death 

effector ligand FasL nor Bim, both proteins recently shown to be transcriptionally regulated by 

FoxO transcription factors166, 191, were elevated in FoxO1a;AAA expressing PASMCs (Figure 

35). However, both proteins were upregulated upon stress caused by serum-starvation. Thus 

slight increases in cell death rates of quiescent cells (see Figure 34d) might be due to increased 

expression of pro-apoptotic FasL and Bim. Apoptosis itself was monitored by immunostaining 

for cleaved caspase 3.  

Together, these results indicate that FoxO1a´s pro-apoptotic effect in PASMCs seems to be 

mediated by a transcriptional upregulation of caveolin-1.  
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Figure 35. FoxO1a regulates caveolin-1 
expression 
 

PASMCs were transduced with adenoviruses 
encoding GFP (Ad-GFP) or FoxO1a;AAA (Ad- 
FoxO1a;AAA). Quiescent and growing 
PASMCs were used as controls. Expression 
of caveolin-1, FasL and Bim was determined 
72 h post-transduction by immunoblot analysis 
using specific antibodies. Apoptosis induction 
was monitored with an anti-cleaved caspase 
3-antibody. β-tubulin served as control for 
equal protein loading. 
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Active FoxO1a blocks serum-induced downregulation o f p27KIP1 and Cyclin D1 

expression 

To further study the mechanisms of FoxO1a´s anti-proliferative effect, analysis of cell cycle 

regulating proteins was undertaken. PASMCs were transduced with adenoviruses (Ad-GFP or 

Ad-FoxO1a;AAA) or left untreated and protein expression levels were detected 72 h post-

transduction by Western blot analysis (Figure 36). The decrease in DNA synthesis in PASMCs 

forced to express FoxO1a;AAA as seen above (Figure 34b) was attributed to a sustained 

upregulation of the cyclin-dependent kinase inhibitor p27KIP1 and a decline in Cyclin D1 levels 

(Figure 36). Whereas proliferation block in FoxO1a;AAA-expressing PASMCs was accompanied 

by a sustained upregulation of p27KIP1 and a downregulation of Cyclin D1 (Figure 36), infection 

with the adenovirus containing the reporter gene only (Ad-GFP) did not alter p27KIP1 and Cyclin 

D1 expression levels as compared to non-transduced FBS-stimulated PASMCs (Figure 36). 

Regulation of both p27KIP1 and Cyclin D1 in serum-deprived VSMCs was already implicated 

earlier to a blockade at G1, which is responsible for a prevented S-phase entry of these cells 

compared to serum-stimulated ones (Figure 36a). Thus, inhibition of PASMC proliferation by 

active FoxO1a is due to a blockade of cell cycle progression in G1. Any changes in the 

expression levels of other cyclin-dependent kinase inhibitor (p21CIP1) or other cyclins (Cyclin E) 

were not observed (Figure 36). Further evidence for reduced cell proliferation of Ad-

FoxO1a;AAA-transduced PASMCs was the reduction of hyperphosphorylated retinoblastoma 

gene product (pRb) in these cells.  
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Figure 36. FoxO1a modulates expression of cell cycle regulating proteins in PASMCs  
 

PASMCs, either transduced with Ad-GFP, Ad-FoxO1a;AAA or left untreated, were cultured in serum-
containing medium. Control cells were serum-starved for 24 h in basal medium. Expression of cell cycle 
regulating proteins was monitored by Western blot analysis with specific antibodies for p27KIP1, p21CIP1, 
Cyclin D1, Cyclin E and phospho-pRb. Analysis of FoxO1a protein levels revealed expression of both 
endogenous and exogenous FoxO1a in Ad-FoxO1a;AAA-transduced PASMCs. Stainings for vinculin and 
β-tubulin were performed for loading control. 
 

a b 
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These data indicate that FoxO1a is involved in modulating Cyclin D1 and p27KIP1 expression 

in PASMCs, thereby attenuating FBS-induced cell cycle progression due to cell cycle arrest. 

 

FoxO1a regulates proliferation, migration and apopt osis of PASMCs from MCT-

treated rats 

Monocrotaline (MCT), a toxin isolated from plants of the Crotalaria species, is used to 

intentionally induce severe pulmonary hypertension (PHT) in animals in order to generate an 

experimental model for exploring the pathophysiology of PHT and the development of 

pharmacological means of treating it336. Pulmonary vessels from MCT-treated rats show 

significant increases in media thickness similar to neointimal thickening during restenosis. 

Pullamsetti et al. recently investigated the effect of MCT on increased PASMC migration and 

proliferation as well as matrix remodeling, which represent key features of MCT-induced PHT337. 

Since my previous results exhibit the involvement of FoxO1a in regulating PASMC behavior, I 

next investigated the impact of this transcription factor on pathologically modified PASMCs.  

 

First, cell numbers of both Ad-FoxO1a;AAA-transduced and Ad-GFP-transduced PASMCs 

from MCT-treated rats were analyzed by WST-1 assay. Transduction of PASMCs with the 

FoxO1a encoding adenovirus significantly decreased the number of viable cell as compared to 

PASMCs expressing the GFP-control vector (Figure 37a). Serum-deprivation of non-transduced 

MCT-PASMCs resulted in low cell numbers, whereas stimulation with FBS significantly 

enhanced the amount of viable cells (Figure 37a). 

The cells ability to incorporate labeled BrdU during DNA synthesis was measured 48 h post-

transduction by ELISA. As it was previously shown for PASMCs from healthy rats, MCT-

PASMCs expressing FoxO1a;AAA showed a decline in DNA replication as compared to Ad-

GFP-transduced cells (Figure 37b). Non-transduced, growing PASMCs from MCT-rats showed 

higher DNA replication rates as compared to serum-starved ones (Figure 37b). 

 

Furthermore, the chemotactic response of both adenovirus- and non-transduced PASMCs 

from MCT-treated rat was examined using modified Boyden chamber migration assays. The 

chemoattractant PDGF-BB was used to excite chemotactic cell migration. PDGF-BB caused 

strong chemotaxis of non-transduced and Ad-GFP-transduced PASMC along the 

chemoattractive gradient, whereas significant less cell migration was observed when analyzing 

PASMCs expressing active FoxO1a (82% less compared to Ad-GFP) (Figure 37c). Thus, it 

seems that FoxO1a reconstitution reverses PDGF-BB-induced PASMC migration (Figure 37c). 

In earlier studies Pullamsetti et al. were able to demonstrate that the migration rate of PASMCs 

derived from MCT-rats ranged at 155% of that of PASMCs derived from control rats337. 
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As it was already shown earlier for PASMCs from healthy rats, transduction with Ad-

FoxO1a;AAA significantly enhanced the apoptosis rate of MCT-treated PASMCs as measured 

by Cell Death Detection ELISA (~ 300% increase compared to Ad-GFP) (Figure 37d). 

Transduction with Ad-GFP revealed only a slight increase in apoptosis, therefore the 

transduction process itself was demonstrated not to be responsible for increasing cell death 

rates. Stressing non-transduced MCT-PASMCs by truncating serum supply for 24 h also 

resulted in an increase in apoptosis rate as compared to cells grown in serum-containing 

medium (Figure 37d). Thus, it seems that recovering FoxO1a function in MCT-treated PASMCs 

by adenovirally increasing expression of FoxO1a attenuates their survival rate under growth 

conditions. Completing these results, PASMCs expressing FoxO1a;AAA showed the 
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Figure 37. FoxO1a regulates proliferation, migration and apoptosis of MCT-treated PASMCs 

PASMCs derived from MCT-treated rats were transduced with FoxO1a;AAA or a control vector (Ad-GFP) 
and grown in FBS-supplemented medium for 48 h. Non-transduced PASMCs were either serum-starved 
for 24 h or cultured in growth medium before use. Data represent mean absorbance values plus error 
bars. One representative experiment from at least three separate ones is shown per experimental set-up.  
Statistical significance was determined by ANOVA. a)  Total cell number was evaluated 48 h post-
transduction by WST-1 assay (*p< 0.001; n=6). b) 48 h post-transduction, MCT-PASMCs were grown for 
6 h in the presence of BrdU and proliferation was measured by ELISA (*p< 0.001; n=4). c)  PASMC 
migration towards 20ng/ml PDGF-BB was measured by modified Boyden chamber. After 24 h, cell 
number of migrated cells was determined by WST-1 assay (*p< 0.001; n=3). d) Apoptosis rates of serum-
starved MCT-PASMCs as well as of growing non-treated, Ad-GFP- and Ad-FoxO1a;AAA-transduced 
MCT-PASMCs were measured by ELISA (*p< 0.001; n=3). 
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characteristic morphology of cells undergoing apoptotic cell death: Cell shrinkage, bebbling, 

membrane detachment and nuclear fragmentation (data not shown). 

Together, the results suggest that FoxO1a is a key regulator of cell function in pathologically 

modified PASMCs, simultaneously modulating proliferation, migration and apoptosis. 

Furthermore, prevention of serum-induced cell number increase in FoxO1a;AAA-transduced 

cells seems to be due to a combined effect of growth inhibition and augmented apoptotic rate. 

 

In summary, the data derived from studies with PASMCs indicate a central role of FoxO1a in 

modulating cell behavior of these cells in vitro. Further studies need to explore FoxO1a´s effect 

on PASMCs in vivo and in the pathogenesis of PHT. Nevertheless, my data imply that FoxO1a 

may represent an attractive target for future therapeutic strategies in the prevention of different 

vascular proliferative diseases, such as atherosclerosis, restenosis and PHT. 
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The histone deacetylase SIRT1 regulates HCASMC home ostasis in 

vitro and in vivo 

 

SIRT1 affects HCASMC proliferation and migration  

Mammalian FoxO transcription factors control various biological functions, including cell cycle 

arrest in various cell types169, 215, 226. Recently, the effect of phosphorylated FoxO1a on cell cycle 

progression, proliferation and migration of VSMCs in vitro and in vivo was discovered (see 

above and Sedding et al., unpublished data) revealing a critical role for FoxO1a in vascular 

remodeling processes. However, the effect of Foxo1a acetylation remains elusive. Since the 

mammalian histone deacetylase SIRT1 has been shown to be involved in manipulating FoxO 

function in several cell lines233, 262, I sought to determine the effect of SIRT1 and FoxO1a 

deacetylation on VSMC function in the present study. 

 

SIRT1 is localized to the nucleus of vascular smoot h muscle cells 

The deacetylase SIRT1 was recently published to play major roles in diverse cell types ranging 

from pro- to eukaryotes303, 304, 307. However, to my knowledge no one ever studied its function in 

the vascular system, or more precisely in VSMCs of coronary arteries. Therefore, I was 

interested whether SIRT1 is expressed in VSMCs deriving from different species and if though, 

how the intracellular distribution of SIRT1 would be. For this purpose, indirect 

immunofluorescence studies on human VSMCs (HCASMCs), rat VSMCs and mouse VSMCs 

were performed with specific antibodies for SIRT1. Microscopy analyses revealed a relatively 
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Figure 38. SIRT1 expression in VSMCs from 
various species 
 

Vascular smooth muscle cells from various 
species were serum-starved (72 h) or cultured 
in serum containing medium. Immunostaining 
with a specific antibody for SIRT1 revealed 
SIRT1 distribution within the cells. Nuclear DNA 
was stained with DAPI. a) SIRT1 distribution in 
quiescent and FBS-stimulated HCASMCs. b) 
SIRT1 distribution in asynchronously growing 
rat VSMCs. c) SIRT1 distribution in murine 
VSMCs grown under serum conditions. d) Cell 
lysates from HCASMCs, murine and rat 
VSMCs, respectively, were subjected to 
immunoblot analysis with antibodies for SIRT1 
and CDK4 (loading control). 
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homogenous nuclear distribution of endogenous SIRT1 in both serum-starved and growing 

HCASMCs (Figure 38a). Similarly, VSMCs from rat and mouse synthesize SIRT1, and in both 

species the deacetylase was predominantly localized to the nucleus (Figure 38b, c). Western 

blot analysis additionally demonstrated SIRT1 expression in VSMCs of all three species (Figure 

38d).  

Together these results reveal that SMCs from the vascular system, independent of the 

species, synthesize SIRT1 and that the deacetylase seems to be constantly nuclear. 

 

Endogenous SIRT1 is downregulated by siRNA in HCASM Cs  

Transfection of HCASMCs with siRNA for SIRT1 (siSIRT1) was used for mimicking loss-of-

function studies in this cell type. Non-targeting control siRNA (siControl) was used to detect off-

target effects. Non-transfected cells (NT) as well as mock-transfected ones (lipid carrier only) 

provided the possibility to detect cellular effects caused by the delivery process itself. During 

extensive studies, I established optimal transfection conditions in advance to all siRNA 
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Figure 39. SIRT1 downregulation by siRNA in HCASMCs  
 

HCASMCs were either mock-transfected (lipid-carrier only), transfected with control siRNA (siControl) or 
siRNA for SIRT1 (siSIRT1). Control cells were left untreated (NT). a) 48 h post-transfection SIRT1 
expression was determined by immunostaining with an antibody for SIRT1. Nuclear DNA was stained 
with DAPI. b) Protein lysates from transfected HCASMCs were subjected to immunoblot with antibodies 
for SIRT1, vinculin, β-tubulin, and CDK4. c) SIRT1 mRNA levels from transfected HCASMCs were 
analyzed by semiquantitative reverse transcriptase PCR 24 h and 48 h post-transfection. 18S was used 
as an internal positive control. All experiments were conducted at least in duplicate using always 
independent HCASMC cultures.  
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experiments (data not shown). Downregulation of SIRT1 protein level was confirmed by 

immunocytochemistry (Figure 39a) as well as by immunoblotting (Figure 39b). siSIRT1-

transfected HCASMCs showed only sporadic SIRT1 expression within their nuclei (Figure 39a). 

Western blot experiments additionally revealed siRNA-mediated downregulation of SIRT1 

(Figure 39b), thus confirming previous immunoblot results. Since none of the tested 

housekeeping protein levels was influenced by siRNA for SIRT1 (Figure 39b), the specifity of 

the siRNA was verified. Examination of mRNA levels by our group using reverse transcriptase 

PCR indicated a downregulation of SIRT1 mRNA by siRNA 24 h and 48 h post-transfection, 

respectively (Figure 39c).  

In the end of this experiments I conclude that transient downregulation of SIRT1 can be 

achieved by the use of specific siRNA. 

 

Serum stimulation induces an upregulation of SIRT1 levels in HCASMCs 

To determine whether serum stimulation modulates the expression levels of SIRT1 in 

HCASMCs, Western blot analysis of HCASMCs treated for various times with serum was 

carried out. As shown in Figure 40a, incubation of silenced HCASMCs with 20% FBS in growth 

medium resulted in an upregulation of SIRT1 protein levels after approximately 4 to 6 h. 

Induction of proliferation was determined by immunoblot analysis for Cyclin D1 expression, a 

cell cycle regulatory protein that is upregulated during cell cycle progression (Figure 40a). 

Reverse transcriptase PCR analysis of serum-treated HCASMCs indicated an increase in 

SIRT1 mRNA levels already 1 to 2 h following FBS treatment (Figure 40b). Interestingly, SIRT1 

mRNA levels truncated over time to their starting levels (Figure 40b). Similarily, SIRT1 protein 

levels returned to baseline levels and even dramatically decreased at later timepoints following 

mitogenic stimulation (data not shown). 

Taken together, these data indicate that serum stimulation induces a transient increase in 

SIRT1 expression followed by a later dramatic decrease in HCASMCs. 
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Figure 40. Serum stimulation affects 
SIRT1 expression in HCASMCs 
 

HCASMCs were serum-starved for 72 h in 
basal medium and subsequently 
stimulated with 20% FBS in growth 
medium for the indicated timeperiods. a) 
Cell lysates were processed to Western 
blot analysis for SIRT1, cyclin D1 and 
vinculin (loading control). The blot shown 
is representative of three independent 
experiments. b) SIRT1 mRNA levels were 
analyzed by semiquantitative reverse 
transcriptase PCR 48 h post-transfection. 
Quantifying 18S mRNA was used as a 
loading control. PCR experiments were 
conducted at least in triplicate using 
always independent HCASMC cultures. 
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Pharmacological inhibition of endogenous SIRT1 func tion enhances HCASMC 

proliferation  

After having shown that SIRT1 is upregulated in response to serum stimulation, I was interested 

in the influence of endogenous SIRT1 on HCASMC proliferation. For analyzing this, HCASMCs 

were either serum-starved or incubated with 20% FBS. Serum treatment significantly induced 

HCASMC replication as determined by BrdU incorporation (Figure 41a, b and earlier results). 

Pharmacological inhibition of SIRT1 function by treatment with either NAM or splitomicin, both 

agents often utilized for downregulating SIRT1 activity292-294, significantly increased FBS-

mediated DNA synthesis as compared to non-treated serum-stimulated cells (Figure 41a, b).  

 

Next, I was interested whether both molecules were able to induce proliferation in silenced 

HCASMCs. As seen in Figure 41c and d, even quiescent cells were animated to enter the cell 

cycle and duplicate themselves upon drug treatment. Optimal concentrations of both agents  
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Figure 41. Effect of pharmacological SIRT1 inhibition on HCASMC proliferation 
 

HCASMCs were cultured in growth medium supplemented with 20% FBS, and treated without or with 
pharmacological SIRT1 inhibitors (NAM or splitomicin) for 20 h. Some cells were serum-starved for 72 h. 
BrdU incorporation was measured by ELISA. Data represent means and standard deviations of three to 
six measurements. Each experimental set was repeated at least three times with similar results. a) 
HCASMCs were treated with different concentrations of NAM (*p< 0.001; n=6). b) HCASMCs were 
treated with different concentrations of splitomicin (*p< 0.001, **p< 0.01; n=4). c, d)  Both serum-starved 
and proliferating HCASMCs were treated with 20 mM NAM (*p< 0.001; n=6) and 5 µM splitomicin 
(*p< 0.001; n=4), respectively. Statistical significance of all experiments was determined by ANOVA. 
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(NAM and splitomicin) for influencing HCASMC behavior were carefully determined in the run-

up to all experiments (data not shown).  

Since DNA synthesis of HCASMCs is upregulated by the use of SIRT1 inhibitors, the latest 

experiments reveal the involvement of SIRT1 in controlling excessive proliferation and 

regulating HCASMC dormancy. 

