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Abstract 

Dye-sensitized solar cells (DSCs) based on electrodeposited mesoporous ZnO films 

present a low-temperature alternative to conventional DSCs built from high-temperature 

treated nanoparticulate TiO2 films. Using a liquid iodide/triiodide electrolyte and the 

indoline dye D149 as photosensitizer, the highest efficiency reported for such cells is 

5.6%, which is slightly less than half of that reached by titania-based systems. In the 

present work, the role of the dye layer at the interface between ZnO and electrolyte in 

determining cell performance was investigated. Optical spectroscopy and time- and fre-

quency-resolved photoelectrochemical methods involving small or large electrical or 

illumination perturbations were employed to study light harvesting, charge separation, 

charge transport, and recombination in sandwich-type solar cells with systematically 

varied dye loadings, dye combinations, or dye/coadsorbate combinations. On the basis 

of analytical models considering an exponential distribution of band gap states in the 

semiconductor and nonlinear recombination to the electrolyte (β-recombination model), 

strategies to quantitatively detangle the microscopic factors that determine global device 

characteristics were introduced. It was shown that the relatively low fill factor in cells 

based on electrodeposited ZnO/D149 is strongly determined by D149 aggregates accel-

erating recombination at intermediate cell voltages. The beneficial effect of the coad-

sorbate cholic acid (CA) on device performance resulted from a suppression of the dye-

related recombination by limiting the extent of D149 aggregation. Addressing the low 

short-circuit photocurrent densities of ZnO/D149-based DSCs with respect to standard 

TiO2-based cells, an extension of the spectral light harvesting efficiency was achieved 

by co-sensitization of electrodeposited or screenprinted nanoparticulate ZnO with D149, 

the indoline dye D131, and a red-absorbing sensitizer, which was either the squaraine 

dye SQ2 or the partially sulfonated zinc(II) phthalocyanine S1.15PcZn. The beneficial 

effect of panchromatic light harvesting was counteracted by significant voltage losses 

due to undesired dye/dye and dye/semiconductor interactions in the presence of the red 

absorbers, including downward shifts of the ZnO conduction band edge and formation 

of recombination-promoting surface trap states. On the basis of the specific properties 

of ZnO-based DSCs determined in this work, guidelines for the choice of alternative 

sensitizers and red-absorbing co-sensitizers were discussed.  
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Kurzfassung 

Farbstoffsolarzellen (DSCs) auf Basis elektrochemisch abgeschiedener poröser ZnO-

Schichten bieten gegenüber konventionellen TiO2-basierten Systemen den Vorteil, bei 

niedrigen Temperaturen hergestellt werden zu können. Derartige Zellen haben mit 

flüssigen Iodid/Triiodid-Elektrolyten und dem Indolinfarbstoff D149 bisher Wirkungs-

grade von bis zu 5.6% erreicht, was noch deutlich unterhalb der Wirkungsgrade TiO2-

basierter Systeme liegt. In der vorliegenden Arbeit wurde der Einfluss der Farb-

stoffschicht an der Grenzfläche zwischen ZnO und Elektrolyt auf die Eigenschaften 

ZnO-basierter DSCs untersucht. Mittels optischer Spektroskopie sowie zeit- und 

frequenzaufgelöster photoelektrochemischer Methoden wurden Lichtabsorption, 

Ladungsträgerseparation, Ladungstransport, und Rekombination in planaren Testzellen 

mit systematisch variierten Farbstoffbeladungen, Farbstoffkombinationen, oder Farb-

stoff/Coadsorbat- Kombinationen analysiert. Analytische Modelle unter Einbezug expo-

nentieller Fallenverteilungen im Halbleiter und nichtlinearer Rekombinationskinetik mit 

dem Elektrolyten (β-Rekombinationsmodell) wurden genutzt, um Auswertungs-

verfahren zur Quantifizierung der Einflüsse unterschiedlicher mikroskopischer Größen 

auf globale Zellcharakteristika zu entwickeln. Der vergleichsweise niedrige Füllfaktor 

elektrochemisch hergestellter ZnO/D149-Solarzellen wurde auf erhöhte Rekombination 

im Bereich niedrigerer Zellspannungen in Anwesenheit aggregierter D149-Moleküle 

zurückgeführt. Die bekannte Verbesserung der photovoltaischen Leistung durch 

Coadsorption von Cholsäure (CA) lag in einer verringerten Aggregationsneigung des 

Farbstoffes und der dadurch bedingten Reduktion der aggregatbedingten Rekombination 

begründet. Die spektrale Absorption in ZnO/D149-Solarzellen wurde mittels Co-

Sensibilisierung mit D149, dem Indolinfarbstoff D131, und einem von zwei im roten 

Spektralbereich absorbierenden Farbstoffen (dem Squarainfarbstoff SQ2 oder dem 

teilsulfonierten Zink(II)-Phthalocyanin S1.15PcZn) erweitert. Dabei traten unerwünschte 

Farbstoff/Farbstoff- und Farbstoff/Halbleiter-Wechselwirkungen wie z.B. eine 

ungünstige Verschiebung der ZnO-Leitungsbandkante sowie eine Bildung 

rekombinationsfördernder Fallenzustände zutage, welche dem positiven Effekt der 

verbesserten Lichtabsorption entgegenwirkten. Unter Berücksichtigung der in dieser 

Arbeit bestimmten spezifischen Eigenschaften ZnO-basierter DSCs wurden Richtlinien 

für die Auswahl alternativer Sensibilisatoren und Co-Sensibilisatoren diskutiert.  
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Introduction 

A 2010 advertisement by the oil and gas company Shell depicted a little girl who is 

reading in bed. The image was accompanied by the comment, “What sort of world will 

this little girl grow up in? [...] if we’re going to keep the lights on for her, we will need 

to look at every possible energy source. [...] Let’s Go.”1, 2 Clearly, Shell was addressing 

the fact that global reserves of fossil fuels like oil and gas are becoming scarce. One of 

the oil giant’s approaches to tackle this problem was to plan a multi-billion dollar pro-

ject to explore some of the Earth’s last big reserves of fossil fuels in the Arctic Sea. Two 

years later, after a series of disconcerting technical issues and safety problems in the 

rough waters of the Arctic Ocean, Shell’s 200 million dollar Arctic drill rig, the Kulluk, 

had run ashore on Sitkalidak Island in the Gulf of Alaska and eventually had to be 

scrapped.1 Together with the increasing certainty among climate researchers that the 

global warming we are experiencing is largely caused by human combustion of fossil 

fuels,3 accidents like this unambiguously suggest the conclusion that we must indeed, in 

Shell’s own words, look at every possible energy source. However, in order to secure a 

clean and reliable supply of energy for future generations, it is inevitable that we focus 

on advancing efficient technologies to exploit safe and sustainable energy sources, such 

as wind, water and sunlight. These so-called renewables will make up an increasing 

share of the global energy mix of the future.4 Exploitation of the vast amount of energy 

arriving every second at the upper atmosphere of the Earth in the form of solar radiation 

(174,000 TJ)5 is expected to play a prominent role in that mix.4 In fact, one of the future 

energy scenarios Shell presented in 2013 (New Lens Scenarios)6 predicts that sunlight 

will be the dominant energy source by 2100, making up nearly 40% of the world’s en-

ergy mix. In accordance with such scenarios, several established industrial companies 

such as Schott,7 Sharp,8 and Panasonic9 have been investing in solar energy, and even 

the oil giants Shell and BP themselves were active in the solar market for several 

years.10 Among solar energy technologies, photovoltaic cells, which convert incident 

sunlight directly into electric energy, represent an attractive, low-maintenance option 

that can be used to either feed electricity into the grid or function as island systems to 

provide electricity in remote areas far away from the grid.11 In the interest of sustaina-

bility, it is essential to develop photovoltaic approaches that rely only on non-toxic and 
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earth-abundant materials as well as on energy-efficient production methods, avoiding 

unsustainable processing conditions such as high temperatures, high pressure, or (ultra-) 

high vacuum. If environmental and health-related hazards are monetized,12 increasing 

sustainability also significantly contributes to achieving high cost-efficiency, which in 

turn increases commercial attractiveness. Conventional bulk Si solar cells, which nowa-

days still dominate the market,13 require processing temperatures above 1000 °C14 and, 

thus, are not satisfying the demand for low-energy fabrication. With present power con-

version efficiencies of up to 13%15 and the prospect of low-energy production,16 dye-

sensitized solar cells (DSCs) present one of the most promising systems among alterna-

tive photovoltaics trying to meet the above criteria for sustainability. One new concept 

that has developed out of dye-sensitized cells has gained particularly high attention over 

the past few years: Perovskite-based solar cells, which have reached efficiencies above 

20%.17 While exhibiting highly competitive performance, the success of Perovskite-

based solar cells currently relies on the use of lead halide compounds for the light-

absorbing material, which raises concerns regarding toxicity.18 Therefore, from a point 

of view of sustainability it is clearly necessary to continue and intensify research efforts 

in the field of classical (“Grätzel”-type) dye-sensitized solar cells, which typically con-

sist of a nanostructured metal oxide electrode to which a photosensitizing dye is ad-

sorbed, a counter electrode, and a liquid redox electrolyte or solid hole conductor in 

between the two electrodes.19 While the most efficient DSCs today are fabricated from 

nanoparticulate TiO2 films that require high-temperature post-treatment to ensure good 

electronic conductivity,19, 20 the semiconductor ZnO offers a variety of possibilities to be 

deposited as nanostructured films at significantly lower temperatures.21 Low preparation 

temperatures not only directly translate into a reduced amount of energy required for 

cell fabrication, but also contribute to increased sustainability by allowing the replace-

ment of energy-intensive16 glass substrates by flexible and light-weight plastic sub-

strates.22-25 One particularly attractive low-cost method to prepare mesoporous ZnO 

electrodes for dye-sensitized solar cells is electrodeposition in the presence of molecular 

templates such as eosin Y, which proceeds at temperatures as low as 70°C and has been 

successfully transferred to plastic substrates.25, 26 This technique yields thin films with 

columnar, sponge-like structures with pore sizes in the range of ~20 nm,27 which have 

been found to exhibit favorable electron transport properties even without any high-

temperature post-treatments.28 As regards the photosensitizer, DSCs have originally 
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relied on Ru(II)-bipyridyl complexes to achieve competitive efficiencies,29 but over the 

last decade numerous groups have focused on the development of alternative sensitizers, 

including high-extinction coefficient metal-free sensitizers that can be obtained via sim-

ple synthesis routes. This has resulted in remarkable efficiencies of up to 10.3% using 

the fully organic dye C219 in combination with TiO2.
30 For solar cells based on electro-

deposited porous ZnO electrodes, the best power conversion efficiency reported was 

~5.6% and was, in fact, achieved with a metal-free sensitizer, the indoline dye D149, in 

combination with the coadsorbate cholic acid.25 As the photovoltaic performance of this 

materials system remains clearly below that of TiO2 cells, additional research efforts are 

essential in order to deepen the understanding of this sustainable, non-toxic, and pro-

spectively cost-efficient alternative to titania-based DSC structures and thereby develop 

systematic strategies for further improvement of their efficiency.  

The studies discussed in the present thesis were designed to contribute to this objective 

by elucidating how systematic changes to the dye layer at the interface between electro-

deposited ZnO and a liquid iodide/triiodide redox electrolyte impact microscopic charge 

transport and transfer processes and, ultimately, solar cell device characteristics. A ma-

jor goal was to deepen the understanding of the role of D149 in limiting the efficiency 

of ZnO/D149 solar cells and to clarify the detailed mechanism by which coadsorption of 

cholic acid (CA) with D149 improves cell performance with respect to cells without 

coadsorbate. The experimental strategy chosen to approach this goal was to prepare and 

characterize solar cells from electrodeposited ZnO films that had been loaded with dif-

ferent amounts of D149 by systematic variation of the immersion time in dye or mixed 

dye/coadsorbate solutions. Combination of current-voltage characterization and electro-

chemical impedance spectroscopy allowed attributing characteristic differences in the 

photovoltaic parameters of cells with different dye loadings and with or without coad-

sorbate to changes in the extent of D149 aggregation and resulting variations in the en-

ergy-dependence of interfacial recombination. A further key aim of this work was to 

extend the spectral light harvesting efficiency of DSCs based on electrodeposited ZnO 

with respect to ZnO/D149 cells. This was achieved by co-sensitizing the ZnO with 

combinations of D149 and one or more other dyes showing absorption spectra comple-

mentary to that of D149. The co-sensitizers were selected based on the following crite-

ria: (1) successful combination with D149 on ZnO in a previous study (blue-absorbing 

indoline dye D131),31 (2) efficient sensitization of TiO2 as individual dye or co-
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sensitizer in previous reports (red-absorbing squaraine dye SQ2),32, 33 or (3) availability 

within a collaboration with industry (red-absorbing partially sulfonated zinc(II) phthalo-

cyanine S1.15PcZn). The characterization of the co-sensitized cells and of reference cells 

with individual sensitizers offered detailed insights into the effect of different dye-dye 

and dye-semiconductor interactions on the density and distribution of electronic states 

in the semiconductor, charge injection from the dye(s) to the semiconductor, as well as 

recombination kinetics. To expand the understanding of how the type of semiconductor 

matrix affects the solar cell performance, a comparative study of devices based on na-

noparticulate ZnO films prepared by screen printing was performed. Finally, a number 

of different types of cells prepared as part of the thesis work were characterized multiple 

times over different periods of time of up to several months in order to gain information 

about their short- and long-term stability.  

The thesis is arranged as follows. Chapter 1 provides a foundation for the discussion of 

the results by addressing the basics of dye-sensitized solar cell operation, the theoretical 

description of DSCs, and the fundamentals of the characterization methods employed to 

analyze the cells in this work. In chapter 2, the experimental procedures used to prepare 

and characterize the solar cells are described. Chapter 3 gives an overview of the film 

morphology and thickness within the set of electrodeposited ZnO samples used to fabri-

cate DSCs. In chapters 5 through 9, the results of the different experimental studies out-

lined above are presented and discussed. In chapter 10, the thesis is concluded with a 

final discussion considering all results, and with an outlook on future research in the 

field of dye-sensitization of electrodeposited ZnO as it appears useful in view of the 

present results. 
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1 Basic Concepts 

1.1 Dye-Sensitized Solar Cells (DSCs) 

1.1.1 Structure and Operation Principle 

The main component of a classical dye-sensitized solar cell of the type introduced by 

Grätzel and O’Regan in 199119 is a mesoporous film of a wide-band gap semiconductor, 

which is deposited on a glass substrate coated with a transparent conductive oxide 

(TCO) such as FTO (fluorine-doped tin oxide), cf. Figure 1. A monolayer of dye mole-

cules is adsorbed to the surface of the semiconductor as photosensitizer and the semi-

conductor/dye film is permeated by an electrolyte containing a redox couple. The DSC 

is completed by a counter electrode, which typically consists of TCO/glass coated with 

a catalytic platinum layer.19, 34 Under illumination, the dye molecules absorb part of the 

incident light and are thereby electronically excited. Appropriate energy level alignment 

provided, electrons are rapidly injected from the excited states of the dye into the con-

duction band of the semiconductor and are transported through the mesoporous struc-

ture to the back contact (substrate). The oxidized photosensitizer is regenerated by elec-

tron transfer from the reduced species of the redox couple. The oxidized species of the 

redox electrolyte diffuses35, 36 to the counter electrode, where it is reduced. In the case of 

the commonly used I-/I3
- (iodide/triiodide) redox couple, a Grotthus-like mechanism 

may contribute to the transport of positive charges to the counter electrode, as observed 

in ionic liquid-based electrolytes at high iodide concentrations.37  

In the original Grätzel cell,19 the porous semiconductor film was a layer of TiO2 nano-

particles that had been sintered to interconnect the particles and form a conductive net-

work. While such TiO2-based DSCs presently still deliver the highest efficiencies and 

therefore constitute the most common approach,15, 34, 38, 39 other metal oxide semicon-

ductors have been widely investigated and have been found to be advantageous for cer-

tain applications or cell configurations.22, 40-42 Most studies investigating alternative 

semiconductors for DSCs - including the present work - have focused on ZnO, which 

offers the beneficial possibility of creating a variety of different nanostructures even at 
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low temperatures.21, 22, 25, 43, 44 Chapters 1.3.1 and 1.3.2 will give a detailed introduction 

on DSCs based on ZnO photoelectrodes.   

 

 

The first DSCs employed ruthenium(II) polypyridyl complexes such as N3 as photosen-

sitizers.19, 29, 45 As is the case for most other DSC dyes, the adsorption of these mole-

cules to the inner surface of the porous oxide semiconductor is based on the formation 

of a covalent bond via their carboxylic acid groups.45 DSCs using Ru(II) sensitizers con-

tinued to yield the best conversion efficiencies among TiO2-based devices for almost 20 

years, reaching up to 11.5 % in 2009.46, 47 In 2011, however, a new record was attained 

using the porphyrin-based dye YD2-o-C8 on TiO2, without (η = 11.9%) or with (η = 

12.3%) the metal-free dye Y123 as co-sensitizer.34 This was followed by a record cell 

with a conversion efficiency of 13.0% in 2014,15 which was based on TiO2 with SM315, 

a porphyrin sensitizer with improved light harvesting and electrolyte compatibility. Ful-

ly organic absorber molecules like the above-mentioned Y123 have also been success-

fully used as individual photosensitizers, albeit resulting in somewhat lower efficien-

cies.48-51 Compared to rare metal complexes, they have typically higher molar absorptiv-

ities, offer the prospect of lower-cost synthesis and their molecular structure can be easi-

Figure 1: Schematic representation of structure and operation principle of a dye-

sensitized solar cell with substrate-side illumination. Green arrows indicate the flow of 

electrons. The circular blow-up illustrates the desired charge transfer processes at the 

semiconductor/dye/electrolyte interface following photoexcitation of the dye.    
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ly modified to suit the needs of different cell concepts.52 Moreover, organic dyes have 

been successfully used as sensitizers for semiconductor structures that were found to 

show low efficiencies with the typical Ru(II) dyes, such as the electrodeposited porous 

ZnO structures25 used in this work. Chapter 1.3.4 will address this group of photosensi-

tizers for dye-sensitized solar cells in more depth.    

The most commonly used electrolyte consists of the I-/I3
- redox shuttle in combination 

with liquid organic solvents like acetonitrile.35 It was already used in the early DSC 

studies by Grätzel et al.19 and has remained the preferred choice because it yields highly 

efficient and stable cells.47, 53 The main advantage of the I-/I3
- mediator is that oxidation 

of I- and hence dye regeneration is fast whilst reduction of I3
- by electrons from the po-

rous semiconductor (recombination, cf. section 1.1.2 and 1.2.3) is kinetically hindered.54 

On the other hand, several drawbacks such as the relatively high redox potential of I-/I3
- 

(posing an upper limit on the output voltage of the cell)35, 55 and potential corrosiveness 

towards the counter electrode Pt layer56 triggered studies focusing on the development 

of alternative redox couples.34, 57, 58 The most successful alternative found so far is the 

Co(II/III) polypyridyl couple,15, 34 which was employed in the record cell using the sen-

sitizers YD2-o-C8/Y123 and SM315 (see above). However, the applicability of this 

redox mediator is limited to select photosensitizers: with standard Ru(II) complex dyes, 

for example, fast recombination between semiconductor and Co(II/III)-based electrolyte 

was found to lead to inferior efficiencies compared with the I-/I3
-electrolyte.59 As the use 

of liquid electrolytes in general comes along with certain practical challenges such as 

the need for an effective cell sealing to prevent leakage or evaporation of the electrolyte, 

extensive research is also being performed in the field of solid or quasi-solid DSC hole 

transporters.60 The non-volatility and high temperature stability of solid-state hole 

transporting materials renders them the most promising candidates for practical applica-

tions, but they currently show relatively low conversion efficiencies due to incomplete 

filling of the pores with the hole conductor61 and significantly higher rates of recombi-

nation as compared to liquid electrolyte cells.62 In the studies presented in this thesis, a 

standard liquid I-/I3
- electrolyte has been deliberately chosen in spite of the drawbacks 

with respect to practical applicability. This is, first, because the dyes utilized in this 

work have shown optimum efficiencies in combination with the I-/I3
- redox couple (see 

chapter 1.3.4) and, second, because the pore filling issues of solid hole conductors 

would have interfered with the aim of a systematic and quantitative interpretation of 
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recombination data, which relies on assuming the same contact surface between dye-

sensitized semiconductor and electrolyte/hole transporter in all samples under compari-

son. 

1.1.2 Overview of Energy Levels and Electron Transfer Processes 

Figure 2 presents a basic energy level diagram of semiconductor, dye and electrolyte in 

a dye-sensitized solar cell and illustrates various desired and undesired processes of 

excitation, relaxation, transfer, and transport of charge carriers. 

 

 

 

 

 

 

An accurate description of the energetic structure of the DSC must also include the dis-

tributions of electronic states (density of states g(E)) in the different cell components, 

which are explicitly represented in Figure 3. The electronic structure of the mesoporous 

semiconductor is typically characterized via the position of the conduction band edge, 

Ec, the density of states in the conduction band, gcb(E), and a distribution of trap states 

in the band gap, gt(E). In the vicinity of the conduction band edge, where the band can 

be described by a parabola in k-space, the density of states in the conduction band of a 

Figure 2: Energy levels in different components of a dye-sensitized solar cell at open-

circuit conditions under illumination, with arrows representing charge flow and loss 

processes. The valence band of the semiconductor is outside the scale of the scheme. 

Note that the diagram represents free (e.g., Efn) and internal (e.g. Ec) energies using 

one common scale.   
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bulk semiconductor is expected to follow the relationship gcb(E) ∝ (E-Ec)
1/2, as indicated 

in Figure 3.63 

 

Figure 3: Distribution of electronic states in semiconductor, dye, and electrolyte. The 

density of states in the conduction band of the semiconductor is shown for the example 

of a bulk material without quantum confinement effects. The distributions of occupied 

states in dye and electrolyte are highlighted in blue, pink, and light blue, while the cor-

responding distributions of unoccupied states are presented in green, orange, and yel-

low. Adapted from Figure 11 of ref. 38 with additions and modifications. 

However, if quantum confinement in one or more dimensions plays a role, the density 

of states takes on significantly different shapes.64 The distribution of trap states in 

nanostructured semiconductors usually shows an exponential increase towards Ec (cf. 

section 1.2.2). Due to this so called tailing of the conduction band, some authors have 

pointed out that it is more appropriate to speak about a mobility edge (defined as the 

energy separating localized and delocalized states in a disordered semiconductor)65 than 

about a conduction band edge in a strict sense.66 In the present work, the expression 

“conduction band edge” and the symbol Ec will be used in terms of a mobility edge and 

“shifts of the conduction band edge” will refer to energetic shifts of that mobility edge 
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and the density of states around it. The position of the semiconductor energy levels as 

well as the density of trap states at the surface are influenced by molecular adsorbates 

such as dyes or coadsorbates:67-70 Surface-bound molecules can entail a reduction of the 

density of surface traps by attachment to coordinatively unsaturated surface atoms, and 

surface charges or dipolar fields of adsorbates can lead to shifts of Ec. The probability of 

population of the electronic states in the semiconductor is reflected in the quasi-Fermi 

levelI (electrochemical potential) of electrons, Efn.
63 It is related to the electron density 

nc in the conduction band via63 
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where Nc is the effective density of states at the conduction band edge. In the dark, Efn is 

in equilibrium with the electrochemical potential of electrons in the electrolyte, which 

on the energy scale is often referred to as the redox level, or Fermi level of electrons in 

the electrolyte, Eredox.
38, 71 The redox level separates unoccupied and occupied electronic 

states in the electrolyte and according to the Nernst equation depends on the ratio of the 

concentrations of oxidized and reduced species.72 The occupied and unoccupied states, 

represented as yellow and light blue areas in Figure 3, show Gaussian distributions that 

intersect at Eredox. The maxima of the distributions, E0
ox and E0

red, correspond to the 

most probable energies for the occupied and empty states, respectively.73 E0
ox and E0

red 

differ from Eredox by the reorganization energy λ, which is the energy required to trans-

form the nuclear configurations in the reactant (inner reorganization energy) and in the 

surrounding solvent (outer reorganization energy) to those of the product state created in 

the oxidation or reduction reaction.71, 74, 75 In a DSC under illumination, Eredox remains 

stationary while Efn in the porous semiconductor is shifted upwards (towards Ec) as a 

result of the increase in electron density through electron injection from the dye. Under 

open-circuit conditions (zero current), the quasi-Fermi level in the semiconductor is 

spatially homogeneous and the split of Fermi levels Efn – Eredox determines the open-

circuit photovoltage Voc, as indicated in Figure 2.71 The sensitizer energy levels most 

relevant for DSC operation are the Fermi levels corresponding to the oxidation poten-

tials of the dye in its ground and excited (*) state, E0(S+/S) and E0(S+/S*),38, 71 which are 

                                                 

I quasi here refers to the fact that Efn is the Fermi level of electrons under non-equilibrium conditions (i.e., 

under illumination) as opposed to the dark equilibrium Fermi level. 
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indirectly related to the energies ELUMO and EHOMO of the lowest unoccupied molecular 

orbital (LUMO) and the highest occupied molecular orbital (HOMO) of an isolated dye 

molecule.76 In analogy to the states in the electrolyte, occupied and unoccupied states in 

the ground state and the excited state of the dye are described by Gauss functions inter-

secting at E0(S+/S) and E0(S+/S*), characterized by reorganization energies λ and by 

maxima located at E0
ox and E0

red and *E0
ox and *E0

red, respectively.71 The blue and pink 

areas in Figure 3 represent occupied states of the ground and excited state, and the 

green and orange areas indicate the corresponding unoccupied states. E0-0 corresponds to 

the energy of the transition between the lowest vibrational levels in the ground and ex-

cited states.71  

Light harvesting, electron transfer, and electron transport in the dye-sensitized solar cell 

depend on the energy levels and distributions of states discussed above. In Figure 2, the 

green arrows represent desired processes in the cell, while the red arrows indicate reac-

tions connected to loss processes. Note that, although in the simplified representation of 

this picture some of the interfacial charge transfer processes are illustrated by diagonal 

arrows between the Fermi levels of the two phases involved in the transfer, such pro-

cesses are generally isoenergetic in nature, i.e., they occur between occupied states of a 

donor and unoccupied states of an acceptor that are located at the same energy level.71, 

74, 77 Following excitation of electrons in the dye by absorption of incident light, (1), 

electrons are injected into the conduction band of the semiconductor, (2a), or recombine 

with the ground state (excited state decay), (2b). The efficiency of process (1) is called 

the light harvesting efficiency ηlh (cf. chapter 1.4.1) and is a wavelength-dependent 

quantity determined by the molar absorptivity of the dye, the concentration of dye mol-

ecules in the film, and the film thickness (see eq. (24), eq. (26), and eq. (27)).78 The 

quantum efficiency of charge transfer from the dye to the semiconductor is the electron 

injection efficiency ηinj. It is defined as ηinj = kinj/(kinj+kdecay), where kinj and kdecay are the 

rate constants of electron injection, (2a), and excited state decay, (2b), i.e., it corre-

sponds to the fraction of photoexcited electrons injected. According to the Gerischer 

theory for electron transfer from an excited molecule to a semiconductor electrode,71, 77, 

79 a high rate of electron injection results from a large energetic overlap of the density of 

occupied states in the excited dye and the density of unoccupied states in the semicon-

ductor (cf. corresponding distributions in Figure 3) as well as from a short distance be-

tween the dye molecules and the semiconductor. Therefore, efficient injection is pro-
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moted by the excited state levels of the dye being located above Ec, which ensures a 

large energetic overlap of the involved occupied and unoccupied states, and by a direct 

and strong attachment of the dye molecules to the surface, which minimizes the distance 

between electron donor and acceptor.79 A directionality in the excited states of the dye, 

meaning that the LUMO orbitals are localized at or close to its anchoring group, has 

been found to be of tremendous benefit for injection.80, 81 In the case of standard Ru(II) 

dyes adsorbed to TiO2, electron injection happens on a time scale of 10-12 – 10-13 s while 

excited state lifetimes of such dyes are in the range of 10-8 s.82 As a result, ηinj is gener-

ally high in standard DSCs.82 For some other systems, however, it has been suggested 

that electron injection is slow enough for excited state decay and injection to compete.83 

Following injection, electrons are transported through the semiconductor and ideally 

extracted at the back contact, (3a). In a real DSC, transport and extraction compete with 

recombination of electrons with the oxidized dye or with oxidized species in the electro-

lyte, (3b/c). Because of shielding effects, a space charge cannot build up in the semi-

conductor and, hence, electron transport through the mesoporous structure occurs pri-

marily by diffusion. This part of the cell operation is influenced by the presence of band 

gap states84 and will be discussed in detail in section 1.2.2. As a result of the influence 

of the traps, the diffusion coefficient of electrons in DSC photoelectrodes as measured 

by time- or frequency-modulated measurement techniques is orders of magnitude small-

er than in bulk semiconductors84 and is generally referred to as the effective (i.e., trap-

influenced) diffusion coefficient Dn.
84, 85 Because of the fact that the occupation of trap 

states depends on the quasi-Fermi level, Dn and thus the time needed for electrons to 

diffuse to the back contact vary strongly with Efn.
84, 86  

Under AM1.5GII illumination and short-circuit conditions (zero voltage), efficient cells 

show a Dn of the order 10-5 cm2s-1,87, 88 and the time scale of electron diffusion through 

the porous film is ~10-3 s.89 The recombination reactions (3b) and (3c) can either occur 

directly from the conduction band of the semiconductor or via surface trap states.90 

Electrons may also recombine between substrate (e.g., FTO) and electrolyte. This reac-

tion is not shown in the Figure, because it is efficiently suppressed by deposition of a 

                                                 

II AM 1.5G (air mass 1.5 global) conditions correspond to illumination by the sun shining through the 

atmosphere to sea level, with oxygen and nitrogen absorption, at an oblique angle 48.2° from the zenith 

(J. Nelson, The physics of solar cells, 2005). 
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compact metal oxide blocking layer on the substrate in most cells.91, 92 A parameter 

commonly used to characterize the time scale of recombination is the effective (trap-

influenced) electron lifetime τn obtained by time- or frequency-modulated characteriza-

tion methods,84, 90 which will be addressed in depth together with further aspects of re-

combination in chapter 1.2.3. Like Dn, the effective electron lifetime shows a strong 

dependence on the quasi-Fermi level in the semiconductor.84 For an efficient cell under 

open-circuit conditions and AM1.5G illumination, it is of the order 10-2 s.87 In most 

cases τn reflects the time scale of recombination with the electrolyte, because under 

standard operating conditions recombination with the oxidized dye is often negligible 

(see below).93 However, if the dye is not regenerated quickly enough, τn may reflect the 

combined effect of the two different recombination paths.94, 95 In studies specifically 

investigating recombination with oxidized dye molecules in the absence of a redox cou-

ple it was found that this reaction takes place on a time scale of ~10-4 s.96  

The experimental parameters Dn and τn can be used to calculate the diffusion length86, 97  

nnn DL                                                                                                                    (2) 

which is a measure of the efficiency of extraction of charges at the back contact, i.e., of 

the charge collection efficiency ηcc.
98, 99 Calculations have shown that in a standard 

TiO2-based DSC the charge collection efficiency approaches 100% if the diffusion 

length is three times the film thickness.87  

As indicated above, in a well-functioning cell recombination between semiconductor 

and oxidized dye is intercepted by regeneration of the latter by I- ions in the electrolyte, 

(4).  

It has been proposed both for Ru(II) sensitizers100 as well as for organic dyes101 that dye 

regeneration occurs in several reaction steps involving intermediate formation of dye-

iodide complexes such as (dye···I2
-•). After dissociation of the complex, I2

-• dispropor-

tionates into I- and I3
-. The quantum efficiency of process (4) is the dye regeneration 

efficiency defined as ηreg = kreg/(kreg+krec,dye), where kreg and krec,dye are the rate constants 

of dye regeneration and recombination with the oxidized dye, respectively. Regenera-

tion kinetics is dependent on the energetic structure of the sensitizer as well as on the 

composition of the electrolyte.100, 102 In order to ensure efficient regeneration, the ther-

modynamic driving force, i.e. the energetic difference between Eredox and E0(S+/S) of the 



Basic Concepts 23 

 

 

dye, should be around 0.5 – 0.6 eV.38, 100, 103 In TiO2-based cells with liquid I-/I3
- electro-

lytes and with different metal-organic and organic dyes, regeneration was found to hap-

pen on a time scale of 10-5 s or shorter,100, 104, 105 which is fast enough to prevent unde-

sired recombination between semiconductor and oxidized dye. Nevertheless, for DSCs 

based on some materials combinations it was reported that their performance appeared 

to be limited by dye regeneration.106, 107   

1.2 Theoretical Description of Processes Relevant for the 

Operation of DSCs 

1.2.1 The Continuity Equation 

The theoretical description of electron transport and recombination in the nanostruc-

tured photoelectrode of a DSC commonly uses a continuity equation for electrons as a 

starting point. This type of conservation equation describes the time-dependent change 

of the electron density n resulting from carrier generation, local changes in electron 

flux, and recombination. The continuity equation for electrons in conduction band 

states, nc, is
108, 109   
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where x is the position along an axis perpendicular to the substrate, t is the time, Gn is 

volume rate of electron generation, q is the electron charge, J is the current density, and 

Un is the volume rate of recombination.  

The electron generation rate is controlled by light absorption by the dye molecules and 

by the electron injection efficiency ηinj (section 1.1.2). Typically, a homogenous distri-

bution of the dye within the porous semiconductor film is assumed and the spatial varia-

tion of the photon flux within the film is described by the Beer-Lambert law (cf. eq. (24) 

in chapter 1.4.1). Gn can then be written as:94 

xλαabseλαηG
)(

absinjn )(


                                                                                              (4) 

where ϕ is the incident photon flux density and αabs() is the absorption coefficient.  

As for the electric current J, it can generally be driven by electric fields (drift current) or 

by electron density gradients (diffusion current). In dye-sensitized nanostructured semi-
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conductors in contact with redox electrolytes, electric fields are generally negligible97, 

110 (see details in the following section) and J is described by Fick’s law of diffusion:88  
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where D0 is the diffusion coefficient of electrons in the conduction band assuming that 

transport is not affected by the presence of trap states in the band gap. A discussion of 

the influence of traps on the electron diffusion coefficient will follow in section 1.2.2. 

Assuming that recombination with the oxidized dye is negligible (cf. chapter 1.1.2), that 

the concentration of acceptor species in the electrolyte (mainly I3
-) is much larger than 

nc and can be treated as a constant, that recombination is first order with respect to ac-

ceptor species as well as electrons in the semiconductor, and that it does not occur di-

rectly from surface trap states, the rate of recombination Un can be formulated as: 

0

)(
)(



xn
xnkU c

crn                                                                                                  (6) 

Here, kr is the rate constant of recombination (containing the concentration of acceptor 

species)94 and τ0 is the lifetime of conduction band electrons.90    

By inserting equations (4), (5), and (6) into the continuity equation, one obtains:87   
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Eq. (7) or similar expressions (in particular, with modified terms for Un) are used as a 

basis to derive solutions for the electron density profile n(x,t) for various different situa-

tions with respect to illumination and bias voltage in the DSC. This way, theoretical 

models are developed to describe and evaluate experimental data from different meas-

urement methods. Two basic cases can be distinguished: the time-independent case 

(steady state), in which 0
),(






t

txnc
, and the time-dependent case 0

),(






t

txnc
. The 

steady-state continuity equation is relevant for current-voltage characteristics and quan-

tum efficiency measurements (chapters 1.4.2 and 1.4.3), while the time-dependent form 

must be used for descriptions of time- and frequency-dependent measurements such as 

transient photocurrent and photovoltage measurements, impedance spectroscopy, and 

intensity-modulated photocurrent and photovoltage spectroscopy (sections 1.4.4 to 

1.4.7).    
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At this point, it is useful to consider two specific solutions of the time-independent form 

of eq. (7) to illustrate the basic difference between the situation in which no current 

flows through the cell (open circuit) and the situation in which the maximum current 

flows (short circuit). The nc(x) obtained for these cases for illumination from the sub-

strate side are presented graphically in Figure 4 together with the corresponding quasi-

Fermi level profiles Efn(x) obtained via eq. (1).87, 111, 112  

    

Figure 4: Calculated profiles of the electron concentration n (solid lines) and the quasi-

Fermi level with respect to the redox level of the electrolyte nEF-EF,redox (dashed lines) in 

a porous dye-sensitized semiconductor under illumination. Adapted from ref. 111. x is the 

location along the axis perpendicular to the substrate, with x = 0 corresponding to the 

substrate/semiconductor interface. Parameters used for the calculations were: I0 = 1017 

cm-2s-1, Nc = 1021 cm-3, D0 = 0.4 cm2s-1, and 0 = 0.001 s.  

nc(x) and Efn(x) under open-circuit conditions are constant over the whole thickness of 

the porous semiconductor film. Under short-circuit conditions, on the other hand, the 

electron density and the quasi-Fermi level show a gradient with a steep decrease to-

wards the substrate/semiconductor interface (x = 0 µm), which constitutes the driving 

force for the diffusion of electrons to the back contact. Note that the quantities Efn and 

the corresponding voltage Vf = Efn/q (see chapter 1.4.2) in the present work generally 

refer to the value at x = 0 µm and that whenever a current flows the quasi-Fermi level at 

the semiconductor/electrolyte interface (x = d) will be higher than that given value at x 

= 0 µm.    

Eq. (7) is a useful approximation, but it does not account for the presence of a large 

density of trap states in the band gap, a characteristic property of dye-sensitized 

short circuit open circuit 
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nanostructured electrodes.87, 113, 114 In fact, charge extraction measurements have con-

firmed that under most experimental conditions the density of electrons in traps greatly 

exceeds the density of conduction band electrons.87, 113, 115 The effect of trapping on 

charge transport and recombination is most commonly described by the multiple trap-

ping (MT) model.85, 116, 117 According to this model, electrons moving through the semi-

conductor via conduction band states will be captured by trap states and subsequently 

detrapped again by thermal activation many times on their way to the back contact. The 

probability of trapping and detrapping and, hence, the diffusion coefficient of the elec-

trons, depend on the position of the quasi-Fermi level. Recombination will be affected 

as well, which can be explained by the fact that the balance between the density of 

trapped electrons and the density of conduction band electrons will shift towards the 

latter if the Fermi level is raised, thus increasing the density of charge carriers available 

for recombination.85, 87, 111 The MT model is supported by a vast amount of experi-

mental data on transport and recombination in DSCs (see following two chapters).86, 114, 

116, 118, 119 With respect to the theoretical description using a continuity equation, a 

common approach to treat trapping and detrapping is to set up a continuity equation for 

conduction band electrons and add a term describing the effect of traps on the conduc-

tion band electron density:120 
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From eq. (8) it is apparent that, in the case of linear recombination with respect to the 

electron density, trapping will not affect the steady-state response of the solar cell, be-

cause the trapping term is dropped in this time-independent case. This implies that 

steady-state characteristics such as current-voltage curves and quantum efficiency spec-

tra should not be influenced by trapping.85, 94, 97, 109, 112 However, certain solar cell prop-

erties that help understand variations in the global device parameters, such as the elec-

tron lifetime, are only accessible experimentally via time- or frequency-dependent char-

acterization,85, 87, 90, 121 so that an understanding of the trap-influenced non-steady-state 

case is, nevertheless, crucial. Furthermore, DSCs commonly show non-linear recombi-

nation kinetics, which has been discussed as being caused by the presence of trap states 

at the surface of the porous semiconductor.90, 94, 111 For non-linear recombination, the 

formal treatment (see chapter 1.2.3) results in a variation of the electron diffusion length 
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with the quasi-Fermi level,94 which leads to a (surface trap-induced) non-ideality of the 

steady-state device characteristics and of their dependence on the light intensity.94, 111   

1.2.2 Electron Transport in the Nanostructured Semiconductor 

Electron transport in the mesoporous semiconductor of a DSC is strongly affected by 

the intimate intermixing of semiconductor, electrolyte, and dye on the nanometer scale. 

The positive ionic charges in the electrolyte as well as the dye cations screen the elec-

tron charge. In combination with the small size of the TiO2 particles (or wires) and their 

typically low intrinsic doping density, the effect of this is that no significant band bend-

ing and hence no built-in electric field forms.97, 122 Therefore, transport in standard DSC 

anodes based on nanoparticulate TiO2 is primarily driven by the electron concentration 

gradient, i.e., it occurs by diffusion (eq. (5)). It has to be kept in mind, though, that this 

might not always be the case for certain electrode materials and/or geometries, because 

band bending according to the Poisson equation is influenced by the above-mentioned 

particle size and doping density, as well as by the dielectric constant.63 For example, 

Oekermann et al. investigated electron transport in electrodeposited, porous ZnO films 

sensitized with the dye eosin Y and their results indicated that field-driven electron 

transport indeed played a role in a less porous part of the film closest to the substrate.123 

As a result of the electrostatic interaction between electrons in the semiconductor and 

positive ions in the electrolyte, electron transport is influenced by the type of cation 

used.124 In several works, transport has therefore been described in the framework of 

ambipolar diffusion, in which electrons and electrolyte cations move jointly at the same 

velocity, the slower species being accelerated and the faster one being slowed down.110, 

125 However, this model is merely a first-order approximation of the real situation at the 

semiconductor/dye/electrolyte interface in a DSC, as it neglects the presence of various 

other charged species that contribute to local charge neutrality, such as the oxidized 

dye.126  

Since charge transport through the nanostructured semiconductor is also affected by the 

presence of trap states in the band gap, many groups have investigated the energetic 

distributions of these traps, not only by photoelectron spectroscopy,70 but also by charge 

extraction measurements,113, 127 impedance spectroscopy,114, 128 cyclic voltammetry and 

spectroelectrochemistry.129 In most cases, an exponential density of states distribution 
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gt(E) with increasing density towards the conduction band edge Ec was found:87, 113, 114, 

127, 128  
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where α is the so-called trap distribution parameter, and Nt is the total trap density. Us-

ing the zero-Kelvin approximation of the Fermi-Dirac distribution,63 the following ex-

pression for the density of trapped electrons nt as function of the quasi-Fermi level is 

obtained: 
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Nevertheless, deep-level traps with a narrow energy distribution (sometimes called 

“mono-energetic traps”) or a combination of exponential and “mono-energetic” traps 

have also been observed.90, 129-131 There is still some uncertainty as to the nature and 

exact location of the traps. It is not clear, for example, what share of traps is located at 

the surface of the semiconductor and what share is located in the bulk. As for the possi-

ble origins of band gap states in TiO2, it has been suggested that undercoordinated tita-

nium surface atoms play a major role.69 On the other hand, some authors have proposed 

that trapping may be of Coulombic nature, i.e., due to local field effects between elec-

trons and cations in the electrolyte.132 The traps that are being discussed for the alterna-

tive photoelectrode material ZnO will be addressed in chapters 1.3.1 and 1.3.2. 

An important consequence of multiple trapping observed in numerous experimental 

studies is that the diffusion coefficient measured by small-perturbation characterization 

methods depends on the electron density, i.e., on the position of the quasi-Fermi level 

Efn (also see chapters 1.4.5 and 1.4.6).87, 118 An expression for this trapping-influenced 

diffusion coefficient is obtained by applying the quasi-static approximation85 to the con-

tinuity equation with trapping term, eq. (8). In the quasi-static approximation, trapping 

and detrapping are assumed to be fast relative to other processes in the cell, so that the 

concentration of trapped electrons is in a quasi-equilibrium with the concentration of 

conduction band electrons or, in other words, changes in nt can be described being di-

rectly linked to changes in nc:
85 
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With the help of this approximation, eq. (8) can be simplified to a treatment of free car-

riers including a modified diffusion coefficient (and electron lifetime, see 1.2.3) result-

ing from trapping (cf. Supporting Information of ref. 109):87 
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Here, Dn is the effective electron diffusion coefficient, which is related to the diffusion 

coefficient of conduction band electrons (without influence of trapping) via a trapping 

factor85  
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To determine the dependence of Dn on the quasi-Fermi level in this model, the trapping 

factor can be rewritten as111, 128 
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and inserted into eq. (13) to result in 
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For an exponential distribution of traps, Dn is thus expected to vary exponentially with 

the quasi-Fermi level.  

1.2.3 Recombination 

Recombination reactions have a crucial effect on the performance of solar cells. The net 

output current density of a cell is determined by the sum of photogenerated current den-

sity and recombination current density, which flow in opposite directions. Recombina-

tion reduces the output current over the whole range of bias voltages, and at zero net 

current the balance between photogeneration of electrons and recombination determines 

the open-circuit voltage Voc (cf. chapters 1.1.2 and 1.4.2). A central goal in DSC re-

search is to investigate the origins and mechanisms of recombination characteristic of 

specific cell structures and to develop customized methods to suppress undesired losses. 

As briefly introduced in section 1.1.2, recombination in dye-sensitized solar cells can 
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occur between semiconductor and oxidized dye or electrolyte, or at contact points be-

tween substrate and electrolyte. Recombination via the substrate, albeit critical for de-

vice performance, is omitted in most quantitative models because it is effectively pre-

vented by coating the substrate by a compact layer blocking electron transfer to the elec-

trolyte but allowing for extraction of electrons at the back contact.91, 92 Such layers are 

routinely prepared for instance by spray pyrolysis,92 sputter deposition,133 or electrodep-

osition.134-138 Furthermore, in many cases recombination with the dye is also negligible 

and, thus, omitted in model descriptions.86, 87, 97 In this section, recombination will be 

treated as a process occurring solely between semiconductor and electrolyte first, before 

the effects of dyes on recombination will be addressed.   

According to general chemical kinetics, the rate of recombination can be written as the 

product of a rate constant and the concentrations of reactants, each accompanied by an 

exponent expressing the order of the reaction with respect to the particular reactant. In 

DSCs with iodide/triiodide electrolytes, both I3
- as well as I2 have been discussed as 

electron-accepting species involved in recombination with the electrolyte.95, 139 It has 

been found that the recombination reaction is approximately first order with respect to 

either I3
- or I2.

139, 140 Concerning the reaction order with respect to the conduction band 

electron density nc in the porous semiconductor, a first-order model was introduced as a 

first approach in eq. (6). However, real DSCs usually show sub-linear recombination 

kinetics (reaction order < 1) with respect to nc.
86, 109, 141 Under the same assumptions 

(except for first-order kinetics with respect to nc) made in connection with eq. (6), a 

useful way to express the rate of recombination is then90, 94, 142  


crceln nknIkU 


][ 3                                                                                              (16) 

where kr is the rate constant containing the concentration of acceptor species in the elec-

trolyte and 0 < β ≤ 1 is the reaction order with respect to nc, also known as the recombi-

nation parameter. The experimental observation of β < 1 has been suggested to be the 

result of recombination mediated via surface traps (capture of conduction band electrons 

by surface trap states, followed by transfer to the electrolyte) in addition to directly from 

the conduction band.90, 111 

At a given energy E, the rate constant of recombination between donor states in the 

semiconductor and acceptor states in the electrolyte can be described following non-
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adiabatic electron transfer theory, which is based on the work of Marcus and of Ger-

ischer:71, 96, 143 
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Here, 
2

ABH is the value of the absolute square of the perturbation matrix element aver-

aged over the final states (with HAB as the perturbation or coupling),71 λ is the reorgani-

zation energy (cf. section 1.1.2), and ΔG0 = Efn - Eredox is the free energy change, which 

depends on the quasi-Fermi level in the semiconductor and influences the activation 

energy 
 

λ

Gλ
G

4
*

20
 of the electron transfer reaction. 

2

ABH , often simply re-

ferred to as the electronic coupling, exponentially depends on the distance between sem-

iconductor and acceptor.96, 144 Because recombination can take place from a range of 

energy levels in the semiconductor (conduction band or surface trap states) to a range of 

energy levels in the electrolyte, the overall recombination rate depends on the integral of 

eq. (17) over all possible energy levels, i.e., on the overlap of occupied states in the 

semiconductor with unoccupied states in the electrolyte.96 

The presence of dye molecules in the interface between semiconductor and electrolyte 

can have a number of effects on recombination. First of all, as indicated above, elec-

trons in the semiconductor may recombine with oxidized dye molecules if regeneration 

by the electrolyte is too slow. In this case, the rate constant kr and other recombination 

parameters such as the effective electron lifetime τn may be interpreted as reflecting a 

combined effect of recombination with dye and electrolyte. Dye molecules as well as 

other non-sensitizing adsorbates (e.g., coadsorbates used to prevent aggregation) can 

also influence the rate of charge transfer between semiconductor and electrolyte.145-149 

In many cases, increasing the amount of dye was found to block recombination, most 

likely by forming a physical barrier between semiconductor and electrolyte and thereby 

decreasing the electronic coupling in eq. (17).148, 150 Some types of dyes, however, pro-

mote recombination rather than to block it, probably by offering a binding site for I2 or 

I3
- close to the semiconductor surface.145, 148, 151 Besides influencing the distance be-

tween semiconductor and electrolyte acceptor species, adsorption of dyes and co-

adsorbates can affect recombination by shifting the position of the semiconductor ener-

gy levels through a change of the surface charge or as a result of their dipolar field, thus 
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affecting the overlap of donor and acceptor states participating in recombination.67, 128, 

152  

Like electron transport in the DSC, recombination is affected by the presence of band 

gap states and the measured electron lifetime corresponds to the Efn-dependent effective 

lifetime τn rather than to the constant lifetime of electrons in the conduction band, τ0. In 

the quasi-static approximation of the multiple trapping model (cf. previous section),85  
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As described further above, this result is derived from a continuity equation assuming 

that recombination is first order with respect to n, with kr = τ0
-1. For the more realistic 

case of sub-linear recombination, the influence of trapping can still be described by eq. 

(18) as long as the lifetime characteristic for direct recombination of conduction band 

electrons, τ0, is replaced by a lifetime reflecting both direct recombination as well as 

surface state-mediated electron transfer, often termed τf.
90 Substituting the trapping fac-

tor in eq. (18) by eq. (14) delivers the relationship between the effective electron life-

time and the quasi-Fermi level:  
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This shows that the Fermi level-dependence of τn should be determined by the trap dis-

tribution parameter α, assuming an exponential distribution of trap states and neglecting 

recombination via surface states. If surface state-mediated recombination is considered 

(replacement of τ0 by τf), the slope of the lifetime vs. Efn in a semilogarithmic plot is 

expected to be (α-β)/kT instead of (α-1)/kT due to the dependence of τf on the energetic 

distribution of surface states.90, 109, 141 This prediction was confirmed in several experi-

mental studies.90, 141 

In section 1.1.2, the diffusion length nnn DL  (eq. (2)) was introduced as an im-

portant measure for the charge collection efficiency in a DSC. Having deduced expres-

sions linking Dn and τn to the corresponding “free” (not trap-influenced) parameters in 

the quasi-static approximation, eq. (13) and eq. (18), said equations can now be com-

bined to yield:115  

000 LDDL nnn                       (20) 
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L0 is often referred to as the steady-state diffusion length. This result shows that in the 

quasi-static approximation of the MT model and under the assumption of first-order 

recombination, the trapping factors in Dn and τn are predicted to cancel and the diffusion 

length Ln is expected to be a constant, i.e., independent of the quasi-Fermi level. How-

ever, in real DSCs the diffusion length calculated from the measured Dn and τn usually 

shows a slight dependence on Efn.
86, 141 This is likely caused by recombination via sur-

face states, which, as explained above, is expected to lead to different energy-

dependences for Dn and τn. Recombination in dye-sensitized solar cells will be further 

discussed in conjunction with the recombination resistance determined by electrochemi-

cal impedance spectroscopy (chapter 1.4.4).  

1.3 Selected Materials 

1.3.1 ZnO as Photoelectrode Material in DSCs 

ZnO is a semiconducting material with intrinsic n-type conductivity and is used for a 

wide range of technological applications, such as transparent conductive films, piezoe-

lectric devices, and varistors.153, 154 Its most stable form under ambient conditions is 

wurtzite, which shows a hexagonal crystal structure.63, 154 The rich defect chemistry of 

bulk ZnO has been investigated in much detail over the past decades.154 The most fre-

quently discussed shallow donors in intrinsic bulk ZnO are oxygen vacancies and zinc 

interstitials.155 More recently, it has been suggested that the n-type conductivity of na-

tive ZnO is related to unintentional incorporation of impurities, most likely hydrogen, 

acting as donors.156 Intrinsic ZnO has a direct band gap of 3.37 eV at room tempera-

ture,154 similar to the band gap of anatase-type TiO2 (3.28 eV),157 the standard anode 

material in DSCs.19 Compared to the latter, however, ZnO shows a higher bulk electron 

mobility (around 200 cm2 V-1 s-1 vs. about 10 cm2 V-1 s-1 in TiO2).
157, 158 Furthermore, 

ZnO can be deposited in a variety of different nanostructures suitable for dye-sensitized 

solar cells even at low temperatures.21 Preparation methods include doctor blading, 

screen printing or dip-coating using dispersions of ZnO nanoparticles (typically synthe-

sized by sol-gel processing),159-161 chemical bath deposition,162 anodic etching,163 and 

electrochemical deposition.26 As a result of the above-mentioned advantages, ZnO has 

been widely investigated as alternative anode material in DSCs.25, 43, 141, 160, 164, 165 Rela-
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tively efficient cells could be obtained when ZnO was combined with selected Ru sensi-

tizers or indoline dyes and liquid I-/I3
- electrolytes.25, 160, 165, 166 However, to date the best 

conversion efficiency attained with ZnO-based DSCs of η = 7.5%165 is significantly 

lower than the top efficiencies achieved with TiO2 (cf. chapter 1.1.1). Multiple aspects 

have been discussed as possible factors limiting the efficiency. First, it was found that 

the use of standard Ru(II) dyes that are efficient in combination with TiO2 is complicat-

ed by the fact that their high acidity and the presence of their complex-forming ligands 

lead to undesired reactions with ZnO,167, 168 which is less stable in acidic environments 

than TiO2.
169 The adsorption conditions and sensitization time have to be carefully op-

timized to avoid the formation of Zn2+-dye complexes and deterioration of the ZnO sur-

face.160, 167 Dyes that do not show undesired chemical interaction with ZnO include the 

indoline dyes used in the present work (cf. following chapter).170 The weaker interaction 

between ZnO and such dyes, however, can lead to insufficient stability of the ZnO-dye 

bond in certain electrolytes, including solutions containing efficiency-enhancing addi-

tives like 4-tert-butylpyridine.170, 171 Another factor believed to contribute to the yet 

limited efficiency of ZnO-based DSCs is hindered electron injection as a result of inter-

facial intermediate states in the excitation/injection process, which has been reported for 

several different dyes on the basis of ultrafast spectroscopy.172-174 This phenomenon 

may enhance recombination between oxidized dye molecules and electrons in ZnO, thus 

hindering diffusion of the latter through the nanostructure to the back contact.174 In or-

der to make use of the advantageous properties of ZnO as electrode material while min-

imizing losses due to undesired dye-Zn2+ interactions or hindered electron injection, 

new dyes and/or dye combinations must be investigated as sensitizers, and the under-

standing of different microscopic processes in ZnO-based DSCs must be deepened. The 

present work contributes to both of these challenges while focusing on electrodeposited 

ZnO as electrode material, which offers the benefits of a simple, low-cost and low-

temperature preparation and will be addressed in detail in the following chapter.  

1.3.2 Electrodeposited Compact and Porous ZnO 

Electrochemical deposition from aqueous solutions represents an attractive way to pre-

pare ZnO films at low temperatures. This method allows both the preparation of com-

pact as well as porous structures for dye-sensitized solar cells. The compact ZnO films 

serve as blocking layers preventing recombination between the conductive glass sub-
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strate and the electrolyte (cf. 1.1.2),136, 138 while the porous films are used to prepare 

photosensitized electrodes.25, 26 Electrodeposition of crystalline ZnO films at tempera-

tures between 25°C and 80°C was first described by Peulon et al.135 and Izaki et al.,175 

who used aqueous electrolytes containing Zn2+ together with dissolved oxygen135 or 

nitrate175 as oxidant. In a later study, deposition based on an electrolyte with hydrogen 

peroxide (H2O2) instead of nitrate or oxygen was reported.176 Film formation is 

achieved by applying a cathodic potential to the working electrode (i.e., the substrate), 

which leads to reduction of the oxidant NO3
-, O2 or H2O2. The concomitant local in-

crease in pH causes precipitation of ZnO (via zinc hydrate as intermediate) on the sur-

face of the substrate. In the case of oxygen-based deposition, the reaction steps are:25, 177 

O2 + 2H2O + 4e-  4OH-                                                                                         (21) 

Zn2+ + 2OH-  “Zn(OH)2“  ZnO + H2O                     (22) 

The complete reaction can thus be written as:25, 135, 177 

Zn2+ + ½O2 + 2e-  ZnO                                                                                              (23) 

Figure 5 shows the morphology of ZnO films deposited by this method on FTO/glass at 

80°C, using a working electrode potential of -0.85 V vs. the Ag/AgCl reference elec-

trode. The left structure is the result of film deposition without substrate pretreatment, 

while the one on the right was attained following cathodic pre-electrolysis in the ab-

sence of the zinc precursor.135 The electrochemical pretreatment activates the FTO sub-

strate and promotes nucleation during the subsequent film deposition, leading to dense 

ZnO films as opposed to the otherwise obtained open-structured layers. When per-

formed in combination with electrochemical activation of the substrate, electrodeposi-

tion of ZnO from O2-based deposition baths thus yields films that fully cover the sub-

strate, as desired for blocking layers. 
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Figure 5: Scanning electron microscope (SEM) images of surfaces of ZnO films elec-

trodeposited from aqueous oxygen-saturated solutions of 5 mM ZnCl2 and 0.1 M KCl at 

80°C using a deposition potential of -0.85 V vs. Ag/AgCl, without (left) or with (right) 

electrochemical activation of the FTO substrate prior to deposition. From ref. 135.   

