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I

Zusammenfassung

Die lateralen und zeitlichen Variationen der Neodym-Isotopie im Meerwasser spiegeln die

Dynamik geologischer Prozesse auf der Erdoberfläche. Die Nd-Isotopenzusammensetzung des

Meerwassers reflektiert u.a. das Ausmaß der Erosion der exhumierten Kruste und deren Alter auf

den umliegenden festländischen Gebieten. Die kontinentale Kruste mit schwach radiogenen

Isotopensignaturen (εNd zwischen -10 und -30) ist die Hauptquelle des Nd im Meerwasser. Der

Nd-Eintrag aus der ozeanischen Kruste (εNd von etwa +8) ist dagegen sehr gering, weil sie kaum

erodiert wird (nur im Bereich der vulkanischen Inselbögen und ozeanischen Inseln). Die

Information über die Isotopenzusammensetzung der Paläo-Ozeane ist in Fossilien, chemischen

Sedimenten und authigenen Mineralen archiviert. Im Rahmen dieser Arbeit wurde versucht,

anhand der Nd-Isotopie von Conodonten (phosphatische Reste der ältesten marinen Vertebraten,

# 2 mm groß) unterschiedliche Wassermassen (Aquafazies) im Ozeansystem der Varisziden

während der Devon-Zeit zu identifizieren. Das weitere Ziel der Untersuchungen bestand darin, die

gewonnen Daten als Hilfe für die Rekostruktion der temporären Zirkulationsmuster sowie die

Bewegung der Wassermassen in der zeitlichen Dimension zu benutzen. Außerdem wurde ein

Versuch unternommen, auf der Basis der Nd-Isotopie von Conodonten auch Aussagen über die

Hebung der Landmassen und das durschnittliche Alter der exhumierten Kruste zu treffen.

Als Untersuchsgebiet wurde ein Meeresbereich ausgewählt, der während des Devons und

Karbons zwischen Euramerika und Gondwana existierte. Er stellte eine Verbindung zwischen dem

riesigen Panthalassia-Ozean und der Paläotethys dar und bestand aus kleineren ozeanischen

Einheiten (Rheischer Ozean, Rhenoherzynischer Ozean, Variszisches Meer) und flankierenden

Schelfgebieten. Dieser Meeresbereich wurde während des Devons, als Folge des nördlichen Drifts

von Gondwana, immer enger, was letztlich im Laufe des Unterkarbons zu seiner Schließung und

zur Bildung des variszischen Orogens führte. Das Probenmaterial für die systematische

isotopengeochemische, geochemische, stratigraphische und sedimentologische Untersuchungen

wurde hauptsächlich in Marokko (östliches Anti-Atlas, Meseta) und in Südfrankreich (Montagne

Noire) gesammelt. Die sedimentolgischen Abfolgen des Frasnes und des Famennes sind dort sehr

reich an Conodonten, was eine sehr präzise Datierung und Korrelation ermöglicht hat. Dieses

reiche Conodonten-Material wurde detailliert isotopen-geochemisch untersucht, um die elementare

und isotopische Systematik des Neodyms und des Samariums in den Conodonten zu entziffern.

Weitere Proben kamen aus dem Devon von Polen (Heiligkreuz-Gebirge, Krakauer Paläozoikum,

Sudeten), das durch sehr niedrige thermische Überprägung charakterisiert ist. Damit konnte der

Einfluss der diagenetischen bzw. epigenetischen Prozesse (z.B. thermische Überprägung) auf die

Nd-Isotopie der Conodonten untersucht werden. Während der gesamten Untersuchungen wurden
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fast 300 Condonten-Proben gemessen und ausgewertet.

Nd-Systematik der Conodonten

Die phosphatischen Knochen der rezenten Fische zeigen in vivo äußerst niedrige Nd-Gehalte

(SHAW & WASSERBURG, 1985; ELDERFIELD & PAGETT, 1986). Das Neodym wird erst post-

mortem eingebaut, so dass fossiles Material sehr hohe Nd-Konzentrationen aufweist (bis 5000

ppm). Aufgrund rezenter Beobachtungen (BERNAT, 1975) wird angenommen, dass die

Anreicherung etwa eintausend Jahre dauert und hauptsächlich direkt auf der Sedimentoberfläche

(SHAW & WASSERBURG, 1985) erfolgt. Diese Erkenntnisse lassen vermuten, dass ähnliche

Anreicherung auch beim fossilen phosphatischen Material (Conodonten) stattgefunden haben

müßte. 

Die Untersuchungen während dieser Arbeit haben ergeben, dass alle Conodonten innerhalb

einer Probe die gleiche Nd-Isotopenzusammensetzung haben, obwohl sie oft recht unterschiedliche

Nd-Gehalte aufweisen. Die Conodonten-Kronen zeigen Nd-Konzentrationen von 25 bis 280 ppm,

die Conodonten mit den Basen dagegen Konzentrationen von 200 bis 820 ppm. Die

Konzentrationsunterschiede in den Kronen sind vor allem auf die unterschiedliche Morphologie

der Conodonten zurückzuführen. Sowohl kleine als auch große Exemplare eines bestimmten Typs

sind durch ähnliche Nd-Konzentrationen charakterisiert. Dies zeigt, dass nicht die absolute Größe

der Conodonten eine entscheidende Rolle beim Nd-Einbau spielte sondern das Verhältnis zwischen

ihrer Oberfläche und Masse. Einen geringen Einfluss hatte auch die Dauer des Kontaktes mit dem

Meereswasser, bevor die Sedimentbedeckung die Aufnahme von Nd aus dem Meerwasser

beendete. Entsprechend weisen Conodonten aus den Sedimenten mit hohen Sedimentationsraten

generell niedrigere Nd-Gehalte als die des gleichen Typs aus den kondensierten Profilen. Diese

Tatsache beweist, dass der Einbau von Nd in das Phosphat von Conodonten während der Phase

des direkten Kontaktes mit dem Meerwasser erfolge. Nach der Einbettung in die Sedimente wurde

offensichtlich kein zusätzliches Neodym in die Conodonten eingebaut.  

Die Abhängigkeit der Nd-Konzentrationen in Conodonten von deren Form stellt einen

großen praktischen Vorteil für die Isotopen-Analytik dar. Die Isotopenverdünnungsmethode, die

zur Messung der Nd-Isotopenkonzentrationen oft angewandt wird, kann sehr genau sein, erfordert

aber vorab eine ungefähre Kenntnis der Nd-Konzentration in der Probe. Damit kann die optimale

Menge des Spikes, der mit der Probe gemischt wird, abgeschätzt  werden. Bei einer zu großen

oder zu kleinen Menge des Spikes ist die Messung ungenau und muss wiederholt werden. Im Falle

der Conodonten ist es jetzt sehr leicht, die ungefähre Nd-Konzentration anhand ihrer Morphologie

abzuschätzen. Dabei sind keine besonderen taxonomischen Kenntnisse der Conodonten notwendig.

An ausgewählten Proben wurde auch die Verteilung der SEE analysiert. Trotz der großen

Unterschiede in den absoluten Konzentrationen zeigen alle Proben ein sehr ähnliches SEE-Muster,
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das durch eine Anreicherung der mittleren Seltenen Erden charakterisiert ist. Dieses Muster wird

in der Literatur als “bell-shaped” bezeichnet und als typisch für die paläozoischen biogenen

Phosphate betrachtet.    

Das Sm-Nd-System der Conodonten scheint weitgehend unempfindlich für spätere,

diagenetische Einflüsse zu sein. Bei der Auswertung der untersuchten Conodonten-Proben, wurde

keine Korrelation zwischen den Nd-Isotopensignaturen und der thermischen Überprägung der

Conodonten festgestellt. Als deren indirektes Maß gelten die CAI-Werte (Farbveränderungswerte)

die beim untersuchten Material zwischen 1 und 4 schwankten.

Conodonten im Vergleich zu anderen biogenen Phosphaten

In den marinen Ablagerungen des Devons kommen neben Conodonten auch andere Fossilien vor,

die aus phosphatischem Material aufgebaut sind. Das sind vor allem Knochen von Placodermen

(Panzerfische) und Zähne von Haifischen. Anders als die Conodonten werden diese Fossilien

relativ selten gefunden und eignen sich deswegen kaum für systematische geochemische Studien.

Außerdem macht die chemische Zusammensetzung des Knochenmaterials von Fischen, d.h. der

höhere Anteil an Kalziumkarbonat als beim Conodonten-Fluorapatit, diese Fossilien anfälliger für

chemische und strukturelle Veränderungen während der Diagenese. Das Knochenmaterial wird

allerdings im Mesozoikum und Känozoikum oft zur Ermittlung der Zusammensetzung des

Meerwassers verwendet, da Conodonten-Elemente nicht zur Verfügung stehen (die Conodonten-

Tiere sind am Ende der Trias-Zeit ausgestorben). Da in einigen Gesteinsproben neben Conodonten

auch Haifischzähne und Placodermenreste gefunden wurden, konnte getestet werden, ob die Nd-

Isotopenzusammensetzung und die Sm/Nd Fraktionierung in diesen verschiedenen biogenen

Apatiten innerhalb einer Probe homogen sind.  Die Analysen ergaben in der ersten Linie, dass die

Haifischzähne und die Plakodermenreste Konzentrationen aufweisen, die um eine Größenordnung

höher sind als die der Conodonten. Außerdem konnten auch Unterschiede in den

Isotopensignturen und Sm/Nd-Verhältnissen festgestellt werden, die zum Teil infolge der

thermischen Überprägung der Sedimente entstanden sind. In dem relativ wenig erhitzten

Probenmaterial (CAI-Werte 1 bis 3) sind sowohl die εNd-Werte der Haifischzähne als auch der

Placodermenreste systematisch weniger radiogen als die der Conodonten. In den Proben mit hohen

CAI-Werten von 4 (Proben aus dem östlichen Anti-Atlas) sind die Isotopensignaturen der anderen

biogenen Apatite deutlich radiogener als die der Conodonten. Ähnlich gestört ist auch das Sm/Nd-

Verhältnis; erhitztes Knochenmaterial zeigt niedrigere Werte als die der Conodonten. In den

Proben mit geringer thermischer Überprägung sind die Sm/Nd-Verhältnisse in allen biogenen

Apatiten identisch. Parallele Sr-Isotopenuntersuchungen der gleichen Proben ergaben, dass nur

Conodonten-Material Sr-Werte aufweist, die den ozeanischen Sr-Isotopenverhältnissen

entsprechen. Demzufolge erscheinen die Conodonten verglichen mit den Haifischzähnen und den
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Placodermenresten als besser für die Untersuchungen der Zusammensetzung des Meerwassers

geeignet. Die Haifischzähne und Placodermenreste können allerdings für paläozeanographische

Untersuchungen dort eingesetzt werden, wo die Conodonten fehlen, wie zum Beispiel in den

Flachwasser-Sedimenten.

Nd-Isotopie der Conodonten: lokale Variationen

Die meisten Untersuchungen in Rahmen dieser Arbeit wurden im östlichen Anti-Atlas

durchgeführt. Bei dem Versuch die Zirkulationsmuster des Meerwassers zu rekonstruieren, wurde

diese Region als Testgebiet betrachtet, da dort die devonischen Ablagerungen großflächig

aufgeschlossen sind und ein breites Spektrum von Sedimentstrukturen, darunter auch verschiedene

Strömungsmarker enthalten. Es wurden Proben aus zwei Zeitscheiben analysiert, nämlich aus der

Basis und aus dem Top der Kellwasser-Fazies. Anders als in vielen europäischen Profilen bildet

die Kellwasser-Fazies im südlichen Marokko ein mehrere Meter mächtiges Intervall. 

Beim Einsetzen der Kellwasser-Fazies (während der Conodonten-Zone 11) zeigen sich

große Unterschiede in den εNd-Werten zwischen –6 und –11. Die niedrigsten εNd-Werte resultierten

vom starken terrigenen Eintrag. Dieser erfolgte sowohl aus südlicher Richtung, aus dem

Westafrikanischen Kraton, und aus dem Westen, aus dem präkambrischen Grundgebirge des Jebel

Ougnate. Die mehr radiogenen Nd-Signaturen des Meerwassers auf der Mader Plattform deuten

auf eine Verbindung mit dem Rheischen Ozean. Eine Verbindung zum offenen Meer existierte

auch in die nördliche Richtung. Die εNd-Gradienten stimmen in der Regel sehr gut mit den

Strömungsmarken (hier die Orientierung der orthoconen Nautiloiden) überein. Ausgehend von den

lateralen Trends der εNd-Werte wurde ein Zirkulationsmuster entworfen. Dieses zeigt eine

generelle Meerwasserzirkulation von Südwesten nach Osten. Sie änderte sich noch während des

Frasnes, gleich nach der Regression während der Zone 12. Die Gradienten in den Nd-

Isotopensignaturen wurden deut lich geringer, was wahrscheinlich auf einen

Meeresspiegelhochstand zurückzuführen ist, der höchstwahrscheinlich eine bessere Zirkulation des

Meerwassers und Homogenisierung der Nd-Isotopenzusammensetzung verursachte. Die

Hauptströmung kam damals aus östlicher Richtung und kehrte teilweise im Bereich der zentralen

Tafilalt Plattform zurück. Dieses komplexe Zirkulationssystem herrschte bis zum späteren

Famenne. Charakteristisch für diese Phase ist relativ schwacher terrigener Eintrag aus dem

Westafrikanischen Kraton.

Nd-Isotopie der Conodonten: regionale Variationen

Die regionalen Unterschiede in der geochemischen Zusammensetzung des Meerwassers im

variszischen Raum während des Oberdevons werden sichtbar, wenn man die εNd-Werte und die

Sm/Nd-Verhältnisse der Conodonten gegeneinander aufträgt. Besonders deutlich sind die
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unterschiedlichen Sm/Nd-Verhältnisse der Wassermassen auf dem baltischen Schelf von

Euramerika (Südpolen) im Vergleich zu den Wassermassen auf dem marokkanischen Schelf von

Gondwana (Anti-Atlas). Das Meerwasser in Südpolen war durch niedrige Sm/Nd-Verhältnisse

(0,16 bis 0,29) charakterisiert, wie sie auch heute typisch für ozeanische Bereiche sind. Das deutet

darauf hin, dass das Wasser am Rande des baltischen Schelfs von Euramerika stark mit

ozeanischem Wasser vermischt war. Dabei spielte der Nd-Eintrag aus dem fast 300 km weit

entfernten Landgebiet (Weißrussisches Land) offensichtlich nur eine untergeordnete Rolle. Im

Gegensatz dazu war das Meerwasser auf dem marokkanischen Schelf von Gondwana stark durch

den terrestrischen Eintrag des Nd geprägt. Die Sm/Nd-Verhältnisse waren hoch, zwischen 0,21

und 0,85. Diese Spanne ist wesentlich breiter als die auf den rezenten Schelfgebieten beobachteten

Werte, die kleiner als 0,44 sind. Es ist hier allerdings zu betonen, dass der Datensatz aus den

rezenten Schelfgebieten bisher sehr klein ist und nur aus einer Studie im südost-asiatischen Raum

stammt (AMAKAWA et al., 2000). Für die hohen Sm/Nd-Verhältnisse in östlichem Anti-Atlas

können Fraktionierungsprozesse, ähnlich denen in rezenten Estuarien verantwortlich sein.

Während der Mischung des Flusswassers mit dem Meerwasser werden die gelösten SEE gefällt,

was in der Regel mehr die leichten, an die Kolloide gebunden, SEE betrifft. Paläoozeanographisch

noch signifikanter als die regionalen Unterschiede in der SEE-Fraktionierung auf den

spätdevonischen Schelfgebieten sind die Variationen in der Nd-Isotopenzusammensetzung der

Conodonten. Die εNd-Werte schwanken zwischen -2 und -12 und belegen Anwesenheit von zwei

unterschiedlichen Aquafazies. Eine hatte ein stark radiogenes Wasser, mit εNd-Werten von -2 bis

-5, und repräsentierte das ozeanische Wasser, das sporadisch, während der Episoden des

Meeresspiegelanstiegs die Schelfgebiete teilweise überflutete. Die Schelf-Aquafazies war dagegen

durch εNd-Werte zwischen etwa -6 und -12 gekennzeichnet. Die Daten aus der Meseta belegen

außerdem, dass der Wasseraustausch zwischen den beiden Aquafazies sehr eingeschränkt war.

Beide zeigen nicht nur unterschiedliche Nd-Isotopenentwicklung sondern auch eine

unterschiedliche Kohlenstoff-Isotopie und SEE-Fraktionierung. Die Entkopplung der

geochemischen Evolution zwischen den beiden Wasserreservoiren hat sehr wichtige Konsequenzen

für die Interpretation der Kohlenstoffisotopendaten. In einem globalen ozeanischen System mit

lokal individueller geochemischen Entwicklung des Meerwassers kann nämlich schnell eine

Anomalie in der C-Isotopie entstehen, wenn sich die Meerwasserzirkulation ändert und zum

Vermischen von zwei Aquafazies führt.

