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Preface

Quantum Chromodynamics (QCD) is widely approved to be the underlying theory

of strong interactions. In a nutshell it is a local non-Abelian Yang-Mills gauge field

theory with gauge group symmetry SU(3). The non-Abelian nature of its group

renders itself on diagrammatic level as presence of self-interaction between gluons in

addition to the quark-gluon interaction [1]. Since quarks are carriers of the ”color”,

the SU(3) gauge group charge and therefore not gauge independent objects them-

selves, neither detectable nor exist as free, asymptotic states. However a certain

relation between the outgoing quark and the hadron jet can be established at high

energies due to quark-jet duality. The states which are detectable and had been

seen in experiment are the bound states of quarks and presumably gluons. The

study of such closed, confined objects is a sophisticated subject and could have been

even more if a quark would not carry, in addition to the color, the electric charge,

described by gauge theory of Quantum Electodynamics (QED). This fact provides

the possibility to test dynamical properties of bound states and to probe their inner

quark substance by photonic scalpel, like Deep Inelastic Scattering.

The most noteworthy features of QCD are quark asymptotic freedom [2, 3], dy-

namical chiral symmetry breaking [4] and confinement [5]. Asymptotic freedom

notes the fact that while at low energies the running coupling of QCD is signifi-

cantly big, whether at high energies it becomes small enough for the perturbative

theory to be applied. The dynamical chiral symmetry breaking (DχSB) occurs at

low energies and plays the major role for QCD phenomenology. This effect has the

immense value since it is responsible for the generation around 95% of the mass

of the visible universe. Confinement reflects the fact that although the elementary

9
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fields of the theory are quarks and gluons, they never appear in a experiment, elud-

ing an experimentalist’s eye since early searches in the lunar coat in 70-es.

One of the key features of QCD is existence of composite color-scalar objects

made of color-carrying particles, such as quark-antiquark qq̄ bound state called me-

son and three-quark qqq bound state like baryon. After recent success of Babar,

Belle and BES experimental facilities in discovering the XYZ charmonium bound

states and charged states in bottomonium, the QCD spectroscopy became a in-

triguing topic. In addition to commonly known meson and baryons there may exist

exotic colorless states like tetraquarks qqq̄q̄, glueballs GG and hybrids qqG. Since

the quarks in a bound state continuously exchange gluons on the Feynmann dia-

grams language this would require an infinite sum of diagrams. This cannot be

archived in perturbative QCD, because this task requires enormous efforts and rel-

atively small coupling constant. Additionally the bound states can enter into the

play as virtual particles, being exchanged between the quarks, so that gives a rise to

hadronic unquenching effects. Due to the pion being the lightest hadron, the pion

exchange effect will be dominant among other hadronic exchange effects. Pion cloud

effects are expected to play an important role in the low momentum behaviour of

form factors and hadronic decay processes of baryons.

The fact that the most interesting part of QCD physics is hidden in low energy

region and the lack of perturbative means to describe it, encouraged the develop-

ment of various non-perturbative methods such as: quark models, Lattice QCD,

χPT and functional methods. In this thesis we use the functional approach to QCD

employing the quark Dyson–Schwinger equations in order to obtain non-perturbalive

properties of quarks. Additionally, within meson 2-body Bethe–Salpeter equations

and baryon 3-body Faddeev equations we provide a consistent description of QCD

hadron phenomenology.

The thesis is organized as follows: in Chapter 1 we derive the QCD Lagrangian

and review its basic properties and symmetries. In Chapter 2 we derive quark
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Dyson–Schwinger equations , consider the necessary truncations, conduct the re-

quired calculations and study the resulting solutions. The meson Bethe–Salpeter

equations as well as Faddeev equations for baryons are derived and investigated in

Chapter 3. The arising solutions of meson BSE, its properties, mass spectra and

Regge-trajectories for light and heavy quarks using the single gluon rainbow-ladder

exchange are shown in Chapter 4. The impact of pion cloud effect on meson mass

spectra, Nucleon and Delta three body states as well as dynamical properties of

pion, like the pion form factor, is studied in Chapter 5. Chapter 6 summarizes the

results and provides an outlook.

Part of the material in this thesis was reported in the following papers:

Sanchis-Alepuz, H. and Fischer, C. S. and Kubrak, S, Pion cloud effects on baryon

masses, Phys.Lett. B733

Fischer, C. S. and Kubrak, S. and Williams,R, Mass spectra and Regge trajecto-

ries of light mesons in the Bethe-Salpeter approach, Eur.Phys.J. A50(2014)126

Fischer, C. S. and Kubrak, S. and Williams,R, Spectra of heavy mesons in the Bethe-

Salpeter approach, Eur.Phys.J. A51(2015)1,10

10.1016/j.physletb.2014.04.031
http://10.1140/epja/i2014-14126-6
http://10.1140/epja/i2015-15010-7
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Chapter 1

Introduction

1.1 Quantum Chromodynamic field theory

QCD Lagrangian

Following the same ideas of the localization of the initially global gauge transfor-

mation as it was employed for U(1) group transformation in QED [6], as a starting

point one can write down the Lagrangian of femionic field q(x) with mass parameter

m:

Lfermions =

Nc,Nf∑
i

q̄i(i∂/−m)qi , (1.1)

Here we consider the Dirac fermionic field q(x) in a fundamental representation of

the color group SU(3), which is non-commutative in nature and therefore its semi-

simple Lie algebra shall be considered. Thus the fermion field q(x) has a Nc = 3

color and Nf = 6 flavor components qi(x), i = 1, .., 18, where i corresponds to super-

index of color and flavor. Due to the gauge principle, we impose that the Lagrangian

of the free Dirac field must be invariant under the SU(3) group transformation:

qi(x)→ q′i(x) = Uijqi(x), U = exp(−itaθa) , (1.2)

here θa are global arbitrary parameters, independent of x and ta, a = 1, .., N2
c − 1,

are the generators associated to the used SU(3) group. Those can be expressed as

13



14 CHAPTER 1. INTRODUCTION

ta = λ2/2, where λa are Gell-Mann matrices, the standard choice of basis. The

generators ta obey the Lie algebra:

[ta, tb] = ifabctc , (1.3)

where fabc is totally antisymmetric structure function, specifying the group algebra.

The Lagrangian of fermions Lfermions, given in Eq.(1.1), is completely invariant

under the global group transformation Eq. (1.2). But after the localization of the

transformation, the θa → θa(x) are local, however, the Lfermions is no longer invariant

because the derivative term would act now on θa(x) as well. Further, still it can

be made independent, although it require to redefine the derivative to the covariant

one:

∂µ → Dµ = ∂µ − igtaAaµ , (1.4)

where Aaµ are N2
c − 1 vector gauge fields, namely gluons, and g is the coupling

constant between q and Aaµ. After this change and ommiting i super-index the

Lagrangian Lfermions is:

Lfermions = q̄(iD/ −m)q , (1.5)

The given Lagrangian is is invariant under Eq. (1.2) color transformation, if the

Aaµ(x) obey the transformation rule:

taAaµ → taA′aµU

(
taAaµ −

i

g
U−1∂µU

)
U−1 , (1.6)

in case of infinitesimal transformation U(x) ≈ 1 − itaθa(x), also using the commu-

tation relations Eq. (1.3), the Eq. (1.6) becomes:

δA′aµ → Aaµ + fabcθbAcµ
1

g
∂µθ

a , (1.7)

As the infinitesimal transformation rule for Aaµ contain the structure function fabc,

the gauge fields Aaµ belong to the adjoint representation of the algebra of SU(3).
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In the Lagrangian Eq. (1.5) the fermion fields q(x) interacts with the gauge field

Aaµ, but in order to have a proper theory one need to specify a kinetic term for fields

Aaµ. In order to do so, we need to find a right view of the gauge energy-impulse tensor,

since the form F aµνF a
µν , with F a

µν = ∂µA
a
ν−∂νAaµ, is no longer invariant in respect to

Eq. (1.6) due to the non-Abelian nature of the color group SU(3). Following ideas

of electrodynamics, we derive the commutator of covariant derivatives to find:

[Dµ, Dν ] = −igtaF a
µν , (1.8)

where F a
µν = ∂µA

a
ν−∂νAaµ+gfabcAbµA

c
ν is the energy-impulse tensor for non-Abelian

gauge fields Aaµ of the group SU(3), such as F aµνF a
µν is gauge invariant. Convention-

ally normalized, it can be added to the Lagrangian Eq. (1.5). Thus, the general form

of the Lagrangian of QCD invariant under the non-Abelian gauge transformation of

the group SU(3) is:

Lfermions = q̄(x)(iγµD
µ −mk)q(x)− 1

4
F aµνFaµν (1.9)

There is a remarkable consequence of non-Abelian nature of SU(3). Due to the term

gfabcAbµAcν in F aµν , there is a self-interaction amongst the gauge fields Aaµ, leading

to cubic and quartic terms. This is the crucial point in comparison to QED, the

self-interaction of gluons is the main source of asymptotic freedom [3] and probably

confinement.

The generating functional of QCD

In the previous section the classical Lagrangian of QCD Eq. (1.9) was constructed.

The next logical step is to quantize this classical theory. At this point we are work-

ing in Minkowski space-time.

So far there are two well-known quantisation procedures. In the canonical ap-

proach to quantization of field theories, the fields treated as operators and their
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commutation relations should be defined. Then the Green’s functions, the corre-

lation functions, are calculated as vacuum expectation values of the time-ordered

product of field operators. From another side, in the functional integral approach,

fields are c-numbered functions of coordinate and the Lagrangian is given in a classi-

cal form. Since the path-integral approach is known to be the most robust technique

to derive the Dyson–Schwinger ,we will focus on this formalism.

Any quantum field theory is completely defined by its Green’s functions, which

are then obtained by integrating the fields over all their functional forms with a

suitable weight. As a starting point, the free scalar field φ(x) is considered, the

n-point Green’s function of this field are given as a time-ordered product of n such

fields:

〈0|T [ ˆφ(x1)...φ̂(xn)]|0〉 =

∫
Dφφ(x1)...φ(xn) exp(iS)∫

Dφ exp(iS)
(1.10)

where S =
∫
dx4(L) is a classical action. However the Eq. (1.10) can be rewritten in

a more convenient form of the generating functional, introducing the J as a source

fields:

Z[J(x)] =

∫
Dφ exp

{
i

∫
dx4(L+ Jφ)

}
(1.11)

In this case the n-th Green’s function can be obtained by taking appropriate number

of functional derivatives with respect to the source J .

〈0|T [φ̂(x1)...φ̂(xn)]|0〉 =
(−i)n
Z

δnZ(J )

δJ(x1)...δJ(xn)
|J=0 (1.12)

For the gauge fields, the generating functional looks:

Z[J(x)] =

∫
DA exp

{
i

∫
dx4(L+ JµAµ)

}
(1.13)

Although the source term AaµJ
aµ is not gauge invariant, the physical predictions

obtained within Z[J(x)] must be gauge independent.
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Once we attempt to quantize given Lagrangian Eq. (1.13) we face the uncertainty

associated with the freedom of gauge. This can be clearly seen if set J = 0. In this

case the Eq. (1.13) is given by:

Z[0] =

∫
DA exp(iS) (1.14)

Since the action S is invariant under gauge transformations Aaµ → A
(θ)a
µ , we can

generate a continuous infinity of A
(θ)a
µ field configurations where the action S is the

same constant. Hence such functional integral is strongly divergent, as it is inte-

grated over physically equivalent field configurations. In order to obtain physically

meaningful results, one has to isolate the part of the functional integral, which counts

each physical configuration only once. This can be achieved by setting restrictions

upon the Aaµ, such as:

GµAaµ = Ba (1.15)

To incorporate this constraint Eq. (1.15) in the functional integral Eq. (1.14), one

need to inset the unity, given by Feddeev and Popov [7]:

1 =

∫
D[θ(x)]δ(GµAaµ −Ba) detMG , (1.16)

where (MG(x, y))ab =

(
δ(GµA

(θ)a
µ (x)

δθb(y)

)
.

Inserting Eq. (1.16) into Eq. (1.14) we find:

Z[0] =

∫
D[A] detMG

∫ ∏
a,x

D[θa(x)]δ(GµA(θ)a
µ (x)−Ba) exp {iS} (1.17)

The delta function can be removed, by integrating Z[J(x)] over auxiliary field Ba

with a appropriate weight, given by Gaussian form exp
{
−i
2ξ

∫
d4x(Ba(x))2

}
, where ξ

is the gauge parameter. After that the integrand is independent of the group param-

eters θa(x) and therefore one can factor out the contribution of the
∫ ∏

a,xD[θa(x)],
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which is infinite and will be cancelled out in the computation of Green’s functions

in Eq. (1.10). Thus the generating functional takes a form:

Z[J(x)] =

∫
D[A] detMG exp

{
i

∫
d4x

(
L − 1

2ξ
(GµAaµ)2 + JaµAaµ

)}
(1.18)

Choosing Gµ = ∂µ will correspond to Lorenz covariant gauges, which we will employ

in this thesis and:

(MG(x, y))ab = −1

g
(δab∂2 − gfabc∂µAcµ)δ4(x− y) (1.19)

Note that in case of Abelian gauge theories the fabc = 0, and MG is independent

of the gauge fields. Now it is easy to include fermions fields into the generating

functional Eq. (1.18):

Z[J, η̄, η] =

∫
D[Aq̄q] detMG exp

{
i

∫
d4x

(
Leff + JaµAaµ + q̄η + η̄q

)}
(1.20)

Leff = LQCD −
1

2ξ
(GµAaµ)2 . (1.21)

Here η and η̄ are anti-commuting sources for the quark fields q and q̄, the LQCD is

given by Eq. (1.9).

It is possible to exponentiate detMG, in a same way as the gauge fixing condition,

in order to incorporate it into effective Lagrangian. According to Faddeev and Popov

[7], one can represent detMG as a integral over fictitious anti-commuting fields χa(x),

so-called Feddeev-Popov ghosts:

detMG =

∫
D[χχ∗] exp

{
−i
∫
d4xd4yχa∗(x)(MG(x, y))abχb(y)

}
, (1.22)

where MG is given by Eq. (1.19). The χa(x) is a complex field, obeying the Grass-

mann algebra and transforming under the adjoint representation of the non-Abelian

gauge group. This is not a physical particle, since the spin and statistic of its quan-

tum excitations have a wrong relation. Also according to Becchi, Rouet and Stora

[8] a certain connection between ghost fields χ, χ∗ and gauge parameter θ(x) can
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be established. The ghost action can be simplified by an integration by parts, such

that:

∫
d4xd4yχa∗(x)(MG(x, y))abχb(y) = −

∫
d4x(∂µχa(x))∗Dab

µ χ
b(x) , (1.23)

where Dab
µ = δab∂µ − gfabcAcµ is the covariant derivative in adjoint representation.

Inserting Eq. (1.22) with the ghost action from Eq. (1.23) into Eq. (1.20) we obtain

the full generating functional of QCD:

Z[J, η̄, η, ζ, ζ∗] =

∫
D[Aq̄qχχ∗] exp

{
i

∫
d4x (LQCD + Sources)

}
, (1.24)

LQCD = LGluon + LGauge fixing + LQuarks + LGhosts ,

Sources = JaµAaµ + q̄η + η̄q + χa∗ζa + ζa∗χa .

Here ζa∗ and ζa are Grassmann-valued sources for the ghost fields. The LQCD
components given by:

LGluon = −1

4
F aµνFaµν , LGauge fixing = − 1

2ξ
(GµAaµ)2 , (1.25)

LQuarks =

Nf∑
k

q̄k(iγµD
µ −mk)qk , LGhosts = (∂µχa(x))∗Dab

µ χ
b(x) . (1.26)

1.2 Symmetries of QCD

On top of aforementioned local gauge color group SU(3)c and Lorenz invariance,

there are a number of discrete symmetries, which the Lagrangian of Quantum Chro-

modynamics possess.

Chiral symmetry

Among those, the most important one is chiral symmetry, the symmetry of QCD

in the limit of quark masses taken to zero. The dynamical spontaneous breaking

of this symmetry generates mass for almost 95% of the visible matter in the universe.

To set off, consider the light quark part of QCD Lagrangian Eq. (1.9) with the
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quark mass matrix set to zero m = 0. One can assume so since the current masses

of the light u, d quark are small enough (≈ 5 MeV) in comparison to the mass

scale of hadrons, so that chiral symmetry is an approximate symmetry of the strong

interactions. In this case the Lagrangian takes the form:

Lu,d = q̄(iγµD
µ)q (1.27)

In order to make the symmetries more apparent we introduce the left- and right-

handed projectors:

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) (1.28)

Now we can decompose the quark fields into left- and right-handed components,

qL = PLq and qR = PRq. The Eq. (1.27) afterwards becomes:

Lu,d = q̄L(iγµD
µ)qL + q̄R(iγµD

µ)qR (1.29)

It is apparent that there is no term that would connect left- and right-handed

quark fields, therefore overall the Lagrangian is invariant under U(2) transformation,

namely q′ → exp(αiσi)q, for each left- and right-handed quark. Here the σi are the

Pauli matrices. Hence the Eq. (1.29) yields a U(2)L×U(2)R = SU(2)V ×SU(2)A×
U(1)V × U(1)A chiral symmetry, providing following Noether currents:

Jkµ = q̄γµσ
kq (1.30)

Jk5µ = q̄γ5γµσ
kq (1.31)

Jµ = q̄γµq (1.32)

J5µ = q̄γ5γµq (1.33)

(1.34)

Note that considering strange quark to be massless as well would extent this sym-

metry to SU(3)χ chiral.



1.2. SYMMETRIES OF QCD 21

However the experimental spectrum of QCD indicates, that the chiral symmetry

is spontaneously broken and the only symmetry is left is U(1)V × SU(2)V . If it

is so, according to Goldstone theorem, the theory must contain Goldstone bosons,

massless spin-zero particles, and the number of these new degrees of freedom is equal

to a number of generators of the broken symmetry. Particularly the spontaneous

symmetry breaking SU(2) → SU(2)V generates a triplet of pseudoscalar bosons,

pions (π+, π0, π−).

The aforementioned chiral symmetry is of great importance for a low energy

QCD physics, since the spontaneous breaking of this is the source of 95% percent of

hadrons mass. We will face this symmetry once more at the discussion of the chiral

condensate.

Axial symmetry

One may notice that, in addition to pion triplet given by SU(2)A breaking, the theory

must contain one more Goldstone boson, associated with U(1)A broken symmetry.

Using chiral perturbation theory, Weinberg [9] estimated the mass to be less than
√

3mπ. Among the known hadrons, the only candidates with the right quantum

numbers are η(548) and η′(958). Both violate the Weinberg bound. In fact, the J5

current is not conserved at the quantum level due to the QCD axial anomaly:

∂µJ
µ
5 =

g2

16π2
F aµνFaµν =

g2

16π2
∂µχ

µ (1.35)

And the topological charge given by:

Q5 =

∫
d3x

[
q†γ5q −

g2

16π2
∈ χµ

]
(1.36)

The existence of the topological charge Q5 produce the non-zero topological suscep-

tibility χ2, which can be related to additive anomaly mass correction via Witten-

Veneziano formula [10, 11]:

m2
A = 2

Nf

f 2
0

χ2 (1.37)
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Figure 1.1: Cornell potential compared to quenched SUc(3) potential, taken from [12]. The r is
a distance between quarks.

1.3 Aspects of QCD

Confinement

The most distinctive feature of the QCD theory, in comparison to QED, is that the

basic blocks of it, like quark and gluons, are completely obscured to direct detection.

All efforts done in the search of free quarks, even on the Moon surface, were unsuc-

cessful. This stays not only for quarks and gluons, but also for any coloured states

that can be made out of those. Such non-perturbative phenomenon is called colour

confinement and its underlying origin is still not completely understood. Over the

years several different pictures of confinement were developed, succeeding to explain

various aspects of it; for a introductory review see [5].

The easiest and most straightforward model is the string model of confinement.

It states that color electric flux between two color charged fermions forms a tube or

a string, unlike the electric flux is being spread out. This string behaves at a long

range scale as it has a constant tension σ, like naive Hooke’s force law. However,

due to a behaviour of QCD running coupling, at very short distances the interaction

between quarks dominated by electric Coulomb potential. The incorporation of both

aspects gives a rise to Cornell potential: V (r) = − e
r

+σr. It is clear that a potential

energy increases as two quarks are being pull apart, although when the energy is

bigger than that of meson mass, the string breaks into two mesons.
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A more recent picture of the QCD confinement comes from lattice simulations,

where the co-called center vortices play a major role. Center vortices are very specific

objects carrying the topological charge, coming from central symmetry of the SUc(3).

These vortices are of the great importance for lattice studies [13–15], since it was

found that string tension vanishes at removal of central vortices, therefore providing

a link between these two phenomena.

In case of Dyson–Schwinger framework the confinement can be concluded from

analytical structure of dressed quark propagator. The quark dressing functions

posses complex conjugate poles, which lead to a violation of Osterwalder–Schrader

axiom of reflection positivity [16], and therefore ensure that a quark is not a asymp-

totic physical state, i.e.confined. Note however, that this result is truncation de-

pendent.