In terms of crystallographic texture, a strong preferential orientation with the [002] di-

rection (c-axis) perpendicular to the substrate was detected.135 Depending on the deposi-

tion parameters, the optical band gap of as-deposited films was found to be 3.45 – 3.6 

eV,135 which is slightly higher than the band gap of intrinsic ZnO (3.37 eV, see previous 

section). It has been suggested that this is due to high (≥ 1020 cm-3) doping levels lead-

ing to a shift of the Fermi level into the conduction band (Burstein-Moss effect).135, 178 

Oxygen vacancies, interstitial Zn, and chloride ions on oxygen sites have been discussed 

as possible bulk defects in the electrodeposited material.135, 179, 180 On the surface, -OH 

and -Cl groups were detected.180, 181 This deposition technique can be easily modified to 

yield nanostructured films with highly attractive properties as photoelectrodes in DSCs 

(Figure 6). When certain structure-directing agents (SDA) such as coumarin 343,182, 183 

tetrasulfonated metallophthalocyanines,184 or eosin Y26 are added to the deposition bath, 

they bind to the ZnO surface and are incorporated into the growing film, thereby con-

trolling its structure. Following deposition, these template molecules can be removed to 

yield the pure ZnO matrix. Depending on the type of SDA, various film textures and 

morphologies can be obtained, as reviewed in ref. 25. ZnO deposition from oxygen-

based deposition baths in the presence of eosin Y results in the most interesting struc-

tures with respect to application in DSCs.25   
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Figure 6: SEM images of a nanoporous ZnO film on FTO/glass, electrodeposited from 

an aqueous solution containing 5 mM ZnCl2, 0.1 M KCl and 45 µM of the structure-

directing agent eosin Y. The temperature of the deposition bath was 70°C and the depo-

sition potential was -0.96 V vs. Ag/AgCl. Images were taken after removal of eosin Y. 

From ref. 25.   

If the deposition is carried out at potentials more cathodic than -0.85 V vs. Ag/AgCl, 

eosin Y is reduced and forms complexes with Zn2+, which are precipitated in parallel to 

pure ZnO.25, 26 Further deposition is blocked in places where ZnO/eosin Y complexes 

are located, guiding the film growth into other directions and eventually resulting in a 

hybrid ZnO/eosin Y layer consisting of a porous ZnO matrix with the SDA molecules 

occupying the pores.25, 26, 185 Eosin Y can be easily and completely removed from such 

films by treatment in soft alkaline solution.26, 183 An example of a ZnO layer obtained 

this way is shown in Figure 6. The films consist of micrometer-sized crystals showing a 

columnar internal nanostructure reminiscent of a sponge, with a pore size in the range of 

10 – 20 nm.27, 186 The total porosity is about 50-60%26, 136, 185, 187 and the roughness fac-
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tor (internal surface area per projected film area) was determined to be up to 400.25, 186 

The band gap energy after removing eosin Y and drying the films at 150°C was estimat-

ed to be ~ 3.4 eV.186 The µm-sized crystals were found to be highly crystalline and 

show a high level of preferential orientation with the c-axis widely parallel to the sur-

face normal,26 which is beneficial for charge transport through the film.28 In fact, inten-

sity-modulated photocurrent spectroscopy28 and electrochemical impedance spectrosco-

py136 indicated that diffusion was faster in porous electrodeposited ZnO compared to 

nanoparticulate ZnO films even though the latter had been post-treated at 450°C to en-

sure sufficient particle necking, while the electrodeposited films were either used as-

deposited or dried at a moderate temperature of 150°C. Effective diffusion coefficients 

were found to be in the same range (~10-5 cm2s-1)28 as for sintered nanoparticulate TiO2 

electrodes.87, 88 In spite of these promising results on transport, the top power conversion 

efficiency achieved with porous electrodeposited ZnO has so far remained at a compara-

tively low level of 5.6%,25 which was attained by sensitization with the indoline dye 

D149. This suggests that other aspects of the cell operation, such as recombination and 

charge injection from the dye to the semiconductor have to be examined more closely to 

gain a better understanding of the cells and reveal possible strategies for improvement. 

Regarding recombination, electrochemical impedance spectroscopy measurements by 

Pauporté et al.136, 186 yielded smaller effective electron lifetimes in electrodeposited in-

doline dye-sensitized ZnO films compared to sintered nanoparticulate ZnO films, which 

was explained by an increased density of surface trap states as indicated by photolumi-

nescence measurements.136 In order to clarify the origins of the still limited efficiency of 

these ZnO films with highly attractive nanostructure, further work in this area was nec-

essary and is pursued in the present work.   

1.3.3 Screen Printing of Porous Metal Oxide Films 

Screen printing is a simple and versatile method to prepare two-dimensionally patterned 

films for many different areas of application. It is widely used on an industrial scale, for 

instance in textile and paper printing188 and, more recently, in the production of printed 

electronics such as sensors and antennas.189 On the laboratory scale, different types of 

solar cells, including polymer solar cells190 and dye-sensitized solar cells,161, 191-194 have 

been fabricated by screen printing.  
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For a successful preparation of nanostructured TiO2 or ZnO films for DSCs by screen 

printing, suitable nanoparticle pastes with low volatility and rather high viscosity have 

to be prepared.190, 191, 194, 195 One approach is to mix commercially available nanoparticle 

powders with solvents, often water and alcohols.191, 195 The paste is distributed on a 

screen consisting of a mesh stretched upon a frame, which is positioned closely above 

the substrate to be printed without touching it.190, 196 The mesh itself is impermeable for 

the paste but is patterned, i.e., it contains openings of desired shape and size, thus allow-

ing to coat defined areas of the substrate with the paste. A squeegee is forced into the 

screen to bring it into line contact with the substrate and is moved linearly across the 

screen.190, 196 Thereby, the nanoparticle paste is pushed through the open areas of the 

mesh onto the substrate, where it remains as the mesh moves back away from the sub-

strate.190, 196 The obtained film is dried at elevated temperatures to remove the solvents 

and, if necessary, the printing procedure is repeated until the desired film thickness is 

achieved.191 To improve necking of the metal oxide nanoparticles in the film, the film 

deposition is finalized by post-treatments such as high-temperature (up to 500°C) sinter-

ing191, 193, 195 or hydrothermal treatment.197 

1.3.4 Organic Dyes, Coadsorbates, and Co-Sensitizers 

Organic dyes have gained increasing interest as alternatives to Ru(II) photosensitizers 

for DSCs based on ZnO or TiO2. Metal-free molecules studied as DSC sensitizers in-

clude coumarins,50, 173, 198, 199 tetrahydroquinolines,200, 201 indolines,52, 202, 203 triaryla-

mines,204-206 merocyanines,207, 208 and squaraines.32, 209 The main advantages of such 

organic sensitizers are their high molar absorptivities (often ε > 40000 M-1cm-1 in the 

absorption maximum),32, 51, 199, 202, 204 often simple and cost-efficient synthesis routes,52 

and the possibility of easily modifying their molecular structure.32, 52, 200, 202, 210 Alt-

hough organic dyes show relatively narrow absorption bands compared to Ru(II) sensi-

tizers, this disadvantage can be approached by co-sensitization strategies (see below).211 

Most organic dyes exhibit a donor-acceptor or donor-π-bridge-acceptor structure: when 

electrons in the dye are excited by absorption of light, an intramolecular shift of electron 

density from the donor unit (through the π-bridge) into the acceptor occurs (push-pull 

character).15, 34, 80 The molecules are ideally designed so that the anchoring group with 

which they bind to the semiconductor is part of the acceptor.80 Hence, electron density 

is shifted towards the semiconductor upon excitation, enabling efficient electron injec-
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tion as a result of the shortened distance between electron-donating orbitals of the sensi-

tizer and electron-accepting states in the semiconductor. Among the organic dyes that 

have received the most scientific attention are indoline dyes (cf. Figure 7), which were 

first introduced as photosensitizers for DSCs in 2003 by Horiuchi et al.52 In combina-

tion with TiO2, promising efficiencies of up to 9.52% have been reported.203  

              

 

       

 

 

Figure 7: Molecular structures of the indoline dyes D149 (M = 741.94 g/mol)                                          

and D131 (M = 508.61 g/mol), of Zn(II) phthalocyanine mono- and di-sulfonic acid, 

and of the squaraine dye SQ2 (M = 630.81 g/mol). The Zn(II) phthalocyanine sample 

used for the experiments in this work was a mixture of the monosulfonic acid (S1PcZn, 

85%) and the disulfonic acid (S2PcZn, 15%), referred to as S1.15PcZn, with an average 

molecular weight of M = 670.01 g/mol.  

S1PcZn S2PcZn 

SQ2 

D149 

D131 
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On ZnO, the indoline dye D149 (Figure 7, top left) has been successful as well, yield-

ing η of up to 6.1%212 (compared to a top efficiency of ZnO DSCs of 7.5%).165 As men-

tioned above, D149 is the best sensitizer found so far for porous electrodeposited ZnO 

(η of up to 5.6%),25 the main photoanode material used in the present work (cf. previous 

chapter). The donor part of D149 is made up of its substituted indoline unit, while the 

double-rhodanine unit constitutes the acceptor.213 Theoretical investigations213 found 

that the HOMO is relatively delocalized over the donor unit, and the LUMO is located 

on the acceptor unit, i.e., D149 exhibits the favorable push-pull character. However, the 

calculations also indicated that the carboxylic acid anchoring group is decoupled from 

the rest of the molecule and shows no significant contributions to the LUMO, which can 

potentially hinder electron injection to a semiconductor.213 It is interesting to compare 

the characteristics of D149 to those of the indoline dye D131 (Figure 7, top right), 

which has been investigated as DSC dye in several previous studies31, 214-216 and has 

been used in the experiments of the present work as well (see below). D131 has the 

same substituted indoline donor unit, but features a cyanoacrylic acid acceptor unit (in-

stead of the two rhodanine rings in D149). For this molecule, sizeable contributions of 

the carboxylic acid anchoring group to the LUMO were calculated,213 indicating a close 

proximity of electron density in the excited molecule to conduction band states in the 

semiconductor. Moreover, the LUMO energy of D131 was found to be 0.3 eV higher 

than that of D149,213 which should increase the energetic overlap of the occupied states 

in the excited dye with empty conduction band states in the semiconductor (cf. Figure 3 

and corresponding text). Both of the above factors should contribute to an increased 

probability of electron injection to the semiconductor for D131 with respect to D149. 

However, the extent to which these calculated properties of the individual dye mole-

cules can be transferred to the situation in a real device strongly depends on the specific 

properties of the employed semiconductor electrode. On electrodeposited mesoporous 

ZnO, for instance, D149 delivered higher photocurrents compared to D131,216 while on 

TiO2 nanorods, the opposite result was obtained.217 

Many studies, in particular those focusing on DSCs with organic dyes, have reported the 

formation of dye aggregates on the surface of the porous semiconductor and have ob-

served limitations in the photovoltaic performance due to aggregate-related injection 

limitations and enhanced recombination.51, 80, 137, 202, 218, 219 An effective way to suppress 

aggregation and to thus significantly enhance the photovoltaic characteristics is to add 
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coadsorbates such as cholic acid (CA) or fatty acids like octanoic acid (OA) (Figure 8) 

to the dye adsorption solution.51, 80, 137, 202, 218, 219   

   

Figure 8: Structures of the coadsorbates cholic acid (left) and octanoic acid (right). 

By acting as spacers in between the sensitizer molecules, coadsorbates reduce the prob-

ability of radiationless decay and consequently increase the probability of electron in-

jection into the semiconductor.220 Besides affecting injection and, hence, the short-

circuit current, aggregation was also reported to deteriorate open-circuit voltage and fill 

factor by increasing recombination.137, 221 One of the aims of this work is to investigate 

the effects of dye aggregation on various microscopic DSC processes in more detail in 

order to add to the understanding of this aspect that often limits the efficiency.  

In order to achieve panchromatic absorption of DSCs based on organic main sensitizers, 

dyes with complementary absorption spectra can be added to the semiconductor surface 

as co-sensitizers.34, 222-227 As the typical organic DSC dyes mostly have their main ab-

sorption band located in the short- to mid-wavelength region of the visible spectrum 

(~450-600 nm),202, 228 many studies have focused on finding appropriate sensitizers ab-

sorbing at longer wavelengths to be used as co-sensitizers in combination with estab-

lished shorter-wavelength absorbers.34, 222, 225-227, 229, 230 For example, the Zn(II) 

phthalocyanine TT1, which shows high absorptivity in the spectral range around 700 

nm, was combined with the organic dye JK2 on TiO2 to yield efficiencies of about 

7.7%, which was clearly above the efficiencies of 3.5% and 7.1% observed for the two 

individual sensitizers.222 While metalated phthalocyanines such as TT1 do not represent 

fully organic molecules, the choice of earth-abundant central metals such as Zn still 

renders them compatible with the requirement for cheap and environmentally 

sustainable production methods of DSCs. Like TT1, the asymmetrical squaraine sensi-

tizer SQ1 has been used as an effective co-sensitizer with JK2 in ionic liquid electro-

lyte-based DSCs, resulting in η = 6.4%.226 A slightly modified version of the molecule, 

CA 

OA 
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SQ2 (Figure 7, bottom), which as an individual sensitizer delivered higher efficiencies 

compared to SQ1, was found to be well suited for combination with other dyes as 

well.33, 223, 225 Some studies have focused on extending the photoelectrode absorption in 

the shorter-wavelength range.31, 215 On porous electrodeposited ZnO, the indoline dye 

D131 (Figure 7, top right), which has its absorption maximum at around 420 nm, was 

combined with the indoline dye D149 to yield a broadened incident photon-to-electron 

conversion efficiency spectrum (section 1.4.3) and enhanced power conversion efficien-

cy.31 However, to date the absorption of dye-sensitized electrodeposited ZnO has not yet 

been successfully extended into the red part of the spectrum. The main absorption peak 

of D149 when adsorbed to TiO2 or ZnO is centered around 550 nm and extends no fur-

ther than to wavelengths of around 620-650 nm,25, 137, 202 leaving out a significant por-

tion of the spectral solar irradiance. Part of the goal of this work was therefore to extend 

the absorption in dye-sensitized electrodeposited ZnO into the red by using an appropri-

ate co-sensitizer for D149. Inspired by the approaches of the above-mentioned previous 

studies,33, 222, 223, 225, 230 either a mixture of Zn(II) phthalocyanine monosulfonic acid and 

disulfonic acid (Figure 7, middle) or the squaraine dye SQ2 were utilized for this pur-

pose.  

1.4 Characterization of Dye-Sensitized Solar Cells: 

Experimental Techniques and Their Theoretical 

Background  

1.4.1 Optical Analysis by UV/Vis Absorption Spectroscopy 

When a light-absorbing medium such as a dye solution or a dye-sensitized semiconduc-

tor film is illuminated by visible light, the light is partially reflected, partially absorbed, 

and partially transmitted.63 Moreover, light can be forward scattered, i.e., transmitted 

through the material at a deflected angle with respect to the straight path.231, 232 In this 

work, forward scattered photons will be treated as part of transmission, which is gener-

ally useful in optical analysis of photovoltaic materials as these photons leave the mate-

rial without having generated free charge carriers. Provided that the dye is homogene-

ously distributed and its concentration is not too high, the photon flux density ϕ (or light 
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intensity) after passing through a sample of thickness d is described by the Beer-

Lambert law:232  

dc  100                                                (24) 

where ϕ0 is the photon flux density (or light intensity) before passing the sample, ε is the 

wavelength-dependent molar absorptivity (formerly called molar extinction coefficient) 

of the absorbing species, and c is the concentration of the latter in the sample. ε depends 

on the dielectric environment of the light-absorbing species233, 234 and, hence, can differ 

between a dye in solution and the same dye when adsorbed to a semiconductor 

surface.235 The product εcd is called optical density or absorbance abs.232 An alternative 

way to write the Beer-Lambert law, using the absorption coefficient αabs of the absorb-

ing medium, is:232 

dαabse


 0                                                     (25) 

In a traditional UV/Vis absorption spectrometer, the sample is positioned between a 

combination of white light source and monochromator and a detector. The wavelength 

of light incident on the sample is varied and the photon flux density transmitted through 

the sample, ϕ, is detected for each wavelength.232 In some alternative spectrometer set-

ups, on the other hand, the sample is illuminated by white light, the transmitted white 

light is dispersed into a spectrum of wavelengths by a fixed grating, and the different 

wavelengths are detected by a photodiode array.236 The measured transmitted photon 

flux is related to the photon flux detected in a reference measurement performed in the 

same geometry but without the sample in the light path.237 The transmittance Ttrans of the 

sample (fraction of transmitted light) is given by the ratio of ϕ and the initial light inten-

sity ϕ0, the latter being equivalent to the intensity determined in the reference measure-

ment:237  
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0
trans

λ

λ
λT




                                      (26) 

Ttrans is then used to calculate the absorbance abs = εcd by means of eq. (24), or to de-

termine the light harvesting efficiency ηlh, which is equivalent to the absorptance (frac-

tion of absorbed light),231 based on the simple energy conservation relationship: 

ηlh = 1- Rrefl-Ttrans                                (27) 
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where Rrefl is the reflectance (fraction of reflected light). Reflection losses can be either 

directly estimated by measuring the transmittance of a sample that shows similar reflec-

tance as the specimen but does not absorb visible light, or they can be accounted for by 

placing such a sample into the light path in the reference measurement.237 In the case of 

dye-sensitized porous semiconductor electrodes, a porous semiconductor film of the 

same thickness and on the same type of substrate without dye is an appropriate choice 

for this purpose. For dye solutions, a cuvette filled with the solvent without dye consti-

tutes a suitable reference sample.237 

In basic transmission measurement arrangements consisting of light source, mono-

chromator (if required), sample, detector, as well as lenses and mirrors,237 forward scat-

tered light may remain undetected depending on the angle at which it leaves the sample. 

For strongly scattering materials, this results in a significant underestimation of the 

transmittance and corresponding overestimation of the light harvesting efficiency and 

absorbance.231 Using an integrating sphere to collect all transmitted and forward scat-

tered light (Figure 9) allows a more exact analysis of the absorption properties of such 

samples.238  

 

Figure 9: Scheme of a basic optical transmission measurement using an integrating 

sphere to collect transmitted and diffusely transmitted (forward scattered) light.  

As described above, the absorbance is proportional to the concentration of light-

absorbing species in the sample. This allows determination of the dye concentration c in 

solutions or dye-sensitized films from the absorbance in the peak of their absorption 

spectrum, abs(λmax), provided that the molar absorptivity ε(λmax) of the dye at the corre-
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sponding wavelength as well as the thickness of the absorbing film (or the cuvette size, 

in the case of solutions) are known. For dye-sensitized films, the absorption peak is of-

ten broadened and/or shifted with respect to the solution spectrum due to dye-

semiconductor interaction71, 234 and, in some cases, dye aggregation.52, 208, 239, 240 In this 

case, the integrated absorbance  


2

1

 int





dλabsabs                                                                                                              (28) 

(with λ1 and λ2 as the wavelengths at which the absorption begins and vanishes) may be 

used to estimate the dye concentration rather than abs(λmax). The rationale behind this 

will be discussed in more detail in chapter 5.1. An alternative way to estimate the 

amount of dye in a dye-sensitized film is to dissolve the dye molecules out of the sam-

ple using a defined volume of a solvent, and to measure the UV/Vis absorption spec-

trum of the resulting solution. In the (usually highly diluted) solution, the dye molecules 

are mostly present in their monomeric form and the dye concentration can be accurately 

determined using abs(λmax) and ε(λmax).  

1.4.2 Current-Voltage Characterization  

To obtain the current-voltage characteristics (often referred to as i-V or J-V curve) of a 

solar cell, a linear forward bias voltage sweep is applied between the working electrode 

(in DSCs, the dye-sensitized semiconductor electrode) and counter electrode, and the 

resulting current i or current density J is measured. This analysis is commonly done in 

the dark as well as under illumination. To investigate the cell properties under realistic 

operating conditions, the light intensity (spectrally integrated power density) is set to 

100 mWcm-2 and the spectrum of the illumination source is adjusted to AM1.5G condi-

tions.108, 112, 131 Figure 10 shows an example of current-voltage characteristics (dark and 

illuminated) of a solar cell, together with the voltage-dependent power density under 

illumination. 
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Figure 10: Current density-voltage curve of a solar cell in the dark (dotted blue line) 

and under illumination (solid blue line), as well as corresponding power density (solid 

orange line). The current density at V = 0 is the short-circuit current density Jsc, the 

voltage at J = 0 is the open-circuit photovoltage Voc. The maximum power density Pmax 

of the cell corresponds to the product of the photocurrent density and photovoltage at 

the maximum power point (mpp), Jmpp and Vmpp.   

The chart also contains several important photovoltaic parameters:108, 131 the short-

circuit photocurrent density Jsc = J(V = 0), the open-circuit photovoltage Voc = V(J = 

0), and the photocurrent density and photovoltage at the maximum power point, Jmpp 

and Vmpp. The product of Jmpp and Vmpp yields the maximum power density Pmax of the 

cell. The ratio of Pmax to the product of Jsc and Voc is defined as the fill factor FF:108, 131 

ocsc

max

ocsc

mppmpp

VJ

P

VJ

VJ
FF                            (29) 

Finally, the overall cell performance is described by the power conversion efficien-

cy η:108, 131 

in

max

P

P
                              (30) 

where Pin is the power density of the incident light (e.g. 100 mWcm-2). 

A formal expression of the J-V characteristics can be obtained by solving the continuity 

equation for the steady-state case accounting for non-linear recombination with respect 

to conduction band electrons by using the semi-empirical β-recombination model to 

describe the recombination rate (eq. (16), Un = krnc
β).109, 112, 128 This yields the following 
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diode-type equation, with the total current J described as the sum of positive photocur-

rent and negative recombination current Jrec:
128  
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where β is the previously introduced recombination parameter and Vf=(Efn-Eredox)/q is 

the Fermi-level voltage, i.e., the voltage corresponding to the energy difference between 

the electron quasi-Fermi level Efn in the semiconductor and the redox energy of the elec-

trolyte Eredox.
128 The factor J0 can be considered an exchange current density and con-

tains the dependence of the current on the position of the conduction band edge in the 

semiconductor, Ec, and on the rate constant kr:
128 
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where J0k describes the dependence of the current on the recombination rate constant kr 

independent of the conduction band edge, q is the electron charge, d is the porous semi-

conductor film thickness, and Nc is the effective density of states at the conduction band 

edge. Combining equations (31) and (32), an expression for J as a function of the four 

basic parameters Jsc, J0k, β and Ec is attained:   
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For the open-circuit case (J = 0), rearranging eq. (33) under the assumption that 













 

kT

qV f
exp  >> 1 yields the dependency of Voc on these four parameters:128  
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Eq. (34) shows that changes in the position of the conduction band edge directly corre-

spond to changes in Voc, while changes in Jsc and J0k affect the open-circuit voltage log-

arithmically. Equations (29) and (31) can be used to derive a formula for FF as a func-

tion of Vmpp, Voc and β.128 As the dependence of Vmpp on Voc and β can only be expressed 

as an implicit function,128 an explicit function FF(Voc,β) is not readily obtained. Howev-

er, the fill factor is well described by the approximation241 
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Current-voltage characteristics are not only measured under standard operating condi-

tions (white light, AM 1.5G conditions, 100 mWcm-2), but often additionally recorded 

for different light sources (e.g., LEDs) and/or a series of different light intensities.141, 160, 

242, 243 From an applications point of view, such measurements are relevant for solar cell 

operation under conditions such as solar irradiation through cloud-covered skies, or in-

door illumination. Hence, it is useful to examine the expected light-intensity depend-

ence of the parameters Jsc and Voc. The short-circuit photocurrent depends on the spec-

tral photon flux density ϕ(λ) of the source as well as the wavelength-dependent external 

short-circuit quantum efficiency of the solar cell (IPCE; see following section):109, 244  

 
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d)()(sc





IPCEqJ                                                                                            (36) 

where λmin and λmax are the wavelengths at which the photocurrent sets in and vanishes, 

respectively. For illumination with monochromatic light of a single wavelength λ the 

equation simplifies to: 

)()())((sc   IPCEqJ                                                                                          (37) 

According to eq. (37), Jsc varies linearly with the photon flux density as long as the IP-

CE is independent of it. As far as the open-circuit voltage is concerned, a logarithmic 

dependence on the monochromatic photon flux density is found by combining eq. (34) 

and eq. (32) with eq. (37):97, 128 
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1.4.3 Measurement of the External Quantum Efficiency 

The external quantum efficiency or incident photon-to-electron conversion efficiency 

(IPCE) spectrum of a solar cell is obtained by measuring the short-circuit photocurrent 

density under illumination with monochromatic light as a function of the wavelength 
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.128, 131 The IPCE corresponds to the ratio of wavelength-dependent electron flux densi-

ty Jsc/q to photon flux density ϕ (cf. eq. (37)):131  
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The IPCE of a DSC can be expressed as the product of the partial quantum efficiencies 

of light harvesting, electron injection, charge collection and dye regeneration introduced 

in chapter 1.1.2:107   

)()()()()( ccreginjlh  IPCE                                                             (40) 

Another useful quantity to characterize the operation of the cell under short-circuit con-

ditions is the internal quantum efficiency or APCE (absorbed-photon-to-electron 

conversion efficiency), which corresponds to the ratio of photogenerated electron flux 

to absorbed photon flux and is determined by dividing the IPCE by the light harvesting 

efficiency:131 

)()()()( ccreginj  APCE                                 (41) 

Once the IPCE spectrum of a sample has been measured, it can be used in combination 

with the photon flux density spectrum used for the J-V characterization (typically, the 

AM1.5G spectrum) to calculate the expected short-circuit photocurrent density based on 

eq. (36) of the previous chapter. This procedure serves to double check the Jsc obtained 

from the current-voltage curves.128   

1.4.4 Electrochemical Impedance Spectroscopy (EIS) 

In impedance spectroscopy,128, 131, 245 a small-amplitude voltage perturbation superim-

posed onto a constant bias voltage is applied to the sample. The voltage perturbation is 

typically sinusoidal and causes a corresponding alternating current. Amplitude and 

phase shift (with respect to the input signal) of the current are measured as a function of 

the frequency.  

The impedance Z is defined as the ratio of the a.c. part of the voltage, Vac(t), and the a.c. 

part of the current, iac(t):
246 
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where V̂ and Î are the amplitudes of voltage and current signal, ω is the angular fre-

quency, and θ is the phase shift. The measurement is typically repeated at a series of 

different bias voltages,128 so that the frequency-dependent impedance is obtained for a 

number of different steady states of the sample. In the characterization of dye-sensitized 

solar cells, this series of EIS measurements is typically performed under illumination 

with a constant light intensity, for example at AM1.5G type conditions, and is often 

repeated in the dark for comparison.128, 136, 247 An alternative to the approach of using 

constant illumination intensity and varied bias voltage is to perform measurements un-

der a series of different illumination intensities while the cell is kept at open-circuit 

conditions.141 To extract information about various processes in the solar cell from ex-

perimental EIS data, the data is fitted using an appropriate equivalent circuit and the 

corresponding impedance function.128, 131    

The simplest equivalent circuit describing charge accumulation and recombination in a 

solar cell under a.c. electrical perturbation corresponds to the diode model outlined in 

section 1.4.2, and is illustrated in Figure 11. The circuit consists of a parallel combina-

tion of the d.c. voltage-dependent chemical capacitance Cµ(Vf) and recombination re-

sistance Rrec(Vf).
128, 131  

 

Figure 11: Parallel combination of recombination resistance Rrec and chemical capaci-

tance Cµ as simplest a.c. equivalent circuit describing a dye-sensitized solar cell.  

When a time-dependent small-amplitude voltage perturbation is applied to the elec-

trodes of the solar cell in an EIS measurement, the electron quasi-Fermi level Efn will 

follow this perturbation and will be shifted upwards and downwards accordingly. The 

macroscopic chemical capacitance Cµ describes how the total electron density n in the 

porous semiconductor film changes with this variation in the quasi-Fermi level:114, 128, 

131 
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where d is the semiconductor film thickness, A is the projected film area, p is the porosi-

ty, cµ is the chemical capacitance per unit volume (F·cm-3), and q is the electron charge. 

Use of the relationship )(
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fnEg
E

n
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


, as obtained in the zero-Kelvin limit of the Fer-

mi-Dirac distribution,63 leads to an approximation for eq. (43):131  
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where g(Efn) is the density of states at the quasi-Fermi level in the porous semiconduc-

tor. As already mentioned further above, the majority of electrons in a DSC photoanode 

are located in traps for Efn < Ec, so that the chemical capacitance will be dominated by 

these trapped electrons and their density of states at the quasi-Fermi level, gt(Efn): 

)()1( fn
t2t

µµ EgqpdACC                                                                                      (45) 

The macroscopic recombination resistance Rrec is related to the change in the rate of 

recombination Un (cf. section 1.4.1) with the quasi-Fermi energy:131  
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where rrec is the recombination resistance per unit volume (Ω·cm3).  

The product of Cµ and Rrec (eq. (43) and eq. (46)) corresponds to the effective electron 

lifetime τn introduced in chapter 1.1.2:90, 128, 131 
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The simple diode model with its corresponding equivalent circuit in Figure 11 is based 

on the assumptions of homogeneous photogeneration along the thickness of the porous 

semiconductor/dye film as well as fast transport of photogenerated charge carriers to the 

outer contacts of the solar cell.128 A more comprehensive model that is widely used to 

describe the processes in dye-sensitized solar cells is the diffusion-recombination mod-

el, described by eq. (7) or similar forms of the continuity equation.94, 97, 112, 248 This 

model considers generation, diffusion and recombination of electrons in the porous sem-

iconductor as a function of space. In terms of an a.c. equivalent circuit, it leads to a 

transmission line (TL) model128, 131, 247 (Figure 12, part highlighted in green) containing 
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rrec (in the graphics referred to as rr) and cµ in combination with the transport resistance 

per unit length per area rtr (Ω·cm), which describes electron diffusion through the semi-

conductor. Note that the macroscopic transport resistance Rtr is obtained via131 
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
                                                                                                          (48) 

The transport resistance and the total film capacitance C determine the transport time 

τtr (also termed transit time, sometimes represented by the symbol τd), i.e., the time elec-

trons require to be transported through the thickness of the porous layer:128, 131 

CR  trtr                                                                                                                     (49) 

In principle, the total capacitance of a semiconductor in contact with an electrolyte may 

contain contributions by the chemical capacitance Cµ, depletion capacitance (∝ V-1/2), 

and a Helmholtz capacitance related to the electrochemical double layer at the semicon-

ductor surface (independent of V), which are connected in series.126, 128, 131 Nanostruc-

tured semiconductors in contact with electrolytes are expected not to show a depletion 

layer (cf. chapter 1.2.2).    

 

 

Figure 12: Equivalent circuit for a complete dye-sensitized solar cell including a 

transmission line (TL, highlighted in green) to describe charge transfer and accumula-

tion across the interface between dye-sensitized semiconductor (here: TiO2) and elec-

trolyte and charge transport through the semiconductor. Figure taken from chapter 12 

of ref. 131 and modified to highlight the TL.  

Therefore, the total measured capacitance is typically a chemical capacitance as long as 

the contribution by the Helmholtz capacitance is negligible, which is usually the case 

over a large range of bias voltages relevant for solar cell operation.128 

TL 
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The transmission line can be understood as a result of the geometry of the porous semi-

conductor electrode. As obvious from the simplified wire structure in Figure 12, at any 

given point along the conductive path electrons may either move on by diffusing paral-

lel to the path, or they may be transferred in the direction perpendicular to it, for exam-

ple to recombine with the electrolyte. This is accounted for by the fact that the line of rtr 

elements is continuously interrupted by parallel rreccµ elements. The total impedance ZTL 

of the TL depicted in Figure 12 is:128, 247 
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where ωrec = τn
-1 = (RrecCµ)-1. In addition to rtr, rrec and cµ, the equivalent circuit for a 

complete device in Figure 12 contains two parallel RC elements, RBL||CBL and RPt||CPt, 

representing charge accumulation and transfer at the interfaces between substrate (or 

blocking layer, BL) and electrolyte and between electrolyte and Pt-counter electrode, 

respectively. Further circuit elements are the resistance Rs of the conductively coated 

glass substrate, and the impedance element Zd representing diffusion of the redox spe-

cies in the electrolyte. The latter comprises ionic transport both in the porous matrix as 

well as in the bulk of the electrolyte and is described by:36, 249 
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where Rd is the diffusion resistance of ions in the electrolyte, and 
p
d is the characteris-

tic frequency of diffusion. The fact that, in the commonly used equivalent circuit in 

Figure 12, the impedance of electrolyte diffusion in the pores is not part of the trans-

mission line is equivalent to a decoupling of this impedance from the impedance re-

sponse of the porous semiconductor. This decoupling relies on the assumption that 

p
d << ωrec, i.e., the characteristic frequencies (and time constants) of diffusion in the 

electrolyte and of recombination are well separated, which is appropriate for typical 

liquid electrolytes.128, 131, 247, 250 In situations where the characteristic frequencies ω are 

similar, a more complex transmission line including two transport channels is 

required.62, 128, 250 Typical impedance spectra (Nyquist plots) of a dye-sensitized solar 
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cell at lower and intermediate bias voltages (here, -0.25 V and -0.55 V) are shown in 

Figure 13.128, 247  

        

Figure 13: Typical Nyquist plots of the impedance of a dye-sensitized solar cell (Z’: 

real part, Z’’: imaginary part), obtained at low (left) and intermediate (right) bias volt-

ages. Adapted from ref. 247 and extended by explanatory labels indicating which equiva-

lent circuit element dominates the impedance in different frequency ranges. 

The main arc in both cases is caused by charge transfer across the semiconduc-

tor/dye/electrolyte interface and charge accumulation in the porous semiconductor 

(rrec||cμ). At intermediate bias voltages, an additional, Warburg-type feature (line with a 

slope of about 1) reflecting the diffusion of electrons in the porous semiconductor (with 

transport resistance rtr) can be observed towards higher frequencies. Furthermore, a fea-

ture related to the impedance of diffusion in the electrolyte, Zd, may be seen in the low-

frequency limit (see below), although at intermediate voltages it is often concealed by 

the recombination arc. When the bias voltage is further increased (here, to -0.7 V, Fig-

ure 14) the Fermi level in the porous semiconductor is raised and the concentration of 

electrons becomes so high that the transport resistance becomes negligible and the War-

burg feature disappears from the spectrum.247  
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Figure 14: Typical impedance plot of a dye-sensitized solar cell obtained at higher bias 

voltages. Labels correspond to the equivalent circuit elements that dominate the re-

sponse in different frequency ranges. Adapted with modifications from ref. 247. 

In this higher-voltage range the Nyquist plot of the impedance typically shows three 

distinct semicircles:128, 247 a high-frequency arc related to RPt and CPt, a mid-frequency 

arc resulting from Rrec and Cµ, and a low-frequency feature associated with diffusion in 

the electrolyte. As the transport resistance is negligible, the equivalent circuit of the 

active layer (i.e., the transmission line) can be simplified and the simple diode model of 

Figure 11 is recovered.128, 247 The complete device equivalent circuit for this case is 

depicted in Figure 15. It should be noted that a high bias voltage is not the only circum-

stance under which no linear region can be observed in the Nyquist plot of the imped-

ance. In fact, in dye-sensitized solar cells using ZnO instead of TiO2 the transport-

related feature is often not observed at all, independent of the bias voltage, so that a 

transport resistance cannot be reliably extracted from the spectra.141, 251 It has been sug-

gested that this might be a result of the higher electron mobility in ZnO compared to 

TiO2.
141 

 

Figure 15: Simplified equivalent circuit of a complete DSC for the case of high conduc-

tivity in the porous semiconductor, as for example observed at high bias voltages. The 

symbol Rr corresponds to Rrec in the text. Taken from chapter 12 of ref. 131.  
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As discussed above, measuring EIS spectra at a range of applied bias voltages and fit-

ting the obtained spectra with an appropriate equivalent circuit delivers Rrec, Cµ, and (if 

distinguishable) Rtr  as important parameters related to the dye-sensitized nanostructured 

film, as well as Rs, RPt, and Rd as additional parameters related to the complete device. 

Valuable information can be found86, 128, 141 by analyzing the voltage-dependence of 

Rrec, Cµ, and (if applicable) Rtr and comparing it with the behavior predicted by models, 

some of which will be discussed in the following.  

As indicated further above, the chemical capacitance in DSCs is typically governed by 

the density of states in the band gap, which in most cases shows an exponential distribu-

tion as given in eq. (9) in chapter 1.2.2. In consequence, eq. (45) yields128  
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with the trap-distribution parameter α, the total trap density Nt, and the Fermi-level 

voltage Vf (see further below for a description of how Vf is determined). If cµ is plotted 

semilogarithmically vs. Vf for a set of different samples with the same total trap density 

Nt and trap distribution parameter α, the shifts of the curves along the voltage axis will 

therefore correspond exactly to relative conduction band edge shifts ΔEc between the 

samples (Figure 16). In other words, for a set of samples with comparable trap distribu-

tions, the chemical capacitance curves allow for a determination of conduction band 

edge shifts with respect to a reference sample.  

 

Figure 16: Plot of the voltage-dependent, EIS-derived chemical capacitance of two 

DSCs with equal trap distribution parameter α, highlighting the relative conduction 

band edge shift ΔEc between the two cells.   
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While the assumption of same Nt is commonly made without experimental evidence, 

some recent works121, 252, 253 have emphasized that this parameter should be monitored 

and quantitatively taken into account in the determination of conduction band edge 

shifts, especially when it comes to sets of samples in which different bulk or surface 

treatments (including adsorption of dyes and coadsorbates) have been applied to the 

porous semiconductor. Total trap densities with respect to a reference sample are exper-

imentally accessible via time-resolved short-circuit photocurrent decay 

measurements,252 as explained in section 1.4.7. In the case of samples with identical α 

but different Nt, accurate results for ΔEc are then attained by normalizing the chemical 

capacitance by the relative total trap density before measuring the shifts of the curves 

along the voltage axis.252 

A simple model that is commonly used for Rrec and often delivers a good description of 

the experimental data is based on the empirical β-recombination model introduced in 

section 1.2.3.86, 128, 141 Using equations (46), (16), (2) and (32), one obtains 
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As shown in chapter 1.4.2, the factor J0 depends on the position of the conduction band 

edge in the porous semiconductor Ec, on the recombination parameter β, and on the 

rate constant for interfacial charge transfer kr. Thus, a semilogarithmic plot of rrec or Rrec 

vs. Vf for a set of different samples will show how the recombination resistances of the 

samples differ at each voltage, but will fail to reveal the origins of these differences, i.e. 

whether they are caused by shifts in Ec, differences in β, or differences in the kinetics of 

the charge transfer reaction. In many cases the latter are of great interest,121, 128, 141, 252 so 

that it is desirable to detangle the different influencing factors. This can be approached 

by inserting eq. (32) into eq. (53) to yield a modified expression for rrec:  
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Describing the conduction band edge position with respect to a reference sample, 

Ec=Ec,ref+ΔEc, further leads to 
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On the basis of the dependence apparent from eq. (55) it is a common practice in EIS of 

dye-sensitized solar cells to semi-logarithmically plot the recombination resistance vs. 

the corrected voltage Vf-ΔEc/q.128, 141, 254 For a set of samples with same β, such a plot 

will directly reveal changes in J0k and thus in the rate constant kr (cf. eq. (32)). Some 

studies have developed more sophisticated expressions for the recombination resistance, 

which are based on the Marcus-Gerischer model for electron transfer between semicon-

ductor and electrolyte (eq. (17)) and take into account a distribution of surface states via 

which recombination can occur.90, 255 Nevertheless, in most cases – including the major-

ity of samples studied in this work – the simple model of eq. (55) delivers an adequate 

description of measurement data, so that the use of more complex models containing a 

larger number of unknown variables can be avoided.  

As apparent from equations (52) and (53), recombination resistance and chemical ca-

pacitance are functions of the (constant part of the) Fermi-level voltage Vf rather than 

of the applied d.c. voltage V. If a current flows through the solar cell, there is a voltage 

drop at the total series resistance Rseries=Rs+RPt+Rd of the cell,128 and as a consequence 

Vf will be different from V. For a correct analysis it is therefore necessary to determine 

Vf, which can be done via the relationship128  

Vf(J) = V(J) - Vseries(J)                                                                                                   (56) 

where J here is the d.c. current density flowing through the cell as a result of the applied 

d.c. voltage V, and Vseries is the voltage drop at the series resistance. The latter can be 

obtained by integration of Rseries over the current density:128, 248 
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where A is the projected sample area. Alternatively, Vf can be determined more directly 

by integrating the resistance of the nanostructured semiconductor film (Rfilm=1/3 

Rtr+Rrec for Rrec > Rtr)
128 over the d.c. cell current density J and adding the result to the 

open-circuit voltage Voc measured in the EIS measurements:128, 248 
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If the transport resistance Rtr is small, the integral in eq. (58) can be approximated by 

the integral over Rrec. 

1.4.5 Intensity-Modulated Photocurrent and Photovoltage Spectroscopy 

(IMPS and IMVS) 

Similar to electrochemical impedance spectroscopy, intensity-modulated photovoltage 

and photocurrent spectroscopy (IMVS and IMPS) involve applying a modulated, small-

amplitude signal to the solar cell and measuring the time-dependent response as a func-

tion of the frequency.88, 118, 256-259 In IMVS and IMPS, the modulated input signal is the 

photon flux: the cell is illuminated with a constant background illumination ϕ0, onto 

which a small (typically, 10% or less of the background signal)28, 84, 88 sinusoidal pertur-

bation with amplitude ̂  is superimposed (see orange line in Figure 17). Commonly, 

IMPS is performed under short-circuit conditions and IMVS at open circuit.28, 84, 87, 88 

The sinusoidal modulation of the light intensity causes a corresponding modulation of 

the rate of electron injection and thereby generates a sinusoidal photocurrent (IMPS) or 

photovoltage (IMVS) output of the solar cell, superimposed on the background steady-

state short-circuit photocurrent Jsc or open-circuit photovoltage Voc, cf. Figure 17. The 

amplitude and phase shift of the modulated part of the photocurrent/photovoltage are 

recorded over a range of frequencies.   

 

Figure 17: Schematic representation of input and output signals in IMPS/IMVS meas-

urements of DSCs. The sinusoidal illumination signal ϕ (orange line) causes a corre-

sponding voltage or current response (black line) with phase shift θ.  
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The frequency-dependent transfer functions Φ are determined according to88, 257, 258  
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where qJ /)(ˆ   is the amplitude of the electron flux density, V̂  is the amplitude of the 

photovoltage and ω is the angular frequency. ΦIMPS(ω) can be considered the frequency-

dependent form of the steady-state IPCE (cf. eq. (39)) and for small frequencies ap-

proaches the latter.88 Both intensity-modulated photocurrent and photovoltage spectros-

copy are usually measured for a broad range of background light intensities to obtain the 

corresponding transfer function for a series of different steady states.84, 88, 118  

A complex plane plot of ΦIMVS(ω) of a dye-sensitized solar cell typically shows a single 

semicircle in the fourth quadrant, see Figure 18 (a), with positive real parts and nega-

tive imaginary parts indicating that the photovoltage lags behind the illumination sig-

nal.245 

      

Figure 18: Typical IMVS (a) and IMPS (b) transfer functions in the complex plane. 

To extract information about recombination reactions in the DSC under open-circuit 

conditions from the IMVS plot, the transfer function is fitted to an appropriate analytical 

function. The modulated voltage output V̂ in IMVS depends on the rate at which the 
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electron density relaxes (cf. eq. (1)) in response to the change in the rate of electron in-

jection induced by the modulated light intensity. The theoretical description of this 

time-dependent variation of the electron density is obtained by solving the time-

dependent continuity equation for a sinusoidal perturbation, cf. eq. (7), as for example 

demonstrated in ref. 256. For the real part and imaginary part of the IMVS transfer func-

tion, one thus obtains: 
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where M is a scaling factor that depends on the electron injection efficiency and the 

amplitude of the light intensity.256 Eq. (61) and eq. (62) describe the typically observed 

semicircle in the complex plane, cf. Figure 18 (a), with ωmin denoting the frequency at 

which the imaginary part of the transfer function shows its minimum. It was shown90, 142 

that the time constant corresponding to ωmin is equivalent to the effective electron life-

time τn introduced in chapters 1.1.2 and 1.2.3:84, 131, 256 

1
nIMVSmin,


                               (63) 

Repeating this analysis of the IMVS response obtained at a series of constant back-

ground illumination intensities yields τn as a function of ϕ0 or Voc, which can be com-

pared to analogous plots obtained by impedance spectroscopy or time-dependent char-

acterization methods (see following section).     

The typical complex plane plot of the IMPS transfer function ΦIMPS(ω) of dye-

sensitized nanocrystalline semiconductors is not a simple semicircle as in IMVS, but 

instead shows a semicircular region at lower frequencies and a more linear region at 

higher frequencies, see Figure 18 (b).88, 131 In analogy to IMVS, the position of the plot 

in the fourth quadrant indicates that the photocurrent lags behind the illumination signal. 

Fitting of the IMPS response allows to determine electron transport-related quantities of 

the dye-sensitized nanocrystalline semiconductor and can be realized by using analytical 

expressions derived from the continuity equation (eq. (7) or eq. (8) including trapping), 

as for example reported by Dloczik et al..88 Their model is based on the assumptions 

that electron transport occurs only by diffusion, dye molecules are homogeneously dis-
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tributed within the dye-sensitized film (Beer-Lambert-type absorption, eq. (24)), and the 

recombination rate is first order in electron concentration (eq. (6)) and determined by 

charge transfer to the oxidized species in the electrolyte (fast regeneration of the dye). 

The influence of trapping and detrapping was accounted for in the framework of the 

quasi-static approximation (cf. chapter 1.2.2) by replacing electron diffusion coefficient 

and lifetime by the intensity-dependent effective quantities Dn and τn, cf. eq. (13) and 

eq. (18). For substrate side illumination under short-circuit conditions, the following 

solution for the complex IMPS transfer function was obtained:88 
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where αabs is the absorption coefficient of the dye-sensitized photoelectrode, d is the 

film thickness, and   
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with i as the imaginary unit. Simulations of ΦIMPS(ω) based on eq. (64)88 showed that 

the linear high-frequency region typically observed in the complex plane plot, cf. Fig-

ure 18 (b), is determined by the diffusion of charge carriers to the back contact (cf. dif-

fusion-limited case in ref. 88). Further, the calculations demonstrated the influence of a 

varying effective electron lifetime τn on the IMPS response, see Figure 19. As the life-

time was decreased, the IMPS plot gradually became more dominated by recombination 

and the transport-related feature became harder to distinguish. 

 

Figure 19: Complex-plane representation of calculated IMPS responses for a series of 

different electron lifetimes τ, corresponding to τn in the text. Taken from ref. 88. 
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Another effect that influences the IMPS transfer function in the high-frequency range is 

the attenuation of the current by the parallel combination of the series resistance and 

capacitance of the whole cell (RC attenuation), which can be described by an attenua-

tion factor88, 257  
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At short circuit, the series resistance is typically dominated by the sheet resistance of the 

conductive glass substrate (e.g., FTO/glass) and the capacitance is governed by charge 

accumulation at the substrate/electrolyte or substrate/semiconductor interface.28, 88, 260 

RC attenuation appears in the form of an additional time constant in the complex plane 

plot of ΦIMPS(ω) and thus leads to an increased phase shift between illumination signal 

and current.88 The measured IMPS data should therefore be fitted using the modified 

function88, 257   
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Analysis of the IMPS response of DSCs by full fits of the frequency-dependent data to 

eq. (67) with eq. (64) is complicated by the fact that the effective electron lifetime at 

short circuit (cf. eq. (65)) is hard to access experimentally: IMVS measurements cannot 

be performed at short-circuit, because the smallest modulations in the electron injection 

rate at that point of the J-V curve (cf. Figure 10) would lead to huge, non-linear oscilla-

tions of the voltage. EIS data (cf. previous section) can normally not be evaluated down 

to short-circuit conditions either, because the current changes occurring in response to 

the modulated applied voltage tend to approach the detection limit and the obtained data 

are highly scattered. Open-circuit photovoltage decay measurements (see following sec-

tion) get very noisy towards low voltages as well because of the small change of Voc per 

time compared to the resolution of the voltage detection. Due to the lack of reliable 

short-circuit lifetime values, IMPS data are frequently analyzed by a simplified routine 

on the basis of the frequency in the minimum of the main semicircle, ωmin,IMPS (cf. Fig-

ure 18 (b)), and the related time constant, τIMPS = 1/(ωmin,IMPS),98, 118, 242 which can be 

determined by fits of the real and imaginary parts of the response (limited to the semi-

circular region) to equations analogous to eq. (61) and eq. (62). τIMPS reflects the com-

bined effect of electron recombination and diffusion to the back contact (cf. Figure 

19):98  
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where τtr is the electron transport time (cf. section 1.4.4). Under short-circuit condi-

tions, τn is normally much larger than τtr,
136, 261 so that τIMPS ≈ τtr and the effective diffu-

sion coefficient of electrons in the semiconductor, Dn, can be determined via a rela-

tionship attained in previous studies based on the continuity equation:88, 141, 262, 263 
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ζ is a numerical factor263 that weakly depends on the direction of illumination and on the 

product αabsd.88, 141, 242 As shown in the Supporting Information of ref. 141 and ref. 242, for 

illumination from the substrate side ζ approaches 2.54 for small values of αabsd and 

takes on a value of 2.8 for αabsd = 3. As in the case of IMVS, the IMPS response is 

evaluated at a series of constant background illumination intensities to yield τtr or Dn as 

a function of ϕ0 or Jsc.  

1.4.6 Transient Photovoltage and Photocurrent Measurements 

An alternative approach to frequency-resolved characterization of photoelectrochemical 

dynamics is to employ time-dependent (i.e., transient) measurements of the decay of the 

short-circuit photocurrent or open-circuit photovoltage in response to a decrease in il-

lumination intensity. While the analysis of such transient measurements can in some 

cases be limited by noise in the decay curves, the measurements allow for a quick and 

easy determination of electron transport times and lifetimes equivalent to the corre-

sponding values obtained by EIS and IMPS/IMVS,120, 142, 264 which is particularly useful 

if a fast screening of a large number of solar cells is required. Analysis of recombination 

by time-dependent photovoltage decay measurements can be realized in two different 

ways: either the illumination is completely turned off and the full decay down to open-

circuit voltages approaching 0 V is measured (referred to as open-circuit voltage decay 

or OCVD)120, 142 or the illumination intensity is only changed by a small amount and the 

corresponding small change in open-circuit voltage is monitored. Together with the cor-

responding transient photocurrent measurements, the latter is sometimes referred to as 

SLIM-PCV (stepped light-induced transient measurements of photocurrent and photo-

voltage).121, 264, 265  
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In OCVD measurements, the cell is illuminated by a rectangular light pulse (AM1.5G-

type illumination142 or monochromatic light120, 266) at open circuit and the time-

dependent decay of Voc after the light is switched off is recorded, see Figure 20.119, 120, 

142, 266 To gain information about recombination reactions, the slope of the decay curves 

are evaluated by means of appropriate analytical models. A frequently used141, 242, 251, 266, 

267  expression for the voltage decay after switching off the light source was derived by 

Bisquert et al.142 on the basis of the continuity equation for the dark situation at open 

circuit, i.e., eq. (7) with generation and transport terms set to 0. They started their deri-

vation with the assumption of a linear rate of recombination (eq. (6), Un = krnc = nc/τ0), 

which, together with eq. (1) yielded the simple solution dVoc/dt = kT/qτ0 for the decay of 

Voc with time. This corresponded to a linear decay, which is in contrast to the non-linear 

behavior typically observed for dye-sensitized nanocrystalline solar cells, as indicated in 

Figure 20.  

  

 

When nonlinear recombination was considered via the β-recombination model (cf. sec-

tion 1.2.3), i.e., Un = krnc
β, the obtained solution for dVoc/dt was more complex and 

hardly practicable for data analysis.142 However, it was suggested that for β values close 

to 1 the simple model still constitutes a very good approximation.142 Further including 

trapping and detrapping terms by use of the quasi-static assumption in their treatment, 

the following approximation for the voltage decay was obtained:  

Figure 20: Schematic representation of time-dependent light intensity ϕ and the result-

ing open-circuit voltage Voc response in an OCVD measurement.  
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where the effective electron lifetime τn (effective indicating the influence of traps, see 

chapters 1.1.2 and 1.2.3) is a function of Voc and, in practice, is determined by calculat-

ing the voltage-dependent derivative of the decay curve. In spite of the simplifying as-

sumptions made to obtain eq. (70), it is commonly found141, 266 to deliver effective elec-

tron lifetimes equivalent to the τn values obtained by EIS or IMVS, as expected based 

on formal considerations.90, 142 Calculations by Peter et al.120 have demonstrated that a 

plot of the voltage decay vs log(time) should be linear for long times (> 0.1 s after the 

light is switched off) if the nanostructured semiconductor shows an exponential distri-

bution of trap states and the quasi-static approximation holds. Moreover, Cameron et al. 

have shown that such linear behavior is indicative of negligible recombination between 

the substrate and the electrolyte.266 Thus, the shape of the semilogarithmic plot of the 

voltage decay can be used as an indicator for the presence or absence of recombination 

via the substrate in a given cell.  

An alternative way to analyze recombination by time-dependent voltage measurements 

is to measure the change in voltage following a small change in the illumination intensi-

ty.121, 264, 265 In the present work, this approach has been realized as part of the SLIM-

PCV technique,264 which was available at Gifu University in lieu of an IMPS/IMVS 

setup. The cell is illuminated by laser light of a certain intensity and the open-circuit 

voltage transient induced by a stepwise change in laser intensity is measured as a func-

tion of the time t, see Figure 21.  



Basic Concepts 68 

 

 

 

The Voc transients are fitted with a mono-exponential function of the type exp(-t/τn) (see 

detailed function in chapter 2.9.4) to extract the time constant of the decay, which is 

equivalent to the effective electron lifetime τn, as shown by a formal treatment similar to 

that described above for the OCVD method.121, 264 The fact that the small-amplitude 

voltage transient can be fitted by a monoexponential decay function relies on the chang-

es in laser intensity and electron density being small with respect to the corresponding 

initial steady-state values. The measurement is repeated for a series of different initial 

laser intensities and resulting initial open-circuit voltages to yield the lifetime τn as a 

function of Voc.
264  

The measurement of short-circuit photocurrent transients by SLIM-PCV presents the 

time-resolved analogue of IMPS and thus delivers information on the transport of elec-

trons through the porous semiconductor.264 A small decrease in the laser intensity here 

leads to a decay in the short-circuit photocurrent that is monitored over time, cf. Figure 

21. In analogy to the voltage transients measured by SLIM-PCV, the small perturbation 

of the light intensity compared to the initial intensity allows the current transient to be 

adequately fitted with a mono-exponential equation that under the assumption of negli-

gible recombination at short circuit was shown to have the form exp(-t/τtr) (see chapter 

2.9.4 for detailed function),121, 264 where the time constant of the decay corresponds to 

the electron transport time τtr introduced in section 1.4.5.121, 264 The SLIM-PCV 

measurement setup at Gifu University automatically used τtr to determine the effective 

Figure 21: Time-dependence of laser intensity and resulting open-circuit voltage Voc or 

short-circuit current Jsc in SLIM-PCV measurements.  
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diffusion coefficient Dn of electrons in the nanostructured semiconductor based on the 

relationship reported by Nakade et al.:264 
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D                                                                                                                 (71) 

Comparison of eq. (71) with eq. (69) and comments (section 1.4.5) reveals that using 

the (empirical) factor of 2.77 in the denominator corresponds to the case of αabsd ≈ 3 

(relatively strong absorption). For each cell, the measurement of the small current decay 

is repeated for a series of different initial laser intensities to obtain Dn as a function of 

the steady-state Jsc.   

1.4.7 Charge Extraction 

In addition to delivering information on electron transport and recombination, photocur-

rent and photovoltage measurements in the time domain offer the possibility to deter-

mine the charge density in the nanostructured semiconductor under different electrical 

and illumination conditions. Such methods, collectively referred to as charge extraction, 

involve illumination of the solar cell until a steady state is established, followed by 

switching off the source of illumination and extracting the electrons accumulated in the 

photoelectrode by allowing a current to flow.113, 121, 242, 252  

Determination of the charge stored at short circuit consists of a simple measurement of 

the full current transient in response to turning off the light source.242, 252 The cell is kept 

under short-circuit conditions throughout the whole measurement. The current decay is 

then integrated over time to yield the amount of charge stored in the semiconductor un-

der short-circuit conditions, Qsc, which can be converted into the short-circuit electron 

density nsc using the geometric area A, film thickness d, and porosity p of the porous 

semiconductor film: 

)1( pqAd

Q
n


                                                                                                                (72)  

with Q denoting the charge and n the electron density. The measurement is repeated for 

a series of different illumination intensities to yield nsc as a function of the steady-state 

short-circuit photocurrent density Jsc, see example in Figure 22.252  
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Figure 22: Example of a plot of the short-circuit charge density vs. the short-circuit 

photocurrent density, illustrating how relative total trap densities are determined.  