Die stark radiogenen Nd-Isotopensignaturen der ozeanischen Aquafazies (εNd-Werte bis

-2,6) ähneln sehr stark den Signaturen des rezenten Pazifiks, der im Durchschnitt εNd-Werte von

-3,5 zeigt (BERTRAM & ELDERFIELD, 1993). Das Wasser im Atlantischen und Indischen Ozean ist

dagegen mehr kontinental geprägt und daher weniger radiogen, mit durchschnittlichen εNd-Werten

von etwa -12 und -8. Die isotopengeochemische Ähnlichkeit des Wassers im Pazifik und der
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ozeanischen Aquafazies des Variszikums zeugt von ähnlichem geotektonischen Regime der beiden

ozeanischen Systeme. Wie heute im Pazifik kamen auch im variszischen Raum während des

Oberdevons zahlreiche Subduktionszonen und vulkanischen Inselbögen vor.

Meeresspiegelschwankungen

Die Analyse der temporären Variationen der Nd-Isotopensignaturen in mehreren Profilen

Marokkos und Frankreichs hat gezeigt, dass die stärksten Fluktuationen weniger durch lokale und

viel mehr durch globale Faktoren verursacht wurden. Besonders deutlich wird dies im östlichen

Anti-Atlas, wo die stärksten Schwankungen der εNd-Werte perfekt mit dem Auftreten von

stratigraphischen Lücken korrelieren. Da diese Lücken infolge der Meeresregressionen entstanden

sind, werden eustatische Meeresspiegelschwankungen als Hauptfaktor angesehen, der die

temporären Variationen der Nd-Signaturen des Meerwassers am stärksten beeinflusste. Diese

Tatsache ermöglicht die temporären Nd-Isotopentrends für die Rekonstruktion der

Meeresspiegelschwankungen zu benutzen. Diese Methode stellt einen Durchbruch in der

paläoozeanographischen Forschung im Paläozoikum dar. Sie hat den großen Vorteil, dass die

Meeresspiegelschwankungen auch in lithologisch monotonen Folgen sehr gut lesbar sein können.

Die Daten zeigen außerdem, dass die Nd-Isotopie viel präziser als die Lithologie die eustatischen

Meeresspiegelschwankungen nachzeichnet. Der Einfluss von lokalen Faktoren kann leicht durch

den Vergleich von mehreren lokalen Nd-Isotopenkurven eliminiert werden.

Auf der Basis der Nd-Daten aus Marokko und Frankreich wurde eine, auf Isotopen

basierte Kurve der eustatischen Meeresspiegelschwankungen für das Oberfrasne und

Unterfamenne erstellt. Diese wurde mit der klassischen, auf der Basis von faziellen Daten

konstruierten Meeresspiegelschwankungskurve verglichen (JOHNSON et al., 1985; JOHNSON &

SANDBERG, 1988; SANDBERG et al., 1992). Die neue Kurve weist eine relativ große

Übereinstimmung mit der bisherigen Schema auf. Der größte Unterschied besteht darin, dass die

Isotopendaten zwei markante Regressionsereignisse während des späteren Frasnes dokumentieren.

Während dieser Phasen sind die beiden Kellwasser-Einheiten, der Untere Kellwasserkalk und der

Obere Kellwasserkalk, in Europa und in der marokkanischen Meseta abgelagert worden. Diese

wurden bisher fast immer als Transgressionen aufgefasst. Die Nd-Untersuchungen haben gezeigt,

dass das Gegenteil richtig ist. Als Folge der beiden Regressionen kommen im östlichen Anti-Atlas

signifikante stratigraphische Lücken vor. Eine weitere wichtige Beobachtung im östlichen Anti-

Atlas ist, dass dort kein nennenswerter Meerwasser-Austausch am Anfang der Kellwasserkrise

während der Zone 11 aufgetreten ist. Die Eutrophierung wurde also nicht durch das Eindringen

von kaltem, nährstoffreichen Wasser aus dem Ozean verursacht. Das ozeanische Wasser hat den

marokkanischen Schelf erst während der semichatovae-Transgression überflutet und führte in

Beckenbereichen zur Bildung von hellen, oxidierten Karbonaten. 



1

1    Introduction

The world ocean constitutes a complex system that mirrors the dynamics of the Earth’s surface.

This is because geochemical properties of seawater depend on a variety of endogenic and exogenic

factors, such as variations in the lithologic composition of the crust exposed to weathering,

configuration and topographic relief of continents, extent of continental inundation by epeiric seas,

extent of volcanic activity, variation in climate, changes in biological activity and carbon dioxide

level. In addition, there are interactions between the ocean and the seafloor, the ocean and the

biosphere, and the ocean and the atmosphere. During Earth’s history, processes involved in the

evolution of the Earth’s surface varied and thus changed the composition of the oceans. In turn,

the chemical composition of seawater influenced the chemistry of marine sedimentary precipitates

and controlled processes of biomineralisation (e.g. SANDBERG, 1983; VEIZER, 1985; MACKENZIE

& AGEGIAN, 1989). Although the evolutionary changes in seawater chemistry were presumably

rather small during the last 600 million years (e.g. KASTING, 1989, KUMP, 1989; MORSE &

MACKENZIE, 1990), geochemical properties of seawater in the ancient oceans form a fundamental

basis for understanding the geological history of the Earth.

Geochemical properties of seawater are recorded in sediments and biogenic skeletal

precipitates. But original seawater signatures are preserved only in marine phases that precipitated

in equilibrium with seawater. One of the primary difficulties of using isotopes as a proxy for past

seawater composition is the identification of a common, datable, marine phase that incorporates

significant concentrations of a given element and remains chemically inert during burial and

diagenesis. Biogenic phosphates meet these requirements better than any other geological material

and are therefore regarded as very suitable for palaeoceanographic studies (e.g. WRIGHT et al.,

1987; GRANDJEAN et al., 1987; SCHMITZ et al., 1991; MORAD & FELITSYN, 2001). In the

Palaeozoic sediments, conodont elements are particularly useful because they are ubiquitous,

biostratigraphically important and their apatite exhibits a high thermal and chemical stability (e.g.

WRIGHT et al., 1984; WRIGHT, 1990; EBNETH et al., 1997; FELITSYN et al., 1998; HOLMDEN et

al., 1998; JOACHIMSKI & BUGGISCH, 2002).

Numerous studies have shown that the Nd isotopic composition of modern seawater varies

both within and between different parts of the oceans (e.g. PIEPGRAS &WASSERBURG, 1980;

BERTRAM & ELDERFIELD, 1993). This led to the idea that Nd isotope signals recorded in marine

precipitates can be used as a tool for distinguishing between different water masses. Moreover,

because the main input of Nd to the ocean is from continental weathering through riverine

transport, the Nd isotopic signatures of ancient seawater are useful tracers of changes in

continental runoff and seawater circulation (e.g. PIEPGRAS et al., 1979; KETO & JACOBSEN, 1987,

1988; STILLE et al., 1996; VANCE & BURTON, 1999).
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Most of the Nd data obtained from conodonts are records of REE distribution patterns, or simply,

measurements of Nd concentrations (e.g. WRIGHT et al., 1987; GRANDJEAN & ALBARÈDE, 1989;

GRANDJEAN et al., 1993; GIRARD & ALBARÈDE, 1996; BRUHN  et al., 1997; HAUNOLD et al.,

1999; ARMSTRONG et al., 2001). Nd isotopic signatures of conodonts were published in several

papers but, in fact, only very few samples were analysed (WRIGHT et al., 1984; SHAW &

WASSERBURG, 1985; KETO & JACOBSEN, 1987, 1988; BERTRAM et al., 1992; HOLMDEN et al.,

1996, 1998; FELITSYN et al., 1998). The published Devonian data set, for instance, comprises only

six Nd isotope ratios.

The present study deals with Nd isotopic data obtained from a large number (more than

300) of Devonian conodont samples. The primary purpose of this research was to recognize lateral

and temporal variations in the Nd isotopic composition of seawater in the western part of the

Variscan Sea. Upper Devonian deposits exposed in Morocco (eastern Anti-Atlas, Meseta) and in

southern France (Montagne Noire) were selected for a detailed investigation (Fig. 1). The study

focuses primarily on the late Frasnian and the early Famennian successions, known to bear an

extremely rich conodont fauna that permits a high-resolution stratigraphic correlation and dating.

Late Devonian time has been targeted because of its crucial importance for the evolution of the

biosphere. Several global events and turning points occurred during this time, such as development

of organic-rich facies (Kellwasser), reef decline, significant mass extinction, origin of earliest

forests and onset of dramatic climatic fluctuations (glaciations). The palaeogeography of the Late
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Devonian is still a matter of debate. It is likely that Gondwana approached Euramerica during this

time and thus the Variscan oceanic system has substantially been modified. In order to provide

additional constraints for the Devonian palaeogeography this treatise includes an attempt to

reconstruct seawater circulation on the Gondwana shelf. Finally, the study concerns also the Nd

elemental and isotopic systematics in Devonian conodonts and compares it to that of fish remains.

This work is a contribution to the priority programme “SPP 1054  - Evolution des Systems

Erde während des jüngeren Paläozoikms im Spiegel der Sediment-Geochemie“ funded by the

Deutsche Forschungsgemeinschaft (DFG) and it constitutes part of the project Neodym-Isotopie

von Conodonten als paläoozeanographische Proxies im Ozeansystem der Varisciden (grants Be

1296/8-1, Ha 1207/26-1). 

2    Conodonts and their applications

Conodonts are small (#2 mm) skeletal remains of an extinct group of nektonic marine animals.

Being a long time enigmatic, conodont animals are now regarded as the earliest jawless vertebrates

(e.g. SWEET, 1988; ALDRIDGE et al., 1993; DONOGHUE et al., 2000). Conodont animals had

slender, eel-like and most frequently only 40 mm long bodies. Their only hard skeletal parts were

conodont elements assemblaged into a feeding apparatus, which was positioned in the head region

of the animal. 

The apparatuses included elements of several different morphologies but the composition

and architecture of apparatuses is known for a few conodont species only. Conodont elements are

phosphatic and constructed from two distinct parts, the upper crown and the lower basal filling.

Both are mostly internally laminated, but laminae of the basal tissue are thicker and less densely

packed than those of the crown. In addition, the basal filling contains significantly more organic

matter than the crowns and consequently, it is more susceptible to postdepositional alteration. This

is why in the majority of conodont samples the less resistant basal bodies are lacking. The

conodont crowns occur in a wide variety of shapes subdivided into three major groups of single

cones, ramiforms, and platform elements. The lamellar crown tissue is composed of crystallites

that typically range in length from 1-30 :m and can display an individual arrangement within

different laminae. The structure of basal bodies, however, is highly variable including both lamellar,

spherulitic and tubular patterns. 

According to PIETZNER et al. (1968), the mineral phase of conodonts

[Ca5Na0.14(PO4)3.01(CO3)0.16 F0.73(H2O)0.85] approximates the mineral francolite. BELKA (1993),

however, noticed that the crystallographic properties of the conodont phosphate indicate that the

conodont crowns are essentially fluorapatit rather than francolite. Due to its low CO2 content and



4

high unit cell a-value of 9.37 Å the conodont fluorapatite exhibits a very high thermal and chemical

stability under the conditions prevailing at the earth’s surface. The conodont fluorapatite

represents a stable mineral phase already during the growth of conodont elements, almost immune

to oxidation, and thus, not susceptible to weathering (BELKA, 1993). 

Conodont elements occur frequently in marine sedimentary rocks of Late Cambrian

through Triassic age. They have several important applications in geological studies. Firstly, their

rapid evolution combined with worldwide distribution makes these microfossils a very effective

stratigraphic tool, providing high-resolution biostratigraphic data. Secondly, conodonts are widely

applied in the analysis of the thermal history of sedimentary sequences. This method is based on

the irreversible change in conodont colour in response to heating (EPSTEIN et al., 1977). The

conodont Colour Alteration Index (CAI) has been calibrated with temperature ranges and is

complementary to other organic maturity indices. Thirdly, conodont species frequently seem to

show an affinity for particular environments and display limits in their ecological occurrence.

Therefore, conodont records constitute useful biofacies indices that permit identification of various

sedimentary environments (e.g. SWEET, 1988). Because conodonts were remarkably cosmopolitan

in their paleogeographic distribution and displayed only a distinct provincial occurrence during the

Ordovician and the Triassic, they generally play a subordinate role in palaeogeographical

reconstructions (e.g. SWEET & BERGSTRÖM, 1974; CHARPENTIER, 1984). Finally, conodont

elements received much attention during the last two decades because they contain trace elements

reflecting the chemical and isotopic composition of seawater in which the conodont elements were

deposited (for review, see WRIGHT, 1990). More than forty trace elements have been recognized

in the conodont tissue. Numerous stable isotopic studies revealed that in many cases isotopic ratios

of strontium, uranium, neodymium, samarium, and oxygen in conodont fluorapatite may represent

the original imprint of seawater (e.g. KOVACH & ZARTMAN, 1981; WRIGHT & HOLSER, 1981; LUZ

et al., 1984; BERTRAM et al., 1992; GRANDJEAN-LECUYER et al., 1993; EBNETH et al., 1997;

VEIZER et al., 1997; HOLMDEN et al., 1998; WENZEL et al., 2000; JOACHIMSKI & BUGGISCH,

2002). Recently, BRAUNS & HAACK (2001) tested conodonts for the first time as a potential tracer

for the osmium isotopic composition of ancient seawater.

3    Marine geochemistry of neodymium and samarium

Neodymium and samarium belong to the group of rare earth elements (REE). Both have seven

naturally occurring isotopes. Three Sm isotopes are radioactive, 147Sm, 148Sm, and 149Sm, but the

latter two, because of their extremely long half-lives (~ 1016 yr), produce non-measurable

variations in their daughter isotopes, 144Nd and 145Nd. The 147Sm decays to the stable isotope 143Nd
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with a half-live of 1.06 × 1011 years, which is also relatively long but makes these isotopes useful

for dating, especially in the Precambrian. Both Nd and Sm are light rare earths and their position

within the group is that the REE abundance pattern is usually accurately reflected by the Sm/Nd

ratio. Low Sm/Nd ratios are characteristic of a light REE-enriched pattern, whereas high Sm/Nd

ratios reflect a depletion of light REEs. Thus, the Sm-Nd system provides useful information on

the overall REE chemistry and therefore, it is preferentially investigated compared to other REEs.

The characteristics and applications of the Sm-Nd system to geology, geochemistry and

cosmochemistry have comprehensively been summarized by DEPAOLO (1988). 

The Sm/Nd ratio varies in the terrestrial materials due to the fractionation of REE between

the mantle and the crust during differentiation processes. Therefore, the Nd isotopic composition

of rocks (their 143Nd/144Nd ratio) depends on their ages and their initial 143Nd/144Nd and 147Sm/144Nd

ratios. Because the radioactive parent 147Sm is concentrated in the mantle and depleted in the

continental crust, ancient continental crust shows the lowest 143Nd/144Nd ratios, whereas rocks

recently extracted from the mantle display high 143Nd/144Nd ratios. Nd isotope ratios are commonly

expressed by the parameter εNd(t), which is defined as the relative deviation from a chondritic
143Nd/144Nd ratio at a given time t:

The continental crust is characterized by enrichment of light REE and hence low Sm/Nd ratios,

and negative εNd values (Fig. 2) ranging from -10 to -30 on average (DEPAOLO, 1988). However,

volcanic rocks occurring within active continental margins, as those in the Andes and in California

(Fig. 3), show much higher εNd values from -13 to + 6 (e.g. JAMES, 1982; FARMER & DEPAOLO,

1984). In contrast to the continental settings, rocks of the oceanic crust, which are derived from

the depleted upper mantle, generally yield high Sm/Nd ratios and positive εNd values (Fig. 2). The

present-day MORB displays a uniform εNd value of +10 and εNd values for Phanerozoic ophiolite

complexes are about 2 units lower, usually +8 (DEPAOLO, 1988). The data from oceanic volcanic

arcs lie within a small range from about +6.5 to +10, with εNd value of +8 on average (e.g.

DEPAOLO & WASSERBURG, 1977; WHITE & PATCHETT, 1984; KAY et al., 1986).   

Modern seawater shows a wide range of εNd values from -18 to +3 (e.g. PIEPGRAS et al.,

1979; SHAW & WASSERBURG, 1985; BERTRAM & ELDERFIELD, 1993) but particular oceans have

a distinct range in εNd. In addition, there is a difference between surface and deep waters; the

former is predominantly more radiogenic (Fig. 4). The Atlantic Ocean has the most negative εNd
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values (average εNd = -12.1), whereas the Pacific Ocean shows the most radiogenic signatures

(average εNd = -3.5). The Indian Ocean exhibits a relatively small range of εNd values that are

intermediate (average εNd = -8.3) between those of the Pacific and Atlantic oceans. The range of

Nd isotopic signatures of modern seawater suggests that the dominant source for Nd is continental

(e.g. ELDERFIELD & GREAVES, 1982; GOLDSTEIN & JACOBSEN, 1988a; ELDERFIELD et al., 1990;

JEANDEL et al., 1995). In fact, only continental crust and volcanic island arcs constitute sources

of Nd that is supplied to the seawater in the dissolved load of rivers. Because of the relative small

area occupied by island arcs, the Nd isotopic composition of seawater is controlled by the

weathering flux of Nd from surrounding continents. Unlike the Sr system, the contribution from

hydrothermal fluids within the mid ocean ridges appears to be negligible (e.g. PIEPGRAS &

WASSERBURG, 1985; BERTRAM &

ELDERFIELD, 1993). The aeolian

sources are also relatively unimportant

(JONES et al., 1994).