 

Downregulation of SIRT1 by siRNA technique enhances  proliferation of HCASMCs  

Given that there is no clear evidence for the used pharmacological agents of inhibiting SIRT1 

function specifically, proliferation of HCASMCs was also measured in SIRT1-deprived cells. For 

this experiment, HCASMCs were transfected with either siRNA for SIRT1 or a non-silencing 

control siRNA, cultured in the absence or presence of 20% FBS, and then assayed for cell 

proliferation by ELISA 72 h post-transfection. siRNA efficiency and specificity for SIRT1 was 

demonstrated in previous experiments (see Figure 39). As shown in Figure 42, FBS-mediated 

HCASMC proliferation was enhanced by siRNA-mediated downregulation of SIRT1. 

Interestingly, downregulation of SIRT1 had also a small but significant effect on BrdU 

incorporation into cellular DNA of silenced HCASMCs as compared to control transfected 

serum-starved cells (Figure 42).  

Together these results confirm the inhibitory effect of SIRT1 on HCASMC proliferation and 

support my previous results.  
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Figure 42. Anti-proliferative effect of SIRT1 is 
partially reversed by siRNA for SIRT1  
 

HCASMCs were transfected with siRNA for SIRT1 
(siSIRT1) or control siRNA (siControl). 24 h post-
transfection the cells were incubated for additional 
48 h in the absence or presence of 20% FBS. BrdU 
incorporation was measured by ELISA. Data 
represent means and error bars of OD values 
(*p< 0.001, **p< 0.01; n=4). Data depicted are 
representative of five independent experiments from 
different HCASMC aliquots. Statistical significance 
was determined by ANOVA 

 

 

SIRT1 is involved in regulating cell proliferation of mouse embryonic fibroblasts 

Due to the finding that endogenous SIRT1 inhibits cell cycle progression in HCASMCs, I 

assumed that SIRT1 could also modulate proliferation of mouse embryonic fibroblasts (MEFs). 

MEFs were derived either from SIRT1-null mice or from their wild-type littermates. First, 

endogenous SIRT1 was revealed by immunoblotting with an antibody for SIRT1 and, as 

expected, SIRT1-knockout MEF do not express the deacetylase (Figure 43a).  
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Proliferation of both types of MEFs was revealed by measuring BrdU incorporation into the 

cells DNA (Figure 43b). In serum-cultured SIRT1-null MEFs, the ability to replicate DNA was 

enhanced as compared to cells capable of synthesizing SIRT1 (Figure 43b). Interestingly, as it 

was demonstrated earlier with SIRT1-knockdown HCASMCs, BrdU incorporation rates of 

silenced MEFs deprived of SIRT1 were little but significantly higher to that of quiescent wild-

type MEFs, indicating an increase in proliferation in SIRT1-null MEFs as compared to wild-type 

MEFs (Figure 43b).  

In agreement with the previous results, I could show that functional active SIRT1 attenuates 

cell proliferation in both quiescent and growing cells, independent of the cell type examined. 
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Figure 43. SIRT1 affects proliferation in mouse embryonic fibroblasts 
 

a) Mouse embryonic fibroblasts (MEF) from SIRT1-knockout mice (S1KO) or from their wild-type 
littermates (WT) were analyzed for SIRT1 expression by western-blotting with an antibody for SIRT1. 
Equal protein loading was confirmed using anti-β-tubulin antibody. b) WT MEFs and SIRT1-null MEFs 
were either cultured in serum-containing medium or were serum-starved for 14 h before incubating with 
BrdU for 6 h. BrdU incorporation was analyzed by ELISA and data given represent mean absorbance 
values and standard deviations of four measurements (*p< 0.001). Statistical significance was determined 
by ANOVA. The experiment was repeated six times with same results. 
 

 

Activation of SIRT1 by resveratrol inhibits serum-i nduced HCASMCs proliferation 

Recently, Howitz et al. described the substance resveratrol, a plant polyphenol, being a specific 

small molecule activator of SIRT1297. As I could show that SIRT1 inhibits HCASMC proliferation, 

I was interested in whether activation of SIRT1 by resveratrol would attenuate serum-induced 

proliferation in this cell type. First, HCASMCs cultured in growth medium were treated with 

different amounts of resveratrol for a total of four days. Cell numbers were counted every 24 h 

using a hemocytometer. Activation of SIRT1 by resveratrol reduced HCASMCs proliferation 

dose-dependently, with 50 µM resveratrol completely inhibiting DNA replication (Figure 44a). It 

is note worth to mention that treatment with 50 µM resveratrol partially induced cell death as it 

was seen by changes in cell morphology and cell detachment (data not shown). 

Similar results were obtained using WST-1 assays: Quantitative analysis of HCASMC cell 

numbers revealed a dose-dependent decrease of viable cells after treatment with increasing 

b a 
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concentrations of resveratrol (Figure 44b).  

To further demonstrate inhibition of proliferation, BrdU incorporation in response to 

resveratrol treatment was measured by ELISA (Figure 44c). The pro-proliferative effect of 20% 

FBS was partially inhibited by 10 µM resveratrol, and 20 µM resveratrol almost completely 

compensated it (Figure 44c). Treatment with 50 µM resveratrol extremely reduced BrdU 

incorporation suggesting, that at this concentration the plant polyphenol did not only inhibit 

proliferation but also induced cell death (Figure 44c). 

Taken together, this part of my thesis demonstrates that resveratrol-treatment reverses 

FBS-induced DNA synthesis in HCASMCs. Whether the observed effect is SIRT1 specific will 

be explored in the following part. 
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Figure 44. Resveratrol treatment affects 
HCASMCs proliferation  
 

a, b) HCASMCs were cultured in 20% FBS-
containing medium and treated with or without 
resveratrol at the indicated concentrations for four 
days. a) Cell numbers were counted using a 
hemocytometer at the indicated times after adding 
resveratrol to the medium. Data are means and 
error bars of values from three independent 
measurements. b) Same as in a, except that cell 
amount was assayed using WST-1 assays as 
described in Materials and Methods. Data 
represent means and standard deviation of four 
measurements. c) HCASMCs were incubated for  
 

20 h with the indicated concentrations of resveratrol in growth medium supplemented with 20% FBS. 
Control cells were left untreated and serum-starved for 72 h. BrdU incorporation into the DNA was 
measured by ELISA and data represent means and standard deviations of one representative experiment 
(*p< 0.001, **p< 0.001 vs. FBS; n=4). Statistical significance was determined by ANOVA. All experiments 
were repeated three times with similar results. 
 

 

Resveratrol influences HCASMCs proliferation via ma nipulating SIRT1 function 

After having shown that resveratrol affects HCASMC proliferation, I was interested in whether 

this molecule directly alters SIRT1 function or whether its effect on cell proliferation was exerted 

by manipulating other proteins within the cells. To clarify this question, HCASMCs were 
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transfected with siRNA targeting SIRT1 mRNA or a non-silencing siRNA (Figure 45a). 48 h 

post-transfection, cells were incubated in the presence or absence of resveratrol. Proliferation, 

as determined by BrdU incorporation, was significantly decreased in control-transfected 

HCASMCs after resveratrol treatment (Figure 45a), whereas SIRT1-deprived cells showed no 

relevant attenuation in DNA synthesis (Figure 45a).  

 

To assess whether the effect of resveratrol on activating SIRT1 was cell type specific, MEFs 

from wild-type and SIRT1-knockout mice were treated with or without the polyphenol before 

measuring the cells DNA replication rates (Figure 45b, c). Wild-type MEFs showed a significant 

decrease in FBS-induced DNA synthesis upon treatment with increasing concentrations of 

resveratrol (Figure 45b), whereas MEF from SIRT1-knockout mice did not (Figure 45c).  

Taken together these data indicate that resveratrol inhibits serum-mediated cell cycle 

progression in various cell types via manipulating SIRT1 function. Thus, administering 

resveratrol could be a promising approach for combating with vasculo-proliferative diseases. 
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Figure 45. Resveratrol affects cell proliferation 
via regulating SIRT1 function 
 

a) HCASMCs were transfected with control-siRNA 
(siControl) or siRNA for SIRT1 (siSIRT1). 24 h 
post-transfection control cells were serum-starved 
for 48 h. The others were cultured in 20% FBS-
containing medium and treated with or without 
20 µM resveratrol for 20 h before BrdU 
incorporation was measured by ELISA. Data 
represent means and error bars (*p< 0.001; n=4). 
The experiment was repeated three times. 
Statistical significance was determined by ANOVA. 
MEF from wild-type mice (b) and SIRT1-knockout 
mice (c) were cultured in growth medium 
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supplemented with 20% FBS and treated with the indicated concentrations of resveratrol for 20 h. 
Proliferation was determined by BrdU ELISA. Absorbance values and standard deviations of 4 
measurements are indicated (b: *p< 0.001, **p< 0.05 vs. FBS; c: non-significant (n.s.) > 0.02 vs FBS). 
Statistical significance was determined by ANOVA. The experiment was repeated twice times with similar 
results. 
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Adenoviral transduction with either active or const itutive inactive SIRT1 affects 

HCASMCs proliferation 

Besides using resveratrol, another approach for studying excessive SIRT1 function is 

transduction of HCASMCs with an adenovirus encoding wildtype SIRT1 (Ad-SIRT1). 

Transduction with an adenoviral construct expressing a constitutive inactive mutant of SIRT1 

(Ad-SIRT1-H335A) was used for competitive inhibition of SIRT1 activity. This dominant-negative 

form was created by site-directed mutagenesis and is characterized by substitution of a 

conserved histidine to arginin in the catalytic region of the protein (Figure 46). To complete my 

results, transduction of HCASMCs with both adenoviruses, as well as with a control virus, was 

performed by our group. Overexpression of functional active SIRT1 decreased HCASMC 

proliferation as compared to control-transduced cells (data not shown). Transduction of the cells 

with Ad-SIRT1-H335A resulted in DNA replication levels similar to that of control cells (data not 

shown).  

Taken together, increasing SIRT1 activity in HCASMCs – either by forced SIRT1 expression 

or by pharmacologically augmenting SIRT1 function – results in attenuated DNA replication 

levels. Thus, my previous findings of SIRT1 being an important regulator of VSMC proliferation 

has been confirmed once more. 

 

H355

A355

Sirt1

Sirt1 H335A

 

 
Figure 46. Cloning and mutagenesis of the 
dominant negative SIRT1  
 

A constitutively inactive mutant of SIRT1 was created 
by mutating histidine 355 in the catalytic region of 
SIRT1 to alanine (H335A = SIRT1 H335A). 
Subsequently, recombinant SIRT1 H335A adenovirus 
was generated.  

 

 

SIRT1 is involved in inhibiting migration of HCASMC s and MEFs 

A central observation in vascular biology has been that cell cycle progression and cell migration 

upon mitotic stimulation are linked85. Since SIRT1 was proven to play a role in cell cycle 

progression and proliferation as shown above, the question arose, whether SIRT1 is also 

involved in regulating HCASMC migration. siRNA-transfected HCASMCs were used for 

migration assays 72 h post-transfection. Migration of both control-transfected and siSIRT1-

transfected cells along a PDGF-BB chemotactic gradient was examined by using a modified 

Boyden-chamber model. PDGF-BB induced chemotaxis of both siSIRT1- and control-

transfected HCASMCs, whereas absence of the growth factor resulted in complete loss of 

migration (Figure 47a). Interestingly, the amount of migrated siSIRT1-transfected cells along the 

chemotactic gradient was significantly higher to that of control cells. Treatment of control-



Results   

 

101 

transfected cells with the SIRT1 activator resveratrol interfered with chemotaxis, whereas 

SIRT1-depived cells did not respond to resveratrol (Figure 47a). This again indicated resveratrol 

to act specifically via manipulating SIRT1 function.  

 

To assess whether SIRT1´s effect on chemotaxis is cell type specific, a similar experiment 

using wild-type MEFs and MEFs derived from SIRT1-knockout mice was performed. For both 

cell types, 20% FBS was chemotactic (Figure 47b). Nevertheless, loss of SIRT1 resulted in a 

significant increase in serum-induced migration as compared to the wild-type situation. As it was 

already shown for HCASMCs, absence of the chemotactic stimuli almost completely inhibited 

migration of both MEF types (Figure 47b).  

In conclusion, these data reveal that SIRT1 does not only have an impact on FBS-induced 

proliferation but also affects chemotaxis of different cell types. 
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Figure 47. Effect of SIRT1 on cell 
chemotaxis 
 

a) HCASMCs were transfected with siRNA for 
SIRT1 (siSIRT1) or non-targeting control 
siRNA (siControl). 24 h post-transfection cells 
were serum-starved for 48 h. 12 h before 
measuring chemotaxis, cells were treated with 
or without resveratrol (20 µM). Subsequently, 
cells were plated on gelatine-coated poly-
carbonate membranes and allowed to migrate 
for 6 h along a 0ng/ml and a 20ng/ml PDGF-
BB gradient, respectively. Numbers of 
migrated cells were analyzed using WST-1 
assays. Data are plotted as means of triplicate 
samples and standard deviations (*p< 0.001, 
**p< 0.01; n=3). Data represent one 
experiment of four performed and statistical 
analysis was performed by ANOVA. b) MEFs 
derived from SIRT1-knockout mice (S1KO) or 
wild-type littermates (WT) were serum-starved 
for 24 h and then allowed to migrate along 
either a 0% or a 20% FBS gradient. Migrated 
cells were incubated with WST-1. Absorbance 
values plus error bars are presented in the 
graph (*p< 0.001, **p< 0.01; n=3). Data shown 
are representative of one experiment from four 
separate ones with similar results. Statistical 
significance was determined by ANOVA. 

  

 

SIRT1 is expressed in VSMCs of the murine femoral a rtery vessel wall  

As SIRT1 is expressed within the nuclei of mouse VSMCs in vitro (Figure 38), its in vivo 

expression level and distribution pattern was monitored in native mouse femoral arteries, as 

well as during the development of the neointima after wire-injury (Figure 48). Immunostaining of 

mouse femoral artery cross-sections from native mice revealed strong SIRT1 expression in the 

b 
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nuclei of medial VSMCs (Figure 48a). Double-staining with an antibody for α-smooth muscle 

actin determined SIRT1-positive cells to be VSMCs. Dilatation of mouse femoral arteries 

resulted in neointima development over time (Figure 48b). Immunofluorescence studies of 

injured vessels at day 7 and day 21 post-dilatation confirmed expression of endogenous SIRT1 

in medial cells of the femoral artery, as well as low expression in cell providing the neointimal 

tissue (Figure 48b). As shown by double-staining with an antibody for α-smooth muscle actin, 

the neointimal tissue consists of mainly α-smooth muscle actin-expressing VSMCs (Figure 48b). 

Together with previous data these results indicate a SIRT1 expression not only in vitro but 

also in vivo in VSMCs of mouse arteries.  

  
    

 

non-dilated
7 days

post-dilatation
21 days

post-dilatation

SIRT1

Overlay

Figure 48. SIRT1 expression in 
the native and injured mouse 
femoral artery 
 

Mouse femoral artery cross-
sections were stained with specific 
antibodies for SIRT1 (green 
fluorescence) and α-smooth 
muscle actin (red fluorescence). 
DAPI was used for staining cell 
nuclei (blue fluorescence). a) A 
representative low magnification 
picture of a complete native 
vessel stained for SIRT1, α-
smooth muscle actin and DAPI. 
The boxed region is highly 
magnificated in the second image.  
b) Representative sections of 
native or injured mouse femoral 
arteries 7 days and 21 days post-
injury, respectively. The lower row 
shows merged pictures from the 
same sections stained for SIRT1, 
α-smooth muscle actin and DAPI. 

 

 

Adenovirus mediated gene transfer of SIRT1 protein inhibits neointimal hyperplasia in 

mouse femoral artery after endothelial injury  

Since SIRT1 was recently shown to inhibit VSMC proliferation and migration in vitro, the clinical 

relevance of SIRT1 in the development of vasculo-proliferative restenosis was studied by our 

group using a mouse femoral artery injury model for neointimal hyperplasia. Adenoviruses 

expressing native SIRT1 (Ad-SIRT1), dominant-negative SIRT1 (Ad-SIRT1-H335A), or a control 

adenovirus (Ad-Control) was delivered to the wire-denudated mouse femoral artery. Previous 

studies by our group (Sedding et al., unpublished data) verified efficient gene expression from 

localized luminal gene delivery up to 4 weeks after injury. Representative photomicrographs of 

hematoxylin/eosin-stained femoral artery cross-sections 21 days following injury are shown in 

Figure 49a. Significant neointimal hyperplasia was observed in the presence of control 

b 
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adenovirus transduction (n=18), or in the presence of Ad-SIRT1-H335A (n=18) with intima over 

media ratios (I/M) reaching 1.93±0.31 and 2.04±0.24, respectively (Figure 49b). Overexpression 

of Ad-SIRT1 (n=18) attenuated neointimal hyperplasia with I/M ratio 0.56±0.49 (Figure 49b).  
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Figure 49. SIRT1 prevents neointima formation 
in vivo  
 

a) Representative cross sections of mouse femoral 
arteries transduced with control vector (Ad-control), 
a constitutive inactive form of SIRT1 (Ad-SIRT1-
H335A), or a wildtype SIRT1 (Ad-SIRT1) 21 days 
after dilatation are shown. The sections were 
stained with hematoxylin and eosin, and examined 
by light microscopy. b) Quantification of 
neointima/media (I/M) ratio of injured mouse 
femoral arteries, transduced with Ad-control, Ad-
SIRT1-H335A or Ad-SIRT1 21 days after dilatation. 
Data represent means and standard deviations of 
3 sections from 6 mice/group (*p< 0.001). 

 

 

To gain insight into the mechanism of Ad-SIRT1-mediated inhibition of neointimal 

hyperplasia, mouse femoral artery sections were assayed for proliferation in vivo, using PCNA 

staining (Figure 50). At day 21 following injury, PCNA expression was significantly reduced in 

Ad-SIRT1-transduced arteries (Figure 50e, f) as compared to both Ad-Control virus-transduced 

vessels (Figure 50a, b) and arteries transduced with Ad-SIRT1-H335A (Figure 50c, d). Please 

note the PCNA positive cells being located in the media, a vessel layer known to consist of 
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Figure 50. SIRT1 modulates cellular 
proliferation in vivo  
 

In vivo cell proliferation was detected by 
using Zymed’s PCNA staining kit in 
femoral artery sections of Ad-Control (a 
and b), Ad-SIRT1-H335A (c and d) and 
Ad-SIRT1-transduced vessels (e and f) at 
day 21 after endothelial denudation. c, d 
and f are high-magnification images of the 
boxed regions shown on low magnification 
images of the complete vessel (a, c,      
and e). 
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VSMCs, a cell type contributing mainly to the generation of neointimal tissue via proliferation 

(see “Introduction”).  