Plots as the one above are used to assess the total trap density Nt in dye-sensitized nano-

crystalline semiconductors with respect to a reference sample (blue curve in the exam-

ple), as first suggested by O’Regan et al..252 Provided that current flow through the DSC 

occurs only by diffusion of electrons in the conduction band (no hopping between traps) 

and that the electron diffusion coefficient in the cells under comparison is constant, an 

equal Jsc of two different cells corresponds (eq. (5)) to an equal electron density gradient 

and hence (eq. (1)) to an equal gradient of the quasi-Fermi level Efn across the cells. 

Since all trap states below Efn are occupied, relative differences in the total trap density 

Nt between the two cells will lead to proportionally changed densities of trapped elec-

trons (cf. eq. (10)) and, hence, extracted charge densities at a given short-circuit current 

density. In other words, the ratio of the extracted short-circuit electron density of a cell 

to the extracted short-circuit electron density of a reference cell, nsc/nsc,ref, is equal to the 

relative total trap density Nt/Nt,ref of the cell. Knowledge of the relative total trap den-

sity is crucial for an accurate analysis of the results of other characterization methods 

such as EIS and IMPS, because the quantities attained by these methods (e.g., the chem-

ical capacitance Cµ and the transport time τtr) depend on Nt. 

An experimental technique used to obtain the charge Qoc stored in the porous semicon-

ductor under open-circuit conditions was described by Peter et al. in 2000.113 The 

charge extraction method they described consists of three sequential parts, see Figure 

23. In the first part, the solar cell is illuminated under open-circuit conditions so that a 
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steady-state open-circuit voltage is established. The light source is then switched off and 

the voltage is allowed to decay to a certain value before the cell is short-circuited to 

extract the electrons remaining in the porous semiconductor. As in the case of short-

circuit charge extraction, the measured extraction current is then integrated over time to 

yield Qoc
113 and the corresponding electron density noc is determined using eq. (72). 

Repeating the experiment with different waiting times between turning off the light 

source and initiating the extraction delivers noc as a function of Voc (the voltage at which 

the extraction was initiated).113 Analogous to the analysis of voltage-dependent capaci-

tance curves (cf. Figure 16), Voc-dependent plots of noc normalized by the total trap 

density, see examples in Figure 24, can be used to determine relative shifts of the con-

duction band edge ΔEc/q between different DSCs with similar trap distribution,149, 252 as 

apparent from eq. (10) if the exponential part is rewritten analogous to eq. (52). 

 

 

Figure 23: Scheme of the principle of open-circuit charge extraction measurements, 

with the time dependence of light intensity signal (orange), open-circuit voltage 

(black) and short-circuit current (blue). Voltage and current transients, together with 

the corresponding extracted charges, are indicated for two sequential measurements 

in which the DSC is short-circuited after different delay times.  
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Figure 24: Example of a plot of the open-circuit electron density (normalized by the 

relative total trap density) as a function of the open-circuit photovoltage for two DSCs, 

with illustration of the determination of the relative conduction band edge shift between 

the cells.  
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2 Experimental Procedures 

2.1 Sample Groups 

This work presents results of five main experimental series that all used ZnO films to 

build dye-sensitized solar cells, “D149 with CA” and “D149 without CA” (chapter 5), 

“D149+D131+SQ2” (chapter 6), “np-ZnO+D149+D131+SQ2” (chapter 7), and 

“D149+S1.15PcZn” (chapter 8). All series used electrodeposited ZnO films except for 

np-ZnO+D149+D131+SQ2, in which screenprinted nanoparticulate ZnO films were 

utilized. Table 30 (Appendix A) contains a full list of all samples with date of film 

preparation, date of sensitization, photosensitizers used, as well as additional infor-

mation. 

2.2 Preparation of Electrodeposited ZnO Films  

The electrodeposition of the porous ZnO films used in this work (including pre- and 

post-treatment) was performed in the laboratory of T. Yoshida at Gifu University, Ja-

pan. Table 1 lists the materials utilized in these experiments. The films used to build the 

cells of the series D149 without CA, D149+D131+SQ2, and D149+S1.15PcZn were de-

posited by Shigeo Hori.  

A 7 cm x 8 cm piece of FTO-coated glass was pre-cut to allow breaking it into eight 

equal-sized pieces later (Figure 25 (a)). The glass was cleaned by consecutively soni-

cating for 15 minutes each in water, detergent solution, acetone, and distilled 2-

propanol. Following each of the cleaning steps the glass was rinsed with water. After 

the cleaning procedure it was transferred into 2-propanol for storage. On the day of film 

preparation, the FTO/glass was taken out of the 2-propanol, rinsed with water, dried in 

an air flow and cleaned in a UV/ozone cleaner (Filgen UV253H with UV253-OZ Ozone 

Killer unit) for 30 minutes. The conductive side was then coated with positive-type pho-

toresist by spin-coating for 35 seconds at 1500 rpm using 2 ml of a photoresist solution. 
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Table 1: Materials for electrodeposition of porous ZnO with pre- and post-treatment. 

material supplier purity further specifications 

FTO (fluorine-doped tin ox-

ide)-coated glass, type “U”  
Asahi n.a. 

thickness 1.1 mm, 

sheet resistance < 12 

Ω/□, effective trans-

mittance > 80 % 

water (H2O) Gifu University Milli-Q resistivity 18.2 MΩ cm 

detergent “vista#50” Inui-Syoji n.a. -- 

acetone (C3H6O) Wako ≥ 99.5% -- 

2-propanol (C3H8O) Wako 99.7% -- 

positive-type photoresist 

“PMER P-LA 300 PM” 
Tokyo Ohka Kogyo n.a. -- 

developer “PMER P-7G” Tokyo Ohka Kogyo n.a. -- 

copper (Cu) tape Teraoka n.a. -- 

indium (In) Wako 99.98% -- 

gallium (Ga) Nacalai tesque 99.9999% -- 

masking tape “ELEP” Nitto Denko n.a. -- 

potassium chloride (KCl) Merck ≥ 99.5% -- 

zinc chloride (ZnCl2) Merck  ≥ 98% -- 

eosin Y (C20H6Br4Na2O5) Wako ≥ 85% -- 

potassium hydroxide (KOH) Nacalai tesque ≥ 85% -- 

 

The glass was placed onto a hot plate (140°C) for 7 minutes and then left to cool down 

for 10 minutes. Photostructurization was realized by illumination with a UV lamp (Ush-

io) through a custom-built mask using an exposure machine with a conveyor belt (Orix). 

Subsequent dipping into a developing solution for 6 minutes led to removal of the insu-

lating photoresist in the non-illuminated areas as shown in Figure 25 (b). This way, 

conductive circular areas of 6 mm diameter for electrodeposition of the films and con-

ductive stripes with a width of about 0.5 cm for contacting the electrodes were defined. 

The glass sheet was rinsed with water and dashed along the pre-cut lines into eight rec-

tangular pieces measuring 2 cm x 3.5 cm (Figure 25 (c)). The samples were placed on 

electrode holders designed to allow rotation of the substrates during deposition, and 
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contacted on two sides using Cu tape and an equimolar mixture of In and Ga heated to 

130°C (Figure 25 (d) and (e)). The resistance of the contacts was below 12 Ω. The 

samples were then fixed on the electrode holders by ready-punched pieces of insulating 

masking tape with circular holes of 7 mm diameter in the center, Figure 25 (f). 

 

Figure 25: (a) – (c): Preparation of eight photostructured FTO-coated glass substrates 

(each 3.5 cm x 2 cm) from a larger piece of FTO-coated glass. (d) – (f): Contacting and 

fixing of an individual photostructured substrate on an electrode holder. 

For parallel electrodeposition of ZnO on eight substrates, a custom-built setup268 (Dain-

ippon Screen) with a circular arrangement of eight rotating electrode holders was used 

in combination with a 16-channel potentiostat system (Bio-Logic, VMP3) and the soft-

ware EC-Lab V10.10. Throughout the deposition procedure, the current density was 

monitored at each of the eight electrodes. 2.1 L of a freshly prepared 0.1 M aqueous 

KCl solution were filled into the container of the deposition setup and heated to 80 °C. 

The eight electrode holders with the substrates were installed together with a Pt wire 

counter electrode, a RedRod (Radiometer) reference electrode (0 mV vs. Ag/AgCl) and 

a glass tube with a Pyrex® glass frit tip used to introduce oxygen gas into the deposition 

bath. The oxygen flow was adjusted to 2.0 L/min. The rotation of the eight electrode 

holders was set to 500 rpm and the setup was left in this condition for 30 minutes to 



Experimental Procedures 76 

 

 

achieve oxygen saturation of the electrolyte. After this, a 30-minute pre-electrolysis of 

the working electrodes in the O2-saturated KCl solution at -1.05 V vs. the RedRod ref-

erence electrode was performed in order to achieve electrochemical activation of the 

FTO-coated substrates.269 Successful activation was confirmed by observation of the 

diffusion-limited current density in the chronoamperograms (see chapter 3). While the 

applied potential was being kept at -1.05 V vs. RedRod, an appropriate amount of a 

high-concentration stock solution of ZnCl2 to yield a Zn2+ concentration of 5 mM (de-

pending on the concentration of the stock solution) was added to the electrodeposition 

bath. This triggered the growth of compact ZnO layers (blocking layers). After 10 

minutes, the Pt wire counter electrode was exchanged by a Zn wire counter electrode, 

the applied potential was lowered to -0.75 V vs. RedRod, and an appropriate amount of 

a high concentration stock solution of eosin Y necessary to achieve a concentration of 

300 μM of the structure-directing agent in the electrolyte was added (depending on the 

concentration of the stock solution). This started the deposition of porous ZnO/eosin Y 

hybrid films on top of the blocking layers, which was carried out for 30 minutes. 

Following electrodeposition, the electrode holders with the coated samples were trans-

ferred from the deposition bath into a bowl containing warm water (ca. 70°C) to allow 

for slow cooling of the deposited films. After about 15 minutes, the masking tape and 

Cu tape were removed, the samples were transferred into a Petri dish with water (room 

temperature), and the residual In/Ga was removed with the help of cotton buds. Finally, 

the samples were rinsed with water, immersed into aqueous KOH solution with a pH of 

10.5 (+/- 0.1), controlled by a pH meter, and placed in front of a window for 1 day in 

order to remove the eosin Y out of the porous ZnO films. After removing them from the 

KOH solution the electrodes were rinsed with water and subsequently immersed into 

acetone for about 3 minutes to remove the photoresist from the FTO-coated glass with 

the help of cotton buds. The samples were rinsed with acetone and water, dried in a dry-

ing closet at 100°C for 60 minutes, and cleaned in the UV/ozone cleaner for 30 minutes. 

2.3 Preparation of Nanoparticulate ZnO Films 

The screen printing of the nanoparticulate ZnO films used in this work (series np-

ZnO+D149+D131+SQ2) was performed by Hayato Kurotaki at Yamagata University 

(Japan), the new location of the laboratory of T. Yoshida. 7 cm x 8 cm pieces of FTO-
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coated glass (Asahi Glass, type “DU”, thickness 1.8 mm, sheet resistance 10 Ω/□) were 

pre-cut to allow breaking them into eight equal-sized pieces each later on. Using a SE-

RIA SSA-TF150E screen printer fitted with a patterned 250 mesh screen, ZnO nanopar-

ticle (Nippon Paint) paste was screen printed onto the FTO/glass plates so that eight 

circular ZnO films with a diameter of 6 mm were deposited on each substrate. In order 

to remove the solvent and clean the samples, the coated substrates were placed, consec-

utively, into vacuum (0.1 mbar), a drying closet at 80°C for 30 minutes, and a 

UV/ozone cleaner (Filgen UV253H) for 60 minutes. The samples were soaked in warm 

(60°C) water (Milli-Q, resistivity 18.2 MΩ cm) for 10 minutes (hydrothermal treatment) 

to promote necking of the ZnO particles via dissolution/recrystallization reactions and 

subsequently rinsed with fresh water. The thickness of the films was approximately 10 

µm.161, 270 Prior to further processing, the large substrates were broken into eight pieces 

with a size of 2 cm x 3.5 cm along the pre-cut lines, resulting in eight samples with cir-

cular ZnO films in their center (geometry equivalent to that of electrodeposited ZnO 

samples, cf. previous chapter).  

2.4 UV/Vis Absorption Spectroscopy of Dye Solutions 

Dye solutions were characterized by UV/Vis absorption spectroscopy in (1x1x4) cm3 

quartz cuvettes by means of a Hitachi U-4100 spectrophotometer (Gifu University) or a 

tec5 spectrometer system with LS-CH lamp unit, LOE-USB CCD detector unit (spectral 

range 310 – 1100 nm, spectral resolution < 10 nm), fiber optics and custom-made dark 

box (University of Gießen). For the reference measurements, the pure solvent in quartz 

cuvettes was used.  

2.5 Adsorption of Dyes 

2.5.1 D149 with CA (Gifu) 

The dye D149 (5-[[4-[4-(2,2-Diphenylethenyl)phenyl]-1,2,3-3a,4,8b-hexahydrocyclo-

pent[b]-indol-7-yl]methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-

thiazo-lidineacetic acid) and the coadsorbate cholic acid (CA) were adsorbed to the sur-

face of porous electrodeposited ZnO films from a solution of 0.5 mM D149 and 1 mM 

CA in a 1:1 (by volume) mixture of acetonitrile and tert-butanol (materials as listed in 
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Table 2). To fully dissolve the dye and obtain a clear solution, the solution was sonicat-

ed for 60 minutes and afterwards filtered. The dried and UV/ozone-cleaned films (cf. 

section 2.2) were immersed into 50 mL of the dye solution, and adsorption was carried 

out in the dark (covered with Al foil) for 1, 2, 10 or 120 minutes. After that, the films 

were removed from the solution, rinsed with ethanol, dried at air and stored in the dark 

in tightly closing plastic cases until further use.  

 

Table 2: Materials for adsorption of D149 with cholic acid in Gifu. 

material supplier purity further specifications 

D149 (C42H35N3O4S3) Chemicrea n.a. batch A 

cholic acid (C24H40O5) Wako ≥ 98% -- 

acetonitrile (CH3CN) Wako 99.5% -- 

tert-butanol (C4H10O) Wako 99.0% -- 

filter paper, type 5C Toyo Roshi Kaisha n.a. -- 

ethanol (C2H6O) Wako 99.5% -- 

2.5.2 D149 without CA (Gießen) 

Using the materials in Table 3, a solution of 0.5 mM D149 (batch A) in a 1:1 (by vol-

ume) mixture of acetonitrile and tert-butanol was prepared under inert gas atmosphere 

in a glove box (M. BRAUN LABmaster) in order to minimize contamination by water. 

For comparison experiments, 1 mM cholic acid (Wako, ≥ 98%) was added to a part of 

the solution. After removal from the glove box, the solutions were sonicated for 30 

minutes at 40 – 60°C, so that they were clear to the eye. The porous ZnO films electro-

deposited at an earlier date (cf. Table 30 in Appendix A) were dried in an oven at 100°C 

for 1 – 2 hours, left to cool for 5 minutes, and then immersed into the dye solution. Ad-

sorption was carried out in the dark (covered with Al foil) for 1, 2, 10 or 120 minutes, 

after which the samples were removed from the adsorption solution and rinsed with 

ethanol, dried at air and stored in the dark in N2-filled and Parafilm®-sealed plastic cas-

es until further use. 
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Table 3: Materials for adsorption of D149 at University of Gießen.  

material supplier purity further specifications 

D149 (C42H35N3O4S3) Chemicrea n.a. batch A 

acetonitrile (CH3CN) Sigma-Aldrich 99.8% anhydrous 

tert-butanol (C4H10O) Sigma-Aldrich ≥ 99.5% anhydrous 

ethanol (C2H6O) Roth ≥ 99.8% denatured 

2.5.3 D149+D131+SQ2 and np-ZnO+D149+D131+SQ2 (Gießen) 

On the basis of previously established adsorption procedures,31, 32, 226, 271 the photosensi-

tizers D149, D131 (2-Cyano-3-[4-[4-(2,2-diphenylethenyl)phenyl]-1,2,3,3a,4,8b-hexa- 

hydrocyclo-pent[b]indol-7-yl]-2-propenoic acid) and SQ2 (5-carboxy-2-[[3-[(2,3-

dihydro-1,1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-

cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium) were adsorbed to the 

inner surface of electrodeposited or screen printed porous ZnO films either individually 

or in various combinations using eight different types of dye solutions prepared by use 

of the materials in Table 4.  

Table 4: Materials for adsorption of D149, D131, SQ2 or mixtures thereof.  

material supplier purity further specifications 

D149 (C42H35N3O4S3) Chemicrea n.a. batch B 

D131 (C35H28N2O2) Chemicrea n.a. -- 

SQ2 (C41H46N2O4) Solaronix n.a. -- 

cholic acid (C24H40O5) Wako ≥ 98% -- 

octanoic acid (C8H16O2) Roth ≥ 99.5% melting point 16.7°C 

ethanol (C2H6O) Roth ≥ 99.8% denatured 

acetonitrile (CH3CN) Roth ≥ 99.9% anhydrous (ROTIDRY®) 

tert-butanol (C4H10O) Roth ≥ 99.5% -- 

 

For D149, D131 and D149/D131, a 1:1 (by volume) mixture of acetonitrile and tert-

butanol was utilized as solvent, while SQ2 was dissolved in ethanol. To some of the dye 
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solutions, cholic acid or octanoic acid (OA, measured using a Socorex micropipette) 

were added. Table 5 and Table 6 show the concentrations of dyes and coadsorbates in 

the various solutions as well as the adsorption times used for the electrodeposited or 

screen printed samples.  

Table 5: Composition of solutions and adsorption times used to sensitize porous elec-

trodeposited ZnO films with D149, D131 and/or SQ2. 

sample 
0.5 mM D149 ○ 

= +1 mM CA 

0.5 mM 

D131 

0.25 mM D149      

+ 0.25 mM D131 

○ = +1 mM OA 

0.1 mM SQ2      

○ = +10 mM CA 

7-01 D149 2 h - - - 

7-02 D131 - 2 h - - 

7-03 D149/D131 - - 2 h - 

7-04 SQ2 - - - 4 h 

7-07 SQ2+D149 2 hb - - 4 ha 

7-06 SQ2+D149/D131 - - 2 hb 4 ha 

3-04 D149/CA 2 h ○ - - - 

4-01 D149/D131/OA - - 2 h ○ - 

4-03 

SQ2/CA+D149/CA 
2 h ○b - - 4 h ○a 

4-08 SQ2/CA - - - 4 h ○ 

4-07 SQ2/CA 

+D149/D131/OA 
- - 2 h ○b 4 h ○a 

a first step of sequential co-sensitization. b second step of sequential co-sensitization. 

For each experimental series (D149+D131+SQ2 and np-ZnO+D149+D131+SQ2), fresh 

dye solutions were used, i.e., a total of 15 dye solutions were prepared. The solutions 

containing both D149 and D131 were prepared by mixing equal volumes of D149 and 

D131 solutions or by combining appropriate amounts of both dyes with the solvent mix-

ture. All dye solutions were sonicated for 10 minutes.  
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Table 6: Dye solutions and adsorption times used to sensitize screenprinted nanopar-

ticulate ZnO films with D149, D131, SQ2 or mixtures thereof. 

sample 
0.5 mM D149 

○ = +1 mM CA 

0.5 mM D131  

○ = +1 mM OA 

0.25 mM D149   

+ 0.25 mM D131  

○ = +1 mM OA 

0.1 mM SQ2      

○ =  

+10 mM CA 

NP-01 SQ2 - - - 4 h 

NP-08 D149 2 h - - - 

NP-10 D131 - 2 h - - 

NP-11 D149/D131 - - 2 h - 

NP-02 SQ2+D149 2 hb - - 4 ha 

NP-13 

SQ2+D149/D131 
- - 2 hb 4 ha 

NP-04 SQ2/CA - - - 4 h ○ 

NP-09 D149/CA 2 h ○ - - - 

NP-15 D131/OA - 2 h ○ - - 

NP-12 

D149/D131/OA 
- - 2 h ○ - 

NP-05         

SQ2/CA+D149/CA 
2 h ○b - - 4 h ○a 

NP-06  

SQ2/CA+ 

D149/D131/OA 

- - 2 h ○b 4 h ○a 

NP-07        

SQ2/CA+D131/OA+ 

D149/D131/OA 

- 5 min ○b 2 h ○c 4 h ○a 

a first step of sequential co-sensitization. b second step of sequential co-sensitization.       

c third step of sequential co-sensitization 

The porous ZnO films were cleaned in a UV/ozone cleaner (custom-built by A. 

Dragässer272) for 5 – 10 minutes and dried in an oven at 100 – 140°C for at least 1 hour. 

They were left to cool for 5 minutes before being immersed into the dye solutions. All 

adsorptions were carried out in the dark (covered by Al foil). Co-sensitization with 

D149 and D131 was achieved by adsorbing both dyes at a time from the mixed solu-

tions, while combination of SQ2 with one or both of the indoline dyes was reached by 
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sequential adsorption: the samples were immersed in the first solution, rinsed with etha-

nol and dried at air, and subsequently immersed into the second solution (Table 5). In 

one case (sample NP-07), a third step followed after rinsing with ethanol and drying at 

air. As a final step of the adsorption procedures, each film was rinsed (once again) with 

ethanol, dried at air and stored in the dark in an N2-filled and Parafilm®-sealed plastic 

case until further use. 

2.5.4 D149+S1.15PcZn (Gießen) 

Ethanolic (Roth, ≥ 99.8%, denatured) solutions of D149 (Chemicrea, batch B), 

S1.15PcZn (BASF Switzerland, product code C-1663: mixture of 85% Zn(II) phthalocy-

anine monosulfonic acid and 15% Zn(II) phthalocyanine disulfonic acid), or both dyes, 

all containing cholic acid (Wako, ≥ 98%), were prepared with the concentrations speci-

fied in Table 7.  

Table 7: Composition of solutions and adsorption times used to sensitize porous elec-

trodeposited ZnO films with D149 and/or S1.15PcZn. 

sample 

0.5 mM D149 

+ 1 mM CA          

in ethanol 

0.75 mM S1.15PcZn 

+ 1 mM CA 

in ethanol 

0.5 mM D149 

+ 0.75 mM S1.15PcZn 

+ 1 mM CA in ethanol 

5-02       

D149/S1.15PcZn/CA-2h 
- - 2 h 

5-05       

D149/S1.15PcZn/CA-

17.5h 

- - 17.5 h 

5-06                   

S1.15PcZn/CA 
- 17.5 h - 

5-07                        

D149/CA 
17.5 h - - 

 

The solutions were sonicated at 40 – 60°C for 30 minutes. Porous electrodeposited ZnO 

samples were treated in a UV/ozone cleaner (custom-built by A. Dragässer272) for 5 

minutes, dried in an oven at 140°C for approximately 1 hour and left to cool for 5 

minutes before they were immersed into the dye solutions. After 2 hours or 17.5 hours 
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(cf. Table 7), the films were removed from the solutions and rinsed with ethanol, dried 

at air and stored in N2-filled and Parafilm®-sealed plastic cases in the dark until further 

use. 

2.6 Characterization of (Dye-Sensitized) ZnO Films 

2.6.1 Analysis of Film Structure and Thickness by Scanning Electron 

Microscopy (SEM) 

Scanning electron microscopy (SEM) images of cross sections of bare ZnO films not 

used for cell assembly were taken using a Hitachi S-4800 field emission scanning elec-

tron microscope. For this purpose, small pieces of the samples were cut and fixed on 

electrode holders using conductive carbon tape as shown in Figure 26. To prevent 

charging of the films during the measurement, carbon tape was used to form a contact 

between the film and FTO/glass and the metallic sample holder.  

 

Figure 26: Preparation of ZnO samples for cross sectional SEM analysis. 

Acceleration voltage and emission current were set to 5 kV and 10 µA. The porous film 

thickness of 10 samples was determined from the SEM cross section images and com-

pared with the charge transferred during their electrodeposition to obtain a factor allow-

ing conversion of transferred charge to film thickness (see details in chapter 3).  

2.6.2 UV/Vis Absorption Spectroscopy of Films 

UV/Vis absorption spectra of the dye-sensitized ZnO films were measured in transmis-

sion mode by means of a Hitachi U-4000 spectrophotometer equipped with integrating 

sphere (used for films sensitized with D149/CA at Gifu University) or using the tec5 

spectrometer system described in chapter 2.4 in combination with a tec5 SPH-REFL-50 

integrating sphere (employed for all remaining films). The samples were illuminated 
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from the substrate side (back side) through a black aperture (diameter of 3 – 4 mm), 

positioned directly adjacent to the substrate. For the reference measurement, only the 

aperture was placed in the light path. For comparison, UV/Vis absorption spectra of 

uncoated FTO glass plates and bare porous ZnO films (without dye) were recorded. All 

solid-state UV/Vis spectra shown in this work were corrected for constant offsets due to 

light reflection and absorption by the substrate, determined at a wavelength where none 

of the dyes absorbed light (typically, 800 nm). 

2.6.3 Determination of D149 Loading via Desorption 

For the determination of the dye loading of ZnO films sensitized with D149 in the pres-

ence or absence of cholic acid (not used for cell assembly), D149 was dissolved out of 

the porous ZnO by immersing either whole films or film quarters into dimethylacetam-

ide (DMAA) (Wako, ≥ 98%) or dimethylformamide (DMF) (Roth, ≥ 99%) in Para-

film®-sealed lidded glass bottles or quartz cuvettes for 1 day. UV/Vis absorption spec-

tra of the resulting D149 solutions were measured as described in 2.4. From the absorb-

ance spectra, the heights of the absorption maxima (located at 530 – 532 nm) were de-

termined. The dye concentration in the solution was then calculated using abs = cd 

(chapter 1.4.1), with abs as the absorbance value in the maximum, d = 1 cm, and  = 

72350 L mol-1 cm-1 (reported for a wavelength of 530 nm for D149 dissolved in DMF, 

see Supporting Information of ref. 31, and used as an approximation for both DMF and 

DMAA solutions in this work). The result was multiplied by the volume of the solution 

(5 mL or 10 mL) and divided by the sample area to yield the dye loading in nmolcm-2. If 

sample pieces rather than whole ZnO films (area = 0.28 cm2) were used, the pieces were 

scanned in front of millimeter paper on a Sharp office printer/scanner and the area was 

determined by pixel counting using the image analysis software GIMP2.0.   

2.7 Preparation of Counter Electrodes 

For all solar cells with photoelectrodes made of electrodeposited ZnO, counter elec-

trodes based on ATO (antimony-doped SnO2)-coated glass (Geomatec, thickness 1.1 

mm, sheet resistance 5 Ω/☐) were used. These were prepared in the Yoshida laboratory 

at Gifu University as described below. Some of the counter electrodes (used for the se-

ries D149 without CA, D149+S1.15PcZn, and D149+D131+SQ2) were prepared by 
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Shigeo Hori. For the cells with screenprinted nanoparticulate ZnO films as photoelec-

trodes, counter electrodes based on FTO-coated glass (Asahi, type “DU”, thickness 1.8 

mm, sheet resistance 10 ohm/☐) prepared by Hayato Kurotaki at Yamagata University 

were used, because the Yoshida group had discontinued the use of ATO-coated glass in 

their laboratory. For the preparation of Pt-coated counter electrodes, the conductively 

coated glass was cut into 3.5 cm x 2 cm pieces. The glass sheets were immersed into 

water (Milli-Q) with their conductive side facing down, and holes were drilled in their 

center using a Minimo drilling system with a KM11H 35 motor, a HO11 head, and a 

diamond-coated drill bit. The samples were rinsed with water (Milli-Q), dried in an air 

flow and cleaned in a UV/ozone box (Filgen UV253H with Ozone Killer unit UV253-

OZ) for 5 – 10 minutes. For d.c. sputter deposition of platinum (Sanyu Electron Co. 

Ltd., 99.99%) on the ATO-coated side of the counter electrodes, a Quick Coater SC-708 

(Sanyu Electron Co. Ltd.) was employed. Ar gas (GC Tokai, 99.999%) was used to cre-

ate the plasma, and the sputtering current was adjusted to 24 mA. The sputtering time 

was 5 minutes, yielding semi-transparent films. 

2.8 Assembly of Solar Cells 

To assemble sandwich-type solar cells, hot-melt foil (Surlyn®, thickness 30 µm) was 

cut into 2 cm x 2 cm pieces, and holes with a diameter of 6 mm were punched into the 

center of each piece. The pieces were cleaned with ethanol (Wako, 99.5% or Roth, ≥ 

99.8) and dried in an air or nitrogen flow. Pt-coated counter electrodes (cf. section 2.7) 

were cleaned in a UV/ozone cleaner (Filgen UV253H or custom-built model272) for 5 

minutes prior to their use, if not used shortly after preparation. A part of the cut and 

punched pieces of Surlyn® foil were kindly supplied by S. Hori of Gifu University, and 

some of the Pt-sputtered counter electrodes were kindly provided by S. Hori of Gifu 

University or H. Kurotaki of Yamagata University (cf. section 2.7). Dye-sensitized ZnO 

working electrodes (typically sensitized 0 – 2 days, but never more than 5 days, prior to 

cell assembly) and counter electrodes were assembled at a 90° angle to each other in the 

bottom part of a custom-built 2-piece steel mounting device (Figure 27), with their 

conductive sides facing each other and with the cut and punched hot-melt foil in be-

tween (Figure 28).   
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Figure 27: Custom-built mounting device for assembly of dye-sensitized solar cells. 

Replica of a device custom-built by Gifu University, prepared by the workshop of the 

Department of Physics at University of Gießen. 

In order to pre-seal the electrodes together, the top part of the mounting device was 

heated to 140 – 190°C on a ceramic top hot plate or in an oven and manually pressed 

down on the stacked electrodes in the bottom part of the mounting device. The pre-

sealed cell was then taken out of the mounting device, both top and bottom parts of the 

latter were heated to 140 – 190°C, and the sealing was finalized by placing the cell into 

the heated mounting device on the hot plate or on a laboratory countertop and firmly 

pressing the top part down by hand for about 30 seconds.  

The thus-obtained “dry” (before insertion of the electrolyte) cells were stored in the 

dark in N2-filled and Parafilm®-sealed plastic cases for typically ≤ 1 week (but never 

more than 3 weeks), before the electrolyte was inserted on the day of their first photo-

voltaic and photoelectrochemical characterization as described below. As an exception 

from this, the cells of the series D149 with CA (chapter 5) were fully assembled, filled 

with electrolyte, and then stored in tightly closing plastic sample cases in a desiccator 

(in the dark) for up to 2 days before being characterized (cf. Table 30 in Appendix A). 

As an electrolyte, a freshly prepared or stock solution (up to 4 weeks old) of 0.1 M I2 

(Wako, 99.8% or Scharlau, ≥ 99.8%) and 1 M tetrapropylammonium iodide (TPAI) 

(Alfa Aesar, ≥ 98% or Aldrich, ≥ 98%) in a 4:1 (by volume) mixture of ethylene car-

bonate (Wako, ≥ 98% or Merck, ≥ 99%) and acetonitrile (Wako, ≥ 99.5% or Roth, ≥ 

99.9%, anhydrous (ROTIDRY®)) was used. 



Experimental Procedures 87 

 

 

 

Figure 28: Scheme showing the steps of solar cell assembly and contacting. 

A small drop of the electrolyte was placed onto the hole in the counter electrode and the 

cell was placed into a vacuum drying oven (Yamato DP3) or into the small transfer 

chamber of a glove box (M. BRAUN LABmaster). The box or transfer chamber was 

evacuated and the cell was left in that condition for about 30 seconds to remove air from 

the space between counter electrode and ZnO/dye film and to fill the space with electro-

lyte solution. The pressure was increased back to atmospheric pressure, the sample was 

taken out, and the excess electrolyte was removed thoroughly from the back side of the 

counter electrode using laboratory wipes and a small amount of ethanol, if necessary. 

The hole was sealed by placing a piece of Surlyn®  (1.5 cm x 1.5 cm) and a 1.8 cm x 

1.8 cm cover slip (Matsunami, thickness 0.12 – 0.17 mm or Roth, thickness 0.13 – 0.16 

mm) onto the back side of the counter electrode and lightly pressing down on the cover 
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slip either with the hot (140 °C) top part of the mounting device (cf. Figure 28) or with 

a soldering iron heated to 240°C. On the day of cell characterization, the working and 

counter electrodes were contacted as illustrated in Figure 28 using either In/Ga alloy 

and Cu tape (Gifu University) or Cu tape (Plano, product no. G3940) and conductive 

silver paint (ACHESON 1415 via Plano, product no. G3692) (University of Gießen). 

The active area of the solar cells was 0.28 cm2. 

2.9 Characterization of Solar Cells 

The main characterization of the cells of series D149 with CA was performed at Gifu 

University, while the remaining cells were fully characterized at University of Gießen. 

The characterization in Gießen was largely realized using a customized Zahner CIMPS 

(controlled intensity-modulated photocurrent and photovoltage spectroscopy) system for 

photoelectrochemical measurements. This system was established as part of this work 

and is described in detail in Appendix B. For the cells of series D149+S1.15PcZn, 

D149+D131+SQ2 as well as np-ZnO+D149+D131+SQ2, J-V characterization under 

illumination with LED light, EIS at open-circuit under illumination of varied intensity, 

OCVD, charge extraction from open-circuit conditions, short-circuit photocurrent de-

cay, IMPS, IMVS as well as intensity-dependent short-circuit current and open-circuit 

voltage were measured in an automated sequence using an AutoHotkey script pro-

grammed by André Dragässer.272 In all other measurements, the input of the parameter 

settings and starting of the measurements was performed manually.  

2.9.1 Current-Voltage Characterization 

The current-voltage curves were recorded using a Hokuto Denko HSV-100 potentiostat 

or a Zahner IM6 electrochemical workstation. The IM6 workstation was controlled via 

the “CIMPS” add-on of the software Thales, which was modified by M. Beu and A. 

Dragässer to allow use of external light sources (cf. Appendix B) when employing the 

“Start Max. P & FF” feature intended for J-V characterization. To measure the J-V char-

acteristics under AM1.5G conditions, the cell was illuminated by a Yamashita Denso 

YSS-50 solar simulator or an LOT Oriel solar simulator LS0106 with AM1.5G filter 

LSZ189. The light intensity of 100 mWcm-2 was set by means of a Si reference solar 

cell or an EKO LS-100 spectroradiometer. The Yamashita Denso YSS-50 solar simula-
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tor and the Si reference solar cell belong to the Solid-state Electronics Engineering La-

boratory at Gifu University (Prof. Nonomura), who kindly permitted use of their equip-

ment. At Gifu University, the sample was positioned on a flat surface illuminated from 

the top for the measurement of the J-V curves under AM1.5G conditions, while dark 

characteristics were measured with the light source turned off and the sample covered 

by a thick black piece of felt. At University of Gießen, the sample was fixed on a sam-

ple holder in a custom-built dark box to exclude the influence of ambient light and al-

low only the light of the solar simulator to enter through a hole (cf. Appendix B). For 

the measurement of the dark J-V characteristics, the hole in the dark box was closed by 

a shutter. If not indicated otherwise, the illuminated cell area was generally limited to 

0.196 cm2 using a black shadow mask with a circular hole with a diameter of 5 mm 

(compared to a diameter of 6 mm of the dye-sensitized films, yielding a total active area 

of 0.28 cm2). Current densities were calculated using the illuminated cell area. This ap-

proach relies on the assumption that the limitation of the illuminated area did not signif-

icantly change the recombination current compared to a fully illuminated cell. Compara-

tive J-V measurements with and without mask confirmed the validity of this assumption 

(chapter 9.2). The internal current-voltage characteristics (illuminated) were obtained by 

plotting the measured cell current against the Fermi-level voltage Vf determined using 

the results of impedance spectroscopy measurements under AM1.5G-type illumination 

(see details in 2.9.3). For plots of the series resistance-corrected current-voltage curves 

in the dark, the Vf values from EIS under AM1.5G type illumination were used as well, 

because dark EIS data had typically not been obtained. This procedure is based on the 

assumption that the total series resistance (cf. chapter 1.4.4) is independent of illumina-

tion. The influence of elevated temperatures on the current-voltage characteristics in the 

dark and under illumination was tested on a few of the cells with D149 and cholic acid 

by using a hairdryer (Clatronic) to heat the air around the cell to about 70°C (as deter-

mined by a Greisinger GTH 1200 digital thermometer) and measuring J-V curves under 

these conditions by means of the Zahner/LOT Oriel setup. 

2.9.2 Measurement of the Incident Photon-to-Electron Conversion 

Efficiency (IPCE) 

Measurements of the incident photon-to-electron conversion efficiency were performed 

at short-circuit, i.e. with a bias voltage of 0 V applied to the solar cell. The illuminated 
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cell area was restricted to 0.196 cm2 using a black shadow mask and current densities 

and IPCE values were calculated based on this area. At Gifu University, the measure-

ments were realized using a Bunko-Keiki CEP-2000 system. The photon flux density 

was kept constant at 5·1015 s-1cm-2, both over time and over the wavelength range inves-

tigated. The cell was contacted to the cables of the setup and placed on a sample stage 

so that the active area was positioned in the light beam. By making slight manual ad-

justments to the sample position the location of highest light intensity (i.e. in which the 

cell showed the highest photocurrent) was found, and the sample was fixed there for the 

subsequent measurement. The wavelength range of the IPCE measurement was 300 – 

800 nm and the step width was 5 nm. For IPCE measurements at University of Gießen, 

two different systems were used comparatively, referred to as Zahner system and Ac-

ton/Ivium system (cf. Appendix C). The Zahner system consisted of a customized Zah-

ner CIMPS setup (cf. Appendix B) with CIMPS-pcs add-on containing a TLS02 light 

source (including a monochromator), as well as the Thales software add-on CIMPS-pcs 

for control. The light source was operated galvanostatically with a sinusoidally modu-

lated current of 300 mA (d.c. bias current) +/- 100 mA (a.c. amplitude). The frequency 

of the modulation was generally set to 1 Hz, and the number of cycles recorded and 

averaged for each wavelength (“count”) was 20. In some earlier measurements (series 

D149 without CA), a modulation frequency of 10 Hz was used with a count of 100. The 

Acton/Ivium system was developed as part of this work in cooperation with J. 

Birkenstock273 and combined a 1000 W Xe arc lamp (Oriel) with an Acton SpectraPro 

2300i monochromator and a LabVIEW-based software created by J. Birkenstock.273 The 

light beam leaving the monochromator entered a dark box, in which the sample was 

fixed on a sample holder, through a hole. The photon flux density was constant over 

time (i.e., not modulated) and its value at the location of the sample was determined as a 

function of the wavelength prior to the measurement of the spectral solar cell current 

using a Thorlabs FDS100 Si photodiode fixed on the sample holder. The maximum 

photon flux density was observed at 470 nm, and typically showed a value around 

7·1015 – 8·1015 s-1cm-2 (spectrum in Appendix C). The IPCE values at each wavelength 

were calculated from the wavelength-dependent photon flux at the location of the sam-

ple and the wavelength-dependent solar cell current density under the assumption that 

the IPCE did not change due to the variation of the photon flux over the range of differ-

ent wavelengths. This was confirmed (see Appendix C) by their experimentally ob-
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served linear dependence of the cells’ current density on the light intensity of a red LED 

(Zahner RTR01, λmax = 632 nm). The wavelength range and step width were 430 – 730 

nm (maximum range) and 5 nm for the Zahner system, and 350 – 700 nm (350 – 800 

nm for cells with red-absorbing photosensitizers) and 10 nm for the Acton/Ivium sys-

tem.  

2.9.3 Electrochemical Impedance Spectroscopy (EIS) 

For electrochemical impedance spectroscopy (EIS) measurements, a Solartron Imped-

ance/Gain-Phase Analyzer 1260 combined with a Solartron potentiostat/galvanostat 

1287, or a customized Zahner CIMPS system with IM6 electrochemical workstation (cf. 

Appendix B) was employed. Measurements at varied bias voltage under white light 

were performed using ~60 mWcm-2 illumination by a 200 W Xe arc lamp (Ushio) or 

using AM1.5G-type illumination (100 mWcm-2) by an LOT Oriel solar simulator 

LS0106. Additionally, many of the samples were studied by EIS at open circuit at a se-

ries of light intensities by a red LED (Zahner RTR01, λmax = 632 nm), and a small selec-

tion of cells was analyzed by EIS at varied bias voltage in the dark. Table 33 (Appendix 

D) contains a detailed list of the types of EIS measurements performed for the different 

groups of cells, and specifies the corresponding bias voltage range, amplitude of the 

voltage modulation, and frequency range. In the measurements under illumination, gen-

erally the full cell area of 0.28 cm2 was illuminated, except in the measurements per-

formed at Gifu University, where the illuminated area was limited to 0.196 cm2 with a 

black mask with circular hole. All impedance spectra were fitted to the equivalent cir-

cuit shown in Figure 106 (Appendix D) using the software ZView2 to obtain the re-

combination resistance Rrec, chemical capacitance Cµ, substrate resistance Rs, and ohmic 

parts of the electrolyte and counter electrode resistances, Rd and RPt. The Fermi-level 

voltage Vf was determined using eq. (56) and eq. (57) or, alternatively, using eq. (58) 

with the approximation Rtr = 0 (Rtr could not be determined as it was not distinguishable 

in the EIS spectra). The density of states g(Efn) in the nanostructured ZnO films was 

calculated from the chemical capacitance Cµ obtained by EIS using eq. (45), assuming a 

porosity of 0.6 for the electrodeposited ZnO films and 0.7 for the nanoparticulate 

screenprinted ZnO films.136 To obtain the normalized chemical capacitance (normalized 

Cµ), Cµ was divided by the relative total trap density Nt/Nt,ref (cf. section 2.9.7). 
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2.9.4 Stepped Light-Induced Transient Measurements of Photocurrent 

and Voltage (SLIM-PCV) 

Time-resolved measurements of the decay of photovoltage or photocurrent after a small 

stepped change in light intensity (SLIM-PCV)264 were realized at Gifu University with 

the help of an EKO PSL-100 system with red diode laser (660 nm).  

For the transient measurement of the photovoltage, the cell was kept at open circuit 

throughout the experiment. Measurements with six different initial laser voltages were 

performed: 0.9 V, 1.2 V, 1.5 V, 1.9 V, 2.3 V, 3.5 V. The light intensities corresponding 

to these laser voltages were measured using an EKO LS-100 spectroradiometer. Follow-

ing a 10-60 s settling time, in which the cell was illuminated with the initial laser inten-

sity and allowed to equilibrate, the system began to record voltage-time data. The sam-

pling interval was set to 200 µs and the total number of recorded data points was 1000, 

resulting in a total recording time of 0.2 s. After 10% of the specified total time, the 

laser voltage was automatically stepped down to a previously defined final laser volt-

age. The latter was chosen to be 0.01 – 0.03 V smaller than the initial laser voltage, 

leading to a small reduction of the light intensity and a decrease of the open-circuit pho-

tovoltage by typically 1 mV. With the help of the PSL-100 software, the electron life-

time τn was determined by fitting the obtained voltage decays to a monoexponential de-

cay function of the type 
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circuit photovoltage, Voc,0 is its equilibrium value before the onset of the decay, const is 

a constant, t is the time and t0 is the time of the onset of the decay.  

The transient photocurrent measurements using the EKO PSL-100 system were per-

formed under short-circuit conditions. The same set of initial laser voltages as in the 

voltage measurements was used, and the final laser voltages were again 0.01 – 0.03 V 

smaller than the corresponding initial voltages. While the settling time was again chosen 

to be between 10 s and 60 s, the sampling interval and total number of data points were 

set to 30 µs and 1300, amounting to a total measurement time of 39 ms. As in the volt-

age measurements, the laser voltage was set to be stepped down after 10% of this total 

recording time, i.e. 3.9 ms. The resulting current decays were fitted to a monoexponen-
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ware, where Jsc is the short-circuit current, Jsc,0 is its equilibrium value before the onset 

of the decay, const is a constant, t is the time, t0 is the time of the onset of the decay, and 

τ is the time constant of the decay. Based on the fit result, the software automatically 

calculated the diffusion coefficient Dn via eq. (71). 

2.9.5 Open-Circuit Voltage Decay (OCVD) Measurements 

To measure the decay of the photovoltage under open-circuit conditions, the customized 

Zahner CIMPS system (Appendix B) with CIMPS-fit add-on was used with a red LED 

(Zahner RTR01). The cell was illuminated with a light intensity of 25 mWcm-2. After a 

settling time of 5 s, the voltage measurement was automatically started. The resolution 

and total measurement time (parameter “record time”) were set to 0.1 ms and 60 s. After 

10% (value of the parameter “pretrigger share”) of the total measurement time, i.e. 6 s, 

the LED was turned off by the system and the voltage started to decay. Using OriginPro 

9.1 software, the voltage decay curves were smoothed (Savitzky-Golay smooth, 2nd or-

der, 500-points windows) and differentiated, and the results were used to determine the 

voltage-dependent electron lifetime τn according to eq. (70). 

2.9.6 Charge Extraction Measurements from Open-Circuit Conditions 

Charge extraction from open-circuit conditions was realized by means of the EKO PSL-

100 measurement setup with 660 nm laser or using the “Q-extraction” function of the 

Zahner CIMPS system with red LED (RTR01, λmax = 632 nm) or cyan LED (Zahner 

CYR01, λmax = 513 nm). In the measurements with the PSL-100 system, the laser volt-

ages corresponded to the ones used in the time-dependent current and voltage measure-

ments (see section 2.9.4). For each laser intensity, the exact open-circuit voltage was 

determined prior to the charge extraction measurements by applying the Voc observed in 

the first part of the time-resolved photovoltage measurements (section 2.9.4) and then 

making small changes to this applied voltage until the current measured by the PSL-100 

system was as close to zero as possible. The thus-determined open-circuit photovoltage 

was then applied to the cell while it was being illuminated with the corresponding laser 

intensity. After an equilibration time of 10 s, the data measurement was started by the 

system. The sampling interval and total number of data points were 200 µs and 6000, 

resulting in a total measurement time of 1.2 s. After 10% of this total time (i.e. 0.12 s), 
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the laser was turned off and the bias voltage was switched to 0 V (short-circuit condi-

tion), causing the charge stored in the ZnO to be extracted. By means of the PSL-100 

software, the current recorded during the extraction part was integrated over time to 

yield the charge Qoc stored in the porous ZnO films under open-circuit conditions at 

different light intensities. In the measurements with the Zahner CIMPS system, the tar-

get voltage was set to 0 V and the discharge current (Zahner-specific parameter)274 was 

typically set to 400 µA. The sample time (resolution) was 10 ms. The cell was illumi-

nated under open-circuit conditions for 10 s, after which the LED was automatically 

turned off and the cell was simultaneously short-circuited. The resulting current was 

measured for 20 s, and the system delivered the extracted charge Qoc (current integrated 

over time) as an output. The measurement was performed at 12 different LED intensi-

ties between 0.5 and 25 mWcm-2. The Qoc obtained by both measurement systems were 

converted into the electron density noc using eq. (72), with the porosity p assumed to be 

0.6 for the electrodeposited ZnO films and 0.7 for the nanoparticulate screenprinted 

ZnO films.136 

2.9.7 Short-Circuit Photocurrent Decay Measurements (Charge Extraction 

from Short-Circuit Conditions) 

Time-resolved measurements of full short-circuit photocurrent decays to determine the 

charge stored in the porous ZnO under short-circuit conditions, Qsc, were performed 

using the EKO PSL-100 system (cf. sections 2.9.4 and 2.9.6) or the Zahner CIMPS sys-

tem with red Zahner LED (RTR01, λmax = 632 nm) and CIMPS-FIT add-on. For the 

measurements with the PSL-100 setup, the same procedure and parameters as in the 

charge extraction measurements from open-circuit conditions were applied, but the cell 

bias voltage was set to 0 V (short-circuit) for all laser intensities. For each cell, the 

background current due to small amounts of background light was measured by repeat-

ing the short-circuit charge extraction measurement with a laser voltage of 0 V. All 

charges were automatically determined from the current decay curves by the PSL-100 

system. The background charge was subtracted from the charges measured at different 

laser intensities  to yield the intensity-dependent Qsc. In the measurements with the Zah-

ner CIMPS system, the cell was allowed to equilibrate during a settling time of 5 s be-

fore the recording of measurement data was started by the system. Resolution and total 

measurement time (parameter “record time”) were set to 0.1 ms and 5 s. The LED was 
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switched off to start the current decay after 1 s, corresponding to a value of 20% of the 

parameter “pretrigger share” (i.e. the share of total measurement time after which the 

LED is switched off). The experiment was performed at 14 different LED intensities 

between 0.1 and 25 mWcm-2. Integration of the current over time, which was performed 

in OriginPro 9.1 in an automated process using an Origin-based script programmed by 

André Dragässer,272 yielded Qsc for each of the light intensities investigated. Qsc values 

from the measurements with both setups were converted into the electron density nsc 

using eq. (72), assuming p = 0.6 for the electrodeposited ZnO films and p = 0.7 for the 

nanoparticulate screenprinted ZnO films.136 The short circuit electron density was plot-

ted logarithmically against the short-circuit current density Jsc, and the factors necessary 

to align the nsc vs. Jsc curves with a reference curve were determined. These factors cor-

respond to relative values of the total density of trap states Nt with respect to the refer-

ence cell,252 which will be referred to as Nt/Nt,ref in this work.  

2.9.8 Intensity-Modulated Photocurrent/Photovoltage Spectroscopy 

(IMPS/IMVS) 

All IMPS and IMVS measurements were performed using the customized Zahner 

CIMPS setup with red LED (Zahner RTR01). The constant background light intensity 

was varied between 0.1 and 25 mWcm-2, with up to 12 light intensities in between. The 

amplitude of the light modulation was set to be about 5 – 10% of the constant back-

ground light intensity, except for the smallest light intensities of 0.1 and 0.2 mWcm-2, 

for which the amplitude was about 25 – 45% of the background intensity when using 

the smallest value the system allows. The lower frequency limit was chosen between 

100 mHz and 1 Hz, while the upper limit was 100 kHz or 1 MHz. IMPS was measured 

under short-circuit conditions, while IMVS was done under open-circuit conditions. The 

real part (Re) and imaginary part (Im) of the IMPS and IMVS spectra were fitted using  

eq. (61) and eq. (62),256 with ωmin = 1/τn in the case of IMVS and ωmin = 1/τtr in IMPS, to 

obtain the effective electron lifetime τn and the electron transit time τtr. For each cell, the 

fitting for the complete series of measurements at different light intensities was per-

formed in OriginPro 9.1 in an automated way using an Origin-based script programmed 

by André Dragässer.272 The script allowed either a separate fitting of the imaginary part 

or a combined fitting of real part and imaginary part yielding values for the parameters 
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M and τ that are optimized for both functions. If not otherwise mentioned, the results 

obtained by the combined fitting are presented.   

2.9.9 Intensity-Dependent Measurements of Short-Circuit Photocurrent 

and Open-Circuit Photovoltage 

The short-circuit photocurrent and open-circuit photovoltage of the solar cells were 

measured as a function of the light intensity using the “static transfer function” feature 

of the customized Zahner CIMPS system with red LED (RTR01). The intensity was 

varied between 0 and 25 mWcm-2 in 0.5 mWcm-2 steps. After each change in light in-

tensity, a settling time of 2 s allowed the cell to adjust to a new equilibrium.  
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3 Nanostructure and Film Thickness of the 

Electrodeposited Porous ZnO Films 

The preparation of porous ZnO by electrodeposition in the presence of the structure-

direction agent eosin Y is most commonly realized using an eosin Y concentration of  

40 to 50 μM and a cathodic deposition potential of -0.85 V vs. Ag/AgCl or more nega-

tive.25, 136, 137, 186, 219 Under these conditions, a fast deposition of ZnO/eosin Y hybrid 

films is observed and the structure-directing agent can be completely removed from the 

pores of the ZnO matrix by soft alkaline treatment.26, 183 The resulting porous ZnO 

structure exhibits typical pore sizes of around 10 – 20 nm.27, 186 At less negative deposi-

tion potentials (and using 40-50 μM of eosin Y), smaller amounts of eosin Y are incor-

porated into the film and it is difficult to extract the SDA.275 

In the electrodeposition of the porous ZnO layers used in this work, a slightly different 

approach was utilized, which has first been studied in a PhD project in the group of T. 

Yoshida.276 In this approach, an increase of the concentration of eosin Y in the deposi-

tion bath to several hundreds of µM opens up the possibility of applying a less cathodic 

deposition potential but nonetheless obtaining hybrid films with high loadings of eo-

sin Y that are fully removable by the standard alkaline treatment.136, 276 Besides the ad-

vantage of requiring a smaller polarization potential, it was found that it leads to films 

with a more homogeneous film thickness and improved mechanical stability compared 

to porous ZnO prepared under the above-described standard conditions.276 The specific 

deposition parameters used here – 300 µM of eosin Y and a potential of -0.75 V vs. 

Ag/AgCl – yielded ZnO layers with a nanostructure as seen in the scanning electron 

microscopy image in Figure 29. The columnar structure closely resembles that of films 

deposited at more negative potentials using lower concentrations of eosin Y,26, 27, 136, 277 

with a similar27 average pore diameter estimated from this image to be in the range of 

20 – 30 nm.  
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Figure 29: High resolution cross-sectional SEM image of an electrodeposited porous 

ZnO film typical of the films used in this work. The sample was prepared by electrodep-

osition from an aqueous, oxygen-saturated bath containing 0.1 M KCl,  5 mM ZnCl2 

and 300 µM eosin Y. The deposition potential was -0.75 V vs. Ag/AgCl. Reprinted from 

ref. 278, Copyright 2013, with permission from Elsevier. 

The fabrication of the samples used for the studies in this thesis was realized by means 

of a custom-built setup permitting electrodeposition of ZnO on eight substrates at a time 

under exactly the same conditions with respect to temperature and concentrations of 

reagents in the bath. Besides being time-efficient, this approach was expected to offer 

the advantage of fabricating sets of films of highest reproducibility, which is a crucial 

precondition for the systematic study of modifications in the photosensitizer layer in-

tended in this work. To verify the comparability of simultaneously deposited ZnO layers 

and examine the batch-to-batch reproducibility, the current-time curves attained during 

deposition were analyzed for each sample utilized to build test solar cells (cf. full list of 

samples in Table 30). A number of films that were not used for cell assembly were fur-

ther analyzed by cross-sectional scanning electron microscopy (SEM) to relate the ob-

served current-time curves to the film thickness.  

A representative example of a set of chronoamperograms obtained in the deposition of 

eight ZnO films can be seen in Figure 30. On the left, the current-time curves during 

electrochemical activation of the substrates and deposition of the compact ZnO blocking 

layers are shown, and on the right, the curves recorded during deposition of the porous 

ZnO films are presented. The observed behavior is typical for this pretreatment and 

deposition routine26, 269, 279 The achieved current density during activation was similar to 
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that reported previously for the same procedure,269 confirming successful activation of 

the substrate and, as a result, observation of a diffusion-limited oxygen reduction cur-

rent. Note that the chronoamperograms all exhibit very similar shapes and the current 

densities show little sample-to-sample scattering. This suggests that the reduction of O2 

and the film growth proceeded identically, which gives a first indication that the internal 

morphologies and film thicknesses of these layers should be comparable as well. Sam-

ples with a notably different behavior of the activation or deposition current (such as 

“2” in Figure 30, left) were generally sorted out and not used to build DSCs.     

        

Figure 30: Chronoamperograms recorded during the simultaneous electrochemical 

preparation of 8 ZnO films. Left: current density during electrochemical activation 

(electrolysis in the absence of ZnCl2 and eosin Y) for 30 minutes and subsequent block-

ing layer deposition for 10 minutes. Right: Current density during deposition of the po-

rous layer in the presence of eosin Y for 30 minutes (directly following activation and 

blocking layer deposition).      

Figure 31 presents cross-sectional SEM images of five of the samples corresponding to 

the chronoamperograms shown above. Porous film, compact film and FTO layer could 

be easily distinguished based on differences in contrast (see areas highlighted in green, 

red, and blue). The thickness of the porous layer was measured from images taken at 

three different places along the diameter of each film using image analysis software. 

The averaged values ranged from 4.4 to 4.7 µm, with lateral variations of ≤ 0.1 µm 

(Figure 31). This SEM-based thickness measurement was repeated for five more films 

taken from two other batches.  
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Figure 31: Scanning electron microscopy of cross sections of ZnO films electrodeposit-

ed in parallel using a custom-built 8-electrode deposition setup. Deposition conditions 

as specified in Figure 29. The film thicknesses d (subscript indicates sample no.) are 

averages of values determined from three different images taken along the diameter of 

each film: close to the left edge, in the film center, and close to the right edge.   

d4 = 4.4 µm d5 = 4.6 µm 

d1 = 4.7 µm d3 = 4.5 µm 

d6 = 4.4 µm 

porous ZnO 

FTO 

compact ZnO 
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Figure 32: Film thickness of porous electrodeposited ZnO films determined from SEM 

cross sections as a function of the charge transferred during their deposition. The red 

line is a linear fit to the data (intercept fixed at SEM film thickness = 0 µm). 

Based on these results, the thickness of each of the electrodeposited ZnO films used for 

DSC assembly in this work (see Table 30, Appendix) was determined using the depos-

ited charge and the conversion factor of 1.43 µm·(C·cm2)-1, cf. Figure 32. The narrow 

distribution of thicknesses for this large number of samples, Figure 33, further confirms 

the high sample-to-sample and batch-to-batch reproducibility of the electrodeposition of 

porous ZnO using the 8-electrode setup.   

 

Figure 33: Thickness distribution of the electrodeposited ZnO films used in the present 

work.  
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4 Reproducibility of the Properties of Standard Cells 

Each of the experimental series discussed in the present work included one or more 

standard25 ZnO-based DSCs sensitized with D149 or D149/CA for 2 hours (cf. Table 

30). The properties of these cells mostly served as a reference point to discuss the influ-

ence of adsorbing different sensitizers and/or coadsorbates. The present chapter will 

mainly focus on the reproducibility among the two groups of standard samples (D149 

and D149/CA), while the significant difference between samples with and without CA 

will be discussed in detail in chapter 5. 