The low εNd values in the

Atlantic Ocean are because rivers

entering this ocean bear a strong

imprint of Nd from the old continental

crust. In addition, a contribution from

volcanic arcs is insignificant. In fact,

there is only one such system in the

Caribbean. The Pacific waters,

although still strongly dominated by

Nd input from the continental crust,

contain more radiogenic components

from the abundant island arc systems,

oceanic islands and active continental

margins. The εNd values reported for

recent oceans are based mainly on

measurements of deep water (> few

hundred metres) from broadly

dispersed locations (PIEPGRAS &

WASSERBURG, 1980; PIEPGRAS &

WASSERBURG, 1987, BERTRAM &

ELDERFIELD, 1993; JEANDEL, 1993).

Few studies focussed on surface
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waters and smaller areas with a net of sample sites sufficiently dense to recognize local variations

in the isotopic composition of Nd in seawater. AMAKAWA et al. (2000) presented Nd isotopic data

for the eastern part of the Indian Ocean and seas between southeastern Asia and Australia (Fig.

5). In these areas,  εNd values range from -1.3 to -11.6 and their distribution corresponds well with

that of local Nd sources. The high values of -1.3 and -1.5 from locations close to the Philippines

and the Indonesian Archipelago suggest that Nd is supplied from these young oceanic island arcs.

Moreover, the relatively high Nd concentrations compared with those of the North Pacific waters

point to Nd contribution from local sources. The high Nd concentrations with non-radiogenic εNd

values of –11.2 and -11.4, measured in samples of the Bay of Bengal and Andaman Sea indicate

that Nd is supplied from the Asian continent by the Ganges-Brahmaputra river system. 

The remarkable variation of the Nd isotopic composition in modern seawater provides

crucial evidence for an apparently short oceanic residence time of neodymium. Several authors

proposed various estimates for this value between a few hundreds and ~103 years (ELDERFIELD
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& GREAVES, 1982; PIEPGRAS & WASSERBURG, 1985; JEANDEL et al., 1995; TACHIKAWA et al.,

1999; ALIBO & NOZAKI, 1999). The absolute value cannot be precisely defined, but the variations

in Nd isotopic composition of seawater indicate that the residence time of Nd must by shorter than

the time required to mix the oceans, which is about 1-2 x 103. However, the Nd residence time is

sufficiently long that deep water masses, as for example the North Atlantic Deep Water, can retain

their isotopic identity over considerable distances (PIEPGRAS & WASSERBURG, 1987). In such

cases, the neodymium signatures do not reflect local or even regional fluvial inputs, but rather

fluvial inputs to the source areas of deep water masses.

The short oceanic residence time and the lateral variations in the Nd isotopic composition

of seawater are prime advantages of the Sm-Nd system that plays an important role in defining the

water masses and tracing the seawater circulation. Moreover, several studies showed that the Nd

isotopic signatures of modern seawater are accurately recorded in marine precipitates

(ferromanganese nodules, sedimentary phosphates) and in biogenic apatites and carbonates (e.g.

ELDERFIELD et al., 1981; GOLDSTEIN & O’NIONS, 1981; SHAW & WASSERBURG, 1985; ALBARÈDE

& GOLDSTEIN, 1992). This allows to use the neodymium isotopes as a palaeoceanographic tool

for reconstructing of temporal and lateral variations of seawater in ancient oceans. The record of

the Nd isotopic composition of seawater over time can also approximate the history of Nd isotopic

variations within exposed crust on surrounding continents and delineate the possible provenance

pathways. There are already several studies documenting the Nd isotopic composition of seawater

and oceanic palaeocirculation patterns during the past 200 Ma (e.g. GRANDJEAN et al., 1988;

STILLE, 1992; STILLE et al., 1996), however, reports from the Palaeozoic are still rare (e.g.

HOLMDEN et al., 1996, 1998; FANTON et al., 2002). 

4    Neodymium in biogenic apatites

Fossil biogenic apatites, such as conodonts, fish bones and shark teeth, are characterized by a very

high content of rare earth elements (~102-103 ppm) which appear to be derived from seawater. In

contrast, apatites of marine vertebrates yield in vivo extremely low concentrations, only a few

parts per billion of Nd, for example (SHAW & WASSERBURG, 1985; ELDERFIELD & PAGETT, 1986).

Analyses of modern fish debris taken from bottom sediments reveal that the bulk of neodymium

is acquired post mortem, very quickly (~1000 y), at or very near the seawater-sediment interface

(BERNAT, 1975; SHAW & WASSERBURG, 1985; TOYODA & TOKONAMI, 1990). Moreover, there

is almost no fractionation during the REE uptake indicating that biogenic apatites acquire the REE

signature of overlying bottom water (BERNAT, 1975;  WRIGHT, 1984; STAUDIGEL, 1985; MARTIN

& HALEY, 2000).
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The rare earth elements are incorporated into the biogenic apatites through a process that

is not fully understood as yet. Different models of REE uptake have been proposed: adsorption,

substitution, diffusion, percolation, and recrystallization (BERNAT, 1975; WRIGHT et al., 1987;

GRANDJEAN et al., 1987, 1988; SHOLKOVITZ et al., 1989; GRANDJEAN-LECUYER et al., 1993;

REYNARD et al., 1999). It is likely that the rapid, postdepositional increase in REE concentration

coincides with the transformation of hydroxy-apatite of the living animal to the more stable

francolite of the fossil specimen (WRIGHT et al., 1984; SHAW & WASSERBURG, 1985; STAUDIGEL

et al., 1985; ARMSTRONG, 2001). Some authors imply, however, that sediment pore water can also

contribute REE to biogenic apatites (ELDERFIELD & PAGETT, 1986; TOYODA & TOKONAMI, 1990).

It is informative to compare the Nd isotopic composition of fish material with that of

manganese nodules (STAUDIGEL, 1985) and ferromanganese crusts (MARTIN & HALEY, 2000),

because all these materials exhibit very similar εNd values at similar depths in the modern oceans.

Manganese nodules, which are known to form at the sediment-water interface, record the Nd

isotopic values of seawater and not the values of surrounding pelagic clays (PIEPGRAS &

WASSERBURG, 1979; ELDERFIELD et al., 1981; GOLDSTEIN & O'NIONS, 1981). Moreover, an

examination of a single manganese nodule showed that Nd isotopic ratio at the top of the nodule,

which was in contact with seawater, was identical with that of the lower part of the nodule, which

was in contact with sediment (PIEPGRAS, 1979). However, the Nd concentration in the upper part

was much higher than in the lower one. Thus, the contribution of REE from sediment pore fluids

seems to be negligible, both in the case of manganese nodules and biogenic apatites. Moreover,

because Nd signatures of pore waters in well ventilated, bioturbated sediment layers are identical

with those of bottom waters (PIEPGRAS, 1979), the Nd contribution from pore waters cannot

change the original isotopic signature of seawater. According to STAUDIGEL (1985), most bottom

sediments, in particular in the Pacific and Indian oceans, have lower 143Nd/144Nd ratios than

manganese nodules. Thus, if the REEs in the sediment really affected the composition of pore

water in the uppermost part of sediment, fish teeth from the Pacific should display lower
143Nd/144Nd ratios than those of ambient seawater and manganese nodules. This phenomenon,

however, has not yet been observed.

Neodymium exchange during burial and extensive diagenesis was also considered as

process that can alter the original seawater isotopic signature preserved in biogenic apatites.

Numerous case studies have demonstrated, however, that very high Nd concentrations in fish

remains, acquired within the top few mm of the sediment-water interface, show no systematic

variations with burial depth or age (BERNAT, 1974; STAUDIGEL et al., 1985; ELDERFIELD &

PAGETT, 1986; WRIGHT et al., 1987; GRANDJEAN, 1987; MARTIN & HALEY, 2000). The lack of

systematic enrichment or depletion of the REE with burial depth indicates that progressive

diagenesis does not influence Nd isotopic signatures in biogenic apatites. A similar conclusion
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arises from the study of ARMSTRONG et al. (2001), who tested the effects of a thermal

metamorphism on REE systematics in conodonts. They investigated samples from a single bed in

which conodonts show laterally progressively higher CAI values from 2 to 6, resulting from the

contact metamorphism of a basalt dyke. Regardless of their thermal alteration level, the conodonts

yielded homogeneous, “bell-shaped” shale-normalized REE patterns.

Variations in REE abundance recognized in biogenic apatites were interpreted by

ELDERFIELD & PAGETT (1986) as related to exposure time and redox conditions at the sea bottom,

prior to burial. They observed that fish debris from deep-ocean sediments, deposited at a slow

sedimentation rate, had high concentrations of REE, whereas fish debris from continental margins,

where sedimentation rates are generally higher, revealed low REE concentrations. Data of WRIGHT

et al. (1987), however, suggest that this relationship is not linear, and that other factors must

influence the enrichment process. 

5    Marine geochemistry of strontium 

Strontium has four naturally occurring isotopes 84Sr, 86Sr, 87Sr, and 88Sr, of which only 87Sr is

partly radiogenic. This isotope is a product of radioactive decay of 87Rb. Fractionation during early

separation of the continental crust and the earth’s mantle has resulted in the former having higher

Rb/Sr ratios. In consequence, continental rocks exhibit higher (more radiogenic) 87Sr/86Sr ratios

than mantle rocks. The sources of strontium in the oceans are both the continental crust and sea-

floor hydrothermal fluids. PALMER & EDMOND (1989) calculated the marine Sr budget and showed

that the global fluvial input of Sr, with 87Sr/86Sr of 0.7119, is twice as much as the hydrothermal

Sr flux, with 87Sr/86Sr of 0.7035. Another, less significant, contribution represents Sr released from

marine carbonates by diagenetic recrystallization (ELDERFIELD & GIESKES, 1982). Although the

fluvial input of Sr is the most substantial, rivers are not able to affect noticeably the marine
87Sr/86Sr ratio, even locally in estuaries (ELDERFIELD, 1986; VEIZER, 1989), because the

concentration of Sr in rivers is often less than 1 percent of the Sr concentration in seawater

(GOLDSTEIN & JACOBSEN, 1987; PALMER & EDMOND, 1989). A very long residence time of Sr

in the oceans (~ 106 yr), which significantly exceeds the mixing time of seawater (~ 103 yr), is

responsible for a worldwide uniform  87Sr/86Sr ratio of about 0.7092 in present-day seawater

(ELDERFIELD, 1986). This 87Sr/86Sr ratio is accurately recorded by calcium-bearing minerals

precipitated from seawater (e.g. BURKE et al., 1982; ELDERFIELD, 1986; VEIZER, 1989).  

Measurements on ancient marine carbonates revealed fluctuations of the Sr isotope ratio

throughout geological time (PETERMAN et al., 1970; DASH & BISCAYE, 1971; VEIZER &

COMPSTON, 1974). Archaean carbonates yield strongly non-radiogenic Sr isotope ratios (~ 0.7010)
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but during the Precambrian there was a significant increase of the Sr isotope ratio, so that the

isotopic composition of the Cambrian seawater was similar to that of the present time (VEIZER &

COMPSTON, 1976). The first seawater Sr isotope evolution curve for the Phanerozoic was

published by BURKE  et al. (1982), but it was predominantly based on whole-rock carbonates,

which are usually contaminated by radiogenic Sr from diagenetic fluids. Because postdepositional

exchange of Sr causes an increase of the 87Sr/86Sr ratio (VEIZER & COMPSTON, 1974), a minimum

Sr isotope ratio measured at any given time is the most reliable value reflecting the

contemporaneous seawater composition. A careful diagenetic screening of investigated  skeletal

material in the last two decades allowed assembling of a huge data set for the construction of high-

resolution strontium-isotope curves for most periods in the Phanerozoic (e.g. HESS et al., 1986;

VEIZER et al., 1999; JENKYNS et al., 2002). 

Devonian strontium isotope data include predominantly measurements on brachiopods and

conodonts that represent the most suitable study material from the Palaeozoic (DIENER et al.,

1996). Conodonts, however, often provide slightly more radiogenic 87Sr/86Sr values than coeval

brachiopods (EBNETH et al., 1997). This is chiefly because of significant isotopic heterogeneity

within single conodont elements (TROTTER et al., 1999). The lowest, and perhaps primary,
87Sr/86Sr ratio is mostly retained in the cusp tissue, along the growth axis of the conodont element.

Therefore, in most cases, a physical separation of cusp tissue is required to obtain 87Sr/86Sr ratios

approaching primary seawater values. The majority of data used for construction of the high-

resolution strontium-isotope curve for the Devonian was produced by Veizer and co-workers (see

VEIZER et al., 1999 and references therein). The curve displays a well-defined structure (Fig.6)

but the precision of the biostratigraphical assignment of the majority of samples is rather low and

thus unsatisfying. In fact, sample correlations within a single conodont zone constituted the most

crucial problem during the curve construction (VEIZER et al., 1997). Nevertheless, this curve is

better constrained than that of BURKE et al. (1982). It shows a very uniform 87Sr/86Sr ratios of

about 0.7087 in Lochkovian time followed by a steep decline to 0.7080 across the Pragian and the

Emsian. The latter interval potentially permits dating of Early Devonian pristine carbonates to the

stage level. The Middle Devonian interval of the curve is relatively flat. High frequency oscillations

in the 87Sr/86Sr ratio as recognized in the Middle Devonian of the Eifel region in Germany are

interpreted as resulting from slow accumulation rates and local hiatuses that are below the level

of biostratigraphical resolution (DIENER et al., 1996; EBNETH et al., 1997). From late Givetian into

Late Devonian time, a continuous increase in 87Sr/86Sr ratio can be observed (Fig. 6). This trend,

however, is poorly constrained, particularly for the Famennian (VEIZER et al., 1999). Data from

the lowest Mississippian suggest a ratio between 0.7081 and 0.7082 at the Devonian-

Carboniferous boundary (DENISON et al., 1994; VEIZER et al., 1997).
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6    Palaeogeography

Palaeogeographical reconstructions are based mainly on palaeomagnetic, palaeobiogeographic and

lithological data. These three types of evidence, however, can provide basically contrasting models

of the configuration of continents in the past, especially for pre-Mesozoic times. This is because

each method has some limitations and generally provides a different kind of data. None of the

methods involved in the palaeogeographical synthesis is capable of determining the relative

palaeolongitudes for the investigated areas. The palaeomagnetic method  is generally regarded as

the most useful and accurate, because it provides quantitative information for the latitude position

at which measured rocks were formed. The disadvantage, however, is that the primary

magnetisation of rocks can be easily changed due to thermal overprint during burial or orogenic

processes. This is mostly why palaeomagnetic data obtained from Lower Palaeozoic and older

rocks are sometimes inconsistent and suggest contrasting models of the drift histories of

palaeocontinents (for examples, see e.g. TORSVIK et al., 1996; TAIT et al., 2000). Erroneous

palaeomagnetic reconstructions can also result from incorrect age determinations of magmatic

rocks used for the studies. In addition, the palaeomagnetic method provides latitudinal data points

with a resolution that is generally lower than ± 500 km, and therefore only wide separation of

plates and continents can be credibly shown. The distribution patterns of fauna and flora, which

are the basis of the biogeographical method, are not only dependent on the configuration of

continents. They can be strongly influenced by various external factors, such as climatic
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conditions, sea-level oscillations, or seawater circulation. Although isolated continents usually

produce distinctive and often endemic biota, similar fauna or flora can be widely dispersed

throughout the world. This makes an interpretation of biogeographic data quite difficult and

requires a thorough knowledge of taxonomy and ecology of organisms, which are mostly extinct.

The most crucial problem in the interpretation of biogeographic data for the Palaeozoic is the fact

that all available information is from the epeiric seas and terrestrial areas. Almost nothing is known

about the ancient oceanic realms and their oceanographic characteristics. Lithology and

sedimentary features related to particular climatic conditions (e.g. warm-water reefs, evaporates,

karst, or tillites) constitute an important evidence in palaeogeographical reconstructions. The

method, however, can only provide  rough estimates for palaeogeographic positions. By

comparison with the modern zonation of climatic belts, potential errors can arise for periods in

which asymmetric climatic zones may have existed due to the distribution of land masses,

monsoonal effects or orographic factors.

Two large palaeocontinents, Gondwana and Euramerica, existed during the Late Devonian

(Fig. 7). Gondwana, which included South America, Africa, Antarctica, Australia, India, Arabia

and Iran, was located in the Southern hemisphere at intermediate to high latitudes. It formed  the

largest land mass of the Devonian world and only its margins were covered by epeiric seas. The

palaeocontinent of Euramerica, termed also as Laurussia or the Old Red Continent, originated by

amalgamation of Laurentia, Baltica and Avalonia during late Ordovician to Silurian times, as a

result of the Caledonian orogenic events (TORSVIK et al., 1996; MCKERROW et al., 2000).