Taken together, these data suggest that the deacetylase SIRT1 participates in protecting 

from neointimal hyperplasia by mediating inhibition of cell proliferation. 

 

SIRT1 is expressed in VSMCs of human tissues  

After having shown that SIRT1 is expressed in mouse arteries and that the deacetylase affects 

neointimal hyperplasia, I was interested in its distribution in human vessels and tissues 

generated during vasculo-proliferative diseases. Immunohistochemical analyses were 

performed on human aorta cross-sections as well as on sections from human atherectomy 

samples (representing removed atherosclerotic plaques from arteries). As presumed, human 

aortic VSMCs express SIRT1 within their nuclei (Figure 51a, b). Additionally, some plaque cells 

were SIRT1 positive, too (Figure 51c, d).  

These staining demonstrate SIRT1 to be expressed not only in mouse cells and tissues but 

also in humans. Thus, SIRT1 seems to be a potential new target involved in the development of 

atherosclerosis and restenosis, and future investigations need to explore its detailed 

mechanism of action. 

 
 

 

AtherectomyAorta
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b

c

d  

 

 

 
Figure 51. SIRT1 expression in human tissues  

 
Cross-sections from a human aorta (a, b) and 
sections from human atherectomy samples (c, d ) 
were stained for SIRT1 by immunohistochemistry 
using a broad spectrum Histostain-SAP Kit. 
Images a, and c are representative low-
magnification images of the whole tissue, whereas 
b and d are high-magnification images of the 
boxed regions. 

 

 

FoxO1a is not an interaction partner of SIRT1 in se rum-stimulated HCASMCs  

The previous extensive studies pointed out an important role for the deacetylase SIRT1 on 

regulating HCASMC proliferation in vitro and in vivo. A signaling pathway involved in regulating 

cell cycle progression and replication that is highly conserved among vertebrates is the 

insulin/IGF-1 signaling pathway. The FoxO transcription factors have been identified as a 

negative regulator of this pathway (see “Introduction”). Interestingly, publications of the last 

three years revealed a connection between the deacetylase SIRT1 and FoxO transcription 
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factors 233, 262, 263, however, these results were controversial. Nevertheless, FoxO transcription 

factors are promising interaction partners of SIRT1 in VSMCs of the artery system. Since we 

recently revealed FoxO1a´s importance in regulating proliferation and migration in both 

HCASMCs and PASMCs (see above; Sedding et al., unpublished data), SIRT1´s influence on 

FoxO1a was investigated in the next part of this thesis.  

 

As it was shown in Figure 38a and Figure 19a, both SIRT1 and FoxO1a localized to the 

nucleus under serum-free conditions. In response to FBS stimulation SIRT1 maintained its 

nuclear localization (Figure 38a), whereas ~ 51% of FoxO1a transcription factors translocated to 

the cytosol (Figure 19b). However, some FoxO1a proteins still remained in the nucleus. Since 

SIRT1 was shown to be responsible for inhibiting HCASMCs proliferation both under serum and 

non-serum conditions, the question arose whether endogenous FoxO1a is a direct substrate of 

SIRT1 within these cells in vivo. To test this, HCASMCs were grown on chamberslides and 

serum starved for 72 h for mimicking the quiescent state. Partially, chambers were treated with 

serum for 30 min pre-experimentally. Determination of close SIRT1/FoxO1a association 

(indicating an interaction of both proteins) was conducted by conventional double-labeling 

immunofluorescence followed by FRET-CLSM analysis. For analyzing interaction in serum-

treated HCASMCs, FRET was measured only in cells were both proteins remained within the 

nucleus. A distinct increase in fluorescence (∆IF) was detected in the bleached area of 

quiescence HCASMCs (mean ∆IF = 4.96) (Figure 52f), revealing a close interaction between 

endogenous SIRT1 and FoxO1a. To exclude a false-positive FRET signal which might be 

caused by antibody cross-reactivity, both secondary antibodies were applied to sections that 

were incubated with the primary anti-FoxO1a antibody only (mean ∆IF = 0.28). For measuring 

FRET in silenced HCASMCs, 54 regions of interest (ROIs) representing 54 nuclei of HCASMCs 

were observed, whereas for their corresponding control 44 ROIs were analyzed. The difference 

between both ∆IFs was highly significant (Figure 52f). Under serum stimulation, the mean FRET 

signal out of 52 ROIs decreased significantly (∆IF = 3.26) (Figure 52f), representing a highly 

significant loss of SIRT1/FoxO1a interaction in these cells. The ∆IF measured in the 

corresponding control group was low (mean ∆IF = 0.23; 44 ROI) and highly significant to the 

experimental group.  

 

To exclude SIRT1 to influence other FoxO isoforms, FRET analysis of FoxO3a and SIRT1 in 

HCASMCs was additionally performed. As it was already shown for FoxO1a, FoxO3a and 

SIRT1 closely interact in quiescent cell but loose their contact in response to FBS stimulation 

(data not shown). 

Taken together, the close physiological interaction between endogenous human FoxO1a 

and SIRT1 in quiescent HCASMCs in vivo was demonstrated. However, serum stimulation 
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highly reduced their interaction, not only by inducing translocation of the FoxOs to the 

cytoplasm but also by loosening contact as determined by FRET. Thus, the effect of SIRT1 on 

attenuating HCASMC proliferation in growing cells is not  due to a direct influence on FoxO1a 

function as it was suggested previously. It rather seems that SIRT1 controls HCASMC behavior 

under growth conditions by influencing other interaction partners besides FoxOs, which in turn 

themselves affect physiological processes. For further analyzing this hypothesis of yet unknown 

SIRT1 interaction partners in proliferating cells, our group used Antibody Arrays for screening 

protein-protein interactions. Several promising proteins were identified and one of those was 

already shown to directly interact with FoxO transcription factors. Further analysis will now be 

necessary to determine the molecular interactions and pathways of the newly found protein 

partners of SIRT1. 
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Figure 52. Detection of close association of SIRT1 and FoxO1a in HCASMCs  

Close association between SIRT1 and FoxO1a in the nucleus of serum starved (SF) or FBS-stimulated 
HCASMCs was determined by double-labeling indirect immunofluorescence with subsequent FRET 
analysis. Representative images of donor (SIRT1 labeled with Cy3-conjugated antibody, a, b) and 
acceptor (FoxO1a labeled with Cy5-conjugated antibody, c, d ) fluorescence of a FBS-treated nucleus. 
Cy5 was bleached in a region of interest 1 (compare ROI 1 in c and d). e) Increases in fluorescence (∆IF) 
after bleaching for each ROI of one representative measurement are shown. ROI 1: bleached area 
(compare c-d). ROI 2-6: control area outside the bleached area. f) ∆IF in the nuclei of serum starved (SF) 
and FBS-treated HCASMCs as compared to their respective control group. Data represent mean values 
of 5 independent experiments. At least 44 ROIs were measured per condition (*p < 0.000, **p < 0.001, 
Mann-Whitney test; n=number of measurements). Boxplots: percentiles 0, 25, median, 75, 100. 
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SIRT1 deacetylates FoxO1a in HCASMCs  

Given that SIRT1 functions as an NAD-dependent deacetylase and that it interacts with FoxO1a 

in quiescent cells, I investigated whether SIRT1 catalyzes the deacetylation of this transcription 

factor directly in serum-deprived HCASMCs. Therefore silenced HCASMCs were incubated for 

16 h with or without NAM (SIRT1-specific) and Trichostatin A (TSA; a class I and II HDAC 

inhibitor 277, 280) for inhibiting all endogenous deacetylases. Subsequently, acetylated-lysines 

were immunoprecipitated from cell lysates and immune complexes were analyzed for FoxO1a 

by Western blot. Treatment with SIRT1 inhibitor NAM alone or with TSA alone had no visible 

effect on FoxO1a acetylation (Figure 53). By contrast, incubation of cells with a mix of TSA and 

NAM prevented deacetylation of endogenous FoxO1a, thus levels of acetylated FoxO1a 

augmented (Figure 53, Figure 63).  

This result suggests that SIRT1 as well as Class I and II HDACs contribute to FoxO1a´s  

deacetylation within HCASMCs. 
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Figure 53.  FoxO1a is deacetylated by 
SIRT1 in HCASMCs  
 

HCASMCs were serum starved for 60 h 
followed by 16 h incubation with or without 
NAM (50 mM) and TSA (10 µM) as indicated. 
Cell lysates were subjected to immuno-
precipitation with an antibody for acetylated-
lysines and immune complexes were 
analyzed by Western blot for FoxO1a. The 
IgG control panel indicates the IgG that 
correlates to the anti-acetylated antibodies 
and monitors the addition of the same 
quantity of anti-acetylated antibodies in every 
sample. 

 

 

Deacetylation of FoxO1a by  SIRT1 enhances its tran scriptional activity  

In the next set of experiments, I investigated whether SIRT1-mediated deacetylation of FoxO1a 

in quiescent HCASMCs stimulates FoxO transcriptional and biological activity. The 

transcriptional activity of FoxO1a from different nuclear extracts was analyzed using a 

commercially available FoxO1a activity assay. Consistent with their capacity to increase the 

abundance of acetylated FoxO1a in silenced HCASMCs, treatment with TSA/NAM significantly 

decreased FoxO1a activity (Figure 54a). A distinct loss in FoxO1a activity was seen in 

HCASMCs stimulated with serum (Figure 54a). Although NAM alone did not affect the amount 

of acetylated FoxO1a in immunoprecipitation experiments (Figure 53), treatment with the SIRT1 

inhibitor significantly attenuated FoxO1a binding to its specific promoter element (Figure 54b).  
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Figure 54. Enhancement of FoxO1a transcriptional activity by SIRT1 
 

HCASMCs were serum-starved for 60 h followed by incubation with or without the indicated agents for 
16 h. Nuclear extracts were extracted and FoxO1a´s transcriptional activity was measured by ELISA (a,b, 
f). a) Silenced HCASMCs were treated with or without a mix of NAM (50 mM) and TSA (10 µM). Non-
treated cells stimulated with 20% FBS 30 min post-experimentally were used for control. (*p< 0.01, 
**p< 0.02 vs. serum-free control; n=2). b) Quiescent HCASMCs were incubated with or without NAM 
(50 mM) and assayed for FoxO1a activity. (*p< 0.05 vs. non-treated control; n=2). c) HCASMCs were 
treated as in b) and whole cell lysates were subjected to immunoblotting with antibodies for p27KIP1 and β-
tubulin. d) HCASMCs were transfected with non-silencing siRNA or siRNA targeting SIRT1. 24 h post-
transfection, cells were set on serum-free medium for 48 h. 30 min before extracting nuclear lysates and 
determining FoxO1a activity using an ELISA, part of the cells were stimulated with 20% FBS (*p< 0.001, 
**p< 0.01; n=2). e) MEF deriving from SIRT1-knockout mice or from their wild-type littermates (WT) were 
serum-starved for 12 h and stimulated for 30 min with or without 20% FBS. FoxO1a activity in the nuclear 
extracts was determined by ELISA (*p< 0.001, **p< 0.01; n=2). f) Quiescent HCASMCs were incubated in 
the presence or absence of resveratrol (20 µM) for 16 h and subjected to FoxO1a activity ELISA (*p< 0.07 
vs. non-treated control; n=2). All data are mean absorbance values and standard deviations from 
experiments repeated at least twice with similar results. Statistical significance of all experiments was 
determined by ANOVA.  
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Moreover, NAM-mediated inhibition of SIRT1 function resulted in a reduced transactivation 

activity of FoxO1a: Expression of endogenous human p27KIP1 is decreased upon NAM treatment 

as determined by Western blot (Figure 54c). Previously, I demonstrated FoxO1a to be involved 

in the transcriptional activation of this cell-cycle inhibitor gene (Figure 25), therefore outcome of 

this protein is appropriate for analyzing FoxO1a transactivity. 

 

Furthermore to pharmacologically inhibiting SIRT1, transient downregulation of SIRT1 by 

siRNA resulted in decreased FoxO1a activity in quiescent HCASMCs as compared to cells 

transfected with a non-targeting control siRNA (Figure 54d). Similar results were obtained with 

SIRT1-knockout MEFs and their wild-type littermates (Figure 54e). Once SIRT1 function was 

downregulated (either by siRNA or in SIRT1-knockout MEF), FoxO1a activity in serum- 

stimulated cells was not significantly further attenuated, indicating an independency of residual 

FoxO1a function from SIRT1.  

As shown in Figure 54f, the transactivation activity of FoxO1a in quiescent HCASMCs was 

slightly increased in the presence of the SIRT1 activator resveratrol. Thus, increasing SIRT1 

function seems to increase transactivation activity of FoxO1a. This observation fits to further 

results of mine, however appears to be uncommonly due to the knowledge of FoxO1a being 

highly activated under serum-free conditions. However, as it will be shown in the later part of the 

thesis, different stimuli are able to further increase SIRT1/FoxO1a interaction in quiescent 

HCASMCs and thus, an increase in FoxO1a activity seems to be possible upon resveratrol 

treatment. 

In the end of this part, it can be summarized that SIRT1 contributes to proliferation inhibition 

in silenced HCASMCs in vitro and in vivo by deacetylating FoxO1a and thereby enhancing its 

transcriptional activity resulting in induced gene expression of p27KIP1. 

 

Effect of SIRT1 on HCASMC programmed cell death 

Besides controlling cell cycle arrest169, 215, 226, FoxO transcription factors have been shown to be 

involved in cell processes such as detoxification of reactive oxygen species (ROS)170, 171, repair 

of damaged DNA169, and apoptosis191, 194. The deacetylase SIRT1 was shown to play a key role 

in resistance to stress in C. elegance contributing to an increase in longevity. It does so by 

stimulating the activity of FoxO-homologues304, 305 through direct binding306. Research 

represented in this thesis now demonstrates FoxO1a´s contribution to HCASMC apoptotic cell 

death in vitro and in vivo. Since these cells have a predominant role in vascular disorders such 

as atherosclerosis, and apoptosis of these cells can lead to plaque rupture (see “Introduction”), 

modulating FoxO1a activity by SIRT1 could represent an effective approach for targeting CAD. 

Thus, the next part of my thesis deals with the influence of SIRT1 on VSMC apoptosis and 

clarifies the effect of SIRT1 on FoxO1a function in response to stress stimuli. 
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Pharmacological inhibition of endogenous SIRT1 indu ces apoptosis in HCASMCs 

To examine the function of SIRT1 on HCASMCs cell viability, quiescent HCASMCs were 

incubated with either NAM or sirtinol, both agents known inhibitors of SIRT1 function292-295. 

Treatment with NAM for 48 h caused intracellular cytoplasmic blebbing, cell shrinkage and 

membrane detachment dose-dependently as determined by morphology (Figure 55a). 

Comparable findings were gained with sirtinol. Cell death induced by each agent was not 

caused by increased vehicle concentrations since the same concentrations of DMSO alone did 

not lead to cell death (data not shown).  

Cell viability of HCASMCs was detected by WST-1 assays and absorbance values are 

expressed in Figure 55b. Treatment with NAM and sirtinol, respectively, significantly decreased 

the numbers of viable cell as compared to non-treated control cells. These results suggest that 

the enzymatic activity of SIRT1 is involved in cell survival, and that inhibition of SIRT1 by 

pharmacological drugs leads to reduced cell numbers.  
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Figure 55. Effect of pharmacological inhibition 
of SIRT1 on HCASMC viability and apoptosis 
 

HCASMCs cultured under serum-free conditions 
were treated with the indicated concentrations of 
NAM and sirtinol, respectively, for 48 h. Cells 
cultured in growth medium containing 10% FBS 
were used for control. a) Phase contrast 
microscopic images. b) Viability of HCASMCs was 
measured by WST-1 assay and mean absorbance 
values are indicated (*p< 0.001 vs untreated 
quiescent HCASMCs; n=6). Statistical significance 
was determined by ANOVA. c) Cytoplasmic 
accumulation of mononucleosomes and 
oligonucleosomes in HCASMCs was quantified by 
Cell Death Detection ELISA. Mean OD values of 
untreated serum-starved HCASMCs were 
designated as controls (*p< 0.001, **p< 0.02 vs. 
untreated quiescent HCASMCs; n=3). Statistical 
significance was determined by ANOVA.  
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A reduction in cell number can be caused on the one hand by inhibition of cell cycle 

progression and proliferation (Figure 41, ff) and on the other hand by an increase in cell death 

induced by apoptosis or necrosis. To examine whether SIRT1-inhibitor-induced HCASMC cell 

reduction is attributable to apoptosis, Cell Death Detection ELISAs were performed. After 

treatment with either NAM or sirtinol for 48 h, HCASMCs significantly accumulated 

mononucleosomes and oligonucleosomes in the cytoplasm. The presence of both kinds of 

nucleosomes is a sensitive marker of apoptosis (Figure 55c). As it was previously shown for 

pulmonary VSMCs (Figure 34d), stressing HCASMCs by serum- deprivation slightly but 

significantly enhanced apoptotic cell death rates as compared to apoptosis rates of FBS-

stimulated cells.  

Together, these results indicate that HCASMC survival seems to be, at least partially, 

dependent on SIRT1 function and that inhibition of SIRT1 activity results in apoptotic cell death. 

 

Hydrogenperoxide treatment induces HCASMCs apoptosi s 

To determine whether oxidative stress induces apoptosis of HCASMCs, HCASMCs were 

treated for different times with 0.5 mM of H2O2, a known oxidative stressor. Based on 

morphology, apoptotic morphological changes such as increased cell shrinkage and membrane 

detachment from the surrounding cells was noted after an incubation with H2O2 for at least 4 h 

(Figure 56a). Cell Death Detection ELISAs of HCASMCs cultured under peroxide stress 

revealed significant increases of DNA cleavage as compared to non-stressed serum-starved 

cells (Figure 56b). Actinomycine D, an anti-neoplastic antibiotic that induces apoptosis through 

inhibiting RNA synthesis, was used as pro-apoptotic control agent (Figure 56b).  
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Figure 56. H2O2 induces apoptosis of HCASMCs  
 

HCASMCs treated with 0.5 mM H2O2 for the indicated periods. a) Cell morphology was determined by 
phase contrast microscopy. b) Apoptosis rates of serum-starved HCASMCs were measured by ELISA 
after a 16 h treatment with either H2O2 (0.5 mM) or Actinomycin D (1 µg/ml). Data are means plus 
standard deviations of three measurements. Apoptosis rates of serum-stimulated cells were used as 
controls (*p <0.001, **p <0.01 compared to serum-free control). Statistical significance was determined by 
ANOVA. Results were verified by two independent experiments. 
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Suppression of SIRT1 by siRNA technique induces apo ptosis of HCASMCs 

Inhibitors of SIRT1 are shown to affect HCASMC function, however, there is no real evidence 

for these substances of being 100% SIRT1-specific. To overcome this problem, HCASMCs 

were transfected with either non-targeting control siRNA or siRNA for downregulating SIRT1 

mRNA. The specificity of SIRT1 siRNA on SIRT1 downregulation was shown elsewhere (Figure 

39). Cell viability was measured by WST-1 assays (Figure 57a). As previously demonstrated, 

hydrogen peroxide (H2O2) is a potent inducer of apoptosis in HCASMCs (Figure 56). To 

examine the influence of SIRT1 on H2O2-induced apoptosis, transfected HCASMCs were 

treated with H2O2 (0.5 mM). Downregulation of SIRT1 resulted in a significant attenuation of 

HCASMC viability as compared to control-transfected cells (Figure 57a). Treatment with H2O2 

exaberated the situation by further decreasing cell viability of both SIRT1-deprived HCASMCs 

and control-transfected cells (Figure 57a).  