The absorption spectra of the D149- or D149/CA-sensitized electrodeposited ZnO films 

of chapter 5 (Figure 34 (a)), which were fabricated at Gifu University or University of 

Gießen, showed negligible variations within each set of 3 identically prepared films 

stored for the same time prior to sensitization (see labels in Figure 34).  

  

Figure 34: UV/Vis absorption spectra of various porous ZnO films sensitized with 

D149 or D149/CA for 2 hours using D149 of synthesis batch A (a) or synthesis batch B 

(b). Curve labels correspond to the age of the ZnO films (in months) at the time of dye 

sensitization. In the legends, the numbers in parentheses indicate the chapter numbers 

in which the samples will be discussed in detail.  

This demonstrates excellent reproducibility of the dye loading (cf. eq. (24)) for electro-

deposited films of the same age sensitized at a given laboratory, which allowed to forgo 

the preparation of multiple samples with identical preparation conditions in chapters 6 

through 8 in favor of exploring a large number of different dye/dye and dye/coadsorbate 

combinations. The optical absorption of ZnO films sensitized with a different batch of 
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D149 at University of Gießen at a later time (dashed lines in Figure 34 (b)) was largely 

comparable to that of the three films with D149 of chapter 5 (dashed black lines in Fig-

ure 34 (a)) except for slightly increased peak heights. Thus, neither the increased age of 

the electrodeposited films at the time of sensitization (21 – 22 months compared to 3 

months, cf. Figure 34), resulting from separated experimental periods, nor the use of a 

different D149 synthesis batch had a significant effect on the amount of D149 loaded 

into the ZnO films in the absence of CA. The D149/CA samples prepared at University 

of Gießen (solid lines in Figure 34 (b)), on the other hand, presented clearly smaller 

absorption peaks than the D149/CA samples prepared in Gifu. This may, at least in part, 

be related to the fact that the sensitization and optical characterization were performed 

in two different laboratories, i.e., under slightly different experimental conditions (cf. 

chapter 2.5). Moreover, the increased age of the samples might have led to a change of 

the ZnO surface (see below) that, in the competitive adsorption of D149 and CA, fa-

vored adsorption of CA over adsorption of D149. For electrodeposited ZnO films of 

similar age sensitized with D149 or D149/CA in Gießen (red and pink curves), quite 

comparable absorbance curves were found, again confirming reproducibility at a given 

laboratory.  

The trend of the short-circuit photocurrent densities Jsc and open-circuit photovoltages 

Voc in the current-voltage characteristics (Figure 35) of the solar cells built from the 

D149-sensitized ZnO films was approximately in line with the trend of their dye load-

ing: the cells with D149/CA of chapter 5 showed reproducible Jsc and Voc, which were 

larger than those of the cell with D149/CA based on nanoparticulate ZnO (chapter 7). 

The smallest Jsc and Voc were found for the sample with D149/CA of chapter 6. For the 

cells with D149 (without CA) based on electrodeposited ZnO, Jsc and Voc also decreased 

between the cells of chapter 5 (again all showing similar curves) and those of chapter 6, 

even though the dye loading was slightly larger in the latter. This indicates a reduced 

efficiency of electron injection from D149 to ZnO (cf. chapter 6.5), which was probably 

the result of chemical changes of the ZnO surface under the influence of atmospheric 

oxygen and water during the longer storage times of the ZnO films prior to dye adsorp-

tion (which, however, did not negatively affect the dye’s ability to adsorb to the surface 

in the absence of CA). 
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Figure 35: Current-voltage characteristics of the DSCs based on D149- or D149/CA-

sensitized ZnO of different chapters, as indicated by the numbers in parentheses. No 

cells were built from the two additional films produced for comparison in chapter 5 

(pink curves in the previous figure). 

In a Master’s project performed within the group in 2013, a 90% decay of power con-

version efficiency was found for DSCs based on D149/CA-sensitized ZnO in cases in 

which the ZnO films had been stored in water for 100 – 120 days prior to their use.280 

Storage under air of the present films may have caused a similar type of degradation, 

albeit less pronounced given the smaller changes in the cell performance. The time-

dependent development of the properties of fully assembled DSCs will be addressed in 

depth in chapter 9. 

Since the D149 or D149/CA cells all contained the same sensitizer or sensitiz-

er/coadsorbate combination, variations in the recombination behavior among these sam-

ples should primarily be determined by differences in their trap distributions (cf. section 

1.2.3, eq. (19)), see Figure 36. The D149 and D149/CA cells based on electrodeposited 

ZnO of chapter 6 and a D149/CA cell prepared from a 19 months old electrodeposited 

ZnO film with longer adsorption time (chapter 8) all showed comparable trap distribu-

tions. A slightly reduced density of states at a given Fermi level was observed for the 

D149 cells of chapter 5 and a clearly steeper trap distribution featuring a significantly 

reduced density of states at higher energies was found for the D149/CA cells of chapter 

5. The good reproducibility within the groups of D149 or D149/CA of chapter 5 was 

again confirmed.     
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Figure 36: Density of states g(Efn) within the ZnO band gap as a function of the quasi-

Fermi energy (Efn = qVf) for cells with D149 or D149/CA of different chapters, as indi-

cated in parentheses. g(Efn) was calculated from the chemical capacitance measured by 

impedance spectroscopy (eq. (45)). 

The difference between the trap distributions of the electrodeposited cells with D149 or 

D149/CA of chapter 5 could have been an effect of the coadsorbate cholic acid (cf. 

chapter 5) that was not reproduced in later experiments as a result of the different batch 

of D149 used. It is conceivable that batch B of the indoline dye contained impurities 

that coadsorbed to ZnO and had a similar effect on the trap distribution as CA, thus 

masking the effect of the additional presence of CA on the trap distribution in D149/CA 

cells with respect to D149 cells. On the other hand, the trap distribution in the electro-

deposited ZnO films may also be influenced by the age of the film, so that the increase 

of g(Efn) from the D149/CA cells of chapter 5 to the D149 cells of chapter 5 to the sam-

ples of chapters 6 and 8 may reflect an increase of the density of traps with increasing 

film age from less than 2 weeks to 3 months to > 19 months. The D149 and D149/CA 

cells fabricated from nanoparticulate ZnO show clearly different trap distributions com-

pared to the electrodeposited cells, suggesting that the properties of these cells should be 

discussed separately from those of the electrodeposited cells, see chapter 7.   
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5 Influence of D149 and Cholic Acid Molecules on 

Photovoltaic Performance and Recombination in 

Dye-Sensitized Solar Cells Based on 

Electrodeposited ZnOIII 

5.1 Optical Properties of the ZnO/D149 Photoelectrodes 

The indoline dye D149 was adsorbed to electrodeposited porous ZnO films for 1, 2, 10 

or 120 min with or without the coadsorbate cholic acid in the dye solution. The UV/Vis 

absorption spectra of the resulting ZnO/dye and ZnO/dye/coadsorbate films, all exhibit 

a main absorption band in the same wavelength range as the solution spectrum, i.e., 

around 500 – 550 nm (Figure 37). 

 

Figure 37: UV/Vis absorption spectra of D149-sensitized ZnO films with (Gifu, ____) or 

without (Gießen, ----) coadsorbate, and of D149 in DMF solution (.....). The dye adsorp-

tion time for the films was 1 (light magenta), 2 (pink), 10 (purple) or 120 (black) min. 

Each film spectrum is the average of spectra of 3 identically prepared samples. Reprint-

ed from ref. 278, Copyright 2013, with permission from Elsevier.  

                                                 
III Most of the original work presented in this chapter has been published in 

J. Electroanal. Chem. 709 (2013), 10-18. 
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However, the film spectra are significantly broader and in some cases show a different 

shape. These observations are the result of dye-dye interaction (aggregation) and/or dif-

ferences in the dielectric environment of the dye caused by adsorption to ZnO. The 

strongest deviations from the solution spectrum are found for long adsorption times (10 

min, 120 min) in the absence of cholic acid (purple and black, dashed lines). The corre-

sponding spectra show strongly asymmetric absorption bands with a red-shifted maxi-

mum with respect to the solution spectrum. This kind of peak shape has previously been 

observed in UV/Vis absorption spectra of the indoline dye D102 adsorbed on TiO2 and 

has been suggested to indicate the presence of J-aggregates.52, 240, 281 In this type of ag-

gregates, the molecules, which are generally expected to lie almost flat with respect to 

the semiconductor surface,281 are arranged head-to-tail, with the head roughly corre-

sponding to the carboxylic acid anchoring group and the tail corresponding to the 4-

(2,2-diphenylethenyl)phenyl group.281 However, it should be noted that in the present 

spectra, there is not only an increase in electronic transitions with lower energies (higher 

wavelengths), but a part of the oscillator strength is also transferred to a blue-shifted 

transition. This is even more apparent in the spectra of the films with cholic acid (all 

adsorption times) or without cholic acid and shorter adsorption times (1 min, 2 min). 

Here, the maximum of the absorption band is shifted to slightly shorter wavelengths 

compared to the peak of the solution spectrum, as observed before for D149-sensitized 

ZnO.282 Blue-shifted absorption bands of dyes can indicate the presence of H-

aggregates, in which the molecules are arranged face-to-face, i.e., with their molecular 

planes on top of each other.240, 281, 283 On the other hand, the observed blue shift may 

also be the consequence of the difference in dielectric environment between the dyes in 

solution and adsorbed to ZnO.284 Hence, the optical measurements of the present films 

only tentatively suggest the presence of H-aggregates under all conditions, but deliver 

stronger evidence of (additional) formation of J-aggregates at high adsorption times in 

the absence of CA. When comparing the spectra of films prepared with adsorption times 

of 10 min or 120 min with or without cholic acid, it can be clearly seen that the use of 

the coadsorbate removes the asymmetry and red-shift of the main absorption band. 

Thus, the presence of cholic acid at least partially suppressed aggregation of D149, even 

though in the present group of samples the dye loading in films with cholic acid was 

higher than in films without CA (see discussion further below). While the aggregation-
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preventing influence of cholic acid or cholic acid derivatives has already been suggested 

in previous studies on the basis of efficiency improvements,137, 202, 219 the present results 

deliver the first clear confirmation of this effect by optical absorption measurements.     

Assuming that the absorption of light by the D149 -sensitized films can be described by 

the Beer-Lambert law (eq. (24)), the spectra can be used to assess the concentration of 

dye molecules in the films. The presence of dye aggregates with excitation energies 

different from that of monomeric D149, particularly in films with long adsorption times, 

indicates that the integrated absorbance (eq. (28)) rather than the peak value of the ab-

sorbance should be used as a measure for the total dye concentration in the samples in-

vestigated here:  
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     (73) 

where the integral was chosen to extend over the width of the main absorption band 

(425 – 700 nm). In eq. (73), the overall measured absorbance is described as a superpo-

sition of contributions arising from dye monomers (M) and different types of dye ag-

gregates (A1, A2, and possible further types), with every species exhibiting a different 

wavelength-dependence of the molar absorptivity (εM, εA1, εA2, etc.). cM is the concen-

tration of dye molecules in monomeric form and cA1, cA2, etc. are the concentrations of 

molecules in aggregates. The integral of the molar absorptivity ε over the wavelength is 

proportional to the oscillator strength of the transition and depends on the average tran-

sition wavelength.285 Since aggregation in the present case only shifts the average tran-

sition wavelength by small amounts and since the total oscillator strength of the transi-

tion can be expected to be constant for a monomeric dye and a dye in an aggregate,240 

the three integrals in the last part of eq. (73) should be approximately equal. As a conse-

quence, absint should be a suitable measure for the sum of the monomer concentration 

and the aggregate concentrations. To test the validity of this approach, two separate sets 

(not used for cell assembly) of D149-sensitized ZnO films with and without CA were 

prepared and characterized by solid-state UV/Vis absorption spectroscopy before the 

D149 was desorbed from the films using dimethylformamide and the optical absorption 
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of the obtained solutions was measured. The absint determined from the solid-state spec-

tra is plotted in Figure 38 (left) against the dye loading in the films per projected sur-

face area (Γdye) as determined from the maximum absorbance of the desorption solution 

spectra assuming a corresponding molar absorptivity of 72350 M-1cm-1.31 For compari-

son, Figure 38 (right) shows the relationship between the maximum absorbance of the 

solid-state spectra and Γdye. Both absint and absmax (films) show approximately linear 

dependence on Γdye. As expected, however, the correlation between absint and Γdye is 

more significant than the one between the maximum absorbance of the solid-state spec-

tra and Γdye (adjusted R2 of 0.952 compared to 0.900). This confirms that absint is a bet-

ter measure for the amount of D149 in the films than absmax, for all adsorption times and 

in the presence or absence of cholic acid. 

  

Figure 38: Maximum absorbance absmax (left) and integrated absorbance absint (right) 

from solid-state UV/Vis absorption spectra of ZnO films sensitized with D149 for differ-

ent adsorption times (see labels) in the presence (filled symbols) or absence (empty 

symbols) of cholic acid. The values are plotted against the dye loading in the films. The 

lines are linear fits to the data with fixed intercept at (0|0).    

 

The integrated absorbance values determined from the spectra in Figure 37 are given in 

Table 8. Upon increasing the adsorption time from 1 min to 120 min, absint and hence 

the amount of D149 in the ZnO films increased by a factor of approximately 4.5 (with 

cholic acid) or by a factor of about 3 (without cholic acid), respectively. More D149 

was adsorbed to ZnO in experiments with coadsorbate than in those without coadsorbate 

at equal adsorption times. This is clearly an unexpected result, as cholic acid reduces the 
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number of adsorption sites available for D149 and, accordingly, was found to decrease 

the amount of adsorbed dye in previous studies.31, 137, 149, 219 What must be kept in mind, 

though, is that the two series of adsorptions were performed in two different laborato-

ries, at Gifu University (Japan) and at Justus Liebig University Gießen (Germany). Alt-

hough greatest care was taken to perform the experiments identically, it cannot be en-

tirely ruled out that subtle, unmonitored details affected the procedure in a way that 

higher dye loadings were obtained in Gießen (samples without cholic acid) compared to 

the films prepared in Gifu. Regarding the two sets of comparison samples fabricated 

entirely at Justus Liebig University Gießen, the amount of D149 in films sensitized in 

the presence of CA was smaller than in films sensitized without coadsorbate for any 

given adsorption time (Figure 38), as expected and reported earlier. 

 tads / min absint (+/- 16) / nm 

with 

CA 

(Gifu) 

1 92  

2 124 

10 303  

120 396  

without 

CA 

(Gießen) 

1 97 

2 108  

10 197  

120 258  

Table 8: Integrated absorbance absint - serving as a measure for the amount of D149 in 

samples - determined from the absorption spectra of dye-sensitized ZnO films prepared 

with various adsorption times tads (cf. Figure 37). Each value presents an average over 

the integrated absorbance of the spectra of three identically prepared films and the 

largest observed deviation of individual values from the average is given as an estimat-

ed error.  

5.2 Photovoltaic Performance of ZnO/D149 Solar Cells   

The measured external and calculated (eq. (56) and eq. (57)) internal current-voltage 

curves of the DSCs built from the different D149-sensitized ZnO films (Figure 39) 
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show a systematic increase of Jsc and Voc with the adsorption time as a result of the in-

crease in dye loading (Figure 37) and the concomitant increase in the rate of electron 

injection according to eq. (4). 

   

Figure 39: Measured external (_____ ; current density vs. applied voltage V) and internal 

(- - - - ; current density vs. series resistance-corrected Fermi-level voltage Vf) current-

voltage characteristics for ZnO/D149 solar cells with (a) or without (b) coadsorbate. 

D149 was adsorbed for 1 (light magenta), 2 (pink), 10 (purple) or 120 min. Adapted 

from ref. 278, Copyright 2013, with permission from Elsevier. 

For the sets of samples analyzed here, the maximum Jsc attained for an adsorption time 

of 120 minutes shows a value of around 11 mA cm-2 independent of the presence or 

absence of cholic acid. For the open-circuit photovoltage, on the other hand, higher 

maximum values of -0.63 V were achieved for the cells with cholic acid, as compared to 

-0.59 V without CA. Knowing that the dependence of the dye loading on the adsorption 

time differs for the cells with and without CA, a further discussion of the photovoltaic 

parameters should focus on their dependence on the integrated absorbance rather than 

on the adsorption time. A representation of Voc, Jsc, fill factor FF and power conversion 

efficiency η as a function of absint (as a measure of the dye loading), Figure 40, reveals 

that the use of cholic acid in the presently discussed cells led to a weaker increase of Jsc 

with the dye loading for cells with CA compared to those without coadsorbate. This 

may indicate (cf. eq. (36) and eq. (40)) a decrease in the electron injection efficiency.  
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Figure 40: Dependence of open-circuit voltage (a; ▲,∆), short-circuit current density 

(a; ■,□), power conversion efficiency (b; ●,○) and fill factor (b; ♦,◊) of the ZnO/D149 

solar cells on the integrated absorbance. Filled and open symbols represent cells with 

and without cholic acid, respectively. The data points shown were obtained by averag-

ing results of one to three cells per condition and error bars are largest deviations of 

individual values from the average. Reprinted from ref. 278, Copyright 2013, with per-

mission from Elsevier.   

In spite of causing a lower rate of charge injection towards higher dye loadings, the co-

adsorbate did not affect the Voc at a given absint. This may be explained by an adsorption 

time-dependent upward shift of the conduction band or reduction of the exchange cur-

rent density J0k for recombination in cells with CA (eq. (34)). As reported before,137 the 

fill factor decreases with increasing dye loading, indicating that larger amounts of D149 

molecules on the ZnO surface promote recombination in the intermediate voltage range 

(at V ≈ Vmpp). The decay of FF with absint appears steeper for cells without cholic acid 

compared to cells without CA, leading to a significantly smaller value already at rela-

tively low dye loadings. The presence of the coadsorbate, on the other hand, keeps the 

FF at a comparatively large value even for higher dye loadings. A closer examination of 

the origins of the observed trends of Jsc, Voc, and FF will follow in the discussion of the 

electrochemical impedance spectroscopy measurements below. The increase of the 

overall efficiency with the dye loading shows that the decay of FF is overcompensated 

by the observed increase in Jsc and Voc. However, in cells without cholic acid η shows a 

saturation at intermediate dye loadings, while there is a monotonous increase up to the 

highest dye loadings for cells with CA, underlining the overall benefit of using cholic 
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acid as a coadsorbate. The maximum values achieved are ~3.5% without CA and ~4% 

with CA.  

5.3 Impedance Spectroscopic Analysis 

5.3.1 Distribution of Trap States 

The capacitances derived from impedance spectroscopy measurements (cf. sample spec-

tra in Figure 104) increased exponentially towards more negative Fermi-level voltages 

(Figure 41). This shows that the measured capacitance was dominated by the chemical 

capacitance Cµ rather than by a depletion capacitance (cf. section 1.4.4) and is in line 

with the typical observation for dye-sensitized nanostructured semiconductors. 

 

Figure 41: Chemical capacitance of ZnO/D149 solar cells with (filled symbols, solid 

lines) and without (open symbols, dashed lines) the coadsorbate cholic acid, fabricated 

with D149 adsorption times of 1 (light magenta), 2 (pink), 10 (purple) or 120 (black) 

minutes as a function of the Fermi-level voltage (data representative of results observed 

for one to three samples per condition). The lines are linear fits in the semilogarithmic 

representation. Reprinted from ref. 278, Copyright 2013, with permission from Elsevier. 

Linear fits of the data to eq. (52) yielded values of the trap-distribution parameter α be-

tween 0.17 and 0.38 (Table 9), which is higher than the trap distribution parameters 

commonly observed for DSCs based on nanoparticulate ZnO films (0.10 – 0.13).136, 141, 

251 Thus, the trap distribution in electrodeposited nanostructured ZnO films was less 
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steep, which has also been suggested in a previous report136 and will be confirmed for a 

separate set of samples in chapter 7. Comparing the solar cells with (prepared at Gifu 

University) and without (prepared at University of Gießen) cholic acid, the former ex-

hibited a smaller α value than the latter.  

Table 9: Trap distribution parameters α and relative conduction band edge shifts ΔEc/q 

for the different ZnO/D149 solar cells (positive ΔEc/q correspond to downward shifts, 

negative values correspond to upward shifts). Values represent averages obtained from 

one to three identically prepared samples, with the maximum difference between indi-

vidual values and average given as an error estimate.  

 tads / min α (+/- 0.06) ΔEc/q (+/- 15) / mV 

with 

CA 

(Gifu) 

1 0.24 - 11 

2 0.18 0 (ref.) 

10 0.17 - 24 

120 0.18 - 17 

without 

CA 

(Gießen) 

1 0.37 + 33 

2 0.36 + 37 

10 0.33 + 40 

120 0.27 + 34 

 

As directly apparent from the plot of the density of states g(qVf) = g(Efn) (calculated 

from Cµ according to eq. (44)) in Figure 42, this means that the trap distribution in the 

cells with D149/CA (Gifu) was higher than in the D149 samples prepared in Gießen. As 

a result, in the energy range qVf > 0.55 eV the density of states in the former was gener-

ally reduced by about 50% compared to the latter. The steeper trap distribution in the 

cells prepared in Gifu was either related to the presence of cholic acid molecules, which 

could have reduced the density of certain surface traps by binding to coordinatively un-

saturated surface sites, or it was the result of the fact that the ZnO films were aged for a 

shorter time than the ones used in Gießen (cf. chapter 4, Figure 36). Increasing the ad-

sorption time in samples with CA from 1 minute to 120 minutes caused a small addi-

tional decrease of g(Efn), indicating that the effect was at least in part caused by coad-
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sorption of CA (and thus became stronger when the amount of CA was increased by 

increase of the adsorption time).   

 

Figure 42: Density of states of ZnO/D149 cells (color and symbol code as in previous 

figures). Reprinted from ref. 278, Copyright 2013, with permission from Elsevier. 

In cells without cholic acid, on the other hand, no significant influence of the soaking 

time can be noticed, suggesting that the density of states is largely independent of the 

amount of D149. While the nature of surface states in dye-sensitized solar cells is still 

subject of investigations, it is known that anchoring molecules to semiconductor surfac-

es can entail a reduction of the density of surface traps or a change of their energetic 

distribution compared to bare surfaces (cf. chapter 1.1.2).68-70, 90 For instance, a dipole-

induced shift has been observed upon adsorption of dyes with carboxylic acid functions 

to TiO2.
70 Cholic acid does have a carboxylic acid group that acts as anchoring group 

for adsorption to the semiconductor surface. Thus, its possible influence on the density 

of states could have been caused by a dipole effect. On the other hand, D149 possesses a 

carboxylic acid function as well, but did not show any notable effect on g(Efn). This 

may indicate that the dipole moment associated with the carboxylic acid group of D149 

did not have a strong effect on the ZnO energy levels, which likely resulted from a rela-

tively weak interaction between D149 and ZnO, as reported in earlier studies on indo-

line dye-sensitized ZnO.286 

The fact that in the presently discussed experimental series the trap distribution parame-

ter α varied between cells fabricated with different parameters precludes a reliable and 

exact determination of relative shifts of the conduction band edge ∆Ec/q according to 
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the procedure illustrated in Figure 16 (chapter 1.4.4). Nevertheless, approximate values 

were obtained to enable a discussion of a range of possible conduction band edge shifts 

(Table 9). Figure 43 demonstrates the approximate alignment across a limited voltage 

range resulting from shifts of the curves by these estimated ∆Ec/q values.  

 

Figure 43: Chemical capacitance curves of the D149-sensitized ZnO solar cells shifted 

along the voltage axis by ∆Ec/q (Table 9), resulting in approximate alignment in the 

voltage range -0.55 V to -0.7 V. Due to the different slopes of the curves, no complete 

alignment could be achieved and the shifts ∆Ec/q merely represent rough estimations of 

the relative conduction band edge shifts. Reprinted from ref. 278, Copyright 2013, with 

permission from Elsevier. 

A possible upward shift of the conduction band edge by about 40 – 60 mV is indicated 

in the cells containing CA with respect to the cells without coadsorbate (Table 9), with a 

tendency of higher shifts for the cells prepared with longer adsorption times (10 min, 

120 min). A similar trend is suggested by the Vf vs. g(Efn) plots in Figure 42, which 

approach different saturation voltages. Accounting for the estimated error of +/- 15 mV, 

the approximation obtained here would be roughly comparable to the upward shift of 

the conduction band edge by 80 mV previously observed for TiO2-based DSCs with 

Ru(II) sensitizers upon coadsorption of chenodeoxycholic acid, a derivative of CA.149 

An upward shift of the conduction band edge in the cells with CA, in particular at high 

dye loadings, thus may have contributed (via eq. (34)) to the fact that the Voc at a given 

dye loading was constant in the presence or absence of CA in spite of the lower rates of 

charge injection in the cells with coadsorbate (chapter 5.2). Since an upward shift of the 
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conduction band edge can cause a reduction in the electron injection efficiency (cf. sec-

tion 1.1.2), these results may also deliver an explanation for the decreased slope of the 

short-circuit current density in cells with CA (cf. Figure 40). 

5.3.2 Recombination 

The EIS-based recombination resistance Rrec of the ZnO/D149 solar cells shows an ex-

ponential decrease as Vf becomes more negative, Figure 44 (a), as expected for 

nanostructured semiconductors based on eq. (53).  

 

Figure 44: Recombination resistance of D149-sensitized solar cells with (solid sym-

bols) or without (open symbols) cholic acid. (a) Rrec as a function of the Fermi-level 

voltage Vf, together with linear fits; (b) Rrec vs. the density of states g(Efn) (lines are a 

guide to the eye only). Increasing color depth represents increasing adsorption time as 

in the figures above. Reprinted from ref. 278, Copyright 2013, with permission from 

Elsevier.   

As explained in detail in section 1.4.4, the recombination resistance at a given voltage 

of a set of samples under comparison can only be used as a measure of the probability 

of interfacial recombination events if the samples exhibit the same conduction band 

edge position Ec and the same recombination parameter β (see below), or if they show 

the same β and are plotted against Vf-ΔEc/q, cf. eq. (54). The physical origin behind this 

approach is that, at a given Fermi-level voltage, samples with different Ec and β would 

show different relative occupancies of trap and conduction band states, which has an 

effect on the total rate of recombination and would mask possible differences of Rrec 

caused solely by differences in the interfacial rate constant of recombination. In the pre-
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sent case, the analysis of Rrec is complicated by two factors: (1) a reliable determination 

of ΔEc/q was precluded due to the variations in the trap distribution between differently 

fabricated cells; (2) the slope of the Rrec vs. Vf curves (and, hence, β) is not constant ei-

ther (Figure 44 (a)). Some previous studies have intended to avoid such complications 

by plotting the effective electron lifetime τn of cells with different trap distributions as a 

function of the total density of states g(Efn) or the total electron density n instead of ana-

lyzing Rrec as a function of Vf-ΔEc/q.57, 136 To formally confirm the validity of this ap-

proach, the dependence of τn on density of states and electron density according to the 

multiple-trapping model (cf. eq. (47), (18), (9) and (10) as well as ref. 90) is considered: 
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where nt and nc are the density of trapped and conduction band electrons, τf is the free-

electron lifetime describing recombination without the influence of bulk trapping but 

including the influence of surface state-mediated recombination, gt(Efn) and gcb(Efn) are 

the densities of states of trapped and conduction band electrons (assumed to be expo-

nential to obtain the last part of the equation), and kr
cb and kr

ss are the rate constants for 

recombination from the conduction band or from surface states. In combination with eq. 

(1), eq. (74) shows that a plot of τn vs. g(Efn) ≈ gt(Efn) or Rrec vs. g(Efn) ≈ gt(Efn) (cf. eq. 

(45)) will only adequately reveal sample-to-sample differences in the interfacial rate 

constants for recombination if gcb(Efn), determined by the effective density of states at 

the conduction band edge Nc, is constant in the samples under comparison. Nc depends 

on the effective electron mass in the conduction band and is a (temperature-dependent) 

material constant.63 As the present experiments all used the same ZnO structures with 

the only difference being different surface modifications, it is expected that gcb(Efn)
 was 

equal for the series of cells studied here and, hence, Rrec is plotted as a function of the 

measured density of states in Figure 44 (b).IV In the range of g(Efn) ≥ 1.5·10-19 eV-1cm-3, 

the recombination resistance increases with increasing adsorption time (i.e., dye load-

ing) for both groups of cells, with and without coadsorbate. Comparison with Figure 40 

and Figure 42 shows that this range of the density of states includes the g(Efn) observed 
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under open-circuit conditions. Based on the above considerations, the increase in Rrec 

reflects a decrease of either or both of the rate constants for recombination from conduc-

tion band states or surface states, which should be related to the increased average spac-

ing between semiconductor and electrolyte in the presence of the adsorbed dye entailing 

a reduced electronic coupling between the two phases (cf. eq. (17)). With the conduc-

tion band edge position being largely independent of the adsorption time (Table 9), the 

slower recombination kinetics at higher g(Efn) by increase of the dye loading delivers a 

partial explanation of the increase of Voc with the dye loading (cf. Figure 40), while the 

remaining increase resulted from the increase in Jsc (eq. (34)). Moving towards smaller 

densities of states in the range g(Efn) < 1.5·10-19 eV-1cm-3 (corresponding to voltages 

less negative than Voc), the improvement of the recombination resistance with the dye 

loading at a given g(Efn) becomes notably weaker until the trend is even reversed for 

g(Efn) ≈ 0.5·10-19 eV-1cm-3. At these lowest levels of the quasi-Fermi level, Rrec tends to 

be smaller in samples prepared with longer adsorption times than in those with shorter 

adsorption times. The observed inversion is connected to a variation of the slope of the 

recombination resistance curves with the dye loading (Figure 44 (a)), which will be 

discussed in the following section. By comparing the Rrec of cells prepared with a given 

adsorption time with and without coadsorbate, it can be seen that for g(Efn) ≥ 2.5·10-19 

eV-1cm-3 recombination is stronger in samples with CA than in those without CA. Tak-

ing into account that, in the present set of samples, the dye loading in cells with coad-

sorbate was higher than in those without CA (Table 8) and that a blocking effect of 

D149 on recombination in the range of high g(Efn) was detected as discussed above, the 

difference between samples with and without coadsorbate is probably not related to the 

difference in the dye loadings. Rather, it indicates that CA may have a catalytic effect 

on recombination at high levels of Efn. A comparable effect was seen upon coadsorption 

of chenodeoxycholic acid in DSCs based on Ru(II) dye-sensitized TiO.149 Nevertheless, 

the present cells containing the coadsorbate showed comparable open-circuit voltages at 

a given dye loading as cells without CA (cf. Figure 40). Thus, the higher open-circuit 

rate constant of recombination as well as the lower rate of charge injection for cells with 

                                                                                                                                               

IV Note that the common procedure of plotting τn vs. n ≈ nt is only valid for an evaluation of rate constants 

of recombination if samples with the same trap distribution parameter α are compared and therefore is 

not an option for the present samples. 



Influence of D149 and Cholic Acid Molecules on Photovoltaic Performance and Recombination in Dye-

Sensitized Solar Cells Based on Electrodeposited ZnO 120 

 

 

larger dye loadings (Figure 40) in the samples with CA must both have been compen-

sated by a gain in Voc resulting from the presumed upward shift of the conduction band 

edge of up to ~60 mV (Table 8). With decreasing density of states below 2.5·10-19 eV-

1cm-3, the Rrec curves of the cells with CA intersect with the ones of samples without CA 

and, hence, the recombination resistance becomes higher in the cells with coadsorbate. 

This means that under conditions of low electron densities in the semiconductor the 

effect of cholic acid is to reduce recombination with respect to DSCs without CA, 

which is likely the consequence of the anti-aggregation effect of the coadsorbate, as will 

be discussed in more depth below.   

5.3.3 Voltage-Dependence of the Recombination Resistance 

The recombination parameters β of the ZnO/D149-based DSCs, obtained from fits of 

the voltage-dependent recombination resistance (Figure 44 (a)) to eq. (53), showed val-

ues between 0.35 and 0.53 (Figure 45), which is slightly lower than the values of 0.45 

to 0.64 previously reported for D149-sensitized ZnO.136, 141.  

 

Figure 45: Dependence of the recombination parameter β on the integrated absorbance 

(representing the dye loading) of ZnO/D149 DSCs with (filled symbols) and without 

(open symbols) cholic acid (data points represent averages of one to three individual 

values per preparation condition). Reprinted from ref. 278, Copyright 2013, with permis-

sion from Elsevier.  
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β clearly decreased with increasing dye loading, with a significant difference in slope 

depending on the presence of the coadsorbate: Cells that did not contain CA exhibited a 

strong decrease of the recombination parameter by approximately 30% over the range of 

dye loadings studied, while in DSCs with cholic acid β was only reduced by 10%, even 

though the maximum dye loading achieved in those cells was higher than in the series 

without CA. The fact that the flattening of the voltage-dependent Rrec curves with in-

creasing amount of D149 was less pronounced in the cells with cholic acid may indicate 

that the coadsorbate counteracted the dye-related increase of recombination at lower 

voltages (cf. Figure 44).  

The voltage dependence of the recombination resistance is generally determined by 

charge transfer from a distribution of surface states in the semiconductor. It has been 

derived that β can be expressed as β = 0.5+αss, where αss is the trap distribution parame-

ter of surface states.90 Based on this, a correlation between β and the measured trap dis-

tribution parameter α, which reflects an average of the trap distributions in the bulk and 

at the surface, was expected. However, the samples containing cholic acid showed gen-

erally lower values of α than their coadsorbate-free counterparts (Table 9), while β at 

high dye loadings was higher with respect to cells without CA. Moreover, the amount 

of dye was not found to influence α, whereas it had a considerable effect on β. Thus, in 

the cells investigated in this study, the voltage dependence of the recombination re-

sistance did not seem to correlate with the energy distribution of electronic states in the 

dye-sensitized porous ZnO film. This suggests that it was rather the distribution of elec-

trolyte acceptor states that controlled how the recombination rate changed with Efn. The 

fact that the drop in β and FF is less pronounced in the cells with cholic acid, in which 

D149 was less aggregated (Figure 37), suggests that the dye-related increase of the re-

combination rate at lower voltages is mainly caused by D149 in aggregates.  

5.3.4 Origins of the Variations of the Fill Factor 

The experimental external fill factor FF is generally influenced by the series resistance 

as well as by Voc and β (cf. eq. (35)). Comparison of the internal fill factors FFint,exp (de-

termined from the internal J-V curves in Figure 39) with FF (Table 10) reveals that in 

the present set of samples the series resistance lowered the fill factor by up to 10%, as 

discussed in more detail below. Theoretical fill factors FFint,calc expected based on the 
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experimental Voc and β values were calculated using the corresponding full expression 

of the β-recombination model (eq. (26) of ref. 128), see Table 10. 

Table 10: Experimental internal and external fill factors, FF and FFint,exp, as well as 

theoretical internal fill factors FFint,calc for ZnO/D149 solar cells with different dye 

loadings, represented by the integrated absorbance absint.  

 absint (+/- 16) / nm FF FFint,exp FFint,calc 

with 

CA 

(Gifu) 

92 0.66 0.69 0.71 

124 0.63 0.66 0.71 

303 0.59 0.63 0.70 

396 0.57 0.62 0.69 

without 

CA 

(Gießen) 

97 0.69 0.71 0.71 

108 0.68 0.71 0.71 

197 0.61 0.66 0.67 

258 0.54 0.59 0.65 

 

For small D149 loadings, the calculated values FFint,calc are well in line with FFint,exp. 

Furthermore, the experimentally observed weaker decay of the fill factor with the dye 

loading in cells containing CA is confirmed: a decay from 0.71 to 0.69 is calculated for 

the cells with CA, compared to a decrease from 0.71 to 0.65 for the samples without 

coadsorbate. Because the change of Voc with the dye loading was identical for cells with 

or without CA, this result shows that the decay of the fill factor with absint was caused 

by the decay of β. For larger amounts of dye, the cells show smaller internal fill factors 

than expected according to the model. A possible reason for this may be that the rate of 

recombination in the model is approximated by an empirical expression including a 

constant (i.e., voltage-independent) recombination rate constant kr (cf. eq. (32)). How-

ever, in the present cells kr may have depended on the voltage, since there was evidence 

for additional recombination at lower voltages in the cells with high dye loadings. A 

more precise description should include an energy-dependent average rate constant of 

recombination rather than a constant one, as for example suggested by Wang et al..86  
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5.3.5 Series Resistance 

The comparison of the internal and external fill factors given in Table 10 revealed that 

the efficiency of the DSCs analyzed in this chapter was significantly limited by the se-

ries resistance Rseries. In Figure 46, the various contributions to Rseries are illustrated for a 

sample cell (adsorption time of 120 minutes, without CA) as a function of the d.c. cell 

current density flowing through the cell at different d.c. bias voltages. 

  

Figure 46: Graphs illustrating the different EIS-derived contributions to the series re-

sistance of a sample ZnO/D149 solar cell. Rd: diffusion resistance of the electrolyte, Rs: 

resistance of the FTO-coated glass substrate, RPt: resistance of the Pt-coated counter 

electrode. 

In the current range relevant for solar cell operation (positive J), the resistances of the 

substrate and of the counter electrode (Rs and RPt) presented the main contributions to 

the total series resistance. For negative J, on the other hand, the diffusion resistance Rd 

of ions in the electrolyte became increasingly dominant. The constant distance between 

the curves showing Rd and Rd+Rs in Figure 46 demonstrates that the resistance of the 

FTO-coated glass substrate was constant in the current range investigated. The diffusion 

resistance of the electrolyte, however, clearly increased towards negative J, while the 

counter electrode resistance tended to grow with increasing positive J. 

Comparing the counter electrode resistance for all different preparation conditions stud-

ied in this chapter (Figure 47), there was a tendency of an increase of RPt with the ad-
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sorption time, which was particularly pronounced for cells without cholic acid. RPt was 

clearly smaller in samples with coadsorbate compared to those without CA. 

 

Figure 47: Charge-transfer resistance at the electrolyte/counter electrode interface vs. 

the d.c. cell current density for ZnO/D149 solar cells with (filled symbols) or without 

(open symbols) coadsorbate cholic acid. Curves belong to one solar cell each and are 

representative of the behavior of samples with identical adsorption conditions. Assign-

ment of colors as in previous figures. 

The diffusion resistance of the electrolyte (Figure 48) exhibited a similar dependence 

on adsorption time and coadsorbate as RPt: increasing tads tended to increase Rd and sam-

ples with CA showed a somewhat lower diffusion resistance than those without coad-

sorbate. Since RPt and Rd reflect properties of the electrolyte and the electrolyte/counter 

electrode interface, their dependence on the adsorption time indicates that the D149 

molecules partially desorbed from the ZnO surface and dissolved in the redox electro-

lyte when the DSCs were filled with the solution. This may have affected the transport 

of charges between counter electrode and dye-sensitized ZnO. Once dissolved in the 

electrolyte, it is likely that some of the dye molecules adsorbed onto the surface of the 

Pt/FTO counter electrode, hindering charge transfer between electrolyte and counter 

electrode.  
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Figure 48: Diffusion resistance of the electrolyte (0.1 M I2 and 1 M TPAI in 4:1 eth-

ylene carbonate:acetonitrile) of ZnO/D149 solar cells with (a) or without (b) cholic 

acid, determined by fitting the impedance spectra. 

In a laboratory project performed by J. Schmidt under the supervision of the author,287 

the influence of D149 molecules intentionally added to an I-/I3
- electrolyte (identical 

composition as used in this thesis) on charge transport through the electrolyte and 

charge transfer at the interface to Pt-coated FTO/glass were investigated. Current-

voltage characterization and electrochemical impedance spectroscopy of symmetrical 

Pt/electrolyte/Pt cells showed that with increasing concentration of D149 (between 0 M 

and 5 mM) the diffusion coefficient of I3
- decreased by a factor of about 1.5, while the 

charge-transfer resistance of the Pt/electrolyte interface increased by a factor of almost 

20. These results strongly support the hypothesis that the variations of RPt and Rd ob-

served for cells with different dye loadings in the present work were caused by different 

amounts of dye that desorbed from the ZnO film and dissolved in the electrolyte. In the 

cells containing CA, D149 may have been more stably bound to the ZnO surface, so 

that less dye molecules were present in solution and at the counter electrode surface and 

RPt was smaller than in cells without coadsorbate. Repeated J-V measurements of the 

present samples four weeks after preparation (see chapter 9.2) showed a significant de-

crease of the short-circuit photocurrent in the cells without CA, while those with coad-

sorbate in fact exhibited an increase of Jsc, supporting the suggestion that the stability of 

the D149 attachment may have been lower in the cells without coadsorbate. As larger 

amounts of dye aggregates were present in the samples without CA, a weaker attach-
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ment to ZnO of D149 molecules in aggregates compared to monomeric D149 molecules 

could be the reason for the observed differences. 

5.4 Summary and Conclusions for This Chapter 

In this chapter, an in-depth analysis of the influence of dye loading and coadsorption of 

cholic acid in dye-sensitized solar cells based on D149-sensitized electrodeposited ZnO 

was presented. By varying the dipping time of ZnO films in D149 solution with or 

without cholic acid (CA) between 1 minute and 120 minutes, ZnO/D149 films with var-

ied amounts of D149 were attained, as demonstrated by UV/Vis absorption spectrosco-

py. The optical measurements further indicated aggregation of D149 molecules on the 

surface of the ZnO, which was particularly pronounced for samples prepared with long-

er adsorption times of 10 – 120 minutes in the absence of CA. 

In DSCs fabricated from ZnO/D149 electrodes without cholic acid, the increase of the 

dye loading caused an improvement of the short-circuit photocurrent, open-circuit pho-

tovoltage and overall conversion efficiency. However, a concomitant deterioration of 

the fill factor notably limited the increase of the efficiency. Analysis by electrochemical 

impedance spectroscopy showed that the decay of the fill factor upon increasing the 

adsorption time was caused by two separate effects: an increase in the series resistance 

and a decrease of the recombination resistance at lower quasi-Fermi levels. The growth 

of the series resistance with the adsorption time was found to originate in an increase in 

the diffusion resistance of the electrolyte as well as the charge-transfer resistance at the 

electrolyte/counter electrode interface, indicating that D149 molecules detached from 

the ZnO surface and were present in electrolyte and at the Pt counter electrode surface, 

hindering charge transport and transfer in these parts of the cells. The decrease of the 

recombination resistance Rrec at lower voltages was reflected in a decay in the recombi-

nation parameter  with the dye loading. For open-circuit conditions, on the other hand, 

increasing the amount of D149 had a blocking effect on recombination, as seen in an 

increase of Rrec. This, together with the enhanced rate of electron injection (increase in 

the short-circuit photocurrent density), caused the open-circuit voltage to rise with the 

D149 loading.  
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In ZnO/D149 solar cells containing the coadsorbate cholic acid, aggregation of D149 at 

high dye loadings was clearly reduced. Short-circuit photocurrent, open-circuit photo-

voltage and power conversion efficiency again increased with increasing adsorption 

time. The fill factor still decreased, but the decay was significantly less pronounced than 

in the absence of CA, which in turn allowed the conversion efficiency to reach higher 

values than in cells without coadsorbate, emphasizing the benefit of coadsorbing cholic 

acid in DSCs based on D149-sensitized electrodeposited ZnO. Two reasons were found 

to lead to the improvement of the fill factor at a given dye loading: the series resistance 

remained at a low level up to the highest adsorption times – possibly indicating a more 

stable bond between D149 and ZnO – and the decrease of the recombination resistance 

at lower quasi-Fermi levels was clearly reduced. On the basis of the observed effects of 

adsorption time and the presence of cholic acid, it was proposed that aggregated D149 

molecules in the cells without CA caused the additional recombination in the energy 

range that is crucial for the fill factor, which entailed systematic changes in the voltage-

dependence of the recombination resistance as a function of the dye loading. Coadsorp-

tion of cholic acid prevented strong aggregation of D149 on the ZnO surface and, hence, 

had a positive influence on the fill factor. In contrast to this, the rate of recombination at 

a given D149 loading under cell conditions close to open-circuit (higher quasi-Fermi 

levels) was increased in the cells with CA. However, the open-circuit photovoltage was 

not affected negatively by this, since the samples with coadsorbate also exhibited a neg-

ative shift of the conduction band edge by about 60 mV.  
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6 Panchromatic Dye-Sensitized Solar Cells Obtained 

by Co-Sensitization of Electrodeposited ZnO with 

Indoline and Squaraine DyesV 

6.1 UV/Vis Absorption of Dye Solutions and Sensitized ZnO 

Films 

The optical properties of the dye solutions used for sensitization of electrodeposited 

ZnO with the indoline dye D149, the indoline dye D131, the squaraine dye SQ2, and/or 

combinations of these sensitizers were studied by UV/Vis absorption spectroscopy both 

as-prepared and after dilution, Figure 49.  

   

Figure 49: UV/Vis absorption spectra of solutions of 0.5 mM D149, 0.5 mM D131, and 

0.25 mM/0.25 mM D149/D131 in acetonitrile:tert-butanol (1:1) and of 0.1 mM SQ2 in 

ethanol, before (a) and after (b, normalized) dilution, together with a superposition of 

the D131 and D149 (diluted) spectra (-----). Labels in (b) indicate peak heights of the 

corresponding unnormalized spectra. Adapted with permission from ref.288. Copyright 

2015 American Chemical Society. 

The undiluted adsorption solutions (Figure 49 (a)) show very broad and high peaks in 

the range 350 – 500 nm (D131), 350 – 600 nm (D149, D149/D131), and 500 – 700 nm 

                                                 

V Most of the original work presented in this chapter has been published in J. Phys. Chem. C 119 (2015), 

1298-1311. 
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(SQ2), indicating pronounced aggregation of the dye molecules. The spectra of the di-

luted solutions (Figure 49 (b), dilution factor ca 1:0.2  for D149, D131, and SQ2, and 

ca 1:2.5 for D149/D131), on the other hand, exhibit considerably narrower absorption 

bands, indicating that the dyes were largely present in their monomeric form. The ab-

sorption maxima of D149 and D131 are found at 390 nm and 530 nm, and at 350 nm 

and 440 nm, respectively, which is in accordance with previously reported results.48, 213, 

282, 289, 290 The two absorption bands seen in each spectrum are associated with the HO-

MO  LUMO (peak at higher wavelength) and HOMO  LUMO+1 (peak at lower 

wavelength) transitions, where LUMO+1 represents the second excited state of the 

dye.213, 282 The equimolar mixed solution of D149 and D131 shows a wider absorption 

feature with three maxima at 395 nm, 462 nm, and 527 nm. This is in line with a calcu-

lated spectrum obtained by simple addition of the individual spectra of D149 and D131 

(Figure 49 (b)), indicating that the D149 and D131 molecules do not interact with each 

other in the diluted solution. SQ2 exhibits its absorption maximum in the wavelength 

range of ~ 550 – 700 nm, complementary to the spectra of D149 and D131. Based on its 

optical absorption, the squaraine dye therefore constitutes a suitable choice of a red-

absorbing co-sensitizer to be used together with the indoline dyes to create panchro-

matic solar cells. From earlier investigations, it is known that the absorption spectrum of 

SQ2 in DMF solution shows a narrow band centered at 662 nm and a shoulder located 

at about 610 nm.32 These features can been assigned to the HOMO  LUMO transi-

tion32 and (by analogy to a structurally similar squaraine sensitizer)291 to excitation from 

the ground state to higher vibrational states, respectively. The spectrum in ethanol 

measured in the present study exhibits a broader peak centered at 643 nm, with promi-

nent shoulders at 610 nm and 660 nm. The differences in peak position and shape com-

pared to the literature spectra are probably the result of aggregation of SQ2 molecules 

even in the diluted ethanolic solution.  

Comparing the UV/Vis absorption spectra of the diluted dye solutions with the corre-

sponding spectra of electrodeposited porous ZnO films sensitized with D149, D131, 

SQ2, or D149/D131 (Figure 50 (a), dashed lines), similar peak positions are found. 
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Figure 50: UV/Vis absorption spectra of electrodeposited porous ZnO films photosensi-

tized with different dyes or dye combinations in the presence (solid lines) or absence 

(dashed lines) of the coadsorbates cholic acid and/or octanoic acid. Reprinted with 

permission from ref.288. Copyright 2015 American Chemical Society. 

However, for D149 and especially SQ2, the absorption bands of the films are much 

broader and more closely resemble the spectra of the concentrated adsorption solutions, 

suggesting that these dyes had formed aggregates on the ZnO surface.271, 282 The peak 

broadening and slight asymmetry observed for the spectrum of the film sensitized with 

D149 is comparable to the findings of chapter 5, where aggregation of D149 was dis-

cussed in detail. The broadening of the absorption peak of SQ2 is consistent with a pre-

vious study reporting the appearance of an additional absorption band at about 600 nm 

due to formation of H-aggregates,271 as also observed in the spectrum of the undiluted 

adsorption solution. In the case of D131 and D149/D131, the absorption bands for the 

sensitized films are hardly broader than the corresponding peaks in the diluted solution 

spectra, indicating that D131 shows little aggregation when adsorbed to ZnO and that 

the tendency of D149 to form aggregates is reduced when adsorbed together with D131. 

When the porous electrodeposited ZnO was first sensitized with SQ2 and subsequently 

immersed into a D149 or a D149/D131 solution, the indoline dyes were successfully 

adsorbed to the ZnO without removing significant amounts of previously adsorbed SQ2. 

As a result, the ZnO films co-sensitized with SQ2 and D149 or with SQ2, D149, and 

D131 showed panchromatic optical absorption (Figure 50 (b), dashed lines). As in the 

case of the films with SQ2 or D149 as individual sensitizers, the absorption bands of the 

co-sensitized film SQ2+D149 are strongly broadened, so that the individual absorption 
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features of D149 and SQ2 are largely merged. For SQ2+D149/D131, the individual 

peaks of D131 and D149 can still be distinguished, indicating smaller amounts of the 

indoline dyes and/or less pronounced aggregation compared to the sample SQ2+D149. 

As a result of using cholic acid and/or octanoic acid as coadsorbates, narrower absorp-

tion bands with decreased height are observed when compared with films sensitized 

without coadsorbates (Figure 50, solid lines). This points to a reduced dye loading and 

to a smaller extent of dye aggregation. The coadsorbate molecules occupy a part of the 

surface adsorption sites and, hence, both limit the number of dye molecules on the sur-

face and prevent undesired dye-dye interaction. While the two films sensitized with 

SQ2 or with D149 in the absence of CA show comparable maximum absorbance, the 

peak height of the corresponding samples prepared in the presence of the coadsorbate is 

different, with SQ2 showing a notably smaller maximum absorbance. Given that the 

molar absorptivity of SQ2 in its absorption maximum is more than four times as high as 

the molar absorptivity of D149 (εSQ2 = 319,000 M-1cm-1 at 662 nm32 and εD149 = 72,350 

M-1cm-1 at 530 nm,31 both for solutions in DMF), it can be concluded that the amount of 

SQ2 molecules adsorbed to the porous ZnO from ethanolic solution over an adsorption 

time of 4 hours is considerably smaller than the amount of D149 adsorbed to ZnO from 

acetonitrile:tert-butanol solution within 2 hours.  

6.2 Steady-State Characterization: Photovoltaic Performance 

and Quantum Efficiency 

The photovoltaic characteristics under AM1.5G-type illumination of DSCs built from 

the ZnO films with different sensitizers or sensitizer combinations (see Figure 51 and 

Table 11) will be discussed together with the incident photon-to-electron conversion 

efficiency (IPCE) spectra (Figure 52) and with the theoretical short-circuit current den-

sities theo
scJ (Table 11) calculated from the latter via eq. (36). The highest Jsc among the 

cells without coadsorbates was 7.8 mAcm-2 and was observed for the cell with D149 as 

a result of its comparatively high and wide IPCE peak. The lowest short-circuit current 

of 2.6 mAcm-2 was obtained with SQ2 as individual sensitizer, in line with the fact that 

the IPCE spectrum of this cell shows a very small (albeit broad) peak with a maximum 

of IPCE = 25%. 
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Figure 51: Current-voltage curves of dye-sensitized solar cells based on electrodepos-

ited porous ZnO films and different dyes or dye combinations with (solid lines) or with-

out (dashed lines) coadsorbates. Reprinted with permission from ref.288. Copyright 2015 

American Chemical Society. 

Given the high and broad absorbance peak of the sample SQ2 (cf. Figure 49), corre-

sponding to a maximum light harvesting efficiency of 99% (cf. section 6.5), the poor 

IPCE should not be due to insufficient light harvesting but must rather be ascribed to a 

poor electron injection efficiency between SQ2 and electrodeposited ZnO and/or to 

slow regeneration of oxidized SQ2 by the electrolyte.  

   

Figure 52: Incident photon-to-electron conversion efficiency (IPCE) spectra of ZnO-

based solar cells with D149, D131, D149/D131, SQ2 (a), or combinations thereof (b). 

Reprinted with permission from ref.288. Copyright 2015 American Chemical Society. 
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Table 11: Photovoltaic parameters derived from the J-V curves and theoretical short-

circuit current density theo
scJ  of ZnO-based DSCs with different dyes or dye mixtures. 

Adapted with permission from ref.288. Copyright 2015 American Chemical Society. 

sample code Jsc
 / mAcm-2 theo

scJ / mAcm-2 
Voc / mV 

(+/- 5 mV) 
FF η / % 

D149 7.8 7.6 - 558 0.59 2.57 

D131 5.0 4.4 - 581 0.64 1.84 

D149/D131 6.0 7.8 - 578 0.59 2.04 

SQ2 2.6 2.7 - 344 0.51 0.45 

SQ2+D149 5.1 5.2 - 403 0.52 1.04 

SQ2+ 

D149/D131 
6.0 6.2 - 405 0.49 1.2 

D149/CA 5.8 5.6 - 557 0.64 2.06 

D149/D131/OA 6.7 6.0 - 579 0.63 2.42 

SQ2/CA 2.7 2.9 - 457 0.61 0.74 

SQ2/CA+ 

D149/D131/OA 
8.6 8.7 - 539 0.55 2.55 

 

Electrochemical measurements of the energy levels of the dye SQ2 have shown that the 

Fermi level E0(S+/S*) (cf. Figure 3) of excited SQ2 is located at about -3.7 eV,32 which 

is well above the conduction band edge of ZnO at ca -4.5 eV to -3.9 eV.42, 292 The Fermi 

level E0(S+/S) of ground-state SQ2 is situated at -5.3 eV,32 which is clearly below the 

redox level of the acetonitrile-based I-/I3
- electrolyte (Eredox = -4.85 eV).35 Consequently, 

the energetic alignment between the squaraine sensitizer and the semiconductor or the 

electrolyte, respectively, should allow for efficient electron injection and regeneration of 

SQ2. Most probably, the small injection efficiency or regeneration efficiency in the cell 

with SQ2 can therefore be attributed to the pronounced aggregation observed for this 

squaraine sensitizer on ZnO, as aggregation can effect a high rate of self-quenching of 
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the dye excited state without electron injection into the semiconductor and may also 

block access of the electrolyte to a part of the oxidized dye molecules. 

The combination of D149 and D131 in the present series of experiments yielded a short-

circuit current density of 6.0 mAcm-2, which is smaller than the 7.8 mAcm-2 obtained 

with D149 only. This finding contrasts with the IPCE curves and corresponding theo
scJ   

attained for the same cell (Figure 52 and Table 11), with the results of previous investi-

gations,31 as well as with the results obtained for DSCs based on nanoparticulate ZnO in 

chapter 7 of this work, all of which showed a higher Jsc for the combination D149/D131 

than for D149 only. Thus, the relatively low Jsc measured for D149/D131 in the current-

voltage characterization was most likely an exception caused by an involuntary devia-

tion from the standard measurement conditions. As for the IPCE spectrum, the use of 

D131 as a co-sensitizer with D149 leads to a considerable gain in the shorter-

wavelength range, while the value in the longer-wavelength region is only slightly re-

duced because of a decrease in the D149 loading (cf. Figure 50). The relatively large 

IPCE of the DSC with D131 as individual sensitizer and of the sample D149/D131 in 

the absorption range of D131 point towards a higher electron injection efficiency for 

D131 compared to D149. This finding is in accordance with previous experimental 

work31, 214, 217 and with theoretical studies213, 217 demonstrating that unlike in D149, the 

HOMO-LUMO excitation in D131 shows a notable shift of charge density to the car-

boxylic acid anchoring group. Furthermore, D131 – unlike D149 – did not show signs 

of aggregation on the ZnO surface (Figure 50), which may have additionally contribut-

ed to a higher electron injection efficiency. Co-sensitization of D149 or D149/D131 

with SQ2 resulted in a decay of the short-circuit photocurrent density, which can be 

understood with reference to the corresponding IPCE spectra. While the D149 or 

D149/D131 loading in the co-sensitized films is comparable to that of the films with 

D149 and D149/D131 only (cf. Figure 50), the IPCE of the corresponding cells in the 

range of absorption of the indoline dyes is decreased by half. A possible explanation for 

this could be undesired energy transfer from excited D131 and D149 to SQ2, which 

would deactivate the excited states of the indoline dyes without electron injection to 

ZnO, leaving only SQ2 as a (poor) electron injector.  