Euramerica was positioned in equatorial latitudes during the Late Devonian and possessed

extremely wide shelf areas along its western and eastern margins (Fig. 7). Other smaller
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continents, i.e. Siberia, Kazakhstan, North and South China, were located in the Northern

hemisphere and mostly covered by shallow seas. Palaeomagnetic data show that several small

Variscan terranes occurred between Gondwana and Euramerica. There is still a debate whether

some of these Gondwana-derived crustal blocks, i.e. Saxo-Thuringia, Bohemia, Moldanubia,

Iberia, and Armorican Massif, constituted individual terranes or they formed a coherent microplate

termed the Armorican Terrane Assemblage (TAIT et al., 1997). STAMPFLI & BOREL (2002)

suggested a more radical scenario and merged all crustal blocks between Gondwana and

Euramerica into one large superterrane, the European Hunic Terrane. 

The boundaries of continents are relatively well defined whereas the outlines of the oceans

are rather roughly recognized. In the present study, the terminology of oceanic spaces in the Late

Devonian (Fig. 7) follows that of SCOTESE (in http://www.scotese.com) with a huge Panthalassic

Ocean outside the assemblage of continental blocks and two relatively small oceans separating the

continents. These are the Palaeotethys Ocean between eastern Gondwana, North China and

Euramerica, and the Rheic Ocean separating the northwestern margin of Gondwana from the

southern margin of Euramerica. The Rheic Ocean has been originally defined to describe only the

space between Avalonia and Armorica, which has already been closed during Emsian time

(FRANKE, 2000). The palaeogeographic space separating the Armorican Terrane Assemblage

(ATA) from the Gondwana margin is termed here as the Variscan Sea following the scenario of

NEUGEBAUER (1988).

In the last two decades, several paleogeographical reconstructions for the Late Devonian

were presented. Because of different projections used for the reconstructions, it is difficult to

compare them to see differences in the positions of continents. Therefore, six of them have been

redrawn using the Schmidt’s projection and are presented in Figures 8 and 9. Most of these

models (i.e. SCOTESE & MCKERROW, 1990; MCKERROW et al., 2000; TAIT et al., 2000;

LEWANDOWSKI, 2002) are in good agreement with regard to the equatorial position of Euramerica

during Late Devonian time. Palaeomagnetic and palaeoclimatic data show that Gondwana

continued its northward movement during the Devonian, but its palaeogeographic position is

palaeomagnetically poorly constrained (for review, see TAIT et al., 2000). This is why the

paleogeographical reconstructions for the Late Devonian differ first of all in the position of

Gondwana and, hence, they show a quite narrow or a very wide ocean between Gondwana and

Euramerica. The first scenario is suggested in the reconstruction based predominantly on

biogeographic data (DALZIEL et al. 1994; MCKERROW et al. 2000), whereas palaeomagnetism

provides rather evidence for the second one (TAIT et al., 2002; STAMPFLI & BOREL, 2002;

LEWANDOWSKI, 2002). The palaeoclimatic model of WITZKE & HECKEL (1988), which is based

on lithological and facies data only, shows Gondwana and Euramerica in relatively close position

(Fig.8).
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MCKERROW et al. (2000) postulate that the connection between the African margin of

Gondwana and Euramerica was already achieved in mid-Devonian time (Fig. 8). Similar fish fauna

in Northern Australia and Euramerica, and also similar ostracods in the Emsian of Algeria and

Baltica exclude the existence of wide ocean between Gondwana and Euramerica after Early

Devonian time. According to this model, the northern margin of Africa was positioned at the

palaeolatitude of 20/ S in the Late Devonian and the distance between the margins of Euramerica

and Gondwana was 300 to 500 km, which is comparable with the present-day latitudinal extent

of the Mediterranean Sea. The final collision of Gondwana and Euramerica, which resulted in

formation of the supercontinent Pangea, took place in the Late Carboniferous. In fact, the most

recent palaeogeographical reconstruction of SCOTESE (http://www.scotese.com) is very similar

to that of MCKERROW et al. (2000). 

TAIT et al. (2000), who used only paleomagnetic data, favoured a position of Gondwana

at high latitudes in Late Devonian time, with the North African margin at ~ 50/S. This implies that

the European margin of Euramerica was separated from Gondwana by an ocean of at least 3000

km width (Fig.9). They argued that, in southern Europe, there is no tectonic or magmatic evidence

for a Devonian collision between Gondwana and Euramerica. According to STAMPFLI (1996),

continuous sedimentation in the passive margin environment lasted in the European Alpine realm

until Late Carboniferous time. Much more controversial paleomagnetic data were presented by

CHEN et al. (1993), who postulated an ~ 4500 km wide ocean between Gondwana and Euramerica

during the Early Carboniferous.

DALZIEL et al. (1994) have interpreted the Early Devonian deformation in the Appalachians

and Britain (Acadian Orogeny) as a result of local collision between this segment of Euramerica

and Gondwana (Fig 8). This scenario can explain faunal affinities between both continents. In this

model the final closure of the ocean and formation of Pangea involved a massive dextral

movement accompanied by clockwise rotation of Euramerica. The concept of the Early Emsian

proximity of the northwestern margin of Gondwana and the southwestern margin of Euramerica

is favoured by LEWANDOWSKI (2002), who postulates only a narrow oceanic domain (~ 400 km)

between both margins. He suggested, however, that the northward drift of Euramerica during the

Givetian resulted in reopening of the ocean in the late Famennian to a width of ~ 2000 km (Fig.

9). Despite such separation, fauna from both continents could potentially mix across the

archipelago of dispersed, small terranes of the ATA and Alpine realm.  In this reconstruction, the

drift history of Baltica, Laurentia and Avalonia is based on paleomagnetic data, whereas

paleoclimatic data were applied to constrain the position of Gondwana. The palaeogeographical

model of STAMPFLI & BOREL (2002) arises from the concept of dynamic plate boundaries and is

supported by geological, paleomagnetic and paleobiogeographic information. It suggests a

scenario with a large ocean between Gondwana and Euramerica in Devonian time (Fig. 9), similar

http://www.scotese.com
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to that of TAIT et al. (2000).

Unfortunately, little is known about outline and position of the small terranes which were

separated from the Gondwana margin during the Early Palaeozoic and drifted northwards. The

proposed drift history of the Armorican Terrane Assemblage differs strongly in various

palaeogeographical models. According to MCKERROW et al. (2000) and Scotese

(http://www.scotese.com), the ATA remained adjacent to the northern Gondwana margin until

its final collision with Euramerica (Fig. 8). In contrast, TAIT et al. (2000) postulated a detachment

of the ATA from Gondwana already in Ordovician times. Consequently, the ATA was situated

in the proximity of the southern Euramerica margin during the Late Devonian and was separated

from Gondwana by at least 3000 km wide oceanic spaces. Most palaeogeographical

reconstructions agree that some terrains forming the ATA were individual plates and moved more

or less individually. A contrasting scenario was proposed by STAMPFLI & BOREL (2002), who

suggested the existence of the Hun superterrane that comprised all Variscan and Avalonian crustal

units (Fig. 9) coalescing in a long, narrow band, which has been detached from Gondwana in

Silurian time. Subsequently, it moved northwards as a coherent unit and collided with Euramerica

in mid to Late Devonian time.

7    Seawater circulation during the Devonian

As outlined in the previous chapter, palaeogeographical reconstructions for the Late Devonian

differ primarily with respect to the width of the ocean that separated Gondwana and Euramerica.

There is general agreement that at least some narrow seaways, if not a wide ocean, existed

between both palaeocontinents at that time. However, advanced models of oceanic circulation for

one or another palaeogeographical scenario are lacking. A first attempt to reconstruct seawater

circulation in the Devonian was made by HECKEL & WITZKE (1979), who deduced an oceanic

circulation pattern from the distribution of facies belts, interpreted in terms of climatic conditions.

In this reconstruction, which concerns only Early Devonian time, a generally westward flow splits

east of Euramerica into two masses that move along the northern and southeastern margins of this

continent (Fig. 10). A counterclockwise rotation can be inferred for the Variscan realm because

HECKEL & WITZKE (1979) postulated a local junction of Gondwana with Euramerica and, in

consequence, an eastward current along the northern margin of Gondwana. Along its western

margin, however, water masses flowed up northwards. A circulation pattern for the Middle

Devonian has been presented by OCZLON (1990), who reconstructed current directions from

palaeogeographical distribution of various sedimentary features such as contourites, condensation

and non-deposition phenomena, and erosional surfaces. His model shows, in fact, similar
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circulation system to that of HECKEL & WITZKE (1979). The seawater moved along the southern

margin of Euramerica in the westerly direction as the South Equatorial Current, approached the

western part of the Variscan realm, and

turned southeast to form the eastward North

Go ndwa na  Cu r ren t  (F ig .  11 ) .

Biogeographical data provide an additional

information on the surface circulation during

the Devonian. PEDDER (1999) compared

corals from the Devonian of Morocco with

those of other regions in the world and

found indication that coral fauna started to

migrate from the Appalachian towards the

eastern Anti-Atlas already during the Early

Devonian. By early Givetian time, the

eastward transport of coral larvae across the

Rheic Ocean had ceased or was strongly

reduced. The South Equatorial Current,

however, contributed to the migration of

corals in the southwesterly direction

(PEDDER, 1999). A reverse

flow direction, as suggested

by JOSEPH & TSIEN (1977), is

rather unlikely (PEDDER,

1999). The South Equatorial

Current facilitated a transfer

of coral larvae from the

southeastern margin of

Euramerica (Rhenohercynian

Zone, Moravia) across the

Variscan terranes of Spain

and France to at least as far

as the Anti-Atlas area.

During the late Famennian,

the eastern part of the South

Equatorial Current was

responsible for migration of
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conodonts and corals from Russia (from areas on both sides of the Ural fold system) to the Bruno-

Silesian unit, an outboard terrane at the southeastern margin of Euramerica (BELKA, 1998;

BERKOW  SKI, 1999).   

8. 1    Fi eld work

Conodo  nt samples used in this study were collected in the eastern Anti-Atlas (Morocco),

Moroccan Meseta and in the Montagne Noire (souther n Fra nce) (Fig. 1) . Ad dit ional co nod ont

mate rial was pr ovid ed by Z. Belka (University of Halle) from Devonian outcrops and boreholes

located in sout hern Poland (Sudetes, Holy Cross, vic init y o f Cr ac o w) an d in so ut he r n Alg er ia

(Ahnet Basin). Detailed information on localities, stratigraphy of samples, and their ot her

characteristics are presented in the Appendix.  

In order to reconstruct the temporal Nd isotopic evolution of seawater on t he Go ndwa na

she lf du r ing t he La t e D ev o nia n, t hr ee se ct io ns w er e s amp led in the Anti-Atlas area. They were
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8    Materials and methods

8.1    Field work

Conodont samples used in this study were collected in the eastern Anti-Atlas (Morocco),

Moroccan Meseta and in the Montagne Noire (southern France) (Fig. 1). Additional conodont

material was provided by Z. Belka (University of Halle) from Devonian outcrops and boreholes

located in southern Poland (Sudetes, Holy Cross, vicinity of Cracow) and in southern Algeria

(Ahnet Basin). Detailed information on localities, stratigraphy of samples, and their other

characteristics are presented in the Appendix.  

In order to reconstruct the temporal Nd isotopic evolution of seawater on the Gondwana

shelf during the Late Devonian, three sections were sampled in the Anti-Atlas area. They were

selected as representative for different depositional settings. These are: the Ait ou Nebgui section

from the shallow-water Mader Platform, the Mech Irdane section from the pelagic Tafilalt

Platform, and the Lahmida section from the Rheris Basin (Fig.12). The sections were densely

sampled (Mech Irdane - 26 samples, Ait ou Nebgui - 20 samples and Lahmida - 61 samples) and

also investigated in detail with respect to lithology and sedimentary content. Their conodont

stratigraphy has already been presented by BELKA et al. (2002). To recognize the lateral pattern

in the Nd isotopic composition of conodonts, samples were also systematically taken from two

distinct stratigraphic horizons across the Anti-Atlas area: the base and the top of the Kellwasser

facies. However, stratigraphic examination of the recovered conodont fauna revealed that both

selected horizons are significantly diachronous (see also WENDT & BELKA, 1991). This required

additional sampling to receive material from more synchronous levels: the lower part of the

Frasnian Zone 11 (jamieae) and the upper part of the Famennian Uppermost crepida Zone. In

total, 142 samples from 27 Anti-Atlas localities were examined in the present study.

Field work in the Moroccan Meseta focussed on the Upper Devonian succession exposed

east of Mrirt (Fig. 13). A total of 17 samples was collected from the Frasnian and the lower

Famennian part of the succession, including both the lower and the upper Kellwasser units. 

 In the Montagne Noire, the famous Upper Devonian carbonate sequence of Coumiac (see

chapter 9.3) was selected for sampling. This section has often been studied in the past and

extensive palaeontological, stratigraphical and geochemical data are already available. Conodont
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samples (46) were collected from the section exposed in the Upper Quarry at Coumiac. The

lithological column of the Frasnian and the lower Famennian and its conodont stratigraphy was

adopted from Klapper (in FEIST, 1990). The upper portion of the section, however, that comprises

the middle Famennian has been described and analysed in terms of stratigraphy in the course of

the present study.  

8.2    Processing of rock samples

Rock samples, each between 1-2 kg, were predominantly limestones and marly limestones; only

a few samples were taken from shales. They have been processed in the micropalaeontological

laboratory of the University of Halle. Conodont elements and fish material were recovered from

the host rock by dissolution in 10% acetic acid followed by wet-sieving. To avoid input of

additional, unknown chemical components, a pure (99.7-100%) acetic acid was used and diluted.

The biogenic fluorapatites were separated from the insoluble residue with a Frantz isodynamic

magnetic separator. Although this method did not yield satisfactory results in every case, heavy

liquids were not used for conodont separation, because they remove a part of rare earth elements

from conodonts (SHAW, 1984; WRIGHT, 1985). Such a diminution of REE content, however, is

not accompanied by fractionation. Final selection of conodont elements and fish remains was

accomplished by handpicking under a binocular microscope. In order to remove any adhering
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mineral detritus from the conodont surface, the samples were shortly (~ 2 min.) treated  with 1%

HCl, washed with deionised water and repeatedly handpicked. Conodont sample weights used for

Nd isotope analysis averaged 1 to 5 mg (see Tab.s 3 and 4), i.e. the samples contained from 10

to 120 conodont elements. This conodont material displayed CAI values of 1 to 5. The isotopic

composition of Sr, however, was determined only on samples yielding CAI values of 2.5 or lower.

Because fish remains are characterized by a very high Nd content (usually 1000 to 2000

ppm), weights of fish samples were generally much lower than those of conodonts. The average

weight of analysed fish material was about 0.5 mg (Tab. 5).  

8.3    Analytical procedure

The analytical part of this work, including chemical separation of Nd, Sm and Sr and

measurements of their isotopic composition, were carried out by author at the University of

Munich, Department of Earth and Environmental Sciences (from September 1999 to August 2001)

and at the University of Giessen, Institute of Geosciences (from September 2001 to November

2002). Rare earth elements analyses were carried out by Dr. W. Heijlen at the Katholieke

Universiteit Leuven, Fysico-chemische Geologie.

The sample weights used for Nd isotope analyses depend on the Nd concentrations. In the

case of conodonts, the advantage is that their Nd content can roughly be estimated from the

general morphology of conodont elements (for more details, see chapter 10.1.2). The predicted

Nd content permits calculation of the final weight of conodont samples required for optimal

measurement parameters. The required amount of Nd in the sample is about 0.5 to 1 µ g. The

isotopic composition and concentrations of Nd and Sm were determined by isotope dilution. Sr

isotope analysis was performed on the same sample as Nd and Sm. The samples were spiked with

a 150Nd–149Sm tracer solution and dissolved on a hot plate (~100/C, overnight) in closed PFA vials

using concentrated nitric acid (~ 14 N). In the next step, the solutions were evaporated to dryness,

re-wetted with  in 1 ml of 2.5 N HCl, and centrifugated. 

Two slightly different techniques were applied in the laboratories at Munich and Giessen

for separation of Nd, Sm and Sr from geological materials. In both cases, the procedure consisted

of two stages. In the first stage, the REEs as a group and Sr were separated from matrix elements.

In the laboratory at Munich, quartz columns filled with a 5 ml resin bed of AG 50W-X12, 200-

400 mesh were used for separation. Columns were washed with 45 ml 6 N HCl and

preconditioned with three 5 ml portions of 2.5 N HCl. The centrifugated samples were loaded

onto the columns and rinsed twice with 1 ml of 2.5 N HCl. All major elements were eluted with

the same acid in the first fraction of 38 ml followed by an 8 ml fraction containing Sr.
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Subsequently, the eluent was switched to 6

N HCl and the first 5 ml were discarded.

The next 15 ml fraction, enriched in LREE,

was collected. In the laboratory at Giessen,

miniaturized chromatographic techniques

described by PIN et. al. (1994) were applied

for REE and Sr separation. However, some

modifications in the column size and

concentration of reagents were introduced.

Two sets of 50 µl polyethylene columns

were filled with EICHROM Sr and TRU

resins, respectively and washed with 0.5 ml

H2O. After preconditioning with 0.3 ml 2 N

HNO3 the columns were coupled (Fig. 14).