Chiral condensate

Spontaneous chiral symmetry breaking is the phenomena that leads to a genera-

tion of non-vanishing ground state of QCD Lagrangian. To approach this problem

consider the term 〈0|q̄q|0〉 that connects right- and left-handed quark fields

〈0|q̄q|0〉 = 〈0|q̄RqL + q̄LqR|0〉 . (1.38)

It is easy to show that a dynamic generation of such term breaks chiral symmetry,

while keep being invariant under SU(2)V × U(1)V . Formally this matrix element is

defined as

〈0|q̄q|0〉 =

∫
d4k

(2π)4
Tr [S(k)] . (1.39)

In case of trivial vacuum the corresponding expectation value, which is called chiral

condensate, vanishes, 〈0|q̄q|0〉 ≡ 〈q̄q〉 = 0. However this is no longer true in case of

non-perturbative vacuum of QCD, where the ground state is non-zero: 〈0|q̄q|0〉 =

〈0|ūu+ d̄d|0〉 ≈ −(250 MeV)3. On the propagator level this effect appears in quark

mass function M(p2): in infra-red region the mass function is M(0) ≈ 400 MeV ,
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generating dynamically constituent quark mass. Since mesons and baryons are quark

constructions this generates masses for them as well, except Goldstone pseusoscalar

bosons, the pions, which stay massless.

However in the real world chiral symmetry is broken spontaneously and explic-

itly. Explicit breaking is provided by interaction between quark fields and Higgs

boson condensate, such as this produces small current masses for u, d. In this case

Goldstone pseusoscalar bosons are no longer massless and Gell-Mann, Oakes and

Renner [17] showed that the square of the mass of the Goldstone bosons grows in

proportion to mu +md

M2
π = (mu +md)

〈0|q̄q|0〉
f 2
π

(1.40)

Running coupling of QCD

The renormalization group equation of QCD for a one-loop peturbation order β-

function takes the following form:

µ
∂αs
∂µ

= −(11− 2

3
Nf )

α2
s

2π
, (1.41)

where αs is QCD running coupling, µ is the scale dependence parameter and (11−
2
3
Nf ) = β0 is a first non-vanishing term in β-function. The Eq. (1.41) can be solved,

yielding the solution

αs(Q
2) =

4π

β0ln(Q2/Λ2
QCD)

. (1.42)

This solution is valid only for Q2 >> Λ2
QCD, while the parameter Λ2

QCD ≈ 230 MeV

defines the energy scale, below which the perturbation series break due to large

running coupling αs.

This is one of the facts that make unreachable all underlying physics of forma-

tion and structure of hadron to perturbative QCD theory, encouraging to develop

non-perturbative approaches, such as: Lattice QCD, instanton liquid model, quark

models, effective chiral Lagrangians, QCD sum rules and the one employed through-
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Figure 1.2: Summary of measurements of αs(Q) as a function of the respective energy scale Q.
The curves are the QCD predictions for the combined world average value of αs(MZ). Figure is
taken from [18].

out this thesis - the Dyson–Schwinger /Bethe–Salpeter functional method.
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Chapter 2

Dyson–Schwinger Equations

2.1 Quark DSE

The Dyson–Schwinger equations (DSE) are the analogue of Euler-Lagrange equa-

tions for the quantum field theory, since they are the equations of motion of the

corresponding Green’s function. Here we are only interested in the derivation of the

quark Dyson–Schwinger equations, though the same ideas can be applied for gluons

and ghosts as well, for a more detailed derivation, see [19]. At first, we focus on

single color quark field q(x), since quark colors enter in QCD Lagrangian as a cumu-

lative sum. Also we drop a ghost fields from considering, since they are not coupled

directly to the quarks, but only through the full gluon propagator and quark-gluon

vertex and hence do not enter to quark DSE explicitly.

The starting point of the derivation is that, the functional integral of a total

functional derivative is zero given the fields vanish at a boundary:

∫
Dq δ

δq
= 0 . (2.1)

We employ this observation in order to derive the quark DSE, by taking the func-

tional derivative of generating functional of QCD in respect to quark field q̄:

0 =

∫
D[Aq̄q]

δ

δq̄
exp

{
i

∫
d4x

(
LQCD + JaµAaµ + q̄η + η̄q

)}
,

27
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=

[
δSQCD
δq̄

(
−i δ
δJ
,−i δ

δη̄
, i
δ

δη

)
+ η(x)

]
Z[Aη̄η] , (2.2)

where SQCD =
∫
d4xLQCD and LQCD is given by Eq. (1.9). Further, following to

Itzykson and Zuber [20], we rewrite Z[Aη̄η] in terms of generating functional of

connected Green’s functions, setting Z[Aη̄η] = exp(G[Aη̄η]). By that we introduce

the generating functional for the connected, one-particle irreducible (1PI) correlation

functions:

G[Aq̄q] ≡ iΓ[q, q̄, Aµ] + i

∫
d4x [q̄η + qη̄ + AµJ

µ] (2.3)

After taking the derivative in Eq. (2.2) and setting all sources to zero η = η̄ = J = 0

we obtain:

δ4(x− y) = (i∂/−m)S(x− y)−

−ig2
∫
d4z1d

4z2d
4z3γµD

µν(x− z1)S(x− z2)Γν(z2, z3; z1)S(z3 − y) , (2.4)

where we identified corresponding functional derivatives of Γ[q, q̄, Aµ] as following:

S(x− y) =

(
δ2Γ

δq̄(x)δq(y)

∣∣∣∣
q̄=q=Aµ=0

)−1

, (2.5)

Dµν(x− y) =

(
δ2Γ

δAµ(x)δAν(y)

∣∣∣∣
q̄=q=Aµ=0

)−1

, (2.6)

gΓµ(x, y; z) =
δ

δAµ(z)

δ2Γ

δq̄(x)δq(y)

∣∣∣∣
q̄=q=Aµ=0

. (2.7)

which are the quark propagator S(x − y), the gluon propagator Dµν(x − y) and

the quark-gluon vertex Γµ(x, y; z), that should not be confused with the generating

functional Γ[q, q̄, Aµ]. The Eq. (2.4) is the quark propagator in coordinate space.

Multiplying with S−1(y − y′) , integrating over y′ and performing the standard

Fourier transformation gives the quark DSE in momentum space:

S−1(p) = (ip/ −m)− ig2

∫
d4k

(2π)4
Dµν(k)γµS(q)Γν(p, q) . (2.8)
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Figure 2.1: Quark Dyson–Schwinger equations, circles denote dressed propagators and vertexes.

So far we considered a single color structure, which obviously does not represent a full

picture of the underlying physics. Thus we need to introduce the color structure into

Eq. (2.8), by interchanging Γν(p, q)→ Γaν(p, q), where a = 1, ..., 8 denotes an index in

SU(3) adjoint representation, and also γµ → λaγµ, where λa are Gellmann matrices.

Additionally the quark propagators carry implicitly the color index i = 1, 2, 3, being

the fundamental object of SU(3) color group. Applying the aforementioned changes,

we obtain the proper quark Dyson–Schwinger equations:

S−1(p) = (ip/ −m)− ig2

∫
d4k

(2π)4
Dµν(k)δabλaγµS(q)Γbν(p, q) . (2.9)

This is integral equation is represented diagrammatically on Fig. 2.1. The full gluon

propagator Dµν(k) and full quark-gluon vertex Γν(p, q) in Eq. (2.9) satisfy their own

DSEs, which connect them to higher n-point Green functions and by that create an

infinite tower of equations.

However, this not final point of the derivation, since we have not yet defined the

renormalization properties of the involved objects. The parameters like gauge cou-

pling and quark mass are not physical and therefore should be expressed through ex-

perimental quantities. We achieve this by the multiplicative renormalization, which

leads to the following replacements:

g = Zgg̃ , m = Zmm̃ ,

S(p) = Z2S̃(p) , Dµν(k) = Z3D̃
µν(k) , Γν(p, q) = Z−1

1F Γ̃ν(p, q) . (2.10)

Here the Zg,m,2,3,1F are the renormalization factors for corresponding objects and
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tilde sign denotes the renormalized quantity. Note that this factors can be related

to each other by universality of gauge coupling for any interaction vertices and due

Slavnov-Taylor identity [21]. The following relations read as:

Z−1
g = Z

1/2
3 Z2Z

−1
1F = Z

3/2
3 Z−1

1 = Z3Z
−1/2
4 = Z

1/2
3 Z̃3Z̃

−1
1 , (2.11)

Z3

Z1
= Z2

Z1F
=

Z
1/2
3

Z
1/2
4

= Z̃3

Z̃1
, (2.12)

where Z1, Z4, Z̃3, Z̃1 are the renormalization factors of the 3-gluon vertex, the 4-gluon

vertex, the ghost propagator and the ghost-gluon vertex correspondingly. Using the

aforementioned relations we can finally derive quark Dyson–Schwinger equations for

renormalized objects:

S−1(p) = Z2(i∂/−m)− ig2Z1F

∫
d4

(2π)4
Dµν(k)δabλaγµS(q)Γbν(p, q) , (2.13)

suppressing a tilde notation for the renormalized quantities. Since gluon and quark

propagators in Minkowski space can expose a non-analytical behaviour, for a pur-

pose of numerical calculations we perform the Wick rotation [22] and throughout

this thesis consider all our equations to be in Euclidean space-time. The detailed

instruction how the Wick rotation is done is given in Appendix A

The Eq.(2.13) contains important pieces, which have to be specified. Dµν(k) is

the dressed gluon propagator, that satisfies its own DSE and in Euclidean space and

Landau gauge have the following general form:

Dµν(k) =
G(k2)

k2

(
δµν − kµkν

k2

)
, (2.14)

where G(k2) is gluon dressing function, connected to the gluon vacuum polarisa-

tion function via G(k2) = 1/(1 + Π(k2)). The dressed quark-gluon vertex Γν(p, q)

also posses its own DSE with the solution in its general form given by 12 scalar

functions. The Dirac basis is generated by linear combination of three Lorenz vec-

tors {γµ , pµ , qµ}, each multiplied with one of the four Lorenz scalar matrices

{1 , p/ , q/ , σµνpµqν}. This choice is not unique, the basis is constrained only by
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Lorentz transformation properties. The explicit expression of general quark-gluon

vertex is given by:

Γµ(p, q) =
12∑
i=1

V i(p, q)T iµ(p, q) , (2.15)

where T iµ(p, q) is employed Dirac basis and V i(p, q) are scalar dressing functions of

the quark-gluon vertex.

The general form of the solution for Eq. 2.13 is full (dressed) quark propagator,

given in terms of two scalar dressing functions and corresponding Dirac basis and

in Euclidean space can be written as:

S−1(p) = ip/A(p2, µ2) +B(p2, µ2) = Z−1(p2, µ2)[ip/ +M(p2)] , (2.16)

where Z(p2, µ2) and M(p2) are the quark wave function renormalization and the

dressed mass function respectively. At this point we explicitly declared the renor-

malization point µ dependence of the dressing functions and introduced the µ2 - the

renormalization scale. In order to address the renormalization procedure we need

to unfold Eq. 2.13 by projecting out equations for each dressing function A(p2) and

B(p2), using projectors PA = −i p/
p2

and PB = 1 correspondingly:

A(p2) = Z2(µ) + Z1FCFg
2

∫
d4

(2π)4
Dµν(k) Tr

[
PAγµS(q)Γbν(p, q)

]
(2.17)

B(p2) = mR(µ) + Z1FCFg
2

∫
d4

(2π)4
Dµν(k) Tr

[
PBγµS(q)Γbν(p, q)

]
,

here CF = 4/3 is the Casimir operator for color SU(3) and the trace is performed

over Dirac indexes. The renomalization constants Z2 and mR can be obtained by

applying the following renomalization conditions:

A(µ2, µ2) = 1 (2.18)

B(µ2, µ2) = mR , (2.19)
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after which the equations for constants Z2 and mR read as:

Z2(µ2,Λ2) = 1− A(µ2,Λ2) (2.20)

mR(µ2) = Z2(µ2,Λ2)mbare −B(µ2,Λ2) , (2.21)

where Λ2 is numerical integration cut-off.

The Eq. (2.17) is a final representation of quark Dyson–Schwinger equation,

which is of immense importance, being the main piece of the whole framework.

The quark DSE itself allows to study the chiral symmetry breaking and dynamical

quark mass generation. It is the crucial building block for Bethe–Salpeter equa-

tion and Faddeev equations - the two-body and three-body bound state equations

correspondingly, which are to be considered in Chapter 3.

2.2 Truncation

Rainbow-ladder ansatz

The essential input to quark DSE is full(dressed) gluon propagator and full(dressed)

quark-gluon vertex, given by their own Dyson–Schwinger equations, which are form-

ing, as it was mentioned, an infinite tower of equations, setting relations between

higher order n-point Green functions. Therefore in order to be able to solve them,

we need to apply a certain truncation or ansatz for these correlation functions. As

a first step in this work we will consider a so-called rainbow-ladder truncation [23],

that on quark DSE level leads to the replacement:

Z1F
g2

4π
Dµν(q)Γ

ν(k, p)→ Z2
2Tµν(q)

αeff(q2)

q2
γν , (2.22)

here the Tµν(q) = δµν − qµqν
q2

is the transverse projector and the αeff(q2) is effective

running coupling. This is the simplest ansatz satisfying the axial Ward-Takahashi

identity (axWTI), as we will discuss in Chapter 3, and essentially takes into account

only the γµ-structure of the dressed quark-vertex and combines all dressing effects of
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the gluon and the vertex into an effective running coupling αeff(q2) . The resulting

diagram expression for quark Dyson–Schwinger equations is given on Fig. 2.2.

=
−1

+
−1 RL

Figure 2.2: The quark Dyson–Schwinger equations, within RL truncation. Lines with filled

circles note fully dressed propagators.

However, as we will show later, this truncation is very useful as a first exploratory

step toward the reverse engineering of QCD at low energies. The resulting expression

for the quark Dyson–Schwinger equation reads as:

S−1(p) = Z2S
−1
0 (p) + CF (Z2)2

∫
d4k

(2π)4
γµS(k)γνTµν(q)

4παeff(q2)

q2
, (2.23)

where CF = (N2
c − 1)/2Nc is the Casimir operator coming from the color trace.

The choice of αeff is dictated from one side by the phenomenologically required

infrared enhancement of the effective single gluon interaction, necessary for the dy-

namical generation of a constituent-like quark mass and a chiral vacuum quark

condensate. From another side its ultraviolet behaviour has to match to the pertur-

bative one and therefore ensure the preservation of one-loop results. As a model for

αeff(q2) that takes into account aforementioned criteria we take that of Maris and

Tandy [24], which explicit expression reads as following:

αeff(q2) = πη7x2e−η
2x +

2πγm (1− e−y)
log [e2 − 1 + (1 + z)2]

, (2.24)

where x = q2/Λ2, y = q2/Λ2
t , z = q2/Λ2

QCD. Here Λt = 1 GeV is a regularization

parameter for the perturbative logarithm; its value has no material impact on the

numerical results. The QCD-scale ΛQCD = 0.234 GeV controls the running of the

logarithm with anomalous dimension γm = 12/25 corresponding to four active quark

flavors. The infrared strength of this model is controlled by the parameters Λ and
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Figure 2.3: Gluon dressing function αeff (q
2)

q2 in Maris–Tandy model [24]. The Λ = 0.72 GeV and
η = 1.8 GeV

η. While Λ = 0.72 GeV is fixed from the pion decay constant, there is considerable

freedom to vary the dimensionless parameter η. The explicit view of this interaction

model, with provided parameters, is given on Fig. 2.3.

Despite the apparent simplicity of the gluon model and the truncation em-

ployed, this approach can successfully describe: light pseudoscalar and vector masses

and decay constants[24, 25], π, K+, K0 electromagnetic form factors[26], γπγ-

transition[27], strong decays[28]. In the course of this work the same approach with

a few technical adjustments was used to describe the spectra of light and heavy

mesons and to make a prediction for JPC = 3−− for charmonium and bottomonium

bound states [29, 30]. This results are represented in Chapter 4.

Unquenching effect

However the Dyson–Schwinger equations framework is not bounded to aforemen-

tioned truncation. Over the years were made a huge amount of successful efforts

to go beyond Rainbow-Ladder approach. One of promising routes is to use explicit

diagrammatic approximations to the DSE of the quark-gluon vertex [31–37].
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= + + + +

Figure 2.4: The full, untruncated Dyson–Schwinger equations for the quark-gluon vertex.

The the full, untruncated Dyson–Schwinger equations for the quark-gluon vertex

is given diagrammatically in Fig. 2.4. Here we are primarily interested in the mid-

momentum behavior of the vertex and in particular in hadronic contributions. To

lowest order in a skeleton expansion such contributions can only occur in the diagram

with the bare quark-gluon vertex at the external gluon line.

π
N

= + + + (...)

Figure 2.5: The expansion in terms of hadronic and non-hadronic contributions to the quark-

antiquark scattering kernel. The dotted line describes mesons, the dashed line baryons and the

double lines correspond to diquarks.

Consider this diagram that consists of quark-antiquark scattering kernel, which

can be expanded in terms of one-particle irreducible Green’s functions and resonance

exchange contributions, as it is given on Fig. 2.5. Of all those the term containing

the pion one-meson exchange should be dominant, since further diagrams with ex-

change of heavy mesons and baryons, (K, ρ,N, ...), are suppressed by their masses

accordingly. This approximation allows to study the pion cloud effects on the spec-

trum of light mesons [36, 38, 39] and baryons [40]. Also it is beneficial to have explicit

hadronic degrees of freedom, since the pion cloud effects are expected to play an im-

portant role in the low momentum behaviour of form factors and hadronic decay

processes of baryons [41–47]. It should be noted, however, pions are not elementary
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=
−1

+ −
π−1 RL

Figure 2.6: The quark Dyson–Schwinger equations, within Rainbow-Ladder truncation with
unquenching pion cloud effect. Lines with filled circles note fully dressed propagators.

fields and their wave functions must to be determined from their Bethe-Salpeter

equation, as we will see in Chapter 4.

On another hand, the infrared domain of the quark propagator and its analytic

structure heavily depends on the quark-gluon vertex truncations, such that, in prin-

ciple all twelve Dirac structures from Eq. (2.15) can be important [48, 49]. Therefore

it is crucial to utilise explicit notations for tensor structures of quark-gluon vertex

beyond the leading γµ term [50–54].

In the course of this work we will incorporate into the coupled system of Dyson–

Schwinger and Bethe–Salpeter equations the pion cloud effect, provided by scheme

[39], where was obtained the good agreement with lattice QCD and meson phe-

nomenology. Since this effect is generated due to the presence of dynamical sea

quarks, it can be considered as unquenching effect. In this case the truncation take

following form:

Z1F
g2

4π
Dµν(q)Γ

ν(k, p)→ Z2
2Tµν(q)

αeff(q2)

q2
γν − 1

CF
τ iZ2γ5Γπ(

p+ k

2
; q) , (2.25)

where τ i are SU(2) isospin symmetry generators and Γπ(p+k
2

; q) is the full pion wave

function, evaluated at symmetrized momenta and given by 4 Dirac components:

Γπ(p;P ) = γ5 [E(p;P )1 + F (p;P )P/ +G(p;P )p/ +H(p;P )σµνpµPν ] (2.26)

On diagrammatical level this leads to addition of an extra diagram involving the

pion exchange and pion wave function, as it is represented by Fig. 2.6. The explicit
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form of corresponding quark DSE can be written as following:

S−1(p) = Z2S
−1
0 (p) + CF (Z2)2

∫
d4k

(2π)4
γµS(k)γνTµν(q)

4παeff(q2)

q2
(2.27)

−3Z2

∫
d4k

(2π)4

[
γ5S(k)Γπ(

p+ k

2
; k − p) + γ5S(k)Γπ(

p+ k

2
; p− k)

]
Dπ(q2)

2

Where q = p − k, the quark renormalization constant Z2, the fully dressed inverse

quark propagator S−1(p) = i/pA(p2) +B(p2), inverse bare one S−1
0 (p) = i/p+m and

Dπ(q2) = 1
q2+M2

π
. The first line is the Rainbow-Ladder contribution, where the same

modelling was applied as in 2.2. The second line embodies the pion cloud effect, that

satisfies the axial-vector Ward-Takahashi(AxWTI) identity, with the vertex Γπ(p;P )

being the full pion wave function. Here, the coupling of the pion to the quark is

given by a bare pseudoscalar vertex and a full pion Bethe-Salpeter amplitude. Note,

however, that in general also the choice of two dressed vertices is possible and it is

not clear a priori, which of the two choices is the better approximation of the original

two-loop diagram. In [39] the choice with one bare vertex led to satisfactory results

in the vector-meson sector and we will therefore adopt this also here.