As for the open-circuit photovoltage Voc, the highest value in the absence of coadsorb-

ates is ~ -580 mV and was achieved by the two cells with D131 or D149/D131. This is 
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closely followed by Voc = -558 mV for the sample with D149. With Voc’s of -344 mV,  

-403 mV and -405 mV, the squaraine sensitizer SQ2 and the dye combinations 

SQ2+D149 and SQ2+D149/D131 produced drastically lower open-circuit voltages than 

the cells with indoline sensitizers. In contrast, TiO2 films sensitized with SQ2 have 

yielded very good Voc’s of up to -667 mV.32 Impedance spectroscopy served to detangle 

the effects that governed the open-circuit voltage and to determine what microscopic 

processes limited the voltage in the present cells, as discussed in the following sections. 

The best fill factor among cells without coadsorbates was attained with D131 (64%). 

D149 and D149/D131 yielded a FF of 59%, and SQ2 and the dye mixtures SQ2+D149 

and SQ2+D149/D131 resulted in the lowest FF of only ~50%. Since the fill factor is 

influenced by the same factors as the open-circuit photovoltage,128 the impedance spec-

troscopic analysis further below will also address possible reasons for the trends ob-

served for this parameter.  

Coadsorption of cholic acid or octanoic acid resulted in a reduction of the dye loading 

and, thus, in the light harvesting efficiency for all dyes and dye mixtures (cf. Fig-

ure 50). For the samples D149/CA and D149/D131/OA, this lower light harvesting effi-

ciency caused a decrease of the overall external quantum efficiency (Figure 52) and, as 

a result, of the theoretical short-circuit current density (Table 11). For the sample with 

D149/CA, the measured Jsc follows this theoretical prediction, but for D149/D131/OA 

the short-circuit current density is unexpectedly higher than for D149/D131. This can be 

assumed to be another result of the presumed experimental deviation in the current-

voltage characterization of D149/D131, as discussed above. Comparing the IPCE spec-

tra of the two cells with SQ2 and with SQ2/CA, the latter shows a narrower but signifi-

cantly higher peak in the range of 600 – 700 nm. The combined result of these two ef-

fects is a slightly higher theoretical and experimental short-circuit current density for 

the cell SQ2/CA in spite of its reduced dye loading. This indicates that the reduced level 

of aggregation in the presence of cholic acid resulted in an improved efficiency of elec-

tron injection and/or dye regeneration for the squaraine sensitizer. For the dye combina-

tion SQ2+D149/D131, the coadsorption of CA and OA enhanced the external quantum 

efficiency both in the molecular absorption band of SQ2 and in the absorption range of 

the indoline dyes. The improvement in the shorter wavelength range was significant 

enough (increase by a factor of ~2) that the IPCE in this range became comparable to 
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that of the sample D149/D131. As a result, the cell SQ2/CA+D149/D131/OA achieved 

the highest Jsc of the samples studied in this series of 8.6 mAcm-2, which corresponds to 

a 43% increase compared to the Jsc of the corresponding cell without coadsorbates (6.0 

mAcm-2). Thus, it appears that the coadsorbate blocks undesired energy transfer from 

D149 and D131 to the squaraine sensitizer, allowing each of the three dyes to inject 

electrons into the ZnO film and thereby contribute to the photocurrent generation.  

The open-circuit voltage reached with D149 and D149/D131 was not noticeably affect-

ed by coadsorption of cholic acid or octanoic acid. For SQ2 and SQ2+D149/D131, 

however, Voc was enhanced from -344 mV and -405 mV to -457 mV and -539 mV. The 

fill factor was improved by the presence of CA and/or OA for all cells, with the most 

significant increase from 0.51 to 0.61 observed for the coadsorption of CA with SQ2.  

6.3 Impedance Spectroscopy Analysis 

6.3.1 Trap Distribution and Total Trap Density 

Figure 53 shows the voltage-dependent capacitance of the DSCs with different dyes or 

dye combinations as determined by electrochemical impedance spectroscopy. 

 

Figure 53: Chemical capacitance of the DSCs based on sensitized or co-sensitized ZnO 

as a function of the Fermi-level voltage Vf. The lines represent linear fits to the higher-

voltage parts of the data and were used to determine the trap distribution parameters α. 

Adapted with permission from ref.288. Copyright 2015 American Chemical Society. 
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The linear behavior in the semilogarithmic plot for voltages of -0.4 V or more negative 

confirms the expected presence of exponentially distributed trap states also in the pre-

sent set of samples. The generally reduced slope of the curves at voltages less negative 

than -0.4 V is a common observation and typically points to a transition from a range in 

which the measured capacitance reflects Cµ to a range where it is dominated by charge 

accumulation at internal interfaces such as the blocking layer/electrolyte interface.128 

However, in case of the cells containing the squaraine sensitizer without coadsorbate, 

i.e., SQ2, SQ2+D149, and SQ2+D149/D131, the change in the slope of the capacitance 

is much more significant than for the remaining samples, with a plateau or even a local 

maximum visible at about Vf = -0.3 V. This finding suggests the presence of deep trap 

states in ZnO that are narrowly distributed around a single energy level (so-called mo-

noenergetic traps), in addition to the exponentially distributed band gap states.90, 128, 293 

Alternatively, the additional density of states could correspond to electronic states in the 

dye molecules themselves.294 When CA or OA were coadsorbed with SQ2 or with the 

SQ2/indoline dye combinations, the pronounced change in slope of the capacitance was 

removed, indicating that the additional density of states was associated with the pres-

ence of aggregated SQ2 molecules. Regarding the exponentially distributed traps, the 

majority of samples exhibit equal trap distribution parameters α of 0.37 +/- 0.03 (Table 

12), as determined from fits of the higher-voltage section of the capacitance curves to 

eq. (52), cf. Figure 53. With α = 0.44 and α = 0.32, the α values of the samples with 

D149 or SQ2 as individual sensitizers are slightly outside that range. As for the effect of 

coadsorbates, combining D149 with cholic acid causes a decrease of α from 0.44 to 

0.35. Similarly, coadsorbing OA with D149/D131 slightly decreases the trap distribu-

tion parameter from 0.39 to 0.34. Hence, the trap distribution in electrodeposited ZnO 

films sensitized with D149 or D149/D131 is somewhat steeper in the presence of OA or 

CA, roughly in accordance with observations discussed in chapter 5. For the squaraine 

sensitizer SQ2, on the other hand, the presence of cholic acid causes an increase in the 

value of α from 0.32 to 0.36, i.e., the distribution of trap states is slightly flattened.  
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Table 12: Trap distribution parameters α and relative values of the total trap density Nt 

of the ZnO solar cells with different dyes or dye combinations.  

sample code α Nt/Nt,ref 

D149 0.44 1 (ref.) 

D131 0.37 1 

D149/D131 0.39 0.9 

SQ2 0.32 0.5 

SQ2+D149 0.39 0.7 

SQ2+D149/D131 0.38 0.7 

D149/CA 0.35 0.5 

D149/D131/OA 0.34 0.4 

SQ2/CA 0.36 0.4 

SQ2/CA+D149/D131/OA 0.37 0.5 

 

The largely similar slopes of the capacitance curves enable the determination of relative 

conduction band edge shifts ΔEc/q (see following section). As apparent from eq. (52), 

ΔEc/q can only be accurately determined from the shifts of the Cµ curves along the volt-

age axis if both the trap distribution parameters and the total trap densities Nt within the 

set of cells to be compared are equal. While total trap densities are commonly assumed 

to be equal for cells based on a given semiconductor material, it has been argued in a 

previous report252 that Nt is influenced by surface treatments such as adsorption of dyes 

or coadsorbates and should therefore be monitored experimentally and taken into ac-

count in the determination of conduction band edge shifts from voltage-dependent 

charge density plots (an alternative to obtaining ΔEc from Cµ). The method suggested by 

O’Regan et al. involved determination of relative values of Nt by means of short-circuit 

charge extraction measurements (cf. section 1.4.7), followed by normalization of the 

open-circuit charge density by the relative trap densities before determining ΔEc.
252 The 

present chapter introduces a protocol similar to that proposed by O’Regan to allow for a 
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normalization of Cµ curves in order to more reliably determine conduction band edge 

shifts from these curves. Values of Nt relative to that of the cell with D149 were ob-

tained by determining the factors necessary to align the short-circuit charge density vs. 

Jsc data measured using illumination by a red LED (Figure 54), see Table 12.  

 

Figure 54: Electron density in the ZnO at short circuit under different levels of illumi-

nation by a red LED (λmax = 632 nm), corresponding to different steady-state short-

circuit current densities Jsc (lines are a guide to the eye only). Color and symbol as-

signment as in previous figures.  

It is assumed that the use of red light instead of simulated solar light did not have an 

effect on the charge at a given short-circuit current density, as the intensity and spectral 

distribution of the light source will only affect the achieved Jsc but is not expected to 

influence the Fermi-level gradient and, hence, the occupation of trap states correspond-

ing to a given Jsc value. Nt is nearly constant in the cells with D149 (reference), D131, 

and D149/D131. For the sample sensitized with SQ2, however, it is reduced to about 

half compared to Nt of the indoline dye-sensitized samples. When the squaraine sensi-

tizer is combined with D149 or with D149/D131, the relative total trap density becomes 

0.7, which is roughly the average of the values of the cell with SQ2 and the cells with 

indoline dyes, as expected based on the shared coverage of the internal surface area of 

the ZnO by SQ2 and indoline dye molecules. Coadsorption of CA or OA with D149 or 

D149/D131, respectively, decreases Nt/Nt,ref to about one half of that in the correspond-
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ing samples without coadsorbates. In the case of SQ2, the coadsorbate CA only effected 

a minimal reduction of the total trap density, indicating that Nt (by adsorption of SQ2) 

had already reached a lower limit, which may be determined by the constant density of 

bulk traps. As the relative Nt in the cells with SQ2/CA and D149/D131/OA are compa-

rable, the combination SQ2/CA+D149/D131/OA, in which the surface is covered par-

tially by “SQ2/CA” and partially by “D149/D131/OA”, showed the same Nt/Nt,ref well. 

The systematic change of the total trap density in response to variations in the surface 

dye/coadsorbate layer demonstrates that the majority of trap states must be surface 

states as opposed to bulk traps. Coadsorption of CA or OA with indoline dyes decreases 

the relative total trap density by ca 50%, indicating that the two coadsorbates passivate 

surface trap states, for instance by attaching to coordinatively unsaturated surface atoms 

that would otherwise form electronic states in the band gap.90 These observations are in 

accordance with the conclusions drawn in chapter 5 on the basis of changes in the trap 

distribution by coadsorption of cholic acid with D149. In view of the reduced values of 

Nt measured for the cells containing SQ2 without coadsorbate (samples SQ2, 

SQ2+D149, and SQ2+D149/D131), it is important to re-evaluate the finding that their 

capacitance curves suggested the presence of additional “trap” states (in ZnO or the dye 

itself) in these cells, which were not observed in the samples with indoline dyes only. 

Provided the trap distributions remain otherwise constant, the additional presence of 

these monoenergetic traps should, in principle, increase the total trap density. The over-

all reduction of Nt in the three cells with SQ2 (without coadsorbate) compared to indo-

line dye cells (without coadsorbate) must therefore have resulted from a reduction of the 

density of exponentially distributed traps that overcompensated the expected increase of 

Nt due to the additional deep traps. 

6.3.2 Conduction Band Edge Shifts 

Normalization of the voltage-dependent capacitance of Figure 53 by the relative total 

trap densities (Table 12) notably influenced the horizontal shifts of the Cµ curves rela-

tive to each other (Figure 55), which highlights the importance of accounting for varia-

tions in Nt. Table 13 (middle column) shows the conduction band edge shifts ΔEc/q ob-

tained for the different DSCs from the normalized capacitance. The shifted capacitance 

curves, Figure 56, show excellent overlap across the entire exponential part, confirming 
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that the variations of the trap distribution parameter in the present cells are sufficiently 

small and, hence, the determined conduction band edge shifts are meaningful.  

 

Figure 55: Chemical capacitance of the ZnO-based DSCs (assignment of colors and 

symbols as in Figure 53) following normalization by the relative total trap density. 

Lines are linear fits to selected ranges of the data. Adapted with permission from ref.288. 

Copyright 2015 American Chemical Society. 

The three samples with indoline dyes without coadsorbates (D149, D131, and 

D149/D131) show almost identical positions of the ZnO conduction band edge. Com-

pared to these cells, the sample with SQ2 shows a pronounced positive (towards Eredox) 

shift of the conduction band edge by about 110 mV. This large ΔEc explains half of the 

difference in open-circuit photovoltage between the DSCs with D149 or SQ2 (see fur-

ther discussion in chapter 6.4). A relative positive shift of Ec can indicate the presence 

of a stronger dipole pointing towards the surface of the semiconductor (or a weaker di-

pole pointing away from the surface).67, 146, 295, 296  De Angelis et al. have reported com-

putations for TiO2 showing that all dyes they investigated introduced upward shifts of 

the conduction band edge with respect to bare TiO2, but the upward shift was much 

more pronounced if the dye was adsorbed in a bridged bidentate mode (i.e., as a charged 

molecule) as opposed to monodentate mode (i.e., as a neutral molecule).67, 296 Thus, the 

present relative downward shift of Ec observed for SQ2 may reflect differences in the 

attachment of SQ2 compared to D149, possibly related to the strong aggregation of SQ2 

having suppressed the formation of stable bidentate bonds to the ZnO surface. 
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Table 13: Relative shifts ΔEc/q of the conduction band edge between the DSCs dis-

cussed in this chapter. Positive values indicate downward shifts (towards Eredox), nega-

tive values indicate upward shifts.  

sample code ΔEc/q from Cµ/ mV ΔEc/q from noc/ mV 

D149 +/- 0 (ref.) +/- 0 (ref.) 

D131 - 1 + 38 

D149/D131 + 6 + 27 

SQ2 + 108 + 186 

SQ2+D149 + 56 + 80 

SQ2+D149/D131 + 64 + 93 

D149/CA + 59 + 87 

D149/D131/OA + 65 + 82 

SQ2/CA + 88 + 105 

SQ2/CA+D149/D131/OA + 42 + 64 

 

 

Figure 56: Normalized capacitance vs. the band edge shift-corrected voltage. Reprinted 

with permission from ref.288. Copyright 2015 American Chemical Society.   

Moreover, in a previous study investigating D149-sensitized electrodeposited ZnO it 

was proposed that D149 does not form a covalent bond to the ZnO but rather adsorbs 
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via ionic interaction.137 Negatively charged adsorbed D149 ions could have created a 

stronger dipolar field relative to adsorbed SQ2 molecules, resulting in a stronger upward 

shift of Ec. Using the conduction band edge position of D149 as a reference point, this is 

detected as a relative downward shift of the conduction band edge in the cell with SQ2. 

For a deeper analysis of the origins of the relative conduction band edge shifts between 

DSCs with SQ2 and with D149, theoretical calculations67, 296 or experimental methods 

like vibrational spectroscopy297 must be employed to clarify the binding mode of the 

different dyes and coadsorbates, which was beyond the scope of this work. The relative 

Ec shifts of the co-sensitized cells with SQ2+D149 or SQ2+D149/D131 are both about 

half way in between the ΔEc of the cells with indoline dyes and that of the sample with 

SQ2. Thus, the effects of SQ2 and D149 and/or D131 on the energetics of the porous 

ZnO are averaged when the dyes are combined. Coadsorption of cholic acid or octanoic 

acid with D149 or D149/D131 in the present study led to a downward shift of Ec with 

respect to the cells without CA or OA by about 60 mV. Based on the results of chapter 

5, which suggested an upward shift of the conduction band edge by CA in D149-

sensitized ZnO, this finding at first appears unexpected. In fact, studies by other groups 

that have addressed the influence of cholic acid or cholic acid derivatives (e.g. deoxy-

cholic acid and chenodeoxycholic acid) on the conduction band edge position of ZnO or 

TiO2 have not been unambiguous either: both upward and downward shifts of Ec have 

been reported.146, 219, 298 This apparent inconsistency may be explained by variations in 

the total trap density of the semiconductor that were not accounted for, leading to faulty 

results for ΔEc. In the study presented in chapter 5, for instance, Nt was not yet moni-

tored experimentally and was assumed to be identical in cells with D149 and with 

D149/CA when estimating conduction band edge shifts. Based on the assumption that 

D149 and D149/CA exhibited similar differences with respect to the total trap density as 

observed in this chapter (Nt,D149/CA ≈ 0.5 Nt,D149), the apparent upward shift of Ec by CA 

by ~50 mV (cf. Table 9, values for cells with adsorption time of 120 mins) would 

change into a downward shift by approximately 30 mV, roughly confirming the trend 

found after normalization of Cµ in the present set of cells. The relative downward shifts 

of Ec induced in cells with indoline dyes by the presence of CA and OA is most reason-

ably explained by a different mode of adsorption of the coadsorbates via their carbox-

ylic acid groups compared to D149 and D131.298 Adding cholic acid or octanoic acid to 
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the squaraine sensitizer or to the mixture of SQ2, D149 and D131 causes a small up-

ward shift (away from Eredox) of the conduction band edge of ZnO by about 20 mV 

compared to SQ2 or SQ2+D149/D131 without coadsorbates. The above results suggest 

a situation in which the indoline dyes induce the strongest upward shift of Ec, the coad-

sorbates cause a smaller upward shift, and adsorption of SQ2 creates an even smaller 

negative shift of Ec.
67, 296 Adsorbing combinations of several dyes and/or coadsorbates 

effects an averaging of their various individual impacts on the position of the conduc-

tion band edge. As a result, the three cells with D149, D131 or D149/D131 showed the 

highest position of Ec and all other samples exhibited conduction band edges positive of 

that.   

For comparison, the relative band edge shifts were determined from shifts of the volt-

age-dependent open-circuit electron density (normalized by Nt/Nt,ref, see Figure 57) 

along the voltage axis (cf. chapter 1.4.7).  

 

Figure 57: Open-circuit electron density noc normalized by relative differences in the 

total trap density (Nt/Nt,ref), plotted against the open-circuit photovoltage (lines are a 

guide to the eye only). The data was obtained by charge extraction measurements from 

various illumination intensities of a red LED (λmax = 632 nm). Color and symbol as-

signment as in previous figures. 

The ΔEc values attained by this method (Table 13, right column) are altogether larger, 

but qualitatively show largely the same trends with respect to the influence of different 

dyes and coadsorbates, thus providing an independent confirmation of the results de-
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rived from the capacitance curves. In particular, the strong downward shift of the con-

duction band edge in the cells with SQ2 without coadsorbates and the downward shift of 

Ec by CA or OA in indoline dye cells were confirmed. 

6.3.3 Recombination 

Figure 58 shows semilogarithmic plots of the recombination resistance Rrec from EIS as 

a function of the Fermi-level voltage Vf (a) and the corrected Fermi-level voltage Vf-

ΔEc/q (b), respectively. While the plot against the uncorrected voltage gives an insight 

into the sample-to-sample differences in the rate of recombination as a combined effect 

of various factors, the focus here will be on the plots against the band edge shift-

corrected voltage, which, according to the β-recombination model, allow to interpret 

Rrec as a measure of the rate constant of interfacial charge transfer (cf. eq. (55) and eq. 

(32)).128, 252 Note that the expression for Rrec in the β-recombination model is obtained 

by use of an empirical formulation for the rate of recombination Un (eq. (16)) that ac-

counts for the influence of surface trap states only by introducing the exponent β. More 

sophisticated models include a specific distribution and density of surface trap states 

and of acceptor states, which leads to an expression for Rrec that reveals its dependence 

on the reciprocal value of the total surface trap density, see for example eq. (15) and 

(16) in ref.86. Thus, in the interpretation of the Rrec vs. Vf-ΔEc/q plots of the present cells 

with varied densities of surface traps (cf. section 6.3.1), both changes in kr or the surface 

trap density may be responsible for (inverse) changes in Rrec. In the corrected voltage 

range more negative than about -0.35 V, most semilogarithmic Rrec curves show the 

linear decrease typical for cells with an exponential distribution of surface states (eq. 

(54)).128 This range is characterized by similar recombination parameters β of ca. 0.4 – 

0.5 for most samples, as obtained from linear fits to eq. (54), see Figure 58 (b) and Ta-

ble 14. With β = 0.21, the cell with SQ2/CA+D149/D131/OA shows the only larger 

deviation from this range, representative of a steeper exponential distribution of surface 

states than in the remaining samples. 
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Figure 58: Plot of the recombination resistance of the ZnO-based DSCs against the 

Fermi-level voltage before (a) and after (b) correction by relative conduction band edge 

shifts. Thin lines are a guide to the eye only, thick lines in the higher-voltage range of 

(b) represent linear fit curves (dashed: without coadsorbate, solid: with coadsorbate). 

Plot in (b) adapted with permission from ref.288. Copyright 2015 American Chemical 

Society.   

When comparing the β values of the samples with D149 or D149/CA with those of the 

corresponding samples of chapter 5, differing effects of the coadsorbate cholic acid are 

observed. In chapter 5, the recombination parameter was higher for the cells with cholic 

acid at a given dye loading (cf. Figure 45), which was explained by the breaking-up of 

D149 aggregates by CA and related decrease of recombination at energies further away 

from the conduction band edge. In the present set of cells, the β value for the D149-

sensitized cells with and without cholic acid is virtually identical. The dye loading in the 

sample with coadsorbate was clearly smaller, with an integrated (integration range 425 

nm to 700 nm) absorbance of 170 nm compared to 280 nm in the film without CA. Ac-

cording to the trend presented in Figure 45 of chapter 5, the present cell without CA 

should thus exhibit a smaller β than the value found here and the sample with CA 

should show a larger recombination parameter. Thus, the effect of CA on the voltage-

dependence of recombination in the cells discussed here deviates from the influence that 

was found for the samples studied in chapter 5. A possible explanation (cf. chapter 4) 

for this could be the fact that different batches of D149 were utilized in the two experi-

mental series and that, for the dye batch used in the present chapter, the coadsorbate had 

a less significant effect on the voltage-dependence of Rrec than in the previous chapter.   
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Table 14: Recombination parameter for DSCs based on electrodeposited ZnO and vari-

ous dyes or dye combinations with or without coadsorbates. Values were extracted from 

the linear part of the Rrec curves observed for higher voltages and do not describe the 

full voltage-dependence of the recombination resistance. 

sample code β 

D149 0.44 

D131 0.39 

D149/D131 0.41 

SQ2 0.45 

SQ2+D149 0.50 

SQ2+D149/D131 0.50 

D149/CA 0.43 

D149/D131/OA 0.40 

SQ2/CA 0.41 

SQ2/CA+D149/D131/OA 0.21 

 

The slightly reduced slope of Rrec seen for many cells at smaller voltages is typical and 

reflects a transition to a regime in which the measured resistance is dominated by the 

charge transfer resistance of the electrolyte/blocking layer interface instead of the re-

combination resistance.128 The samples with SQ2 without coadsorbate, however, exhibit 

a very different behavior with a pronounced local minimum of Rrec centered at a cor-

rected voltage of about -0.3 V. By comparison with the chemical capacitance of the cor-

responding samples (Figure 56), this strong increase in recombination around Vf-ΔEc/q 

= -0.3 V is due to the presence of the additional electronic states that led to an increase 

in Cµ in the same voltage range.90, 128, 293 In the presence of coadsorbates (cells SQ2/CA 

and SQ2/CA+D149/D131/OA), the pronounced decrease of Rrec towards lower voltages 
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is considerably reduced, in line with the absence of signs for additional states in the 

chemical capacitance. (A certain smaller increase in Cµ expected from lower densities 

of such additional states is probably concealed by the exponential background). Note 

that in the range of Vf-ΔEc/q of -0.5 V or more negative, cells with SQ2 with or without 

coadsorbate show high recombination resistances compared to the indoline dye cells 

with or without coadsorbate, respectively. This particularly low rate of recombination 

outside the energetic range of the additional density of states is probably related to the 

overall significantly reduced density of ZnO surface trap states in the samples with SQ2 

(cf. Table 12 and discussion), corresponding to a reduced density of electron donor 

states able to participate in recombination reactions to the electrolyte or oxidized dye 

molecules. Among the samples with indoline dyes, D131 and D131/D149 (without OA) 

show higher recombination resistances vs. Vf-ΔEc/q than D149 (without CA). As the 

total trap density in the ZnO films was similar for these three cells, the differences point 

to a lower rate constant of recombination in cells containing D131, which could reflect a 

more efficient physical blocking of the ZnO surface from the electrolyte by D131 mole-

cules (reduced electronic coupling in eq. (17)). The addition of CA or OA entailed a 

very pronounced decrease of Rrec vs. Vf-ΔEc/q both for D149 and for D149/D131, which 

was at least in part the result of the reduction in the total trap density (Table 12). 

Taking the influence of the different positions of the conduction band edge into account 

(Figure 58 (a)), the cells with SQ2 without coadsorbate show the highest rate of recom-

bination at a given Fermi-level voltage due to the strong downward shifts of the conduc-

tion band edge (see previous section). D149 (without CA) shows similarly poor proper-

ties, while D131 altogether exhibits the most favorable recombination behavior. The 

addition of CA and OA overall leads to an improvement of the recombination resistance 

in the higher voltage range. A further discussion of the different factors influencing re-

combination and, eventually, the open-circuit photovoltage, will be presented in the 

following section.  

In the ZnO/D149 cells studied in chapter 5, cholic acid increased Rrec over a large range 

of voltages, but was found to have the opposite effect at voltages beyond -0.55 V (g(Efn) 

> 2·1019 eV-1cm-3, cf. Figure 44). The data of the present cells with indoline dyes show 

no indications of a decrease of Rrec at high voltages by the presence of CA or OA. It 

must be kept in mind, however, that the voltage or g(Efn) axes in the plots of the recom-
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bination resistance in chapter 5 were not corrected for possible variations in the total 

trap density between the samples and thus might not have accurately reflected the rate 

constant of recombination. If the ratio of total trap densities between cells with D149 

and cells with D149/CA in chapter 5 was similar to the one found in this chapter 

(Nt,D149/CA ≈ 0.5 Nt,D149), the recombination resistance in a plot vs. the normalized (by 

relative total trap densities) density of states would have been higher for the cell with 

CA over the whole measurement range. This would have suggested a generally lower 

rate constant of recombination in the presence of CA, as found in the present cells with 

indoline dyes.  

Since the recombination resistance is related to the slope of the voltage-dependent re-

combination current Jrec (eq. (46)), local minima in Rrec, as observed due to additional 

recombination for the cells containing aggregated SQ2, should appear as inflection 

points (S-shape) in plots of the recombination current against the voltage.90 The dark 

recombination currents dark
recJ  (equivalent to the total dark current) as a function of the 

corrected Fermi-level voltage Vf-ΔEc/q exhibit the typical exponential increase, without 

any indications of inflection points (Figure 59 (a)). 

   

Figure 59: Recombination current vs. corrected voltage in the dark (a, inset shows 

blow-up) and under AM1.5G illumination (b) of DSCs with different dyes (assignment 

of colors as in previous figures), with (solid lines) or without (dashed lines) CA/OA. 

Adapted with permission from ref.288. Copyright 2015 American Chemical Society.   
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However, the lower estimates for the voltage-dependent recombination current under 

illumination ( light
recJ , Figure 59 (b))VI for the cells with SQ2, SQ2+D149, or 

SQ2+D149/D131 exhibit the S-shape indicative of additional recombination in a limited 

voltage range, thus independently verifying the results of the EIS analysis. Based on the 

exclusive appearance of the inflection points in the illuminated recombination current, it 

can be concluded that only oxidized SQ2 in aggregates caused the voltage-dependent 

increase in recombination. The fact that the light
recJ   generally showed a voltage-

independent increase compared to the dark recombination currents probably resulted 

from an increased concentration of oxidized redox species formed in the pores of the 

ZnO film during solar cell operation.95  

Assuming that the observed trap states related to oxidized SQ2 in aggregates correspond 

to unoccupied electronic states in the ground-state dye, the energy level around which 

the states were centered should coincide with the maximum of the distribution of unoc-

cupied states in SQ2 (E0
ox in Figure 3). The traps were detected around ca 0.3 eV above 

Eredox, i.e., at -4.55 eV, 32 cf. Figure 53 and Figure 58. Previous studies have deter-

mined the Fermi level E0(S/S+) of the oxidation potential of SQ2 to be situated at -5.33 

eV, i.e., approximately 0.5 eV below Eredox of the I-/I3
- electrolyte.32 Thus, if the position 

of the monoenergetic trap states detected in Cµ and Rrec does correspond to E0
ox, the 

reorganization energy of the adsorbed SQ2 molecules would be 0.8 eV. This is in the 

range of typical reorganization energies of 0.4 – 1 eV reported for DSC dyes,205, 299 

which makes it reasonable to assume that the observed traps did, in fact, correspond to 

unoccupied states in oxidized SQ2 molecules. For the sake of convenience, the follow-

ing discussion will continue to refer to these traps as (additional) monoenergetic trap 

states. 

                                                 

VI Calculated by subtracting Jsc from the total current density measured under AM1.5G illumination. This 

approach relies on the simplifying assumption of negligible recombination under short-circuit condi-

tions (not always the case, cf. ref. 92), thus delivering lower estimates rather than exact values. 
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6.4 Detangling the Different Effects Influencing the Open-

Circuit Voltage and Fill Factor 

Having analyzed photovoltaic characteristics, trap distributions and recombination 

properties of the ZnO-based DSCs with different sensitizers and coadsorbates in the 

previous sections, the following discussion will now use these results to quantitatively 

determine the origins of the experimentally observed variations ΔVoc in the open-circuit 

photovoltage (as well as the fill factor) of the cells. According to the β-recombination 

model (eq. (34)), differences in the open-circuit photovoltage are due to changes in the 

conduction band edge Ec, the recombination parameter β, the rate of electron injection 

reflected by the short-circuit photocurrent density Jsc, and/or the rate constant kr of re-

combination under illumination (or the total trap density Nt, cf. discussion in 6.3.3), 

which is contained in the factor J0k, cf. eq. (32). For cells with similar recombination 

parameters β, such as the samples studied in this chapter (cf. Table 14), expressions for 

the change of photovoltage with respect to a reference cell “ref” solely caused by differ-

ences in J0k or Jsc can be readily derived from eq. (34):  
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In eq. (76), the parameter J0k has been replaced by the recombination current under il-

lumination, light
recJ (cf. section 6.3.3), exploiting the fact that in the case of same β and Ec 

the ratio J0k/J0k,ref is equivalent to light
recJ / light

refrec,J  (cf. eq. (31) and eq. (32)).128 The 

light
recJ  values were taken from plots against Vf-ΔEc/q (Figure 59 (b)), thus removing the 

influence of differences in Ec, and were determined outside the range influenced by the 

additional monoenergetic trap states (at -0.55 V) to ensure applicability of the β-

recombination model. The enhancement of recombination due to the presence of mo-

noenergetic deep traps in cells with SQ2 without coadsorbates cannot be described by 

the β-recombination model, so that the calculations made in this section do not account 

for the effects of this additional recombination on the open-circuit voltage. As discussed 

further above, the recombination parameters determined from the high-voltage range of 
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the Rrec curves are between 0.4 and 0.5 for most samples. To enable the calculations 

based on eq. (75) and eq. (76), the average β value of 0.44 (not including the single out-

lier of β = 0.21) was used. Based on the simplifying assumptions made above, the re-

sults attained by eq. (75) and (76) must be considered rough approximations rather than 

precise values. Regarding ΔVoc(ΔJsc), it should also be kept in mind that any increase 

(or decrease) in the short-circuit current density may entail an increased (or decreased) 

rate of recombination to oxidized dye molecules. Since indications for recombination 

with oxidized dye molecules were indeed observed in several of the cells of this chapter, 

it is likely that the change in open-circuit voltage due to the change in Jsc is slightly un-

derestimated for these samples.  

The three calculated contributions to the changes in Voc, Table 15, were summed up for 

each cell to yield the theoretical total change in the open-circuit voltage, 

ΔVoc,calc=ΔEc/q+ΔVoc(ΔJsc)+ΔVoc( light
recJ ). In spite of the simplifications made in the calcu-

lations, the majority of the values of ΔVoc,calc are very close (+/- 10 mV) to the experi-

mentally observed values of ΔVoc=Voc-Voc(D149) (Table 15), proving the applicability 

of the model. The cells with SQ2 or combinations of SQ2 and indoline dyes (without 

coadsorbates) show larger deviations of about 60 mV between theoretical and experi-

mental change in Voc, which shows that the presence of the additional monoenergetic 

trap states in these samples induced an additional loss in photovoltage by 60 mV. The 

results in Table 15 clearly show that the two DSCs containing D131 and D149/D131 

exhibited the best (most negative) open-circuit photovoltages among the cells of this 

chapter owing to the small rate constant of recombination (cf. section 6.3.3). The favor-

able influence of the sluggish recombination on Voc was slightly counteracted by a loss 

due to the smaller Jsc of these cells compared to the reference cell with D149. If the 

short-circuit photocurrent density would have been as high as that of the reference, the 

open-circuit voltage would have been even more negative by 15 – 25 mV. The cell con-

taining the squaraine dye SQ2 without cholic acid yielded the lowest Voc as a conse-

quence of the strong downward shift of Ec (cf. 6.3.2) coupled with its very low Jsc. Alt-

hough the calculations suggest that the photovoltage losses due to the small injection 

rate and the conduction band edge downward shift are counteracted by reduced recom-

bination due to the decreased surface trap density (cf. Table 12 and section 6.3.3), this 

finding does not accurately describe the situation in the real cell, since the ΔVoc,calc for 
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the containing SQ2 without coadsorbates did not include the voltage loss due to recom-

bination via monoenergetic trap states. 

 

Table 15: Partial changes ΔVoc (...) of the open-circuit voltages of ZnO-based DSCs with 

different sensitizers and coadsorbates with respect to a reference cell. ΔVoc,calc is the 

calculated total change of Voc (sum of ΔVoc (...)’s) and ΔVoc is the experimental total 

change of Voc. Adapted with permission from ref.288. Copyright 2015 American Chemi-

cal Society.   

sample code 
ΔVoc (ΔEc/q) 

/mV 

ΔVoc (ΔJsc) 

/mV 

ΔVoc ( light
recJ ) 

/mV 
ΔVoc,calc /mV ΔVoc /mV 

D149 +/- 0 (ref.) +/- 0 (ref.) +/- 0 (ref.) +/- 0 (ref.) +/- 0 (ref.) 

D131 - 1 + 26 - 46 - 21 - 23 

D149/D131 + 6 + 16 - 33 - 11 - 20 

SQ2 + 108 + 65 - 21 + 152 + 214 

SQ2+D149 + 56 + 25 + 9 + 90 + 155 

SQ2+D149/D131 + 64 + 16 + 15 + 95 + 153 

D149/CA + 59 + 18 - 77 0 + 1 

D149/D131/OA + 65 + 9 - 77 - 3 - 21 

SQ2/CA + 88 + 63 - 54 + 97 + 101 

SQ2/CA+ 

D149/D131/OA 
+ 42 - 6 - 5 + 31 + 19 

 

For the two co-sensitized cells with SQ2+D149 or SQ2+D149/D131, the open-circuit 

photovoltage reached higher values than for the sample with SQ2 as an individual sensi-

tizer because of the smaller downward shift of the conduction band edge and the higher 

Jsc. When D149 or D149/D131 were combined with coadsorbates, the open-circuit pho-

tovoltage remained the same, because the beneficial effect of decreased recombination 

(reduced total trap density, cf. Table 12) was fully compensated by losses resulting from 
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the lowered Jsc and the downward shift of Ec. Coadsorbing cholic acid with the 

squaraine sensitizer, however, led to a great improvement in Voc on account of the re-

duction of both the downward shift of the conduction band edge and recombination 

losses. For the co-sensitized cell with SQ2/CA+D149/D131/CA, an improvement of the 

open-circuit photovoltage compared to the corresponding sample without coadsorbates 

was achieved through the less pronounced downward shift of Ec, the higher short-circuit 

photocurrent density, and reduced recombination losses. This cell yielded a higher 

short-circuit current density than the reference cell with D149, but exhibited a lower Voc 

due to the ~40 mV downward shift of the conduction band edge, thus resulting in a 

marginally smaller power conversion efficiency. For the different cells containing SQ2 

as individual sensitizer or in combinations, the results of the ΔVoc analysis are summa-

rized in the illustration in Figure 60. 

 

Figure 60: Graphic representation of the three calculated contributions to the total 

open-circuit photovoltage change of four of the DSCs with respect to the reference 

sample D149: conduction band edge shifts (grey), differences in the short-circuit photo-

current density (coral), and differences in the rate of recombination (green). Negative 

values indicate gains of the (negative) open-circuit photovoltage, positive values indi-

cate losses.   

For an analysis of the microscopic origins of the different fill factors of the cells in this 

chapter, it should be noted that the (internal) fill factor FF depends on the same basic 
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factors as the open-circuit photovoltage, i.e., β, Ec, light
recJ  and Jsc, cf. eq. (35). To study 

FF independent of influences of the series resistance, its internal value was determined 

and was plotted vs. the experimental Voc in Figure 61. An exact analysis to examine 

which microscopic parameters determined FF would involve a plot of the internal fill 

factor against the calculated Voc based on the parameters Ec, J0k, β and Jsc (eq. (34)), 

rather than against the experimental Voc. However, calculated absolute voltage values 

could not be determined for the present samples, as Ec and J0k were only accessible as 

relative quantities. The data was compared to a simulated curve based on the above 

equation under the assumption of a constant β value of 0.44 (see discussion above). 

 

Figure 61: Internal fill factor of the ZnO-based dye-sensitized solar cells with various 

photosensitizers plotted vs. the experimental open-circuit photovoltage. Black symbols 

are experimental values, blue symbols are calculated values obtained by inserting the 

measured Voc and β values of each sample into eq. (35). The red line is a simulation 

based on eq. (35) with a fixed β value of 0.44.  

A fair agreement of the experimental data with the simulated behavior can be seen, in-

dicating that the variations of the fill factor between different samples are mostly the 

result of the above-discussed changes in the open-circuit photovoltage. In other words, 

the differences in the fill factors of the various cells are largely due to the variations in 

Ec, light
recJ  and Jsc that were responsible for the variations in Voc, cf. Table 15. Calculating 

the internal fill factor of each sample based on the measured Voc of each individual sam-
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ples and considering their individual experimental β values (blue symbols in Figure 61) 

does not lead to a significantly improved congruence between experimental internal fill 

factor and theoretical value. Thus, the small variation of the β values does not seem to 

have a crucial influence on FF. 

6.5 Analysis of the Factors Determining the External Quantum 

Efficiency 

This section will first focus on a quantitative estimation of the factors limiting the IPCE 

(cf. eq. (40)). Explicit investigations of the electron injection efficiency ηinj and the dye 

regeneration efficiency ηreg generally require specific experimental methods such as ul-

trafast transient absorption spectroscopy and scanning electrochemical microscopy,82, 

105, 282, 300 which were beyond the experimental scope of this work. The present discus-

sion of those quantities will therefore be limited to the combined effect of ηinj and ηreg at 

short circuit as concluded based on the determined charge collection efficiency ηcc and 

light harvesting efficiency ηlh, which is a typical approach in photoelectrochemical and 

impedance studies of complete DSCs.28, 141 ηcc is commonly assessed by comparing the 

electron diffusion length nnn DL   (eq. (2)) with the film thickness d. Since effective 

electron lifetime τn and effective diffusion coefficient Dn depend on the bias volt-

age/illumination, a correct determination of Ln must use τn and Dn values at the same 

electrical condition,111 which is the short-circuit condition in the present analysis of the 

IPCE and Jsc. For τn, the value  at an applied voltage V = -0.3 V (obtained from Cµ and 

Rrec via eq. (47)) was used as an approximation for the short-circuit value because the 

impedance spectra could not be reliably fitted anymore at less negative voltages. Ap-

proximate values of Dn were obtained by means of eq. (69) using the electron transport 

time τtr measured by IMPS under 25 mWcm-2 illumination by a red LED at short circuit 

(cf. Figure 75) and a factor ζ of 3.1, as roughly estimated based on an extrapolation of 

the chart in the Supplementary Information of ref. 141 to αabsd ≈ 5, the value correspond-

ing to the highest peak absorbance of 2.2 among the samples of this chapter.VII. Consid-

                                                 

VII ζ = 3.1 constitutes a higher value than used in most other studies (cf. ref. 141, 242, 263, and 264) 

    chosen here to ensure that Dn is underestimated rather than overestimated. 
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ering that τn increases towards smaller voltages and τtr decreases with increasing light 

intensity,87, 90 the Ln values determined using τn at V = -0.3 V and τtr under 25 mWcm-2 

illumination represent conservative lower estimates for the short-circuit diffusion length 

under standard AM1.5G operating conditions. Nearly all of the estimated short-circuit 

electron diffusion lengths for the different cells are at least 3 times as large as their film 

thickness d (Table 16), demonstrating that the charge collection efficiency approached 

100%87 and the IPCE was not limited by this part of the photon-to-current conversion 

(cf. Table 17). The cell D149/D131 exhibits an Ln/d ratio of 2.6 (as a result of a relative-

ly low electron diffusion coefficient), which according to a graphical estimation based 

on Figure (17) of ref. 87 should still correspond to a charge collection efficiency ηcc of 

about 97%.  

Table 16: Effective electron lifetime (at an applied voltage of -0.3 V) and diffusion 

length (at short circuit) τn and Dn, film thickness d, estimated short-circuit electron dif-

fusion length Ln,sc, and ratio of Ln,sc and d for ZnO solar cells with different dyes with 

and without coadsorbates. 

sample code τn (V=-0.3 V) / ms 
Dn (s.c.) 

/ 10-5 cm2s-1 
d / µm Ln,sc / µm Ln,sc/d 

D149 6.6 3.2 4.2 14.6 3.5 

D131 10.7 n.a. 4.3 n.a. n.a. 

D149/D131 8.9 1.3 4.2 10.8 2.6 

SQ2 7.2 14.5 4.2 32.2 7.6 

SQ2+D149 2.9 11.6 4.2 18.3 4.3 

SQ2+D149/D131 4.1 10.5 4.3 20.6 4.8 

D149/CA 18.3 2.7 4.1 22.1 5.3 

D149/D131/OA 16.5 2.1 4.6 18.6 4.0 

SQ2/CA 3.9 5.6 4.4 14.7 3.3 

SQ2/CA 

+D149/D131/OA 
3.8 5.2 4.5 14.1 3.1 
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The spectral light harvesting efficiency, determined from the optical loss-corrected ab-

sorbance curves in Figure 50,VIII exhibits very high peak values of 97 – 99% for cells 

without coadsorbates, while the samples with CA and/or OA show slightly smaller max-

imum ηlh of 89 – 96%, Figure 62.  

 

Figure 62: Light harvesting efficiencies of the DSCs with SQ2, D149, and/or D131, 

calculated from the absorbance.  

For the solar cell performance, the spectrally integrated light harvesting efficiency ηlh,int 

is the relevant quantity. The ηlh,int values of the various DSCs were determined using an 

integration range of 350 – 750 nm and were referred to the integrated light harvesting 

efficiency of a hypothetical ideal absorber showing ηlh = 1 over the range 350 – 750 nm 

(the corresponding ηlh,int is 400 nm) to attain relative integrated light harvesting effi-

ciencies with values between 0 and 100%, Table 17.  

Having quantified ηcc and ηlh,int, it is now possible to assess the combined effect of elec-

tron injection and dye regeneration on the quantum efficiency. For this purpose, the 

IPCE curves of Figure 52 were first corrected for optical losses of 20%IX (i.e., divided 

by 0.8) to yield an internal IPCE that refers to the light intensity actually arriving at the 

                                                 

VIII These “internal” values of the light harvesting efficiencies represent are smaller than those determined 

from the uncorrected absorbance, acknowledging that a part of the non-transmitted light intensity can-

not contribute to the photocurrent generation but is rather reflected or absorbed by the FTO/glass sub-

strate, see further below.  
IX Estimated based on an offset of 0.09 of the absorbance curves at 800 nm, where none of the dyes ab-

sorb, i.e., any measured absorbance must be due to the substrate.  



Panchromatic Dye-Sensitized Solar Cells Obtained by Co-Sensitization of Electrodeposited ZnO with 

Indoline and Squaraine Dyes 159 

 

 

active layer. The corrected IPCE spectra were then spectrally integrated (350 – 750 nm) 

and the results were divided by the integrated IPCE of a hypothetical cell with IPCE = 1 

over the whole range (i.e., by 400 nm) to yield relative values between 0 and 100%, 

Table 17. 

    

Table 17: Relative integrated internal IPCE (corrected for 20% optical losses), short-

circuit charge collection efficiency, relative integrated light harvesting efficiency (cor-

rected for optical losses), and product of electron injection efficiency and dye regenera-

tion efficiency of DSCs based on electrodeposited porous ZnO with various dyes and 

coadsorbates. 

sample code 
rel. IPCEint 

corr. /% 
ηcc /% rel. ηlh,int /% ηinj· ηreg /% 

D149 40 100 63 64 

D131 28 100 37 77 

D149/D131 44 97 59 77 

SQ2 13 100 60 22 

SQ2+D149 26 100 87 30 

SQ2+D149/D131 32 100 87 37 

D149/CA 30 100 51 59 

D149/D131/OA 34 100 49 70 

SQ2/CA 13 100 27 49 

SQ2/CA+D149/D131/OA 45 100 59 77 

 

Dividing the relative integrated IPCE values by the relative integrated light harvesting 

efficiency and by the charge collection efficiency then yielded an estimation for the 

spectrally averaged value of the product ηinj·ηreg (Table 17), which is identical to the 
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APCE (eq. (41)) in the present case of ηcc = 100%. The results confirm and complement 

the preliminary conclusions drawn in chapter 6.2. In the cell with D149 without coad-

sorbates, the integrated external quantum efficiency is limited by the light harvesting 

efficiency and the combined electron injection and dye regeneration efficiency, with 

ηlh,int and ηinj·ηreg showing nearly identical values of 63 and 64%. For D131 and 

D149/D131, the electron injection and/or dye regeneration efficiency is higher (77%) 

than for D149 alone, and light harvesting is clearly the primary limiting factor for the 

IPCE (and, hence, for Jsc).  

In the cells with SQ2, SQ2+D149, and SQ2+D149/D131, the electron injection and/or 

dye regeneration efficiency is particularly low (22 – 37%), while the light harvesting 

efficiency is high (60 – 87%), especially in the co-sensitized samples (87%). For these 

three cells, ηinj·ηreg is thus the primary limiting factor for the IPCE and Jsc. In the sam-

ples with coadsorbates, the integrated light harvesting efficiency was reduced compared 

to their counterparts without coadsorbates. As for ηinj·ηreg, it was decreased with respect 

to the samples without CA/OA for the cells D149/CA and D149/D131/OA, but was 

strongly increased from 22 to 49% and from 37 to 77% for SQ2/CA and 

SQ2/CA+D149/D131/OA. The latter effect is likely the consequence of the suppression 

of aggregation of SQ2 and the resulting decreased probability of radiationless decay of 

the excited state and/or improved accessibility of oxidized SQ2 for regeneration by the 

electrolyte, as well as the suppression of potential energy transfer from the indoline dyes 

to SQ2 in the presence of the coadsorbates. As a result of the effects of the presence of 

CA and/or OA on light harvesting and electron injection/dye regeneration, ηlh,int is the 

main limiting factor for the integrated external quantum efficiency in all four cells with 

coadsorbates studied in this chapter. 

6.6 Summary and Conclusions for This chapter 

A new method to fabricate panchromatic solar cells based on electrodeposited porous 

ZnO by co-sensitization with the indoline dyes D149 and D131 and the squaraine dye 

SQ2 was presented. DSCs with the individual sensitizers were studied along with cells 

containing different combinations of the three dyes, adsorbed either from a mixed dye 

bath (D149/D131) or sequentially (SQ2 with D149 or with D149/D131). The influence 

of the coadsorbates cholic acid (CA) and octanoic acid (OA) was also studied.  
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UV/Vis absorption spectroscopy of the dye-sensitized films proved successful adsorp-

tion of all sensitizers both individually and together with other dyes and showed that the 

presence of the coadsorbates led to a slight reduction in the dye loading. As desired, 

ZnO films combining SQ2 with indoline dyes showed very broad absorption extending 

from 350 nm to ≥ 700 nm. Current-voltage characterization, IPCE measurements, im-

pedance spectroscopy (EIS), intensity-modulated photoelectron spectroscopy (IMPS) 

and charge extraction were utilized to reveal how the various dyes, dye mixtures and 

dye-coadsorbate combinations affect device characteristics, charge transport, and charge 

recombination in the cells. Co-sensitization with SQ2, D149 and D131 in the presence 

of coadsorbates led to the highest short-circuit photocurrent density among the cells 

studied in this chapter, exceeding the Jsc achieved with any of the three sensitizers indi-

vidually. Combining results of UV/Vis absorption spectroscopy, EIS, and IMPS, it was 

found that the charge collection efficiency approached 100% in all samples. The photo-

current efficiency was mostly limited by the integrated light harvesting efficiency, even 

in the co-sensitized cell SQ2/CA+D149/D131/OA that showed extended light harvest-

ing compared to D149/CA. By contrast, in the cells containing SQ2 without coadsorb-

ate, Jsc was limited by the low combined electron injection/dye regeneration efficiency 

(≤ 37%). The relatively low short-circuit photocurrents of D149/CA and SQ2/CA com-

pared to titania-based devices using the same dyes are concluded to be due to relatively 

lower injection or regeneration efficiencies (ηinj·ηreg = 64% for D149 and ηinj·ηreg = 22% 

for SQ2). Samples with SQ2 exhibited reduced open-circuit photovoltages, which lim-

ited the overall efficiency of the SQ2/CA+D149/D131/OA cell to a value just compara-

ble to the cell containing only D149. By use of impedance spectroscopy, the three main 

origins of variations in Voc – conduction band edge shifts, differences in the short-circuit 

photocurrent density, and variations in the rate constant of recombination – were quanti-

fied based on the β-recombination model, revealing the detailed influence of the differ-

ent dyes and dye combinations on the balance between charge injection and charge re-

combination. For the dye combination SQ2/CA+D149/D131/OA, for example, the loss 

in photovoltage with respect to D149 as individual sensitizer was due to a relative 

downward shift of the conduction band edge of ZnO by about 40 mV. The particularly 

low open-circuit photovoltages and fill factors seen in cells containing the squaraine 

sensitizer without coadsorbates were connected to the appearance of a local maximum 
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in the chemical capacitance and a local minimum in the recombination resistance, both 

located at a quasi-Fermi level of about 0.3 eV (above Eredox) and indicative of the pres-

ence of additional deep electronic states in the dye-sensitized ZnO. Independent meas-

urements of the recombination current (in the dark and under AM1.5G-type white light) 

corroborated this finding and showed that the additional recombination was only ob-

served under illumination. When coadsorbates were employed, the effect was consider-

ably reduced and open-circuit voltage and fill factor were improved accordingly. The 

observed influence of illumination and presence of coadsorbates indicated that the addi-

tional deep trap states causing the increase in the rate of recombination were formed by 

aggregated, oxidized SQ2 molecules.  

A modified protocol for the determination of conduction band edge shifts from EIS-

derived chemical capacitance curves was introduced. Using short-circuit charge extrac-

tion, it was demonstrated that the total trap density of the ZnO films, which is common-

ly assumed to be equal among sets of cells analyzed with respect to ΔEc, varies system-

atically depending on the adsorbed dyes and coadsorbates. A newly introduced normali-

zation of the chemical capacitance by relative values of the total trap density – as previ-

ously proposed by others for charge density curves – was demonstrated to have a signif-

icant effect on the results obtained for the conduction band edge shifts, suggesting that 

this revised protocol is an important precondition to correctly assess ΔEc.   

As the power conversion efficiency observed for the combination of SQ2, D149, and 

D131 was chiefly limited by aggregate-promoted recombination as well as a significant 

relative downward shift of the conduction band edge induced by SQ2, future work 

should focus on testing alternative red-absorbing dyes for ZnO that show less aggrega-

tion and yield high open-circuit photovoltages. Moreover, alternative coadsorbates that 

cause a higher position of the conduction band edge of the electrodeposited ZnO and are 

more efficient in preventing the formation of dye aggregates are sought.  
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7 Panchromatic Solar Cells Based on 

Nanoparticulate ZnO Films 

7.1 Introductory Remarks 

A series of screenprinted nanoparticulate ZnO (np-ZnO) films was sensitized with the 

dyes D149, D131, or SQ2 in the presence or absence of the coadsorbates cholic acid 

(CA) or octanoic acid (OA) to test whether the results of chapter 6 are reproduced for 

this type of nanostructure and to examine general differences between cells based on 

electrodeposited (edep-ZnO) and nanoparticulate ZnO. Based on BET measurements of 

similarly fabricated nanoparticulate ZnO films,161 the inner surface area of the ~10 µm 

thick films can be estimated at about 0.015 m2, compared to a slightly smaller value of 

about 0.011 m2 estimated for the electrodeposited films with average thickness of 4.2 

µm (cf. Figure 33 and Table 30) using an approximate roughness factor of 400.25 Thus, 

the difference in surface area accessible for attachment of dye molecules is expected to 

be rather small in spite of the significant difference in film thickness. In addition to the 

dye and dye/coadsorbate combinations studied in chapter 6, a film with D131/OA and a 

film co-sensitized with all dyes in a three-step sequence 

(SQ2/CA+D131/OA+D149/D131/OA) were prepared. The additional step of pre-

adsorbing D131/OA prior to immersion in D149/D131/OA solution was introduced to 

test whether the presence of D131 – a dye showing negligible aggregation on ZnO (cf. 

Figure 50) – may affect the arrangement of subsequently adsorbed D149 and D131 and 

thereby influence the cell properties.  

7.2 Optical Absorption 

The UV/Vis absorption spectra of the films sensitized with D131, D149, the combina-

tion D149/D131, or SQ2 without coadsorbates (Figure 63 (a), broken lines) resemble 

those of the corresponding electrodeposited ZnO films (Figure 50), both in shape and 

height. The spectrum of an additional np-ZnO/SQ2 film with a slightly smaller dye 

loading (short-dashed blue line in Figure 63 (a)) shows the monomer band (~ 660 nm) 

together with aggregate-related (cf. Figure 49 (a)) subbands at 600 – 610 nm and ~690 
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nm, clearly confirming that the broad peak shape observed for SQ2 without CA both on 

electrodeposited and on nanoparticulate ZnO is due to aggregation.  

   

Figure 63: UV/Vis absorption spectra of the nanoparticulate ZnO films sensitized with 

D149, D131, and/or SQ2, in the presence (solid lines) or absence (dashed lines) of the 

coadsorbates cholic acid or octanoic acid using solutions prepared identically to those 

employed in chapter 6 (cf. Figure 49). The sample with D131 suffered from irreparable 

damage in the midst of its characterization and will therefore not be part of most of the 

remaining discussion.  

The three samples SQ2, SQ2/CA, and D131 show an unexpectedly high absorbance of 

increasing intensity towards decreasing wavelengths in a range in which the dyes are 

not expected to absorb light (~400 – 550 nm for SQ2 and ~550 – 700 nm for D131, cf. 

Figure 49 (a)). The effect could be an artifact due to temporal instabilities in the spec-

tral reflectivity of the integrating sphere used in the measurements. Alternatively, it may 

have been caused by particularly strong Rayleigh scattering of incident light at the na-

noparticulate ZnO films, which becomes stronger towards smaller wavelengths (∝ λ-

4)301 and could have prevented a part of the transmitted light of shorter wavelengths 

from being detected in spite of the use of the integrating sphere. The IPCE in the corre-

sponding ranges was virtually zero (see Figure 66 in the following section), further 

supporting that the apparent additional absorbance did not correspond to a real light 

absorption by the dyes. Combining SQ2 and D149 or SQ2 and D149/D131 (with or 

without coadsorbate) on np-ZnO films yielded the desired panchromatic absorption 

(Figure 63 (b)), confirming that these dyes can co-exist as adsorbates also on nanopar-
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ticulate ZnO. By comparison of the spectra of the films SQ2/CA+D149/D131/OA and 

SQ2/CA+D131/OA+D149/D131/OA (Figure 63 (b)), the additional dipping in 

D131/OA solution is found to be detrimental, as it did not result in an increased absorb-

ance by D131 but diminished the absorption by the other two sensitizers. As in the pre-

vious chapters, addition of CA reduced aggregation of D149 and, in particular, SQ2, as 

apparent from the reduced widths of the corresponding absorption bands both in the 

samples with the individual dyes as well as in co-sensitized films. The largely mono-

meric adsorption of the dye D131 is proven by the near congruence of the spectra of 

D131 and D131/OA.  