The sample was loaded onto the upper

column with 0.3 ml 2 N HNO3 and rinsed

with 0.25 ml of the same acid. The columns

were then decoupled and subjected to

separate elution schemes for the isolation of

Sr and recovery of light REE from the Sr

and TRU columns, respectively. The Sr

column was washed with two 0.2 ml

portions of 2 N HNO3, and subsequently,

the Sr was eluted with 1 ml H2O. The TRU

column was washed with two 0.2 ml

portions of 2 N HNO3 prior to elution of the

LREE with 1.25 ml H2O. The second

stage of the procedure, during which Nd

and Sm are separated from other REEs, was

identical in both laboratories. Because the

chemical properties of individual REEs are

very similar, more refined techniques must

be used for separations within the REE group. This is necessary because there are several isobaric

interferences (e.g. 144Sm interferes onto 144Nd), and Ce, for instance, suppresses the ionisation of

other REEs. Ba has similar negative effects on ionisation. Separation of Nd and Sm from other

REEs was achieved by reverse-phase ion-exchange chromatography. Samples containing REEs
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obtained during the first stage of separation were evaporated to dryness and redissolved in 0.3 ml

0.18 N HCl. The quartz columns packed with 2 ml Teflon powder coated with HDEHP (Hexyl

di-ethyl hydrogen phosphate) were washed with 45 ml 6 N HCL and preconditioned with three

2 ml portions of 0.18 N HCl. The samples were loaded in 0.3 ml and rinsed four times with 0.2

ml of the same acid. The first 10 ml fraction of 0.18 N HCl containing La, Ce and Pr was

discarded and Nd was eluted with the next 7 ml of the same acid. Afterwards, the eluent was

switched to 0.4 N HCl; Sm appeared after 4 ml and was collected in a 4 ml fraction.

After separation, 2-3 drops of H3PO4 were added to Sr, Nd and Sm fractions, and each of

them was evaporated to dryness for subsequent mass spectrometric analysis. Strontium was loaded

with a Ta-HF activator on a single W filament, whereas Nd and Sm (loaded as phosphate) were

measured in a Re double filament configuration. Sr and Sm measurements were carried out in

static collection mode on a Finnigan MAT 261 mass spectrometer and Nd was measured using

both static and dynamic modes on the same mass spectrometer.

Total procedure blanks were ~ 24 pg for Nd and ~ 75 pg for Sr. The 87Sr/86Sr ratios were

normalized to 86Sr/88Sr = 0.1194, 143Nd/144Nd ratios to 146Nd/144Nd = 0.7219, and Sm isotopic

ratios to 147Sm/152Sm = 0.56081. Repeated measurements of the AMES standard yielded in Munich
143Nd/144Nd = 0.512073 ± 10 (2σ, n = 31) in static collection mode and 0.512135 ± 11 (2σ, n =

23) in dynamic collection mode, and in Giessen - 0.512135 ± 8 (2σ, n = 27) in static collection

mode. The NBS 987 Sr standard measured in Giessen gave 87Sr/86Sr of 0.710231 ± 16 (2σ, n

=31). Nd isotopic analyses are reported in the standard epsilon notation calculated using the
143Nd/144Nd ratio of CHUR that corresponds to a present-day value of 0.512638 (HAMILTON et

al., 1983). All εNd values are recalculated according to the measured 147Sm/144Nd ratios for the time

of deposition (365 Ma). Although the stratigraphic age of the measured samples spans

approximately 8 Ma, the maximum error introduced by using a single age for all samples is 0.1

epsilon units only.

9    Geological background

9.1    Eastern Anti-Atlas 

The Anti-Atlas of southern Morocco is a broad, NE-SW trending Variscan anticlinorium

developed at the northern margin of the West African Craton (PIQUÉ & MICHARD, 1989). To the

north, east and south, it is surrounded by flat-lying Upper Cretaceous to Quaternary deposits of

the Hamada (Fig. 12). The contact with the structures of the Variscan Belt is supposed to occur

along the Tizi n'Test fault and the Tinerhir-Bechar thrusts, which form the southern border the
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High-Atlas Chain. The basement of the Anti-Atlas consists of Precambrian granitic plutons that

are exposed in the mountain belt stretching from the Atlantic coast in the west, to the Tafilalt area

in the east. A weakly folded and very thick (more than 10 km) sedimentary sequence, ranging from

the Late Proterozoic to the Namurian in age, covers the crystalline rocks in the north and

particularly in the south, where it continues into the Tindouf Basin. The lithology and facies

content of this sequence reveals a depositional and climatic evolution on the passive margin of

Gondwana in the course of northward drift of this paleocontinent during the Paleozoic. The

depositional and tectonic development of the eastern Anti-Atlas was controlled by regional, E-W

trending strike-slip faults. Two main fault systems representing a part of the pre-existing

Precambrian network have been recognized (BELKA et al., 1997). They were reactivated several

times during the Paleozoic and provoked local volcanic activity in the Middle Cambrian and the

Early Devonian. The Lower Paleozoic sequence is dominated by clastic deposits. Among these,

the Ordovician ones are mainly of glacial origin. Records of a post-glacial transgression are

pronounced in the Silurian to Lower Devonian facies sequence from littoral clastic deposits to

open-marine graptolite-bearing shales and pelagic carbonates. During the Early to Middle

Devonian, the strike-slip faults became active. In response to regional transtension, differential

subsidence led to formation of carbonate platforms and small basins in this intracratonic setting

(WENDT, 1985; WENDT, 1988; BELKA et al., 1997; KAUFMANN, 1998). Devonian sediments,

perfectly exposed over an area of about 20000 km2 (Fig. 12), reach a maximum thickness of 2000

m. They are represented by extremely fossiliferous carbonates on the shallow-water platforms and

by monotonous shales in the basins. For several decades, these carbonates have attracted interest

of geologists and paleontologists. Studies on the Devonian stratigraphy and lithology were

initiated by MASSA (1965) and HOLLARD (1967, 1974, 1981). Most of the investigations focussed

on fossiliferous carbonates and facies development (see for review WENDT, 1988, 1995;

BRACHERT et al., 1992; BELKA, 1998; KAUFMANN, 1998). Stratigraphical work has been carried

out by using primarily conodonts and ammonoids (e.g. BUGGISCH & CLAUSEN, 1972; BULTYNCK

& HOLLARD, 1980; BULTYNCK, 1985; BELKA et al., 1997, 1999). The thermal and burial history

of  Devonian rocks was reconstructed using conodont CAI data (BELKA, 1991). This study

showed that the sea-floor relief with carbonate platforms and intracratonic basins has been levelled

during Early Carboniferous time, with deposition of the thick clastic succession interrupted

occasionally by the development of mud-mound complexes (WENDT et al., 2001). As a result of

final closure of the Variscan space due to the Gondwana-Euramerica collision, the sedimentary

cover of the Anti-Atlas was folded (PIQUÉ & MICHARD, 1989). Subsequent uplift and erosion took

place very early during the Late Carboniferous (BELKA, 1991).
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9.1.1    Facies pattern

The Late Devonian sedimentary pattern of the eastern Anti-Atlas has been presented by WENDT

(1988, 1991). He distinguished four depositional realms on this shelf area: the Mader Basin, the

Tafilalt Basin, the Mader Platform and the Tafilalt Platform (Fig. 15). Later on, WENDT & BELKA

(1991) recognized an additional basinal realm, the Rheris Basin, in the northernmost part of the

Tafilalt region. North of Erfoud, only a small fragment of this basin is exposed. Its shape and

extent remain unknown because of the Cretaceous-Quaternary cover. In general, the platform-to-

basin configuration of the shelf was stable during the Late Devonian (WENDT 1988, BELKA &

WENDT, 1992). Remarkable changes, chiefly promoted by sea-level fluctuations, resulted in

expansion of carbonate production or even emersion of platforms during sea-level lowstands, and

in drowning of carbonate platforms during sea-level highstands. Because the platform slopes were

gently dipping and formed long ramps as a rule, there was only an insignificant transfer of detrital

carbonate material from the platforms into the basins. WENDT (1988) characterized the Tafilalt and

the Mader platforms as situated in a pelagic position but the clastic input from the south and

northwest indicates that, in fact, the shelf of the eastern Anti-Atlas was located between two land

areas. In the northwest, between Msissi and Tinejdad (Fig. 15), the Precambrian basement of the

Jebel Ougnate was at least episodically exposed and it supplied clastic material into the northern

margin of the Mader Basin. In the south, clastic input, particularly pronounced during the
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Frasnian, came from the basement of the West African Craton.

The thickness of the Upper Devonian varies strongly depending on the depositional setting.

On the platforms, it ranges from only a few metres to 50 m. Much more sediment accumulated in

the basinal realms. In the central part of the Mader Basin, the Upper Devonian attains a maximum

thickness of 1200 m (BELKA, 1991). Facies trends follow the platform-basin configuration, with

fossiliferous wackestones and packstones on the platforms, whereas monotonous, organic-rich

shales occur in the basins. On the slopes, the sequences are predominantly shaly and contain levels

of marly concretions and limestone interbeds. The latter, however, are only occasionally of

turbiditic origin.

The most conspicuous part of the Upper Devonian sequence of the Anti-Atlas is a black,

organic-rich facies, which constitutes an equivalent to the Kellwasser sediments of the

Rhenohercynian Zone in Germany. In contrast to the German counterparts, the Kellwasser

deposits in the Anti-Atlas contain a more extensive spectrum of lithology and represent a much

longer stratigraphic interval that comprises the upper Frasnian and the lower Famennian (WENDT

& BELKA, 1991; BELKA & WENDT 1992). On the platforms, the Kellwasser deposits are usually

developed as an extremely fossiliferous cephalopod packstone with predominantly nektonic and

planktonic fauna. Only in the Taouz area, where fine-grained clastic material was transported from

the south into the littoral zone (Fig. 15), black bioclastic, sandy packstones interfinger with

siltstones and fine-grained sandstones. In the basins, the Kellwasser facies is represented by

monotonous black shales devoid of any fossils. 

9.1.2    Lithology and stratigraphy

Mech-Irdane

This section is located in the western part of the Tafilalt Platform, about 12 km southwest of

Rissani, where Devonian rocks crop out in the flanks of the small, E-W trending Jebel Mech

Irdane syncline (Fig. 12). The sampled interval is situated in the central part of the southern flank

(Loc. MI in Tab. 1 and Loc. 40 in WENDT & BELKA, 1991), close to a synsedimentary transverse

fault described by WENDT & BELKA (1991). The exposed Upper Devonian succession is

condensed, about 12 m thick and consists of bioclastic limestones (Fig. 16). It begins within the

conodont Zone 8 of the Frasnian and ranges up to the Lower postera Zone of the Famennian

(BELKA et al., 2002). The succession rests on the Givetian shales with some carbonate interbeds.

The stratigraphic gap comprises a half of the Givetian stage and the first seven conodont zones

of the Frasnian. Because the conodont fauna recovered from the first Frasnian layer includes also

reworked specimens from the Frasnian Zone 2 (rotundiloba) and Zone 3 (rugosa), both lacking
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in the section, the contact between the Givetian and the Frasnian appears to be sedimentary in

character. The Frasnian part of the section is about 2.5 m thick and starts with light bioclastic

wackestone followed by ca. 6.5 m thick, organic-rich Kellwasser deposits. As in other platform

sections, the Kellwasser limestone is developed as an extremely fossiliferous cephalopod

packstone. The abundant nektonic and planktonic fauna includes orthoconic nautiloids and

ammonoids associated with conodonts, tentaculitids, styliolinids and fish remains. There is an

apparent dominance of nektonic and planktonic fossils. The only benthic organism occurring

commonly in the Kellwasser carbonates at Mech Irdane is Buchiola (bivalve). The scarcity of

benthic organisms and black colouration of sediments are typical features of the Kellwasser

lithology and indicate a presence of anoxic or dysaerobic conditions on the sea floor. The middle

part of the Kellwasser unit contains abundant, large nodules (up to 30 cm) that do not show any

remarkable difference in microfacies and biota from the surrounding matrix (Fig. 16). They

represent fragments of semi-lithified carbonate sediment, redeposited from the adjacent upthrown

side of the synsedimentary fault. 

Three stratigraphic gaps have been documented within the Kellwasser unit (BELKA et al.,

2002). The conodont fauna shows that the first gap comprises the entire Zone 12 of the Frasnian,

whereas the second one comprises the Frasnian/Famennian boundary interval (Fig. 16). In

consequence, the Middle triangularis Zone overlies directly the uppermost Frasnian. The third gap

comprises the Middle and the Upper crepida zones. Each gap surface is associated with a system

of dykes and irregular cavities filled with very peculiar black megacements. The origin and

diagenetic history of these calcite cements were described by WENDT & BELKA (1991), who

interpreted them as possible primary aragonite crystals that were transformed into calcite and

partly dissolved in the vadose zone. The cements thus provide clear evidence for subaerial

exposure episodes, during which also solution cavities and dykes were formed. Their infill is

composed predominantly of marine sediment of the same age as the first layer above the gap

surface. 

The deposition of the Kellwasser facies terminates within the lower part of rhomboidea

Zone. In fact, there is only a change in colour at the top of the Kellwasser limestone (Fig. 16). The

overlying light-brown cephalopod packstone with very abundant cheiloceratids exhibits the same

microfacies and faunal content as the black, organic-rich Kellwasser limestone below, but it was

deposited under oxidizing conditions. A significant change in the composition of bioclastic material

took place within the Lower marginifera Zone. The wackestone bears abundant cephalopods but

the medium-grained biodetritus is predominantly from skeletons of benthic organisms. Such

material built up the sequence of coarse-grained crinoidal limestones, packstone to grainstone in

texture, that constitute the last Famennian lithological unit.
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Ait ou Nebgui

The section Ait ou Nebgui is located in the central part of the Mader Platform, about 22 km south

of Fezzou (Fig. 12). The Upper Devonian rocks are exposed within a small, E-W trending tectonic

graben (Loc. AN in Tab. 1 and Loc. 27 in WENDT & BELKA, 1991). The sequence is only about

5 m thick and shows a peculiar lithological succession. This exposure is the only one locality in

the Anti-Atlas (Fig.17) where the Kellwasser unit is composed of three complexes of black

carbonates separated by two shale intervals. The lowest part of the exposed succession, below the

Kellwasser deposits, consists of shales with some interbeds of yellowish crinoidal limestones (Fig.

18). Their conodont fauna is indicative of the interval from the Zone 7 to the lower part of the

Zone 11 (jamieae). The crinoidal limestones are overlain by carbonates of the Kellwasser facies.

The contact is sharp and displays some erosional features; such as clasts of reworked micritic

limestone embedded in the black Kellwasser matrix. The conodont fauna recovered from the first

Kellwasser layer is characteristic for the middle part of the Frasnian Zone 11. Thus, there is no

evidence for any stratigraphic gap at the base of the Kellwasser sequence. The lower carbonate

complex of the Kellwasser facies is represented by black bioclastic limestones that are packstone
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to grainstone in texture. Allochems include predominantly debris of cephalopods but remains of

bivalves can also be found. Overlying is strongly weathered shale with conspicuous calcite

megacements. Macrofossils are rare but a rich conodont fauna has been recovered. The second

Kellwasser carbonate complex is composed of bioclastic packstone with a large amount of

cephalopod debris and in situ reworked fragments of semi-lithified Kellwasser sediment. In its

lower portion, the complex is interrupted by a thin layer of white crinoidal grainstone that bears

calcite megacements identical to those occurring in the shales. The upper shales are separated from

the middle Kellwasser member by a significant stratigraphic gap comprising an interval from the

uppermost part of the Zone 11 up to the lowest part of the Frasnian Zone 13 (Fig. 18). They are

extremely rich in conodonts indicative of the Zone 13. The shales are topped by the third

Kellwasser carbonate unit, which is, however, stratigraphically composed of two parts. The lower

and only 15 cm thick limestone layer belongs to the Frasnian, whereas the remaining part is

Famennian in age (Fig. 18). The erosional contact can be clearly observed in the field (Fig. 19).

The stratigraphic gap is here significantly longer than the equivalent sedimentary break on the

Tafilalt Platform (see the Mech Irdane section). Because both stratigraphic gaps recognized at Ait

ou Nebgui have a regional character and, in addition, carbon isotopic data suggest that the calcite

megacements are products of meteoric diagenesis (Z. BELKA, pers. comm.), it seems that the gaps

reflect two episodes of subaerial exposure. The Famennian part of the Kellwasser facies is
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represented by cephalopod packstone with very abundant, well-preserved ammonoids and

orthoconic nautiloids. Deposition of black, organic-rich sediments terminated within the

rhomboidea Zone, with a layer of cephalopod packstone bearing very abundant cheiloceratids.

Overlying is a thin layer of red crinoidal packstone, followed by brown-coloured cephalopod

wackestone. The latter is extremely rich in cheiloceratids and form a characteristic unit occurring

consistently above the Kellwasser sediments in the Anti-Atlas (BELKA et al., 1999).