Using these same cells in Cell Death Detection ELISA, I determined whether SIRT1 is 

responsible for modulating both starvation- and H2O2-induced HCASMC apoptosis (Figure 57b). 

In the absence of SIRT1, HCASMCs showed significantly increased apoptosis rates in response 

to serum-withdrawal as compared to control-transfected cells grown under the same culturing 

conditions (Figure 57b). H2O2-induced apoptotic cell death rates of SIRT1-deprived HCASMCs 

were also significantly higher to that of control-transfected cells (Figure 57b), revealing an 

increase in oxidative stress sensitivity in the absence of SIRT1. 

Thus, these results confirm the earlier observations made by downregulating SIRT1 function 

pharmacologically. SIRT1 function seems to somehow protect HCASMCs from apoptosis both 

under serum-free conditions and in response to oxidative stress.  
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Figure 57. Effect of SIRT1 downregulation on HCASMC viability and apoptosis 
 

HCASMCs were transfected with siRNA for SIRT1 (siSIRT1) or a non-targeting siRNA (siControl). 24 h 
post-transfection HCASMCs were serum-starved for 48 h and treated with or without 0.5 mM H2O2 for 
16 h pre-experimentally. a) Cell viabilities were detected by WST-1 assay, and mean absorbance values 
plus standard deviations are shown (*p< 0.001; n=6). b) Apoptosis rates of siControl and siSIRT1-
transfected HCASMCs were analyzed by ELISA. Data represent means and error bars of OD values 
(*p< 0.001, **p< 0.05; n=3). Data depicted are representative of at least three independent experiments 
from different HCASMC aliquots. Statistical significance of both experiments was determined by ANOVA. 
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SIRT1 protects mouse embryonic fibroblasts from H 2O2-mediated cell death  

To further assess the role of endogenous SIRT1 on H2O2-mediated cell death in non-vascular 

cell types, I studied the impact of SIRT1 on MEFs - either derived from wild-type or SIRT1-

knockout mice - upon peroxide treatment. The MEFs were analyzed concerning cell viability and 

apoptosis. Wild-type and SIRT1-null MEFs were kept under serum-free conditions and treated 

with or without H2O2. WST-1 assays revealed that MEFs from SIRT1-knockout mice showed 

slight decreases in cell viability as compared to MEFs from wild-type mice - both under serum-

free and peroxide conditions (Figure 58a).  

Cell Death Detection ELISAs further supported these results (Figure 58b). In the presence of 

oxidative stress stimuli such as H2O2, apoptosis rates of both SIRT1-knockout MEFs and wild-

type MEFs were significantly augmented as compared to that of their respective serum-starved 

controls. Furthermore, serum-starvation alone strongly triggered apoptotic DNA cleavage in 

SIRT1-null MEF as compared to wild-type MEFs indicating the high sensitivity of SIRT1-

knockout MEF to many types of stress stimuli (Figure 58b).  

These findings are consistent with findings by Brunet et al.233 and indicate that SIRT1-null 

MEFs are more sensitive to both serum-starvation and H2O2-induced cell death than wild-type 

MEFs. Taken together, my results demonstrate that endogenous SIRT1 contributes to cell 

survival not only in human VSMCs but also in mouse fibroblasts. 
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Figure 58. Cell viability and death in SIRT1 -/- and wild-type MEFs 
 

MEFs from both wild-type (WT) and SIRT1-knockout mice were serum-starved for 14 h and subsequently 
incubated with or without H2O2 (0.5 mM) for 2 h. a) MEF viabilities were analyzed by WST-1 assays. 
Mean absorbance values and error bars are indicated (*p< 0.001, **p< 0.01; n=6). b) Apoptosis rates of 
WT MEFs and SIRT1-null MEFs were assessed by Cell Death Detection ELISA. Data presented 
represent means and error bars of three measurements (*p< 0.001, **p< 0.01). All experiments were 
performed at least five times with similar results and statistical significance was determined by ANOVA. 
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Stimulation of endogenous SIRT1 activity reduces HC ASMC apoptosis in response to 

serum-starvation  

Since inhibition of SIRT1 function increases HCASMC apoptosis, the question arose whether 

stimulation of SIRT1 function can prevent HCASMC apoptosis induced by serum-starvation. 

Therefore silenced HCASMCs were stimulated with resveratrol, a known activator of SIRT1 

activity297 (see above). Quantitative cell death analyses demonstrated HCASMCs to have 

significantly decreased amounts of accumulated mono- and oligonucleosomes in the cytoplasm 

(Figure 59). Thus, stimulation of SIRT1 activity by the plant polyphenol slightly inhibited serum-

starvation-mediated nuclear fragmentation dose-dependently.  

This result suggests that endogenous SIRT1 activity can be pharmacologically increased in 

HCASMCs and that increased activity of SIRT1 protects the cells from apoptotic cell death 

caused by serum-starvation. 
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Figure 59. Resveratrol protects HCASMCs 
from apoptotic cell death  
 

HCASMCs were silenced for 60 h and 
subsequently incubated in serum-free medium 
containing resveratrol at the indicated 
concentration for 16 h. Accumulation of mono- 
and oligonucleosomes in the cytoplasm was 
analyzed using commercially available Cell 
Death Detection ELISAs. Mean OD values were 
presented (*p< 0.01 vs serum-free control, n=3). 
Experiments were performed trice with similar 
results. Statistical significance was determined 
by ANOVA. 

 

 

Adenoviral overexpression of active or inactive SIR T1 affects HCASMC viability and 

apoptotic cell death 

Since inhibition of SIRT1 function increases HCASMC apoptosis, the question arose whether 

stimulation of SIRT1 function can reduce the number of cells committing suicide in response to 

serum-starvation. Therefore, our group transduced cells with adenoviruses either encoding 

functionally active SIRT1 or the catalytically inactive SIRT1 mutant H335A (see Figure 46). 

Overexpression of functional active SIRT1 decreased HCASMC apoptosis as compared to cells 

transduced with a control-adenovirus (data not shown). No significant differences in cell death 

were observed in cell populations exposed to control-adenovirus or adenovirus encoding 

functional inactive SIRT1 (data not shown).  

Consistently with my previous results our groups´ data suggest that SIRT1 is an important 

regulator of VSMC apoptosis and increases in cell death seem to be due to a lack of SIRT1 

function.  
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SIRT1 protein expression is upregulated during apop tosis induction 

After having shown that SIRT1 function plays an important role in HCASMC survival, I was 

interested in the expression levels of SIRT1 and its localization during the cells stress response. 

Therefore, protein expression levels of SIRT1 in response to peroxide stress were assayed by 

immunoblotting with an antibody for SIRT1 (Figure 60a). SIRT1 expression was significantly 

upregulated 24 to 48 h after application of H2O2. Scanning densitometry of two immunoblots 

was used to quantify relative SIRT1 protein levels (normalized to vinculin) (Figure 60b). To 

verify induction of programmed cell death in response to oxidative stress stimuli, immunoblot 

analysis of PARP protein levels were performed (Figure 60a). Cleavage of PARP, a 

characteristic process during apoptosis, was depicted by a decrease in PARP levels in the 

course of H2O2 treatment.  

Regarding the cells stress response, this experiment clearly demonstrated SIRT1 

expression to increase over time in response to apoptotic stress stimuli such as peroxide 

treatment. 
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Figure 60. SIRT1 expression is 
upregulated in response to apoptotic 
stimuli  
 

a) HCASMCs were cultured in the 
absence of serum for 48 h and 
subsequently treated with 0.5 mM H2O2 
for the indicated time periods. Afterwards, 
cells were lysed and subjected to 
immunoblot analysis with antibodies for 
SIRT1, PARP or vinculin. b) Changes in 
SIRT1 protein levels during peroxide 
treatment were quantified with BioDoc 
Analyzer software. SIRT1 level 
(normalized to β-tubulin loading control) 
at time 0 h was arbitrarily set 1. Mean 
values and standard deviations of two 
independent immunoblots are shown (*p 
<0.005 vs. 0 h).  

 

 

SIRT1 and FoxOs are localized to the nuclei of pero xide stressed HCASMCs 

The cellular distribution of SIRT1 under stress stimuli was determined by immunostaining as 

described in the “Materials and Methods”-part of this thesis. SIRT1 localized within the nuclei of 

H2O2-treated quiescent HCASMCs (Figure 61a). Since SIRT1 was already shown to localize 

preferentially to the nucleus both under serum-free and serum conditions (Figure 38a), the 

deacetylase SIRT1 maintains its position in response to oxidative stress. 
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The next step of my research was to identify potential SIRT1 interaction partners. Recently, I 

excluded an interaction of SIRT1 with the FoxO1a transcription factors under pro-proliferative 

conditions. Since oxidative stress stimuli trigger different intracellular pathways than serum 

stimulation does, an interaction of SIRT1 with FoxO transcription factors upon peroxide 

treatment seemed to be possible and needed to be explored. The cellular distribution of 

endogenous FoxO1a transcription factor under stress stimuli was determined by 

immunostaining. Interestingly, treatment of quiescent HCASMCs with H2O2 caused nuclear 

accumulation of FoxO1a (Figure 61b) similar to serum-starvation (fig). Furthermore, 

immunohistochemical studies with double-staining for SIRT1 and FoxO1a showed that 

endogenous FoxO1a co-localized with SIRT1 within the nucleus during H2O2 treatment (Figure 

61c), a phenomenon that was already show previously in quiescent cells (Figure 52).  

Thus, the requirements for a possible SIRT1/FoxO1a interaction in peroxide stressed cell 

were fulfilled. 
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Figure 61. Localization of SIRT1 and FoxO1a 
in response to peroxide stress 
 

Qualitative analysis of endogenous SIRT1 and 
FoxO1a localization in silenced HCASMCs 
treated with H2O2 (0.5 mM) for 30 min. a) SIRT1 
was labeled with a Cy3-conjugated antibody 
(red). b) FoxO1a was detected by an Alexa 488-
coupled antibody (green). c) FoxO1a-SIRT1 
doublestaining in HCASMCs treated with H2O2. 
DAPI was always used to stain the cells nuclei. 
Each staining was performed at least 3 times with 
the same results. 
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SIRT1 interacts with FoxO1a during peroxide stress 

After having shown that under conditions of oxidative stress, both FoxO1a and SIRT1 are 

present within the nucleus, I next examined if there is a physiological interaction between both 

endogenous proteins. Conventional double-labeling immunofluorescence followed by FRET-

CLSM analysis was performed with quiescent HCASMCs treated with or without H2O2 (Figure 

62). A clear increase of fluorescence was detected in the bleached area of stress-stimulated 

HCASMCs (mean ∆IF = 8.24) as compared to quiescent ones (SF) (mean ∆IF = 4.96) (Figure 

62f). The difference between both ∆IFs was highly significant (*p<0.000 (Figure 62f)). For H2O2 
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measurements 31 ROIs of HCASMCs obtained from 5 independent aliquots were observed, 

whereas for SF 44 ROIs were measured. To exclude a false-positive FRET signal which might 

be caused by antibody cross-reactivity, both secondary antibodies were applied to sections that 

were incubated with the primary anti-FoxO1a antibody only. The control ∆IF quantified in the 

same region was low (mean for H2O2: ∆IF = 0.46; for SF: ∆IF = 0.28). As compared to their 

corresponding controls the differences between the ∆IF observed in both experimental group 

was also highly significant (*p< 0.000 (Figure 62)). 

With this experiment, a strong interaction between endogenous FoxO1a and SIRT1 in 

serum-starved HCASMCs was detected (additionally see Figure 52) and oxidative stress 

treatment further enhanced the FoxO1a/SIRT1 association.  

 

To identify whether FoxO3a as a second important FoxO transcription factors interacts with 

SIRT1 in response to peroxide stress, FRET analysis of FoxO3a and SIRT1 were performed.  
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Figure 62. Detection of close association of SIRT1 and FoxO1a in HCASMCs  

Close association between SIRT1 and FoxO1a in the nucleus of serum-starved (SF) or H2O2-treated 
HCASMCs was determined by double-labeling indirect immunofluorescence with subsequent FRET 
analysis. Representative images of donor (SIRT1 labeled with Cy3-conjugated antibody) (a, b), and 
acceptor (FoxO1a labeled with Cy5-conjugated antibody) (c, d)  fluorescence of a H2O2-treated nucleus. 
Cy5 was bleached in a region of interest 1 (compare ROI 1 in c and d). e) ∆IF for each ROI of this 
representative measurement. ROI 1: bleached area (compare c-d). ROI 2-6: control area outside the 
bleached area. f) ∆IF in the nuclei of serum-starved (SF) and H2O2 treated HCASMCs as compared to 
their respective control group. Data represent mean values of 5 independent experiments. At least 20 
ROIs were measured per condition (*p< 0.000, Mann-Whitney test; n=number of measurements). 
Boxplots: percentiles 0, 25, median, 75, 100. 
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Interestingly, treatment with H2O2 did not only affect FoxO1a/SIRT1 interaction but also 

increased a FoxO3a/SIRT1 interplay (data not shown). Thus, it seems that different FoxO 

transcription factors contribute to the transmission of intracellular stress signals. 

 

FoxO1a is deacetylated by SIRT1 in response to pero xide induced stress 

The observation that SIRT1 and FoxO1a interact in response to oxidative stress and that 

FoxO1a is a deacetylation product in HCASMCs (Figure 53) raised the possibility that, within 

this complex, FoxO1a is a substrate of SIRT1. To determine if SIRT1 directly deacetylates 

FoxO1a upon peroxide treatment, silenced HCASMCs were treated with H2O2 (0.5 mM) and 

acetylated proteins were immunoprecipitated with an antibody for acetylated-lysines. Acetylated 

FoxO1a was assessed by Western blot with an antibody for FoxO1a. Oxidative stress stimuli 

slightly increased the amount of acetylated FoxO1a in the cells (Figure 63), which is not 

surprisingly since H2O2 is known to promote acetylation of different proteins including FoxOs233, 

263 

Incubation of NAM-pretreated HCASMCs with H2O2 significant increased the amount of 

acetylated FoxO1a as compared to non-pretreated HCASMCs (Figure 63), and acetylation 

levels of FoxO1a in NAM/H2O2-treated cells are comparable to those from cells completely 

missing HDAC activity (TSA/NAM treatment) (Figure 63, see also Figure 53).  

These observations thus indeed indicate that the enhanced nuclear location and interaction 

of FoxO1a and SIRT1 during peroxide stress is important for a SIRT1-mediated deacetylation of 

FoxO1a. In summary SIRT1 reverses H2O2-induced acetylation of the transcription factor. 
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Figure 63. Acetylation levels of FoxO1a 
during peroxide stress   
 

HCASMCs were serum-starved for 60 h, 
incubated for 12 h in the absence or presence 
of NAM (10 mM) or TSA (10 µM) and 
subsequently treated with H2O2 (0.5 mM) for 
1 h. Cell lysates were subjected to 
immunoprecipitation with an antibody for 
acetylated-lysines and resulting precipitates 
were subjected to immunoblot analysis with an 
antibody for FoxO1a. The upper IgG control 
panel indicates the IgG that correlates to the 
anti-acetylated antibodies and monitors the 
addition of the same quantity of anti-acetylated 
antibodies in every sample. 
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SIRT1 enhances cell survival following exposure to oxidative stress by shifting FoxO1a- 

induced responses away from apoptotic cell death an d towards cell-cycle arrest and 

survival 

We and others have previously shown that members of the FoxO family transactivate a number 

of target genes that have crucial roles in the cell´s response to stress stimuli, e.g. genes that 

control repair of damaged DNA (GADD45)168, 169 and ROS detoxification (MnSOD and 

catalase)168-171. After having already proven that SIRT1-mediated deacetylation of FoxO1a 

results in an increased activity of the transcription factor, and that SIRT1 function protects 

HCASMCs from programmed cell death, the question arose whether SIRT1 affects FoxO1a-

dependent transcription of pro-survival genes in response to H2O2 treatment. To clarify the role 

of endogenous SIRT1 on FoxO1a-mediated GADD45 induction in response to oxidative stress, 

HCASMCs depleted of SIRT1 using siRNA and control cells were treated with 0.5 mM H2O2 for 

the indicated times (Figure 64a, b). Subsequently, FoxO-mediated pro-survival target gene 

induction was monitored by immunoblot analysis. In control-transfected HCASMCs, GADD45 

protein levels rose in response peroxide stimulation (Figure 64a, b). Interestingly, this induction 

was inhibited in HCASMCs depleted of endogenous SIRT1 (Figure 64a, b); in these cells almost 

no GADD45 was expressed.  
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Figure 64. GADD45 expression in response to 
oxidative stress is regulated by SIRT1 
 

Reduced GADD45 expression in HCASMCs 
deprived of SIRT1 (a, b). a) HCASMCs were 
transfected with either siRNA for SIRT1 or 
control non-targeting siRNA (siControl). 24 h 
post-transfection cells were serum-starved for 
24 h and subsequently treated with 0.5 mM H2O2 

for the indicated time periods. Non-stressed cells  
 

were used for the 0 h sample. Cells were lysed and subjected to immunoblot analysis with specific 
antibodies for SIRT1 and GADD45. β-tubulin-staining was used for controlling equal loading. The blot 
shown is representative of five independent experiments. b) GADD45 expression levels were quantified 
with BioDoc Analyzer software (normalized to β-tubulin loading control) at time 0 h was arbitrarily set to 
1.0. Mean values and standard deviations of four independent immunoblots are shown (*p <0.001 vs. 0 h 
siControl). c) Reduced GADD45 expression in SIRT1-/- cells. MEFs derived from wild-type (WT) or SIRT1-
knockout mice were treated with H2O2 (1 mM) for the indicated times. The amounts of GADD45 and 
SIRT1 protein levels were quantified by Western blot. Equal loading was verified by β-tubulin staining. 
The represented blot corresponds to two independent experiments.  
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This result demonstrates that SIRT1 is essential for FoxO-mediated GADD45 induction in 

response to oxidative stress, thus suggesting that peroxide-induced apoptosis of HCASMCs is 

abandoned by SIRT1 through triggering FoxO-mediated GADD45 expression.  