Comparing the integrated absorbances absint of np-ZnO films and edep-ZnO films sensi-

tized with the same dye(s) and coadsorbate(s), Table 18, allows discussing differences 

in the total dye loading assuming that the molar absorptivity of the individual dyes was 

constant. For most dyes or dye combinations without coadsorbates, the total dye loading 

in the np-ZnO films exceeded that in the electrodeposited samples by a factor of 1.1 – 

1.2, approximately in line with the estimated increase in surface area by a factor of 1.4 

(cf. section 7.1). Among the samples containing coadsorbates, the difference in total dye 

loading between np-ZnO and edep-ZnO was even more significant (see discussion be-

low), with the absint values of the former exceeding those of the latter by a factor of 1.4 

– 1.8. In contrast, the co-sensitized np-ZnO samples with SQ2+D149 or 

SQ2+D149/D131 show a lower integrated absorbance than the corresponding edep-ZnO 

films, which is mainly due to the lower SQ2 loading (see long-wavelength range of 

dashed lines in Figure 63 (b)). For np-ZnO films, the SQ2 adsorbed in the first step of 

the sequential co-sensitization thus appears less resistant against replacement by D149 

or D131 in the second adsorption step than for electrodeposited ZnO films. This is cor-

roborated by the fact that a blue discoloration of the D149 or D149/D131 solutions was 

observed after dipping the SQ2-loaded np-ZnO films into these solutions, while no such 

observation could be made in the sensitization of electrodeposited ZnO. The presence of 

CA and/or OA in the sensitization of np-ZnO films generally led to a reduction of the 

total dye loading, as was the case for edep-ZnO films (see Table 18, middle and right 

column, and Figure 50).  
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Table 18: Integrated absorbance (integration range 350 - 750 nm) of the nanoparticu-

late ZnO films compared to the corresponding values of their electrodeposited counter-

parts with the same dyes and coadsorbates. 

dye(s) and coadsorbate(s) 
absint (np-ZnO) 

/ nm 

absint (edep-ZnO) 

/ nm 

D149 380 337 

D131 207 168 

D149/D131 360 298 

SQ2 374 336 

SQ2+D149 512 608 

SQ2+D149/D131 464 567 

D149/CA 355 202 

D149/D131/OA 333 193 

SQ2/CA 132 72 

SQ2/CA+D149/CA 359 258 

SQ2/CA+D149/D131/OA 338 236 

 

However, on nanoparticulate ZnO the dyes (particularly D149 and D131) were more 

stable against replacement by coadsorbates, as apparent from the smaller coadsorbate-

induced changes of the height of the absorbance bands (Figure 63 vs. Figure 50) and of 

the integrated absorbances of the films with individual sensitizers (Table 18). For ex-

ample, the relative reductions of absint upon adding cholic acid to SQ2 or D149 are 78% 

and 40% for edep-ZnO, but only 65% and 7% for np-ZnO. The increased stability of the 

dye attachment in the presence of CA and OA explains why the nanoparticulate samples 

with coadsorbates showed a particularly high dye loading with respect to the edep-ZnO 

films.  
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7.3 Device Performance and External Quantum Efficiency 

The J-V characteristics and photovoltaic parameters under AM1.5G illumination of so-

lar cells built from the dye-sensitized np-ZnO films are presented in Figure 64 and Ta-

ble 19. 

  

Figure 64: Current-voltage characteristics of DSCs based on np-ZnO films sensitized 

with D149, D131, SQ2, or various combinations of these dyes, in the presence (_____) or 

absence (- - - -) of the coadsorbates CA and/or OA.  

With the exception of the cell with SQ2, the DSCs based on nanoparticulate zinc oxide 

show better power conversion efficiencies than the corresponding cells based on elec-

trodeposited ZnO (Table 11, values repeated in Table 19 for easier comparison). For the 

cells with one or both indoline dyes (with or without CA/OA), the improvement is 

caused by considerably enhanced Jsc values along with improved Voc’s. The cells with 

SQ2, SQ2+D149, or SQ2+D149/D131 without coadsorbates exhibit higher fill factors 

and/or higher open-circuit voltages but somewhat lower short-circuit current densities 

than the corresponding cells based on edep-ZnO, overall resulting in an only slightly 

improved (or, for SQ2, somewhat smaller) conversion efficiency. In the case of 

SQ2/CA and the co-sensitized DSC SQ2/CA+D149/D131/OA, the overall performance 

was improved owing to clearly enhanced voltages and slightly better short-circuit cur-

rents. A further discussion of the factors governing the Jsc in the nanoparticulate ZnO 

solar cells with SQ2, D149, and/or D131 will be given below and in section 7.6, and 

reasons for the different Voc and FF will be discussed in 7.7. 
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Table 19: Photovoltaic parameters of the solar cells based on dye-sensitized np-ZnO as 

well as theoretical short-circuit current densities theo
scJ determined from the IPCE spec-

tra. Where possible, the corresponding values of the electrodeposited samples of chap-

ter 6 are given in parentheses for comparison. 

sample code 
Jsc

  

/ mAcm-2 

theo
scJ  

/ mAcm-2 
Voc / mV FF η / % 

NP_D149 
10.47 

(7.8) 

9.16 

(7.6) 

-0.59 

(-0.56) 

0.59 

(0.59) 

3.65 

(2.57) 

NP_D149/D131 
10.41 

(6.0) 

8.67 

(7.8) 

-0.62 

(-0.58) 

0.58 

(0.59) 

3.73 

(2.04) 

NP_SQ2 
1.68 

(2.6) 

0.79 

(2.7) 

-0.34 

(-0.34) 

0.54 

(0.51) 

0.31 

(0.45) 

NP_SQ2+D149 
4.48 

(5.1) 

3.90 

(5.2) 

-0.49 

(-0.40) 

0.57 

(0.52) 

1.24 

(1.04) 

NP_SQ2+D149/D131 
4.97 

(6.0) 

4.01 

(6.2) 

-0.47 

(-0.40) 

0.54 

(0.49) 

1.24 

(1.20) 

NP_D149/CA 
9.99 

(5.8) 

8.77 

(5.6) 

-0.6 

(-0.56) 

0.61 

(0.64) 

3.63 

(2.06) 

NP_D131/OA 5.69 4.14 -0.63 0.62 2.2 

NP_D149/D131/OA 
9.43 

(6.7) 

7.74 

(6.0) 

-0.59 

(-0.58) 

0.62 

(0.63) 

3.45 

(2.42) 

NP_SQ2/CA 
2.78 

(2.7) 

2.35 

(2.9) 

-0.51 

(-0.46) 

0.6 

(0.61) 

0.85 

(0.74) 

NP_SQ2/CA+D149/CA 8.59 8.69 -0.55 0.57 2.65 

NP_SQ2/CA+ 

D149/D131/OA 

9.19 

(8.6) 

n.a. 

 (8.7) 

-0.57 

(-0.54) 

0.57 

(0.55) 

2.99 

(2.55) 

NP_SQ2/CA+ 

D131/OA+ 

D149/D131/OA 
8.65 n.a. -0.57 0.55 2.71 
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Among the J-V curves of the cells based on nanoparticulate ZnO with different dyes and 

dye combinations in Figure 64, similar trends can be seen as among the cells built from 

edep-ZnO (Figure 51). Most notably, the poor Jsc, Voc, and fill factor of SQ2 are con-

firmed for this type of ZnO structure. The main difference to the edep-ZnO samples is 

that the best short-circuit photocurrent densities among the present samples were clearly 

achieved with D149 and D149/D131 (without coadsorbate)X rather than by co-

sensitization with SQ2, D149, and D131, as was the case for the edep-ZnO samples. 

Use of D131/OA resulted in the highest open-circuit photovoltage, but only in a moder-

ate short-circuit photocurrent density. The co-sensitized cells combining SQ2 with indo-

line dyes all show Jsc and Voc values in between those of SQ2 and the indoline dye cells. 

SQ2/CA+D131/OA+D149/D131/OA delivered the same Voc but a smaller short-circuit 

current and FF with respect to SQ2/CA+D149/D131/OA, demonstrating that the addi-

tional adsorption step led to a worsening of the conversion efficiency and was redun-

dant. The best power conversion efficiency among the np-ZnO cells was attained using 

the indoline dye combination D149/D131 without coadsorbates, which yielded a larger 

Voc than D149 alone. Concerning the effect of CA and OA on the photovoltaic perfor-

mance, two major results obtained for the edep-ZnO cells are confirmed: (1) the fill 

factor is generally increased and, (2) the Jsc and Voc of all samples containing SQ2 (in-

dividually or in combinations) are considerably improved with respect to the coadsorb-

ate-free counterparts. The decrease of Jsc by coadsorption of CA or OA with D149 or 

D149/D131 is clearly less severe than in the case of electrodeposited samples, which is 

the result of the dye loading remaining relatively high in the np-ZnO-based cells with 

coadsorbates (cf. previous section).  

Together with the spectral light harvesting efficiencies ηlh (Figure 65), the IPCE spectra 

of the various dye-sensitized np-ZnO films, Figure 66, further confirm the dye- and 

coadsorbate-dependent trends observed for electrodeposited ZnO. 

                                                 

X Note that the Jsc values obtained for D149 and D149/D131 (with or without coadsorbate) on np-ZnO 

were almost the same, further confirming that the short-circuit currents obtained with D149/CA and 

D149/D131/OA on edep-ZnO would normally be similar as well. 
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Figure 65: Light harvesting efficiency of the various np-ZnO films calculated from the 

absorbance spectra. Assignment of colors and line styles as in the figure below. The 

apparent light harvesting in the cells D131, SQ2, and SQ2/CA in the mid-wavelength 

range is likely due to strong light scattering by the np-ZnO films (cf. Figure 63 and dis-

cussion).  

  

Figure 66: External quantum efficiency (IPCE) spectra of np-ZnO DSCs with different 

sensitizers and sensitizer combinations. The spectra of the samples 

SQ2/CA+D149/D131/OA and SQ2/CA+D131/OA+D149/D131/OA (thin lines in (b)) 

were measured by a different experimental setup (Zahner setup, cf. Appendix C) and 

can only be qualitatively compared to the other spectra presented her.   

Most significantly, the effects of SQ2 as individual sensitizer or co-sensitizer on ZnO 

are corroborated. As in the case of electrodeposited samples, the very low Jsc obtained 
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with SQ2 was due to hindered electron injection and/or dye regeneration, as indicated 

by a maximum IPCE much lower than expected based on the high light-harvesting effi-

ciency. Moreover, in co-sensitized samples containing SQ2 without coadsorbates, the 

short-circuit photocurrent remained low because SQ2 suppressed efficient conversion of 

absorbed light by D149 and D131, as apparent from the high light-harvesting efficiency 

but low IPCE in the range 400 – 600 nm. Coadsorption of CA and/or OA again sup-

pressed the undesired dye/dye interactions and enabled a significant improvement of the 

IPCE over the whole wavelength range. However, unlike in the cells based on electro-

deposited ZnO, the combination of SQ2 with indoline dyes in the presence of coadsorb-

ates on np-ZnO yielded inferior Jsc values with respect to the cells with indoline dyes 

only (with or without coadsorbates), because the additional IPCE created by SQ2 in the 

red part of the spectrum was overcompensated by reduced IPCE values in the absorp-

tion range of the indoline dyes, as seen directly in the spectrum of the sample 

SQ2/CA+D149/CA in Figure 66.XI 

The theoretical short-circuit current densities theo
scJ  derived from the IPCE spectra via eq. 

(36) (Table 19) are qualitatively in line with the experimental Jsc. However, the theoret-

ical values on average amount to only 80% of the experimental values, showing that the 

measured IPCE tended to be underestimated. A possible reason for this could be strong 

light scattering by the nanoparticulate ZnO samples, as also suggested the optical ab-

sorption (Figure 63 and Figure 65), which may have led to an overestimation of the 

light intensity actually available for absorption and photocurrent generation by the dyes 

and, in consequence, to an underestimation of the IPCE (see also Appendix C). 

7.4 Trap Density, Trap Distribution and Conduction Band 

Edge Shifts 

The semilogarithmic capacitance plots of the dye-sensitized np-ZnO solar cells obtained 

by electrochemical impedance spectroscopy under AM1.5G white light (in the follow-

                                                 

XI While the presented spectra for SQ2/CA+D149/D131/OA and SQ2/CA+D131/OA+D149/D131/OA are 

not quantitatively comparable to the other spectra (different measurement setup used), a comparison 

with identically measured spectra of indoline dye cells (cf. Figure 103 in Appendix C) confirms that 

these cells also suffered from a reduced IPCE in the D149/D131 range that offset the gains in the red 

part.   
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ing referred to as EISAM1.5G) (Figure 67 (a)) are linear for voltages of about -0.45 V or 

more negative, confirming that the obtained capacitance constitutes a chemical capaci-

tance determined by an exponential distribution of trap states, as in previous chapters. 

 

Figure 67: Capacitance vs. Fermi-level voltage (Vf  or Voc) plots of the DSCs based on 

dye-sensitized np-ZnO films from voltage-dependent EIS under AM1.5G (100 mWcm-2) 

illumination (a) and from EIS at open circuit under illumination by a red LED with var-

ied intensity (b). Legend in (a) refers to both plots. Lines are a guide to the eye only. 

The values shown for voltages less negative than ca -0.45 V cannot be considered relia-

ble, because the fit quality in this voltage range was insufficient due to pronounced scat-

tering of the EIS spectra. However, impedance data measured under varied monochro-

matic illumination at open circuit (in the following referred to as EISoc,red) allowed to 

obtain good fits down to less negative voltages, see Figure 67 (b). These curves reveal 

an onset of a local increase of Cµ around ca -0.3 V for the cells SQ2+D149 and 

SQ2+D149/D131, indicating that adsorption of SQ2 without coadsorbates led to the 

formation of additional deep traps, as was the case (cf. Figure 53) for the corresponding 

DSCs based on edep-ZnO. (For the np-ZnO cell with SQ2 as individual sensitizer, the 

EIS data could not be meaningfully evaluated down to the relevant voltage range).  

The trap distribution parameters α derived from the exponential part of the Cµ curves of 

EISAM1.5G (fits to eq. (52) shown in the normalized capacitance curves in Figure 69 (b) 

for better visibility) all showed comparable values of 0.22 +/- 0.03, see Table 20. This is 

confirmed by the corresponding values from EISoc,red (see fits in Figure 69 (b) and re-

sults in Table 20), which for a given dye or dye combination mostly did not deviate by 
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more than 0.02 from the α parameters from EISAM1.5G. Somewhat larger differences of 

0.04 – 0.06 are found for the cells SQ2, SQ2/CA, SQ2+D149, and D149/CA. For most 

of them, the Cµ curves from EISoc,red did not reach into the negative voltage range be-

yond -0.45 V, so that the α values were probably not an accurate measure of the expo-

nential trap distribution. Altogether, the trap distribution parameters of 0.16 – 0.28 

found here are clearly lower than the α values of 0.32 – 0.44 found for the electrodepos-

ited samples of chapter 6, which shows that the trap distribution in the nanoparticulate 

ZnO films was significantly steeper than in the electrodeposited ZnO, in line with re-

sults of previous studies.136   

To determine the relative conduction band edge shifts between the different cells, the 

chemical capacitances from EISAM1.5G and EISoc,red were first normalized by the relative 

total trap densities (see Table 20), determined from the short-circuit charge density un-

der varied illumination by a red LED (Figure 68) by use of the same procedure as in 

chapter 6.3.1. 

 

Figure 68: Charge-density under short-circuit conditions for different illumination in-

tensities and resulting short-circuit current densities, used to determine the relative to-

tal trap densities of the different cells. See legend in previous figure for the meaning of 

colors and symbols. 

 

Table 20: Relative total trap densities Nt/Nt,ref (reference sample: NP_D149), as well as 

relative conduction band edge shifts ΔEc/q (reference sample: NP_D149; positive val-
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ues: downward shifts, negative values: upward shifts) and trap distribution parameters 

α determined from the Cµ curves from EISAM1.5 or EISoc,red.  

sample code Nt/Nt,ref 
ΔEc/q / mV 

EISAM1.5 

ΔEc/q / mV 

EISoc,red 

α 

EISAM1.5 

α 

EISoc,red 

NP_D149 
1.0 

(ref.) 
+/- 0 (ref.) 0 0.23 0.21 

NP_D149/D131 1.2 +/- 0 - 7 0.22 0.20 

NP_SQ2 0.2 + 267 + 237 0.21 0.26 

NP_SQ2+D149 0.4 + 161 + 150 0.22 0.16 

NP_SQ2+D149/D131 0.7 + 112 + 74 0.21 0.22 

NP_D149/CA 0.9 +/- 0 + 9 0.25 0.21 

NP_D131/OA 1.4 - 20 n.a. 0.22 n.a. 

NP_D149/D131/OA 1.2 - 11 - 22 0.22 0.21 

NP_SQ2/CA 0.8 + 70 + 34 0.24 0.28 

NP_SQ2/CA+D149/CA 1.0 + 28 + 6 0.23 0.22 

NP_SQ2/CA+ 

D149/D131/OA 1.1 + 16 +/- 0 0.23 0.22 

NP_SQ2/CA+ 

D131/OA+ 

D149/D131/OA 
1.4 + 3 +/- 0 0.19 0.21 

 

Comparing the short-circuit charges of the edep-ZnO samples and the np-ZnO samples 

at a current density of 0.05 mAcm-2 (Figure 54 vs. Figure 68), lower values are found 

for the np-ZnO samples than for their edep-ZnO-based counterparts, indicating lower 

total trap densities in the nanoparticulate zinc oxide.XII For example, the nsc ratio and, 

hence, the relative total trap density of np-ZnO with D149 compared to edep-ZnO with 
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D149 was estimated at 0.4. This is in line with results of photoluminescence measure-

ments by Pauporté et al. finding higher defect densities in electrodeposited than in na-

noparticulate ZnO films.136 Using the nanoparticulate sample with D149 as a new refer-

ence, dye-dependent changes largely comparable to those observed for edep-ZnO are 

found, Table 20. The cells containing indoline dyes without coadsorbates show very 

similar trap densities, while SQ2 exhibits a markedly lower Nt/Nt,ref and the co-sensitized 

cells with SQ2+D149 or SQ2+D149/D131 show trap densities in between that of SQ2 

and the indoline dyes. With Nt/Nt,ref for SQ2 being only one fifth of that for D149, the 

decrease of the relative total trap density induced by SQ2 is even more pronounced than 

for the electrodeposited samples, perhaps indicating a reduced (bulk-determined) lower 

limit of Nt in the nanoparticulate films. The observed effects of coadsorbates on the total 

trap density, on the other hand, clearly differ from the influence found in chapter 6. No 

significant influence can be seen for the indoline dyes (compared to a 50% decrease on 

edep-ZnO), while a significant increase by a factor of 4 is found for SQ2 (compared to 

no notable change on edep-ZnO). The effect of different surface adsorbates on defect 

densities is expected to depend on the (relative) surface coverage. The negligible effect 

of CA and OA on Nt/Nt,ref could, thus, be the result of the relatively small influence 

these coadsorbates had on the amount of adsorbed dyes in the np-ZnO films (cf. Figure 

63). Likewise, the fact that the relative trap densities of the three co-sensitized samples 

containing SQ2 and coadsorbates are closer to those of D149/CA, D131/OA, and 

D149/D131/OA than to that of SQ2/CA may reflect their relatively small SQ2 loading 

(Figure 63). The pronounced increase of Nt/Nt,ref for SQ2/CA compared to SQ2 is 

roughly in line with the decrease of the SQ2 loading (cf. absint values in Table 18), i.e., 

SQ2 seems to lead to a much stronger reduction of the trap density in np-ZnO with re-

spect to CA.  

 

The relative conduction band edge shifts (Table 20) obtained from the Nt/Nt,ref-

normalized capacitance curves of the two different EIS measurements (Figure 69) 

                                                                                                                                               

XII Note, however, that the slopes of the nsc vs. Jsc curves were different for np-ZnO and edep-ZnO as a 

result of the different trap distributions, which precluded an exact analysis of the difference in trap 

densities.   
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showed similar sample-to-sample trends, but EISoc,red tended to deliver somewhat less 

positive or more negative values for ΔEc/q. 

  

Figure 69: Chemical capacitances derived from EIS under varied red illumination at 

open-circuit (a) or under AM1.5G illumination at varied bias voltages (b) after normal-

ization by the relative total trap densities in Table 20. Color and symbol assignment as 

in Figure 67. Lines represent linear fits. 

A separate direct comparison of the normalized capacitance curves from EISoc,red and 

EISAM1.5G of the cell with D149 showed a positive shift by 20 mV along the voltage axis 

for the curve derived from EISoc,red, which reflects a relative downward shift that may 

have been caused by the longer light soaking (and possibly aging) the cell had already 

experienced when the EISoc,red measurements were performed (about 2 hours and several 

measurements after EISAM1.5G), cf. chapter 9. The other cells apparently showed some-

what different (time-dependent) changes of the conduction band edge that may have led 

to the observed variations between the shifts derived from EISoc,red and EISAM1.5G. The 

relative conduction band edge shifts between the samples with different dyes and dye 

combinations qualitatively confirm the results attained for the corresponding edep-ZnO 

samples. The cells with D149 or D149/D131 showed approximately similar positions of 

Ec while the sample with SQ2 exhibited a pronounced downward shift by about 270 

mV.  

 

Note that previous EIS studies comparing TiO2-based DSCs with a number of different 

sensitizers reported band edge shifts by up to 400 mV,128 confirming that the conduction 
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band edge shifts observed in the present study are in a perfectly reasonable range. The 

combinations SQ2+D149 and SQ2+D149/D131 again exhibit a slightly smaller relative 

downward shift of Ec by about 160 mV and about 110 mV, reflecting the combined ef-

fect of the presence of SQ2 and indoline dyes on the band edge position. In the presence 

of coadsorbates the downward shift of Ec observed for the three dye combinations is 

strongly reduced to 70 mV (SQ2/CA), 28 mV (SQ2/CA+D149/CA), and 16 mV 

(SQ2/CA+D149/D131/OA). However, the band edge shifts found for the three cells 

with SQ2 and indoline dyes in the absence of coadsorbates are notably higher than the 

ΔEc/q of ~60 – 110 mV reported for the electrodeposited cells (cf. Table 13), while in 

the presence of coadsorbates they are smaller than the ΔEc/q of ~40 – 90 mV of the 

edep-ZnO samples. Furthermore, in contrast to the downward shifts of Ec observed for 

the electrodeposited samples with indoline dyes upon addition of the coadsorbates CA 

and/or OA in the previous chapter, no shift (D149/CA) or a slight upward shift 

(D149/D131/OA) are found for the present np-ZnO cells. These different impacts of 

SQ2 and the coadsorbates on the conduction band edge in np-ZnO and edep-ZnO could 

have partially been caused by changes in the relative amounts of SQ2 (as well as other 

dyes) and CA/OA on the inner surface of the films and partially by different initial sur-

face terminations (e.g., -OH groups) of the bare materials without dyes and coadsorb-

ates. 

7.5 Electron Recombination and Transport 

Both voltage-dependent EIS under illumination with simulated solar light and EIS under 

varied red illumination at open circuit yielded semilogarithmic recombination resistance 

plots, Figure 70, with the widely linear behavior typical for nanostructured semicon-

ductors with an exponential distribution of trap states. The Rrec values obtained by EI-

Soc,red are quite comparable to those from EISAM1.5G around a voltage of -0.5 V, but the 

curves show considerably higher slopes that cause an increasing difference towards 

smaller voltages (see discussion further below). 
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Figure 70: Recombination resistance of np-ZnO-based DSCs with different dyes and 

dye combinations as a function of the Fermi-level voltage (Vf or Voc) from voltage-

dependent EIS under illumination with AM1.5G white light (a) or EIS under varied il-

lumination with a red LED at open circuit (b). The lines represent linear fits. Legend as 

in Figure 67. 

A similar dye-dependence of the recombination resistance (uncorrected for band edge 

shifts) is observed for the two different EIS methods, and the trends are roughly in line 

with the results attained on electrodeposited ZnO (cf. Figure 58). The indoline dyes and 

indoline dye combinations, both with or without coadsorbates, yielded the highest Rrec, 

with D131/OA markedly showing the best results. The cells containing SQ2 without 

CA/OA showed the overall lowest recombination resistances and among them Rrec de-

creased with increasing amount of SQ2 in the films (cf. Figure 63). The distinction in 

Rrec between the np-ZnO-based cells with SQ2 and those containing only indoline dyes 

is even more pronounced than among the edep-ZnO cells as a result of the larger con-

duction band edge shifts. While the presence of coadsorbates in the electrodeposited 

samples led to higher recombination resistances for all dyes or dye combinations, on 

nanoparticulate ZnO this improvement was only observed SQ2 or mixtures of SQ2 and 

indolines. For the edep-ZnO cells with SQ2, SQ2+D149, or SQ2+D149/D131, Rrec 

(Figure 58) exhibited a pronounced local minimum at ca -0.3 V as a result of recombi-

nation via additional deep traps related to aggregated SQ2 cations. The Rrec curves of 

the present samples show only very faint indications of a locally increased rate of re-

combination at lower voltages: an onset of a flattening at Vf ≈ -0.4 V in the correspond-

ing curves from EISAM1.5G (best visible in Figure 72 below) and a flattened slope to-
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wards smaller voltages with a potential dip around Voc ≈ -0.35 V (single data point) for 

SQ2+D149 and SQ2+D149/D131 in the EISoc,red measurements. The presence of some 

additional deep trap states in the cells with SQ2 without CA/OA was, indeed, indicated 

by their capacitance curves (cf. Figure 53) showing what appears to be an onset of a 

local increase below Fermi-level voltages of about -0.3 V. Further supporting this, the 

current-voltage characteristics of the cells with SQ2, SQ2+D149, and SQ2+D149/D131 

(re-plotted with extended current density scale in Figure 71), exhibit an S-shape similar 

to that of the corresponding J-V characteristics in chapter 6 (best seen in the representa-

tion in Figure 59). Nonetheless, in the case of nanoparticulate ZnO the increase of low-

er-voltage recombination by (oxidized) SQ2 aggregates appears to be less severe than 

for the samples based on electrodeposited ZnO. 

 

Figure 71: Current-voltage curves of the np-ZnO-based solar cells (cf. Figure 64) with 

extended current density range to reveal the characteristic shape of some of the curves, 

as indicated by arrows.  

When plotted against the voltage corrected for conduction band edge shifts Vf-ΔEc/q or 

Voc-ΔEc/q (see Figure 72), most of the recombination resistance curves are moved clos-

er together, suggesting that the differences in their voltage-dependent rate constants of 

recombination kr are relatively small. 
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Figure 72: Rrec from EISoc,red (a) and from EISAM1.5G (b) as a function of the band edge-

corrected voltage. Lines are a guide to the eye only. Assignment of colors and line/ 

symbol styles as in Figure 67.  

However, SQ2, SQ2+D149, and (based on EISoc,red) SQ2+D149/D131 show conduction 

band edge-corrected recombination resistances that, at a given corrected voltage, would 

significantly exceed those of all other samples if the curves were extrapolated to extend 

over the whole voltage range displayed. This must be caused by the very low total den-

sity of trap states in the corresponding samples (Table 20). In spite of this, the cells 

showed the highest rate of recombination at a given (uncorrected) voltage because of 

the strongly downward shifted conduction band edge. Similar trends were also observed 

for the electrodeposited counterparts (cf. Figure 58), although they were less pro-

nounced due to a smaller conduction band edge shift and a less significant reduction of 

the total trap density by SQ2.  

The recombination parameters β (see Table 21) derived from EISAM1.5G (cf. linear fits to 

eq. (54) in Figure 70 (a)) are all relatively similar and the average value of 0.44 (maxi-

mum deviation of 0.1) is comparable to the average β value of 0.42 determined for the 

cells based on electrodeposited ZnO with SQ2, D149, and/or D131 (and identical to the 

average β of 0.44 for edep-ZnO cells when a single outlier was excluded). The co-

sensitized cells with SQ2+D149 or SQ2+D149/D131 (both with or without coadsorb-

ates) show a tendency towards slightly smaller recombination parameters than the re-

maining cells (0.34 – 0.41 compared to 0.4 – 0.5), possibly because the corresponding 
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Rrec curves showed only a narrow linear range that could be fitted, making the fits rather 

inexact.  

Table 21: Recombination parameters β of the DSCs based on dye-sensitized np-ZnO.  

sample code β (EISAM1.5G) β (EISoc,red) 

NP_D149 0.49 0.82 

NP_D149/D131 0.47 0.82 

NP_SQ2 0.47 0.93 

NP_SQ2+D149 0.41 0.88 

NP_SQ2+D149/D131 0.40 0.85 

NP_D149/CA 0.50 0.84 

NP_D131/OA 0.44 n.a. 

NP_D149/D131/OA 0.47 0.84 

NP_SQ2/CA 0.49 0.90 

NP_SQ2/CA+D149/CA 0.34 0.90 

NP_SQ2/CA+ 

D149/D131/OA 0.35 0.83 

NP_SQ2/CA+ 

D131/OA+D149/D131/OA 0.40 0.83 

 

The recombination parameters determined from EISoc,red (Table 21, cf. linear fits in 

Figure 70 (b)) confirm that there is no significant trend dependent on the different dyes 

or coadsorbates. However, with an average value of 0.86 (maximum deviation of 0.07) 

they are considerably higher than the values derived from EISAM1.5G. This difference is 

expected based on the different dependence of the conduction band electron density on 

the voltage under open-circuit conditions vs. when a current flows through the semicon-

ductor. If the applied Vf under AM1.5G illumination takes on the open-circuit value, e.g. 

Vf = -0.59 V for D149 (cf. Table 19), the electron density is identical to the electron 
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density that would be achieved under illumination with red light at Voc = -0.59 V 

(reached by a sufficient increase of the light intensity). On the other hand, at a Vf  value 

under AM1.5G illumination that is further away from open-circuit conditions, say -0.3 

V for D149, the quasi-Fermi level will be 0.3 eV above Eredox at the back contact (x = 0 

µm), but will be significantly higher than that at the semiconductor/electrolyte interface 

(cf. 1.2.1),115 i.e., the electron density would be increased with respect to an open-circuit 

voltage of Voc = -0.3 V under red illumination (corresponding to a constant quasi-Fermi 

level of 0.3 eV above Eredox at any location in the semiconductor). Based on these dif-

ferences in the density of conduction band electrons available for recombination reac-

tions, the recombination resistances measured by EISAM1.5G and EISoc,red should be equal 

at the voltage where Vf in EISAM1.5G corresponds to the AM1.5G open-circuit value, but 

should be lower for the EISAM1.5G measurements at any voltage less negative than that. 

As a result, the recombination resistance from EISAM1.5G will increase less with decreas-

ing Vf (smaller β value) than the Rrec from EISoc,red will do with decreasing Voc (larger β 

value). Since β is a phenomenological quantity rather than a fundamental microscopic 

parameter, neither the β value from EISAM1.5G nor that from EISoc,red is “more correct” 

than the other; in comparisons with other studies it should simply be ensured that the 

recombination parameters are compared for the same measurement condition.  

The recombination resistance (Figure 72) and chemical capacitance (Figure 69) from 

EISoc,red were used to determine the effective electron lifetime τn via eq. (47). In addi-

tion, τn was obtained independently by intensity-modulated photovoltage spectroscopy 

at open circuit under red illumination of varied intensity. Based on the identical meas-

urement conditions (open-circuit condition, same light source and light intensities) and 

the theoretical equivalency of the time constants derived from these two methods (cf. 

sections 1.4.4 and 1.4.5), it is expected that identical voltage-dependent (cf. eq. (19)) τn 

curves are obtained for a given sample. Figure 73 shows that this is roughly the case for 

most of the samples, but the τn values for SQ2 and, to a smaller degree, for combinations 

of SQ2 and indolines without coadsorbates show quite pronounced differences. This is 

most likely the result of an overestimation of Rrec and/or Cµ from EIS, because the spec-

tra of these specific cells in part showed Rrec||Cµ-related semicircles that were not clear-

ly distinguishable from the other spectral features, see example in Figure 105 in Ap-

pendix D. The cells with indoline dyes (with or without coadsorbates) as well as the co-

sensitized cells SQ2/CA+D149/D131/OA and SQ2/CA+D131/OA+D149/D131/OA 
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showed the longest lifetimes, followed by the co-sensitized sample SQ2/CA+D149/CA, 

then the cell SQ2/CA and lastly the three cells containing SQ2 without coadsorbates 

with the shortest lifetimes.  

 

Figure 73: Effective electron lifetimes of the np-ZnO solar cells as obtained by IMVS 

measurements (triangles) and derived from EIS (squares) (see legend in Figure 67 for 

the meaning of the different colors). 

The electron transport times τtr in the np-ZnO-based solar cells were analyzed in com-

parison with the τtr in the cells based on edep-ZnO using intensity-modulated photocur-

rent spectroscopy (IMPS) at short circuit under red illumination of varied intensity, see 

Figure 74. At lower short-circuit currents, the nanoparticulate and electrodeposited ZnO 

films yielded similar electron transport times, but with increasing Jsc, the τtr difference 

between the two different types of ZnO structures increased because of the steeper slope 

observed for the electrodeposited samples. The latter was the result of the flatter trap 

distribution of these cells (as reflected in their higher α values, cf. Figure 55 and Table 

20), which should increase the slope of the electron transport time as a function of the 

Fermi-level voltage (cf. eq. (15) and eq. (69)) and, in consequence, the slope of τtr vs. 

Jsc. For both groups of cells, the electron transport time was smallest (i.e., best) for the 

samples with SQ2, SQ2+D149, or SQ2+D149/D131. To determine to what extent the 

different transport times observed for different dyes or dye combinations are related to 

the samples’ different total trap densities (eq. (15) and eq. (69)), the τtr were normalized 

by Nt/Nt,ref (cf. Table 20), see Figure 75.  
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Figure 74: Electron transport times from IMPS measurements of DSCs with varied 

dyes and dye combinations (cf. plot legends in previous sections) based on nanoparticu-

late ZnO films (a) or based on electrodeposited ZnO films (b) as a function of the con-

stant background value of the short-circuit photocurrent density. 

 

Figure 75: IMPS-derived electron transport times of DSCs based on nanoparticulate 

ZnO films (a) or electrodeposited ZnO films (b) after normalization by the relative total 

trap density Nt/Nt,ref (common reference sample: NP_D149). 

Both in the case of np-ZnO and edep-ZnO, the normalized transport times were virtually 

identical for the different dyes and dye combinations, indicating that the differences in 

τtr were caused by variations in the total trap density. However, SQ2, SQ2+D149, and 

SQ2+D149/D131 showed clearly lower transport times than the remaining cells even 

after normalization, suggesting that these samples, which contained strongly aggregated 

SQ2 (cf. Figure 63), exhibited an increased apparent electron diffusion coefficient D0 
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(cf. eq. (15)). It has been previously reported that excited electrons in DSCs can move 

between oxidized dye molecules via hopping,290, 302 thus allowing them to move along 

the film thickness (perpendicular to the substrate) without having to be injected into the 

semiconductor. Consequently, it is conceivable that in the present case larger amounts 

of (oxidized) SQ2 aggregates on the ZnO surface allowed for relatively fast hopping of 

excited electrons, possibly enabling them to reach the substrate on additional pathways. 

When comparing the normalized electron transport times of the np-ZnO samples and the 

electrodeposited samples (neglecting the SQ2-containing samples without coadsorbates 

discussed above), the curves of the latter now generally are below those of the nanopar-

ticulate cells. This could be the result of the smaller film thicknesses compared to np-

ZnO and would then indicate a relatively similar diffusion coefficient D0 for the two 

different types of structures. However, due to the different slopes (trap distribution pa-

rameters) found for np-ZnO cells and cells based on electrodeposited ZnO, no final con-

clusions about the diffusion coefficient can be made on the basis of the present results.       

7.6 Analysis of the Factors Governing the IPCE 

Using the same method as described in section 6.5 of the previous chapter, various 

measurement results obtained for the DSCs based on nanoparticulate ZnO were com-

bined to further discuss the factors determining the IPCE and short-circuit current densi-

ties observed under AM1.5G illumination (cf. section 7.3). For the analysis, the IPCE 

curves (cf. Figure 66) were corrected for a 30% loss at the conductive glass substrate 

(i.e., divided by 0.7), as determined from offsets of the absorbance of ~0.15 in the long-

wavelength range where none of the dyes absorb. The larger optical loss in the np-ZnO 

samples is probably the result of the use of thicker, more conductive FTO/glass sub-

strates compared to those used for the edep-ZnO samples (cf. sections 2.2 and 2.3). Ta-

ble 22 shows the spectrally integrated (integration range 350 – 750 nm) relativeXIII val-

ues of the light harvesting efficiency ηlh (cf. Figure 65) and of the corrected IPCE. XIV   

                                                 

XIII referring to a hypothetical ideal cell with ηlh = IPCE = 1 over the whole wavelength range studied 
XIV For SQ2/CA+D149/D131/OA (a) and SQ2/CA+D131/OA+D149/D131/OA (b), the IPCE was meas-

ured by a Zahner setup as opposed to the Acton/Ivium setup used for the remaining cells. For better 

comparability, the integrated IPCE for those cells was not determined from the Zahner-based spectra 

but rather estimated based on the integrated IPCE (Acton/Ivium) of the sample SQ2/CA+D149/CA (c) 

and the ratio of Zahner-based integrated IPCEs of (a) and (c) and (b) and c.   
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Table 22: Estimated short-circuit electron diffusion lengths Ln,sc, ratio of Ln,sc and the 

film thickness d =10 µm, relative integrated IPCE (corrected for optical losses), ap-

proximate short-circuit charge collection efficiency, relative integrated optical loss-

corrected light harvesting efficiency, and calculated product ηinj·ηreg for the DSCs based 

on np-ZnO. Values in parentheses are rough estimates based on assumed τn values.  

sample code 
Ln,sc 

/µm 
Ln,sc/d 

rel. IPCEint 

(corr.) /% 

ηcc 

/% 

rel. 

ηlh,int 

/% 

ηinj· ηreg 

/% 

NP_D149 17.6 1.8 57 95 69 87 

NP_D149/D131 14.8 1.5 56 90 67 92 

NP_SQ2 (11.2) (1.1) 5 (80) 71 (9) 

NP_SQ2+D149 (8.3) (0.8) 24 (70) 85 (41) 

NP_SQ2+D149/D131 6.5 0.7 25 65 83 47 

NP_D149/CA 14.5 1.5 55 90 67 91 

NP_D131/OA 75.4 7.5 32 100 47 68 

NP_D149/D131/OA 14.9 1.5 50  90 66 85 

NP_SQ2/CA 5.6 0.6 14 60 47 51 

NP_SQ2/CA+D149/CA 12.7 1.3 53 85 72 86 

NP_SQ2/CA+ 

D149/D131/OA 
14.1 1.4 54 90 69 87 

NP_SQ2/CA 

+D131/OA 

+D149/D131/OA 

11.2 1.1 46 80 67 86 

Conservative estimations of the effective diffusion length Ln under short-circuit condi-

tions were attained by the same procedure as described in chapter 6.5, using the short-

circuit electron transport times τtr from IMPS at a red light intensity of 25 mWcm-2 (cf. 

Figure 74 (a), serving as a lower estimate for the value under AM1.5G illumination of 

100 mWcm-2), a factor ζ of 3.1 (cf. eq. (69)), and the effective electron lifetimes τn 
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=RrecCµ at an applied voltage V = -0.3 V from EISAM1.5G (cf. Figure 67 and Figure 72, 

serving as a lower estimate for the short-circuit value), see Table 22. For the cells with 

SQ2 or SQ2+D149, the τn value of the sample with SQ2+D149/D131 (which showed a 

similar voltage-dependent τn at more negative voltages) was used as a rough approxima-

tion, because the available EIS fit results did not extend down to applied voltages as 

small as -0.3 V. Using the ratios of Ln and the np-ZnO film thickness (Table 22), the 

short-circuit charge collection efficiency ηcc was estimated graphically from the plot of 

the theoretical correlation between Ln/d and ηcc reported by Peter (cf. Figure (17) or ref. 

87), see Table 22. The product ηinj·ηreg representing the combined effect of electron in-

jection and dye regeneration efficiency, was obtained by dividing the relative integrated 

IPCE values by the estimated ηcc values and by ηlh,int, see Table 22.  

On the basis of the values listed in Table 22, the factors that determined the integrated 

IPCE and Jsc of the different np-ZnO-based DSCs can now be identified and discussed 

in comparison with the corresponding results for the edep-ZnO cells (cf. Table 17). 

While the short-circuit charge collection efficiencies in the DSCs based on electrode-

posited ZnO generally approached 100%, nearly all of the np-ZnO samples exhibited 

Ln/d values below 3 and, accordingly, short-circuit charge collection efficiencies under 

100%. Complete collection (Ln/d > 3) at short circuit was only attained by the np-ZnO 

sample with D131/OA. In the np-ZnO cells with SQ2/CA, SQ2+D149, or 

SQ2+D149/D131, on the other hand, the mean distance electrons could travel before 

recombining was even smaller than the film thickness (Ln/d < 1, ηcc = 60 – 70%). Com-

paring the integrated IPCE and partial quantum efficiencies attained for each dye or dye 

combination on np-ZnO vs. on edep-ZnO (Table 22 vs. Table 17), it can be seen that 

the indoline dye-sensitized np-ZnO-based cells D149, D149/CA, D149/D131, and 

D149/D131/OA achieved better integrated IPCE and Jsc values compared to their elec-

trodeposited counterparts owing to an improvement in the integrated light harvesting 

efficiency and an increase of the electron injection and/or dye regeneration efficiency: 

ηlh,int increased (in the above order) from 63 to 69%, 51 to 67%, 59 to 67%, and 49 to 

66%, and ηinj·ηreg improved from 64 to 87%, 59 to 91%, 77 to 92%, and 70 to 85%. 

These increases overcompensated a concomitant decrease of the charge collection effi-

ciency ηcc in np-ZnO samples with respect to edep-ZnO cells from 100 to 95% (D149) 

or to 90% (D149/CA and D149/D131/OA), and from 97 to 90% (D149/D131/OA). As 

for the squaraine sensitizer SQ2 and the dye mixtures SQ2+D149, and 
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SQ2+D149/D131, the integrated light harvesting efficiency in np-ZnO-based cells in-

creased (SQ2: from 60 to 71%),XV or only very slightly decreased (from 87% to 85% for 

SQ2+D149 and to 83% for SQ2+D149/D131) compared to the electrodeposited coun-

terparts. However, the IPCE and Jsc of the np-ZnO-based cells were worsened in all 

three cases, mainly due to the reduction in charge collection efficiency from 100% to 

80% (SQ2), 70% (SQ2+D149), or 65% (SQ2+D149/D131). Although for the dye mix-

tures SQ2+D149 and SQ2+D149/D131 ηinj·ηreg was improved in np-ZnO-based cells 

compared to electrodeposited ones (from 30 to 41% and from 37 to 47%), this could not 

compensate the negative effect of the decreased ηcc. SQ2/CA yielded approximately the 

same Jsc on np-ZnO and on electrodeposited ZnO, and the calculated individual quan-

tum efficiencies suggest that this was the case because the ηcc was strongly reduced 

(from 100 to 60%) while ηlh appeared to be increased from 27 to 47%XV and ηinj·ηreg was 

slightly improved as well (from 49 to 51%). The co-sensitized np-ZnO sample with 

SQ2/CA+D149/D131/OA achieved better integrated IPCE and Jsc values than the elec-

trodeposited counterpart owing to its integrated light harvesting efficiency being raised 

from 59 to 69% and its combined electron injection/dye regeneration being increased 

from 77 to 87%. These changes overcompensated a decrease of ηcc from 100 to 90%.     

Despite being reduced in comparison to the electrodeposited cells, the charge collection 

efficiency was not the main limiting factor (highlighted by underscores in Table 22) in 

any of the samples based on np-ZnO. Instead, in all but three (SQ2, SQ2+D149, 

SQ2+D149/D131) cases it was the integrated light harvesting efficiency that limited the 

short-circuit current density, as also found for the cells based on electrodeposited ZnO. 

In the np-ZnO cells with SQ2, SQ2+D149, or SQ2+D149/D131, electron injection 

and/or dye regeneration (ηinj·ηreg of 9, 41, and 47%, respectively) was the clearly domi-

nant limiting factor, also in accordance with the results obtained on electrodeposited 

ZnO. The low spectrally averaged ηinj·ηreg of the co-sensitized samples SQ2+D149 and 

SQ2+D149/D131 (resulting from hindered injection from SQ2 to ZnO and possibly 

from energy transfer from D149 and D131 to SQ2) together with their relatively low 

charge-collection efficiencies < 70% (resulting from additional recombination paths 

                                                 

XV Note, however, that the background in the absorbance and light harvesting spectra of the samples 

D131, SQ2, and SQ2/CA that was not related to light absorption by the dyes likely caused an overes-

timation of the integrated light harvesting efficiency and, as a result, an underestimation of the corre-

sponding ηinj·ηreg. 



Panchromatic Solar Cells Based on Nanoparticulate ZnO Films 189 

 

 

opened up by aggregated SQ2) counteracted the successful increase of the light-

harvesting efficiency to 85 and 83% with respect to the cells D149 and D149/D131 (ηlh 

= 69 and 67%) and rendered their short-circuit current densities and overall photovoltaic 

performance much lower than those of the indoline dye cells. In the presence of coad-

sorbates (cells SQ2/CA+D149/CA and SQ2/CA+D149/D131/OA), the integrated light 

harvesting efficiencies (72 and 69%) were only slightly improved compared to the cor-

responding samples without SQ2 (67% for D149/CA and 66% for D149/D131/OA), and 

the charge collection efficiency and combined electron injection and/or dye regeneration 

efficiency were also similar or only slightly better (ηinj·ηreg of 86 and 87% compared to 

91 and 85%, ηcc of 85 and 90% compared to 90% for D149/CA and D149/D131/OA). 

While the calculations predict a slight increase of IPCE and Jsc (cf. theoretical values in 

Table 19) at least for SQ2/CA+D149/D131/OA compared to D149/D131/OA, the 

measured short-circuit current densities of the co-sensitized np-ZnO-based cells with 

SQ2 and coadsorbates were all lower than those of D149/CA and D149/D131/OA. The 

incorrect prediction for SQ2/CA+D149/D131/OA may have resulted from temporal 

variations of the photovoltaic performance (cf. chapter 9). The sample sensitized with 

SQ2/CA+D131/OA+D149/D131/OA exhibited a smaller Jsc than the cell with 

SQ2/CA+D149/D131/OA (as predicted by the theoretical Jsc values) because of its re-

duced charge collection efficiency (from 90 to 80%) and its slightly reduced light har-

vesting efficiency (from 69 to 67%), underlining once again the redundancy of the addi-

tional step in the sensitization process.    

7.7 Analysis of the Variation in the Open-Circuit Voltage and 

Fill Factor 

Based on the photovoltaic performance, trap distribution and recombination properties 

of the DSCs based on nanoparticulate ZnO, the origins of the variations in their Voc and 

FF can now be analyzed quantitatively by a procedure similar to that in chapter 6.4 

(electrodeposited ZnO with D149, D131, and/or SQ2). Voltage changes associated with 

changes in the short-circuit photocurrent density were again calculated by eq. (75) using 

an average value of the recombination parameter β. The ΔVoc originating in differences 

in the rate constant of recombination (or in the total trap density) in the present case 



Panchromatic Solar Cells Based on Nanoparticulate ZnO Films 190 

 

 

were determined by a modification of eq. (76) by use of the ratio of the inverse recom-

bination resistances Rrec instead of the ratio of recombination currents under illumina-

tion, which should be equally valid based on the relationship between Rrec and the re-

combination factor J0k in eq. (54). 

Table 23 shows the partial contributions to the voltage differences of the various np-

ZnO DSCs with respect to the cell with D149 by conduction band edge shifts 

(ΔVoc(ΔEc/q), cf. Table 20), differences in the short-circuit photocurrent density 

(ΔVoc(ΔJsc), cf. Table 19), and differences in the rate of recombination as reflected by 

changes in Rrec at a corrected voltage Vf-ΔEc/q = -0.55 V (ΔVoc(ΔRrec), cf. Figure 72 

(b)). The calculated total voltage changes ΔVoc,calc (sum of ΔVoc (ΔEc/q), ΔVoc (ΔJsc) and 

ΔVoc (ΔRrec)) largely deliver qualitatively correct predictions of the experimental total 

voltage changes ΔVoc. Quantitatively, the calculations tended to underestimate the volt-

age losses observed for the cells containing SQ2 without coadsorbates by 40 – 80 mV, 

most likely as a result of additional recombination via deep traps (cf. Figure 72 and 

Figure 71 and discussion) that is not described by the β-recombination model. This is 

roughly in line with an additional voltage loss of about 60 mV found for the correspond-

ing edep-ZnO cells as a consequence of the presence of monoenergetic traps located 

about 0.3 eV above Eredox (cf. Figure 58 and Table 15). The calculated origins of the 

voltage changes between the np-ZnO cells with different dyes and coadsorbates mostly 

corroborate the results discussed for the corresponding electrodeposited cells (cf. Table 

15). Among the cells with indoline dyes only, experimentally a beneficial effect of the 

presence of D131 on Voc was observed, while coadsorption of CA or OA led to only a 

slight improvement (D149/CA) or even to a decrease (D149/D131/OA) of Voc with re-

spect to the counterparts without coadsorbates, in agreement with the trends observed 

among edep-ZnO cells. The calculations in the present case did not precisely predict 

these changes of Voc among the indoline dye cells. Nevertheless, the different contribu-

tions to ΔVoc determined for D131/OA indicate that an upward shift of the conduction 

band and a reduction of the rate constant of recombination may have been the reason for 

the good Voc’s attained in the presence of D131. 
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Table 23: Individual contributions ΔVoc(...) to the total differences of the open-circuit 

photovoltages (ΔVoc,calc: theoretical total change, ΔVoc: experimental change) among 

the DSCs based on np-ZnO with different dyes or dye combinations, resulting from 

shifts in the conduction band edge ΔEc/q (positive: downward shift, negative: upward 

shift), differences in the short-circuit photocurrent density ΔJsc, and changes ΔRrec of the 

recombination resistance at a corrected voltage Vf-ΔEc/q of -0.55 V. Calculations were 

performed using the average β parameter of 0.44.  

sample code 
ΔVoc(ΔEc/q) 

/mV 

ΔVoc (ΔJsc) 

/mV 

ΔVoc (ΔRrec) 

/mV 

ΔVoc,calc 

/mV 

ΔVoc 

/mV 

NP_D149 +/- 0 (ref.) +/- 0 (ref.) +/- 0 (ref.) 
+/- 0 

(ref.) 

+/- 0 

(ref.) 

NP_D149/D131 +/- 0 +/- 0 + 6 + 6 - 30 

NP_SQ2 + 267 + 109 - 208 + 167 + 250 

NP_SQ2+D149 + 161 + 50 - 110 + 101 + 100 

NP_SQ2+D149/D131 + 112 + 44 - 76 + 80 + 120 

NP_D149/CA +/- 0 + 3 +/- 0 + 3 - 10 

NP_D131/OA - 20 + 36 - 22 - 5 - 40 

NP_D149/D131/OA - 11 + 6 + 15 + 10 +/- 0 

NP_SQ2/CA + 70 + 79 - 28 + 121 + 80 

NP_SQ2/CA+D149/CA + 28 + 12 - 12 + 27 + 40 

NP_SQ2/CA 

+D149/D131/OA + 16 + 8 - 16 + 7 + 20 

NP_SQ2/CA+D131/OA 

+D149/D131/OA + 3 + 11 + 1 + 16 + 20 

The coadsorbates CA and OA did not seem to have a significant effect on any of the 

individual quantities contributing to voltage changes, which presents a difference com-

pared to the effects of CA/OA on the conduction band edge and rate constant of recom-

bination observed on edep-ZnO. For nanoparticulate ZnO the indoline dye molecules 
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were more stable against replacement by CA/OA, so that D149/CA and D149/D131/OA 

likely contained relatively small amounts of coadsorbates, decreasing the influence of 

CA or OA on microscopic processes in the cells. Most notably, the present results con-

firm that sensitization of np-ZnO with the squaraine dye SQ2, as in the case of edep-

ZnO, led to a very strong voltage loss with respect to D149 due to a large conduction 

band edge downward shift and a very limited short-circuit photocurrent. The effects of 

these factors were not fully compensated by the strong Voc-enhancing effect of the low 

total trap density indicated for SQ2. When CA was coadsorbed with SQ2, the signifi-

cant reduction of the downward conduction band edge shift and the increase of Jsc ena-

bled a large gain of Voc with respect to the coadsorbate-free sample, also in line with the 

results found on edep-ZnO. The co-sensitized cells containing SQ2 together with indo-

line dyes again showed improved Voc’s compared to SQ2 and SQ2/CA because both the 

losses related to Jsc as well as the conduction band edge downward shifts were clearly 

decreased. However, compared to the cells with indoline dyes only, lower Jsc values and 

downward shifts of the conduction band edge – albeit reduced compared to SQ2 or 

SQ2/CA – still caused a lower Voc. In the cell SQ2/CA+D131/OA+D149/D131/OA, the 

downward shift of the conduction band edge was somewhat reduced compared to the 

cell SQ2/CA+D149/D131/OA, but the Jsc-related voltage loss was larger and the re-

combination-related voltage gain was reduced, so that the net effect was a constant ex-

perimental Voc, which contributed to the fact that the 3-step co-sensitization procedure 

did not bring about any advantages over the 2-step process.   

In a second step, the origins of the differences in Voc between the cells based on nano-

particulate ZnO and the corresponding electrodeposited samples were investigated. Ap-

proximate conduction band edge shifts ΔEc/q were determined between each np-ZnO 

sample and its edep-ZnO counterpart neglecting their different trap distribution parame-

ters (cf. Figure 55 and Figure 69 (a), Table 12 and Table 20), see Table 24. The volt-

age differences originating in the differences of Jsc and Rrec (at Vf-ΔEc/q = -0.55 V) be-

tween the np-ZnO cells and the edep-ZnO cells (cf. Table 11 and Figure 58 (b)) were 

calculated via eq. (75) and the modified eq. (76) using the edep-ZnO films as references 

and a β parameter of 0.44 (average value both among edep-ZnO cells and among np-

ZnO cells), see Table 24. The calculated total voltage changes ΔVoc,calc (see Table 24) 

largely confirm the experimental changes ΔVoc, which in all but one case (SQ2) consti-

tuted increases for np-ZnO with respect to edep-ZnO. However, the ΔVoc,calc values dif-
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fer from the experimental changes ΔVoc by up to 80 mV, which could be due to inexact 

values of ΔEc/q as a result of the different trap distributions in np-ZnO and edep-ZnO as 

well as to different additional losses by recombination via deep-lying monoenergetic 

trap states. The calculated individual contributions in Table 24 reveal that the higher 

voltages of np-ZnO cells with respect to edep-ZnO cells were caused by their much 

lower rate constants of recombination and their mostly higher short-circuit photocurrent 

densities, which overcompensated the mostly positive (downward) relative shifts of the 

conduction band edge.  

  

Table 24: Different contributions ΔVoc(...) to the change of the open-circuit photo-

voltage for DSCs based on nanoparticulate ZnO (this chapter) with respect to the cor-

responding DSCs fabricated from electrodeposited ZnO (previous chapter). 

 

ΔVoc (ΔEc/q) 

/mV 

ΔVoc (ΔJsc) 

/mV 

ΔVoc (ΔRrec) 

/mV 

ΔVoc,calc 

/mV 

ΔVoc 

/mV 

D149 40 -17 -134 -111 -30 

D149/D131 34 -33 -92 -91 -40 

SQ2 199 26 -264 -39 0 

SQ2+D149 145 8 -212 -59 -90 

SQ2 

+D149/D131 88 11 -159 -60 -60 

D149/CA -19 -32 -49 -100 -40 

D149/D131/OA -36 -20 -6 -62 -10 

SQ2/CA 22 -2 -45 -24 -60 

SQ2/CA 

+D149/D131/OA 14 -4 -23 -13 -30 

 

The np-ZnO cell with SQ2 showed a Voc identical to that of its electrodeposited coun-

terpart even though its short-circuit photocurrent was somewhat higher than the Jsc of 

dye 

ΔVoc (np-ZnO vs.  

            e- ZnO) 
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the latter and the conduction band edge position was much lower, because the related 

losses were offset by a gain associated with a significantly smaller rate constant of re-

combination. To take a closer look at the variations of the fill factors between the differ-

ent np-ZnO-based solar cells, the internal (i.e., series resistance-corrected) values of FF 

were determined by plotting the cell current density (of the J-V curves, cf. Figure 64) 

against the Fermi-level voltage Vf, as derived from EIS under AM1.5G type illumina-

tion. The results are plotted together with the external fill factors (cf. Table 19) as a 

function of the open-circuit voltage in Figure 76. In addition, values of FF that were 

calculated by inserting the experimental Voc and β values of the individual cells into eq. 

(35) as well as a simulated curve based on eq. (35) under the assumption of a constant β 

parameter of 0.44 are presented. The simulated curve and the individual calculated val-

ues are well in line, indicating that the differences in the fill factors were mainly deter-

mined (via Voc, cf. eq. (34) and eq. (35)) by the changes of the parameters Jsc, Ec, and J0k 

(cf. Table 23) and were not significantly influenced by the small variations of the re-

combination parameter β. The internal fill factors determined from the J-Vf curves 

strongly deviate from the simulated curve and the calculated data, showing a steeper 

increase with more negative Voc and, as a result, clearly higher values in the range -0.55 

V –  -0.65 V. The external fill factors, on the other hand, closely follow the trend of the 

calculated data but are generally somewhat lower. It is likely that the determination of 

the internal FF from the J-Vf characteristics was flawed because of the fact that the EIS-

based Vf in the lower voltage range was generally inexact, since the Rrec data that was 

used to derive Vf was not reliable anymore in this range. In a few cases (SQ2, 

SQ2+D149, SQ2+D149/D131, and SQ2/CA), Vf did not even reach the internal maxi-

mum power point, so that extrapolations had to be used to determine the internal FF. 

Comparison between the external FF values and the calculated internal FF suggests that 

the series resistance causes a quantitatively similar decrease of the fill factor for all 

samples and corresponding open-circuit voltages instead of changing the slope of FF 

with respect to Voc.     
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Figure 76: External (open symbols) or internal (filled symbols and line) fill factors of 

the DSCs based on nanoparticulate ZnO as a function of the experimental open-circuit 

photovoltage Voc. The data represented by filled black symbols was determined from 

experimental J-Vf curves, the data shown as blue symbols was calculated analytically 

based on the open-circuit voltages and β values of the samples, and the simulated curve 

was calculated under the assumption of a constant β.    