For a reasons of numerical simplicity we employ the approximation to the full

pion Bethe-Salpeter wave function by the leading amplitude E(p;P ) in the chiral

limit, which is due to AxWTI given by [23]:

Γπ(p;P ) = γ5E(p;P ) = γ5
B(p2)

fπ
, (2.28)

where B(p2) is the scalar dressing function of the inverse quark propagator, taken

in the chiral limit mq → 0. The fπ = 93 MeV is the pion weak decay constant.

This approximation omits the back-coupling effects of the three sub-leading am-

plitudes. Note however, this approximation is only strictly valid in chiral limit

and approximately valid at physical pion mass point. For the high pion mass cal-

culation carried out throughout this thesis we employed explicitly calculated first

pion amplitude E(p;P ) in rainbow-ladder approach, continued into complex relative

momentum p via the same continuation procedure we used for the quark propaga-
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tor, which is described in Appendix C. As it was shown in Ref. [38], where full

back-coupling has been evaluated in a real value approximation, the omission of

F (p;P ), G(p;P ), H(p;P ) pion amplitudes leads to an error of only a few percent for

meson masses and of about 10-20% for decay constants for a physical pion. Note

that we use aforementioned approximation only for the internal pion wave function,

as it sets the interaction. The biggest advantage of the approximation Eq. (2.28)

compared to the full back-coupling performed in Ref. [38] is that the Eq. (2.28)

can be solved self-consistently without any external input from pion Bethe–Salpeter

equation, so that it reduces the numerical efforts dramatically.

2.3 Numerical solution of the DSE

In this section we will demonstrate the numerical solutions of the Eq. 2.23 and 2.28.

Clearly the polarization tensor of the resulting dressed propagator must have the fol-

lowing form: S(p) = iσv(p
2)p/ +σs(p

2) and for inversed S−1(p) = −iA(p2)p/ +B(p2),

with σv = A
A2p2+B2 and σs = B

A2p2+B2 . These unknown dressing functions A(p2)

and B(p2) are the solution of quark Dyson–Schwinger equations, which we intent

to find. Throughout this work we apply the iteration method to solve the quark

Dyson–Schwinger equations, which appear to be nonlinear integral equations, and

obtain aforementioned dressing functions. We put a more detailed description of

this numerical procedure into Appendix C.

At first we consider the Euclidean space solutions of quark DSE obtained within

rainbow-ladder truncation Eq. (2.22), since the solving procedure does not require

special treatment of the integration momenta as for the pion exchange. The resulting

quark wave function Z(p2) and quark mass function M(p2) are shown on Fig. 2.7 and

Fig. 2.8 correspondingly. Note the gluon Maris-Tandy model parameters Eq. (2.24)

employed in this calculations are Λ = 0.72 and η = 1.8. The used renormalized

current quark masses parameters for different flavor and type of quarks are of the

same order as current quark masses in perturbative QCD and are given on Table.
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Figure 2.7: Z(p2) quark wave function renormalization for different types of quarks. The renor-
malizization point set to be µ = 19 GeV.

2.1. Note that we are consider the isosymmetric case, so the mup = mdown. The

chiral up/down strange charm bottom

mR [GeV ] 0 0.0037 0.085 0.87 3.79

Table 2.1: The values mR of used current quark mass parameters.

renormalization point set to be µ = 19 GeV. Aforementioned parameters are chosen

to reproduce experimental masses of pion and rho mesons, mπ, mρ and pion weak

decay constant fπ, obtained via Bethe–Salpeter equations as we will see in Chapter 5

and are given in Table. 2.2.

The Fig. 2.8 makes apparent that dynamical chiral symmetry (DχSB) is realized,

i.e. in the rainbow-ladder truncation in a form Eq. (2.22) with effective coupling

RL1 RL2 + pion cloud

Light quark (u,d,s) Heavy quarks (c,b) Light quark (u,d,s)

Λ 0.72 0.72 0.84

η 1.8± 0.2 1.257± 0.2 1.8± 0.2

Table 2.2: The values of effective single gluon model parameters.
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Figure 2.8: M(p2) quark mass function for different types of quarks. The renormalizization point
set to be µ = 19 GeV.

given by Eq. (2.24) the DχSB can provided. As we see in deep ultraviolet region

the magnitude of M(p2) quark mass function is driven by renormalized quark mass,

according to [55]. It is logarithmicaly scaling down in a presence of explicit chiral

breaking, i.e. non-zero bare quark mass mbare 6= 0, as:

M(p2) ≈ 1

[ln(p2/Λ2
QCD)]1/2π2b

(2.29)

and in chiral case it is falling as O(1/p2):

M(p2) ≈ 1

p2
[ln(p2/Λ2

QCD)]1/2π
2b−1 , (2.30)

exposing irregular and regular behaviour respectively. In the infrared domain, how-

ever, the quark mass function enhances dramatically by orders of magnitude in

comparison to current masses, especially for light quarks and chiral case. This

enhancement is a clear evidence of dynamical mass generation from current quark

mass to a constituent quark mass. Also this effect takes place at scale approximately

1 GeV2, as it is meant to occur due to hadron phenomenology. Nevertheless, as will

be shown in Chapter 5, the dynamically generated mass function in the chiral case
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Figure 2.9: M(p2) Quark mass function as function of the squared momentum.

used as input to pion Bethe–Salpeter equations lead to zero pion mass mπ = 0,

fulfilling Gell-Mann–Oakes–Renner relation Eq. (1.40).

In case of included pion cloud effect it requires extra numerical efforts to obtain the

solutions. Similarly, the parameters Λ and η were fitted in order to reproduce experi-

mental value of pion mass and pion decay constant, although the current mass of the

up quark was kept the same. The new set of parameters are Λ = 0.84 and η = 1.8.

The Λ is increased to reflect the increased interaction range due to the added pion

exchange. The resulting quark mass functions are displayed in Fig. 2.9. For the

two setups fixed by physical input, RL1 and RL2+π given in Table 2.2, we find

very similar mass functions with a difference in M(0) of less than five percent. The

quark-core setup RL2 generates slightly larger quark masses. In general, the quark

mass function encodes dynamical chiral symmetry breaking and nicely displays the

transition from the low momentum notion of a constituent quark mass to the high

momentum notion of a running current quark mass. Although the quark mass
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function is a renormalisation group invariant it is not, however, a gauge invariant

quantity and therefore not directly observable. The chiral properties of our frame-

work are also encoded in the dependence of the pion mass from the current quark

mass. Further in Chapter 4 we explicitly checked the Gell-Mann-Oakes-Renner re-

lation for all setups and find that it holds within the numerical accuracy of 2 %,

as expected from the axWTI. Also we compared our result to the lattice data on

M
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Figure 2.10: The impact of pion cloud effect on M(p2) quark mass function.

quenched and unquenched quark mass function in order to check the impact of un-

quenching effects, i.e. pion clouds with the lattice QCD. From the Fig. 2.10 we see

that although the absolute value of M(p2) in infrared does not coincide with our

calculations, the relative changes induced by unquenching pion cloud effect are of

the similar size. It was shown in [38], that the usage of Ball-Chu vertex can provide

a better agreement with lattice data. However, the inclusion of the pion exchange

does not produce any qualitative difference in a behaviour of dressing functions,

e.g. the most significant change happens in M(p2) quark mass function, where pion

clouds lead to shrinking dynamical mass generation in infrared region by 10 percent.

Also it is important to consider the order parameter of dynamical chiral sym-

metry breaking - the quark condensate [56]. Recall that in perturbative theory in
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chiral limit mq → 0 the dressing function B(p2) = 0 and therefore the mass function

M(p2) = B(p2)/A(p2) = 0 as well. However as we see from Fig. 2.8 the M(P 2) is

not zero in chiral limit. Thus, the quark condensate:

〈q̄q〉 = − lim
Λ→inf

Z4(µ,Λ)

∫ Λ d4k

(2π)4
Tr
[
Smbare=0(k)

]
(2.31)

= − lim
Λ→inf

Z4(µ,Λ)

∫ Λ d4k

(2π)4
Tr
[ B(p2)

p2A2(p2) +B2(p2)

]
, (2.32)

is nonzero by virtue of a nonzero B(p2). Here Z4 is quark mass renormalization

constant, given by:

Z4 = 2− B(µ2,Λ2)

mR(µ2)
(2.33)

The resulting value for the quark condensate in rainbow-ladder and in pion cloud

truncation are given in Table. 2.3. However, as we will see from Chapter 4 the

RL1 RL2 RL2 + pion cloud

〈q̄q〉 [MeV ] 281 300 280

Table 2.3: The values of the quark condencate for a rainbow-ladder and pion cloud
truncation in comparisson.

nonzero B(p2) in chiral case still generates the massless pion, thus ensuring the pi-

ons to be the Goldstone bosons.

Continuation into time-like region

The solutions of quark Dyson–Schwinger equations we obtained so far are already

a very valuable source of information about dynamical chiral symmetry breaking.

However, as we stated earlier, the parameters of effective coupling should be fitted

in a such way that the pion mass and weak decay constant are reproduced by Bethe–

Salpeter equation (BSE) of pion bound state. And this equations itself requires as

input the solutions of the quark Dyson–Schwinger equations (DSE). Due to certain

kinematic scheme of BSE, which will be clarified in Chapter 5, the input from quark
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DSE must be provided partially in time-like region p2 < 0. Namely on the contour

in complex plane, which parametric form is defined by mass of bound state to be

calculated:

p2 = t2 + itMstate −
M2

state

4
(2.34)

For the parameter t ∈ [−∞,∞] defining the contour in complex plane, in our com-

putations we use Legendre integration nodes. This specific form of the contour will

be derived later, when the details of kinematic of the bound state BSE will be con-

sidered.

Brute-force way to the continuation is to invoke the Eq. (2.23) on complex p-

momentum, using space-like the solution S(k) as input in equations. In this case

the relative momenta q = p− k will become complex as well and effective coupling

model will be invoked in time-like region. There are several issues associated with

the analytic continuation in this kinematic scheme: on one hand, the q-momentum

is no longer real and therefore usage of Maris-Tandy(MT) model Eq. (2.24) may

produce numerical glitches; on another hand, in the pion propagator, given in form:

Dπ(q2) = 1
q2+M2

π
, complex q-momenta will probe the pion pole, therefore diverging

any integration. Thus this kinematic scheme can only be applied for Rainbow-ladder

calculation.

The resulting continuation in σv = A
A2p2+B2 dressing function for quark propagator

are given is Fig. 2.11.

Recall, the inverse quark propagator is given in the form:

S(p) = iσv(p
2)p/ + σs(p

2) , (2.35)

whether the inverse one:

S−1(p) = −iA(p2)p/ +B(p2) (2.36)

As we can see from Fig. and Fig. the quark propagator has two poles, that come
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Figure 2.11: Analytic continuation of quark dressing σV .

from the common denominator in σv and σs functions:

1

A2p2 +B2
(2.37)

Note however, these poles are not corresponding to asymptotic state, since they

are not lying on real P 2 axis. Also it was shown in [38] that the inclusion of the

pion cloud effect does not change the non-analytic structure of the quark, as it was

required from Gribov’s supercriticality picture of quark confinement.

k

q = p− k

p p

k

q = p− k

k k−→

Figure 2.12: Shifting momenta routing.

In order to be able to perform similar continuation for the DSE with pion cloud
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effect included we need to change momenta routing in a such way, that integra-

tion real k-momentum would flow through gluon and pion propagators and complex

q = p − k would go though quark propagator. This is diagrammatically given in

Fig. 2.12. This allows us to solve two problems in the same time: firstly, use Maris-

Tandy model on real axis as it is meant to be used; secondly, do not hit a pole in

pion propagator Dπ(k2) = 1
k2+M2

π
. However it requires more sophisticated numerical

approach in order to solve quark DSE - so-called ”Grid-to-Contour” iteration, which

is described in Appendix C.

At this point we considered a key piece in whole DSE/BSE calculation frame-

work: the quark Dyson–Schwinger equations. We studied its various truncations

and physical meaning behind them. We obtained the solutions associated with

quark DSE in rainbow-ladder and pion cloud truncations, observed the dynamical

chiral symmetry breaking and continued these solutions into time-like region for the

further use in meson Bethe–Salpeter equations.



Chapter 3

QCD Bound States

3.1 Bethe-Salpeter equation

Bound states in QCD are composite color-scalar objects made of color-carrying par-

ticles. Starting from common two-body state qq̄ like meson and three-body state qqq

like baryon, and ending with exotic not-yet-detected-but-possibly-existing states like

tetraquarks qqq̄q̄, glueballs GG and hybrids qqG. Due to usual form of propagator

of massive particle 1
p2+M2 a bound state produce a pole in the scattering amplitude

in the corresponding channel. For a composite bound state, the pole can not be

generated by any finite sum of Feynman diagrams [57], but only by infinite series.

However it is not possible in general, so instead we may consider to strive for an

infinite sum of diagrams of a particular class, which are we assume to be dominant

and crucial for a given process (i.e. all ladder diagrams). This can be archived by

finding an appropriate integral equation, the solutions of which can be interpreted

as the result of such particular summation.

In order to derive aforementioned integral equation let us consider the Dyson–

Schwinger equations for quark-antiquark scattering amplitude:

M(p, q;P ) = K(p, q;P ) +

∫
d4k

(2π)4
K(p, k;P )G(k, P )M(k, q;P ) , (3.1)

where M(p, q;P ) is the scattering amplitude, G(k, P ) is two-quark full propagator,

47
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K(p, q;P ) is the two-body irreducible scattering kernel. This equations is illustrated

diagrammatically on Fig. 3.1.

M M+= K K

Figure 3.1: Dyson–Schwinger equations of quark-antiquark scattering amplitude. The dots on

quark lines denote dressed (full) quark propagators

If the kernel is ”small”, so that the perturbation series converge, the solution of

Eq. (3.1) can be obtained by iteration. The following Born series schematically take

the form:

M = K +

∫
KGK +

∫ ∫
KGKGK + ... +

(∫
KG

)n
K + ... (3.2)

After replacing the integrals in Eq. (3.2) by sums over discrete points in momen-

tum, so that K and M are matrices and G a diagonal matrix, when the Eq. (3.2)

can be formaly considered as a geometric sum, giving:

M = K +KGK +KGKGK + ... + (KG)nK + ... (3.3)

= (1−KG)−1K (3.4)

This expressions is similar to the simple complex function:

f(z) =
z

1− z , (3.5)

which is the unique analytic continuation of the series:

f(z) =
∑
n

zn , (3.6)

from the unit circle |z| < 1 to the region outside, |z| ≥ 1, with the pole at z = 1. In

case z being a matrix, one can generalize that z has the eigenvalue λ equal to one,
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so that the corresponding condition can be written as:

e = ze , (3.7)

where e is the eigenvector. Therefore in case of Eq. (3.4) the condition for a pole

in the scattering amplitude M is following:

Γ(p;P ) =

∫
k

K(p, k;P )G(k, P )Γ(k;P ) , (3.8)

here
∫
k

denotes 4-momenta integration with appropriate weight. Apparently, this

is the integral equation for a bound state, and Γ refers to the bound state wave

function. As a final step we need to write explicitly the two-quark full propagator

G = SΓS, so the equation writes as:

Γ
(µ...)
tu (p;P ) = λ(P 2)

∫
d4k

(2π)4
Ktu;rs(p, k;P )

[
S(k+)Γ(µ...)(k;P )S(k−)

]
sr
, (3.9)

where the λ(P 2) is eigenvalue. This is the homogeneous (on-shell) Bethe-Salpeter

equation (BSE) [58, 59] and the function Γ is vertex function, whose dressing func-

tions are so-called the Bethe-Salpeter Amplitudes (BSA). The tu; rs denote a rele-

vant Dirac indexes and (µ...) reflect the Lorenz structure of the wave function. We

will address an explicit representations of basis tensors later. The momenta k+, k−

obey the momenta conservation law k+−k− = P , where P 2 = −M2
meson is the meson

mass shell. This allow us to represent k+, k− as:

k+ = k + ζP , (3.10)

k− = k − (1− ζ)P , (3.11)

where ζ ∈ (0, 1) is partitioning parameter specifying the fraction of P carried by

quarks. Note that the out-coming results are independent of ζ, however varying this

parameter may increase the numerical complexity. Therefore for quark symmetric

bound states like: n̄n, s̄s, c̄c, etc. we employ the equal partitioning ζ = 1
2
. The Eq.

(3.9) is diagrammatically given on Fig. 3.2.
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= K

Figure 3.2: The meson Bethe–Salpeter equations.

This equations is a sufficient and necessary condition for a pole to appear in M

4-point Green’s function at P 2 = −M2
meson. Numerically this means we need to

solve inverse problem, so that we need to search for the P 2 such that λ(P 2) = 1.

The Eq. (3.9) can be transformed to inhomogeneous (off-shell) by adding a bare

term to Bethe–Salpeter equations :

Γ(µ...)(p;P ) = Γ
(µ...)
0 (p;P ) +

∫
k

K(p, k;P )
[
S(k+)Γ(µ...)(k;P )S(k−)

]
, (3.12)

here the Γ
(µ...)
0 is a bare tern, which obviously must have the same Dirac and Lorenz

structure as the full one Γ(µ...), but the BSA equal one. The off-shell meson BSE is

illustrated on Fig. 3.3.

=Γ
P

p+

p−

+
Γ0P

p+

p−

Γ

p+

p−

P

k+

k−

K

Figure 3.3: The inhomogeneous (off-shell) meson Bethe–Salpeter equations.

Note that the inhomogeneous BSE given by Eq.(3.12) is no longer an eigenvalue

problem, therefore has to be solved iteratively. The detailed instructions are given

in Appendix C.
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3.2 Total angular momentum tensor

With the truncation set we are close to perform the inevitable calculations, however,

the last piece from a recipe is missing. If we make a look on meson Bethe–Salpeter

equations again:

Γ
(µ...)
tu (p;P ) = λ(P 2)

∫
d4k

(2π)4
Ktu;rs(p, k;P )

[
S(k+)Γ(µ...)(k;P )S(k−)

]
sr
, (3.13)

we see that the Dirac and Lorenz structure of Γ
(µ...)
tu (p;P ) yet still unspecified and

therefore the quantum numbers JPC of the meson under considerations are not yet

determined. In order to do so, we choose the appropriate basis for Γ
(µ...)
tu (p;P ), such

the quantum numbers JPC of the meson would be clear.

It is well known that composite states of particles in the (j, 0)⊕(0, j)-representation

can be constructed by forming direct products of the particle’s representation [60,

61]. For fermions, j = 1/2, this reduces to the Dirac spinor formalism and thus is

given by the usual Dirac matrices.

For a meson in the rest frame with center-of-mass momentum Pµ and relative

quark momentum pµ, grouped by their transformation under parity we have

D(1) =
(

1 Pµγ
µ pµγ

µ pµPν
1
2

[γµ, γν ]
)
, (3.14)

D(5) =
(
γ5 γ5Pµγ

µ γ5pµγ
µ γ5pµPν

1
2

[γµ, γν ]
)
, (3.15)

for scalar, D(1), and pseudoscalar, D(5), invariants respectively. Thus, for a bound-

state of two fermions with definite parity, the basic number of scalar invariants

equals four. Furthermore, it is convenient to replace the relative momentum pµ by

Qµ = τ (P )
µν pν , (3.16)

where τ
(P )
µν = δµν −PµPν/P 2 is a transverse projector. Then, appropriate scalar and
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pseudoscalar invariants are

D̄(1) =
(

1 /P /Q /Q/P
)
, D̄(5) = γ5D̄

(1) , (3.17)

which simplifies the operation of charge conjugation due to the fact that Q · P = 0.

Then, a bound state with zero total angular momentum and definite parity is

decomposed in terms of four components

Γ(Parity)(p, t) =
4∑
i=1

[
AiD̄

(Parity)
i

]
, (3.18)

where Ai denotes Bethe–Salpeter amplitude - the scalar dressing function.

For non-zero total angular momentum J , the Ai scalar invariants must be cou-

pled with an angular momentum tensor. This rank J tensor, Ta1,...aJ , has 2J + 1

independent components in three spatial dimensions, corresponding to the possible

spin polarisations [62]. This tensor must be symmetric in all indices and traceless

with respect to contraction of any pair of indices. This generalizes to 3+1 dimensions

by imposing transversality of each index with respect to the total momentum.

Thus, to obtain a tensor corresponding to total angular momentum J , we con-

struct the symmetric J-fold tensor product of a transversal projector transforming

like a vector, and subtract traces with respect to every pair of indices.

Then, in general a meson of spin J > 0 and parity P has eight components and

is written

Γ(Parity)
µ1...µJ

(p, P ) =
4∑
i=1

[
AiQµ1...µJ D̄

(Parity)
i + Ai+4Tµ1...µJ D̄

(Parity)
i

]
, (3.19)

where the Qµ1...µJ , Tµ1...µJ are defined below and Ai = Ai(p, P ). The explicit expres-

sions for J = 1, 2, 3 can be found in Appendix B. Therefore by choosing appropriate

basis can define the JPC quantum numbers of the meson under consideration.
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Axial-vector Ward Takahashi Identity

In previous chapter we saw how the phenomena of dynamical symmetry breaking

appear in calculation, by observing a nonzero order parameter, namely, the quark

condensate 〈q̄q〉. This fact together with appearance of massless pion in the me-

son spectrum is a clear indication of dynamical chiral symmetry breaking in QCD,

where pions are identified with the Goldstone bosons of the broken symmetry. The

satisfaction of axial-vector Ward Takahashi Identity (axWTI) is crucial for a proper

description of this phenomena within the Dyson–Schwinger - Bethe–Salpeter equa-

tions approach [23]. Moreover, as we will see, the satisfaction of axial-vector Ward

Takahashi Identity provides the pion vertex ansatz, shown in Eq.(2.28).