 

To further assess the role of endogenous SIRT1 in GADD45 gene expression, we analyzed 

expression of this protein in wild-type or SIRT1-null MEFs that were treated with H2O2. Western 

blot analysis revealed H2O2-treatment of wild-type MEFs to induce expression of the stress 

resistance gene GADD45 (Figure 64c). This response to H2O2 was strongly attenuated in the 

SIRT1-knockout fibroblast cell line (Figure 64c).  

Thus, endogenous SIRT1 seems to contribute to enhanced expression of the genotoxic 

stress-responsive gene GADD45 in response to oxidative stress by increased FoxO1a 

deacetylation. Since GADD45 is not only involved in DNA repair but also in cell cycle arrest (see 

Introduction), regulation of this protein has a dual effect on protecting cells from apoptosis: the 

delayed progression of the cell cycle allows time for the repair of damaged DNA by GADD45. 

 

Besides GADD45, the mitochondrial MnSOD protein is another known pro-survival genes 

whose transcription is regulated by FoxO-transcription factors168-171. To investigate whether 

SIRT1 affects FoxO1a-mediated MnSOD transcription, cell lysates from peroxide-treated 

HCASMCs - deprived with or without SIRT1 – were analyzed for MnSOD (Figure 65a). 

Surprisingly, the amount of MnSOD is upregulated both in control transfected and SIRT1-

lacking HCASMCs after H2O2-treatment (Figure 65a, b), thus FoxO1a-induced expression of the 

survival gene MnSOD was not inhibited by treatment of cells with siRNA for SIRT1 as it was 

shown for GADD45. 
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Figure 65. MnSOD expression in response to H2O2 treatment is not regulated by SIRT1  
 

HCASMCs were transfected with either siRNA for SIRT1 or control non-targeting siRNA (siControl) and 
treated as in Figure 64a. Non-stressed cells were used for the 0 h sample. Cells were lysed at the 
indicated times after peroxide treatment and subjected to Western blot analysis for SIRT1 and MnSOD 
(a). Equal protein loadings were confirmed by the use of an anti-β-tubulin antibody. b) Densitometric data 
from four independent immunoblots demonstrated MnSOD expression levels. Data are normalized to β-
tubulin and represent means and standard deviations of four independent experiments. Timepoint 0 h of 
siContol transfected cells was arbitrarily set 1 (*p <0.000 compared to 0h siControl). Statistical 
significance of the densitogram was determined by ANOVA. 
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Together these results indicate that not all FoxO target genes are affected in the same way 

by SIRT1 activity. 

 

Consistent with the possibility that the deacetylase may differentially affect various FoxO 

target genes, I could not identify SIRT1 to affect FoxO-dependent expression of the pro-

apoptotic genes Bim and FasL (data not shown).  

The discovery that the presence of SIRT1 attenuates H2O2-induced HCASMC apoptosis by 

enhancing expression of a FoxO1a target protein involved in stress resistance (GADD45) but 

appears to have no impact on the expression of pro-apoptotic FoxO1a target genes (such as 

Bim and FasL), led me think about the possibility that SIRT1 is able to shift FoxO-induced 

responses away from cell death toward stress resistance and survival. 
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Psammaplysene A and its analogues regulate HCASMC h omeostasis 

in vitro and in vivo 

 

Vasculo-proliferative disorders such as atherosclerosis, postangioplasty restenosis, vein graft 

failure upon bypass surgery and pulmonary hypertension are complex process that are 

especially related to vascular smooth muscle cells (VSMCs)45, 78. In the arterial media, VSMC 

are normally quiescent, however, for the development and progression of the above mentioned 

diseases it is prerequisite that quiescent VSMCs start to proliferate, migrate and commit suicide. 

Different stimuli such as physical injury or mechanical stress are responsible for VSMC 

activation with subsequent changes in behavior (Sedding et al., unpublished data)211.  

Upon activation, VSMC migrate out of the media into the vessels intima85. The subsequent 

proliferation of these neointimal VSMC dramatically increases the size of this vessel layer and 

can lead to occlusion of the vessel. This then represents the basis for the development of 

vasculo-proliferative disorders45, 78. Understanding the mechanisms and signal transduction 

pathways manipulating VSMC behavior upon vessel injury will help to identify strategies for the 

prevention and treatment of vascular disease processes. 

 

Accumulating evidence indicates that the phosphatidylinositol 3-kinase (PI3K)/Akt signaling 

pathway plays an essential role in critically regulating VSMC homeostasis in the blood vessel as 

well as vascular remodeling65, 66. Dysfunction of the PI3K/Akt signaling pathway contributes to 

the pathogenesis of many diseases, including heart and vascular diseases, diabetes, 

inflammatory disorders and cancer. Various environmental inducers, e.g. increased strain stress 

induced by arterial hypertension or growth factors, are known to activate this pathway resulting 

in the subsequent Akt-mediated phosphorylation and inactivation of the forkhead box O (FoxO) 

subfamily of forkhead transcription factors. In mammals, there are four evolutionarily conserved 

FoxO family members (FoxO1a, FoxO3a, FoxO4 and FoxO6)148, 166, 167. They are crucial 

downstream targets of the PI3K/Akt signaling pathway and critically regulate cell fate. Knockout 

studies done by Hosaka et al. revealed especially the importance of FoxO1a for the vascular 

development and remodeling, since FoxO1a-null embryos failed to establish normal 

vasculature158. Previous work done by our group supported these observations by 

demonstrating the involvement of phosphorylated FoxO1a in regulating VSMC behavior under 

pathological conditions (Sedding et al., unpublished data)65.  

The crucial function of FoxO transcription factors is based on their ability to control 

processes such as cell cycle progression and proliferation (p27KIP1 226, p21CIP1 205, p130164, cyclin 

D1 and D2168, 215, 332 and cyclin B214), DNA repair and defense against oxidative stress 

(GADD45168, 169, MnSOD170, catalase171), as well as apoptosis and aging (FasL166, Bim191, 194, 

TRAIL193, TRADD196 and caveolin-1 (Sedding et al., unpublished data)). For review see (140). 
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Intervening VSMC function by affecting FoxO1a function may represent an attractive approach 

for future therapeutic strategies in the prevention of vasculo-proliferative diseases.  

 

The status of FoxO transcription factors in quiescent cells is defined as being localized to the 

cells nucleus actively repressing cell cycle progression338. Since the translocalization of FoxOs 

to the cytoplasm in response to diverse stimuli is the basis for their disability to further restrain 

cell cycle transition and other processes, one way to reconstitute FoxO function would be to 

enforce its nuclear re-localization and its stabilization.  

With having this in mind, the group of John Clardy, Department of Biological Chemistry and 

Molecular Pharmacology, Harvard Medical School, Boston, USA, performed a cell-based, 

visual, chemical genetic screen to identify small molecules able to maintain FoxO1a in the 

nucleus of cancer-derived cells with PTEN loss-of-function mutations330, 331, 334. Psammaplysene 

A, a natural product from the marine sponge Psammaplysilla sp. was amongst the strongest 

screening positives out of >18´000 synthetic and natural molecules. Thus, this compound 

compensated for lost tumor suppressor functionality in the mentioned cell line. Whether 

Psammaplysene A retains FoxO1a in the nucleus of VSMCs of the human coronary system was 

investigated in this thesis. 

 

Previous studies done by our group demonstrated endogenous FoxO1a of being 

constitutively localized to the nucleus of silenced mouse VSMCs in vitro and in vivo (Sedding et 

al., unpublished data) with my data supporting this observation in VSMCs from human coronary 

arteries (HCASMCs). In response to stimulation by mitogens, FoxO1a proteins become 

phosphorylated by Akt at three serine and threonine residues (Thr24, Ser256 and Ser319). This 

leads to an inhibited transcriptional activity of FoxO1a due to altered DNA binding activity, as 

well as to nuclear exclusion by enhancing interaction with 14-3-3 chaperone proteins (Sedding 

et al., unpublished data)166, 167, 238, 239. Regarding the existence of serum-induced FoxO1a 

translocation in HCASMCs, Psammaplysene A was demonstrated in this study to prevent this 

process dose-dependently, with 10 µM showing the strongest effect as compared to lower 

concentrations. According to this observation, Kau et al. described Psammaplysene A at a 

concentration of 5-10 µM to inhibit FoxO1a translocation in PTEN-deficient cells330, thus I found 

Psammaplysene A of being at least as potent in VSMCs as in other cell types.  

 

Importantly, Kau and colleagues reported the marine compound to inhibit FoxO1a 

translocation not by interacting with the general nuclear export machinery, but by affecting a still 

unknown target in the PI3K/Akt/FoxO signaling pathway330. With my studies, I tried to explore 

the detailed mechanisms of action of Psammaplysene A in VSMCs from the human coronary 

system. I was able to demonstrate that Psammaplysene A acts downstream of Akt, since the 
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sponge compound did not abolish phospho-Akt levels induced by serum-stimulation. 

Additionally, Psammaplysene A did not affect serum-induced FoxO1a phosphorylation, thus 

impact of the molecule on FoxO1a translocation was not due to abrogated PI3K/Akt function. 

Consequently, FoxO1a is present in the nucleus of Psammaplysene A-treated HCASMCs in a 

phosphorylated state. In this regard it is noteworthy to mention, that recent publications 

demonstrated phosphorylation of FoxO proteins not to be necessarily connected with their 

susceptibility for inactivation, nuclear exclusion and degradation253, 257.  

 

However, the question remained how Psammaplysene A retained FoxO1a in the nucleus? 

Since Psammaplysene A did not prevent FoxO1a phosphorylation but somehow inhibited its 

cytoplasmic translocation, it was suggested that Psammaplysene A prevents adherence of 

FoxO1a to 14-3-3 proteins. However, preliminary data from me exclude this option, since the 

sponge compound did not interfere with FoxO1a/14-3-3 binding in immunoprecipitation 

experiments.  

Kau et al. suggested the Ca2+/calmodulin pathway to regulate FoxO1a´s cellular location, 

since treatment with the intracellular Ca2+-chelator BAPTA-AM relocalized FoxO1a to the 

nucleus of PTEN-deficient cells330. Psammaplysene A is a bromotyrosine and resembles the 

bastadins, a family of natural products that have been shown to modulate Ca2+ release 

channels. Though untested, it seems possible that Psammaplysene A reduces the intracellular 

Ca2+ concentration by blocking Ca2+-channels330. Decreases in Ca2+ might prevent Ca2+ from 

binding to calmodulin and therefore inactivating calmodulin. There are some possibilities how 

inactivated calmodulin might influence FoxO1a translocation: One the one hand, several 

publications identified the Ca2+/calmodulin-pathway to contribute to Akt phosphorylation, thus 

Kau and colleagues hypothesized Psammaplysene A to inhibit FoxO1a translocation by 

inhibiting its phosphorylation330. However as already mentioned above, my results indicated 

FoxO1a phosphorylation despite Psammaplysene A treatment. Therefore, this possibility was 

disproved in my model. On the other hand, calmodulin is known to affect various nuclear 

transport mechanisms330. Therefore, the idea of calmodulin being involved in FoxO1a 

subcellular localization and of Psammaplysene A affecting calmodulin activity by decreasing 

intracellular Ca2+ concentration seems to be promising and warrants further investigations. 

 

Besides impairing FoxO1a translocation, data represented in this thesis pointed out a role 

for Psammaplysene A in affecting HCASMCs homeostasis. By using several in vitro and in vivo 

experimentations, I was able to demonstrate Psammaplysene A to attenuate HCASMC 

proliferation and migration as well as to decrease femoral artery neointimal hyperplasia after 

wire-injury in mice.   
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As determined by FACS analysis of propidium iodide-stained HCASMCs, Psammaplysene A 

inhibited serum-induced cell cycle progression by preventing G1/S-phase transition, with 10 µM 

of the compound showing the most significant effect. Consequently, Psammaplysene A also 

affected BrdU incorporation during DNA synthesis dose-dependently. Despite serum-

stimulation, treatment of cells with 5 µM Psammaplysene A almost reduced DNA synthesis 

rates by 50%, and 10 µM completely abolishing them. These findings are consistent with 

studies from Kau et al. revealing Psammaplysene A to inhibit proliferation of PTEN-deficient 

cells with an IC50 of 5-10 µM330.  

As a result of reduced cell cycle progression rates due to Psammaplysene A-treatment, 

HCASMCs cell numbers were decreased, too. Cell counting after exposure to 5 µM 

Psammaplysene A revealed significant decreases in cell numbers as compared to non-treated 

cells. Interestingly, numbers of HCASMCs treated with Psammaplysene A at 10 µM was below 

that of quiescent cells. This phenomenon can be explained when considering data derived from 

both proliferation and apoptosis assays. At 10µM, DNA replication was significantly inhibited by 

Psammaplysene A. Additionally, the compound strongly induced apoptotic cell death at the 

same concentration. Thus, a lack of VSMC growth was due to both an almost complete 

inhibition of cell cycle progression and a strong increase in apoptotic cell death. 

Psammaplysene A doses above 10 µM further increased cell death with no cells remaining 

viable. By using Psammaplysene A in the following in vivo experiments at therapeutically 

relevant doses < 10 µM, the specific effect of the molecule on HCASMC proliferation inhibition 

was suggested not to be overwhelmed by apoptosis-induced cell death.  

 

Western blot analyses of cell cycle regulating proteins were performed to clarify the 

observed inhibitory role of Psammaplysene A on cell cycle transition from G0/G1- to S-phase. 

As already mentioned above, quiescent HCASMCs re-enter the cell cycle upon diverse stimuli 

such as mitogens. Different protein-complexes control progression through the cell cycle at 

G0/G1 to S, including cyclin D1-CDK4 and cyclin E-CDK245, 78, 110. Cyclin-dependent kinase 

inhibitors (CKIs), such as p27KIP1, regulate the activity of the cyclin - cyclin-dependent kinase 

(CDK)-complexes. Cyclin D1 is expressed in low abundance in quiescent cells, whereas the 

“gatekeeper” p27KIP1 is highly present. Upon mitogen stimulation, cyclin D1 quickly accumulates 

within the nucleus and p27KIP1 disappears due to abrogate new-synthesis, providing 

requirements for cell cycle transition into S-phase 98. Importantly, we and others have shown 

both p27KIP1 and cyclin D1 to be transcriptionally regulated by FoxO1a78, 168, 215, 226, 339, with our 

study describing this observation in VSMCs in vitro and in vivo (Sedding et al., unpublished 

data). In this regard, p27KIP1-deficient cells were partially resistant to G1-arrest induced by 

FoxO4226 and ectopic expression of cyclin D1 could partly overcome the anti-proliferative effect 

of FoxO-transcription factors215. Nevertheless, regulation of both proteins by FoxO transcription 
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factors differs: whereas activation of p27KIP1 transcription requires binding of FoxO to specific 

DNA elements in the p27KIP1 promoter78, 226, 339, the exact mechanism of transcriptional 

repression of cyclin D1 by active FoxOs has not been elucidated yet. A direct binding of FoxO 

transcription factors to the cyclin D1 promoter region could not be demonstrated, therefore, the 

most likely model for the FoxO-dependent cyclin D1 regulation is that - yet unidentified - 

transcription factors bound to the cyclin D promoter recruit FoxO transcription factors, which in 

turn repress transcription168, 215. In this respect it is of interest that FoxO factors were reported to 

interact with a variety of nuclear receptors, thus functioning as transcriptional corepressors168, 

215. 

 

Since Psammaplysene A-treatment was demonstrated to result in FoxO1a nuclear 

sequestration and to inhibit G1/S transition, I suggested this compound to affect FoxO1a activity 

and thereby influencing p27KIP1 and cyclin D1 protein levels. Indeed, immunoblot analyses 

revealed a decline in cyclin D1 levels in serum-stimulated HCASMCs treated with 10 µM 

Psammaplysene A. Since phosphorylation of the retinoblastoma gene product (pRb) is initiated 

by cyclin D1-CDK4 complexes, hypo-phosphorylation of pRb in response to Psammaplysene A-

treatment as detected can be explained by low cyclin D1 levels. Consequently, upregulation of 

protein levels of genes involved in cell cycle control downstream of cyclin D1 and pRb, such as 

proliferating cell nuclear antigen (PCNA), cyclin A and cyclin B, was prevented by 

Psammaplysene A.  

 

Downregulated cyclin D1 protein levels after application of Psammaplysene A suggested 

that the sponge molecule somehow influenced FoxO1a transcriptional activity. Interestingly, 

Psammaplysene A-treatment was not able to retract FoxO1a´s promoter binding activity in 

serum-stimulated HCASMCs: Neither did I observe increases in p27KIP1 transactivation upon 

Psammaplysene A-treatment, nor could I reveal general changes in the promoter binding 

capacity of FoxO1a. An explanation for that observation can be the dependency of reduced  

DNA binding activity on FoxO1a phosphorylation162, 267, 340. Whether the phosphorylation status 

of FoxO1a influences its function as a transcriptional corepressor has - to my knowledge - never 

been examined. Therefore, it can be assumed that the Psammaplysene A-mediated presence 

of phosphorylated FoxO1a within the nucleus is sufficient for maintaining its corepressor 

function but not for transcription of direct target genes. 

 

Unpublished studies from our group suggested a combined effect of FoxO1a-mediated 

p27KIP1 upregulation and cyclin D1 transcriptional repression in preventing VSMC cell cycle 

progression and proliferation (Sedding et al., unpublished data). However, data presented by 

Ramaswamy et al. in a different cellular system indicated the transcriptional repression of D-
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type cyclins rather than the activation of genes regulated by a insulin response sequence (IRS) 

promoter elements (such as p27KIP1) to be required for FoxO1a mediated cell cycle stop168. 

Thus, it definitely seems possible that Psammaplysene A´s influence on HCASMCs function in 

vitro and in vivo as demonstrated in this thesis arose from the compound-induced prevention of 

cyclin D1 expression! 