7.8 Summary and Conclusions for This Chapter 

This chapter presented an investigation of DSCs based on screenprinted nanoparticulate 

ZnO films and the photosensitizers D149, D131, SQ2, or mixtures thereof, partly com-

bined with the coadsorbates cholic acid and/or octanoic acid. The variations of the cell 

properties depending on the dye or dye/coadsorbate combinations were studied and the 

influence of the type of ZnO structure was elucidated by comparison with the properties 

of the analogously sensitized cells based on electrodeposited ZnO of the previous chap-

ter.  

The UV/Vis absorption and light harvesting efficiency spectra of the DSCs based on np-

ZnO generally resembled those of the electrodeposited ZnO films with the same dyes, 

and the films co-sensitized with SQ2 and indoline dyes again showed the desired pan-

chromatic absorption. As in the edep-ZnO films, D149 and, in particular, SQ2 exhibited 

signs of aggregation that were considerably reduced in the presence of CA. An estimat-

ed slight increase in inner surface area of the np-ZnO films by a factor of 1.4 with re-

spect to the edep-ZnO films enabled a higher dye loading. While the presence of CA 
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and/or OA during the adsorption led to reduced dye loadings with respect to films with-

out coadsorbates, the decrease was clearly less pronounced when compared to electro-

deposited ZnO films, especially for D149 and D131.  

The power conversion efficiencies of the solar cells based on nanoparticulate ZnO were 

generally better than those of their counterparts based on electrodeposited ZnO owing to 

mostly enhanced short-circuit photocurrent densities and generally higher open-circuit 

photovoltages. The improvement of Jsc was observed for the indoline dye cells with or 

without coadsorbates as well as for SQ2/CA+D149/D131/OA as a result of the higher 

integrated light harvesting efficiencies and of higher spectrally averaged combined elec-

tron injection and dye regeneration efficiencies. The increased Voc were mainly the con-

sequence of reduced recombination independent of the conduction band edge position 

(and for some cells higher short-circuit photocurrent densities). Albeit not presenting the 

main factor limiting Jsc, the short-circuit charge collection efficiencies of the cells based 

on the ~ 10 µm thick np-ZnO films were all lower than those of the cells based on the 

thinner electrodeposited films. Due to the presence of additional recombination paths at 

lower quasi-Fermi levels, ηcc was particularly low for SQ2, SQ2/CA, SQ2+D149, and 

SQ2+D149/D131, effecting lower short-circuit current densities with respect to the cor-

responding electrodeposited samples. The dye- and coadsorbate-dependent trends of the 

photovoltaic parameters observed among the various sensitized np-ZnO cells largely 

confirmed the results found for the electrodeposited cells. The open-circuit voltages and 

short-circuit photocurrents were highest for indoline dyes without coadsorbates, lowest 

for SQ2 as individual sensitizer without CA, and in between for combinations of SQ2 

and D149 or D149/D131. As observed on edep-ZnO, the Jsc values of the three cells 

SQ2, SQ2+D149, and SQ2+D149/D131 were considerably lower than expected based 

on their light harvesting efficiency, which was due to, (1) the particularly low combined 

electron injection and dye regeneration efficiency (ηinj·ηreg) of the squaraine sensitizer 

also on nanoparticulate ZnO and, (2) a clearly hindered activity of D149 and D131 in 

the presence of SQ2, indicating undesired energy transfer from the indoline dyes to 

poorly injecting SQ2. The low photovoltages of the np-ZnO cells with SQ2 were again 

the result of their small Jsc’s, of strong downward shifts of the conduction band edge, 

and of the presence of additional recombination pathways through deep monoenergetic 

traps related to oxidized aggregated SQ2, as suggested by subtle indications in the 

chemical capacitance and recombination resistance curves from EIS and, more clearly, 
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by the S-shape of the J-V curves of the corresponding cells. The presence of the coad-

sorbates CA or OA in the np-ZnO solar cells tended to increase the Voc and the fill fac-

tor. As in the case of edep-ZnO, the improvement was particularly pronounced for SQ2, 

SQ2+D149, and SQ2+D149/D131, where it originated in a strong reduction of down-

ward shift of the conduction band edge compared to the cells without coadsorbates. As 

for the short-circuit photocurrent density, CA/OA led to a minor decrease for the indo-

line dye cells (reduced light harvesting efficiency) but to a considerable improvement 

for SQ2 and the mixtures SQ2+D149 and SQ2+D149/D131. This was the consequence 

of a strong improvement of the electron injection and/or dye regeneration efficiency and 

of an increase of the charge collection efficiency, indicating that the coadsorbates hin-

dered energy transfer between the dyes and prevented the formation of additional re-

combination pathways related to oxidized SQ2 aggregates. However, whereas the co-

sensitized cell with SQ2/CA+D149/D131/OA had shown the best Jsc among the electro-

deposited samples, in the present group of np-ZnO-based cells D149 and D149/D131 

produced a higher short-circuit photocurrent density both with or without coadsorbates 

due to their higher combined electron injection and dye regeneration efficiency. 

In conclusion, the DSCs based on 10 µm thick nanoparticulate ZnO films with SQ2, 

D149, and/or D131 showed decreased short-circuit charge collection efficiencies but 

nevertheless yielded somewhat higher power conversion efficiencies than analogous 

cells based on ~ 4 µm thick electrodeposited ZnO, mainly as a result of increased light 

harvesting efficiencies and/or lower rate constants of recombination. The goal of en-

hancing the conversion efficiency compared to indoline-sensitized ZnO solar cells by 

using the squaraine sensitizer SQ2 to extend the light harvesting efficiency into the red 

part of the spectrum was confounded by the small electron injection and/or dye regener-

ation efficiency of SQ2 as well as by the strong downward shift of the conduction band 

edge caused by this sensitizer, as also observed when SQ2 was combined with electro-

deposited ZnO. Although these two issues could be partially counteracted by the use of 

the coadsorbates cholic acid and octanoic acid, the improvement was not significant 

enough to render the co-sensitized cells more efficient than the cells with indoline dyes 

only. Thus, the experiments on nanoparticulate ZnO confirmed the poor suitability of 

the squaraine dye SQ2 as co-sensitizer that was already observed on electrodeposited 

ZnO, indicating that this dye is not compatible with ZnO as a semiconductor in general. 
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In the following chapter, a sulfonated Zn phthalocyanine will therefore be investigated 

as an alternative red-absorbing co-sensitizer in combination with D149.  
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8 Panchromatic Dye-Sensitized Solar Cells Based on 

Electrodeposited ZnO with D149 and Sulfonated 

Zinc Phthalocyanine  

8.1 UV/Vis Absorption of Dye Solutions and Sensitized Films 

Sensitization of electrodeposited porous ZnO films with a mixture of the indoline dye 

D149 and the phthalocyanine S1.15PcZn was achieved by dipping the films into an etha-

nolic solution containing both dyes together with the coadsorbate cholic acid (CA) at a 

molar ratio of 1:1.5:2 (D149:S1.15PcZn:CA). Comparison samples containing only 

D149/CA or S1.15PcZn/CA were prepared using ethanolic solutions of the individual 

dyes. The UV/Vis absorption spectra of the latter (Figure 77, solid pink and cyan 

curves) show absorption bands at 387 nm (HOMO  LUMO+1 transition)303 and at 527 

nm (HOMO  LUMO)303 for D149 and at 363 nm (Soret band; HOMO  

LUMO+1)304, 305 and 669 nm (Q band; HOMO  LUMO)304, 305 for S1.15PcZn. 

 

Figure 77: UV/Vis absorption spectra of the ethanolic dye solutions (all containing 1 

mM CA) used to sensitize porous electrodeposited ZnO films with D149, S1.15PcZn, or 

both, together with a spectrum of 0.5 mM D149/1 mM CA in its standard solvent mix-

ture (normalized to the same peak height as the ethanolic D149 solution) and a super-

position of the spectra of D149 or S1.15PcZn in ethanol. 
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D149/CA in ethanol shows nearly identical absorbance peak positions but slightly 

broader peaks compared to D149/CA in the typically used acetonitrile:tert-butanol (1:1) 

solvent mixture (dashed pink curve in Figure 77), indicating a somewhat higher degree 

of aggregation in the ethanolic solution. The broad Q band of the phthalocyanine with 

shoulders at around 637 and 611 nm indicates the presence of a large number of H-

aggregates (coplanar associated molecules).304 In the spectrum of the mixed dye solu-

tion (grey curve in Figure 77), the positions of the main peaks of D149 and S1.15PcZn 

are largely maintained, and the low wavelength maxima are merged into one peak at 

384 nm. A superposition of the individual spectra (violet curve in Figure 77) reflects 

the characteristics of the mixed dye solution very well in the main absorption range of 

D149 (400 – 600 nm), demonstrating that the HOMO  LUMO transition of D149 is 

neither affected by the presence of S1.15PcZn nor by the smaller amount of CA per mole 

of dyes in the mixed solution (0.8) compared to the individual dye solutions (1.3 for the 

S1.15PcZn solution and 2 for the D149 solution). At wavelengths below and above the 

range 400 – 600 nm, the spectrum of the D149/S1.15PcZn/CA solution shows lower ab-

sorbance values and more pronounced peak shoulders at 637 and 611 nm than the calcu-

lated spectrum, indicating an increased tendency of aggregation of S1.15PcZn molecules 

in the mixed solution that was likely the result of the lower molar ratio of CA to 

S1.15PcZn. The differently sensitized ZnO films were characterized by solid-state 

UV/Vis absorption spectroscopy, see Figure 78. 

 

Figure 78: Optical absorption (and linear combinations thereof) of electrodeposited 

ZnO sensitized with D149 and/or S1.15PcZn together with CA. The spike in the dashed 

grey line is an artifact.  
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The film sensitized with D149/CA for 17.5 h showed a very broad and high absorption 

feature in the wavelength range from about 350 to 650 nm, with an asymmetric, red-

shifted main absorption peak at around 575 nm and a shoulder located at around 425 

nm. By comparison with the spectra of D149-sensitized electrodeposited ZnO of previ-

ous chapters (adsorption from tert-butanol:acetonitrile solution for 2 h, cf. Figure 37 

and Figure 50), these absorption characteristics clearly resemble those of films contain-

ing D149 without CA rather than those of films with D149/CA, indicating strong aggre-

gation of D149 in the dye-loaded film. This could be due to the increase of the adsorp-

tion time from 2 h to 17.5 h,XVI which led to a strongly increased D149 loading, as re-

flected in the higher integrated absorbance (integration range 350 – 800 nm) of absint = 

494 nm compared to absint = 337 nm and 202 nm for the D149- and D149/CA-sensitized 

films of chapter 6 (prepared using the same synthesis batch of D149). The sample sensi-

tized with S1.15PcZn/CA for 17.5 h exhibited much smaller and narrower absorption 

peaks compared to D149/CA, with the pronounced shoulder of the Q band at 633 nm 

indicating a high extent of aggregation. While the molar absorptivity of S1.15PcZn is 

smaller than that of D149 (for a mixed sulfonated ZnPc with unspecified degree of sul-

fonation, ε ≈ 45,000 M-1cm-1 at 675 nm in dimethyl sulfoxide,306 compared to ε (D149) 

= 72,350 M-1cm-1 at 530 nm in DMF136), the difference does not fully explain the differ-

ence in peak height by a factor of more than 5, thus indicating a notably smaller amount 

of dye. Dipping the ZnO films into the mixed dye solution for 17.5 h led to successful 

adsorption of both dyes (cf. solid grey spectrum in Figure 78). For the resulting co-

sensitized film the absorption peak caused by D149 was smaller but showed the same 

type of asymmetry as in the present film with D149/CA only. The additional absorption 

by S1.15PcZn appeared as a shoulder at approximately 680 nm, i.e., slightly red-shifted 

compared to the films with S1.15PcZn only. The shape of the spectrum of the co-

sensitized film closely resembled that of a calculated spectrum (solid violet curve in 

Figure 78) corresponding to the weighted sum of the spectra of D149/CA (weighting 

factor 0.8) and S1.15PcZn/CA (weighting factor 2), indicating a comparable degree of 

dye aggregation as in the samples D149/CA and S1.15PcZn/CA.  

                                                 

XVI Chosen because shorter adsorption (e.g. for 2 h) from ethanolic solution in test experiments resulted in 

weak coloration of the ZnO films compared to adsorption from tert-butanol:acetonitrile for 2 h. 
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Based on the above molar absorptivities of the dyes in solution, the height ratio of the 

absorption peaks associated with the two different dyes of approximately 2:1 

(D149:S1.15PcZn) corresponds to a molar D149:S1.15PcZn ratio of ~1:1 on the ZnO sur-

face. This presents a coarse approximation, because in dye-sensitized films with strong 

dye aggregation the peak height is not an exact measure for the dye loading (cf. chapter 

5.1). When the soaking time in the mixed dye solution was decreased from 17.5 h to 2 h 

(see dashed grey spectrum in Figure 78), the absorption caused by S1.15PcZn still 

showed a strong contribution by aggregates (peak at around 630 nm), but D149 was 

significantly less aggregated (narrower, symmetric absorption peak without red-shift 

with respect to the solution spectrum). As a result of its different peak positions and 

shapes, the spectrum could not be accurately described by weighted sums of the spectra 

of the samples D149/CA and S1.15PcZn/CA (see example shown as dashed violet curve 

in Figure 78), further supporting that aggregation was clearly reduced. However, this 

came at the cost of a much smaller absorption compared to the film co-sensitized for 

17.5 h over virtually the whole range of absorbed wavelengths. The peak height ratio for 

D149:S1.15PcZn (main peak) of 0.75:0.42 suggests that the molar ratio of the two dyes 

in the film was again approximately 1:1. Interestingly, the amount of S1.15PcZn in the 

co-sensitized films is increased with respect to the sample S1.15PcZn/CA, indicating that 

the presence of D149 assists the adsorption of the phthalocyanine dye.  

Figure 79 shows the light harvesting efficiency ηlh of the four samples. The film with 

D149/CA and the one sensitized with D149/S1.15PcZn/CA for 17.5 h both show a light 

harvesting efficiency of close to 1 over a broad range from about 425 nm to 650 nm 

(D149/CA) or 670 nm (D149/S1.15PcZn/CA), respectively. The other two samples show 

narrower peaks with maximum values of ηlh of about 0.6 (S1.15PcZn/CA) or 0.8 (2 h 

D149/S1.15PcZn/CA). 
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Figure 79: Light harvesting efficiency of D149- and/or S1.15PcZn-sensitized porous ZnO 

films (legend as in previous plot) calculated from the absorbance.  

8.2 Photovoltaic Performance and Steady-State Quantum 

Efficiency 

The current-voltage characteristics of the cells built from the porous ZnO electrodes 

with D149/CA, S1.15PcZn/CA or D149/ S1.15PcZn/CA showed a short-term variation 

under illumination (approaching a saturation value) and depended on the age of the cell, 

which will be discussed separately in chapter 9. For the sake of comparability with the 

results presented in the following sections, the present section will mainly focus on the 

saturation J-V characteristics of each cell measured on the day of its analysis by time- 

and frequency-dependent methods, see Figure 80. D149/CA achieved the best perfor-

mance among the present cells, roughly similar to that of the indoline dye-sensitized 

cells in chapter 6 (Figure 51), while the cell with S1.15PcZn/CA showed almost no pho-

tovoltaic activity. The co-sensitized samples performed better than S1.15PcZn/CA, but 

were clearly less efficient than D149/CA despite their extended spectral absorption 

range. 
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Figure 80: Stabilized current-voltage characteristics under AM1.5G-type illumination 

of DSCs with D149- and/or S1.15PcZn-sensitized ZnO photoelectrodes. 

The sample-to-sample trends among the Jsc values in Figure 80 are well in line with the 

IPCE (measured on freshly prepared cells) in Figure 81, which was largest for 

D149/CA, extremely small for S1.15PcZn/CA, and in between that of the cells with indi-

vidual sensitizers for the co-sensitized samples, with D149/S1.15PcZn/CA (17.5 h) show-

ing a slightly larger area under the IPCE curve than D149/S1.15PcZn/CA (2 h).  

 

Figure 81: IPCE spectra of the freshly prepared DSCs with D149 and/or S1.15PcZn 

(legend as in the previous figure).  
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The theoretical short-circuit current densities derived from the IPCE spectra by eq. (36) 

largely present good estimates of the experimental short-circuit photocurrent densities 

of the freshly prepared cells, see Table 25. The Jsc of the freshly prepared sample 

D149/S1.15PcZn/CA (2 h), however, was clearly underestimated by the calculations, 

possibly as a result of a change in the photovoltaic characteristics between IPCE meas-

urement and J-V characterization (cf. short-term development in Figure 90 of chapter 

9.1).  

Table 25: Maximum incident photon-to-electron conversion efficiency values IPCEmax 

(with corresponding wavelengths), theoretical short-circuit photocurrent densities 

theo
scJ calculated from the IPCE curves, and experimental Jsc of the freshly prepared cells.  

sample IPCEmax / % theo
scJ / mAcm-2 Jsc  / mAcm-2 

D149/S1.15PcZn/CA (2h) 20 @ 530 nm 2.03 3.19 

D149/S1.15PcZn/CA (17.5 h) 18 @ 590 nm 2.65 2.86 

S1.15PcZn/CA 3 @ 680 nm 0.21 0.26 

D149/CA 44 @ 520 nm 6.40 6.52 

 

The overall efficiency of η = 2% of the present cell with D149/CA (see Figure 80) was 

equivalent to that reached by D149/CA cell in chapter 6, but the fill factor was strongly 

decreased (from 0.64 to 0.44), while the short-circuit photocurrent density and open-

circuit photovoltage were increased (from 5.8 mAcm-2 to 7.8 mAcm-2 and from -0.56 V 

to -0.6 V). The higher Jsc and Voc were most likely the result of the higher dye loading in 

the present cell (cf. section 8.1). The open-circuit photovoltages and fill factors will be 

addressed in more detail as part of the impedance spectroscopic analysis in section 8.3. 

Given the high and broad light harvesting efficiency of the cell with D149/CA (cf. Fig-

ure 79), the IPCE and Jsc (eq. (39) and eq. (40)) were limited by the efficiency of elec-

tron injection, dye regeneration, or charge collection, as also apparent from the internal 

quantum efficiency (APCE, cf. eq. (41)) plots in Figure 82.  
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Figure 82: Absorbed photon-to-electron conversion efficiencies (APCE) spectra of the 

cells with D149 and/or S1.15PcZn (color assignment as above), determined by dividing 

the spectral IPCE (Figure 81) by the spectral light harvesting efficiency (Figure 79). 

The charge collection efficiency could be excluded as a limiting factor for the cells 

D149/CA and D149/S1.15PcZn/CA (17.5 h) by an estimation as in chapter 6.5, which 

showed that the ratio between short-circuit diffusion length and film thickness (Table 

26) was clearly larger than 3, demonstrating that the charge collection efficiency was 

~100%.  

Table 26: Film thickness, short-circuit electron diffusion length and ratio of the two 

parameters for two of the four cells. Ln,sc values are lower estimates determined from 

the effective electron lifetime from EIS (AM1.5G) at an applied voltage of -0.2 V and the 

short-circuit electron transport time from IMPS at a red LED intensity of 25 mWcm-2
. 

sample code d / µm Ln,sc / µm Ln,sc/d 

D149/CA 4.6 36 8 

D149/S1.15PcZn/CA (17.5 h) 4.7 51 11 

 

While no charge transport data was available for D149/S1.15PcZn/CA (2 h) and 

S1.15PcZn/CA (2 h), the conclusion of unproblematic charge collection can likely be 
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extended to these cells by analogy with the electrodeposited samples in chapter 6 

(which also included a poor sensitizer, SQ2), cf. Table 17, and based on the independ-

ence of the electron transport time of changes to the semiconductor surface (cf. Figure 

74) together with the fact that the effective electron lifetime for D149/S1.15PcZn/CA (2 

h) was comparable to that of D149/S1.15PcZn/CA with 17.5 h adsorption time (see Fig-

ure 85). 

The sample containing only S1.15PcZn/CA showed the poorest performance of η = 0.06 

% among the cells of this chapter, with Jsc = 0.32 mAcm-2, Voc = -0.39 V, and FF = 0.45 

(Figure 80). The very small short-circuit photocurrent was partially explained by the 

relatively low and narrow light harvesting efficiency (Figure 79). Nevertheless, the 

very small APCE values (Figure 82) clearly show that there is a strong additional limi-

tation of the IPCE by electron injection and/or dye regeneration. Electrochemical stud-

ies of S1.15PcZn307 yielded an oxidation potential of 1.03 V vs. NHE (normal hydrogen 

electrode), which can be converted to the absolute energy scale74, 77 to yield a Fermi 

level E0(S+/S) of the ground state (cf. Figure 3) at about -5.5 eV. Together with an opti-

cal gap of 1.8 eV (estimated from the onset of the Q-band in the UV/Vis absorption 

spectrum),307 the energy of the Fermi level E0(S+/S*) of excited S1.15PcZn can be ap-

proximated at about -3.7 eV. This indicates that electron injection into ZnO (conduction 

band edge at -3.9 – -4.5 eV)42, 292  and regeneration by an I-/I3
- electrolyte (Eredox = -4.85 

eV)35 are thermodynamically feasible for S1.15PcZn, so that a weak bond between 

S1.15PcZn and ZnO and/or the strong aggregation of the phthalocyanine (cf. Figure 78) 

must have caused the small electron injection and/or dye regeneration efficiency. 

Among the two co-sensitized cells, the Jsc for the cell D149/S1.15PcZn/CA (2 h) was 

smaller than that of D149/S1.15PcZn/CA (17.5 h) in the saturation J-V curves measured 

directly before the detailed photoelectrochemical characterization (2.39 mAcm-2 vs. 

5.46 mAcm-2, cf. Figure 80), while the opposite was observed in the measurements on 

the freshly prepared cells (3.19 mAcm-2 vs. 2.86 mAcm-2, see Table 25). The discrepan-

cy was due to the fact that the samples showed a different long-term development of 

their photovoltaic characteristics (cf. Figure 95 of chapter 9.2). In the J-V curves in 

Figure 80 (relevant for the following sections), D149/S1.15PcZn/CA (17.5 h) also 

showed a superior Voc (-0.54 V) compared to the cell with 2 h adsorption time (-0.49 V), 

which, together with the increased short-circuit photocurrent, overcompensated a de-
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creased fill factor (0.5 vs. 0.56) to yield a higher power conversion efficiency of 1.47 % 

(compared to η = 0.66 for D149/S1.15PcZn/CA (2 h)). Although in the sample 

D149/S1.15PcZn/CA (2 h) the low light harvesting efficiency contributed to the poor 

IPCE and Jsc with respect to D149/CA, both of the co-sensitized samples also displayed 

poor APCE values over the whole spectrum, reflecting low electron injection and/or dye 

regeneration efficiencies for both sensitizers. The maximum internal quantum efficiency 

in the absorption range of D149 was slightly better for D149/S1.15PcZn/CA (2 h) than 

for D149/S1.15PcZn/CA (17.5 h), but did not come close to that measured for the refer-

ence cell D149/CA. Similar to what was discussed for the squaraine co-sensitizer SQ2 

in the previous chapters, this could indicate undesired energy transfer from D149 to 

inefficiently working S1.15PcZn. Unlike in the cells with SQ2, however, in the present 

case coadsorption of cholic acid and strong reduction of the amount of dyes in the ZnO 

films did not prevent such detrimental dye-dye interactions. For D149/S1.15PcZn/CA 

(17.5h), the APCE is also lowered in the absorption range of S1.15PcZn with respect to 

the cell S1.15PcZn/CA, suggesting that the presence of both dyes in larger amounts and 

in a strongly aggregated state on the ZnO surface leads to a mutually negative effect on 

the efficiency of electron injection and/or dye regeneration.   

Because the sample S1.15PcZn/CA was damaged during the IPCE measurements, the 

results obtained in the subsequent impedance and photoelectrochemical measurements 

are not considered reliable and will therefore be omitted in the following discussion.  

8.3 Recombination and Origins of Variations in Voc and FF 

Figure 83 (a) shows the recombination resistance Rrec as a function of the Fermi-level 

voltage. In the high-voltage range, all three samples exhibit the exponential behavior 

characteristic of recombination under the influence of an exponential distribution of 

surface traps in the semiconductor (eq. (53)). In the Rrec curves of the cells D149/CA 

and D149/S1.15PcZn/CA (17.5 h), a clearly reduced slope is observed at voltages less 

negative than about -0.5 V, which usually indicates that the measured resistance is gov-

erned by recombination events at the substrate/electrolyte interface rather than by 

Rrec.
128 On the other hand, a depression of the low-voltage recombination resistance over 

a wider range can also be caused by an abundance of recombination-promoting dye ag-
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gregates on the ZnO surface, as observed for D149 in chapter 5 (Figure 44). However, 

the fact that the two differently sensitized cells both show an equivalent slope of Rrec in 

the low-voltage range speaks against the assumption that recombination via dye aggre-

gates caused the flattening of Rrec, leaving recombination via the substrate as a more 

likely explanation (cf. further discussion in section 8.4). In the present samples, the low-

voltage slope of the Rrec curve is much smaller and appears to extend to more negative 

voltages compared to Rrec curves of previous chapters (see for example Figure 58), in-

dicating a stronger and more extended influence of recombination via the substrate.  

   

Figure 83: Recombination resistance of ZnO-based DSCs sensitized with D149/CA or 

with D149/S1.15PcZn/ CA for 2 or 17.5 hours against the Fermi-level voltage Vf (a) and 

against Vf corrected by conduction band edge shifts (b). Lines in (a) represent fits to the 

high-voltage part of the curves, lines in (b) are a guide to the eye.  

Focusing on the high-voltage sections of the Rrec curves, the recombination parameter β 

(see fits to eq. (54) in Figure 83 (a)) of D149/CA was identical (0.43) to the value ob-

served for D149/CA in chapter 6, showing that neither the use of ethanol as a solvent of 

the dye solution nor the increase of the adsorption time from 2 h to 17.5 h affected the 

energetic distribution of surface trap states or of oxidized D149 molecules involved in 

recombination reactions (cf. chapter 5). The β parameters of the co-sensitized cells were 

equal (0.52) for both adsorption times and were increased compared to the value for 

D149/CA, pointing towards a shift of the energy levels of oxidized dye molecules that 

act as recombination pathways or targets in the presence of S1.15PcZn.   
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In the plots of the recombination resistance against the corrected voltage Vf-ΔEc/q (cf. 

ΔEc/q values in Table 29), see Figure 83 (b), the co-sensitized cells with 

D149/S1.15PcZn/CA showed identical recombination resistances independent of the ad-

sorption time, representative of equal rate constants of recombination. In the range of 

higher corrected voltages (Vf-ΔEc/q = -0.5 V and more negative), these cells showed 

lower Rrec values than D149/CA, suggesting that charge transfer from ZnO to the elec-

trolyte was less efficiently blocked by adsorbed S1.15PcZn molecules compared to D149 

molecules. However, in the lower voltage range the recombination resistance of the co-

sensitized cells exceeded that of D149/CA, possibly as a result of more pronounced re-

combination via the substrate. 

The three different origins of the differences in Voc and FF (i.e., differences in Jsc, con-

duction band edge shifts, and differences in the rate constant of recombination) between 

the cells of this chapter have been studied quantitatively by the same protocol as in 

chapter 7.7, see Table 27. For a comparison of the results obtained by the present cell 

with D149/CA, the calculations were also performed for the sample D149/CA of chap-

ter 6.  

Table 27: Calculated voltage changes with respect to the reference sample D149/CA 

due to differences in the short-circuit photocurrent, the conduction band edge position, 

and the recombination resistance. The total voltage changes based on calculation 

(ΔVoc,calc) and experiment (ΔVoc) are given as well.  

sample code 
ΔVoc (ΔJsc) 

/mV  

ΔVoc (ΔEc/q) 

 /mV 

ΔVoc (ΔRrec) 

/mV 

ΔVoc,calc 

/mV 

ΔVoc  

/mV 

D149/CA +/- 0 (ref.) +/- 0 (ref.) +/- 0 (ref.) 
+/- 0 

(ref.) 

+/- 0 

(ref.) 

S1.15PcZn/CA + 174 n.a. n.a. n.a. + 210 

D149/S1.15PcZn

/CA (2h) 
+ 65 + 20 + 33 + 118 + 70 

D149/S1.15PcZn

/CA (17.5h) 
+ 19 + 7 + 30 + 56 + 60 

D149/CA  

(chapter 6) 
+ 18 - 64 + 104 + 58 + 40 
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For the cell with S1.15PcZn, only the influence of the smaller Jsc on the voltage differ-

ence compared to the reference cell D149/CA could be determined (a loss by 174 mV), 

which explained more than 80% of the observed voltage loss ΔVoc of 210 mV. The re-

maining voltage loss of 40 mV must have been caused by a downward shift of the con-

duction band edge and/or an increase in the rate constant of recombination. The calcula-

tions very accurately predicted the experimental voltage difference (ΔVoc = 60 mV) be-

tween D149/CA and the co-sensitized cell with 17.5 h adsorption time. The reduced Jsc 

and increased rate constant of recombination here led to voltage losses of ~20 mV and 

30 mV, and the small conduction band edge shift downwards delivered the remaining 

contribution. The total voltage loss of the co-sensitized cell with 2 h adsorption time 

with respect to D149/CA was overestimated by almost 50 mV. The difference in Jsc 

already explained nearly the whole experimental voltage difference, but the calculations 

predicted an additional loss of ~50 mV due to a positive conduction band edge shift and 

a higher rate constant of recombination, which may have been an overestimation as a 

result of the approximated conduction band edge shift (see previous chapter). Compar-

ing the cell D149/CA of this chapter and the corresponding sample of chapter 6, a rea-

sonable theoretical prediction of the experimental ΔVoc was attained. The total voltage 

gain of 40 mV for the present sample was the result of its higher Jsc and lower rate con-

stant of recombination, which may both have been caused by the higher dye loading (cf. 

section 8.1). These gains overcompensated a relative downward shift of the conduction 

band edge with respect to the cell of chapter 6. This downward shift of Ec must have 

been the result of the long sensitization time of 17.5 h in ethanolic dye solution (com-

pared to 2 h adsorption from tert-butanol:acetonitrile solution). The use of an ethanolic 

dye solution is not expected to be responsible for the relative shift, because all of the 

dye-sensitized films in this work were thoroughly rinsed with this solvent after sensiti-

zation, independent of the solvent used in the adsorption solution. Rather, the long ex-

posure to the (acidic) dye solution could have changed the surface chemistry of the ZnO 

towards a more positive surface charge.  

Table 28 shows the external (from Figure 80) and internal (from plots of J vs. Vf) fill 

factors of the cells with D149 and/or S1.15PcZn as well as their theoretical internal fill 

factors calculated from the experimental Voc and β values by eq. (35).  
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Table 28: External fill factors (FF), internal fill factors, and theoretical internal fill 

factors for DSCs with D149 and/or S1.15PcZn. For D149/S1.15PcZn/CA (2h), no inter-

nal fill factor could be determined because EIS data for the determination of Vf was not 

available for voltages as small as the maximum power point. Values in parentheses 

were calculated based on hypothetical β values as specified in the footnotes.    

sample code FF 
internal 

FF 

calculated internal FF 

with high-Vf β with low-Vf β 

D149/CA 0.44 0.52 0.69 0.42 

S1.15PcZn/CA 0.45 0.45 (0.68)a (0.33)b 

D149/S1.15PcZn/CA (2h) 0.56 n.a. 0.71 (0.39)b 

D149/S1.15PcZn/CA (17.5h) 0.50 0.55 0.71 0.40 

a β = 0.61 (based on the assumption that the β value of the co-sensitized samples was the average of the β 

values of D149/CA and S1.15PcZn/CA); b β = 0.13 (assumed to be equal to the low-voltage β values of the 

two other cells) 

The fill factors in D149/CA and D149/S1.15PcZn/CA (17.5 h) were significantly re-

duced by 10 – 15% due to a high series resistance, in accordance with the results of 

chapter 5 (cf. Table 10), which showed that for cells with high dye loadings desorbed 

D149 molecules in the electrolyte solution and on the counter electrode caused the high 

series resistance. For S1.15PcZn/CA, internal and external fill factors were equal, demon-

strating that the effect of the series resistance on the J-V curve was negligible compared 

to other detrimental processes in this sample. The calculated values of the internal fill 

factor are qualitatively in line with the actual internal FF, but are clearly overestimated. 

This is because the calculations used the high-voltage (ca -0.5 V and more negative) β 

values and, thus, did not account for the influence of recombination via the substrate, 

which was detected in the recombination resistance around the maximum power point (-

0.26 – -0.4 V for the present cells) and most likely limited the fill factor. While the theo-

retical internal fill factors estimated using the lower-voltage β value of 0.13 were 

somewhat closer to the actual internal fill factors (see Table 10 (right column)), they 
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clearly represented underestimations. This suggests that the experimental internal FF 

was controlled by recombination both via the substrate and via the porous ZnO film.   

8.4 Distribution of Trap States 

The EIS-derived capacitance of the DSCs based on electrodeposited ZnO with 

D149/CA or D149/S1.15PcZn/CA, Figure 84 (a), showed the exponential behavior typi-

cal of a chemical capacitance in nanostructured semiconductors (eq. (52)), in accord-

ance with the results of previous chapters.  

   

Figure 84: Chemical capacitance of ZnO-based DSCs with D149/CA or 

D149/S1.15PcZn/CA as a function of the Fermi-level voltage before (a) and after (b) 

normalization of some of the curves (as indicated) by the relative total trap density. 

Lines in (a) are linear fits, lines in (b) are a guide to the eye only. 

The trap distribution parameters α of 0.32 to 0.33 determined from the slopes of the Cµ 

curves (cf. fits to eq. (52) in Figure 84 (a)) were nearly constant for D149/CA and 

D149/S1.15PcZn/CA (both adsorption times) and were comparable to the α value of 0.35 

obtained for D149/CA in chapter 6. For the determination of relative conduction band 

edge shifts, the chemical capacitance was normalized (Figure 84 (b)) by the relative 

differences in the total trap density Nt obtained by short-circuit charge extraction (see 

Table 29), as introduced in chapter 6.3.  
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Table 29: Relative total trap densities and relative conduction band edge shifts of the 

cells sensitized with D149 or D149 and S1.15PcZn in the presence of cholic acid. The 

positive values of ΔEc/q indicate downward shifts towards Eredox. 

sample code Nt/Nt,ref ΔEc/q / mV 

D149/CA 1 (ref.) +/- 0 (ref.) 

D149/S1.15PcZn/CA (2h) (30) + 20 

D149/S1.15PcZn/CA (17.5h) 1.3 + 7 

 

The co-sensitized cell D149/S1.15PcZn/CA (17.5 h) showed a slight increase of the total 

trap density by a factor of 1.3 with respect to D149/CA. The relative Nt of 30 deter-

mined for the sample D149/S1.15PcZn/CA (2 h) appears unreasonably high given the 

fact that the same surface adsorbates as in D149/S1.15PcZn/CA (17.5 h) were present. 

Since the corresponding sample showed strong bleaching of the ZnO/dye film after the 

full photoelectrochemical characterization (including short-circuit charge extraction to 

determine Nt/Nt,ref), the faulty result was most likely due to cell degradation.XVII On the 

basis of the identical molar ratio of D149:S1.15PcZn of 1:1 in the two co-sensitized ZnO 

films (cf. section 8.1), an approximation of the normalized capacitance for the sample 

D149/S1.15PcZn/CA (2 h) was determined by assuming that the relative total trap densi-

ty was equivalent to that of D149/S1.15PcZn/CA (17.5 h). In this estimation, both sam-

ples co-sensitized with D149 and the phthalocyanine show a small downward shift of Ec 

with respect to the cell with D149 only, see Table 29, indicating that adsorption of 

S1.15PcZn leads to a more positive surface charge of the ZnO film. This is reasonable 

based on the slightly higher number (on average 1.15) of acidic –SO3H anchoring 

groups on S1.15PcZn (compared to a single –COOH group on D149), which can release 

protons that are adsorbed to the ZnO surface in parallel with the dyes.67  

                                                 

XVII Note that the cell did not yet show any signs of degradation after the EIS measurements, so that the 

results of those are considered reliable.  
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8.5 Open-Circuit Voltage Decay and Lifetime Measurements 

As an alternative route to analyze recombination kinetics, the time-dependent decay of 

the open-circuit photovoltage following illumination with light of a red (λmax = 632 nm) 

LED was measured, see Figure 85 (a).XVIII 

  

Figure 85: Time-dependent decay of Voc (OCVD) after illumination with red light (in-

tensity of 25 mWcm-2) (a) and voltage-dependent effective electron lifetime calculated 

from the OCVD or measured by IMVS (b) for DSCs sensitized with D149 and/or 

D149/S1.15PcZn/CA. Dashed lines in (a) are linear fits to small sections of the curves in 

the time range t ≈ 2 – 20 s, lines in (b) are a guide to the eye. 

All curves show only small linear regions in the semilogarithmic plot and, as a whole, 

resemble typical voltage decays of cells without blocking layer more than decays of 

samples with properly functioning blocking layers, for which a linear shape of such 

plots is observed at times t  > 0.1 s (with t = 0 being the time at which the light is turned 

off).266 This confirms that the electrodeposited blocking layer in the present samples did 

not sufficiently hinder recombination via the FTO/glass substrate. The films were the 

only ones out of deposition batch no. 5 that were employed in this work and it is possi-

ble that this batch showed defects in the compact ZnO blocking layer. 

                                                 

XVIII Note that the results presented for D149/S1.15PcZn/CA (2h) must be interpreted with reservations, 

because the cell showed signs of degradation after the detailed photoelectrochemical characterization 

that included the measurements discussed in this section. 
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The electron lifetimes τn calculated from the open-circuit voltage decays using eq. (70), 

see Figure 85 (b), indicated a similar trend with respect to recombination as observed in 

the Rrec curves (cf. Figure 83). (Note that this was still true when the curves were plot-

ted against Voc corrected by the conduction band edge shifts in Table 29.) At Voc’s more 

negative than -0.45 V, co-sensitization with D149 and S1.15PcZn yielded a shorter life-

time than use of D149 as individual sensitizer, indicating a higher probability of recom-

bination events, while at voltages between about -0.3 and -0.45 V, the co-sensitized 

cells showed longer lifetimes than D149/CA. The lifetime data at open-circuit voltages 

less negative than -0.3 V was not reliable because of the small change of Voc per time 

compared to the resolution of the measurement. The effective electron lifetimes ob-

tained by intensity-modulated photovoltage spectroscopy (IMVS), Figure 85 (b), also 

largely confirmed that D149/CA showed the least pronounced recombination in the 

higher-voltage range but became inferior to the co-sensitized samples at lower voltages. 

The IMVS results exactly reproduced the lifetimes obtained from the voltage decay ex-

cept in the case of D149/CA, for which IMVS (measured about 90 minutes after 

OCVD) yielded considerably higher lifetimes, possibly as a result of a reduction of re-

combination over time (cf. chapter 9.1). 

8.6 Summary and Conclusions for This Chapter 

Coadsorption of D149 and the phthalocyanine S1.15PcZn was achieved by dipping elec-

trodeposited ZnO films into ethanolic solutions containing both dyes together with cho-

lic acid (CA) at a molar ratio of 1:1.5:2 (D149:S1.15PcZn:CA) for 2 h or 17.5 h. Charac-

teristic peaks or peak shifts and broadening in the UV/Vis absorption spectra showed 

that the two dyes were strongly aggregated both in solution and when adsorbed to ZnO. 

Only in the co-sensitized film with 2 h adsorption time, a reduced degree of aggregation 

was attained, albeit in connection with a significantly smaller optical absorption. Alt-

hough the dye loading in a reference film sensitized with S1.15PcZn/CA only was much 

smaller than in a reference film with D149/CA, the absorption spectra indicated a 

D149:S1.15PcZn ratio of approximately 1:1 in the samples containing both sensitizers, 

suggesting that the presence of D149 assisted in the adsorption of the phthalocyanine.  
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The highest power conversion efficiency among the cells studied in this chapter (η = 

2%) was yielded by the solar cell sensitized with D149/CA from ethanolic solution for 

17.5 h, while the cell with S1.15PcZn as individual sensitizer showed the poorest perfor-

mance (η = 0.06 %). The poor result obtained with the phthalocyanine was partially 

caused by the small dye loading, but the major limiting factor was a very small internal 

quantum efficiency, which suggested that there was a fundamental problem in the sensi-

tization of ZnO with S1.15PcZn, such as hindered electron injection due to a weak bond 

between dye and semiconductor. Co-sensitization with D149 and the phthalocyanine for 

either 2 h or 17.5 h resulted in photovoltaic performance superior to that of the cell with 

S1.15PcZn, but clearly inferior to that of the DSC with D149/CA. The APCE of both co-

sensitized cells in the absorption range of D149 was significantly lower than in samples 

with D149 as individual sensitizer, which indicates undesired energy transfer from the 

indoline dye to the inefficient phthalocyanine dye, as observed for the squaraine dye 

SQ2 in previous chapters. 

The cell with D149/CA and the samples with D149/S1.15PcZn/CA displayed nearly 

identical trap distributions, but the co-sensitized samples showed a slightly higher total 

trap density and a relative downward shift of the conduction band edge by ~10 – 20 

mV, indicating additional positive surface charges introduced by adsorption of the more 

acidic phthalocyanine. Combination of D149 and S1.15PcZn also led to increased recom-

bination in the high-voltage range compared to D149/CA, as confirmed by impedance 

spectroscopy, open-circuit voltage decay measurements as well as intensity-modulated 

photovoltage spectroscopy. All of the cells studied in the present chapter exhibited non-

linear semilogarithmic plots of the open-circuit photovoltage decay as well as strongly 

flattened sections of the voltage-dependent recombination resistance that extended to 

relatively negative voltages of about -0.5 V. This strongly suggested that the blocking 

layers of the ZnO film batch used in this chapter insufficiently blocked recombination 

via the substrate, which, in consequence, influenced the photovoltaic performance up to 

the range of the maximum power point of the cells and thus contributed to their unusu-

ally low fill factors. An analysis of the origins of the sample-to-sample differences in 

Voc showed that less efficient injection as seen in the smaller short-circuit photocurrents 

of the cell with S1.15PcZn and the co-sensitized samples presented a major source of 

voltage loss with respect to the sample with D149/CA. The downward shift of the con-
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duction band edge and the smaller recombination resistances led to additional losses of 

ca 10 – 30 mV each. 

In conclusion, the sulfonated phthalocyanine S1.15PcZn was found to be even less suita-

ble as sensitizer for ZnO than the squaraine dye SQ2 discussed in the previous chapters. 

In future experiments, it is therefore vital to explore other types of red-absorbing dyes 

with respect to their compatibility with ZnO. Choosing molecules with large bulky sub-

stituents could contribute to minimize dye aggregation, which was detected as a major 

problem both for SQ2 and S1.15PcZn in the present work.  
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9 Stability Aspects of DSCs Sensitized with Organic 

Dyes and Coadsorbates 

9.1 Short-Term Stability of Photovoltaic Characteristics and 

Role of Cell Temperature 

In the current-voltage characterization of the DSCs based on D149-sensitized electrode-

posited ZnO of chapter 5, a decrease of the open-circuit photovoltage was observed 

when multiple measurements under illumination were performed in succession. In the 

example in Figure 86 (left), the Voc measured after light soaking for 5 min was 27 mV 

smaller than the value measured initially after storage in the dark and the corresponding 

dark current showed an earlier onset than the dark current measured after dark storage. 

To investigate whether the changes might have been caused by a temperature increase, 

the temperature development on the illuminated glass surface of the cell (working elec-

trode side) was monitored over time after turning on the solar simulator (100 mWcm-2). 

Within about 30 minutes, a large change from an initial temperature of 26°C to a final 

temperature of ~51°C had occurred. Exposure (following dark storage) to a stream of 

70°C warm air supplied by a blow dryer led to a very similar effect on the J-V curves as 

the light soaking, see Figure 86 (right): the Voc decreased by 17 mV compared to meas-

urements performed at room temperature after dark storage and the onset of the dark 

current shifted to less negative voltages. Simulated current-voltage characteristics under 

illumination (Figure 87), calculated based on eq. (31) and (32), predict a 25 mV de-

crease in Voc upon increasing the temperature from 26°C to 50°C, further confirming 

that the change by 27 mV observed in Figure 86 (left) is temperature-related. As theo-

retical dark current and current under illumination only differ by a constant offset equal 

to Jsc, the simulations also predict a positive shift of the dark current onset. The fact that 

the exposure to 70°C warm air did not lead to an even larger decrease in Voc, as predict-

ed by the calculations (green curve in Figure 87), could indicate that the temperature in 

the active layer was smaller than 70°C.  
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Figure 86: Influence of pre-soaking of a DSC with D149/CA (adsorption time of 10 

minutes) in AM1.5G type light for 5 min (left) or heating the same cell to 70°C (right) 

on the current-voltage characteristics in the dark and under AM1.5G illumination.  

 

Figure 87: Simulated current-voltage curves (under illumination) illustrating the influ-

ence of increased cell temperatures on the open-circuit photovoltage. Simulation pa-

rameters were Jsc = 10 mAcm-2, d = 4.1 µm, and β = 0.46 (experimental averages for 

cells sensitized with D149/CA for 10 minutes), and kr = 1014 s-1, Nc = 4·1018 cm-3, and 

(Ec-Eredox) = 1 eV (values given in ref. 267 for ZnO-based DSCs). 

The current-voltage characteristics of the dye-sensitized solar cells analyzed in chapter 

6 (with the dyes D149, D131, and/or Sq2) showed similar changes during continuous 

illumination by the solar simulator as discussed above for the cells of chapter 5, but the 

decrease of the open-circuit photovoltage was accompanied by a minor increase of the 
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short-circuit photocurrent density, see examples in Figure 88. A saturation of Jsc and 

Voc was typically approached in about 10 minutes or less. A possible reason for the 

slight gain in Jsc, which is not expected to result from the increase of the cell tempera-

ture (cf. Figure 87), could be a downward shift of the conduction band edge of the sem-

iconductor film under illumination, as has been reported for TiO2-based cells.308 This 

would also be expected to lead to a decrease in Voc, which would have added to the 

temperature-induced decrease of the open-circuit voltage. Another possible factor that 

could have influenced Jsc is a rearrangement of surface-adsorbed dye molecules during 

cell operation, which may have involved desorption of inefficient weakly attached sen-

sitizer molecules or aggregates and thereby improved the electron injection efficiency 

(cf. Table 17).   

 

Figure 88: Representative examples of the short-term development of the current-

voltage characteristics of DSCs based on electrodeposited ZnO with indoline dyes, 

squaraine dye, or combinations of both (chapter 6) under continuous illumination with 

AM1.5G-type light.  

For the dye-sensitized solar cells based on nanoparticulate ZnO (cf. chapter 7), the de-

velopment of the J-V characteristics during light soaking, see examples in Figure 89, 

again showed a temperature-related decrease in Voc, which was, however, accompanied 

by a minor decrease (instead of a small increase) in Jsc. Assuming that the change in 

current is again related to desorption of a part of the dye molecules, possible improve-

ments in the (already relatively high, cf. Table 22) electron injection efficiency in this 

case seemed to have been outweighed by the negative effect of the reduction of the light 

harvesting efficiency resulting from partial dye desorption.  
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Figure 89: Short-term development of the J-V characteristics (representative examples) 

of solar cells based on nanoparticulate ZnO (chapter 7) under continuous illumination 

with AM1.5G-type light. 

 

As for the J-V curves of the cells sensitized with D149 and/or S1.15PcZn from ethanolic 

solution (chapter 8), only the samples S1.15PcZn/CA (17.5 h) and D149/S1.15PcZn/CA (2 

h) (Figure 90 top row) presented a development under illumination similar to that de-

scribed above, with a temperature-related decrease of Voc and a small increase or de-

crease in Jsc that was presumably again related to changes in the light harvesting effi-

ciency and/or electron injection efficiency as a result of partial dye desorption. For the 

cells sensitized for 17.5 h with D149/CA or D149/S1.15PcZn/CA, the initial J-V curves 

showed a pronounced “S-shape” that is reminiscent of – albeit more pronounced than – 

the shape of the current-voltage characteristics found in chapters 6 and 7 for strong re-

combination at lower energies via oxidized dye aggregates (cf. Figure 71). Illumination 

for 20 – 25 min led to a drastic increase of Jsc (from 3.8 and 0.5 mAcm-2 to 7.6 and 3.2 

mAcm-2), FF (from 0.36 and 0.18 to 0.49 and 0.44), and, in one case, Voc (from 0.37 to 

0.52 V). This is particularly surprising in the case of the cell containing only D149/CA, 

for which a constant Jsc along with a temperature-related decrease of Voc would be ex-

pected based on the results in Figure 86. A possible explanation for such a finding may 

be a significant rearrangement of the dye/coadsorbate layer under illumination and pho-

tovoltaic operation in these two cells that contained very large dye loadings and showed 

pronounced signs of dye aggregation (cf. Figure 78). This may involve break-up or 

desorption of the recombination-promoting and injection-hindering sensitizer aggre-

gates.  
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Figure 90: Short-term change of the J-V characteristics of solar cells with D149 and/or 

the phthalocyanine dye S1.15PcZn (see chapter 7) under continuous AM1.5G illumina-

tion. 

9.2 Long-Term Development of Cell Properties 

The current-voltage characteristics of the ZnO-based dye-sensitized solar cells with var-

ied amounts of D149 with cholic acid (cf. chapter 5) were monitored over a period of 

4.5 months. The first two measurements for each cell were performed at Gifu University 

and the remaining three at University of Gießen. In both cases AM1.5G illumination of 

a solar simulator was employed, and the illumination intensity was set with silicon di-

ode based detectors, thus making the experiments in the two different laboratories as 

comparable as possible. In the first two as well as the last current-voltage measurement 

a black shadow mask with an aperture of 5 mm was used, while this was not the case in 

the third and fourth measurements. A comparison of the J-V curves of an example cell 

measured subsequently with and without the mask (Figure 91) shows almost no differ-
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ence, indicating that, unlike in a previous report studying TiO2-based cells on 4 mm 

thick FTO/glass substrates,309 the use of a mask with an aperture size comparable to the 

cell area for the present cells on thinner (1.1 mm) glass substrates did not lead to signif-

icant changes in the cell performance.  

 

Figure 91: Comparison of J-V curves of a DSC with D149/CA (adsorption time of 120 

min) measured with and without a shadow mask limiting the illuminated cell area to 

0.196 cm2. The current densities were calculated using the illuminated cell areas given 

in the legend.  

The Jsc, Voc, FF, and η values determined from the repeated J-V measurements are plot-

ted as a function of time in Figure 92. The short-circuit photocurrent for the cells pre-

pared with 1 or 2 min adsorption time showed a minor increase in the first few days, 

which was followed by a steady decrease over several weeks. The cells with 10 or 120 

min adsorption time displayed a more significant trend to increase over the first month, 

before they decreased in a similar way as the samples with smaller dye loadings. In a 

previous study investigating cells based on D149-sensitized electrodeposited ZnO with 

coadsorbate lithocholic acid (adsorption time of 15 min), a slow, steady increase of Jsc 

from about 13.5 to 14.5 mAcm-2 over a period of 4 weeks was observed with a high 

time resolution.280 The present low-resolution data for 10 min adsorption time is rough-

ly consistent with such a behavior. On the other hand, all four groups of data (with 4 

different adsorption times) would also be compatible with a peak function centered at 
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approximately 20 days. The limited time resolution does not allow for final conclusions 

on the development of Jsc over the first month.   

   

Figure 92: Change of photovoltaic characteristics of the DSCs with varied amounts of 

D149 (with CA; cf. chapter 5) over a period of 4.5 months. Adsorption times were 1 min 

(light magenta), 2 min (pink), 10 min (purple) or 120 min (black). Values shown in the 

plot are averages of the characteristics of one to three cells prepared for each adsorp-

tion time. In between measurements, the cells were stored in plastic sample cases in the 

dark.  

In general, a long-term decrease of Jsc is most likely caused by a reduction of the dye 

loading (desorption or decomposition of sensitizer molecules)280, 286 or by surface deg-

radation leading to a decreased electron injection efficiency.168, 310 A possible increase 

in the first 2 – 3 weeks could have resulted from an initial beneficial dye rearrangement 

to reduce the degree of dye aggregation on the semiconductor surface. The open-circuit 

voltage shows a similar development for all four groups of cells: over the first 40 days 
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there is a strong increase, followed by a moderate decrease. This differs from the results 

of the above-mentioned previous study on the stability of ZnO/D149 solar cells, in 

which Voc remained constant over 30 days. A constant Voc (at reduced Jsc) was also ob-

served in the present work in cells containing only D149 without coadsorbate, which 

will be discussed below. The significantly increased Voc of the 4-month old cells with 

D149/CA points to an upward shift of the conduction band edge, because the Jsc after 4 

weeks is notably smaller than in the initial measurement and a reduction in the rate con-

stant of recombination is considered unlikely (cf. eq. (34)). A shift of Ec could generally 

be related to changes in the relative amounts of dyes and coadsorbates on the surface. 

The time dependence of the fill factors appears largely like an inversion of the trend 

observed in the present study for Voc: for all adsorption times, FF steeply decreases be-

tween day 0 and day 40 and afterwards stabilizes (low adsorption times) or increases 

again (high adsorption times). A decrease followed by a stabilization was also found in 

the previous investigation and, according to the results observed in connection with dye 

desorption and dissolution in the electrolyte solution in chapter 5.3.5, indicates an in-

crease of the series resistance of the complete cell. Since the time dependences of Voc 

and FF are nearly diametrical, the development of the power conversion efficiency η is 

mainly determined by the changes in Jsc.  

For DSCs containing varied amounts of D149 in the absence of any coadsorbate (cf. 

chapter 5), the current-voltage characteristics were measured on the day of preparation 

and after 4 weeks (Figure 93 (left)). Here, a significant decrease in Jsc (from 2.4 – 11.2 

mAcm-2 down to 1.3 – 8.2 mAcm-2) and FF (from 0.52 – 0.7 down to 0.43 – 0.69) at 

maintained or in some cases very slightly increased Voc values of 0.52 – 0.59 V was 

observed for cells with all adsorption times. Based on electrochemical impedance meas-

urements in chapter 5.3.5 it was inferred that D149 may have been less stably bound to 

ZnO in films without CA with respect to films with D149/CA, which might explain the 

observed clear decrease of Jsc in Figure 93 over 3 weeks, while an initial increase over 

4 weeks was seen for the cells with coadsorbate. As a result, the power conversion effi-

ciency was significantly reduced for all samples after four weeks (0.9 – 3.6% to 0.4 – 

2.2%). As discussed above for cells with D149/CA, the long-term decrease of Jsc was 

most likely mainly the result of a reduced amount of light-absorbing and electron-

injecting dye molecules on the ZnO surface. The reduction of FF again indicates an 

enlarged series resistance due to dye molecules dissolving in the electrolyte. Figure 93 
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(right) shows the change of the J-V curve over time in more detail for a selected cell 

with 10 min adsorption time, with an additional measurement performed three weeks 

after cell preparation. 

 

     

Figure 93: Current-voltage characteristics on the day of preparation (____) and after 4 

weeks (-·-·-·) of ZnO-based DSCs (cf. chapter 5) with the indoline dye D149 without CA 

(left). Adsorption times were 1 min (light magenta), 2 min (pink), 10 min (purple) or 

120 min (black). For one of the cells with 10 min adsorption time, an additional meas-

urement after 3 weeks was performed (right), along with a detailed analysis as dis-

cussed below.  

This data demonstrates that the current had already decayed to the lower value of ca 7.3 

mAcm-2 after three weeks, and that between the second and third measurement only the 

fill factor showed a further decrease. To attempt an investigation of the reasons for the 

nearly constant Voc at lowered Jsc for this cell, intensity-modulated photovoltage spec-

troscopy and charge extraction measurements were performed on the day of preparation 

and after 3 weeks. The effective electron lifetime, Figure 94 (left), maintained the same 

slope but was increased by a factor of 3 for the 3-weeks-old cell. The constant slope in 

the two measurements indicates that the energetic distribution of bulk and surface traps 

did not change (eq. (19)). The increase of the effective electron lifetime over the whole 

voltage range may in principle be the result of a decrease in the rate constant of recom-

bination, of an upward shift of the conduction band edge, and/or of an increase in the 

total trap density Nt (cf. eq. (19) and corresponding text). To further investigate changes 

in Nt and possible conduction band edge shifts that could have resulted from changes in 
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the amount or arrangement of the dye molecules on the ZnO surface, the charge density 

vs. Voc curves are shown in Figure 94 (right).  

  

Figure 94: IMPS-derived open-circuit effective electron lifetime τn (a; lines are a guide 

to the eye only) and extracted open-circuit charge density (b; lines are linear fits) of a 

DSC based on electrodeposited porous ZnO with the photosensitizer D149 (adsorption 

time of 10 min; cf. chapter 5) on the day of cell preparation and three weeks later. 

Measurements were performed with a red (IMVS and charge extraction on 03/01/2012) 

or cyan (charge extraction on 03/21/2012) LED.XIX  

A strong displacement of the noc vs. Voc curve to higher noc values without a significant 

change in slope is observed compared to the data of the freshly prepared cell. Although 

this could, in principle, be interpreted as a tremendous conduction band edge shift 

downwards by ~400 mV for the 3-week old cell, such shift appears almost impossible in 

view of the nearly constant Voc (cf. Figure 93 (right)), since it would have to be com-

pensated by a remarkable decrease in the rate constant of recombination by a factor of 

1000, as estimated by eq. (34). Hence, the observed shift of the charge density curve 

must be dominated by a significantly increased total trap density, possibly superimposed 

onto smaller shifts of the conduction band edge. (No further distinction between chang-

es in Nt and/or Ec can be made based on the available data.) Consequently, the observed 

increase in the electron lifetime most likely was largely the result of an increase in Nt, 

while a small upward shift of the conduction band edge could have delivered an addi-

                                                 

XIX Charge extraction measurements using the red or cyan LED are comparable provided that the trap 

distribution did not vary significantly along the thickness of the porous film, which is expected based 

on the homogeneous nanostructure of the electrodeposited porous ZnO films and the constant current 

density measured over the course of the film deposition (cf. chapter 4). 
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tional contribution. The combined effect of changes in the recombination-related pa-

rameters must have been an increase of Voc by about 25 mV, since the decrease of Jsc 

from 9.79 to 7.35 mAcm-2 should, according to eq. (75), have entailed a decrease of Voc 

by 17 mV, while the actual open-circuit voltage showed a minor increase by 8 mV be-

tween the day of preparation and the measurement after 3 weeks. 