The axial-vector Ward Takahashi Identity in chiral limit takes the following form:

−iPµΓj5µ(k;P ) = S−1(k+)γ5
τ j

2
+ S−1(k−)γ5

τ j

2
, (3.20)

where the axial-vector vertex is:

Γj5µ(k;P ) =
τ j

2
γ5[γµF (k;P ) + γ · kkµG(k;P )− σµνkνH(k;P )] (3.21)

+ fπ
Pµ
P 2

Γjπ(k;P ) , (3.22)

fπ is pion weak decay constant and Γπ is general pion wave function, with the de-

composition given in Eq.(2.26). Substituting Eq.(3.22) and Eq.(2.26) into Eq.(3.20)

and taking limit m2
π → 0 one obtains the chiral limit relations between pion dressing

functions and quark dressing functions [25]:

fπEπ(k; 0) = B(p2) (3.23)

F (k; 0) + 2fπFπ(k; 0) = A(p2) (3.24)

G(k; 0) + 2fπGπ(k; 0) = 2A(p2) (3.25)

H(k; 0) + 2fπHπ(k : 0) = 0 , (3.26)

where Eπ, Fπ, Gπ and Hπ are scalar dressing functions of the pion Bethe–Salpeter
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amplitude. And the pion electroweak decay constant can be calculated via:

fπ =
Z2NC

m2
π

∫
d4k

(2π)2
PµTr

[
Γπ(k;P )S(k−)γµγ5S(k+)

]
, (3.27)

here NC is the color factor. Note however, the full pion vertex Γπ has to be properly

normalized.

3.3 Normalization of the BSA

The meson bound state equation Eq.(3.9) and eigenvector Γ is defined up to arbitrary

multiplicative factor, to fix which we need to impose the normalization condition on

Γ. The canonical normalization [63] has the following form:

1 = 2
∂

∂P 2
Tr

∫
d4k

(2π)4

[
3(Γ̄(k,−Q)S(k + P/2)Γ(k,Q)S(k − P/2))

+

∫
d4k′

(2π)4
(χ̄(k′,−Q)K(k′, k;P )χ(k,Q))

]
, (3.28)

where Q2 = −M2
meson is fixed on mass shell and the Bethe-Salpeter wave-function

is defines as:

χ(k;P ) = S(k + P/2)Γ(k;P )S(k − P/2) (3.29)

The charge conjugated vertex function Γ̄ is given by:

Γ̄(k;P ) = CΓT (−k;P )C−1 , (3.30)

here C = −γ2γ4 is a charge conjugation matrix and index T denotes the transposi-

tioning.

Although the Eq.(3.28) is a valid way to normalize Γ, it requires significant

numerical efforts, since for it involves double momenta integration. Therefore it is
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useful to consider alternative way to normalize BSA, given by [37, 64, 65]:

(1

λ

∂λ

∂P 2

)−1

=

∫
d4k

(2π)4
Tr
[
Γ̄(k,−P )S(k + P/2)Γ(k, P )S(k − P/2))

]
, (3.31)

where the eigenvalue λ = 1 at P 2 = −M2
meson. This normalization equations is ben-

eficial, since it requires only one-loop integration and independent of the employed

truncation.

3.4 Scattering kernel K

So far we discussed a general meson Bethe–Salpeter equations without specifying the

truncation of BSE, which uniquely defined by truncation imposed on quark Dyson–

Schwinger equations before. The reason for such connection is that the solutions of

pion BSE must fulfil the axial-vector Ward Takahashi Identity in order to provide

the dynamical chiral symmetry breaking and fulfil Gell-Mann-Oakes-Renner relation

(GMOR), given by Eq.(1.40) in case of the explicit chiral symmetry breaking.

p

p

k

k

−→ qK

p

p

k

k

Figure 3.4: Rainbow-ladder effective one gluon exchange kernel. The filled dot represents the

effective dressing via αeff(q2).

In case of effective one gluon exchange also known as rainbow-ladder truncation

as it was discussed in the previous chapter, the two-body scattering kernel K(p, k;P )

takes the following form:

Ktu;rs(p, k;P ) = Z2
2

(
δµν − qµqν

q2

)αeff(q2)

q2

[λa
2
γµ
]
ts

[λa
2
γν
]
ru
, (3.32)
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where λa are Gell-Mann matrices, the q = p− k is relative momentum, the indexes

{tu; rs} denote explicitly Dirac indexes, Z2 is renormalization constant from quark

DSE and αeff(q2) is the same model for effective coupling as in Eq.(2.24), used with

the same parameters as for quark DSE calculation. This Eq. (3.32) kernel is illus-

trated diagrammatically on Fig. 3.4.

In case of the unquenching pion cloud effect we need to introduce an additional

contribution to the two body kernel, so can be represented as a sum:

K(p, k;P ) = Kgluon(p, k;P ) +Kpion(p, k;P ) , (3.33)

where Kgluon(p, k;P ) is given by Eq.(3.32) and Kpion(p, k;P ) is effective one pion

exchange scattering kernel. The explicit view of Kpion(p, k;P ) takes the following

form [38, 39]:

Kpion
tu;rs(p, k;P ) =

1

4
[Γjπ]ru

(
p+ k − P

2
; p− k

)
[Z2τ

jγ5]tsDπ(q2) (3.34)

+
1

4
[Γjπ]ru

(
p+ k − P

2
; k − p

)
[Z2τ

jγ5]tsDπ(q2)

+
1

4
[Γjπ]ru

(
p+ k + P

2
; p− k

)
[Z2τ

jγ5]tsDπ(q2)

+
1

4
[Γjπ]ru

(
p+ k + P

2
; k − p

)
[Z2τ

jγ5]tsDπ(q2) ,

here τ j is a SU(2) isospin Pauli matrices and the pion propagator Dπ in the same

form as it was used in quark DSE:

Dπ(q2) =
1

q2 +m2
π

(3.35)

The extended kernel in Eq.(3.33) is represented illustratively on Fig. 3.5.. However,

alike in case of quark Dyson–Schwinger equations , as a pion vertex Γπ we employ

the same approximation as we did in quark DSE in previous chapter:

Γπ(p;P ) = γ5E(p;P ) = γ5
B(p2)

fπ
(3.36)
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Figure 3.5: Rainbow-ladder effective one gluon and pion exchange kernel. The double line
represents the pion propagator Dπ and filled dots on pion exchange diagrams denote pion vertex
Γπ.

This approximation has negligible difference, since the first pion amplitude E(p;P )

is dominant, but provides the significant numerical simplification. Apparently, the

Eq.(3.36) naturally follows from Eq.(3.26). Recall, for the high pion mass calcula-

tions we used explicitly calculated first pion amplitude E(p;P ) in rainbow-ladder

approach.

Finally, note that the interaction kernel Eq. (3.35) is not the full story in terms

of diagrams. If the kernel were derived by the usual ’cutting of diagrams’ procedure

as e.g. in a 2PI approach [66], a diagram would appear containing two internal

pions. Such a diagram contains the important physics of opening up two-pion decay

channels for certain kinematics, relevant for example in the vector-meson sector. At

present the resulting two-loop diagrams in the quark-antiquark interaction have not

been addressed in the DSE/BSE approach due to the numerical complexity involved.

While a more complete approach finally has to deal with the two-loop diagram, in

this exploratory calculation we will resort to the ladder contribution only.

3.5 Fadeev equation

The 3-body bound state equation can be derived in a similar way as a meson BSE in

Section 3.1. One has to consider the Dyson–Schwinger equations for the three-quark

scattering amplitude M(qqq) and applying the same idea as of dominant bound state

pole contribution to M(qqq), one can derive the 3-body bound state equation, so-

called Faddeev equation, that defines the mass and internal structure of baryons.
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Within Faddeev equation framework were performed covariant three-body calcula-

tions of nucleon, delta and omega masses [67–69] as well as their electromagnetic

elastic and transition form factors [45–47]. The Faddeev equation in its explicit form

reads as:

Ψ = −iK̃(3) G
(3)
0 Ψ +

3∑
a=1

−iK̃(2)
(a) G

(3)
0 Ψ , (3.37)

where K̃(3) and K̃(2) are the three- and two-body interaction kernels, respectively,

and G0 represents the product of three fully-dressed quark propagators S. We used

here a compact notation where indices have been omitted and we assume that dis-

crete and continuous variables are summed or integrated over, respectively. The

spin-momentum part of the full amplitude Ψ depends on the total and two relative

momenta of the three valence quarks inside the baryon. As discussed in more detail

in Section 5.2, this amplitude contains all possible spin and orbital angular momen-

tum contributions. To solve the system formed by equations (3.37) one needs to

Ψ Ψ Ψ ΨΨ
K(2)

K(2)

K(2)K(3)= + + +

Figure 3.6: Diagrammatic representation of the three-body Bethe-Salpeter equation.

know the interaction kernels and the full quark-gluon vertex. The latter could in

principle be obtained from the infinite system of coupled DSEs and BSEs of QCD.

In practice, however, this system has to be truncated into something manageable,

which implies that educated ansätze have to be used for the Green’s functions one

is not solving for. In the quark-antiquark channel, a connection of those with the

quark-gluon interaction is established via the axial-vector Ward-Takahashi identity,

which ensures the correct implementation of chiral symmetry in the bound state

equations [23, 66].

When the pion exchange is included the resulting three-body equation is formally
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of ladder type and explicitly given by:

ΨαβγI(p, q, P ) =∫
k

[
K̃ββ′γγ′(k) Sβ′β′′(k2)Sγ′γ′′(k̃3) Ψαβ′′γ′′I(1, P )

+ K̃αα′γγ′(−k) Sγ′γ′′(k3)Sα′α′′(k̃1) Ψα′′βγ′′I(2, P )

+ K̃αα′ββ′(k) Sα′α′′(k1)Sβ′β′′(k̃2) Ψα′′β′′γI(3, P )
]
, (3.38)

with K̃ = K̃RL − K̃pion and the generic index I in Ψ refers to the bound state

and the first three Greek indices refer to the valence quarks [67–69]. The Faddeev

amplitudes depend on the total baryon momentum P and two relative momenta p

and q

p = (1− ζ) p3 − ζ(p1 + p2) , p1 = −q − p

2
+

1− ζ
2

P ,

q =
p2 − p1

2
, p2 = q − p

2
+

1− ζ
2

P ,

P = p1 + p2 + p3 , p3 = p+ ζP ,

(3.39)

with p1, p2 and p3 the quark momenta and ζ a free momentum partitioning parame-

ter, which is chosen to be ζ = 1/3 for numerical convenience. The quark propagators

depend on the internal quark momenta ki = pi−k and k̃i = pi +k, with k the gluon

momentum. Similarly, the internal relative momenta (j, P ) ≡ (p(j), q(j), P ) for each

of the three terms in the Faddeev equation are

p(1) = p+ k, p(2) = p− k, p(3) = p,

q(1) = q − k/2, q(2) = q − k/2, q(3) = q + k .

(3.40)
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Chapter 4

Meson Properties

At this point we are ready to combine all pieces of the DSE/BSE recipe we needed

and study the static properties of mesons, as the solutions of the Bethe–Salpeter

equations . Here by static properties mesons we understand the following: the be-

havior of the meson vertex dressing functions; how their masses depend on quark

mass, used in corresponding quark DSE; the non-analytical structure of the off-shell

inhomogeneous Bethe–Salpeter equations; the spectroscopy of the ground and ex-

cited states and their connection to infrared shape of the effective gluon coupling.

Scientific results represented in this chapter were reported in [29, 30]

The meson is the simplest color neutral state of QCD, consisting of a quark

and an antiquark. Its two-fermion structure gives rise to particular combinations of

quantum numbers JPC often characterized within the quark model. However, simi-

lar (and exotic) quantum numbers may arise for so-called hybrid states that contain

one or more constituent gluons, as well as more complex ones such as glueballs,

meson molecules and tetraquarks. These states may mix into each other, thus pro-

viding a rich and complicated spectrum explored in many experiments. This may

be particularly true for the light meson sector, where a huge amount of approaches

and theoretical frameworks is available. Relativistic quark models, effective chiral

Lagrangians, Hamiltonian approaches, QCD sum rules, Dyson-Schwinger and func-

tional renormalisation group methods as well as lattice QCD are methods of choice,

see e.g. [70] for a recent review and a guide to further reading.

61
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The reason of extension of this framework to the heavy quark sector is the in-

triguing discovery of Belle, Babar, BES and the LHC experiments of the XYZ-states.

Certainly, the potential of these states to guide us in our understanding of the under-

lying physics of the strong interaction is enormous, as detailed e.g. in Refs. [71–74].

From a theoretical QCD perspective charmonia is extremely interesting since it com-

bines effects of non-perturbative QCD with perturbative concepts in the heavy quark

regime. Model calculations in terms of relativistic quasipotentials reproduce many

features of the spectrum [75–78] and provide important guidance on the structure

of the spectrum. Also the lattice gauge theory has made efforts to determine the

spectrum of ground and excited states as well as exotics in dynamical calculations,

see e.g. [79–83] and references therein as well as [84, 85] for short reviews.

The purpose of this chapter is three-fold. At first step we consider the basic

properties of the solutions of meson BSE, such as the behaviour of the eigenvalue

curve, the shape of meson dressing functions and the satisfaction of the Gell-Mann-

Renner-Oakes relation. Then since we added to the well-known representations of

(pseudo-)scalar, (axial-) vector and (pseudo-)tensor states [60–62, 86] an explicit

basis construction for mesons, given in Appendix B, with J = 3, we report on

an important technical extension: the explicit study of Regge-trajectories in the

DSE/BSE framework. And at third step we employ the J = 3 extension to make

the prediction about the masses of JPC = 3−− bound states in charmonium and

bottomoinum. In addition, we generalize the frequently used Maris-Tandy interac-

tion in order to explore the impact of the shape of the interaction, with an emphasis

on the resultant splitting between different meson channels and their excited states.

4.1 Solutions of Meson BSE

The solutions of meson BSE are obtained via Eq. 3.9:

Γ
(µ...)
tu (p;P ) = λ(P 2)

∫
d4k

(2π)4
Ktu;rs(p, k;P )

[
S(k+)Γ(µ...)(k;P )S(k−)

]
sr
, (4.1)
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This equation can be addressed and solved for all eigenvalues by eigenvalue decom-

position procedure as it is described in Appendix C.
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Figure 4.1: The behaviour of λ in respect to P 2 for pion and rho correspondingly.
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Figure 4.2: The pion and rho bound states masses as functions of the quark mass. GMOR square

root type behaviour for the pion in the vinisity of chiral limit is indicated.
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Figure 4.3: The γµ component of vector meson Bethe–Salpeter amplitude of ground state in
respect to (p2, z) dependence.

Figure 4.4: The γµ component of vector meson Bethe–Salpeter amplitude of excited state in

respect to (p2, z) dependence.
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The result of such calculation is a point on the graph (λ(P 2),M), where P 2 =

−M2. In order to find the mass of meson bound state we search the point where

the eigenvalue curve crosses the line λ(P 2) = 1, as it is illustrated on Fig. 4.1 for

JPC = 0−+ pseudoscalar channel and for JPC = 1−− vector channel. The employed

single gluon rainbow-ladder truncation fulfils GMOR behaviour as it is shown on

Fig. 4.2. Note that our calculation is not restricted to only ground state, in principal

the eigenvalue calculation gives access to the lambda curve of any excited state and

the limit how high we search for the state to appear comes only from non-analytical

structure of used quark propagator.

This approach is also beneficial since for every eigenvalue λ we can obtain corre-

sponding eigenvector A, and therefore the meson vertex function Γ(µ...)(p;P ). As an

example the first amplitude of ground state ρ(770) in vector channel is given on Fig.

4.3, together with the first amplitude of excited state ρ′ on Fig. 4.4. It is apparent

that the BSA of excited state expose zero-crossing along the p2 axis. The similar

behaviour for meson wave function we can see if we consider the radial excitations

within the naive quark model calculation involving Schroedinger equation with Cor-

nell potential. This fact allows us to identify the radial excitations among obtained

excited states.

4.2 Light Quark Meson Spectroscopy

Firstly we consider the rainbow-ladder ansatz, where the interaction kernel admits

no mixing between states. Furthermore we work in the isospin symmetric limit

using equal current quark masses mu = md = 0.0037 GeV at a renormalization

scale of µ = 19 GeV. Since we are in isospin symmetric limit, our calculated meson

spectrum is degenerate in the isoscalar/isovector channel for n = u, d quarks. The

explicit numbers can be found in Table 4.1 and in Table 4.2. In Fig. 4.5 we display

the resulting spectrum for nn̄ mesons, and compare with the isovector channel from

experiment. The input up/down quark masses are fixed such that the experimental

mass of the π0 is reproduced. The resulting ground state mass in the vector channel
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is also in good agreement with experiment. This is not true, however, for the scalar

and axialvector states as noted frequently before, see e.g. [32]. Here, the deficiency

of the rainbow-ladder truncation is obvious and on the 20-40 % level. In the scalar

channel there is some evidence that the lowest lying nonet may not be identified as

simple quark-antiquark states, but may be better described as tetraquarks, see e.g.

[87–91] and Refs. therein. Therefore we compare with the a0(1450), noting that in

rainbow-ladder and without potential mixing with the scalar glueball state there is

no hope to reproduce the experimental value.

The situation is considerably better for the lowest lying tensor state [86], which

for the upper value of the considered η-band is even on the 5 % level compared

to the experimental value. While the other tensor states are again far off, at least

where comparison with experiment is possible, the situation is again acceptable for

the tensor meson with J = 3 and PC = {−−}. Its mass of 1528+71
−184 MeV compares

well with both the isovector ρ3 of mass 1688.8 ± 2.1 MeV (shown in the figure)

and the isoscalar ω3 of mass 1667 ± 4 MeV with again a deviation on the 5 %

level for the upper range of the η-band. In contrast, we find no bound state in the

JPC = 3+−-channel, whereas for the JPC = 3++ state with mass 1510+81
−100 MeV

there is no well established experimental counterpart. The good agreement in states

JPC = 1−−, 2++, 3−− with experiment can be explained in notions of the (pseudo)-

potentials used in the quark model. In this language, what distinguishes these

channels from the others is that the non-contact part of the spin-spin interaction is

vanishing or small: for the hyperfine splitting between the pseudoscalar and vector

channels the contact part of the spin-spin interaction is dominant, whereas for the

JPC = 2++, 3−− states the spin-orbit forces prevail. For all other channels consid-

ered, there are sizeable contributions from the tensor part of the spin-spin interac-

tion. Since these are the channels that are off, we conclude, that the rainbow-ladder

interaction roughly reproduces the size of the contact part of the spin-spin interac-

tion and the spin-orbit force, but materially overestimates the binding in the tensor

part of the spin-spin interaction.
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Figure 4.5: The calculated nn̄ spectrum, compared to the isovector mesons as measured in
experiment. The green bands correspond to the variation η = 1.8 ± 0.2. Due to the structure of
the propagator, in the case of η = 2.0 more states are accessible; these are given by the single
orange lines. The states to the right of the dividing line correspond to exotic quantum numbers.

As for the exotic channels we find states for JPC = 0−−, 0+− with no experi-

mentally established counterpart, whereas our value for the JPC = 1−+ is about

25 % lower than the π1(1400). The physical nature of these exotic states is yet

obscured, indicating the need to extend the effective single gloun exchange model

further. Concerning the excited states, these are in general much too low [92] in

agreement with the general finding for the ground states. A variation of the η-value

in general does not improve this picture; also it is noteworthy that higher excited

states only appear for very specific values of η.

Next we discuss the ss̄ spectrum displayed in Fig. 4.6. Here the input value of

the strange quark mass of ms(19 GeV) = 0.085 GeV at the renormalization point is

determined from matching to the experimental value of the kaon mass. First note

that the pseudoscalar ss̄-state is too light in this truncation since neither the effect

of the UA(1) anomaly (see e.g. [93] for a treatment of the anomaly in the BSE

formalism) nor flavor mixing with the nn̄ states is considered. For the excited state

in the pseudo-scalar channel the surprisingly excellent agreement with the η(1405)
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Figure 4.6: Calculated ss̄ spectrum, compared to experiment. The green bands correspond to
the variation η = 1.8 ± 0.2. Due to the structure of the propagator, in the case of η = 2.0 more
states are accessible; these are given by the single orange lines. The states to the right of the
dividing line correspond to exotic quantum numbers.

extracted from experiment may be accidental. In the vector channel, where mixing

effects do not play a major role we observe good agreement of our bound state mass

with experiment. The same is true for the JPC = 2++ and JPC = 3−− channels,

where the upper boundary of the η-band almost reproduces the experimental values

for the f2(1525) and the ϕ3(1850). Again, these are the channels with dominating

spin-orbit forces in the language of the potential models. In general, the pattern of

states in the ss̄ spectrum is very similar to the one found for the nn̄ mesons due to

the flavor independence of the underlying rainbow-ladder interaction model.