 

The importance of a reduced Psammaplysene A-mediated VSMC proliferation in vivo was 

also demonstrated in the present study: Treatment with Psammaplysene A significantly reduced 

development of postangioplasty restenosis due to reduced cell proliferation as determined by 

PCNA staining. This favors Psammaplysene A as a promising compound for local application to 

eliminate restenosis after PTCA. Unpublished data from our group also revealed the fractional 

involvement of apoptotic cell death on decreased restenosis development (Sedding et al., 

unpublished data). Thus, in the future the influence of this compound on apoptotic cell death in 

vivo has to be examined too. However, it can be assumed that Psammaplysene A-mediated 

apoptosis plays only a minor role in the vessel injury model, since - as already mentioned above 

- Psammaplysene A at the doses used for in vivo application showed only small effects in in 

vitro cell death assays. 

 

In response to atherogenic stimuli or vessel injury, VSMC migrate into the innermost layer of 

the arterial wall, where they re-enter the cell cycle thus leaving their quiescent state85, 86. Thus, 

VSMC migration is another key event of vascular pathology and was shown in this thesis to be 

influenced by Psammaplysene A. At 5 µM and 10 µM, respectively, the sponge compound 

prevented cell migration along a chemoattractant gradient. Thus, besides decreasing cell 

proliferation, Psammaplysene A seemed to reduce neointima formation in vivo at least partially 

by inhibiting cell migration. Our group previously demonstrated functionally active FoxO1a to 

reduce the migratory capacity of VSMCs (Sedding et al., unpublished data). Hence, the sponge 

molecule might influence cell chemotaxis via affecting FoxO1a function. Unfortunately, it is not 

clear, whether the anti-migratory effect caused by Psammaplysene A is a specific effect or 

whether it is a secondary effect due to the cell cycle arrest observed in G0/G1 (which in turn 

affects a number of other cellular functions, such as differentiation, inflammation and 

migration78). Yet, the specific role of Psammaplysene A in the regulation of cell migration 

warrants further investigation. 

 

 In general, results pointed out in this thesis suggest Psammaplysene A to be a potent 

drug for treating vasculo-proliferative diseases. Unfortunately, Psammaplysene A is a 

pseudosymmetric bromotyrosine-derived alkaloid whose supply is limited. Thus Georgiades et 

al. developed an efficient synthesis of this compound333. In addition to being able to produce 
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large amounts of Psammaplysene A, this method provided the potential for synthesizing 

analogues and probes, creating a focused library of 28 Psammaplysene-like molecules. During 

my studies, I screened this library with regard to inhibit proliferation of HCASMCs. Out of all 

tested analogues, only one compound named F10 affected BrdU incorporation to a greater 

extent than Psammaplysene A. With an IC50 of ~2.5 µM, HCASMCs proliferation was inhibited 

at a clearly lower concentration as with Psammaplysene A. At 5 µM F10 prevented DNA 

synthesis upon serum-stimulation completely as determined by BrdU incorporation assays and 

by monitoring cell numbers. Importantly, unlike to what was revealed for Psammaplysene A, the 

analogue F10 did not induce apoptotic cell death at the tested concentrations as defined by 

apoptotic cell death ELISAs. Thus, F10 seems to exclusively affect HCASMCs proliferation at 

very low concentrations. This will be of advantage for a future therapeutic use, since functions 

of pharmaceuticals should be highly specific without having side effects.  

 

As it was already shown for Psammaplysene A, the sponge analogue F10 was also revealed 

to prevent FoxO1a´s nuclear exclusion upon serum-stimulation, thus it seems that F10´s mode 

of action is similar to that of Psammaplysene A. However, for the future it will be interesting to 

analyze its impact on HCASMCs in vitro as well as on neointima formation in vivo in more detail. 

By now, a potential of F10 for future therapeutic uses can only be expected. 

 

 An alternative to the application of a single drug could be the combined application of 

different drugs striving for the same objective. With the present study, I was able to demonstrate 

this phenomenon when combining administration of F10 and Psammaplysene A. Whereas none 

of the compounds alone was able to prevent HCASMCs proliferation in vitro at a concentration 

of 2.5 µM, a combined treatment with both agents at the same concentration completely 

inhibited BrdU incorporation. This observation could be promising for future therapeutic 

approaches, with regard to minimize unspecific side effects caused by high dosage of each 

compounds. Nevertheless, the combined effect of Psammaplysene A and F10 will be further 

examined in diverse biological assays both in vitro and in vivo. 

 

My data given in this thesis have only focused on the influence of Psammaplysene A and 

F10 on the forkhead transcription factor FoxO1a. Nevertheless, similar results were obtained 

with regard to FoxO3a. Both compounds inhibited translocation of FoxO3a to the cytoplasm 

upon serum stimulation, and additionally, Psammaplysene A did not increase FoxO3a´s 

transactivation activity. Thus, both Psammaplysene A and F10 were suggested to influence 

VSMC behavior by affecting all main members of the mammalian FoxO transcription factor 

family. 
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FoxO1a regulates PASMC proliferation, migration and  apoptosis  

 

Pulmonary hypertension is another vasculo-proliferative disorder depending on severity of 

injury75. With increasing durability and persistence, pulmonary hypertension is connected to 

progressive vessel wall remodeling. Pulmonary artery smooth muscle cells (PASMC) in the lung 

artery wall contribute primarily to these remodeling processes75. Understanding the molecular 

mechanisms that regulate human PASMC proliferation and migration will help to understand 

cellular responses to vascular injury and may provide novel aspects for future therapeutic 

interventions. Recent publications from Goncharova and coworkers identified the PI3K/Akt 

pathway to mediate proliferation and migration of human PASMCs335, and Fouty et al. noticed 

that overexpression of the FoxO target p27KIP1 attenuated PASMC proliferation73. Since 

Pullamsetti et al. identified the forkhead transcription factor FoxO1a to be strongly 

downregulated at transcriptional levels in rat pulmonary hypertensive arteries as well as in lung 

homogenates from human patients with idiopathic pulmonary hypertension (unpublished data), I 

hypothesized FoxO1a to play a causal role in the development of pulmonary hypertension.  

In the present study, I determined the importance of the transcription factor FoxO1a in 

controlling rat PASMCs behavior. My results suggested the transcription factor to be an 

interesting target for the development of future therapeutic strategies to prevent and/or treat 

vasculo-proliferative disorders such as pulmonary hypertension. 

 

In this report, I was able to detect stable expression of FoxO1a within the nuclei of PASMCs, 

which was abolished after serum-stimulation due to FoxO1a translocation to the cytoplasm. 

Together with data from Pullamsetti et al. verifying expression of FoxO1a within the media of 

native and diseased pulmonary vessels, I demonstrated FoxO1a expression and translocation 

in vascular cells of pulmonary arteries for the first time. 

 

Further on, this study demonstrated an important and specific role for FoxO1a in controlling 

cell proliferation of PASMCs. I demonstrated that serum stimulation increased mitogenesis of 

PASMCs, which correlated with an increase in cell cycle progression and cell number. In 

parallel, p27KIP1 protein levels declined and cyclin D1 rose when analyzing immunoblots. Levels 

of phosphorylated pRb increased due to enhanced presence of cyclin D1. As already 

mentioned, FoxO1a has been published to be involved in p27KIP1 transactivation as well as in 

repressing cyclin D1 expression 78, 168, 215, 226, 339, with our group demonstrating both genes being 

transcriptionally regulated by FoxO1a in VSMCs from the coronary system (Sedding et al., 

unpublished data). Moreover, my results suggested that FoxO1a-mediated PASMC growth 

suppression is due, at least partially, to both the regulation of cyclin D1 and p27KIP1. 
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The importance of p27KIP1 in controlling cellular proliferation of PASMC in vitro and in 

modulating the development of pulmonary vascular diseases was already described by Fouty et 

al.73. In their study p27-deficient PASMCs revealed a 2-fold increase in [3H]thymidine 

incorporation and cell proliferation as compared with p27+/+ -PASMCs73. The in vivo importance 

of p27KIP1 in the lung pulmonary system was demonstrated by Yu and coworkers76. 

Downregulation of p27KIP1 upon serum-stimulation as observed in my studies correlated with 

increases in DNA replication, and demonstrated the importance of the CKI p27KIP1 in regulating 

PASMC proliferation. 

Upon transduction of PASMC with the constitutive active form of FoxO1a (FoxO1a;AAA), 

p27KIP1 protein levels raised and cyclin D1 levels were diminished. Changes in protein levels 

were accompanied by attenuated proliferation rates as well as by reduced cell numbers of 

FoxO1a;AAA-transduced PASMCs. Thus, reconstitution of FoxO1a function seemed to restore 

the quiescent phenotype in PASMCs.  

Interestingly, interference with p27KIP1 upon FoxO1a;AAA-transduction seemed to be 

selective, since p21CIP1 - another important FoxO1a-controlled inhibitor of G1-phase 

progression45, 205, 339 - was not affected. Additionally, no changes were observed in cyclin E 

protein levels upon FoxO1a;AAA-transduction. Besides cyclin D, cyclin E controls progression 

through the cell cycle at G0/G1- to S-phase. Since cyclin E gene expression is FoxO1a-

independent, cell cycle arrest of PASMCs forced to express FoxO1a was FoxO1a-specific. 

My results further suggested a combined effect of FoxO1a-mediated p27KIP1 upregulation 

and cyclin D1 transcriptional repression contributing to a robust inhibition of cell cycle 

progression in PASMCs in vitro. This effect was also observed in VSMCs from the coronary 

system (Sedding et al., unpublished data). However, this study is the first describing FoxO1a´s 

contribution to cell proliferation in VSMCs from the pulmonary system via regulating p27KIP1 and 

cyclin D1. Whether adenoviral transduction of FoxO1a;AAA has the same effects in the lung in 

vivo has to be investigated in the future.  

 

Besides affecting proliferation, FoxO1a also attenuated PASMC migration, another critical 

step in the development of pulmonary hypertension75. PDGF-BB-induced PASMC chemotaxis 

was significantly inhibited following transduction with FoxO1a;AAA. This is well in line with 

studies from our group reporting that overexpression of constitutive active FoxO1a inhibited 

migration of human coronary VSMCs along a PDGF-BB gradient (Sedding et al., unpublished 

data). However, as it was the case for VSMC from the coronary system (see above), a detailed 

explanation on how the migratory process was inhibited by FoxO1a does not exist, and thus 

provides a promising area for future research. It might be possible that abrogated migration 

rates upon FoxO1a,AAA-transduction are only secondary effects caused by cell cycle arrest of 

PASMCs. 
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The data presented in this thesis also demonstrated FoxO1a to be important in regulating 

apoptotic cell death of PASMCs. As already mentioned, several FoxO transcription factor 

targets are involved in apoptosis, such as FasL166, Bim191, 194 , TRAIL193, TRADD196. Recently, 

our group demonstrated FoxO1a to directly control caveolin-1 transactivation in SMCs from the 

arterial system (Sedding et al., unpublished data). Since these experiments further revealed an 

increase in the number of apoptotic VSMCs upon ectopic expression of caveolin-1, FoxO1a´s 

apoptotic effect on VSMCs seemed to be dependent, at least partly, on the increased 

expression of caveolin-1. My study now revealed a similar way for FoxO1a of regulating 

apoptosis in PASMCs. Upon transduction with FoxO1a;AAA neither FasL nor Bim protein levels 

increased, however, caveolin-1 protein levels significantly rose. Since transduction with 

FoxO1a;AAA significantly affected PASMC cell death rates, it was suggested that cell death in 

the pulmonary vessel system was, at least partially, dependent on caveolin-1 expression. In 

keeping with this data, recent publication have implicated the cellular caveolin-1 content to 

apoptosis in human coronary VSMCs341. Other groups also revealed the major role of caveolin-

1 in vascular homeostasis342, 343. Their studies demonstrated caveolin-1 knockout mice to have 

lung abnormalities342 and to develop pulmonary hypertension combined with secondary right 

ventricular hypertrophy, as well as cardiomyopathy343.  

 

Caveolin-1 is the main structural component of organelles named caveolae in various cell 

types, such as smooth muscle cells, endothelial cells, fibroblasts, adipocytes and epithelial 

cells344. Caveolae are invaginations of the plasma membrane that have several functions in 

signal transduction. Several signaling molecules are known to interact with caveolin-1 including 

G-proteins (α and βγ), Ras-Stat, Janus kinase (Jak)-Stat and extracellular signal-regulated 

kinase (Erk) signaling pathways, protein kinase C isoforms, EGF-R and related receptor tyrosine 

kinases, Src family tyrosine kinases, and endothelial nitric oxide synthase (as reviewed in344). 

Taken together, caveolin-1 seems to be essential for normal cardiopulmonary function. 

However, the mechanism(s) by which caveolin-1 is able to facilitate and/or induce FoxO1a-

mediated apoptosis in PASMCs is yet unknown and has to be investigated in the future.  

In turns of my results, restoration of caveolin-1 expression by activated FoxO1a could 

resensitize hyperproliferative PASMCs to apoptotic stimuli, thereby contributing to the 

prevention of pulmonary vascular smooth muscle hyperplasia in vitro and pulmonary 

hypertension in vivo. However, induction of apoptosis with regard to avoid the impairment of 

vasculo-proliferative lung diseases is controversial and needs to be deliberated carefully. 

 

Monocrotaline (MCT), a toxin isolated from plants of the Crotalaria species, is used to 

intentionally induce severe pulmonary hypertension in animals in order to generate an 
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experimental model for exploring the pathophysiology of pulmonary hypertension336. 

Accordingly, application of MCT fully established pulmonary hypertension in rats as it was 

shown by Pullamsetti et al.337. In detail, MCT treatment in rats provokes endothelial injury, 

proliferation, and migration of pulmonary VSMCs. Pulmonary vessels from MCT-treated rats 

show significant increases in media thickness similar to neointimal thickening during 

restenosis337. 

In addition to studying FoxO1a function in regular PASMCs, I examined the effect of the 

transcription factor on pathologically modified PASMCs. Interestingly, there were no striking 

changes in behavior upon serum stimulation when comparing regular PASMCs and PASMCs 

derived from MCT-treated rats: Both cell types increased cell numbers due to induction of DNA 

synthesis and amplified their chemotactic responses when stimulated by serum. In addition, the 

incidence of apoptotic cell death was reduced. Following transduction of MCT-PASMCs with 

FoxO1a;AAA, serum-induced DNA replication rates declined. Subsequently, cell numbers 

decreased. Furthermore, other processes implicated in pulmonary vascular smooth muscle 

hyperplasia were affected, such as  migration – which was attenuated - and apoptosis – which 

was strongly upregulated in PASMCs forced to express FoxO1a;AAA. This observation 

revealed the FoxO1a transcription factor to substantially regulate MCT-PASMC homeostasis in 

various ways. 

 

With regard to the knowledge that FoxO1a phosphorylation and protein degradation is 

enhanced during the development of pulmonary hypertension in mice and man in vivo (Dr. 

Pullamsetti, personal communication) stabilization of FoxO1a activity by overexpressing a 

constitutive active form seems to represent an effective strategy to prevent pulmonary 

hyperplasia. However, for the future it will be important to analyze FoxO1a´s mode of action in 

more detail before considering FoxO1a to be a target for medical therapy. 
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SIRT1 regulates HCASMC proliferation, migration and  survival 

 

Evidence suggests a role for FoxO1a activation in systemic VSMC cell cycle progression, 

proliferation, migration and apoptosis/cell survival. However, there potentially exist different cell-

specific responses between VSMC from the pulmonary and from the coronary system. Thus, in 

the third part of my thesis, I come back to the coronary system for studying FoxO1a function in 

more detail and for identifying the influence of a specific mammalian deacetylase on these cells 

behavior.  

 

In the latter part of this report I already mentioned that FoxO transcription factor activity is 

tightly controlled by Akt-mediated phosphorylation in SMCs of the vascular system. However, 

previous studies demonstrated FoxOs not only to be controlled by phosphorylation, but also by 

other posttranslational modifications, including ubiquitylation and – more importantly – 

acetylation. Especially the endogenous class III deacetylase SIRT1 has been reported to affect 

FoxO acetylation and thus function in various cell types233, 262, 263. My results now suggested a 

model in which mammalian FoxO transcription factors were subject to reversible deacetylation 

by SIRT1 mainly under stress conditions. In doing so, SIRT1 activated FoxO1a and mediated 

HCASMC cell survival. The connection between stress and FoxO1a is of particular interest with 

respect to a possible role for FoxOs in vascular disease, as for example atherosclerotic lesions 

have been implicated with cytotoxic stress and apoptotic cell death24, 345. Previous studies in 

other cell types have already demonstrated the involvement of SIRT1 in different biological 

processes, mainly in the context of longevity which is connected to stress resistance292, 303, 304. 

However, this study is the first revealing SIRT1´s pivotal importance in the vascular system in 

vitro and in vivo. In brief, I was able to show that SIRT1 plays an essential role in inhibiting cell 

growth, attenuating chemotaxis and cell death in HCASMCs, even though this effect was 

demonstrated not always to be FoxO1a-dependent.   

 

Class III histone deacetylases (also called sirtuins) are phylogenetically conserved in 

organisms ranging from bacteria to complex eukaryotes, as e.g. humans281.  They were named 

after the first protein observed in Saccharomyces cerevisiae, the silent information regulator 2 

(Sir2) protein346.  In yeast, flies and worms, overexpression of the genes that encode class III 

histone deacetylases are demonstrated to enhance lifespan303, 304, 307 , thus suggesting sirtuins 

to be evolutionarily conserved and to mediate longevity. SIRT1, one of the seven human sirtuin 

family members with the closest homology to Sir2, is an NAD+-dependent histone deacetylase 

that catalyzes deacetylation of diverse histone and non-histone substrates278, 284. In this regard, 

SIRT1 regulates various important biological processes277, 278, including fat mobilization (NCoR, 

SMRT) 309, differentiation (MyoD, PCAF)279, 290, metabolism (PGC-1α)310, gene transcription and 
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heterochromatin formation (TAFI68, HES1 and HEY2, CTIP2, histones)279 as well as survival of 

neurons311 and survival under stress (p53312-314, NF-κB317, Ku70291, 318 and FoxOs233, 262). SIRT1 

knockout studies in mice revealed the deacetylase to promote survival rate and lifespan 315, 316. 

Since lifespan extension is closely linked to cell cycle arrest and stress resistance, SIRT1 was 

also suggested to have a potential role in the development of vasculo-proliferative diseases. 