For the DSCs sensitized with D149 and/or sulfonated Zn phthalocyanine, J-V curves 

were repeatedly measured over the course of 1 – 2 weeks, see Figure 95. As discussed 

in the previous section, the current-voltage characteristics of these cells showed signifi-

cant changes when measured repeatedly over 5 – 20 minutes under continuous illumina-

tion. These short-term changes were observed each time the cells were characterized 

during the 1 – 2 weeks, indicating that the partial desorption of (aggregated) dye mole-

cules discussed in the previous section was reversible and the initial condition of the 

semiconductor/dye interface was restored when the cells were stored in the dark. The 

curves displayed here all represented the state of saturation achieved under illumination 

on a particular day.  
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Figure 95: Saturation J-V curves of DSCs sensitized with D149 and/or S1.15PcZn meas-

ured at different times between 7 and 12 days after the day of preparation (07/10/13), 

as specified by the dates given in the plots.  

The current-voltage characteristics of this group of DSCs showed a variety of time de-

pendences. For the cell with the shorter adsorption time of 2 h, sensitized with both dyes 

in the presence of CA, the Jsc decreased from 3.2 to 2.4 mAcm-2, the fill factor de-

creased from 0.62 to 0.56, and the open-circuit voltage stayed constant. The two cells 

with either D149 or S1.15PcZn as individual sensitizer presented relatively stable cur-

rent-voltage characteristics over about a week. The measurement performed for the 

sample with D149/CA after a week (07/19/2013) showed a somewhat decreased Jsc and 

FF, which suggests a beginning decay of the performance, albeit much less pronounced 

than in the case of the co-sensitized cell with 2 h adsorption time. It is conceivable that 

the large dye loading in the cell D149/CA resulted in a relatively high local concentra-

tion of dye molecules in the electrolyte in the pores due to desorption. This could have 

prevented the photocurrent from decreasing due to excessive desorption of efficiently 

injecting non-aggregated dyes. The DSC containing only the phthalocyanine contained 
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a small amount of dye, so that the present results indicate that the dye layer did not un-

dergo significant changes within the first week after cell preparation. The co-sensitized 

sample fabricated with an adsorption time of 17.5 h exhibited an improvement of all 

photovoltaic parameters over the 12 days it was monitored. The development of the 

saturation J-V curves of this cell (cf. Figure 90) is consistent with the changes found for 

D149/CA cells with varied dye loadings and, hence, also possibly reflects a beneficial 

rearrangement of the dye molecules over a longer period of time. For 

D149/S1.15PcZn/CA (17.5 h), the improvement occurring over ~1 week was superim-

posed onto a short-term improvement observed on each day of measurement (Figure 

90). This indicates that two different processes may be responsible for the short-term 

and long-term improvement, respectively. One possibility is that in addition to the de-

sorption/aggregate-dissolving processes indicated above, D149 molecules may over 

time replace phthalocyanine molecules on the surface, which should lead to an im-

provement of the photovoltaic properties.   

9.3 Summary and Conclusions for This Chapter 

The different sets of cells analyzed in this work showed largely similar, reversible short-

term (< 30 minutes) developments of their current-voltage characteristics under contin-

ued AM1.5G-type illumination, characterized by a decrease of Voc by typically 20 – 50 

mV that was, at least in part, attributed to an increase of the cell temperature to ca 50°C. 

In most cases, the decrease of Voc was accompanied by slight changes in Jsc thought to 

be mainly caused by a partial desorption of adsorbed dye molecules. Much more signif-

icant short-term changes were observed for cells fabricated with a very long adsorption 

time of 17.5 h (D149/CA and D149/S1.15PcZn/CA): strong aggregation in the dye layer 

here led to a very limited initial photovoltaic performance, but Jsc, Voc, and FF displayed 

a remarkable reversible increase under continuous illumination for ~20 minutes, indicat-

ing a beneficial break-up/desorption of dye aggregates.    

The long-term development of the photovoltaic characteristics was monitored over sev-

eral weeks for cells with varied amounts of D149 without CA and for the co-

sensitization series with D149 and/or S1.15PcZn, and over 4.5 months for cells with var-

ied amounts of D149 with cholic acid. For D149/CA with varied dye loading, the short-

circuit photocurrent density first increased, indicating beneficial changes in the dye lay-
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er such as a reduction of the number of aggregated inefficient sensitizers, before it de-

creased for all samples over several months to arrive at values clearly below the initial 

Jsc, suggesting a long-term decrease of the amount of efficiently injecting dye molecules 

on the ZnO surface by desorption or degradation. The open-circuit photovoltage showed 

a substantial increase over the monitoring period of 4.5 months, which pointed towards 

an upward shift of the conduction band edge. For DSCs with varied amounts of D149 

without coadsorbate, a repeated J-V characterization performed 3 – 4 weeks after cell 

preparation showed a pronounced decay of the short-circuit photocurrents and fill fac-

tors, which was largely comparable to the findings for D149/CA cells if one neglects the 

initial Jsc improvements for the latter. The open-circuit voltages of the D149 cells with-

out CA retained their initial values or were slightly increased. Intensity-modulated pho-

tovoltage spectroscopy and charge extraction measurements on the day of preparation 

and after 3 weeks indicated a constant distribution of trap states and an increase of the 

total trap density after 3 weeks, and were compatible with a slight upward shift of the 

conduction band edge that may explain the fact that Voc remained constant in spite of the 

decrease of Jsc. For the cells sensitized with D149 and/or S1.15PcZn, the development of 

the J-V characteristics over the course of 1 – 2 weeks varied between the samples with 

different sensitizers or sensitizer combinations, ranging from a decay of Jsc and FF 

(D149/S1.15PcZn/CA with 2 h adsorption time) to largely stable performance (D149/CA 

and S1.15PcZn/CA with 17.5 h adsorption time) to a pronounced improvement 

(D149/S1.15PcZn/CA with 17.5 h adsorption time). These results underlined that chang-

es in the dye/coadsorbate layer (such as dye desorption or the break-up of aggregates), 

which were proposed to have contributed to variations in the photovoltaic performance 

of all cells, depend on detailed conditions of the photosensitization, such as dye adsorp-

tion times and choice of dye combinations, and the dyes’ tendency for aggregation un-

der these conditions.    
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10 Final Conclusions and Outlook 

In this work, several aspects of the operation of dye-sensitized solar cells based on elec-

trodeposited porous ZnO were investigated. Starting from standard cells using the or-

ganic indoline dye D149 as photosensitizer, the role of the dye layer at the interface 

between ZnO and a liquid I-/I3
- electrolyte in limiting the performance was examined by 

studying the effects of deliberate modifications to this interface. These included varia-

tion of the D149 loading, use of coadsorbates, and co-sensitization with red-absorbing 

dyes. 

With standard cells based on electrodeposited ZnO sensitized with D149 in the presence 

of cholic acid for 2 h, maximum short-circuit photocurrents of 11 mAcm-2, open-circuit 

photovoltages of -0.63 V, fill factors of 0.57 and power conversion efficiencies of about 

4% were achieved. This compares to Jsc = 18.5 mAcm-2, Voc = -0.69 V, FF = 0.62, and η 

= 8% reported for TiO2-based cells with D149/CA.202 Optical and photoelectrochemical 

characterization of the present cells based on electrodeposited ZnO indicated that Jsc 

was limited by the spectrally integrated light-harvesting efficiency ηlh and by the com-

bined electron injection and dye regeneration efficiency. The charge-collection efficien-

cy ηcc under short-circuit conditions, on the other hand, approached 100% and therefore 

did not affect Jsc. The optical absorption of the optimized D149/CA samples (Figure 

37) compared favorably with that of TiO2-based cells with D149/CA (Figure 2 in ref. 

202), thus excluding ηlh as possible origin of the different currents. Since the regeneration 

efficiency is generally determined by the properties of dye and electrolyte rather than 

the semiconductor,100, 102 it is concluded that the smaller short-circuit photocurrent den-

sity of the ZnO/D149 solar cells is the consequence of a lower electron injection effi-

ciency compared to TiO2/D149 cells. This finding is in agreement with recent results of 

a laser spectroscopic study,311 which indicated that efficient charge separation in 

ZnO/D149 cells was hindered by stronger interactions between injected electrons and 

dye cations compared to TiO2. On the basis of the β-recombination model (eq. (75) with 

β = 0.42 estimated to be equal for both types of cells), the lowered rate of electron injec-

tion in the present ZnO/D149 cells (Jsc of 11 mAcm-2 vs. 18.5 mAcm-2 on TiO2) ex-

plains approximately half (30 mV) of the observed loss in Voc. Given that the reference 

cell based on TiO2 contained the electrolyte additive tert-butylpyridine to cause an up-
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ward shift of the TiO2 conduction band edge,202, 312 the additional voltage loss by about 

30 mV is explained by a relative downward shift of the semiconductor conduction band 

edge (cf. eq. (34)) in the present cells without additive. Note that the addition of tert-

butylpyridine to the electrolyte compromises the long-term stability of D149-sensitized 

DSCs both based on TiO2 or ZnO,170, 171 so that it does not present a technologically 

feasible pathway to improve the voltage in such cells. Finally, the observed total de-

crease of Voc by 60 mV explains, according to the β-recombination model (eq. (35) with 

β = 0.42), a decrease of the fill factor by 0.02. The additional loss of 0.03 must have 

resulted from a higher series resistance in the present cells, most likely as a result of 

using a higher-viscosity electrolyte containing ethylene carbonate as opposed to an elec-

trolyte based on low-viscosity 3-methoxypropionitrile.202, 313 Consequently, future work 

on this type of DSCs should include an optimization of the electrolyte with respect to 

the series resistance. The importance of coadsorbing cholic acid in cells containing the 

high amounts of D149 required for sufficient light harvesting was clearly confirmed in 

the present work by a significant improvement of the fill factor compared to cells with-

out CA. Electrochemical impedance spectroscopy demonstrated that the reduced fill 

factor in cells with aggregated D149 was caused by an increased rate of recombination 

in the range of lower bias voltages. In cells based on electrodeposited ZnO using the 

squaraine sensitizer SQ2 (see below), an even stronger influence of (oxidized) aggre-

gates on recombination at low voltages was reflected in a pronounced local minimum of 

the EIS-derived recombination resistance that was removed when cholic acid was coad-

sorbed with SQ2. An increase in the rate of recombination in a limited voltage range 

generally can be due to an increase in the density of states in the semiconductor or in an 

increase in the density of acceptor states,86 which are either unoccupied states in the 

redox electrolyte or unoccupied states in oxidized dye molecules. For the DSCs with 

SQ2, the minimum in the recombination resistance was accompanied by a local maxi-

mum of the chemical capacitance Cµ from impedance spectroscopy, corresponding to an 

increased density of states (cf. eq. (44)). In the case of samples with D149, on the other 

hand, no such increase of Cµ was detected. Although Cµ is usually thought of as reflect-

ing only the density of states in the semiconductor,114 it can be expected that the elec-

tronic states of adsorbed dye molecules will contribute to the measured chemical capaci-

tance.294 Therefore, it can generally not be concluded whether an increase of Cµ, as 

measured at low voltages on ZnO films with strongly aggregated SQ2, is caused by an 
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increase of the trap density in the semiconductor due to adsorption of dye molecules or 

reflects electronic states in dye molecules themselves. (The same is true for the density 

of states of dye-sensitized semiconductors measured by alternative methods, such as 

photoelectron spectroscopy.)70 In consequence, no final conclusion can be drawn as to 

whether the increased recombination in SQ2 cells was the result of an increased density 

of semiconductor trap states able to donate electrons or whether it was due to an in-

creased concentration of oxidized SQ2 molecules acting as electron acceptors. Howev-

er, based on the fact that the recombination reactions associated with this additional 

density of states in SQ2 cells only occurred under illumination and that energetic posi-

tion of the increased density of states at 0.3 eV above Eredox was consistent with the 

Fermi level E0(S/S+) of the oxidation potential of ground-state SQ2, the second possibil-

ity appears more likely. For D149-sensitized cells, the question arises why the aggre-

gate-related increase in recombination was not accompanied by corresponding changes 

in the density of states (i.e., in Cµ). One possible explanation could be that aggregates of 

D149 offer more favorable binding sites for acceptors in the electrolyte (I3
- or I2)

151 than 

monomeric D149, thus increasing the concentration of acceptors near the surface rather 

than changing the density of donor states in ZnO or the density of oxidized dye mole-

cules participating in recombination. On the other hand, such a mechanism is normally 

not expected to affect the energy-dependence of the rate of recombination but rather to 

enhance recombination independent of the applied voltage.151 To further clarify this 

question, experiments on ZnO/D149 cells with varied degree of D149 aggregation could 

be performed using a different test redox shuttle such as ferrocene/ferrocenium.314 Fur-

thermore, it could be useful to compare recombination measurements (EIS, J-V curves) 

in the dark and under illumination, as was realized for the cells with SQ2. 

Since D149 shows a relatively narrow absorption range (~350 – 650 nm) compared to 

top-efficiency ruthenium(II) polypyridyl19, 29, 45-47 or donor-π-acceptor porphyrin15, 34 

sensitizers (which are both not suitable for ZnO),167, 168, 315 there is room to improve the 

integrated light harvesting efficiency with respect to cells with D149/CA. While it is 

very important to continue the search for broad-wavelength absorbers suitable for ZnO, 

co-sensitization with multiple dyes with narrower absorption spectra is an attractive 

alternative approach that allows for facile extension of the absorption without the need 

to develop new synthesis strategies to achieve compatible broad-wavelength sensitiz-

ers.34, 222-227  In the present thesis, the optical absorption of dye-sensitized ZnO films 
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was successfully extended into the longer-wavelength range (up to ~ 700 – 720 nm) of 

the solar spectrum by sequential co-sensitization of ZnO with the squaraine dye SQ2 

and (in the second step) with D149. Additional light harvesting around 450 nm, where 

D149 shows a minimum in its absorbance, was achieved when D149 was adsorbed from 

a dye cocktail together with the indoline dye D131. Coadsorbing cholic acid and/or oc-

tanoic acid was found to be crucial to achieve functioning co-sensitized cells with in-

creased (factor of 1.5) Jsc values with respect to a D149/CA reference, because the pres-

ence of SQ2 otherwise prevented efficient photocurrent generation in the absorption 

range of the indoline dyes. This phenomenon may be explained by energy transfer from 

D149 and D131 to SQ2, which showed poor photosensitizing properties on ZnO (η < 

1% as individual sensitizer). Förster resonance energy transfer (FRET) between dyes 

has been studied in the context of energy relay dyes added to the electrolyte of DSCs to 

transfer absorbed energy to efficiently operating red-absorbing acceptor dyes attached to 

the semiconductor (an alternative approach to extending the spectral absorption range of 

DSCs).316-318 Efficient FRET in such systems requires a large fluorescence decay rate 

(short fluorescence lifetime) of the energy relay dye, a large overlap of the absorbance 

spectrum of the acceptor dye with the fluorescence spectrum of the energy relay dye, 

and close proximity of the two dyes of not more than a few nanometers.316, 317 The fluo-

rescence peak of D149 (in ethanol) is centered at a wavelength of about 650 nm and 

extends from about 550 to about 750 nm,213 indicating a large overlap with the absorp-

tion spectrum of SQ2, which showed its peak around 650 nm (extending from at least 

550 nm to at least 700 nm, cf. Figure 49 and Figure 50). Moreover, the fluorescence 

lifetime of D149 was reported to be around 3.2 ns (D131: 5.0 ns),213 which is very close 

to the lifetime given for an efficient energy relay dye by Hardin et al..316 For fluores-

cence lifetimes in this range and for close proximity of donor (energy relay dye) and 

acceptor molecules, FRET rates are the picosecond range,316 so that energy transfer 

competes with electron injection from the donor to the semiconductor. Thus, it is feasi-

ble that, in the presence of SQ2 (without coadsorbates), D149 and/or D131 may have 

transferred their excitation to SQ2 instead of injecting efficiently into ZnO. This is fur-

ther supported by the fact that highly efficient energy transfer has been reported from 4-

dicyanomethylene-2-methyl-6-p-dimethylamino-styryl-4H-pyran (DCM) as energy-

relay dye to TiO2-bound SQ1, a squaraine dye with a molecular structure very similar to 

SQ2.317 The use of coadsorbates might have reduced the probability of energy transfer 
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simply by increasing the distance between the dye molecules. From a thermodynamic 

point of view, the higher position of the LUMO in the indoline dyes compared to SQ2 

(see Figure 96) would also allow for transfer of holes from SQ2 to the indoline dyes. 

Hole transfer from near-infrared absorbing (NIR) dyes to other dyes in their proximity 

has, in fact, been reported in the context of DSCs with energy relay dyes as well, and 

was shown to decrease the quantum efficiency of the NIR dye.316 Hence, intermolecular 

hole transfer from SQ2 to D131 or D149 might have constituted an additional loss pro-

cess in the present co-sensitized cells without coadsorbates. However, as the time con-

stant of intermolecular charge transfer should be in the range of µs,316 this process alone 

cannot explain why D149 and D131 showed drastically reduced electron injection effi-

ciencies in the presence of SQ2.      

 

Figure 96: Scheme of the positions of highest occupied molecular orbitals (HOMOs) 

and lowest unoccupied molecular orbitals (LUMOs) of SQ2 (blue), D131 (yellow), and 

D149 (pink) based on literature values, all determined by electrochemical measure-

ments. The redox level of the electrolyte (electrochemically measured) and the conduc-

tion band edge in ZnO (computed) are shown for comparison.  

Even when undesired dye/dye interactions were suppressed by using coadsorbates, the 

overall efficiency of the co-sensitized ZnO-based DSCs remained below that achieved 

with D149/CA due to losses in Voc and FF. These losses resulted from a pronounced 

downward shift of the ZnO conduction band edge (relative to D149/CA cells) as well as 

from the presence of additional recombination paths formed by oxidized aggregates of 

SQ2. Using the sulfonated Zn phthalocyanine S1.15PcZn as co-sensitizer with D149/CA 
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(adsorption from dye cocktail), similarly poor results were obtained, with S1.15PcZn 

showing poor injection into ZnO and hindering efficient photocurrent generation by 

D149 even in the presence of a coadsorbate. On the basis of the present results on SQ2 

and S1.15PcZn, the following possible approaches for future co-sensitization studies aim-

ing at obtaining electrodeposited ZnO-based DSCs with increased light harvesting effi-

ciency are suggested.  

(1) Alternative red-absorbing sensitizers with optimized properties for application on 

electrodeposited ZnO should be selected or synthesized and subsequently studied in 

cells. These dyes should neither cause the ZnO conduction band edge to be shifted 

downwards relative to D149/CA-sensitized ZnO nor form significant amounts of aggre-

gates that enhance recombination. Based on theoretical work by De Angelis et al.,67 a 

relatively high position of the conduction band edge is achieved for dyes that adsorb to 

the semiconductor (in their case, TiO2) in the bridged bidentate mode, i.e., with both 

oxygen atoms of the carboxylic acid anchoring group forming bonds to surface metal 

atoms. Furthermore, a strong upward shift of the conduction band edge is promoted by 

choice of organic donor-π-acceptor dyes with strong donor groups (pronounced electron 

density shift towards the anchoring group and the semiconductor). The adsorption mode 

of a dye on ZnO is difficult to predict based on the molecular structure but rather re-

quires theoretical calculations or experimental studies such as attenuated total reflec-

tance Fourier transform infrared spectroscopy (ATR-FTIR) or Raman spectroscopy.281, 

296, 297 The strength of different donor groups, on the other hand, is well known based on 

a large number of dyes investigated in experimental studies (see, for example, reviews 

in ref. 51, 80, and 38). Efficient donor groups include triphenylamine, indoline (cf. D149 

and D131), and carbazole.80 Unfortunately, the thus-far reported dyes containing these 

donors generally do not efficiently absorb light in the red and near-infrared part of the 

spectrum.80 An key step towards more efficient red-absorbing sensitizers for ZnO would 

therefore be to find new synthesis strategies to combine near-IR-absorbing dye skele-

tons, such as squaraines or phthalocyanines, with strong donor groups. The use of sensi-

tizers with inherently low tendency of aggregation, such as dyes with bulky side groups 

like tert-butyl groups,222 may contribute to preventing aggregation and the formation of 

undesired additional recombination paths. Introduction of bulky side groups in the co-

sensitizer may also present an alternative approach to preventing undesired energy 

transfer between dyes by increasing the distance between their π-electron systems. 
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However, if D149 is used as the main sensitizer, coadsorption of cholic acid will likely 

still be required to prevent a decrease of the fill factor. The good suitability of D131 as 

co-sensitizer for D149, which has already been reported before,31 was confirmed in the 

present experiments, which underlines that D131 should be included as a third absorber 

in further co-sensitization studies on electrodeposited ZnO that involve D149. 

(2) An investigation of ZnO-based DSCs with multiple spatially separated sensitizers 

could be worthwhile, as it would allow the complementary absorption spectra of multi-

ple dyes to be exploited while avoiding negative dye/dye interactions. For example, a 

tandem-like DSC structure in which two different dyes are employed in two cell com-

partments (each containing a dye-sensitized photoelectrode, electrolyte, and counter 

electrode) and externally connected in parallel has been proposed by Dürr et al..319 The 

tandem cell showed a broad absorption over the range 300 – 800 nm and produced a 

high total Jsc of ca. 20 mAcm-2 (sum of the current produced by the two compartments). 

The parallel connection of the two subcells in such a structure implies that the total 

voltage should adjust to that of the lower-voltage compartment. Therefore, the feasibil-

ity of this approach for combining D149/CA or other shorter-wavelength absorbers with 

a red-absorbing sensitizer on electrodeposited ZnO will only be given once a red ab-

sorber is found that produces significantly higher Voc values on ZnO than SQ2 (with 

CA: -0.46 V) or S1.15PcZn (with CA: -0.39 V). Assuming that one of the optimized 

D149/CA cells of this work was combined with a ZnO-based red-absorbing cell that 

yielded the same Voc and FF (-0.63 V and 0.57) as D149/CA and produced a conserva-

tive photocurrent of 6 mAcm-2, a tandem cell would be expected to achieve Jsc = 17 

mAcm-2, Voc = -0.63 V, FF = 0.57 and a power conversion efficiency of 6.1%. An alter-

native structure in which two dyes are combined in a spatially separated fashion is a 

double dye-layer structure as introduced by Noma et al..320 In this approach, two sensi-

tizers with different absorption spectra (the Ru(II) dye Z907 and the coumarin sensitizer 

NK3705) were combined in two layers of one porous semiconductor film to achieve co-

sensitization while avoiding undesired dye/dye interactions. In the case of Z907 and 

NK3705, the layered structure formed automatically when the films were dipped in a 

dye cocktail solution over a period of several days as a result of the differing molecule 

sizes and adsorption strengths on TiO2. Perhaps this strategy could be transferred to 

electrodeposited ZnO using D149 (with CA) as smaller, fast-adsorbing dye together 

with a very bulky long-wavelength absorber, such as a metal phthalocyanine chosen 
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according to the criteria further above. For sensitization processes that require adsorp-

tion times as long as several days, however, it must be ensured that no undesired disso-

lution of the ZnO surface by the dye solution160, 167 occurs. To avoid photovoltaic losses 

compared to cells with D149/CA due to a reduced amount of D149, the film thickness 

could be slightly increased to allow producing a sample with a D149/CA-sensitized lay-

er of identical thickness as in the best cells in this work (4 – 5 µm) plus a thin additional 

layer containing only the red-absorbing dye. Electrodeposition studies have shown that 

the film thickness of electrodeposited ZnO can be increased up to about 8 µm.321 The 

charge collection efficiency analysis in the present work showed that the effective diffu-

sion length at short circuit for indoline dye-sensitized cells with coadsorbates was 4 – 5 

times the film thickness. (The lower limit for complete collection is 3 times the film 

thickness).87 Thus, a slight increase of the film thickness should be possible without 

collection losses.  

Even though there is evidence that the use of porous ZnO photoelectrodes in DSCs may 

generally not allow to attain short-circuit photocurrent densities as high as those yielded 

with TiO2, ZnO films offer an important technological advantage over TiO2 electrodes: 

They can be fabricated with good electron transport properties (complete charge collec-

tion) at low temperatures (100 – 150°C).28 For nanoparticulate TiO2 films, on the other 

hand, lowering the sintering temperature from the commonly used 450 – 500°C19, 86 

down to 100°C decreases the power conversion efficiency to values as low as < 0.5%,20 

which is clearly inferior to the performance achieved with electrodeposited ZnO (η = 

4% in the present work, η up to 5.6% in the literature25). Preparation at low tempera-

tures is an essential requirement for the production of solar cells on temperature-

sensitive flexible substrates such as plastic foil or textiles, which in turn is crucial to 

lower the costs of production (roll-to-roll fabrication) and transport23 and, furthermore, 

is relevant for emerging specialized applications such as textile-based or textile-

compatible photovoltaics.41, 322 The screen printed dye-sensitized nanoparticulate ZnO 

films investigated for comparative purposes in this thesis were fabricated at low temper-

atures (up to 80°C) as well. However, compared to the optimized cells based on electro-

deposited ZnO with D149/CA, their performance remained inferior (for D149/CA on 

np-ZnO, Jsc = 10 mAcm-2, Voc = -0.60 V, FF = 0.61, and η = 3.6%). In conclusion, fur-

ther work aiming at an improvement of DSCs based on electrodeposited ZnO is clearly 

desirable and relevant from a technological point of view.  
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Appendix A: Full List of Samples  

Table 30: Samples studied in this work, with ZnO film code, date of film preparation, 

film thickness d, dyes and coadsorbates with adsorption time, date of sensitization, and 

date of first characterization of the corresponding solar cell. The final step of cell as-

sembly of inserting the electrolyte took place on the day of their first characterization, 

except for the cells D149/CA of chapter 5 (built complete with electrolyte on 11/14/11). 

film code 

(deposition 

batch-film 

number) 

film     

preparation 

(mm/dd/yy) 

d 

/µm 

dye(s),              

coadsorbate(s)                

(adsorption time) 

sensitization 

(mm/dd/yy) 

1st cell          

characterization 

(mm/dd/yy) 

Series D149 with CA and D149 without CA, chapter 5 

03/11/11-1-1 11/03/11 4.1 D149/CA (1 min) 11/13/11 11/15/11 

02/11/11-1-1 11/02/11 4.3 D149/CA (1 min) 11/13/11 11/16/11 

02/11/11-2-6 11/02/11 4.1 D149/CA (1 min) 11/13/11 11/16/11 

03/11/11-1-7 11/03/11 4.1 D149/CA (2 min) 11/13/11 11/15/11 

02/11/11-1-5 11/02/11 4.4 D149/CA (2 min) 11/13/11 11/17/11 

02/11/11-2-7 11/02/11 4.2 D149/CA (2 min) 11/13/11 11/16/11 

03/11/11-1-5 11/03/11 4.3 D149/CA (10 min) 11/13/11 cell broken 

02/11/11-1-8 11/02/11 4.1 D149/CA (10 min) 11/13/11 11/15/11 

02/11/11-2-8 11/02/11 4.1 D149/CA (10 min) 11/13/11 11/15/11 

03/11/11-1-3 11/03/11 4.1 D149/CA (2 h) 11/13/11 cell broken 

03/11/11-1-6 11/03/11 4.1 D149/CA (2 h) 11/13/11 11/16/11 

03/11/11-1-8 11/03/11 4.3 D149/CA (2 h) 11/13/11 11/14/11 

4-02 12/02/11 4.3 D149 (1 min) 04/18/12 04/23/12 

4-05 12/02/11 4.3 D149 (1 min) 04/18/12 04/24/12 

6-05 12/09/11 4.2 D149 (1 min) 02/26/12 03/03/12 

6-06 12/09/11 4.2 D149 (2 min) 02/26/12 03/03/12 

6-02 12/09/11 4.2 D149 (2 min) 02/26/12 02/29/12 

2-06 12/02/11 4.3 D149 (2 min) 02/26/12 03/02/12 

2-07 12/02/11 4.2 D149 (10 min) 02/26/12 03/01/12 

6-03 11/03/11 4.3 D149 (10 min) 02/26/12 03/02/12 

6-07 12/09/11 4.3 D149 (10 min) 02/26/12 03/03/12 

6-08 12/09/11 4.3 D149 (2 h) 02/26/12 03/01/12 

6-04 12/09/11 4.2 D149 (2 h) 02/26/12 03/02/12 

2-08 12/02/11 4.2 D149 (2 h) 02/26/12 03/03/12 



Appendix A: Full List of Samples 244 

 

 

Series D149+D131+SQ2, chapter 6  

(adsorption times: see Table 6) 

3-04 12/02/11 4.1 D149/CA 09/30/13 10/02/13 

4-01 12/02/11 4.6 D149/D131/OA 09/30/13 10/04/13 

4-03 12/02/11 4.3 SQ2/CA+D149/CA 10/01/13 10/03/13 

4-07 12/02/11 4.5 
SQ2/CA+ 

D149/D131/OA 
10/01/13 10/06/13 

4-08 12/02/11 4.4 SQ2/CA 09/30/13 10/22/13 

7-01 12/09/11 4.2 D149 08/28/13 09/03/13 

7-02 12/09/11 4.3 D131 08/28/13 09/18/13 

7-03 12/09/11 4.2 D149/D131 08/28/13 09/04/13 

7-04 12/09/11 4.2 SQ2 08/28/13 09/11/13 

7-06 12/09/11 4.3 SQ2+D149/D131 08/30/13 09/07/13 

7-07 12/09/11 4.2 SQ2+D149 08/29/13 09/06/13 

Series np-ZnO+D149+D131+SQ2, chapter 7 

(adsorption times: see Table 7) 

NP-01 08/07/13 10 SQ2 11/06/13 11/12/13 

NP-02 08/07/13 10 SQ2+D149 11/07/13 11/13/13 

NP-04 08/07/13 10 SQ2/CA 11/06/13 11/14/13 

NP-05 08/07/13 10 SQ2/CA+D149/CA 11/07/13 11/15/13 

NP-06 08/07/13 10 
SQ2/CA+ 

D149/D131/OA 
11/07/13 11/16/13 

NP-07 08/07/13 10 
SQ2/CA+D131/OA

+D149/D131/OA 
11/07/13 11/17/13 

NP-08 08/07/13 10 D149 11/06/13 11/18/13 

NP-09 08/07/13 10 D149/CA 11/06/13 11/19/13 

NP-11 08/07/13 10 D149/D131 11/06/13 11/20/13 

NP-12 08/07/13 10 D149/D131/OA 11/06/13 11/21/13 

NP-13 08/07/13 10 SQ2+D149/D131 11/11/13 11/22/13 

NP-15 08/07/13 10 D131/OA 11/07/13 11/23/13 

Series D149+S1.15PcZn, chapter 8 

5-02 12/02/11 4.5 
D149/S1.15PcZn/CA 

(2 h) 
07/05/13 

J-V, IPCE: 

07/10/13 

rest: 07/19/13 

5-05 12/02/11 4.7 
D149/S1.15PcZn/CA 

(17.5 h) 
07/09/13 

J-V, IPCE: 

07/10/13 

rest: 07/22/13 

5-06 12/02/11 4.5 
S1.15PcZn/CA 

(17.5 h) 
07/09/13 

J-V, IPCE: 

07/10/13 

rest: 07/17/13 

5-07 12/02/11 4.6 
D149/CA  

(17.5 h) 
07/09/13 

J-V, IPCE: 

07/10/13 

rest: 07/18/13 
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Appendix B: Customized Zahner CIMPS Measurement 

Setup 

Most of the photovoltaic and photoelectrochemical characterizations discussed in this 

thesis were performed using a ZAHNER-elektrik CIMPS (controlled intensity-

modulated photocurrent and photovoltage spectroscopy) system (see Figure 97) con-

sisting of IM6 workstation, PP211 slave potentiostat, optical bench, LED housing, vari-

ous LEDs, light sensor (Si photodiode) and sensor holder, sample holder base, the add-

ons CIMPS-pcs and for IPCE measurements (see Appendix C) and CIMPS-fit for the 

recording of fast photocurrent or photovoltage transients with time resolution down to 

the ns range, as well as the software Thales with CIMPS, CIMPS-pcs, and CIMPS-fit 

extensions. The IM6 main potentiostat is responsible for controlling and measuring cell 

currents and voltages, while the additional PP211 slave potentiostat drives the light 

source (Zahner LED) and regulates the light intensity incident on the solar cell. This 

occurs via in-situ measurement of the light intensity by a photodetector positioned in the 

vicinity of the sample and controlling the light intensity by comparison of the set value 

with the actual value via a feedback loop, cf. arrows in Figure 97. 

 

Figure 97: Scheme showing the basic components and principle of the Zahner CIMPS 

measurement setup used to characterize the DSCs in this work.  
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The light sensor is delivered with calibration data for each of the light sources, allowing 

the system to automatically determine the actual light intensity at the location of the 

sample center based on a geometric calibration factor and the intensity measured at a 

defined location in the vicinity of the sample. For an accurate knowledge of the light 

intensity incident on the cell it is, therefore, important to position the sensor exactly as 

instructed in the CIMPS manual and to choose the correct calibration file via the Thales 

software. The actual light intensity determined by the system is recorded in most meas-

urements and automatically used by the Thales software in the determination of solar 

cell parameters that depend on the light intensity, such as the IMPS and IMVS transfer 

functions (cf. chapter 1.4.5) and the IPCE. 

The spectral intensity distributions of the three Zahner light sources used in this work 

are shown in Figure 98. RTR01 and CYR01 are a red and cyan LED with narrow Gauss 

type intensity distributions and peak intensities at the wavelengths λmax = 632 nm and 

λmax = 513 nm. TLS02 is a tunable light source used (exclusively) for IPCE measure-

ments that consists of multiple LEDs and a Zahner monochromator, see Appendix C. 

The spectrum shown in Figure 98 (right) is a plot of the maxima of the Gauss-shaped 

intensity distributions that the TLS02 outputs at different set wavelengths.  

    

Figure 98: Spectral intensity distribution of the three Zahner light sources used in the 

present work. 

The Zahner CIMPS system (as-delivered) does not include a dark box to exclude ambi-

ent light during the measurements and, furthermore, does not allow for solar cell charac-

terization under realistic AM1.5G illumination conditions. Therefore, the system was 

extended and customized as part of this PhD work, see Figure 99. 
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Figure 99: Photograph of the custom-built combination of Zahner CIMPS setup (poten-

tiostats not shown) with LOT Oriel LS0106 solar simulator and dark box. The green 

and light yellow arrows indicate the light paths of the Zahner LED and the external 

solar simulator.  

In this customized setup, an LOT Oriel solar simulator LS0106 with AM1.5G filter 

LSZ189 is integrated with the Zahner system. The Zahner optical bench is fixed on the 

bottom of a dark box custom-built by the mechanics workshop of the Institute of Ap-

plied Physics. Zahner LED housing (or TLS02 light source with monochromator) as 

well as sample holder base are positioned at a variable distance to each other on the op-

tical bench. The cell is fixed on a black sample holder (on the plane perpendicular to the 

light path), also custom-built by the workshop, and the latter is fastened to the Zahner 

sample holder base. Two openings in the side walls of the dark box (which can be 

closed by manual shutters) allow to shine the light of the solar simulator into the dark 

box and to insert samples without having to open the screw-fixed main lid of the box. 

To set the solar simulator intensity incident on the cell to 100 mWcm-2, the correct posi-

tion of the sample holder base is determined via a light intensity measurement with a 

LS0106 
solar simulator  

Zahner 
LED 

sample  
holder 

+ sample  

dark box  
calibrated Zahner  

light sensor  

optical bench  
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pyranometer (EKO Instruments ML-020VM), fixed on a custom-built holder that re-

places the sample holder during this calibration. When the sample holder is positioned 

with the sample facing the solar simulator, the thus-customized measurement system 

allows performing current-voltage characterization as well as electrochemical imped-

ance spectroscopy (EIS) under AM1.5G conditions using the IM6 potentiostat and 

software of the CIMPS system. To use the additional LED-based characterization meth-

ods offered by the CIMPS setup (intensity- and time-dependent photocurrent and pho-

tovoltage measurements, IMPS and IMVS, EIS under varied illumination intensities, 

and charge extraction), the sample holder simply needs to be rotated by 180°C to face 

the LED.     
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Appendix C: Comparison of Two Setups Used to 

Measure the IPCE 

The characterization of the external quantum efficiency (IPCE) was performed using 

two different measurements setups, referred to as Acton/Ivium system and Zahner sys-

tem (Zahner CIMPS with CIMPS-pcs add-on), see Table 31.  

Table 31: Comparison of setups for the measurement of the IPCE 

 Zahner setup Acton/Ivium setup 

light source 

Zahner TLS02 

(combination of LEDs and 

Zahner monochromator) 

Oriel 1000 W Xe arc lamp 

combined with Acton Spec-

traPro 2300i monochromator 

size and homogeneity 

of light beam 

circular area with diameter 

of about 4 cm, homogene-

ous to the eye  

rectangular area of ≤ 1 cm2, 

less intense in peripheral areas 

compared to central area 

type of light signal 

sinusoidal signal (ν = 1 Hz, 

amplitude = 1/3 of back-

ground signal) superim-

posed on constant back-

ground signal 

illumination constant over time 

photon flux density 

(order of magnitude) 
~1014 cm-2s-1 ~1015 - 1016 cm-2s-1 

wavelength range 430 – 730 nm 350 – 1100 nm 

wavelength  

increment 
5 nm 10 nm 

light intensity  

measurement 

Zahner-integrated Si photo-

diode, intensity measured 

during IPCE measurement 

in peripheral position in 

light beam while sample is 

positioned in center of light 

beam; system calculates 

intensity at position of sam-

ple using geometric factor  

Thorlabs FDS-100 Si photodi-

ode, light intensity measured 

before IPCE measurement at 

position of active cell area; 

position of sensor in x-y plane 

(perpendicular to light beam) 

well defined, position of cell in 

x-y plane less well defined 

(adjusted manually) 
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The spectral intensity distribution of the light source/monochromator combination of the 

Acton/Ivium system is shown in Figure 100 (left)) and the spectrum of the Zahner 

TLS02 tunable light source was presented in Appendix B (Figure 98). As neither the 

Acton/Ivium setup nor the Zahner setup kept the photon flux density constant for each 

wavelength, the measurements relied on the IPCE being independent of the photon flux, 

which was confirmed at a wavelength of 632 nm (Zahner LED RTR01) for all cells by 

the linearity of the intensity-dependent short-circuit photocurrent density in the range of 

photon fluxes used for the IPCE measurements (see example in Figure 100 (right)).  

  

Figure 100: Spectral photon flux output of the combination of Xe arc lamp and Acton 

monochromator at the position of the specimen (left) and photon flux-dependent short-

circuit photocurrent density of the differently sensitized DSCs based on electrodeposited 

ZnO of chapter 6 (right).  

The Zahner setup generally yielded much higher IPCE values compared to the Ac-

ton/Ivium system, as demonstrated for the example of D149/S1.15PcZn/CA-sensitized 

DSCs (chapter 8) in Figure 101 and Table 32. For instance, a maximum IPCE of 98% 

was obtained for the D149/CA-sensitized cell, compared to IPCEmax = 44% measured 

by the Acton/Ivium system. Considering the optical losses at the FTO-coated glass sub-

strate of about 20% (cf. chapter 6.5), it is obvious that an IPCE of 98 % is not realistic. 

In other experiments in the Schlettwein group, the Zahner system even delivered IPCE 

peak values significantly above 100 % for cells based on electrodeposited ZnO and or-

ganic dyes, strongly corroborating that it generally overestimated the IPCE for the type 

of samples analyzed in this thesis. 
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Figure 101: IPCE spectra of the dye-sensitized solar cells of chapter 8, measured with 

the Acton/Ivium setup (left) or the Zahner system (right). Curve labels correspond to the 

dates of the measurements (dd.mm).  

Table 32: Maximum IPCE values (with corresponding wavelengths), theoretical short-

circuit photocurrent densities theo
scJ  determined from the IPCE spectra using eq. (36) 

and the AM1.5G spectrum, experimental Jsc under AM1.5G illumination, and ratio of 

theo
scJ and Jsc for the cells of chapter 8. 

sample IPCEmax 
theo
scJ  / 

mAcm-2 

Jsc  / 

mAcm-2 
theo
scJ /Jsc 

Acton/Ivium system 

2 h 

D149/S1.15PcZn/CA 
0.2 @ 530 nm 2.03 2.37 0.9 

17.5 h 

D149/S1.15PcZn/CA 
0.18 @ 590 nm 2.65 4.69 0.6 

17.5 h 

S1.15PcZn/CA 
0.03 @ 680 nm 0.21 0.32 0.7 

17.5 h 

D149/CA 
0.44 @ 520 nm 6.40 8.09 0.8 

Zahner system 

2 h  

D149/S1.15PcZn/CA 
0.47 @ 511 nm 4.19 2.37 1.8 

17.5 h 

D149/S1.15PcZn/CA 
0.69 @ 503 nm 8.39 5.46 1.5 

17.5 h  

S1.15PcZn/CA 
0.05 @ 679 nm 0.27 0.32 0.8 

17.5 h  

D149/CA 
0.98 @ 542 nm 12.44 8.09 1.5 
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The overestimation of the IPCE by the Zahner system is further supported by the fact 

that the theoretical short-circuit photocurrent densities theo
scJ  of the example cells were 

mostly much higher than the actually measured Jsc (cf. Table 32). The difference be-

tween IPCE-derived and measured Jsc would become even greater if the measurement 

range of the Zahner system was wide enough to cover the full absorption range of the 

dyes. In addition to the differences in peak heights, the spectra obtained with the two 

setups also tend to exhibit different shapes. While the curves measured for the cells with 

D149/CA or with D149/S1.15PcZn/CA (17.5 h adsorption time) using the Acton/Ivium 

system show broader plateaus, reflecting the nearly saturated light harvesting efficiency 

of these samples (cf. Figure 79), the Zahner-based IPCE shows narrower peaks and 

different peak-to-peak height ratios. IPCE curves of D149-sensitized ZnO with high 

light harvesting efficiency obtained as part of the present work by means of a third sys-

tem at Gifu University for which theo
scJ /Jsc ≈ 1 (cf. example in Figure 102) resemble the 

corresponding result of the Acton/Ivium system more than the spectrum obtained by the 

Zahner system, indicating that the Acton/Ivium system delivered more accurate results.  

 

Figure 102: IPCE spectrum of a DSC based on electrodeposited porous ZnO sensitized 

with D149/CA for 2 hours (cf. chapter 5), measured at Gifu University. 

The theo
scJ  values based on the Acton/Ivium measurements of the sample cells were 

somewhat smaller than the experimental Jsc values (cf. Table 32), showing that this sys-

tem tended to underestimate the IPCE by 10 – 40%. However, considering the results 

for all 30 cells characterized by the two different IPCE measurement setups in the pre-
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sent work, the average ratio of IPCE-derived theoretical and experimental short-circuit 

current theo
scJ /Jsc was 0.9 for the Acton/Ivium system and 1.2 for the Zahner system, 

demonstrating that the Acton/Ivium system presented a more accurate measure of the 

actual external quantum efficiency of the DSCs. Therefore, the discussion of the IPCE 

throughout this thesis focused on the spectra obtained with the Acton/Ivium setup. Note, 

however, that the Acton/Ivium system led to a slightly more pronounced underestima-

tion of Jsc for the cells based on nanoparticulate ZnO in chapter 7 (average theo
scJ /Jsc = 

0.81 for this set of samples, cf. Figure 66) compared to those based on electrodeposited 

ZnO. The Zahner spectra for the np-ZnO cells, on the other hand, delivered theo
scJ  values 

closer to the experimental Jsc (average theo
scJ /Jsc = 0.96) and are therefore provided as 

supplementary information for comparison in Figure 103.  

   

Figure 103: IPCE spectra of np-ZnO DSCs of chapter 7 containing SQ2 and/or indo-

line dyes, measured with the Zahner measurement system. Legend as in Figure 66.  

Over- or underestimations of the IPCE by the two systems considered here must be due 

(cf. eq. (39)) to over-/underestimations of the measured wavelength-dependent photo-

current, the measured wavelength-dependent incident photon flux density, or the active 

cell area. On the basis of the specifications in Table 31 it is likely that, for the Ac-

ton/Ivium system, the small size and the inhomogeneity of the illumination spot, togeth-

er with the relatively poorly defined position of the solar cell, led to an incomplete illu-

mination of the active cell area or to a smaller light intensity incident on the cell com-

pared to the intensity incident on the sensor. This would have caused an overestimation 

of the incident photon flux and/or the illuminated cell area and would thereby have led 
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to an underestimation of the IPCE, in line with the above observations. Moreover, sev-

eral cells showed an increase of the Jsc with illumination time (cf. chapter 9). Compar-

ing saturated Jsc values from the J-V measurements with presumably less-than-saturated 

values from the relatively fast IPCE measurements, as done in the present study, might 

be another explanation of the apparent underestimation of Jsc based on the IPCE curves. 

For the Zahner setup, on the other hand, it is possible that the large size of the illumina-

tion spot (larger than the whole solar cell) led to a situation where light reflection and/or 

scattering, for example at the edges of the cell’s glass substrates, increased the light in-

tensity incident on the active cell area compared to that incident on the sensor. The fact 

that both setups yielded generally lower theo
scJ /Jsc ratios for the cells based on nanopartic-

ulate ZnO compared to the electrodeposited samples may be related to the larger optical 

losses (reflection/absorption) at the thicker, more conductive glass substrate used for 

these cells (cf. chapter 7). 
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Appendix D: Additional Information on Impedance 

Spectroscopy Measurements 

Table 33: Overview of parameters in impedance spectroscopic measurements.  

sample group illumination 

voltage range    

(step width)   

/V 

V̂
a     

/mV 

frequen-

cy range          

/Hz 

D149 with CA 
AM1.5G           

(60 mWcm-2) 
-0.1 – -0.8  10 0.1 – 105 

D149 without CA 
AM1.5G           

(100 mWcm-2) 

-0.21 – -0.77 

(0.07) 
10 0.1 – 105 

D149+S1.15PcZn (5-06, 5-07) 
AM1.5G           

(100 mWcm-2) 

0.00 – -0.25 

(0.05) 
20 1 – 105 

-0.30 – -0.66 

(0.02) 
10 0.1 – 105 

D149+S1.15PcZn (5-02, 5-05) 

D149+D131+SQ2 

np-ZnO+D149+D131+SQ2 

AM1.5G            

(100 mWcm-2) 

-0.15 – -0.25 

(0.05) 
20 1 – 105 

-0.30 – -0.58 

(0.02) 
10 0.1 – 105 

D149+S1.15PcZn (5-05, 5-07) 

D149+D131+SQ2 

np-ZnO+D149+D131+SQ2 

red LED                 

(varied: 0.1 – 

25 mWcm-2) 

n.a.       

 [open circuit] 
10 0.1 – 105 

a amplitude of voltage modulation. 

Typical EIS spectra of DSCs based on electrodeposited ZnO are shown in Figure 104 

for a range of bias voltages. The spectra displayed two or three semicircles, as expected 

(cf. Figure 13 and Figure 14 and discussion). The impedance spectra of most of the 

screenprinted nanoparticulate ZnO samples also showed the voltage-dependent behavior 

as presented in Figure 104. However, for the np-ZnO cells with SQ2, SQ2+D149, or 

SQ2+D149/D131 (see example in Figure 105), the spectra at low voltages showed a 

transition to the case in which transport resistance and recombination resistance were 

similar and could not be distinguished anymore (Gerischer impedance),128 see for ex-

ample the spectrum at -0.36 V in Figure 105. This case corresponds to a low charge 

collection efficiency (cf. Table 22) and does not allow extracting recombination re-
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sistances and chemical capacitances based on fits using the typical equivalent circuit 

(see below) anymore. 
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Figure 104: Typical voltage-dependent EIS spectra (symbols: measured data; lines: 

fits) of dye-sensitized solar cells based on electrodeposited ZnO. The example cell (2-

08) was prepared with a D149 adsorption time of 120 minutes without cholic acid. 
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Figure 105: Example (sample NP-01, 4h SQ2) of voltage-dependent EIS spectra of 

DSCs based on screenprinted nanoparticulate ZnO containing the sensitizer SQ2 alone 

or in combinations without coadsorbate. 

ω ω 
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The equivalent circuit used for all EIS fits in the present work is presented in Figure 

106. 

Rs Zd Rpt

CPEpt

DX1

Element Freedom Value Error Error %
Rs Free(+) 10.07 N/A N/A
Zd-R Free(+) 15.3 N/A N/A
Zd-T Free(+) 0.36321 N/A N/A
Zd-P Fixed(X) 0.5 N/A N/A
Rpt Free(+) 8.19 N/A N/A
CPEpt-T Free(+) 4.591E-06 N/A N/A
CPEpt-P Fixed(X) 1 N/A N/A
DX1 Fixed(X) 11:Bisquert #2
DX1-R Free(+) 7.981 N/A N/A
DX1-T Fixed(X) 0 N/A N/A
DX1-P Fixed(X) 0 N/A N/A
DX1-U Fixed(X) 0 N/A N/A
DX1-A Fixed(X) 0 N/A N/A
DX1-B Fixed(X) 0 N/A N/A
DX1-C Free(+) 52.06 N/A N/A
DX1-D Free(+) 0.00022519 N/A N/A
DX1-E Free(+) 0.95547 N/A N/A
DX1-F Fixed(X) 1 N/A N/A

Data File:
Circuit Model File: Z:\Uni\AG_Schlettwein\Promotion\Variation tads mit und ohne Cholsäure - Gesamtauswertung\Programme\SAI\ZModels\DSSC illuminated.mdl
Mode: Run Batch Fitting / Freq. Range (0.001 - 100000)
Maximum Iterations: 500
Optimization Iterations: 20
Type of Fitting: Complex
Type of Weighting: Calc-Modulus

 

Figure 106: Equivalent circuit used to fit the EIS spectra of the DSCs in this work, cf. 

Figure 12.128, 141 Rs, Rpt: resistances of the FTO-coated glass substrate and Pt-coated 

counter electrode, Zd: finite-length Warburg element (short-circuit terminus) describing 

transport in the electrolyte, cf. eq. (51), CPEpt: constant phase element describing the 

(non-ideal) capacitance of the counter electrode, DX1: transmission line reflecting 

charge transport, accumulation and recombination in the porous film, cf. eq. (50).  
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A projected film area 

A
~

 RC attenuation factor in IMPS 

abs absorbance 

absint spectrally integrated absorbance 

APCE absorbed photon-to-electron conversion efficiency  

c concentration 

C capacitance 

CA cholic acid 

CBL capacitance of interface between blocking layer and electrolyte 

cµ chemical capacitance per unit volume 

Cµ total chemical capacitance 

Cµ
t chemical capacitance associated with trapped electron density 

CPt capacitance of interface between Pt counter electrode and electrolyte 

d film thickness or optical path length 

D0 diffusion coefficient of electrons in semiconductor in the absence of traps  

Dn effective diffusion coefficient of electrons in semiconductor 

DSC dye-sensitized solar cell 

E energy 

E0-0 transition energy between lowest vibrational levels in ground and excited states of dye 

E0(S+/S*) Fermi level corresponding to oxidation potential of dye in excited state 

E0(S+/S) Fermi level corresponding to oxidation potential of dye in ground state 

E0
ox maximum of distribution of unoccupied states in dye or electrolyte 

E0
red maximum of distribution of occupied states in dye or electrolyte 

*E0
ox maximum of distribution of unoccupied states in excited dye 

*E0
red maximum of distribution of occupied states in excited dye 

Ec energy of the conduction band edge (or mobility edge) 

ΔEc conduction band edge (or mobility edge) shift 

EHOMO energy of the highest occupied molecular orbital 

EIS electrochemical impedance spectroscopy 
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ELUMO energy of the lowest unoccupied molecular orbital 

Efn quasi-Fermi level of electrons in the semiconductor 

Eredox redox level of the electrolyte 

FF fill factor 

FFint internal fill factor 

FTO fluorine-doped tin oxide 

ΔG0 reaction free energy 

ΔG* activation energy 

Gn electron generation rate 

g(E) density of states 

gt(E) density of states of traps in the band gap 

gcb(E) density of states in the conduction band 

h Planck’s constant, or abbreviation for “hour(s)” 

ħ Planck’s constant divided by 2π 

HAB perturbation in the quantum-mechanical treatment of electron transfer 

2

ABH  absolute square of perturbation matrix element averaged over final states 

HOMO highest occupied molecular orbital 

i current 

î  amplitude of sinusoidal current signal 

Im or Imag imaginary part of a complex quantity 

IMPS intensity-modulated photocurrent spectroscopy 

IMVS intensity-modulated photovoltage spectroscopy 

IPCE incident photon-to-electron conversion efficiency 

IPCEint spectrally integrated IPCE 

IPCEmax maximum value of the spectral IPCE 

Isc short-circuit photocurrent 

J current density 

J0 exchange current density of recombination 

J0k factor describing the dependence of J0 on kr independent of Ec 

Ĵ  amplitude of sinusoidal current density signal 

Jmpp current density at the maximum power point 

Jsc
theo theoretical short-circuit photocurrent density estimated from IPCE spectrum 
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light
recJ  recombination current density under illumination 

dark
recJ  recombination current density in the dark 

Jsc short-circuit photocurrent density 

k Boltzmann constant 

kdecay rate constant of excited state decay of the dye 

kel rate constant of recombination 

kinj rate constant of electron injection from dye to semiconductor 

kr rate constant of recombination containing concentration of acceptor species 

krec,dye rate constant of recombination with the oxidized dye 

kreg rate constant of dye regeneration 

L0 steady-state diffusion length of electrons in the semiconductor 

Ln effective diffusion length of electrons in the semiconductor 

LUMO lowest unoccupied molecular orbital 

M scaling factor in analytical expression for the IMVS response 

n total electron density 

nc density of conduction band electrons 

Nc effective density of states at the conduction band edge 

noc total electron density in the semiconductor under open-circuit conditions 

nsc total electron density in the semiconductor under short-circuit conditions 

nt density of trapped electrons 

Nt total density of trap states 

OA octanoic acid 

OCVD open-circuit photovoltage decay 

p porosity 

Pin power density of incident light 

Pmax maximum power density 

q electron charge 

Qoc charge in the semiconductor under open-circuit conditions 

Qsc charge in the semiconductor under short-circuit conditions 

R resistance 

Rrefl reflectance 

RBL resistance of interface between blocking layer and electrolyte 

Rd (ohmic) diffusion resistance of ions in the electrolyte 
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Re or Real real part of a complex quantity 

Rfilm total (ohmic) resistance of dye-sensitized semiconductor film 

RPt resistance of interface between Pt counter electrode and electrolyte 

rrec recombination resistance per unit volume 

Rrec recombination resistance 

Rs resistance of the conductively coated glass substrate 

Rseries total series resistance 

rtr transport resistance per unit length per area 

Rtr transport resistance 

SDA structure-directing agent 

SEM scanning electron microscopy 

SLIM-PCV stepped light-induced transient measurements of photocurrent and -voltage 

t time 

T temperature 

Ttrans transmittance 

tads dye adsorption time 

TCO transparent conductive oxide 

Un volume rate of electron recombination 

V applied voltage 

V̂  amplitude of sinusoidal voltage signal 

Vf Fermi-level voltage 

Vmpp voltage at the maximum power point 

Voc open-circuit photovoltage 

Vseries voltage drop at the series resistance 

x position along the x-axis 

Z impedance 

Z’ real part of the impedance 

Z’’ imaginary part of the impedance 

Zd impedance of diffusion in the electrolyte 

ZTL impedance of transmission line 

α trap distribution parameter 

αabs absorption coefficient 

αbulk trap distribution parameter of bulk trap states 
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αss trap distribution parameter of surface trap states 

β recombination parameter 

ε molar absorptivity 

εmax maximum of the molar absorptivity 

ζ numerical factor in formal description of IMPS response 

η power conversion efficiency 

ηcc charge collection efficiency 

ηinj electron injection efficiency 

ηlh light harvesting efficiency 

ηlh,int spectrally integrated light harvesting efficiency 

ηreg dye regeneration efficiency 

θ phase shift between excitation signal and response 

λ reorganization energy, or wavelength 

λmax wavelength of the absorption or emission maximum 

ν frequency 

τ0 lifetime of conduction band electrons in the absence of surface traps 

τf lifetime of conduction band electrons in the presence of surface traps 

τIMPS characteristic time constant of the IMPS response 

τn effective electron lifetime 

τtr transport time (for transport of electrons through the semiconductor) 

ϕ photon flux density 

ϕ0 initial or time-independent background photon flux density 

̂  amplitude of sinusoidal photon flux density signal 

Φ(ω) IMPS or IMVS (as indicated by index) transfer function 

ω angular frequency 

p
d  characteristic frequency of diffusion in the electrolyte 

ωmin,IMPS angular frequency at minimum of imaginary part of IMPS response 

ωmin,IMVS angular frequency at minimum of imaginary part of IMVS response 

ωrec characteristic frequency of recombination 
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