In the case of strange mesons, ns̄, one is no longer able to assign either C or

G parity to a state. Thus, here there are no states with explicitly exotic quantum

numbers. The spectrum, as calculated within the rainbow-ladder approximation,

is given in Fig. 4.7. As already mentioned above, the strange quark mass is cho-

sen such that the calculated K0,± is in agreement in experiment; the remaining

spectrum is a result of the model. While the vector ground state is in reasonable

agreement with experiment, the remaining spectrum does not fare so well (as in



4.3. HEAVY QUARK MESON SPECTROSCOPY 69

K0(493)

K0*(1430)

K*(892)

K*(1410)

K*(1680)

K1(1270)

K1(1400) K2*(1430)

K2(1770)
K2(1820) K3(1780)

M
[G

eV
]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

JP
0− 0+ 1− 1+ 2− 2+ 3− 3+

η = 2.0
9
14
PDG

PDG
η = 1.8
η = 2.0

Figure 4.7: Our calculated ns̄ spectrum, compared to experiment. The green bands correspond
to the variation η = 1.8 ± 0.2. Due to the structure of the propagator, in the case of η = 2.0
more states are accessible; these are given by the single orange lines. The states to the right of the
dividing line correspond to exotic quantum numbers.

the unflavored case). Along with the usual J = 1 and J = 2 mesons, we find two

states with J = 3, one with positive and one with negative parity. For the latter,

we have a mass of 1646.9 (found for η = 2.0 only) which compares well with the

experimentally known K?
3 whose mass 1776 ± 7 is within 10%. The positive par-

ity state is similar in mass, 1673.4, but the K3 has not been seen in experiment.

The results strongly indicate that the ns̄ system should be investigated in a beyond

rainbow-ladder approximation, in order to find stronger agreement for the majority

of low-lying states.

4.3 Heavy Quark Meson Spectroscopy

Charmonia

We approach the study of heavy quark 2-body systems within rainbow-ladder Trun-

cation using the vanilla Maris-Tandy interaction, i.e. we keep the scale Λ = 0.72

from the light meson sector and explore the dependence of the spectrum on η.

Since JPC = 1−−, 2++, 3−− states are well represented in the vanilla Maris-Tandy
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nn̄ ss̄

JPC n = 0 n = 1 n = 2 n = 0 n = 1 n = 2

0−+ 138.1+1.3
−0.6 1103.0† 1770.1† 696.3+2.4

−1.7 1426.3−76.6

0−− 828.8+66.9
−57.1 1133.8+68.0

−50.8

0++ 643.6+17.6
−37.6 1266.9† 1769.1† 1079.4+1.7

−7.9 1643.6†

0+− 1035.5+66.8
−38.8 1386.7+68.8

−37.9

1−+ 1043.9−37.0 1347.3+73.2
−43.7 1870.1‡

1−− 757.2+1.2
−0.6 1022.6+ 9.2

−29.2 1331.9† 1087.8+1.8
−2.2 1413.1+38.8

−42.1 1666.9†

1++ 969.4+15.6
−23.9 1188.1† 1301.0+34.7

−28.5 1591.9+181.2

1+− 852.1+13.6
− 5.2 1017.4+ 0.6

−21.4 1345.2† 1205.1+51.8
−46.6 1372.0+34.4

−39.5 1831.6†

2−+ 1226.5+73.9
−80.0 1513.5+90.5

−85.0

2−− 1202.6+140.0
− 94.3 1484.7+76.0

−86.0

2++ 1154.8+96.5
−69.3 1431.4+72.4

−69.3

2+−

3−+ 1842.5−46.6

3−− 1528.3+ 71.2
−184.2 1751.7+99.2

−94.3

3++ 1510.5+ 81.6
−100.3 1770.9+91.4

−96.1

3+− 1849.4−43.6

Table 4.1: Mass spectrum in MeV for isospin degenerate nn̄ and isoscalar ss̄ bound-
states. The rainbow-ladder result corresponds to η = 1.8± 0.2, with the superscript
† (‡) indicating η = 2.0 (η = 1.6) only.

(MT) interaction in the light meson sector, we first concentrate on the ground and

first excited states in the 1−− and 2++-channels and explore the variation of the

corresponding masses with the charm quark mass and the η-parameter in the MT-

interaction. We obtained good agreement with experiment using a charm quark

mass of m(19 GeV) = 0.870 GeV and a value η = 1.157. Our results for all presently

available channels are shown in Fig. 4.8, the explicit values are all collected in

Table. 4.3. Since we have fixed the two input parameters η,mcharm with the J/Ψ

and Xc2 ground state, all other states can be viewed as model predictions. In the

pseudoscalar channel we find a mass of the ηc which is slightly too low, but still

within 3 % of the experimental value. In the language of potential models, this may

indicate an overestimation of the spin-spin contact term in the effective interaction.

Very good agreement with experiment is obtained for the ground state in the 1++-
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ns̄

JP n = 0 n = 1 n = 2

0− 496.6+5.3
−0.9 1007.6+118.3

− 57.0 1435.9

0+ 874.5+10.0
−22.2 1312.5+ 90.3

−143.8

1− 950.1+5.5
−1.6 1241.6+43.5

−27.9

1+ 1054.1+48.7
−44.8

2− 1116.2+10.9
−17.2

2+ 1209.4+32.3
−26.6

3− 1646.9†

3+ 1673.4†

Table 4.2: Mass spectrum in MeV for I = 1/2 ns̄ bound-states. The rainbow-ladder
result corresponds to η = 1.8 ± 0.2, with the superscript † (‡) indicating η = 2.0
(η = 1.6) only.

channel, whereas the masses of the scalar 0++ and the axialvector 1+− ground states

are further off but still within five percent of the experimental value. Similar results

have been obtained already in Ref. [94, 95]. As we already observed in the light

quark sector, that the rainbow-ladder interaction is well suited to reproduce states

in the sequence 1−−, 2++, 3−−, .... We therefore expect our prediction for the mass

of the 3−−-state charmonium of

m3−− = 3.896 GeV (4.2)

to be accurate with an error below 1 % due to uncertainties in the interaction. Since

this state is a ground state still close to the boundary of calculable states (the dashed

line in the plot) it is not subject to a large extrapolation error. We therefore expect

our prediction for the mass of this state to be quite robust, with an overall error on

the 3 % level. Within errors, this agrees with the quark model prediction [77] and

the lattice QCD results [80, 81]. For the other tensor ground states with J = 2 and

J = 3 we expect much less accurate predictions, perhaps on the 5-10 % level.

For the excited states we observe very good agreement in the vector channel:

our value for the mass of the Ψ(2S) is very close to the experimental one, and even
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Figure 4.8: Spectrum of ground and excited charmonium states.

the next radial excitation is nicely represented. In the pseudoscalar channel the

splitting between the ground and the excited state is slightly too large, making the

agreement of the (2S)-state with experiment even better than for the ground state

ηc. It is interesting to observe that the resulting fine structure splitting of the ground

and excited states show a qualitatively difference when compared with experiment:

whereas the ground state splitting is too large the splitting in the excited state is too

low. Such an uncorrelated behaviour of the two splittings has also been observed in

lattice QCD [80].

In the ‘good’ tensor channel 2++ potential excited states like the X(3927) are

not reproduced in our framework. There is a considerable uncertainly due to the

extrapolation procedure needed in this mass region, which is enhanced for excited

states. Taking our result at face value, however, the current model would disregard

the notion of the X(3927) to be an ordinary meson state.

From an experimental point of view, the 1++-channel is perhaps the most in-

teresting one. There the famous X(3872)-state awaits its identification as a meson-

molecule, a tetraquark, or an ordinary quark-antiquark bound state. The literature
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on this subject is enormous, therefore we point the reader only to Ref. [74] for a

first overview. The interesting question in this context is, whether a description on

a quark-antiquark basis is possible at all for the X(3872). In the present rainbow-

ladder model we find an excited state in the 1++-channel at m = 3672 MeV that can-

not be accounted for by experiment. A second excitation is found at m = 3912 MeV,

close to the quark model prediction for the first excited state. In principle, it could

be that the lower state of the two is spurious. However, since we find no trace in our

numerics that this is the case we disregard this notion for the moment. It follows

then, that the present form of the rainbow-ladder interaction is not sufficient to

describe the splitting between ground and excited states in this channel. A simi-

lar conclusion may be drawn for the other axialvector channel. We therefore expect

sizeable corrections when interactions beyond the rainbow-ladder approximation are

taken into account.

Bottomonia

Our results for the spectrum of bottomonia are shown in Fig. 4.9. Compared to

the charmonium spectrum in Fig. 4.8 we had to change the shape of the interaction

by adjusting the η-parameter from η = 1.157 for the charm-case to η = 1.357 for

the bottom quarks. This reflects part of the underlying flavour dependence of the

quark-gluon interaction as noted in Ref. [54]. Our corresponding mass of the bottom

quark is m(19 GeV) = 3.790 GeV. The resulting spectrum of ground and excited

states, however, has similar features when compared with experimental values as

the charmonium one. Once again, the 0−+, 1−− and 2++ ground states are well

represented. The necessary extrapolation needed for the 2++ is still under control,

since the state is not too far above the limit where everything can be calculated (the

dashed line in the plot). Surprisingly good is also the negative parity tensor state,

although the extrapolation procedure in this mass region must be considered with

a little more caution.

Provided the good agreement in the 2−−-channel can be seen as an indication

that extrapolation even in this mass region works well, we can regard the masses
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Figure 4.9: Spectrum of ground and excited bottomonium states.

of the further tensor states with J = 2 and J = 3 as solid predictions. For 3−−

bottomonium bound state we found:

m3−− = 10.232 GeV (4.3)

Compared to the quark-model predictions of [77] we find only slight deviations of

the order of 30-70 MeV for the 2−+ and the states with J = 3. In contrast to

the charm-case, the lowest lying excited states in the bottomonium spectrum are

already in a mass region where we need to extrapolate the eigenvalue of the BSE,

as discussed above. Nevertheless, the results are surprisingly good and comparable

with the corresponding ones in the charmonium spectrum, where much less extrap-

olation was needed. The first excited states in the pseudoscalar, vector and even the

scalar channel are quite accurate and even the Ψ(3S) works reasonably well. In the

1++-channel we encounter the same problem as in the charmonium spectrum, there

is a first excited state with a much too small mass, whereas the second excited state

is not too far from a PDG-state.

Finally, we present our results for selected channels of Bc-mesons. Heavy-light

systems in the Bethe-Salpeterapproach are notoriously difficult to treat, since the



4.3. HEAVY QUARK MESON SPECTROSCOPY 75

Bc

M
[G
eV
]

6.2

6.3

6.4

6.5

6.6

6.7

6.8

JP
0− 0+ 1−

PDG
η = 1.257

Figure 4.10: The calculated bc̄ spectrum compared to experiment. The green bands
correspond to the variation η = 1.257± 0.1.

cc̄ bb̄ bc̄

JPC n = 0 n = 1 n = 2 n = 0 n = 1 n = 2 JP n = 0

0−+ 2925 3684 9414 9987 0+ 6714+67.1
−67.1

0−− 3348 9642 0− 6354+23.5
−23.5

0++ 3323 3833 9815 10254 1+

0+− 3674 10014 1− 6498+64.9
−64.9

1−+ 3524 9788

1−− 3113 3676 3803 9490 10089 10327

1++ 3489 3672 3912 9842 10120 10303

1+− 3433 3747 9806 10154

2−+ 3806 10194

2−− 3739 10145

2++ 3550 9906

3−− 3896 10232

3++ 3999 10302

3+− 4037 10319

Table 4.3: Calculated masses for ground and excited charmonium, bottomonium
and charm-bottom states.
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problem of probing the analytical structure of the internal quark propagators already

appears for ground states, see e.g. Ref. [96, 97] for recent studies of the problem.

Our results for these states, shown in Fig. 4.10 are therefore all extrapolated and

have a systematic error of about 5-10 %. In the plot we show values obtained using

a variation of the η-parameter in the interaction ranging approximately between

the ones used for the charmonia and bottomonia. In this way we heuristically

take into account the varying strength of the interaction for the two different quark

flavours involved. The central value, given by the red line, corresponds to η = 1.257.

Given the inherent uncertainties in the calculation, our value for the Bc in the

pseudoscalar channel is surprisingly close to the experimental one. Since this is

the state with the lowest mass, the extrapolation error is also smallest. Since the

rainbow-ladder approach works well in the vector channel we consider the existence

and to some extent also the mass of the vector state as a prediction of the approach,

whereas the scalar channel has to be considered with much more reservation. Despite

these sources for errors it is interesting to note that our results for all three states

agree qualitatively with the ones in the relativistic quark model of Ref. [77] with

quantitative deviations of at most 3 %.

Effective interaction variation

As we saw, the interaction between heavy quarks, represented by effective singe

gluon exchange, leads to the spectrum coinciding with experimental values with in

5%. The main reason for that is the huge set of diagrams like: hadronic exchange,

quark loops and etc. are suppressed by heavy quark mass. From this fact follows

that the charmonium meson bound state is a prefect test-ground for a effective gluon

models. Therefore it is interesting to explore the response of the mass spectrum to

the variation of the shape of the effective gluon coupling αeff . In order to proceed

with this idea we would like to replace the original Maris and Tandy model [24],

which explicit expression is:

αeff(q2) = πη7x2e−η
2x +

2πγm (1− e−y)
log [e2 − 1 + (1 + z)2]

, (4.4)
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Figure 4.11: The shape of the effective coupling for the generalized Maris-Tandy
interaction with a2 = 1 held constant and varying a1 and a4. Left graph corresponds
to the variation of a1 and right one to the variation of a4.

with more generalized form:

αeff(q2) = αIR(q2) + αUV(q2) , (4.5)

where

αIR(q2) = πη7P(x)e−η
2x , (4.6)

αUV(q2) =
2πγm (1− e−y)

ln [e2 − 1 + (1 + z)2]
. (4.7)

Since expect the shape of the interaction to change we therefore employ the poly-

nomial form for P(x):

P(x) =
n∑
i=1

aix
i . (4.8)

and investigate its impact on the heavy meson spectrum restricting ourselves to

terms with n ≤ 4. Note that a2 = 1 and other an = 0 corresponds to original Maris

and Tandy model.

First we vary a1 in the interval −0.5 ≤ a1 ≤ 0.5. For the effective running cou-

pling the resulting variation is shown in Fig. (4.11). Clearly, the integrated strength,
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Figure 4.12: The response of masses of bound and excited states on the variation of
the shape of the effective interaction with a1 and a4 correspondingly.

but also the fine details of the coupling change: For negative a1 we even obtain a zero

crossing with the corresponding scale associated with the relative strength between

the a1 and a2-terms (here we keep a2 = 1). Such an effective coupling is unusual,

but not unreasonable. Recent calculations of the three-gluon vertex [98–100] suggest

that the interplay between ghost and gluon degrees of freedom in the corresponding

Dyson-Schwinger equation for the vertex may very well introduce such a zero cross-

ing. This possibility is also seen in corresponding lattice calculations [101]. Since

the three-gluon vertex is an integral part of the non-Abelian diagrams in the DSE

for the quark-gluon vertex, this behaviour may translate into a corresponding zero

crossing of the quark-gluon vertex [54] and subsequently into the effective coupling.

The resulting changes in the meson spectrum are displayed in Fig. 4.12. Ad-

justing the bare charmonium quark mass via mJ/Ψ to accommodate for the changes

in the integrated interaction strength we observe only very small changes in the re-

sulting masses for the ground state mesons. However, the excited states Ψ(2S) and

χ′c1 turn out to be very sensitive to the details of the interaction. In particular for

negative values of a1, corresponding to the zero crossing of the interaction discussed

above, we find much increased values for the mass of the χ′c1, which eventually even

may hit the experimentally observed mass of the X(3872). However, this comes at
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a price: the mass of the Ψ(2S) reacts in a similar way and substantially moves away

from the experimental value, almost reproduced for a1 = 0. We therefore conclude,

that by changing the infrared behaviour of our rainbow-ladder interaction it is not

possible to accommodate for the quark-antiquark nature of the X(3872), while at

the same time keeping the remaining spectrum intact.

Next we consider the generalized Maris-Tandy interaction, Eq. (4.6), given by

a1 = 0, a2 = 1 but non-trivial components a3 or a4. Both of these modify the

interaction in the intermediate momentum region, while keeping the infrared and

ultraviolet behaviour untouched as can be seen from Fig. 4.11 for the example of

variations in a4. Since variations of a3 act similarly on the effective coupling we

keep a3 = 0 fixed and restrict ourselves to variations of a4. Furthermore, we keep

a4 ≥ 0, since there are no indications that the dressing of the quark-gluon vertex

can induce a negative effective interaction in the mid-momentum region.

Again, we study the variation of the charmonium spectrum while still readjusting

the charm quark mass to reproduce the vector ground state J/Ψ. Our results are

given in Fig. 4.12. Here we find a substantial increase in the mass splitting between

the pseudoscalar and the vector channel due to the additional interaction strength

in the mid-momentum region. At the same time, the masses of the excited state,

Ψ(2S) and χ′c1 increase slightly. This moderate increase is nowhere large enough to

bring the χ′c1 close to the observed X(3872)-state. Thus we arrive at the conclusion

that by changing the mid-momentum behaviour of our interaction it is not possible

to accommodate for a quark-antiquark nature of the X(3872), while at the same

time keeping the remaining spectrum intact.

4.4 Regge trajectories

Finally, we present results for Regge trajectories in Fig. 4.13 for natural parity

states. At first, we consider the ground states of the light quark meson spectra;

for the corresponding excited states and the other channels we do not have enough
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bound states with J = 2, 3 to probe for trajectories. One immediately notes that,

indeed, the sequence JPC = 1−−, 2++, 3−− forms an almost linear trajectory in

the (M2, J)-plane. This is interesting, since we are working with a model that is

apparently not related to a linear rising potential between light quarks. Thus, the
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Figure 4.13: Regge trajectories for isovector nn̄ (upper plot) and isoscalar ss̄ mesons
(lower plot) with natural parity. Filled circles correspond to experimental data, while
calculated values are given by the red marks for η = 1.8 and the green bands for η =
1.8 ± 0.2. The resulting Regge trajectories for the upper and lower end of the bands are
displayed by the dashed lines. Not shown is the numerical error of our mass extraction
procedure, which is of the order of 5-10 % for the J = 2, 3 states.

conventional, naive but intuitive explanation for the formation of Regge-trajectories

does not apply in our framework. Nevertheless, we see an (approximate) ρ- and

φ-meson Regge trajectory for our results. The slope of the trajectory is easily

extracted. With

M2
X(J) = M2

X(0) + βXJ (4.9)

we find

M2
ρ (0) = −0.42 (−0.05) GeV2 M2

φ(0) = 0.05 (0.36) GeV2

βρ = 0.99 (0.62) GeV2 βφ = 1.12 (0.78) GeV2

for ρ and φ respectively. The two numbers each correspond to the upper (lower)

end of the η-band of our results. Compared to recent studies of Regge trajectories

based on the ρ-meson, βρ = 1.19±0.10 GeV2 [102] and βρ = 1.11±0.01 GeV2 [103],
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our number for the slope at the upper edge of the η-band is smaller by only about

ten percent. Recalling that we need to employ an extrapolation procedure in the

complex momentum plane to extract the bound state mass of the tensor states with

an error margin of the order of 5-10 % the agreement is quite good. We have also

checked for Regge trajectories in channels with unnatural parity and found an ap-

proximate linear trajectory also for the sequence JPC = 1++, 2−−, 3++ based on the

a0. Again, for the other channels and the excited states we find not enough bound

states with J = 2, 3. From the discussion in the previous sections we furthermore

expect, that the slopes and intercepts in these channels may be further off the experi-

mentally extracted values, simply because the rainbow-ladder interaction is not good

enough in these channels. Indeed for the a0-trajectory we find M2
a0

(0) = 0.20 GeV2

and βa0 = 0.78 GeV2 for the upper edge of the η-band, which do not agree too

well with e.g. the values found in Ref. [104], M2
a0

(0) = −0.658 ± 0.120 GeV2 and

βa0 = 1.014± 0.036 GeV2.