 

In this study, I reported SIRT1 to be a nuclear enzyme that plays an important role in 

HCASMCs in vitro and in vivo. Several other publications already described SIRT1 to be a 

nuclear protein233, 263, 314, 347, 348. However, recent findings by Tanno and coworkers indicated a 

nucleocytoplasmic shuttling of SIRT1 during development and in response to physiological and 

pathological stimuli, thus representing a novel regulatory mechanism for SIRT1283. The nuclear 

localization of SIRT1 in HCASMCs as observed in this study was stable and independent of 

cellular stimulation - neither pro-proliferative nor pro-apoptotic stimuli affected intracellular 

SIRT1 distribution. Whether the mechanism of nucleocytoplasmic SIRT1 shuttling plays a role in 

other cells of the vascular system or under yet unevaluated circumstances in VSMCs needs to 

be explored in the future. 

 

An important observation in this work is that inhibiting nicotinamide adenine dinucleotide 

(NAD)-dependent SIRT1 activity, either pharmacologically by applying nicotinamide (NAM)292, 293 

and splitomicin294, respectively, or by siRNA-mediated downregulation of SIRT1 increased both 

basal and serum-induced HCASMC proliferation rate in vitro. Out of these three compounds, 

NAM, a form of vitamin B3 and a product of sirtuin-catalyzed deacetylation, is the only inhibitor 

of SIRT1 activity being present in living organisms285, 286. Internal metabolic processes influence 

its concentration, thus the degree of SIRT1 inhibition in nature can be regulated by the 

organism itself (see below). However, the molecular mechanisms of NAM function remain 

unknown until date and need to be explored in the future. Increasing SIRT1 function by 

overexpressing functional active SIRT1 using adenoviral vectors had the opposite effect: 

HCASMC proliferation was decreased. 

 

Furthermore, my experiments indicated that besides affecting proliferation, active SIRT1 

attenuated HCASMC migration as well. Inhibiting SIRT1 function pharmacologically or by using 

siRNA specific for SIRT1 resulted in an enhanced chemotactic response. Since HCASMC 

migration is a key event in neointima development85, 349, prevention of cell migration by 

pharmacologically inhibiting SIRT1 activity or by adenovirally manipulating SIRT1 levels may 

additionally contribute to reduced lesion formation in vivo. To my knowledge, this is the first 

description of SIRT1´s inhibitory effect on cell migration. It is not clear so far whether the anti-

migratory effect was a SIRT1-specific effect or whether it was a general response to cell cycle 
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arrest in G1, since cell cycle inhibition is known to prevent not only cellular proliferation but can 

modulate numerous cellular functions such as differentiation, inflammation and migration, too78. 

Therefore, for the future the role of SIRT1 in regulating cell migration needs to be further 

investigated. 

 

So far my results only demonstrated SIRT1 influence on HCASMC cell fate in vitro. The in 

vivo effect of SIRT1 was demonstrated using our implemented murine wire-injury model. 

Adenoviral transfer of SIRT1 to the denudated vessel was revealed to result in significant 

inhibition of neointima formation due to attenuated neointimal cell proliferation.  

In mice arteries, SIRT1 was expressed within the nuclei of VSMCs of the media as well as 

within the growing neointima. Likewise, SIRT1 was present in the nuclei of human cells from the 

aortic media and in neointimal tissue generated during postangioplasty restenosis formation. In 

coincidence with SIRT1´s effect on decreasing VSMC proliferation and migration, its verified 

presence in the vascular system and it’s downregulation in hyperproliferative tissues was 

hypothesized to be a sign for the importance of the deacetylase in mammals in vivo. 

In cell culture, both SIRT1 protein level and mRNA expression was downregulated upon 

serum stimulation. With having in mind that SIRT1 represses cell proliferation, a downregulation 

of SIRT1 levels in vitro as well as its absence in hyperproliferative tissue is suggested to 

promote exceeding cell proliferation. Possible mechanisms underlying this regulatory feedback 

are discussed below. 

 

Apoptosis, as a third component of vascular pathology was influenced by SIRT1 as well. The 

exposure to reactive oxygen species (ROS) by hydrogen peroxide (H2O2) treatment, an 

apoptosis-inducing stimulus for HCASMCs, mimics the stresses that the vascular system 

experiences under pathological conditions, such as atherosclerosis and restenosis. Recent 

publications described the influence of SIRT1 on cell survival in different cell types233, 263, 347. My 

data now supported the contention that SIRT1 is an endogenous suppressor of apoptotic cell 

death in HCASMCs. Furthermore, the results given in this thesis extended previous findings 

since I showed for the first time that SIRT1 promotes cell survival in the mammalian vascular 

system by manipulating pro-survival gene expression.   

Downregulation of SIRT1 using specific siRNA resulted in a significant increase in the 

number of apoptotic VSMCs. Studies with pharmacologically inhibiting SIRT1 function 

supported these results: Inhibiting SIRT1 function by applying NAM and sirtinol292-295, 

respectively, resulted in impaired HCASMC survival rates. Likewise, overexpression of SIRT1 

by adenoviruses or stimulation of SIRT1 function using resveratrol significantly reduced 

HCASMC apoptosis rates. Thus, my results pointed out SIRT1 to protect VSMCs from cell 

death induced by serum starvation or hydrogen peroxide. These results are congruent with data 
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from other groups also demonstrating SIRT1 impact on cell survival233, 261-263, 268, 269, 347, 350, 

however, my data demonstrated this effect in cells of the vascular system for the first time. 

 

The importance of cell survival and/or apoptosis during the development of atherosclerosis 

and restenosis is still a matter of debate. Previous studies have reported that VSMC apoptosis 

alone (without the presence of inhibited proliferation and migration) is sufficient to prevent 

postangioplasty restenosis351, thus increased SIRT1-mediated cell survival would exacerbate 

the process of neointimal lesion formation. On the other hand, survival of cells forming the 

fibrous cap is beneficial for plaque stability, whereas apoptosis of these cells will contribute to 

plaque vulnerability and, finally, to acute coronary events due to plaque rupture4, 21, 352. 

Additionally, the anti-proliferative effect of activated SIRT1 must not be forgotten. Therefore, 

manipulating SIRT1 activity as a therapeutic approach for curing vascular diseases has to be 

carefully considered with regard to the syndrome and the disease state. 

 

My results revealed the effect of SIRT1 on cell survival, however, the oxidative stress-

response pathway influencing SIRT1 function is hitherto uncharacterized. It was previously 

mentioned that the deacetylase activity of SIRT1 critically depends on the NAD level and, thus, 

can be influenced by the cellular NADH/NAD+ ratio. It is postulated that stress affects SIRT1 

function by altering the cellular concentration of NADH and NAD+. Poly (ADP-ribose) 

polymerase (PARP), a nuclear enzyme that is activated by DNA strand breaks, uses NAD as a 

substrate353. Thus, excessive activation of PARP depletes NAD+ stored in the tissue. Since 

SIRT1 activity depends on the presence of NAD+, decreases in NAD+ levels result in attenuated 

SIRT1 activity. PARP additionally elevates intracellular NAM levels. High dosages of NAM 

inhibit SIRT1 function as it was demonstrated in this thesis. Thus, DNA damage caused by 

oxidative stress or other triggers should shift the nuclear ratio away from NAD+ towards NAM 

through activation of the PARP enzyme, what then negatively affects SIRT1 activity354. The 

oxidative stress-induced upregulation of SIRT1 in VSMCs observed in this study could therefore 

be of biological importance, since it could be seen as a compensatory mechanism to prevent 

apoptotic cell death in response to double-stranded DNA breaks caused by hydrogen peroxide. 

 

Resveratrol, a polyphenol compound found in grapes and grape products has been 

identified recently as one of the most potent stimulators of SIRT1297. In yeast, resveratrol 

treatment resulted in increased DNA stability, extending lifespan by 70%297. Also in C. elegans 

and D. melanogaster lifespan is extended by resveratrol in a Sir2-dependent manner298, 299. In 

mammals, the polyphenol can improve SIRT1-dependent cellular processes as for example fat 

mobilization309, inhibition of NF-κB-dependent transcription317 and axonal protection311. In 2006, 

Baur et al. demonstrated resveratrol to improve health and survival of mice300. However, 
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whether the observed effects were due to a direct impact of resveratrol on SIRT1, or through a 

combination of different protein interactions remains to be investigated in the future. 

In contrast to the above mentioned reports, Kaeberlein et al. revealed that resveratrol-

treatment failed to enhance Sir2 activity in vitro and in yeast cells in vivo, thus speculating that 

activation of SIRT1 by resveratrol might be substrate-specific355.  

 

In my study, resveratrol treatment was demonstrated to decrease HCASMCs cell growth by 

interfering with proliferation dose-dependently. Moreover, DNA synthesis of embryonic 

fibroblasts (MEF) isolated from WT mice was attenuated upon resveratrol treatment. Since the 

polyphenol had almost no effect on DNA synthesis as well as on migration of SIRT1-deprived 

HCASMCs and SIRT1-/- MEF, resveratrol´s effect on manipulating HCASMC function was 

shown to be SIRT1 specific. Consequently, it seemed that the polyphenol was able to 

specifically enhance SIRT1 activity in the vascular system. Araim and colleagues investigated 

the inhibitory effect of resveratrol on proliferation of calf VSMCs356. According to their results 

resveratrol´s effect on mammalian VSMCs proliferation was verified.  

In addition to decrease cell cycle progression, treatment of HCASMCs with resveratrol also 

significantly attenuated chemotaxis.  

 

Coming to the influence of resveratrol on cell survival, I identified the plant polyphenol to 

reduce HCASMCs apoptosis in response to oxidative stress. Moreover, MEF isolated from 

SIRT1-null mice were more sensitive to both serum-starvation and H2O2-induced cell death as 

compared to WT-MEFs. These findings were in agreement with previous reports from Brunet et 

al.233. Preliminary data suggest deacetylation of p53 to play a role in this process, since 

acetylation of p53 at the known SIRT1 lysine residue 382, was decreased following resveratrol 

treatment297.  

Taken together, my studies doubtlessly revealed the influence of resveratrol on SIRT1 

activity and thus are well in line with studies from other groups.  

 

The development of coronary heart diseases such as atherosclerosis and restenosis is 

mainly dependent on the proliferation and migration of VSMCs. Thus, reduction of these 

processes by resveratrol may have a potential beneficial effect on the development of 

atherosclerotic disease. In addition, resveratrol-mediated inhibition of apoptotic cell death of 

cells forming the fibrous cap is hypothesized to contribute to decreased cardio-vascular 

incident-rates. Regular consumption of red wine – containing resveratrol – is still proposed to 

have cardio-protective effects301, however amounts of this polyphenol found in the alcoholic 

beverage are not sufficient to support this hypothesis.  



Discussion   

 

139 

The molecular mechanisms of how resveratrol influences SIRT1 activity are until now only 

poorly understood. M. Borra et al. tried to elucidate how resveratrol activates SIRT1357. They 

showed that the polyphenole is not a general activator of SIRT1 but that the covalent 

attachment of a fluorophore on the SIRT1 substrate is needed for activation357. Additionally they 

revealed that binding of resveratrol to the deacetylase initiates a conformational change in the 

protein which leads to tight binding of SIRT1 to the fluorophore-containing paptide357. With 

regard to my studies where resveratrol acts on SIRT1 in a fluorophore-free environment, other 

endogenous molecules might mimic the fluorophore´s function thus supporting resveratrol´s 

impact on SIRT1 activity. For the future, resveratrol´s mode of action will therefore be of 

particular interest and thus needs to be determined. 

 

In previous parts of this report, I investigated the mechanisms of how endogenous SIRT1 

was able to affect VSMC behavior in vitro and in vivo. Extensive studies of our group revealed 

regulation of FoxO transcription factors via Akt-mediated phosphorylation in SMCs of the 

vascular system affecting cell proliferation, migration, cell cycle progression and/or cell survival 

(Sedding et al., unpublished data). Meanwhile, research presented in this thesis demonstrated 

FoxO transcription factors to be direct substrates of SIRT1 in various cell types233, 262, 263. Since 

SIRT1 was revealed in this report to play a major role in regulating HCASMCs cell fate, my 

further research concentrated on a possible connection between endogenous FoxO1a and 

SIRT1. Indeed, I could report SIRT1-mediated deacetylation of the forkhead transcription factor 

FoxO1a upon oxidative stress. As a prerequisite for a possible interaction of endogenous SIRT1 

and FoxO1a, the accumulation of both proteins within the nucleus was demonstrated in 

stressed HCASMCs. 

As determined by FRET analysis, FoxO1a directly interacted with the deacetylation enzyme 

SIRT1 in quiescent HCASMCs, and connection of both proteins increased following treatment of 

HCASMCs with hydrogen peroxide. Binding of SIRT1 to FoxO1a resulted in removal of the 

acetyl moiety, whose formation was induced by hydrogen peroxide treatment. Acetylation of 

FoxO1a led to inhibition of its transcriptional and biological activities, as it was proven by 

decreased promoter binding capacity as well as attenuated p27KIP1 target gene readout. Thus, 

SIRT1 regulates the transactivation activity of FoxO1a by catalyzing its deacetylation and 

counteracts the acetylation-mediated FoxO1a suppression. As a result, FoxO1a specific genes 

can be transcribed. 

 

These results are congruent with data from other groups, however, there are controversial 

explanations regarding the effect of SIRT1-mediated deacetylation on FoxO transcription factor 

regulation. While Motta et al. reported SIRT1 function to repress FoxO activity262, several other 

studies suggest that acetylation inhibits and SIRT1 function activates FoxO261, 263, 268, 269, 350. 
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Brunet and coworkers even go one step further and proposed that the effects of acetylation and 

SIRT1 are target gene-specific, such that the expression of pro-apoptotic genes is inhibited or 

not affected, while genes that regulate cell cycle arrest and resistance to oxidative stress are 

increased233. This differential gene regulation model was named  ‘tipping the balance towards 

survival’ and shifts the balance of FoxO-driven genes in favor of cytoprotection358.  

 

My results now support Brunets hypothesis. Several pro-survival genes have been 

described to be regulated by nuclear FoxOs, including GADD45, MnSOD and catalase. 

Furthermore, FoxOs are responsible for inducing transcription of pro-apoptotic genes, such as 

FasL, Bim, TRAIL, and TRADD178, 359, 360. Unpublished data from our group identified caveolin-1 

as another FoxO1a target regulating apoptosis in VSMCs. Thus, FoxO transcription factors 

have a dual cellular function. Upon NAM-treatment, I was able to reveal a decrease in p27KIP1 

protein expression within HCASMCs. This cyclin inhibitory protein plays an important role in 

regulating VSMC proliferation as published by our group65. Additionally, depletion of 

endogenous SIRT1 by siRNA resulted in impaired FoxO1a-mediated GADD45 expression in 

response to oxidative stress. This finding suggested that an augmented ability to repair 

damaged DNA mediated by FoxO and SIRT1 advances endurance and slows oxidative 

damage. The observation that GADD45 expression was SIRT1-dependent was in agreement 

with data from Kobayashi et al.268, who demonstrated that SIRT1 directly controls FoxO1a-

mediated GADD45 expression in Saos2 cells. Whether the regulation of GADD45 expression is 

relevant to cytoprotection of the vasculature in vivo will be an attractive area for future 

investigation.  

 

By increasing endogenous SIRT1 levels upon peroxide treatment as detected by 

immunoblot analyses and PCR, the cell seemed to have developed an internal feedback-

mechanism to further enhance cell survival. With my studies I also provided evidence that not 

all FoxO-regulated cell survival genes are influenced by SIRT1 activity. For example FoxO1a-

induced MnSOD transactivation was not affected by SIRT1. Interestingly, preliminary data from 

me pointed out that expression of different pro-apoptotic FoxO-target genes such as FasL and 

Bim were also not influenced by the presence or absence of SIRT1 during oxidative stress 

treatment. Therefore, my data supported Brunet´s theory of a differential gene regulation and 

provided insights into SIRT1-dependend cellular processes regulating FoxO function in the 

vascular system for the first time (Figure 66). Nevertheless, the molecular mechanisms that 

underlie this differential gene regulation are yet unknown and more work is needed to elucidate 

conclusively the role of acetylation and SIRT1 on the dual function of FoxO. The only thing that 

has been verified so far is that acetylation-mediated inhibition of FoxO1a in VSMCs is 
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functionally equivalent to inhibition of FoxOs by Akt-mediated phosphorylation as displayed 

earlier. 

Already in 2002 Kops et al. published observations concerning stress-induced FoxO-

mediated pro-survival gene expression. The group provided evidence that even in the absence 

of Akt-mediated survival signals cells protect themselves against oxidative damage by activating 

the forkhead transcription factor FoxO3a, which directly increased expression of MnSOD in 

human colon carcinoma cells170. Unfortunately, the group around Kops had no explanation for 

this phenomenon at that time, but it can now be claimed that SIRT1 participates in this 

observation.  

In the vascular system, the impact of MnSOD under stress conditions warrants further 

investigation, since preliminary data of mine predict MnSOD expression in HCASMCs in the 

presence of ROS to be SIRT1-independent. Nevertheless, SIRT1-mediated expression of 

MnSOD could play a role in other cells of the vasculature contributing to the development of 

vasculo-proliferative diseases. 

 

Beyond all mentioned observations, it will be interesting to know in the future whether other 

cell death-triggering stimuli that induce stresses similar to those the vasculature experiences 

under pathological conditions, such as exposure to ROS and hypoxia, also stimulate SIRT1 to 

induce pro-survival gene expression. Maybe other stress factors differentially affect SIRT1 

function, thus shifting the cellular response rather towards apoptosis than protection.  
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Figure 66. SIRT1-dependent modulation of FoxO1a   
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A FoxO1a/SIRT1 interaction as determined in stressed cells (induced either by serum 

withdrawal or by peroxide treatment) was not visible in serum-stimulated ones. The missing 

interaction of SIRT1 and FoxO1a under serum stimulation was not very surprisingly, because 

we and others have already demonstrated FoxO1a to become phosphorylated upon FBS 

treatment in vitro and in vivo (unpublished data)238-240, which then typically leads to its nuclear 

exclusion and degradation. Nevertheless, in my studies SIRT1 was demonstrated to affect 

cellular responses triggered by both serum and stress, thus it seems that SIRT1 has different 

mechanisms of action dependent on the stimulus. Whereas the stress-induced mechanism was 

suggested to operate via FoxO1a, the second one mediated by serum was demonstrated to be 

FoxO-independent.  