Lahmida

The section is situated in the southern part of the Rheris Basin, about 12 km northwest of Erfoud

(Fig.12). The Upper Devonian succession crops out along the dry river bed of Rheris, south of the

Lahmida Barrage (Loc. LH in Tab. 1 and Loc. 14 in WENDT & BELKA, 1991). The strata dip

monoclinal to the SE (Fig. 20). The succession is represented by basinal deposits and differs

strongly in stratigraphy, lithology and biota from those of the carbonate platforms in the Anti-

Atlas. It is about 65 m thick and consists mainly of monotonous shales with numerous marly

interbeds and concretion horizons. In the upper part, a thick complex of yellow-coloured nodular

limestones occurs. Black shales, which constitute the major part of the shaly succession, start in

the lowest Frasnian (conodont Zone 1) and range up to the  rhomboidea Zone of the Famennian

(Fig. 21). According to WENDT & BELKA (1991), these shales represent the Kellwasser facies in

the Rheris Basin. In the Frasnian part, they are interrupted by three intervals with yellowish

micritic limestones and/or greenish shales. Black marly interbeds and concretions, chiefly
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mudstones in texture and mostly diagenetic in origin, are finely laminated and do not show any

traces of bioturbation. In some levels, especially in the Famennian, discoidal concretions attain

considerable dimensions, with more than one m in diameter and up to 50 cm in height (Fig.22).

Macrofossils, which are extremely frequent in the Kellwasser deposits on the carbonate platforms

in the Anti-Atlas, are very rare. They are represented by small-sized cephalopods (ammonoids and

orthoconic nautiloids) that are restricted to the marly interbeds and concretions. Sporadically, they

are accompanied by small brachiopods. Less abundant and poorly preserved but generally larger

in size are ammonoids, occurring in the light-coloured carbonate complexes. A very rich

macrofauna occurs in the section only within two concretionary horizons of the Uppermost

crepida Zone and the lowest marly interbed of the rhomboidea Zone. These three levels are also
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very productive for fish remains and conodonts. The latter are also frequent in the Frasnian light-

coloured carbonates but significantly less abundant in the black Kellwasser facies. It is remarkable

that conodonts are virtually absent in the interval from the base of the Famennian up to the Upper

crepida Zone as well as in the uppermost part of the succession, above the Upper marginifera

Zone. Other microfossils are represented by styliolinids, very abundant in particular within the

lowest Frasnian black shale interval, and ostracods distributed throughout the whole section.

9.2    Moroccan Meseta

The Moroccan Meseta forms the westernmost termination of the Variscan Belt. It is bordered by

the High Atlas chain in the south and the Rif Mountain in the north. The NE-SW trending Tertiary

fold belt of the Middle Atlas subdivides the Meseta into a western and an eastern (Oran) part (Fig.

13). The Western Meseta is composed of three major Paleozoic massifs: the Massif Central,

Rehamna and Jbilete, whereas numerous smaller units, such as the Jerada, Debdou, Mekkam and

the Midelt Massif are located in the Eastern Meseta (PIQUÉ & MICHARD, 1989). The exposed

Paleozoic succession ranges in age from the Cambrian to the Westphalian. It is strongly deformed

due to a NW-SE compression, resulting from the collision of Gondwana with Euramerica during

Late Carboniferous time. The numerous NE-SW trending folds have been thrusted predominantly

in the NW direction and intruded by Carboniferous granitic plutons. The Paleozoic rocks display

a thermal overprint that ranges from supramature level to metamorphic amphibolite facies. In

general, the older the rocks the higher is the level of thermal maturation. There is also a regional

trend of increasing of deformation and metamorphism towards the west.
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Devonian rocks investigated during the present study have been collected in the Mrirt

nappe, which is a part of the Kenifra-Azrou tectonic unit located at the eastern margin of the

Moroccan Massif Central. The Mrirt nappe includes an Ordovician to Carboniferous sedimentary

sequence overthrusted on the autochthonous unit of Tandara-Bou Tazart (HUVELIN, 1970, 1973;

ALLARY et al., 1972, 1976; BOUABDELLI, 1989). Because of lack of detailed information regarding

stratigraphy, facies, and tectonics, the original location of the Mrirt nappe sequence remains

unknown. Moreover, the time of its emplacement cannot be defined with precision at the moment.

WALLISER et al. (1999) suggested a time interval between the lower Visean and the

Westphalian/Stephanian and interpreted the Mrirt unit as a gravitational nappe. Ordovician clastic

rocks cover the most area of the unit and are locally overlain by scattered fragments of the Silurian

to Visean sequence (BOUABDELLI, 1989). Devonian rocks occur at three localities (Gara de Mrirt,

Anajdam, and Touchchent), where they display a similar lithological development.  

9.2.1    Lithology and stratigraphy

Upper Devonian rocks were sampled from the Gara de Mrirt succession, which is exposed in

numerous sections at the southern slope of the Gara de Mrirt, about 5 km southeast of Mrirt (Fig.

13). There are two allochthonous, imbricated thrust units involving Middle Devonian to Visean

sediments. The Upper Devonian, which is most resistant to weathering within the sequence, builds

two distinct morphological cliffs. The section Gara de Mrirt was described for the first time by

TERMIER (1936), and subsequently investigated by several authors (HOLLARD et al., 1970;

BOUABDELLI, 1989; LAZREQ, 1992, 1999; WALLISER et al., 1996; JOACHIMSKI et al., 2002).

During the present study the samples were collected in the lower cliff (Fig. 23), very close to the

section line of LAZREQ (1992, 1999). The sampled interval ranges from the Frasnian conodont

Zone 10 to the Lower triangularis Zone of the Famennian (Fig. 24). The sequence is about 4 m

thick and consists predominantly of gray micritic to bioclastic limestones, mudstone to wackestone

in texture, which alternate with gray shales. Their macrofauna is represented by rather rare

ammonoids that become more frequently in the upper part of the sequence. The Lower Kellwasser

horizon is a 25 cm thick layer of black wackestone that comprises most of the conodont Zone 12

(winchelli), whereas the Upper Kellwasser horizon is developed as lenses and layers of black

limestone, alternating with black shales. Conodonts sampled during the present study reveal that

the deposition of black Upper Kellwasser sediments did not terminate at the Frasnian-Famennian

boundary, as reported by LAZREQ (1992, 1999) and adopted by other authors, but it continued

into the Famennian (Fig. 24). The uppermost black carbonate layer contains a
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fauna characteristic for the Lower triangularis Zone. Both Kellwasser horizons yield a very similar

fauna, dominated by Buchiola (bivalve) and styliolinids accompanied by less frequent orthoconic

cephalopods and rare ammonoids.

9.3    Montagne Noire

The Montagne Noire belongs to the Variscan structures of the French Massif Central (Fig. 25).

Along with the domains of Cevennes and Albigeois, it constitutes the southern, external margin

of the Variscan Belt in France (e.g. MATTE, 1991; LEDRU et al., 1994). The Montagne Noire is

subdivided into three ENE-WSW elongated tectono-metamorphic units: (1) the northern thrust

zone represented by Cambrian to Silurian strata, overfolded towards SW and metamorphosed, (2)

the central metamorphic core (Zone Axiale) composed of Proterozoic to Cambrian gneisses and

schists, and (3) the southern zone composed of a pile of southward facing, recumbent fold nappes

with very low-grade or even non-metamorphic Cambrian to Carboniferous rocks (FEIST et al.,

1994 and references therein). In addition, there are several granitic intrusions of both pre-Variscan

and Variscan age that were emplaced into the northern and central zones (Fig. 25). The southern

nappe complex, which comprises the parautochthonous Faugères Nappe (Devonian and

Carboniferous), the Mont Peyroux and Minervois nappes (Ordovician to Carboniferous), and the

Pardailhan Nappe (Cambrian to Devonian), was formed as a result of complex, polyphased
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Variscan deformation (see for summary WIEDERER et al., 2002). The thick sequence of the

Visean-Namurian flysch sediments with large olistoliths (“Éscailles de Cabrières”), occurring in

the eastern part of the Mont Peyroux Nappe, points to an external position of the Montagne Noire

within the orogen. Both the gravitational synorogenic transport of the detritus and the tectonic

nappe movement exhibit the same direction towards the south (ENGEL et al., 1982).

Palaeomagnetic and stratigraphic data from slightly metamorphic or non-metamorphic

rocks in the southern zone permit to sketch the paleogeographic evolution of the Montagne Noire

during Paleozoic time. Early Paleozoic fauna and sedimentary evolution are characteristic for the

NW Gondwana margin (FEIST et al., 1994). Recently, NYSÆTHER et al. (2002) showed that the

Montagne Noire was still attached to the Gondwana margin during the Mid-Ordovician. They also

suggest that Armorica (sensu MATTE, 2001) had rifted off the NW Gondwana by the Late

Ordovician. The intervening ocean is supposed to be only a few hundred kilometres wide.

Subduction beneath Armorica started probably in the Early Silurian and the subsequent collision

with the northern Massif Central  took place during the Emsian. In contrast to this scenario, TAIT

et al. (2000) postulated a wide ocean (2000-4000 km) between Armorica (including the Montagne

Noire) and Gondwana from Late Ordovician to Late Devonian times.

Devonian rocks occur exclusively in the southern Montagne Noire, within the Mont

Peyroux and Minervois nappes (Fig. 26). The succession is nearly continuous and almost entirely

composed of carbonates. Although there are some differences in facies and stratigraphy between

the Devonian of the nappes and of the Cabrières area, a clear upward trend from shallow-water

neritic carbonates and clastics to pelagic carbonates can generally be observed. In the last decades,

much attention was drawn to fauna and stratigraphy of the Upper Devonian sequence. In

consequence, a high-resolution biostratigraphical framework, based predominantly on conodonts,
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was established (for review, see FEIST, 2002). Contrary to that, detailed sedimentological work

was rare (e.g. TUCKER, 1974). In the course of the present study, conodont samples were

collected from the Upper Devonian sequence of Coumiac, where the Frasnian-Famennian stage

boundary  has been defined (KLAPPER et al., 1993).

9.3.1    Lithology and stratigraphy

The Upper Devonian sequence of Coumiac belongs to the Mont Peyroux Nappe (Fig. 26). It crops

out in two small marble quarries situated north of the local road D 136 from Cessenon to Causses-

et-Veyran, opposite the abandoned farm house “Coumiac” (Fig. 27). The Upper Coumiac Quarry

(Loc. CO in Tab. 1), sampled during this study, is located about 400 m north of the road and 200

m west of the farm house “Les Granges”. The section is composed of almost vertical dipping strata

that comprise a continuous carbonate succession from the Zone 5 (Frasnian) up to the marginifera

Zone (Famennian). The conodont record has been described in detail in numerous publications

(FEIST, 2002; and references therein). 

The sampled interval ranges from the Upper Frasnian (Zone 12) to the rhomboidea Zone

of the Famennian (Fig. 27). This part of the sequence is exposed in the southeastern part of the

quarry. In terms of lithostratigraphy, it comprises the upper part of the Coumiac Formation and

the lower part of the Griotte Formation. The Frasnian consists of well-bedded, pink bioclastic

mudstones and wackestones (Fig. 27). There are some iron crusts that mark episodes of very slow

sedimentation (FLAJS in BECKER et al., 1989). Fossils are moderately frequent and represented by

ammonoids, nautiloids, conodonts, trilobites, fish remains, ostracods, dacryoconarids,

brachiopods, bivalves, gastropods and crinoid ossicles. The Frasnian succession is interrupted in

its upper part by two dark grey to black limestone horizons (Fig. 27), which are regarded as

equivalents of the Lower and Upper Kellwasser Limestone of the Rhenohercynian belt in

Germany. In the Coumiac section, these horizons form the uppermost parts of the conodont zones

12 and 13, respectively. The Frasnian-Famennian boundary is drawn just above the Upper

Kellwasser horizon. The Upper Kellwasser horizon is black and characterized by organic content

up to 2.3 % (WENDT & BELKA, 1991), whereas the lower horizon is light grey and seems to yield

a low organic content. Their macrofauna is composed of nektonic (ammonoids) and planktonic

(pteriomorph bivalves, homoctenids) organisms; benthic forms are very rare. Conodonts are

extremely abundant in both horizons, but there is a peculiar difference in the composition of the

fauna between the upper and the lower horizon. Palmatolepids, which represent the dominant

group of elements both in the Upper Frasnian and in the Famennian, are very frequent in the upper

horizon but they are almost lacking in the lower one. The Famennian succession starts with



43



44

alte rna t ing grey and brick-red, partially nodular wackestones and mudstones, which are

intercalated wit h shales. The macro fauna is r at her ra re in t his part of the section. Overlying are

brick-red nodular, marly mudstones (“vrai griot te”) interbedded with red sha les . Sma ll

cheiloceratids are not ed to occur very abundantly in the carbonat e nodules.

Tucker (1974) noticed that the sequence does not contain any univocal sedimentary

features and, in fact, only the fauna points to pelagic depositional conditions. According to FEIST

(2002), t he up pe r Fr as nia n c ar bo na t es we r e d ep o sit ed on a carbonate ramp, whereas the lower

Famennia n is interpreted to represent a slope environment. During the present study, however,

no sedimentary featur es that cou ld t est ify a slo pe o r a car bona t e r amp we re obs er ved in t he

sec t ion.
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10    Results

10.1    Nd systematics of conodonts

10.1.1    Nd concentration

Although there is already more than a dozen publications providing Nd data from conodonts, the

systematics of Nd and other REEs in conodont elements is still poorly understood. This is mainly

because samples with different types of conodont material were used in the previous studies,

making a systematic comparison of data difficult. Measurements of the Nd and other REE

contents in conodont elements were mostly performed on bulk samples, i.e. containing discrete

elements of various species with a wide variety of shapes (e.g. WRIGHT et al., 1984; KETO &

JACOBSEN, 1988; MARTIN & MACDOUGALL, 1995; HAUNOLD et al., 1999; FANTON et al., 2002).

There are only few data for monospecific samples (e.g. WRIGHT et al., 1987; BERTRAM et al.,

1992) and just first surveys of the REE distributions in individual conodont elements (GRANDJEAN

& ALBARÉDE, 1989; GRANDJEAN-LÉCUYER et al., 1993; GIRARD & ALBARÈDE, 1996). Another

difficulty in evaluation and comparison of published data results from different analytical

procedures and measurement techniques applied in the studies. Nd concentrations of  bulk

conodont samples were determined by neutron activation analysis or by isotope dilution mass

spectrometry (IDMS), whereas individual elements were analysed by secondary ion mass

spectrometry (SIMS) or by inductively coupled plasma emission spectrometry (ICP-MS).

GRANDJEAN & ALBARÉDE (1989) showed that REE distributions in fish teeth measured with an

ion probe and IDMS were mutually consistent. However, the ICP-MS method seems to provide

higher REE concentrations than those obtained by secondary ion mass spectrometry. GRANDJEAN-
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LÉCUYER et al. (1993) used the SIMS method and obtained Nd concentrations in individual

conodont elements from the Coumiac Quarry ranging between 11 and 69 ppm, whereas GIRARD

& ALBARÈDE (1996) measured conodont elements, recovered from the same layers, by ICP-MS

and received significantly higher values, mostly from 50 to 500 ppm. Some palmatolepid elements

displayed Nd concentrations even higher than 1000 ppm (max. ~3200 ppm). Unfortunately, the

authors did not give any explanation for this discrepancy. It is unlikely that chemical processing

of samples or variations in Nd distribution related to histology of conodont elements are

responsible for such systematic difference in the Nd contents; problems in the analytical technique

are much more probable.

In summary, previous work has shown that conodonts display a wide range in Nd

concentrations, from tens of to more than a thousand ppm. There is, however, a difference that

conodont crowns have low Nd concentrations whereas basal bodies have very high contents

(PIETZNER et al., 1968; HOLMDEN et al., 1996). A wide range of REE concentrations is also

characteristic for recent fish debris and results from differential exposure times at the sediment-

water interface (WRIGHT et al., 1987). Thus, REE concentrations in recent biogenic apatites

provide a general gauge of sedimentation rates. Recently, HAUNOLD et al. (1999) postulated the

same relation also for REEs in conodonts.

Productive conodont samples contain commonly numerous elements that belong to several

different species. Because each conodont animal bore an apparatus composed of various elements

different in morphology, it is quite common that several dozens of different discrete elements can

be found within a single sample. Therefore, when "multielement" samples are used in geochemical

and isotopic studies, it is important to know whether geochemical characteristics of a single

element (or elements belonging to one species) are similar to geochemical signatures of other

elements in the sample or not. In order to recognize the Nd elemental and isotopic systematics in

conodont elements and to test the homogeneity of the Nd isotopic signatures of individual

samples, more than a hundred samples were investigated during the present study. Measurements

were performed separately on different conodont elements present in the same sample, or elements

having identical morphology were picked up and analysed together.

The results confirm earlier observations that conodont fluorapatite contains significant

amounts of Nd and that there is no correspondence between the Nd isotopic composition and the

Nd concentration (Fig. 28). Conodont crowns are characterized by Nd concentrations ranging

from 25 to 280 ppm, whereas complete elements with basal fillings display Nd concentrations

higher than 200 ppm (up to 820 ppm). Basal fillings were not separately measured but it is evident

from theses data that basal fillings, which have smaller volume than crowns, must exhibit Nd

concentrations of up to > 1000 ppm. In the investigated material, conodonts with basal fillings

show a narrower range of εNd values than crowns do. This is because the former were available
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from the Sudetes and southern Poland only, where isotopic signatures of all conodonts fluctuate

between -4 and -9.