As for the heavy quark systems, similar to the light quark sector we also find,

that the sequence 1−−, 2++, 3−− lies on a Regge-trajectory with an accuracy that is

even better than in the potential model of Ref. [77]. For M2
X(J) = M2

X(0) + βXJ

we find M2
J/ψ(0) = 2.72 and βJ/ψ = 0.39 for charmonium natural parity states and

for bottomonium - M2
Υ(0) = 9.12 and βΥ = 0.371, which is also somewhat steeper

than the result of [77]. For the heavy quark sector this confirms a result for light

quarks, that Regge-type behaviour in the spectrum may be found without any direct

connection to an underlying string-picture.
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Chapter 5

Pion Cloud Effect

There are, however, also severe limitations to the rainbow-ladder scheme. Conse-

quently, much work has been invested in the past years on its extension towards more

advanced approximations of the quark-gluon interaction. On the one hand, this may

be accomplished directly by devising improved ansätze for the dressing functions of

the quark-gluon vertex [50, 51, 53, 105]. On the other hand, it is promising to

work with diagrammatic approximations to the vertex DSE. While most studies so

far concentrated on (1/Nc-subleading) Abelian contributions to the vertex (see e.g.

[31–34, 106]), the impact of the 1/Nc-leading, non-Abelian diagram on light meson

masses has been investigated in [37]. In addition, important unquenching effects

in the quark-gluon interaction may be approximated by the inclusion of hadronic

degrees of freedom [36, 38, 39]. This is possible, since the vertex DSE can be decom-

posed on a diagrammatic level into terms that are already present in the quenched

theory and those involving explicit quark-loops. The latter ones can be expressed

involving hadronic degrees of freedom. To leading order in the hadron masses, pion

exchange between quarks is dominating these contributions. These pions are not

elementary fields. Consequently, their wave functions need to be determined from

their Bethe-Salpeter equation.

Having explicit hadronic degrees of freedom in the system may also be very

beneficial for phenomenological applications of the approach. Pion cloud effects

are expected to play an important role in the low momentum behavior of form

83
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factors and hadronic decay processes of baryons [41–47]. Within the covariant BSE-

approach, the influence of pion back-coupling effects in the mass and decay constants

of the pion itself and other light mesons has been studied in [39]. In the present work,

we take this framework one step further and extend it to the covariant three-body

calculations of nucleon and delta masses [67–69].

5.1 Mesons

From technical point of view the meson Bethe–Salpeter equations with pion cloud

effect, provided by the changes to the two-quark scattering kernelK given in Chapter

3, represents the similar eigenvalue value problem. Therefore we can apply the same

numerical machinery in order to obtain mass spectra and Bethe–Salpeter vertex

functions. Recall, the total scatterintg kernel takes the following form:

K(p, k;P ) = Kgluon(p, k;P ) +Kpion(p, k;P ) (5.1)

However, since we include the unquenching effects in to the total kernel K, the

gluon rainbow-ladder part Kgluon, representing effective single gluon exchange must

[MeV] RL1 RL2 RL2 + π Exp.

mπ 138 144 138 138

fπ 93 98 93 93

〈qq̄〉1/3µ=19 GeV 281 300 280

mρ 757 855 766 776

mσ 643 724 610 400-1200

ma1 969 1115 1052 1260

mb1 852 1007 941 1235

ma2 1154 1389 1302 1320

mπ2 1202 1456 1373 1670

mρ3 1528 1791 1673 1690

Table 5.1: Meson mass spectrum, decay constant and the chiral condensate for single
gluon exchange (RL1), including the pion cloud corrections corrections (RL2 + π)
and with the pion cloud switched off, but the effective interaction (RL2) unchanged,
compared with experimental values.
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Figure 5.1: Masses of pion and rho as functions of quark mass. The Gell-Mann-Oakes-Renner
relation is indicated.

change its parameters Λ and η in order to incorporate the withdraw of the hadronic

contribution into the explicit part Kpion. The parameters are Λ = 0.84 and η = 1.8

as given in Table. 2.2. It is also interesting to perform the calculations with and

without the pion cloud effect switched on to draw some insights on size on unquench-

ing effects. The results on meson masses, decay constant and the chiral condensate

are given on Table. 5.1. The general trend is that inclusion of the pion cloud effect

provides lighter spectrum in comparison to RL2 by generating a downwards shift in

average 70-130 MeV.

The complete interaction kernel consisting of the rainbow-ladder gluonic dia-

gram and the pion exchange diagram does satisfy the axial-vector Ward-Takahashi

identity. This can be demonstrated analytically [36, 39] and holds even with the

approximation of the exchanged pion’s Bethe-Salpeter amplitude. As a result, us-

ing this interaction kernel one obtains a pseudoscalar Goldstone boson in the chiral

limit and the holding Gell-Mann-Oakes-Renner relation [36, 39] as it shown on Fig.

5.1. Since this truncation scheme does not contain the t-channel two-pion exchange

diagram for the ρ to decay into pions, we do not observe the specific behaviour of
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[GeV] RL1 RL2 RL2 + π Exp.

mπ 0.138 (1) 0.144 (1) 0.138 (1) 0.140

fπ 0.093 (1) 0.098 (1) 0.093 (1) 0.093

〈qq̄〉1/3µ=19 GeV 0.281 (2) 0.300 (3) 0.280 (3)

mN 0.94 (1) 1.01 (3) 0.86 (1) 0.94

m∆ 1.23 (1) 1.36 (1) 1.30 (3) 1.23

Table 5.2: Nucleon and Delta masses as well as pion mass, decay constant and the
chiral condensate using the rainbow-ladder truncation only (RL1), rainbow-ladder
with the refitted effective interaction (RL2) and including the pion cloud corrections
corrections (RL2 + π). We give the central value of the bands corresponding to a
variation of η between 1.6 ≤ η ≤ 2.0 with the halfwidth of the bands added in
brackets. We compare also with experimental values.

the rho mass as the pion mass reaches threshold mπ > mρ/2, due to the opening of

a decay channel [107]. The impact on baryon masses will be considered in the next

chapter.

5.2 Baryons

To proceed with the calculations we must fix the two parameters Λ and η of the

interaction as well as the current-quark masses. This is conveniently done by using

the experimental values for the pion decay constant fπ and the pion mass mπ as

benchmark. The pion decay constant is largely insensitive to the current quark

mass, which is consequently fixed by the physical pion mass. On the other hand,

the parameter Λ corresponds to an interaction scale, and is therefore in one-to-one

relation with fπ. Furthermore, it has been noted that the pion decay constant can

only be reproduced by a range of values of η between 1.6 and 2.0 (see, e.g. [45, 110]).

For the pure RL interaction K̃RL the resulting values for Λ and the quark mass are

Λ = 0.72 GeV and mu/d(µ
2) = 3.7 MeV; we denote this case by RL1. Since the

pion back-reaction is not taken into account explicitly in this case, its effects are,

to some extent, encoded implicitly in the parameters (in particular the scale) of

the interaction. This is different for the pion corrected kernel K̃ = K̃RL − K̃pion.
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Figure 5.2: Evolution of the nucleon and delta mass with respect to the pion mass
squared. Left panel : We plot the results for pure RL1 and for RL2 with pion
exchange. We also compare with a selection of (unquenched) lattice data [108]-[109].
Right panel : We compare the results for RL2 only and RL2 with pion exchange.
Stars denote the physical nucleon and delta mass. The shaded bands correspond
to a variation of the interaction parameter η between 1.6 ≤ η ≤ 2.0, with η = 1.6
corresponding to the upper limit of the bands.

Since pion cloud effects are now treated explicitly, K̃RL describes the interactions

in the bound state’s quark-core only. As a result, the interaction range of this part

of the kernel (in coordinate space) is expected to decrease, which in turn means

that Λ should increase [41]. This is indeed what we observe: for the pion-corrected

kernel we need Λ = 0.84 GeV to reproduce fπ with η ∈ [1.6, 2.0]. The quark mass

mu/d(µ
2) = 3.7 MeV remains the same. We use the label RL2 for the RL part of this

truncation. The renormalisation scale in all cases is chosen to be µ2 = (19 GeV)2.

Nucleon and Delta masses and Sigma terms

The calculated masses of the Nucleon and the Delta, with and without the pion-

exchange kernel, are shown in Tab. 5.2. In the RL1 framework one observes very

good agreement with the experimental mass values. However, as shown in Ref. [45,

111], the internal structure of the nucleon as probed by electromagnetic as well

as axial and pseudoscalar currents is not well represented at low momenta due to
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missing explicit pion cloud effects. These are included (within the limits of our

truncation) in the RL2 + π-calculation. For comparison we also display results for

the purely gluonic rainbow-ladder part of this truncation (RL2), which represents

a quark-core calculation of the nucleon mass with stripped pion cloud. As a result

we find substantial pion cloud effects in the nucleon. Compared with the quark-core

part (RL2) the nucleon mass is reduced by about 150 MeV in the full calculation

(RL2+π). Comparing RL2+π with RL1, which both reproduce the physical pion

mass and decay constant we still find pion cloud effects of the order of 80 MeV.

This sizable mass shift for the nucleon at the physical point agrees qualitatively

with other estimates in the literature, see e.g. [112] and references therein. The

corresponding mass shift in the ∆-isobar is much smaller and behaves differently.

Comparing RL2 and RL2+π we find a decrease of the ∆-mass by about 60 MeV,

which is less than half the size of the corresponding shift in the nucleon. However,

when comparing with RL1, we even find an increase in the ∆-mass by about 70

MeV. This is a result of the different interaction scale Λ in the two setups, which

was necessary to reproduce the physical pion decay constant correctly. As a result

we find a mass shift of different sign for the ∆ than for the nucleon.

The evolution of the baryon masses as a function of m2
π (or, equivalently, with

respect to the current-quark mass), is displayed in Fig. 5.2, where we also display

corresponding lattice data [108]-[109]. In general, we observe that the inclusion of

pion cloud effects increases the mass splitting between the nucleon and the ∆ consid-

erably. Although the size of this increase may be too large, its qualitative behavior

is in agreement with well-known results in the literature [41]. Including the pion

cloud effects, the excellent agreement of the pure rainbow-ladder calculation RL1

with experiment is spoiled and we are left with discrepancies for the nucleon and the

∆ on the ten percent level. Whereas the mass evolution for the ∆ is not too far away

from the corresponding lattice results, the one for the nucleon is shifted by 10-20

percent for all pion masses, although the slope of the evolution is more or less correct.

In general, however, the quantitative discrepancies of our approach with the
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lattice results indicate missing structure such as gluon self interaction effects in

the two-body kernels (see [37] for a study of these in the meson sector), genuine

three-body interactions (also mediated by gluon self interaction contributions) and

potential deficiencies in our pion exchange kernel. This needs to be further explored

in future work.

An observable effect of the slope of the mass-evolution curve close to the physical

point is given by the nucleon and delta sigma terms. In our approach, these are

trivially obtained using the Feynman-Hellman theorem

σπX = mq
∂MX

∂mq

, (5.2)

where mq is the current-quark mass, MX is the baryon mass and the derivative is

taken at the physical quark mass. For the nucleon we obtain

σπN = 30(3) MeV (RL1),

σπN = 26(3) MeV (RL2),

σπN = 31(3) MeV (RL2+π) (5.3)

for RL1, RL2 without and RL2 with pion exchange, respectively. Likewise, we

obtain for the delta

σπ∆ = 24(2) MeV (RL1),

σπ∆ = 23(3) MeV (RL2),

σπ∆ = 24(3) MeV (RL2+π) . (5.4)

For the pion-nucleon case both of our values using physical parameters (RL1 and

RL2+π) are slightly below the lower bound of a range of recent lattice results [113–

115]. From a comparison of the quark core calculation RL2 with RL2+π we infer

that about twenty percent of the nucleon sigma term are generated by pion cloud

effects. For the ∆ this fraction is considerably smaller and our results in general are
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about 30 % lower than available model results [116, 117].

Within certain limits, the slope can be influenced by the choice of the model

parameters as reflected in the numbers in brackets given in (5.3) and (5.4). However,

as mentioned above, in order to study the mass evolution of the system and the

resulting sigma-terms in more detail, one should include the effects of the gluon

self-interaction in the two-body and three-body correlations, since these may have

a significant impact [37].

Internal composition

Some insight into the internal structure of the baryon can be gained by studying

the relative importance of the different partial-wave sectors. As shown in [67–69],

Poincaré covariance enforces that in our framework baryons are composed, in prin-

ciple, by s-, p- and d-wave components for spin-1
2

particles and s-, p-, d- and f-wave

components for spin-3
2

particles. Therefore, one cannot restrict the partial-wave

composition in a covariant way and it is the dynamics what dictates the contribu-

tion of these components to a given state. Moreover, in the case of the nucleon,

the flavor part of the Faddeev amplitude contains a mixed-symmetric and a mixed-

antisymmetric term, as dictated by symmetry. Each of these is accompanied by

a spin-momentum part; these are not identical but related to each other. In our

calculation we take all these contributions into account.

Form factors are observables which are expected to be more sensitive to the in-

ternal structure of the baryon. In particular, the N∆γ transition [46] as well as the

electromagnetic ∆-baryon form factors [47] show a qualitatively different behavior

when the angular-momentum content is artificially restricted. For this reason, we

have calculated the contribution of the different partial-wave sectors to the normal-

ization of the N and ∆ amplitudes when the pion corrections are or are not included,

see Table 5.3. In the case of the nucleon we average the contributions from the mixed-

symmetric and mixed-antisymmetric terms. The angular-momentum composition

of the state is not, nevertheless, the only element determining the form factors. The
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Nucleon RL1 RL2 RL2 + π

s-wave 65.9 75.0 (1) 75.0 (1)

p-wave 33.0 24.1 (3) 24.2 (0)

d-wave 1.1 0.9 (1) 0.8 (1)

Delta RL1 RL2 RL2 + π

s-wave 56.5 61.4 (15) 60.5 (14)

p-wave 39.9 31.0 (6) 31.1 (11)

d-wave 3.4 7.4 (20) 8.1 (23)

f-wave 0.2 0.2 (1) 0.3 (2)

Table 5.3: Contribution in % of the different partial wave sectors, at mπ = 138 MeV,
to the normalization of the Faddeev amplitudes for the Rainbow-Ladder kernel only
(RL1) and for RL2 including pion cloud effects (RL2+π). As before, the numbers in
brackets reflect the change of the results under variation of the interaction parameter
η between 1.6 ≤ η ≤ 2.0. For RL1 this variation is very small and therefore no range
is given.

coupling of the photon (in case of electromagnetic form factors) and pion cloud plays

an important role and is likely to be the dominant correction for, e.g., the baryon’s

charge radius and magnetic moment. This is, however, beyond the scope of this

work.

Accepting the aforementioned caveats, it is nevertheless interesting to discuss

the internal structure of the nucleon and ∆ displayed in Tab. 5.3. Let us begin

by analyzing the nucleon results. From comparison of our three setups it is clear

that the inclusion of pion cloud effects induce only slight but potentially significant

changes in the angular-momentum content of the nucleon. These are, however, not

induced directly by the pion exchange term (cp. RL2 with RL2+π), but by the ac-

companying change in the interaction scale of the core rainbow-ladder contribution.

In coordinate space this change of scale corresponds to a decrease of the core size,

resulting in a larger s-wave component. This new balance is hardly affected by the

explicit pion contributions. It remains to be seen, how this affects the form factors

of the nucleon. Here, possible quantitative corrections will be dictated by the direct

pion-photon interaction and may be large in the magnetic moments and the neutron

form factors at low momentum transfer [45].

The case of the ∆ is slightly different from the nucleon. Also here, the main

effects are generated by the modified interaction range of the core rainbow-ladder
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contribution. The increase of the s-wave contributions as compared to p-wave is less

severe than in the nucleon case. Instead, the d-wave contributions increase signif-

icantly with more than doubling their relative size as compared to pure rainbow-

ladder. This might have a significant impact in those form factors that measure

the deformation of the ∆-baryon, i.e. the electric quadrupole and the magnetic

octupole [47]. Especially the latter one is small and therefore may be very sensitive

to changes in the baryon internal structure.

5.3 Pion Form Factor

The fact that hadrons have a substructure was realized more 50 years ago in early

SLAC deep inelastic scattering experiments [118]. Later on the parton model was

suggested by Bjorken and Paschos as an interpretation of these large momentum

transfer experiments. In the essence of the parton model lies the idea that the

hadron consists of free point-like fermions, partons. After the discovery of asymp-

totic freedom of QCD, the calculation of hadronic observables at large momentum

transfer lead these partons to be identified with quarks and gluons. However, at

low energy momentum or large scales, the QCD running coupling is large so that

the high energy picture of the parton model consisting of weakly interacting quarks

and gluons should not be extrapolated to these limits. At this low energy scale the

non-pertubative effects play a major role and therefore cannot be avoided.

π(P ) π(P ′)

e(k′)e(k)

γ = k − k′

Figure 5.3: One-photon exchange pion elestic scattering.



5.3. PION FORM FACTOR 93

The electron-hadron scattering experiments are well-proven technique since the

electromagnetic part is well known. In this thesis we will focus on the pion as the

target of scattering. The simplified picture of the corresponding experiment is given

on Fig. 5.3. The angular distributions of the cross section takes the form:

dσ

dΩ
=

(
dσ

dΩ

)
point−like

|Fπ(q2)|2 , (5.5)

where q = k− k′ is the momentum energy transferred between the electron and the

pion. For the convenience purpose we consider the variable Q2 = −q2. The Fπ(q2)

is the pion electromagnetic form factor. For a static targets the form factor is given

by Fourier transform of normalized charge distribution ρ(x):

F (q) =

∫
d3xρ(x)exp(iqx) (5.6)

If the momentum transfer is small we can expand the exponential in Eq. (5.6),

obtaining:

F (q) = 1− 1

6
〈r2〉|q2|+ ... (5.7)

As we see from the expansion the mean square radius of pion charge distribution is

given by:

〈r2〉 = −6
dF (Q2)

dQ2
(5.8)

So the low momentum transfer electron-pion scattering measures only the mean

square radius of the charge cloud of the pion. And this is expectable since the long

wavelength virtual photon can only resolve the size of pion, but not its substructure.

According to Eq. (5.5), the scattering on the pion as a spinless particle, in fully

described by its form factor Fπ(Q2). However we know that pion-photon vertex

must be a Lorentz four-vector since photon is able to couple to it. This deduce the
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view of pion-photon vertex to the form:

(P ′ + P )µFπ(Q2) (5.9)

From another side the pion-photon vertex can be written in a general form as:

〈π(P ′)|Jµ|π(P )〉 , (5.10)

where 〈π(P )| is the wave function of incoming pion, |π(P )〉 is the wave function of

outgoing pion and Jµ is pion’s electromagnetic current. Obviously the Eq. (5.9) is

equal to Eq. (5.10), thus providing the route to calculate pion form factor:

〈π(P ′)|Jµ|π(P )〉 = (P ′ + P )µFπ(Q2) (5.11)

So in order to obtain the electromagnetic pion form factor Fπ(Q2) we need to know

pion wave-function |π(P )〉, which explicit view was established in Chapter 3 and is

given by:

|π(P )〉 = χ(k;P ) = S(k + P/2)Γ(k;P )S(k − P/2) (5.12)

and pion’s electromagnetic current Jµ. The current can be obtained by ”gauging”

the quark-quark scattering kernel K.

A description of systematic approach how to couple external gauge field was given

by [47]. Shortly, the evolution of two-body quark system is given by the amputated

version of scattering matrix T (2). Thus the scattering matrix T can be obtained by

solving the following Dyson equation:

T = −iK − iKG0T (5.13)

where G0 is the disconnected product of two full quark propagators and −iK is the

two-quark interaction kernel. When the two-quark system forms a bound state, the
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scattering matrix develops a pole at P 2 = −M2, and can be defined as:

T (2) ≈ ΓΓ̄

P 2 +M2
(5.14)

Substituting 5.14 in 5.13 and keeping only the singular term, we arrive at the Bethe–

Salpeter equations for two quark bound state:

Γ = −iKG0Γ, or iK−1Γ = G0Γ, or iΓ̄K−1 = Γ̄G0 (5.15)

Then a systematic procedure of coupling to external gauge field, introduced in [119],

gives for T (2):

T µ = T (iK−1KµK−1 +Gµ
0)T (5.16)

The bound state electromagnetic current Jµ can be expressed at the pole by:

T (2),µ ≈ Γf
P 2
f +M2

f

Jµ
Γ̄i

P 2
i +M2

i

(5.17)

Substituting 5.17 in 5.16 and using 5.15 we get:

Jµ = Γf (−iG0K
µG0 +Gµ

0)Γi (5.18)

In case of rainbow-ladder single-gluon exchange the interaction kernel involves

only gluon, so the first term Kµ = 0 because gluon does not couple to photon di-

rectly. So only the second term in Eq. (5.18) contributes to the current and the

pion form factor is given by following diagram:

=Fπ

Γµγ
π

Figure 5.4: Diagrams that contribute to pion form factor in case of rainbow-ladder single gluon
exchange. All internal vertexes and propagators are dressed.
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In case of pion cloud effect included, the gauging of the kernel is no longer zero

Kµ 6= 0, since the kernel consists of quark-pion vertex and propagating pion and it

is possible to couple a photon to the exchanging pion or to the quark-pion vertex.

This fact generates two additional diagrams for the pion form factor. So they are

given by diagrams in Fig. 5.5.