 

But how does endogenous SIRT1 regulate cell cycle progression, proliferation and migration 

in HCASMCs in vitro and in vivo? One explanation could be that SIRT1 modulated other 

proteins, which in turn regulated the mentioned cellular processes. Until date, our group has 

identified several possible targets, including signaling pathway components and transcription 

factors (personal communication). However, the detailed mechanisms have to be identified in 

the future.  

Other explanations that have already been published emphasized on the original identified 

function of SIRT1 as a histone deacetylase: SIRT1 contributes to gene silencing by interacting 

with histones and by deacetylating them348. Thus, another idea on how SIRT1 regulates VSMC 

gene transcription is by promoting facultative heterochromatin formation. Whether this point is 

important in the vascular system has not been investigated yet. 

 

In regard with phosphorylation leading to FoxO1a´s subcellular translocation, some 

publications described H2O2 to have insulin-mimetic effects, including enhanced Akt activity and 

exclusion of FoxO1a from the nucleus171. Nevertheless, the effects of peroxide in cultured cells 

are complex and other groups already showed a predominantly nuclear localization of FoxO1a 

upon peroxide treatment233. Thus, results reported are controversial. Since I showed 

deacetylated FoxO1a to be localized within the nucleus under oxidative stress conditions and 

displayed increased transcriptional activity on some of FoxO1a´s specific target genes, nuclear 

exclusion due to possible H2O2-induced phosphorylation can be excluded in HCASMCs. 

 

While the above mentioned studies have focused on the forkhead transcription factor 

FoxO1a, additional unpublished results of mine indicated that SIRT1 also adheres to FoxO3a, 

thereby deacetylating and inactivating this family member as well. SIRT1 may thus generally 

deacetylate FoxO transcription factors in VSMCs and therefore leads to upregulation of genes 

that are normally activated by forkhead proteins. 
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Recently, accumulating evidence indicated that considerable analogies exist between FoxOs 

and p53, not only in their common capability to regulate cell death and cell cycle arrest, but 

obviously also in their mode of action. Both proteins, p53 and FoxOs, were demonstrated to be 

regulated by p300/CBP-mediated acetylation and by deacetylation through SIRT1233, 261-263, 268, 

312-315, 347. SIRT1-mediated deacetylation of p53 was shown to inhibit apoptosis against a myriad 

of stress types, including DNA damage and oxidative stress, resulting in cellular protection. 

Additionally, p53 seems to parallel FoxO in its functions, as it controls multiple analogues 

mechanisms, such as DNA repair, cell cycle arrest and apoptosis. Depending on the degree of 

DNA damage and the general cellular background, the pro-apoptotic effects might be favored. 

Additionally to be regulated by phosphorylation and/or acetylation, van der Horst and colleagues 

extended the list of similarities by revealing regulation of both proteins by monoubiquitination266.  

 

Preliminary data from our group demonstrated SIRT1 to affect p53 function in HCASMCs. 

Thus, the shared regulatory network of both p53 and FoxO may have essential impacts on our 

understanding of the development of vascular disorders, as this process is expected to involve 

both the p53 and the FoxO pathway361. How far SIRT1 is involved in this regulation will be of 

main interest, especially with regard to future therapeutic approaches manipulating SIRT1 

activation. 

 

In contrast to the effect on FoxOs and p53 - two proteins demonstrated to promote cell 

survival - SIRT1-mediated deacetylation of NF-κB was suggested to stimulate NF-κB signaling 

and thus induce cell death317. This result demonstrates that the role of SIRT1 during cellular 

stress responses is complex and that the impact of its activation is expected to be cell context 

specific. The fact that SIRT1 influences numerous molecular pathways indicates that this type of 

histone deacetylase has an incomprehensible role in the cellular system what affords much 

room for future research. 

 

Summary 

Vasculopathic disorders are the major causes of death in Western civilization. Diseases such as 

atherosclerosis, postangioplasty restenosis and vein graft failure upon bypass surgery, as well 

as pulmonary hypertension result in myocardial infarction, stroke or peripheral artery diseases. 

VSMCs are closely correlated with the pathogenesis of these diseases. Previous data from our 

group as well as data presented in this thesis suggest that the forkhead transcription factor 

FoxO1a contributes to the regulation of cell cycle progression, VSMC proliferation, chemotactic 

migration, neointimal hyperplasia, vascular remodeling and apoptotic cell death. Regulation of 

FoxO1a by post-translational modification is important for its activity. Since the influence of 

FoxO1a phosphorylation was already investigated by our group, deacetylation of FoxO1a by the 
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class III deacetylase SIRT1 is a novel phenomenon, which was examined in this study. My data 

indicate that SIRT1-dependent deacetylation of FoxO1a has a major influence on vascular 

development and homeostasis, pointing towards a central role of the deacetylase in the 

pathogenesis of diseases affecting the vasculature. Adequate functions of both proteins are 

important for adapting VSMCs to the environmental demands. Taken together, my data imply 

that both FoxO1a and SIRT1 may represent potentially attractive targets for future therapeutic 

strategies in the prevention of vasculo-proliferative diseases.  
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Summary 

 

Vasculo-proliferative disorders such as atherosclerosis, postangioplasty restenosis, and 

pulmonary hypertension are complex processes that are especially related to vascular smooth 

muscle cells (VSMCs)45, 78. In the arterial media, VSMC are normally quiescent, however, for the 

development and progression of the above mentioned diseases it is prerequisite that quiescent 

VSMCs start to proliferate, migrate and undergo apoptosis. Different extracellular stimuli are 

responsible for regulating VSMC homeostasis, including growth factors, cytokines and 

mechanic stress. Through activating the intracellular phosphatidylinositol 3-kinase (PI3K)/Akt-

pathway these factors critically regulate the transcriptional activity of the forkhead box O (FoxO) 

transcription factors via phosphorylation. FoxOs have crucial roles in different biological 

processes such as proliferation, differentiation, metabolism, aging, cell survival and stress 

resistance. Intervening VSMC function by affecting FoxO1a function may represent an attractive 

approach for future therapeutic strategies in the prevention of vasculo-proliferative diseases. 

Part 1 : Upon Akt-mediated phosphorylation under mitogenic conditions, FoxOs depart from the 

nucleus. However, stabilization and localization of the transcription factors in the nucleus is a 

prerequisite for executing their regulatory function. Psammaplysene A, a natural product from 

the marine sponge Psammaplysilla sp., was revealed to promote retention of FoxO1a in the 

nucleus of VSMCs by directly regulating FoxO1a localization. The marine compound was 

demonstrated to affect cell viability and to inhibit VSMC proliferation in vitro and in vivo by 

inhibiting S-phase due to attenuating cyclin D1 expression. A Psammaplysene A-analogue 

named F10 similarly affected VSMC behavior. By applying Psammaplysene A and F10 

simultaneously, single doses of each compound could be reduced. 

Dysfunction of pulmonary VSMCs (PASMCs) contributes to the development of pulmonary 

hypertension. In Part 2  of this thesis I identified FoxO1a to simultaneously modulate 

proliferation, migration and cell death of PASMCs. Following transduction with constitutive 

active FoxO1a, proliferation and migration were significantly attenuated, whereas the number of 

apoptotic cells increased. Caveolin-1 was suggested to mainly mediate this pro-apoptotic 

response, since only protein expression of caveolin-1 - but not that of any other FoxO1a target 

involved in apoptosis - was elevated. The effect of FoxO1a on pathologically modified PASMCs 

was comparable to that on normal cells. This demonstrates FoxO transcription factors to be 

important in the disease state as well. 

In Part 3 , I showed that SIRT1, a class III histone deacetylase known for controlling longevity in 

organisms ranging from bacteria to complex eukaryotes, was able to regulate vascular 

homeostasis and remodeling processes in vitro and in vivo. It did so by deacetylating FoxO 

factors, thereby inducing their transcriptional activity. Under native conditions, SIRT1 

physiologically interacts with FoxO1a. Pharmacological inhibition of SIRT1, as well as 
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knockdown of SIRT1 reduced FoxO1a´s DNA-binding and transactivation capacity leading to 

attenuated FoxO1a target gene expression. In contrast, the SIRT1 activator resveratrol 

enhanced FoxO1a´s transcriptional activity. Upon stress conditions, the observed 

SIRT1/FoxO1a interaction was increased and led to expression of target genes involved in 

regulating the cells oxidative stress response (e.g. GADD45), thus, shifting FoxO1a´s 

transcriptional activity towards cell survival. Application of resveratrol protected from apoptotic 

cell death, whereas inhibition of SIRT1 activity by pharmacologic drugs or siRNA enhanced the 

apoptotic response. Moreover, embryonic fibroblasts derived from SIRT1 knockout mice were 

more resistant to oxidative stress-induced apoptosis as compared to wildtype cells. 
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Zusammenfassung 

 

Vaskulo-proliferative Erkrankungen wie Atherosklerose, Restenose nach Koronarintervention 

sowie pulmonale Hypertonie sind komplexe Erkrankungen der Gefäßwand, bei denen vor allem 

glatte Gefäßmuskelzellen eine wichtige Rolle spielen. In der Regel befinden sich in der 

arteriellen Gefäßwand ruhende Gefäßmuskelzellen, unter pathologischen Bedingungen 

hingegen fangen diese Zellen an zu proliferieren, aus der Media auszuwandern und sogar 

apoptotisch zu werden. Verschiedenste extrazelluläre Faktoren, wie Wachstumsfaktoren, 

Zytokine und mechanischen Dehnungsreize, regulieren die Homöostase der glatten 

Gefäßmuskelzellen. Über diverse Transmembranrezeptoren aktivieren die genannten Faktoren 

die Phosphatidylinositol-3-Kinase (PI3K)/Akt Signaltransduktionskaskade, an deren Ende die 

Phosphorylierung und Deaktivierung von FoxO-Transkriptionsfaktoren steht. FoxO-

Transkriptionsfaktoren wiederum spielen eine wichtige Rolle in den unterschiedlichsten 

biologischen Prozessen, wie Zellproliferation, Metabolismus-Kontrolle, zellulärem Überleben 

und Stresstoleranz. Eine Wiederherstellung der normalen Gefäßmuskelzell-Funktion durch 

Regulierung der FoxO-Aktivität könnte eine vielversprechende Strategie zur gezielten Therapie 

vaskulo-proliferativer Erkrankungen bilden. 

Teil 1 : Die Akt-vermittelte Phosphorylierung der FoxO-Transkriptionsfaktoren sorgt für deren 

Ausschleusung aus dem Nukleus. Ihre regulatorische Funktion können die FoxO-

Transkriptionsfaktoren allerdings nur dann ausführen, wenn sie sich im dephosphorylierten 

Zustand im Nukleus befinden. In meinen Experimenten konnte gezeigt werden, dass 

Psammaplysene A, ein natürliches Produkt aus dem Meeresschwamm Psammaplysilla sp., das 

Ausschleusen von FoxO1a aus dem Nukleus verhindern kann. Zusätzlich konnte aufgezeigt 

werden, dass die Schwammsubstanz sowohl die Lebensfähigkeit als auch die Proliferation von 

glatten Gefäßmuskelzellen in vitro und in vivo beeinflusste. Voraussetzung hierfür war eine 

verminderte Zyklin D1 Expression, die den Eintritt der Zellen in die S-Phase des Zellzyklus 

verhinderte. Eine Psammaplysene A-analoge Substanz namens F10 beeinflusste auf ähnliche 

Weise das Verhalten der glatten Gefäßmuskelzellen. Durch die simultane Verabreichung von 

Psammaplysene A und F10 konnten die Einzeldosen – bei gleich bleibender Wirkung auf die 

Zellen - reduziert werden. 

Dysfunktionen von pulmonalen Gefäßmuskelzellen legen den Grundstein für die Entwicklung 

von pulmonaler Hypertonie. In Teil 2 meiner Arbeit konnte gezeigt werden, dass FoxO1a 

sowohl die Proliferation und Migration, als auch den apoptotischen Zelltod von pulmonalen 

Gefäßmuskelzellen beeinflusst. Eine Transduktion dieser Zellen mit einer konstitutiv aktiven 

FoxO1a-Form führte zu einer stark verminderten Zellproliferation und -migration, wohingegen 

die Anzahl apoptotischer Zellen signifikant anstieg. Von allen pro-apoptotischen FoxO1a-

Zielgenen konnte in diesen Zellen nur die Expression von Caveolin-1 als gesteigert aufgezeigt 
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werden, und wurde somit als Hauptmediator der FoxO1a-vermittelten Apoptose identifiziert. 

Pathologisch veränderte pulmonale Gefäßmuskelzellen reagierten ähnlich wie normale Zellen 

auf die verstärkte Expression von inaktivem FoxO1a, was vielversprechend für eine zukünftige 

FoxO-bezogene Therapie bei pulmonaler Hypertonie ist.  

In Teil 3  konnte gezeigt werden, dass SIRT1 - eine Histondeazetylase der Klasse III, die für 

ihren Einfluss auf die Lebensdauer von Organismen bekannt ist – auch eine regulierende 

Funktion in arteriellen Gefäßmuskelzellen hat. SIRT1 sorgte hierbei für die Deazetylierung von 

FoxO Transkriptionsfaktoren, die daraufhin eine verstärkte Transkriptionsaktivität aufwiesen. 

Unter natürlichen Bedingungen interagierten beide Proteine physiologisch miteinander. Eine 

pharmakologische Inhibition der SIRT1-Aktivität brachte, genauso wie eine siRNA-vermittelte 

Runterregulation von SIRT1, eine reduzierte FoxO1a-Aktivität mit sich. Im Gegensatz dazu 

führte eine Behandlung mit dem SIRT1-Aktivator Resveratrol zu einer verstärkten 

transkriptionalen Aktivität von FoxO1a. Unter oxidativem Stress verstärkte sich die beobachtete 

SIRT1/FoxO1a-Interaktion noch weiter. Die dadurch gesteigerte Expression von an der 

Zellreparatur beteiligten Proteinen wie GADD45 erhöhte die Wahrscheinlichkeit eines 

Überlebens der Zelle. Die Gabe von Resveratrol schützte die glatten Gefäßmuskelzellen vor 

apoptotischem Zelltod, wohingegen eine Inhibition der SIRT1 Aktivität durch pharmakologische 

Substanzen oder siRNA zu einer Verstärkung der Apoptose führte. Darüber hinaus konnte 

gezeigt werden, dass embryonische Fibroblasten aus SIRT1-defizienten Mäusen resistenter 

gegenüber oxidativem Stress und der dadurch induzierten Apoptose waren als vergleichbare 

Wildtyp-Zellen. 
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Acronym Meaning 

(ox)LDL (oxidized) low-density lipoprotein  

(V)SMCs (Vascular) smooth muscle cell(s) 

ACS acute coronary syndrome 

AR androgen receptor  

bFGF basic fibroblast growth factor  

bNIP3L  Bcl2/adenovirus E1B 19 kDa interacting protein 3-like 

BTG1 B-cell translocation gene 1  

CAM(s) cell adhesion molecule(s) 

CBP CREB-binding protein  

CDK2 cyclin-dependent kinase 2  

cGKI cyclic GMP-dependent protein kinase I  

CK1 casein kinase  

CMV human cytomegalovirus  

Cot  cancer Osaka thyroid 

cyt-c cytochrome c  

DBE DAF-16 family member-binding element 

DYRK1 Tyrosine phosphorylated and -regulated kinase 1  

ECM extra-cellular matrix  

ECs endothelial cells 

EGF epidermal growth factor  

eNOS endothelial nitric oxide synthase  

EPC endothelial progenitor cells  

ER estrogen receptor  

FasL Fas ligand  

FBS  Fetal bovine serum 

FoxO forkhead box O  

g gravity 

G6Pase glucose-6-phosphatase  

GADD45 DNA damage-inducible protein 45  

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GSK3 glycogen synthase kinase 3  

h hour(s) 

H2O2 hydrogen peroxide  

HAT(s) histone acetyltransferase(s) 

HAUSP herpesvirus-associated ubiquitin-specific protease  

HDAC(s) Histone deacetylase(s) 

HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase  

hTERT telomerase catalytic subunit 
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Id1 inhibitor of differentiation 1 

IFN-γ interferon gamma  

IGF-1 insulin-like growth factor 1 

IGFBP1 IGF-binding protein 1  

IKK  IκB kinase 

IL-2 Interleukin 2 

JNK c-Jun N-terminal kinase 

LPL lipoprotein lipase  

MCP-1 monocyte chemoattractant protein-1  

M-CSF macrophage colony-stimulating factor  

MHC myosin heavy chain  

min minutes 

MMP matrix metalloproteinase  

MnSOD manganese superoxide dismutase  

MST1 mammalian sterile 20-like kinase-1  

mTOR mammalian target of rapamycin  

NAM nicotinamide  

NCoR  nuclear receptor co-repressor 

NES nuclear export signal  

NLS nuclear localization signal  

NO nitric oxide  

NO3
- peroxynitrite  

O2- hydroxyl radical  

PAI-1 plasminogen activator inhibitor 1  

PASMC(s) Pulmonary artery smooth muscle cell(s) 

PCAF  CBP-associated factor 

PCI percutaneous coronary intervention  

PDGF platelet-derived growth factor  

PDK-1 phosphoinositide-dependent kinase-1 

PDK4 pyruvate dehydrogenase kinase 4  

PEP phosphoenolpyruvate  

PEPCK phosphoenolpyruvate carboxykinase  

PGC-1 PPAR-γ coactivator 1  

PH pleckstrin-homology  

PHT pulmonary hypertension  

PI(s) phosphatidylinositol lipid(s)  

PI3K phosphatidylinositol 3-kinase 

PKB protein kinase B  

Plk Polo-like kinase  

PPAR Peroxisome proliferator-activated receptor  

PS phosphatidylserine  
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PTCA Percutaneous transluminal coronary angioplasty  

PTEN  
phosphatase and tensin homologue deleted on chromosome 
10 

ROS reactive oxygen species  

rpm Rounds per minutes 

SGK  serum and glucocorticoid inducible kinase 

SH2 Src-homology 2  

Sir2 silent mating type information regulator 2 

SIRT1  sirtuin1 

SMRT silencing mediator of retinoid and thyroid hormone receptors 

TGF transforming growth factor  

TGF-β transforming growth factor beta 

TNFR1 TNF receptor-1  

TNF-α Tumor necrosis factor alpha 

tPA tissue plasminogen activator  

TRADD TNF receptor-associated death domain 

TRAIL TNF- related apoptosis-inducing ligand 

TSA  Trichostatin A 

uPA urokinase plasminogen activator  

VCAM-1 vascular cell adhesion molecule-1  

vs versus 

Table 7. List of acronyms and abbreviations 
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