The Nd concentration varies significantly within each conodont sample but different

elements in the sample show identical Nd isotopic compositions (Figs. 29-30). The variation of

εNd values within individual samples is small, about ± 0.20 epsilon units on average. In fact, each

individual conodont element present in the sample has a different Nd content, which is not related

to taxonomy. Elements that formed the same apparatus and thus represent one species differ in

their Nd concentrations. BELKA et al. (2000) showed that the Nd concentration in the conodont

crowns depends on their morphology. The higher the surface/volume ratio of elements the higher

is their Nd content. New data from more than hundred samples support these conclusions and,

in addition, they also reveal some minor effect of rapid burial on the Nd content. Wide

palmatolepids, for instance, display concentrations up to 275 ppm, whereas ancyrodellids,

bispathodids, and narrow palmatolepids contain less than 150 ppm of Nd. The relation between

the shape of conodont elements and their Nd content is depicted in Figure 31. It is, however,

important to note that conodonts recovered from basinal sediments deposited at high

sedimentation rates (e.g. from the section Lahmida) yield generally lower Nd concentrations than

those recovered from limestones deposited on carbonate platforms. The fact that conodont

elements with a given shape  achieved a similar content of Nd proves the presence of a saturation

limit for fluorapatite tissue exposed to seawater. This saturation level has apparently been attained
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in most cases on the carbonate platform but less frequently in the basinal realm. This strongly

indicates that conodont elements must have acquired their Nd prior to burial while they were still

in contact with seawater and that an additional incorporation of Nd during burial was negligible.

According to STAUDIGEL et al. (1985), the REE uptake during burial is hindered due to limited

availability of REEs in the pore waters. On the other hand, the REE uptake during the postmortem

exposure on the sediment surface must have occurred during very short geological time because

otherwise the Nd content of conodonts would chiefly be related to sedimentation rates and not to

their shapes. 

It is concluded that the concentration of Nd varies widely within each multielement

conodont sample; it is specific for any given element morphology. Thus, the Nd concentration of

the multielement conodont samples reflects chiefly their histological and morphological

composition. Therefore, the Nd content of multielement conodont samples cannot be used as an

indicator of sedimentation rates as suggested by HAUNOLD et al. (1999).  

10.1.2    Prediction of Nd concentration in conodonts

The fact that the Nd content in conodont elements depends on their morphology is very helpful

for isotopic analysis. In the isotope dilution method the most accurate determination of element

concentration is obtained if the measured isotopes in the sample-spike mixture have similar

abundances ( Dickin, 1995). This can be achieved when an appropriate amount of spike is added

to the sample. If the Nd content of the sample is already roughly known, the optimum amount of

spike can be calculated. This way the number of samples that are incorrectly spiked and therefore

must be analysed a second time is extremely low.

An approximation of the Nd concentration in conodont samples is possible by a simple

optical examination of conodont morphology under a microscope. Moreover, no detailed

knowledge of the conodont taxonomy is necessary for such examination. During the present study,

the morphological composition of conodont samples was systematically examined in the

micropaleontological laboratory of the University of Halle. The predicted values were

subsequently used in the isotopic laboratory at Giessen to calculate the optimum amount of spike.

Figure 32 illustrates the accuracy of this method. In the majority of samples the difference between

predicted and measured Nd concentrations was below 40 ppm. Only for a very few samples, in

which probably some small fragments of basal bodies remained undetected, the measured Nd

concentrations significantly exceeded the expected values. Experience also shows that the

accuracy of the predicted values is higher for samples in which only conodont elements of identical

morphology were selected for analysis.  
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10.1.3    REE patterns of conodonts

Several studies have already documented that REE patterns of conodonts do not resemble those

of present-day seawater and modern biogenic phosphates (e.g. WRIGHT et al., 1984, 1987;

GRANDJEAN-LÉCUYER et al., 1993; ARMSTRONG et al., 2001). Conodonts typically show a “bell-

shaped” REE distribution with a strong HREE depletion, less depletion of LREE, and a maximum

near Eu-Gd. Ce and Eu anomalies are absent. The “bell-shaped” REE pattern is characteristic for

all biogenic phosphates older than the Cretaceous and was also observed in some Tertiary fish

remains (WRIGHT et al., 1987; GRANDJEAN-LÉCUYER et al.,1993; GIRARD & ALBARÉDE, 1986).

It seems, therefore, that REE distributions in pre-Cretaceous seawater, unlike in modern oceans,

were not controlled by surface biological activity. Inorganic processes must rather have been

responsible for the REE behaviour in ancient oceans. GRANDJEAN-LÉCUYER et al. (1993)

proposed a selective uptake of LREE controlled by adsorption/desorption on inorganic particles

as a possible mechanism. KIDDER & EDDY-DILEK (1994) argued for the primary nature of the

“bell-shaped” REE distribution patterns in phosphatic nodules. Conversely,  REYNARD et al.

(1999) suggested that “bell-shaped” pattern can be explained by recrystalization in the presence

of fresh or oceanic water during extensive diagenesis and therefore should not be used for

reconstruction of the REE distribution in ancient seawater. Recently, ARMSTRONG et al. (2001)

interpreted the “bell-shaped” patterns of conodonts as the result of adsorption during early
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diagenesis, thus possibly reflecting original seawater chemistry. They also showed that REE

abundances in conodonts decrease with increasing thermal alteration, whilst the”bell-shaped”

patterns remain stable.

In the present study, the whole spectrum of REEs was investigated in eleven conodont

samples (Tab. 7 and Fig. 33). Although the absolute REE concentrations in conodonts vary

significantly, the shale-normalised patterns are relatively homogeneous, “bell-shaped” and very

similar to those known from the literature. It is remarkable that REE distribution patterns of

conodont samples taken from the same locality are more homogenous than those of samples from

different localities. Moreover, conodonts from the Anti-Atlas display a slightly stronger enrichment

in MREE than conodonts from the Montagne Noire and the Holy Cross Mountains. This can be

related to local differences in original seawater chemistry. The new data, however, do not confirm

the relation between the absolute REE abundance in conodonts and their thermal maturation, as

suggested by ARMSTRONG et al. (2001). 
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10.2    Nd systematics in other biogenic apatites

In several investigated rock samples, conodont elements were accompanied by fish remains (shark

teeth and fragments of placoderms), which can also be used as proxies for ancient seawater

chemistry (for more details see chapter 4). Various types of phosphatic remains occurring in the

same samples provide an excellent opportunity for a direct comparison of the Nd isotopic and

elemental systematics in different biogenic apatites and allow to test the integrity of these proxies.

It can be assumed that apatites recovered from the same sample were most probably exposed to

the same bottom waters and experienced the same diagenetic alteration. 

The analysed fish debris and shark teeth reveal Nd concentrations that are generally an

order of magnitude higher than those of conodonts (Tab. 5). This is consistent with the results of

previous studies (STAUDIGEL et al.1985; MARTIN & HALEY, 2000). No systematic relation can be

recognized between Nd concentrations in different phosphates. There is, however, an obvious

correlation between the Nd isotopic composition of conodonts and fish remains. The latter are

generally less radiogenic than conodonts (Figs. 34-35), i.e. they exhibit lower εNd values than those

of coeval conodonts. In most cases, the deviation is lower than 1.0 epsilon unit. There are a few

samples that do not fit this general trend. This is the case in the samples from the Anti-Atlas in

which fish remains are more radiogenic than conodonts. Because Devonian rocks in the Anti-

Atlas, display a higher thermal overprint (CAI = 4) than samples from the Montagne Noire (CAI

= 2.5) and southern Poland (CAI = 1-2), it appears that thermal metamorphism influences the Sm-

Nd isotopic system in shark teeth and placoderm tissue, in a similar way as it is in case of Sr

already at very low thermal overprint. In the investigated material, all shark teeth and placoderm

remains display 87Sr/86Sr ratios that are more radiogenic (Tab. 5) than those of coeval conodonts

and of the Devonian seawater.  The εNd values obtained from the conodont material are considered

to be more reliable because their fluorapatite exhibits excellent thermal stability and is less

susceptible to diagenetic alteration than other biogenic apatites. Perturbations resulting from the

thermal alteration can also be observed in the Sm/Nd ratios. In samples with CAI values lower

than 3 different biogenic apatites show approximately  identical Sm/Nd ratios within the same

sample (Fig. 35). With increasing CAI, however, fish remains tend to exhibit Sm/Nd ratios slightly

lower than those of conodonts. 

The new data suggest that Devonian shark teeth and placoderm fragments preserve Nd

signatures that in some cases approximate the ancient seawater. Contrary to previous suggestions

(STAUDIGEL et al., 1985), the extremely high Nd content of these apatites does not make them

impervious to diagenetic alteration. Because of apparent thermal effects on their Sm-Nd isotopic

system, fossil fish remains are less suitable as tools for palaeoceanography than conodonts.

Nevertheless, fossil fish remains can be useful as palaeoceanographic proxies in the Palaeozoic
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shallow-water or lagoonal sediments, where conodonts are generally rare or absent. 
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10.3    Eastern Anti-Atlas

Late Devonian conodonts of the eastern Anti-Atlas show very wide ranges in both εNd values and

Sm/Nd ratios. The εNd value fluctuates between -2.7 and about -12, whereas Sm/Nd ratios range

between 0.22 and about 0.85. These inferred seawater values, however, were locally more uniform

and distinct (Fig. 36). The remarkable dispersion of data points within each studied location

reflects local differences in seawater geochemistry and its temporal evolution at each site. These

individual scenarios are presented in detail below.    

10.3.1    Mech Irdane

In the central part of the pelagic Tafilalt Platform at Mech Irdane, conodonts exhibit low εNd values

that vary between - 8 and -10.6 (Fig. 37). Although this range is relatively narrow, a general trend

towards more radiogenic signatures can be observed in the upper Frasnian/lower Famennian

interval. This trend, however, is punctuated by sharp positive shifts in εNd values that coincide with

the occurrence of stratigraphic gaps recognized in the Kellwasser succession. Below each gap, the

εNd values decrease whereas conodonts collected from carbonates above the gaps yield signatures

that are up to 1,5 epsilon units higher than those of the underlying samples. Because these gaps
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are products of subaerial exposure due to regression, the positive shifts in εNd values are

interpreted to have resulted from the regressive-transgressive sea-level pulses. The lower εNd

values below the gap reflect stronger Nd supply from continental sources during the regression

phase. The more radiogenic signatures of conodonts from above the gap record the influence of

open-marine waters during the subsequent transgression.  

One of the most surprising results in the Mech Irdane section concerns the onset of the

Kellwasser facies which is associated with a gradual decrease of εNd values. This trend attains an

εNd value of -10.6 at the base of the first black layer. This is the lowest value in the whole

sequence. It indicates that anaerobic (or dysaerobic) conditions at the sea bottom developed during

a shallowing sedimentary regime. Thus, the Nd isotopic data markedly contrast with the common

interpretation of the Kellwasser lithology as a transgressive unit (e.g. SCHINDLER, 1990;

SANDBERG et al., 1992).

The Sm/Nd elemental ratios in conodonts range from 0.26 to 0.41 at Mech Irdane. The

temporal pattern shows a clear, but reverse relation to the εNd values (Fig. 37). A decrease in

Sm/Nd coincides with an increase in εNd and vice versa. The Sm/Nd curve is thus almost a mirror

image of the trends to εNd values of conodonts. 
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10.3.2    Ait ou Nebgui

In this strongly condensed sequence, conodonts reveal a wide range of εNd values from -2.7 to -9.2

(Fig. 38). The most conspicuous feature in the Nd isotopic evolution is a prominent positive

excursion in εNd that attains a maximum of -2.7. This is the highest εNd value recognized in the

Upper Devonian of the Anti-Atlas area. The stratigraphic position of this peak within the

conodont Zone 11 (jamieae) suggests a relation to the most pronounced Devonian transgression

(cycle IId sensu JOHNSON et al., 1985), recognized worldwide on the basis of coastal onlap and

biotic data. This diastrophic event is also known as the semichatovae transgression because the

conodont species Palmatolepis semichatovae expanded rapidly at that time throughout
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Euramerica (e.g. JOHNSON & SANDBERG, 1988; SANDBERG et al. 1992). The observed peak in

the εNd curve is an excellent example to demonstrate that conodonts preserve the original isotope

signal of seawater, independently of the lithology of their host rocks and different diagenetic

conditions. Moreover, this peak  well illustrates that the lithological response to sea-level change

may be less sensitive than the Nd isotopic composition of seawater. The positive excursion in εNd

starts long before the onset of shale deposition (Fig. 38). In fact, neither the onset nor the

termination of the semichatovae transgression are expressed by changes in the lithological

column. 

At the base of the Kellwasser facies, conodonts exhibit an εNd value of -7.1, identical to

that of conodonts in the underlying oxidized carbonates. Both data points, however, fall within a

trend of decreasing εNd values. This trend reflects a regression phase, recognized already at Mech

Irdane, which caused the development of oxygen-depleted water on the shelf during the Zone 11.

In contrast to the trends at Mech Irdane, the Sm/Nd ratios show here a strong positive correlation

with εNd values. This may indicate that the strongly radiogenic water which entered the Mader

Platform during the semichatovae transgression, was presumably characterized by REE

fractionation different from that of the shelf seawater.

    

10.3.3    Lahmida 

Because the Upper Devonian sequence at Lahmida is very thick and no stratigraphic gaps were

detected, the record of temporal changes in the Nd isotopic composition of seawater is probably

more complete than in the sections of Mech Irdane and Ait ou Nebgui. Unfortunately, because

of the large number of non-productive samples, the Nd isotopic data are only fragmentary

available in this basinal sequence (Figs. 39-40). The εNd curve is characterized by a strong

fluctuation in the upper Frasnian, from -6 to -11.6, and by a more uniform pattern in the

Famennian, with εNd values from -7.7 to -10.3. A most prominent positive peak within the Zone

11 is certainly related to the semichatovae transgression. It is important to note that the increase

of εNd values from about -9 to -6 coincides with the deposition of light, oxidized carbonates and

green shales. This indicates that the semichatovae transgression introduced well-oxygenated

seawater into the basin and caused enhanced ventilation at the seafloor. This, in turn, prevented

deposition of black, organic-rich sediments. The Nd isotopic record within the Zone 13 with shifts

in εNd up to 4.5 suggests the presence of high-frequency sea-level fluctuation at the end of the

Frasnian (Fig. 39). Surprisingly, only one of these events, which was of regressive nature,

improved ventilation at the sea bottom and led to the formation of light carbonates. The

Famennian Nd isotopic curve is well constrained only in the rhomboidea and the Lower
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marginifera zones (Fig. 40). In the Uppermost crepida Zone, two isolated samples document a

decrease in εNd from -8.4 to -9.9. It is likely that a regression event is responsible for this shift in

εNd because it coincides stratigraphically with an erosional gap at Mech Irdane. The rhomboidea

Zone starts with a relatively high εNd value of 7.7 that is followed by a long-termed gradual

decrease to -10.3. Unfortunately, there are no data from the top of the Kellwasser facies. On the

basis of trends recognized at Mech Irdane and Ait ou Nebgui, it can be speculated that the

termination of organic-rich deposition on the Moroccan shelf during the Famennian was not

associated with any significant eustatic event. 

The REE data from the Lahmida sequence differ remarkably from those of the other

studied sections and isolated samples. The Sm/Nd ratios vary between 0.29 and 0.80. Several

values are significantly higher than 0.45, which is the known upper limit for the present-day

seawater. This problem will be discussed in more detail in chapters 10.6 and 10.7. The Sm/Nd

ratios and the εNd values generally show reverse trends, similar to those observed in the sequence

at Mech Irdane. Surprisingly, the εNd excursion of the semichatovae transgression is not associated

with any significant increase in Sm/Nd. 

10.3.4    Circulation pattern

In order to trace lateral variations in the Nd isotopic composition of seawater on the Moroccan

shelf numerous samples from two stratigraphic levels, the base and the top of the Kellwasser

facies, have been evaluated. In addition, samples from the base of the marginifera Zone were also

collected in the initial phase of this study but the preliminary results revealed trends in εNd values

that were almost identical to those at the top of the Kellwasser facies. This is why the  evaluation

of Nd isotopic data for the marginifera Zone has been terminated and the data are not presented

in this treatise. 

At the base of the Kellwasser facies, in the conodont Zone 11 (jamieae), conodonts yield

a wide range of εNd values, from -6.1 to -11.1 (Fig. 41). The most radiogenic signatures occur on

the Mader Platform and seem to document the influence of oceanic waters. Relatively high εNd

values (-7.5, -8.1) are also recorded in the northeasternmost part of the studied area, whereas

values lower than -10 are characteristic for the central and southern part of the Tafilalt Platform.

The latter values correspond well with the distribution of clastic material on the shelf (Fig. 41).