In comparison to rainbow-ladder the calculation become more complicated. The

− −
Mµ

π π
=Fπ

Γµγ
π π

Fπ
π π

Figure 5.5: Diagrams that contribute to pion form factor in case of pion cloud included. The
second diagram (pion self-coupling) involves the pion form factor itself. The third diagram (seagull)
involves the quark-pion-photon 4-vertex. All internal vertexes and propagators are dressed.

second diagram involves pion form factor in itself, so it requires to perform a self-

consistent, iterative calculation, additionally complicated by two-loop integration.

Generally the pion-photon vertex depends on three momenta: P− - the initial

momentum, P+ - the final momentum and Q - the momentum transferred. However,

the momentum conservation P− + P+ + Q = 0 implies that only two momenta are

independent. We choose the independent momenta to be the incoming photon

momenta Q and central-mass collision momentum P . The initial and final meson

momenta can be written in terms of Q and P as P− = P − Q
2

and P+ = P + Q
2

,

respectively. The condition of elastic scattering imposes additional constraints on Q

and P : P 2
− = P 2

+ = −m2
π, P 2 = −Q2

4
−m2

π, so that only one remains independent.

We use the specific momentum frame:

Qµ = (0, 0, Q, 0) (5.19)

Pµ = (0, 0, 0, P ) , (5.20)
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where Q and P defined as:

Q = (Q2)1/2 (5.21)

P = i

(
m2
π +

Q2

4

)1/2

(5.22)

After the frame is set we proceed to define the internal momenta routing for all

diagrams in Fig. 5.4 and Fig. 5.5.

Diagram A: Rainbow-ladder

The first diagram A is given on Fig. 5.6. According to the momenta routing choice

Γγ

π π

Γ−π

S++

S−−

S−+

Γ+π

k

Figure 5.6: The first diagram, common for the rainbow-ladder single gluon exchange and pion
cloud effect. All internal vertexes and propagators are dressed.

the dressed vertexes and propagators have to evaluated on the following momenta:

Γ−π (k +Q/4, P−) , S++(k +Q/2 + P/2) (5.23)

Γ+
π (k −Q/4, P+) , S−+(k −Q/2 + P/2) (5.24)

Γγ(k − P/2, Q) , S−−(k −Q/2− P/2) (5.25)

where k is integration momentum. The explicit notation of the corresponding to

diagram A integral is following:

Pµ
P 2

∫
d4k

(2π)4
Tr
[
Γ+
π S
−+iΓµγS

++Γ−π S
−−] (5.26)
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Note that this notation is same in both cases - rainbow-ladder gluon exchange only

or with pion cloud included.

Diagram B: Pion self-coupling

The second diagram B illustrated on Fig. 5.7. The momenta routing choice for the

D+
π

Fπ

π π

Γ−π

S−−

S++

S+−

S−+

Γ+π

Γinterπ

D−
π

k1 k2

Figure 5.7: The second diagram (pion self-coupling), which involves the pion form factor itself.
All internal vertexes and propagators are dressed.

dressed vertexes and propagators reads as:

Γ−π (k1, P−) , S−−(k1 −Q/4− P/2) (5.27)

Γ+
π (k2, P−) , S+−(k2 +Q/4− P/2) (5.28)

Γinterπ (k1+k2+P
2

) , S−+(k2 −Q/4 + P/2) (5.29)

Fπ(Q2) , S++(k1 +Q/4 + P/2) (5.30)

D−π (−Q/2− k1 + k2) , D+
π (Q/2− k1 + k2) (5.31)

where k1 and k2 denotes integration momenta, flowing clock-wise as show by red

contours on the diagram. Γinterπ (k1+k2+P
2

) is the Bethe-Salpeter pion wave function,

given in chiral approximation Γinterπ (p) = B(p)
fπ

.

Denoting S−+Γ+
π S

+− ≡ χ+
π and S−−Γ−π S

++ ≡ χ−π , the explicit view of the

corresponding integral is following:

Pµ
P 2

∫ ∫
d4k1

(2π)

d4k2

(2π)
Tr
[
χ+
π γ5D

+
π (k2 − k1)µFπD

+
π Γinterπ χ−π

]
(5.32)
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where D±π = 1

±Q
2
−k1+k2+m2

π

are pion propagators.

It can be checked numerically that this diagram is zero, since the it is the internal

loop integration momenta k1, k2 are equivalent. Hence we can split the Eq. 5.32

into the difference of the two double loop integrals and then in one of them perform

a momenta permutation k1 ↔ k2 due to their symmetry. This would give us the

same integral as the first and therefore their difference is zero.

Diagram C: Seagull

The third diagram C displayed on Fig. 5.8. The momenta routing is similar to

S++

D+
π

π π

Γ−π

S−− S+−

S−+

Γ+πk1 k2

Mµ

Figure 5.8: The third diagram (seagull), which involves the ansatz for the quark-pion-photon
4-vertex. All internal vertexes and propagators are dressed.

second diagram and set as following:

Γ−π (k1, P−) , S−−(k1 −Q/4− P/2) (5.33)

Γ+
π (k2, P−) , S+−(k2 +Q/4− P/2) (5.34)

Mµ(k1+k2−P
2

) , S−+(k2 −Q/4 + P/2) (5.35)

D+
π (Q/2− k1 + k2) , S++(k1 +Q/4 + P/2) (5.36)

As well as in previous diagram, k1 and k2 denotes integration momenta, flowing

clock-wise as show by red contours on the diagram. Mµ is the ansatz for the quark-
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pion-photon 4-vertex, derived in [120] and it reads as:

Mµ(q) = eq
(4q −Q)µ

4q ·Q−Q2
(χ(q −Q/2)− χ(q)) + eq

(4q +Q)µ
4q ·Q+Q2

(χ(q +Q/2)− χ(q))

(5.37)

where χ(q) = S(q+P/2)Γπ(q, P )S(q−P/2)|P 2=M2 and eq is a quark charge, so the

resulting integral reads as:

Pµ
P 2

∫ ∫
d4k1

(2π

d4k2

(2π
Tr
[
χ+
πMµ(q)D+

π χ
−
π

]
(5.38)

here as well as in previous diagram we denoting S−+Γ+
π S

+− ≡ χ+
π , S−−Γ−π S

++ ≡ χ−π

and D+
π = 1

Q
2
−k1+k2+m2

π

is pion propagator. Note that there is of course similar di-

agram, just mirrored and therefore the quark-pion-photon 4-vertex is Mµ(k1+k2+P
2

)

and pion propagator is D−π = 1

−Q
2
−k1+k2+m2

π

.

Pion Form Factor

As we saw in the DSE/BSE approach, pion cloud effects enter in the dynamical

properties as a form factor in various ways: starting from solving the quark DSE

the pion exchange contributes to dressed quark propagator; through the appropriate

two-body kernel the pion cloud impacts on Bethe-Salpeter amplitudes of pion and

photon; and finally after kernel gauging procedure the pion cloud exposes itself by

producing extra diagrams for the calculation of form factor.

Since as it was mentioned the pion cloud piece enters into the calculation recipe

on various levels it is crucial to keep under control by tracking the Ward-Takahashi

identity and charge conservation. On the form factor level this implies Fπ(Q2 =

0) = 1. This fact can be easily understood from the qualitative point of view: if

we probe the charged pion by very long wave-length photon we will not resolve any

internal structure, the point-like charged pion. If the resulting form factor at Q2 = 0

is Fπ(Q2 = 0) = 1, then this signal us that the normalization of the BSA was done

correctly and the electric charge is conserved. In case of rainbow-ladder gluon this
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Figure 5.9: The contribution of A and C diagrams for comparison as a function of Q2. Sum of
them at Q2 = 0 equal Fπ(Q2 = 0) = 1 fulfilling the Ward-Takahashi identity and conserving the
electric charge. The gluon parameters are Λ = 0.84 and η = 1.8.

would require us to calculate only one diagram given on Fig. 5.4, however in case of

pion cloud effect all three diagrams on Fig. 5.5. Fortunately the second diagram B

is zero everywhere on Q2 due to momenta routing specificness, and therefore does

not contribute to the form factor. This fact leaves us with two diagrams: A and C,

they contribution to pion form factor is shown on Fig. 5.9.

In Fig. 5.10 we present numerical results for the pion form factor carried out

within two schemes: rainbow-ladder single gluon exchange and pion cloud effect

impact. We compare them to available experimental data, obtained within [121,

122]. Firstly we observe that both of truncations provide the charge conservation and

fulfil the Ward-Takahashi identity as the calculated form factor fulfils the condition

Fπ(Q2 = 0) = 1. The interesting discrepancy arises at the intermediate range of

Q2. For 0.75 GeV2 < Q2 < 1.75 GeV2 the pion form factor with pion cloud deviates

from rainbow-ladder result at the level of 10 percents. The qualitative explanation

is the following: at very low Q2 photon resolves the pion as a whole thing without

any substructure, whether at very large Q2 it resolves the separate quarks and at

aforementioned intermediate range of Q2 the photon ”sees” the pion quark core
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Figure 5.10: The resulting pion form factor for two types of kernels: blue lines correspond
to single rainbow-ladder gluon exchange only; red line to the gluon exchange with pion cloud
effect. The green area correspond to η parameter variation. The experemental data obtained from
[121, 122].

and the pion cloud surrounding it. Obviously this does not happen in case if the

only gluon exchange taken into account. The observation that the form factor with

pion cloud is smaller than rainbow-ladder one reflects the fact that the virtual pions

provide the charge screening effect in that kinematic range. Unfortunately, the

experimental data in that region does not allow to distinguish between the single

gluon exchange and the pion cloud picture due to big error bars. However it is

potentially plausible to estimate the pion cloud effect with improved experimental

statistics. At the ultraviolet limit both curves tend to merge since the pion cloud

effect diagram C fades faster with growing Q2 that diagram A, according to Fig.

5.9, because of the specifics of momenta routing.



Chapter 6

Summary and outlook

Some of the mysteries of QCD phenomenology can be face with the framework of the

coupled quark Dyson–Schwinger equations , meson Bethe–Salpeter equations and

baryon Faddeev equation, providing non-perturbative, continuum and Poincare in-

variant scientific approach. The research performed throughout this thesis is twofold.

From one perspective we focus on the investigation of mass spectra for mesons with

total spin quantum number J = 3 and arising Regge-trajectory for natural par-

ity states JPC = 1−−, 2++, 3−− within rainbow-ladder single gluon exchange model.

The other findings are concerning the impact of the pion cloud effect on J > 2 meson

states, baryon masses, namely on Nucleon and Delta three-body bound states and

meson dynamical properties like the pion form factor.

For meson mass spectra studies we employ a simple interaction model, the ef-

fective gluon rainbow-ladder approximation, which is known to represent only part

of the complicated interaction pattern of quarks and gluons even for heavy quarks.

However for the light quarks we obtained quantitatively reliable results for channels

where only the contact part of the spin-spin interaction plays a role and channels

dominated by the spin-orbit force, i.e. JPC = 2++, 3−−. The technical improvement

that made available for the calculation mass spectra with quantum numbers J = 3

allowed us to address the phenomena of Regge mass trajectory within DSE/BSE

approach. Despite the fact that the rainbow-ladder approximation has clear de-

ficiencies in the light quark sector we were able to obtain the Regge-trajectory

behaviour for natural parity states JPC = 1−−, 2++, 3−− deviating from experimen-

103



104 CHAPTER 6. SUMMARY AND OUTLOOK

tal data on the level of 5%. In the heavy quark sector, where the rainbow-ladder

approximation does particularly well, the agreement with the experimental states

is much improved. We gave predictions for the tensor charmonia and bottomonia

states, in particular for the 3−−. We also gave results for Bc states and quarkonia

with exotic quantum numbers, although the accumulated errors in these channels

due to deficiencies in the rainbow-ladder interaction may be sizeable.

The another purpose of this thesis is to investigate the impact of the pion cloud

effect on Nucleon and Delta three-body bound states masses and pion dynamical

properties, specifically the pion electromagnetic form factor. This work complements

the efforts in estimating the impact of hadronic unquenching effects, carried out in

[36, 38, 39]. We found substantial contributions of the pion cloud effects to the

masses of the baryons of the order of 5-15 %, depending on the parameters of the

underlying quark-gluon interaction. In addition, we found slight but significant

changes in the structure of the baryons reflected in the relative contributions of

their partial waves. Concerning the pion form factor we found a slight deviation

from gluon rainbow-ladder results in the range of intermediate momenta transferred,

0.75 GeV2 < Q2 < 1.75 GeV2. This deviation reflects the fact that with pion cloud

included the pion form factor shows an extra substructure - the virtual pion cloud

surrounding the pion quark core. However it is impossible to distinguish these

two pictures and estimate the real impact of the pion cloud effect due to lack of

experimental data and its accuracy.

The plausible future directions of research would be the calculation of charmo-

nium radiative decays: processes like J/ψ → γηc, χc0 → γJ/ψ, and etc. Also it is of

the extreme interest is to find a robust way to extract the two-quark (pseudo-) po-

tential out the meson Bethe-Salpeter equations with the given truncation. This can

provide a better way to compare the quark potential model approaches to DSE/BSE

framework, since this would let us clear understand the impact of the employed trun-

cation on the spin-spin and spin-orbit parts of the two-quark potential. The another

direction would be to extend the employed pion cloud framework to baryon form

factor calculations.
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Appendix A

Euclidean space and kinematics

Metrics

Lattice QCD and most of nonperturbative quantum field theory approaches are

peformed in Euclidead metric for practical reasons. Euclideand 4-vectors can be

obtained from the Minkowski 4-vectors via the Wick rotation [22]. Throughout this

work we consider the quark Dyson–Schwinger equations and meson Bethe–Salpeter

equations formulated in Euclidean momentum space. In this case, the metric tensor

is given by gµν = δµν . The space-time and momentum-energy vectors are related

by:

tE = itM (A.1)

xE = xM (A.2)

EE = iEM (A.3)

pE = pM , (A.4)

107



108 APPENDIX A. EUCLIDEAN SPACE AND KINEMATICS

where E and M denote Euclidean and Minkowski space. The Euclidean represen-

tation of fundamental hermitian Dirac matrices reads as following:

γ1 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , γ2 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0



γ3 =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 , γ4 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 . (A.5)

In this representation, γ5 = iγ1γ2γ3γ4 is diagonal. Changing the space also change

the product rule and the integration measure:

γM ṗM = −iγE ṗE (A.6)

qM ṗM = −qE ṗE (A.7)∫
d4kM = −i

∫
d4kE (A.8)

Apparently the definition of the mass shell of the free particle in Euclidean space:

P 2 = −M2 follows from Eq.(A.7).

Kinematics

It is convenient to write 4-dimensional integration measure in spherical coordinates,

so that the explicit form of the momentum integrations reads as:

∫
d4k

(2π)4
−→ 1

(2π)4

∫
d(k2)

k2

2

∫ 1

−1

dz
√

1− z2

∫ 1

−1

dy

∫ 2π

0

dφ , (A.9)
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where the integration momenta k is parametrized as:

k =
√

(k2)



√
1− z2

√
1− y2sin(φ),

√
1− z2

√
1− y2cos(φ),

y
√

1− z2,

z

 (A.10)

The Eq.(A.10) is the most general parametrization, however in our case due to

angle symmetries of quark Dyson–Schwinger equations and meson Bethe–Salpeter

equations some of the angle integrals are trivial, therefore we can reduce the amount

of parameters. As for quark DSE the momenta are given as:

k =
√

(k2)(0, 0, 0, z) (A.11)

and for meson BSE we choose total meson momenta P to be in the rest-frame, so

P, p, k read as:

P = (0, 0, 0,
√
P 2)

p =
√

(p2)(0, 0,
√

1− z2
p , zp) (A.12)

k =
√

(k2)(0,
√

1− z2
√

1− y2, y
√

1− z2, z)

In our study for the numerical calculation we explicitly employed objects like 4d-

tensors and gamma matrices provided by QFT++ library [123]. Note however, that

the original QFT++ library uses Minkowski and was rewritten for Euclidean space.
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Appendix B

Dirac basis of meson BSE

For the case of J = 1 we can immediately write down the two rank 1 tensors for a

bound state of two fermions: they are the transversely projected quantities Qµ and

Tµ defined

Qµ = τ (t)
µν r

ν , Tµ = τ (t)
µα τ

(Q)
αν γ

ν . (B.1)

Here Q is the same quantity as defined in Eq. (3.16) and we introduced the additional

transverse projector τ
(Q)
αν so that the resulting basis is conveniently orthogonal. The

explicit components of this basis can be found e.g. in Ref. [24].

For total angular momentum J = 2 we construct the 2-fold tensor products of

Qµi and Tµi . Since the product of two or more Tµi is degenerate, this gives

Q̃µ1µ2 = Qµ1Qµ2 , (B.2)

T̃µ1µ2 = T(µ1Qµ2) , (B.3)

where (. . .) denotes the symmetrization of the indices without normalization 1/J !.

To satisfy the criteria of being angular momentum tensors we then subtract the

trace-part to give [86, 124]

Qµ1µ2 = Qµ1Qµ2 −
1

3
Q2τµ1µ2 , (B.4)

Tµ1µ2 = T(µ1Qµ2) −
2

3
6Qτµ1µ2 . (B.5)
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The explicit components of this basis can be found e.g. in Ref. [86]. For total

angular momentum J = 3 we construct the 3-fold tensor products of Qµi and Tµi

Q̃µ1µ2µ3 = Qµ1Qµ2Qµ3 , (B.6)

T̃µ1µ2µ3 = T(µ1Qµ2Qµ3) . (B.7)

To satisfy the requirements of angular momentum tensors we subtract the trace

part, yielding

Qµ1µ2µ3 = Q̃µ1µ2µ3 −
1

5
τ(µ1µ2Q̃

κκ
µ3) ,

= Qµ1Qµ2Qµ3 −
1

5
Q2τ(µ1µ2Qµ3) , (B.8)

Tµ1µ2µ3 = T̃µ1µ2µ3 −
1

5
τ(µ1µ2T̃

κκ
µ3)

= T(µ1Qµ2Qµ3) −
1

5
2 6Qτ(µ1µ2Qµ3)

− 1

5
Q2τ(µ1µ2Tµ3) , (B.9)

which has not been explored in this approach before. The explicit representation of

this basis is given by

Γ(1)
µ1µ2µ3

(r, t) = Qµ1µ2µ3

[
λ11 + λ2/t + λ3 /Q+ λ4 /Q/t

]
+ Tµ1µ2µ3

[
λ51 + λ6/t + λ7 /Q+ λ8 /Q/t

]
, (B.10)

with λi = λi(r, t) scalar coefficients. Multiplying through by γ5 would yield the

Γ
(5)
µ1µ2µ3(r, t) basis decomposition.

The quantum numbers of a meson in the non-relativistic quark model are ob-

tained from the spin, S, and relative orbital angular momentum L of the qq̄ system,

which combine to give the total spin J = L⊕ S. The total parity, P , charge parity,

C, and G parity are given by

P (qq̄) = −(−1)L , (B.11)

C (qq̄) = (−1)L+S , (B.12)
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G (qq̄) = (−1)L+S+I , (B.13)

where C parity only applies to charge neutral states and is generalized to G parity

for isospin I = 1.

Thus, the quark model yields the possible JPC quantum numbers in Table B.1.

This leaves us with five states (for J ≤ 3) that are considered exotic: JPC = 0−−,

JPC = 0+−, JPC = 1−+, JPC = 2+−, and JPC = 3−+.

L S JPC L S JPC L S JPC L S JPC L S JPC

0 0 0−+ 1 0 1+− 2 0 2−+ 3 0 3+− 4 0 4−+

0 1 1−− 1 1 0++ 2 1 1−− 3 1 2++ 4 1 3−−

1 1 1++ 2 1 2−− 3 1 3++ 4 1 4−−

1 1 2++ 2 1 3−− 3 1 4++ 4 1 5−−

Table B.1: Allowed quantum numbers for a neutral qq̄ state in the quark model.
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Appendix C

Numerical methods

Integration

Gauss quadratures

In order to perform numerical integration we discretise radial and two angles inte-

grals into a quadrature sums [125] as follows:

∫
d(k2)

k2

2

∫ 1

−1

dz
√

1− z2

∫ 1

−1

dy −→
Nk∑
n=1

Nz∑
m=1

Ny∑
l=1

w(kn)w(zm)w(yl) , (C.1)

where w(kn), w(zm), w(yl) are quadrature weights and kn, zm, yl are correspondent

nodes. The integral over φ is not considered here since it is for our calculation

it is trivial and equal 2π. The radial and y-angle integrations involve a trivial

integration measure therefore for them we employ Gauss-Legendre quadrature. In

case of z-angle we need to incorporate the factor
√

1− z2 into quadrature rule to

archive a good accuracy. The proper way to do so is to apply Gauss-Chebyshev

quadrature by expanding the integral into following form:

∫ 1

−1

dz
√

1− z2f(z) −→
Nz∑
m=1

w(zm)f(zm) , (C.2)

here nodes are zm = cos( m
Nz+1

π) and weights are wm = π
Nz+1

sin2( m
Nz+1

π).
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Cauchy integration

In the BSE due to the external total momentum of the bound state one needs to

evaluate the internal propagators on the right hand side in a parabola region given

by Eq.(2.34) and sketched in Fig. C.1. Recall that parabolic p2-contour in complex

momentum region is parametrizes as follows:

p2 = t2 + itMstate −
M2

state

4
, (C.3)

where the parameter t in given by Gauss quadrature notes kn. The DSE is then

solved iteratively on the boundary supplemented with Cauchy’s theorem, which

reads as: given a function f(z) defined on the boundary of a closed contour z ∈ C,
we have for any z0 inside:

f(z0) =
1

2πi

∮
C

dzf(z)

z − z0

' 1

2πi

∑
i

wif(zi)

zi − z0

, (C.4)

where the integral has been approximated by some quadrature formula with weights

wj and abscissa zj. This is paired with a parametric mapping that describes the

contour’s boundary. Numerically this procedure poses a challenge when z0 ap-

f(z0)

Im(p2)

Re(p2)

Figure C.1: Sketch of the integration contour for the determination of the quark
propagator in the complex plane.
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proaches the abscissa zi. This can be mitigated through the use of the barycentric

formula [126]

f(z0) =

∑
i w̄if(zi)∑

i w̄i
, w̄i = wi/ (zi − z0) (C.5)

With this improvement applied, when when z0 approaches the abscissa zi and the

nominator diverges the same happens in denominator so the divergences cancel up

to first order error.

Power method

The basic idea is to start with initial guess for the solution and then to generate

iterative series converging to the final solution. The scheme can be represented by

Eq. C.6:

F (1)(p) = K(k, p, ...)⊗ F initial guess(k) (C.6)

F (2)(p) = K(k, p, ...)⊗ F (1)(k) (C.7)

...

F (n)(p) = K(k, p, ...)⊗ F (n−1)(k) (C.8)

Here a number in brackets denote an iteration step, the K(k, p, ...) schematically

represents the appropriate quark-quark scattering kernel for quark DSE or meson

BSE. The sign ⊗ represent the the Dirac trace and integration. In this case the

sampling of the internal grid (k) can be set similar to external grid (p). Note that

the quark DSE takes as input the quark propagator S(k), but outputs inverted one

S−1(p). The iterations must be performed until they converged to solution at de-

sired accuracy level.

In case of shifted momenta, as it was considered in 3, this robust method cannot

be applied due to non-trivial momenta routing:

F (p) = Kshifted(k, p, ...)⊗ F (p− k) , (C.9)
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where a notion shifted reflects the fact that the scattering kernel also changes due to

the momenta shifting. From Eq.(C.9) it is clear, that the internal grid (p− k) does

not match to external (p) and moreover the internal grid depends on external. The

additional complexity comes from the fact that in case of quark DSE the propagator,

meant to be used in meson BSE later, has to be obtained within parabolic region in

complex plane defined by:

p2 = t2 + itMmeson −
M2

meson

4
(C.10)

The following external grid (p2) and internal grid (p − k)2 are shown on Fig. C.2.

However the two observations can be made: every point of the internal grid (p−k)2

Im
(p

2 )

−30

−20

−10

0

10

20

30

Re(p2)
0 200 400 600 800 1,000

Grid
Contour

Grid
Contour

Figure C.2:

for any k lies within parabolic region (p2); the dressing functions posses analyticity

property and therefore if they are known on a contour, using the Cauchy theorem we

can obtain them everywhere inside a contour. In order to employ this idea we need

to truncate our parabolic region at Λ UV scale and by that turn it into the contour,

where Λ is same as the upper limit of a loop integration. The power method in this
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case has one extra step:

F (1)(p) = Kshifted(k, p, ...)⊗ F initial guess(p− k) (C.11)

F (1)(p− k) = C
(
F (1)(p)

)
(C.12)

F (2)(p) = Kshifted(k, p, ...)⊗ F (1)(p− k) (C.13)

...

F (n)(p) = Kshifted(k, p, ...)⊗ F (n−1)(p− k) , (C.14)

here C denotes the mapping from external grid (p2) to internal grid (p− k)2 via the

Cauchy integral. The Eq.(C.11) is written in a general notation to stress the fact that

this approach can be applied to both quark DSE and homogeneous/inhomogeneous

meson BSE. The power methods have a major drawback - one can obtain only the

first dominant solution and in case of meson BSE this would mean it would obtain

only the ground state.

Matrix eigenvalue calculation

The meson Bethe–Salpeter equations can be considered as eigenvalue problem, such

that the Eq.(3.9), given by:

Γ
(µ...)
tu (p;P ) = λ(P 2)

∫
d4k

(2π)4
Ktu;rs(p, k;P )

[
S(k+)Γ(µ...)(k;P )S(k−)

]
sr
, (C.15)

after transforming the integration into Gaussian quadrature [125] according to Ap-

pendix A, the meson BSE can be written as:

Ai = λ(P 2)KikAk , (C.16)

where the index i at A denotes not only the appropriate scalar Bethe–Salpeter

amplitude but also the quadrature integration point, so the vector Ai takes the
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following form:

A =



A1(p2
(1), z(1), P

2)

A1(p2
(2), z(1), P

2)

...

A1(p2
(1), z(2), P 2)

...

A2(p2
(1), z(1), P

2)

...


, (C.17)

and the matrix Kik consists of traces of the angular tensor in Γ
(µ...)
tu (p;P ) from r.h.s

in Eq.(3.9), the scattering kernel Ktu;rs(p, k;P ), two propagators S(k+), S(k−) and

the the angular tensor in Γ(µ...)(k;P ) from l.h.s, so the matrix Kik reads as:

Tr
[
D(i)
r (p2

(i), zr(i))K(p2
(i), zr(i), k

2
(k), zl(k))S+(k2

(k))D
(k)
l (k2

(k), zl(k))S−(k2
(k))
]
, (C.18)

where Dr(p;P ) and Dl(k;P ) are the angular tensors from r.h.s and l.h.s respectively

and for a brevity we omitted P dependence. In simple words the index i denotes

iteration over amplitude projector Dr and over (p2, zr) external grid points, whether

index k denotes amplitude projector Dr and (k2, zl) internal grid points. Once the

matrix Kik in allocated on the required external (p2, zr) and internal (k2, zl) grids

for all amplitudes for the desired JPC we can employ the numerical eigenvalue cal-

culation routine, namely the eigenvalue decomposition. The numerical routine is

provided by the Eigen library [127]. We specify the JP of the state through the

choice of the covariant decomposition, section 3.2, and determine the C-parity of

the state by examining the symmetry properties of the eigenvector.
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Rev. D 75, 034501 (2007).

121



122 BIBLIOGRAPHY

[15] C. S. Fischer, L. Fister, J. Luecker, and J. M. Pawlowski, Phys.Lett. B732,

273 (2014), 1306.6022.

[16] K. Osterwalder and R. Schrader, Commun.Math.Phys. 31, 83 (1973).

[17] M. Gell-Mann, R. Oakes, and B. Renner, Phys.Rev. 175, 2195 (1968).

[18] S. Bethke, Prog.Part.Nucl.Phys. 58, 351 (2007), hep-ex/0606035.

[19] C. D. Roberts and A. G. Williams, Prog.Part.Nucl.Phys. 33, 477 (1994),

hep-ph/9403224.

[20] C. Itzykson and J. Zuber, Quantum Field TheoryDover Books on Physics

(Dover Publications, 2012).

[21] L. D. Faddeev and A. A. Slavnov, Gauge Fields, Introduction to Quantum

Theory (Frontiers in physics) (Addison-Wesley Pub (T), 1991).

[22] G. C. Wick, Phys. Rev. 96, 1124 (1954).

[23] P. Maris, C. D. Roberts, and P. C. Tandy, Phys.Lett. B420, 267 (1998),

nucl-th/9707003.

[24] P. Maris and P. C. Tandy, Phys.Rev. C60, 055214 (1999), nucl-th/9905056.

[25] P. Maris and C. D. Roberts, Phys.Rev. C56, 3369 (1997), nucl-th/9708029.

[26] P. Maris and P. C. Tandy, Phys.Rev. C62, 055204 (2000), nucl-th/0005015.

[27] P. Maris and P. C. Tandy, Phys.Rev. C65, 045211 (2002), nucl-th/0201017.

[28] D. Jarecke, P. Maris, and P. C. Tandy, Phys.Rev. C67, 035202 (2003), nucl-

th/0208019.

[29] C. S. Fischer, S. Kubrak, and R. Williams, Eur.Phys.J. A51, 1, 10 (2014),

1409.5076.

[30] C. S. Fischer, S. Kubrak, and R. Williams, Eur.Phys.J. A50, 126 (2014),

1406.4370.



BIBLIOGRAPHY 123

[31] A. Bender, C. D. Roberts, and L. Von Smekal, Phys.Lett. B380, 7 (1996),

nucl-th/9602012.

[32] P. Watson, W. Cassing, and P. Tandy, Few Body Syst. 35, 129 (2004), hep-

ph/0406340.

[33] M. Bhagwat, A. Holl, A. Krassnigg, C. Roberts, and P. Tandy, Phys.Rev.

C70, 035205 (2004), nucl-th/0403012.

[34] H. H. Matevosyan, A. W. Thomas, and P. C. Tandy, Phys.Rev. C75, 045201

(2007), nucl-th/0605057.

[35] R. Alkofer, C. S. Fischer, F. J. Llanes-Estrada, and K. Schwenzer, Annals

Phys. 324, 106 (2009), 0804.3042.

[36] C. S. Fischer, D. Nickel, and J. Wambach, Phys.Rev. D76, 094009 (2007),

0705.4407.

[37] C. S. Fischer and R. Williams, Phys.Rev.Lett. 103, 122001 (2009), 0905.2291.

[38] C. S. Fischer, D. Nickel, and R. Williams, Eur.Phys.J. C60, 47 (2009),

0807.3486.

[39] C. S. Fischer and R. Williams, Phys.Rev. D78, 074006 (2008), 0808.3372.

[40] H. Sanchis-Alepuz, C. S. Fischer, and S. Kubrak, Phys.Lett. B 733, 151

(2014), 1401.3183.

[41] A. W. Thomas, S. Theberge, and G. A. Miller, Phys.Rev. D24, 216 (1981).

[42] G. A. Miller, Phys.Rev. C66, 032201 (2002), nucl-th/0207007.

[43] G. Ramalho, M. Pena, and F. Gross, Phys.Rev. D78, 114017 (2008),

0810.4126.

[44] I. C. Cloet and G. A. Miller, Phys.Rev. C86, 015208 (2012), 1204.4422.

[45] G. Eichmann, Phys.Rev. D84, 014014 (2011), 1104.4505.

[46] G. Eichmann and D. Nicmorus, Phys.Rev. D85, 093004 (2012), 1112.2232.



124 BIBLIOGRAPHY

[47] H. Sanchis-Alepuz, R. Williams, and R. Alkofer, Phys.Rev. D87, 096015

(2013), 1302.6048.

[48] J. I. Skullerud, P. O. Bowman, A. Kizilersu, D. B. Leinweber, and A. G.

Williams, JHEP 0304, 047 (2003), hep-ph/0303176.

[49] A. Kizilersu, D. B. Leinweber, J.-I. Skullerud, and A. G. Williams, Eur.Phys.J.

C50, 871 (2007), hep-lat/0610078.

[50] L. Chang and C. D. Roberts, Phys.Rev.Lett. 103, 081601 (2009), 0903.5461.

[51] L. Chang, Y.-X. Liu, and C. D. Roberts, Phys.Rev.Lett. 106, 072001 (2011),

1009.3458.

[52] L. Chang and C. D. Roberts, Phys.Rev. C85, 052201 (2012), 1104.4821.

[53] W. Heupel, T. Goecke, and C. S. Fischer, Eur.Phys.J. A50, 85 (2014),

1402.5042.

[54] R. Williams, (2014), 1404.2545.

[55] V. Miransky, Phys.Lett. B165, 401 (1985).

[56] V. A. Miransky, Dynamical symmetry breaking in quantum field theories

(World Scientific, Singapore, 1993).

[57] F. Gross, Relativistic Quantum Mechanics and Field Theory (Wiley-VCH,

1999).

[58] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

[59] M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

[60] H. Joos, Fortsch.Phys. 10, 65 (1962).

[61] S. Weinberg, Phys.Rev. 133, B1318 (1964).

[62] C. Zemach, Phys.Rev. 140, B97 (1965).

[63] N. Nakanishi, Progress of Theoretical Physics Supplement 43, 1 (1969).



BIBLIOGRAPHY 125

[64] N. Nakanishi, Phys. Rev. 138, B1182 (1965).

[65] N. Nakanishi, Phys. Rev. 139, AB1 (1965).

[66] H. Munczek, Phys.Rev. D52, 4736 (1995), hep-th/9411239.

[67] G. Eichmann, R. Alkofer, A. Krassnigg, and D. Nicmorus, Phys.Rev.Lett.

104, 201601 (2010), 0912.2246.

[68] G. Eichmann, R. Alkofer, A. Krassnigg, and D. Nicmorus, EPJ Web Conf. 3,

03028 (2010), 0912.2876.

[69] H. Sanchis-Alepuz, G. Eichmann, S. Villalba-Chavez, and R. Alkofer,

Phys.Rev. D84, 096003 (2011), 1109.0199.

[70] N. Brambilla et al., (2014), 1404.3723.

[71] N. Brambilla et al., Eur.Phys.J. C71, 1534 (2011), 1010.5827.

[72] G. V. Pakhlova, P. N. Pakhlov, and S. I. Eidelman, Phys.Usp. 53, 219 (2010).

[73] Johan Messchendorp for the BESIII Collaboration, J. Messchendorp, (2013),

1306.6611.

[74] G. T. Bodwin et al., (2013), 1307.7425.

[75] S. Godfrey and N. Isgur, Phys.Rev. D32, 189 (1985).

[76] D. Ebert, R. Faustov, and V. Galkin, Phys.Rev. D67, 014027 (2003), hep-

ph/0210381.

[77] D. Ebert, R. Faustov, and V. Galkin, Eur.Phys.J. C71, 1825 (2011),

1111.0454.

[78] F. J. Llanes-Estrada, O. I. Pavlova, and R. Williams, Eur.Phys.J. C72, 2019

(2012), 1111.7087.

[79] PACS-CS Collaboration, Y. Namekawa et al., Phys.Rev. D84, 074505 (2011),

1104.4600.



126 BIBLIOGRAPHY

[80] G. S. Bali, S. Collins, and C. Ehmann, Phys.Rev. D84, 094506 (2011),

1110.2381.

[81] Hadron Spectrum Collaboration, L. Liu et al., JHEP 1207, 126 (2012),

1204.5425.

[82] G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and L. Liu, JHEP 1305,

021 (2013), 1301.7670.

[83] European Twisted Mass, M. Kalinowski and M. Wagner, Acta

Phys.Polon.Supp. 6, 991 (2013), 1304.7974.

[84] D. Mohler, (2012), 1209.5790.

[85] S. Prelovsek, (2013), 1310.4354.

[86] A. Krassnigg and M. Blank, Phys.Rev. D83, 096006 (2011), 1011.6650.

[87] R. L. Jaffe, Phys.Rev. D15, 267 (1977).

[88] F. Giacosa, Phys.Rev. D75, 054007 (2007), hep-ph/0611388.

[89] D. Ebert, R. Faustov, and V. Galkin, Eur.Phys.J. C60, 273 (2009), 0812.2116.

[90] D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa, and D. H. Rischke, Phys.Rev.

D87, 014011 (2013), 1208.0585.

[91] W. Heupel, G. Eichmann, and C. S. Fischer, Phys.Lett. B718, 545 (2012),

1206.5129.

[92] A. Holl, A. Krassnigg, and C. Roberts, Phys.Rev. C70, 042203 (2004), nucl-

th/0406030.

[93] R. Alkofer, C. S. Fischer, and R. Williams, Eur.Phys.J. A38, 53 (2008),

0804.3478.

[94] M. Blank and A. Krassnigg, Phys.Rev. D84, 096014 (2011), 1109.6509.

[95] T. Hilger, C. Popovici, M. Gomez-Rocha, and A. Krassnigg, (2014), 1409.3205.



BIBLIOGRAPHY 127

[96] E. Rojas, B. El-Bennich, and J. de Melo, (2014), 1407.3598.

[97] M. Gomez-Rocha, T. Hilger, and A. Krassnigg, (2014), 1408.1077.

[98] A. Aguilar, D. Binosi, D. Ibanez, and J. Papavassiliou, Phys.Rev. D89, 085008

(2014), 1312.1212.

[99] A. Blum, M. Q. Huber, M. Mitter, and L. von Smekal, Phys.Rev. D89, 061703

(2014), 1401.0713.

[100] G. Eichmann, R. Williams, R. Alkofer, and M. Vujinovic, Phys.Rev. D89,

105014 (2014), 1402.1365.

[101] A. Cucchieri, A. Maas, and T. Mendes, Phys.Rev. D77, 094510 (2008),

0803.1798.

[102] P. Masjuan, E. Ruiz Arriola, and W. Broniowski, Phys.Rev. D85, 094006

(2012), 1203.4782.

[103] J. Londergan, J. Nebreda, J. Pelaez, and A. Szczepaniak, Phys.Lett. B729, 9

(2014), 1311.7552.

[104] D. Ebert, R. Faustov, and V. Galkin, Phys.Rev. D79, 114029 (2009),

0903.5183.

[105] C. Fischer, P. Watson, and W. Cassing, Phys.Rev. D72, 094025 (2005), hep-

ph/0509213.

[106] P. Watson and W. Cassing, Few Body Syst. 35, 99 (2004), hep-ph/0405287.

[107] C. Allton, W. Armour, D. B. Leinweber, A. W. Thomas, and R. D. Young,

Phys.Lett. B628, 125 (2005), hep-lat/0504022.

[108] C. Alexandrou, G. Koutsou, J. W. Negele, and A. Tsapalis, Phys.Rev. D74,

034508 (2006), hep-lat/0605017.

[109] C. Gattringer et al., Phys.Rev. D79, 054501 (2009), 0812.1681.

[110] A. Krassnigg, Phys.Rev. D80, 114010 (2009), 0909.4016.



128 BIBLIOGRAPHY

[111] G. Eichmann and C. Fischer, Eur.Phys.J. A48, 9 (2012), 1111.2614.

[112] R. D. Young, D. B. Leinweber, A. W. Thomas, and S. V. Wright, Phys.Rev.

D66, 094507 (2002), hep-lat/0205017.

[113] P. Shanahan, A. Thomas, and R. Young, Phys.Rev. D87, 074503 (2013),

1205.5365.

[114] L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich, and M. Vicente-Vacas,

Phys.Rev. D88, 054507 (2013), 1304.0483.

[115] G. Bali et al., PoS Lattice2013, 291 (2014), 1312.0828.

[116] V. E. Lyubovitskij, T. Gutsche, A. Faessler, and E. Drukarev, Phys.Rev. D63,

054026 (2001), hep-ph/0009341.

[117] I. Cavalcante, M. Robilotta, J. Sa Borges, D. de O. Santos, and G. Zarnauskas,

Phys.Rev. C72, 065207 (2005), hep-ph/0507147.

[118] F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in

Modern Particle Physics (Wiley, 1984).

[119] A. Kvinikhidze and B. Blankleider, Phys.Rev. C60, 044003 (1999), nucl-

th/9901001.

[120] M. Oettel, R. Alkofer, and L. von Smekal, The European Physical Journal A

8, 553 (2000).

[121] NA7, S. Amendolia et al., Nucl.Phys. B277, 168 (1986).

[122] Jefferson Lab F(pi) Collaboration, J. Volmer et al., Phys.Rev.Lett. 86, 1713

(2001), nucl-ex/0010009.

[123] M. Williams, Comput.Phys.Commun. 180, 1847 (2009), 0805.2956.

[124] C. Llewellyn-Smith, Annals Phys. 53, 521 (1969).

[125] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-

ical Recipes 3rd Edition: The Art of Scientific Computing, 3 ed. (Cambridge

University Press, New York, NY, USA, 2007).



BIBLIOGRAPHY 129

[126] J.-P. Berrut and L. N. Trefethen, SIAM Rev 46, 501 (2004).

[127] G. Guennebaud et al., Eigen v3, http://eigen.tuxfamily.org, 2010.


	Introduction
	Quantum Chromodynamic field theory
	Symmetries of QCD
	Aspects of QCD

	Dyson–Schwinger Equations
	Quark DSE
	Truncation
	Numerical solution of the DSE

	QCD Bound States
	Bethe-Salpeter equation
	Total angular momentum tensor
	Normalization of the BSA
	Scattering kernel K
	Fadeev equation

	Meson Properties
	Solutions of Meson BSE
	Light Quark Meson Spectroscopy
	Heavy Quark Meson Spectroscopy
	Regge trajectories

	Pion Cloud Effect
	Mesons
	Baryons
	Pion Form Factor

	Summary and outlook
	Appendices
	Euclidean space and kinematics
	Dirac basis of meson BSE
	Numerical methods
	Bibliography