The lateral variations in εNd values permit reconstruction of the seawater circulation but the

interpretations of trends require a careful analysis. This is because the εNd values can decrease or

increase with the flow direction of seawater. An increase can be observed when radiogenic oceanic

waters enter the shelf area. Due to mixing with shelf seawater, its impact is getting gradually
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weaker. The εNd values can increase in the outer zone of deltas, for instance, where the influence

of continental Nd decreases outwards. From the trends in the εNd values recognized for the onset

of the Kellwasser facies, a general seawater flow from the southwest towards the east can be

inferred (Fig. 42). The circulation pattern was complex in detail and resulted from the local

freshwater input. Riverine waters characterized by low, continental εNd values were supplied from

the south, presumably from the West African Craton, and from the west, i.e. the exposed

Precambrian basement of Jebel Ougnate (Fig. 42). They mixed with the seawater and were further

dispersed by northward and eastward currents, respectively. From the presence of Nd isotopic

records of the semichatovae transgression at Lahmida and Ait ou Nebgui (see chapter 10.3) and

the distribution of the highest εNd values, it seems that the shelf area communicated with the Rheic

Ocean to the southwest and with the Variscan Sea to the north. The shallow-water Mader

Platform, however, constituted an effective bathymetric barrier that hindered an unconstrained

inflow of oceanic water into the Mader Basin. The lateral trend in εNd values on the Mader

Platform could have been produced by currents that flowed from the southwest to the northeast,

or vice versa. The first scenario is favoured because a rapid decrease of εNd values, from about -6

to -9, is observed across the northeastern margin of the Mader Platform and it delineates the zone

where oceanic water from the Rheic Ocean was mixed with less radiogenic seawater of the Mader

Basin. An opposite flow direction over the extremely shallow-water Mader Platform would create

such mixing zone across the southwestern margin of the platform. This is evidently not the case.

An advantage of the Devonian in the Anti-Atlas is that the reconstructed seawater

circulation patterns can be tested by comparison with current-related sedimentary features. In the

past, Wendt and co-workers (e.g. WENDT & BELKA, 1991; WENDT, 1995) provided a huge set of

data on orientation of orthoconic cephalopods. Although these measurements were performed

within a broader stratigraphic interval, the isotopically based circulation pattern for the base of the

Kellwasser facies is in very good agreement with biostratonomical data for the upper Frasnian

(Fig. 42).

The top of the Kellwasser facies (rhomboidea Zone) is characterized by a relatively small

variation in the Nd isotopic composition of seawater. The εNd values range from -7.7 to -10.3 (Fig.

43). This small variation results presumably from the highstand regime that promoted also an

expansion of basinal facies during the rhomboidea Zone. It can be speculated that the highstand

facilitated the seawater circulation which resulted in enhanced mixing of water masses and, hence,

a more homogenous Nd isotopic composition. This uniform pattern of εNd values, however, makes

a reconstruction of seawater circulation very difficult and, thus, the inferred flow directions are

relatively poorly established. Therefore, the model of seawater circulation for the top of the

Kellwasser facies has been developed only by combination of Nd isotopic and biostratonomical

data (Fig. 44). The latter, however, were only available for the cephalopod limestones overlying
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the Kellwasser sediments (WENDT, 1995). 

The southern part of the Tafilalt Platform shows εNd values (Fig. 43) that are about two

units higher than those measured at the base of the Kellwasser facies in this area (see Fig. 41).

This may have resulted from a decline in the input of continental Nd from the West African

Craton due to the highstand. The increase of water depth caused a shift of the depositional patten

towards the south and, therefore, the impact of clastic material on the area south of Rissani was

insignificant. Moreover, the collateral progradation of prodelta sediments towards the east and

the west in the area of Taouz (Fig. 43) strongly suggests the presence of a shoreline current. This

is also supported by the arrangement of orthoconic shells in the Amessoui Synline, northwest of

Taouz, that indicates a westward flow (WENDT, 1995 and Fig. 44). A relatively low εNd value of

-9.2 determined for the northeastern margin of the Mader Basin seems to have been affected by

Nd input from the southeast (Fig. 43). This appears to be plausible when assuming that the

generally westward flow north of Taouz turned to the north (Fig. 44). In addition, such flow

direction could explain the orientation of orthoconic cephalopods west of Mech Irdane. A

complex circulation pattern inferred from shell orientation and Nd isotopic data in the central

Tafilalt Platform can be explained by a countercurrent that originated from the northwest of

Rissani. This would also explain the relatively non-radiogenic isotope signatures observed in the

northeastern part of the Tafilalt Platform (εNd values of -10.3 and -9.2) which may have resulted

from an eastward transport of more continental Nd from the emerged land area of the Jebel

Ougnate. The northern Tafilalt Platform was certainly controlled by a dominant current with a

northwest direction. This is well constrained by orientation of cephalopods. Because only two Nd

isotope data points are available from the Mader Platform, no attempt has been made to

reconstruct the seawater circulation in this part of the Moroccan shelf during the time of the

rhomboidea Zone. 

10.4    Moroccan Meseta, Gara de Mrirt

In the section of Gara de Mrirt, the εNd values of conodonts vary within a wide range from -2.6

to -9.4 (Fig. 45). The most conspicuous feature in the Nd isotopic curve of this section is a

positive excursion in the Zone 11 (jamieae), related to the semichatovae transgression. During this

event, the εNd values attain a level similar to that of the coeval excursion observed in the Ait ou

Nebgui section. This excursion is contrasted by uniformly low εNd values in the overlying upper

Frasnian/lower Famennian interval. They fluctuate within a narrow range from –8.5 to –9.4. There

are two small, negative peaks in εNd, only about 1 epsilon unit, at the base of both the Lower and

the Upper Kellwasser units. This suggests that the onset of these organic-rich facies was initiated
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by short-term regressive events.

With the exception of a peak in the Upper Kellwasser unit, the Sm/Nd ratios in the Gara

de Mrirt section are very uniform, between 0.21 and 0.30 (Fig. 45). Most of them overlap with

Sm/Nd ratios typical for modern epeiric seawater (for details see chapter 10.6) and the lowest

ratios, below 0.22, correspond to ratios of modern oceanic water. These are the lowest Sm/Nd

ratios recognized in the western part of the Variscan realm. At Gara de Mrirt, the Sm/Nd ratios

and the εNd values of seawater display a close relation. Negative excursions associated with the

onset of both Kellwasser units correlate with positive peaks of the Sm/Nd curve. It is, however,

remarkable that the peak of the semichatovae transgression is not accompanied by any significant

change in the Sm/Nd ratios, which remain more or less stable during this event. 
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10.5    Montagne Noire, Coumiac

At Coumiac, conodonts display generally low εNd values that range from -7.4 to -10.1 (Fig. 46).

The Frasnian samples yield generally more radiogenic signatures than the Famennian ones.

Similarly higher are also amplitudes of fluctuations in εNd values in the Frasnian compared to those

in the Famennian. Two distinct negative peaks in εNd occurring within the Frasnian segment of the

section coincide with the deposition of Kellwasser horizons. The lower peak, with a drop in εNd

from -8.0 to -9.7, starts at the base of the Lower Kellwasser unit and continues into the lowermost

part of the Zone 13 (bogartensis). This negative trend provides evidence that oxygen deficiency

at the sea bottom, which created the Kellwasser lithology, developed within a regressive phase.

Upwards the section, the εNd values increase gradually and achieve a level of about -7.5 in the

upper part of the Zone 13. This curve interval is interpreted to reflect a highstand in sea level that

was terminated by a rapid regression expressed as a decrease in εNd values from -7.4 to -9.1. This

negative shift begins just below the base of the Upper Kellwasser horizon, similarly to the negative

excursion at the base of the Lower Kellwasser unit (Fig. 46).

The Famennian starts with a small positive peak followed by a negative trend in εNd values

from -8.2 to -9.9 during the Middle triangularis zone. Throughout the rest of the Famennian, εNd

values show rather small fluctuations around a value of -9.0. There are only two slightly higher

deviations from this uniform trend, a negative peak during the Middle crepida Zone and a positive

one within the Upper crepida Zone. Both, however, are not well constrained because each of them

is documented by only one data point. The generally low εNd values in the Famennian seem to

reflect supply of Nd from old Precambrian crustal sources. This implies that rocks yielding

Precambrian model ages were exposed in the proximity of the Montagne Noire. However, the

location of the source area cannot be precisely identified. Two areas are proposed as possible

targets, the northern part of the Massif Central and the Pyrenees. Fragments of Precambrian crust

are known to occur in both these regions. Moreover, clastic facies is widespread in the Devonian

of the West Pyrenees (WIRTH, 1967; KRYLATOV & STOPPEL, 1971; CYGAN, 1995) and indicates

an exposed crystalline basement. Further studies and data from other locations outside of the

Montagne Noire are necessary to reconstruct the derivation of the non-radiogenic, continental Nd

recognized at Coumiac.

Late Devonian conodonts at Coumiac are characterized by Sm/Nd ratios ranging from 0.28

to 0.47. The Sm/Nd curve shows excursions that correlate well with peaks in the εNd curve. These

fluctuations, however, are perfectly inverse. In addition, they do not show any clear correlation

with the Sr isotopic compositions of conodonts. 87Sr/86Sr ratios of conodonts fluctuate between

0.70808 and 0.70826 (Fig. 46) and are consistent with the Sr isotopic evolution of seawater during

the Late Devonian (BURKE et al., 1982; VEIZER et al., 1997, 1999). Moreover, a more or less
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gradual trend to more radiogenic 87Sr/86Sr values is observed throughout the Upper Devonian. The

most frequent oscillations in the Sr isotopic curve occur in the upper Frasnian. However, this can

be an effect of low accumulation rate or/and short hiatuses below the level of biostratigraphical

resolution. Nevertheless, the oscillatory nature of the Sr isotopic evolution during the Frasnian was

also documented by VEIZER et al. (1997) for the Aachen region. Their  Sr isotopic curve resembles

in several details the Sr curve established for the Coumiac section. Some discrepancies arise

probably from insufficient biostratigraphic control of the Aachen succession and, thus, inaccurate

stratigraphic correlation of both curves.

10.6    Nd isotopic signatures of seawater in the Variscan realm

Conodonts recovered from various locations across the Variscan realm reveal distinct Nd isotopic

and Sm/Nd elemental characteristics that reflect local and regional differences in seawater

geochemistry during the Late Devonian (Fig. 47). Most remarkable is the difference between the

geochemical signatures of seawater in southern Poland and that of the Anti-Atlas area. According

to BELKA et al. (2000), the Baltic shelf of Euramerica (southern Poland) is characterized by εNd

values from about -2 to -9 and a relatively narrow range of Sm/Nd ratios from 0.16 to 0.29. The

Sm/Nd ratios fall within an interval of Sm/Nd ratios considered as characteristic for modern

oceanic water. Several studies reported Sm/Nd ratios for major oceans that vary between about

0.16 and 0.23 (PIEPGRAS & WASSERBURG, 1980; BERTRAM & ELDERFIELD, 1993; SHOLKOVITZ

et al., 1994; ALIBO & NOZAKI, 1999). The low Sm/Nd ratios observed in southern Poland (Holy

Cross Mountains, Cracow-Silesia area) reflect a marginal, open marine position of the studied

regions on the Baltic shelf. According to NARKIEWICZ (1988), the nearest land area, the

Belorussian Land, was at least 300 km away from the studied regions. Hence, the seawater

chemistry on the shelf margin was influenced rather by oceanic waters than by riverine supply of

REE from continental sources.

In contrast to the Baltic shelf, the conodonts from the eastern Anti-Atlas, located on the

northern Gondwana shelf, display a much broader range of Sm/Nd ratios from 0.21 to 0.85.

Moreover, the average Nd isotopic signatures are less radiogenic than in southern Poland. The

majority of data points yield εNd values ranging from about -7 to -12. Only a few samples display

higher εNd values  up to -2.6. The dominantly low εNd signatures suggest supply of Nd from old

Precambrian crust, most probably from the West Sahara Craton. It is likely that the surprisingly

high Sm/Nd ratios may result from the very proximal position of the Anti-Atlas area on the inner

shelf of Gondwana. The values are remarkably higher than those reported from modern epeiric

seas (Fig. 47), but REE data from modern marine environments are predominantly from sites
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located in open oceanic spaces, and not from coastal zones. AMAKAWA et al. (2000) provided the

hitherto only extensive documentation of the Nd seawater geochemistry in epeiric seas. They

showed that the Sm/Nd ratios in seas between SE Asia and Australia may be as high as 0.44.The

majority of values obtained from the Anti-Atlas samples is compatible with signatures of seawater

in the SE Asiatic region, but there is also a large number of samples that significantly exceed the

value of 0.44 (Fig. 47). Considering a relatively small distance that separated the investigated Anti-

Atlas locations from the coast during the Devonian  (WENDT, 1991), the unusual high Sm/Nd

ratios may have resulted from fractionation processes that are known from modern estuarine

settings. Reports on REE behaviour in rivers, estuarine transects, and coastal seawater, document

a large-scale removal of REEs from solution during the mixing of riverine water with seawater

(e.g. MARTIN et al., 1976; HOYLE et al., 1984; GOLDSTEIN & JACOBSEN, 1988c; SHOLKOVITZ &
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ELDERFIELD, 1988; ELDERFIELD et al., 1990; SHOLKOVITZ & SZYMCZAK, 2000). In many

estuaries, the removal is accompanied by fractionation of REE, which is usually explained by

preferential removal of colloidally associated light REEs (MARTIN et al., 1976; GOLDSTEIN &

JACOBSEN, 1988c; ELDERFIELD et al., 1990; SHOLKOVITZ, 1992; SHOLKOVITZ & SZYMCZAK,

2000). Several other factors have also been suggested as being responsible for the REE

fractionation in rivers and estuaries, e.g. planktonic absorption and coprecipitation with natural

hydrous ferric oxides (MARTIN et al., 1976), the patterns of local sedimentary rock types

(KEASLER & LOVELAND, 1982), stabilization and coagulation by organic colloids (HOYLE et al.,

1984; SHOLKOVITZ & ELDERFIELD, 1988), and the pH level (KEASLER & LOVELAND, 1982;

GOLDSTEIN & JACOBSEN, 1988 b, c). However, there is no agreement as to which processes play

the dominant role.

The geochemical characteristics of conodonts from the Montagne Noire and the Moroccan

Meseta are consistent with the seawater geochemistry of recent epeiric seas (Fig. 47). In the

former area, however, no high radiogenic εNd values have been recorded and consequently the

range of Nd signatures is narrower than in other studied regions. The high radiogenic values ( -2

to -5) seem to represent a distinct  aquafacies (an another reservoir of seawater) compared to that

characterized by εNd values between -6 and -12. The duality of seawater masses in the Variscan

realm, expressed by distinct Nd isotopic signatures, is most evident in southern Poland but it can

also be observed in the Anti-Atlas and the Moroccan Meseta. It attests a decoupling in the

geochemical evolution between shelf waters, being dominated by Nd supply from continental

sources, and oceanic waters characterized by much more radiogenic signatures. The latter enter

only episodically the shelf and coastal regions during sea-level rises. Overall, fluctuations in sea

level modified the participation of both aquafacies on the shelves and generated temporal and

spatial variations in the Nd isotopic signal. Both aquafacies differed not only in their Nd isotopic

signatures but also in their C isotopic evolution. Compilation of εNd and δ13C values from the

Devonian of the Gara de Mrirt (Fig. 48) reveals that the oceanic aquafacies was characterized by

high εNd values and strongly negative δ13C signatures, whereas the shelf aquafacies displayed lower

εNd values and less negative to positive  δ13C values. Therefore, care must be taken when

interpreting trends in C isotopic composition, because exchange and/or mixing of seawater can

produce certain excursions in the C isotope record.

Geochemical decoupling between various water masses in marine environments is known

both from the past and the present time. HOLMDEN et al. (1998) provided Nd and C isotopic

evidence for geochemical decoupling between the epicontinental Mohawkian Sea in the

Midcontinent region of North America and the bordering Iapetus Ocean during the Ordovician.

Although the C isotopic composition of modern surface seawater is very uniform (CHARLES &

FAIRBANKS, 1992) and shows variations smaller than 1.5‰, differences as high as 4‰ can occur
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in certain oceanographic situations, such as on the Bahamas carbonate platforms (e.g. LLOYD,

1964; PATTERSON & WALTER, 1994). 

Considering the εNd values in seawater of the Variscan realm it can be concluded that the

Variscan oceanic aquafacies (both within the Rheic Ocean and the Variscan Sea) resembled the

seawater in the modern Pacific Ocean (average εNd = -3.5) rather than those of the Atlantic or

Indian oceans, with average εNd values of  -12.1 and -8.3, respectively. Because records of the

oceanic  aquafacies in southern Poland as well as in the Anti-Atlas and Meseta originated from an

ingression of oceanic waters onto the shelve areas and were, at least partially, modified by mixing

with the shelf aquafacies, it is very likely that pristine Variscan oceanic water may have displayed

even more radiogenic Nd isotopic signatures than the εNd value of -2.6 determined at Gara de

Mrirt. BELKA et al.(2000) reported εNd values as high as -1.6 from the margin of the Euramerica

shelf (Tournaisian of southern Poland).

It is important to stress that a two-component mixture model cannot be applied for

estimation of the isotopic and chemical composition of the end members (here pristine oceanic and

shelf aquafacies) and their participation in the isotopic and elemental characteristics of the

seawater. This is because the Nd concentrations in conodonts do not reflect those of the seawater

but are related to the morphology of conodont elements and, to some extend, to the sedimentation

rates (see chapter 10.1.1).
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10.7    Sm/Nd fractionation

As already mentioned in the previous chapter, the level of Sm/Nd ratios in seawater can be, to

some extend, attributed to the position of a given location relative to the coast. The temporal

fluctuations in Sm/Nd ratios, however, are more complex and thus difficult to explain. In most

cases, there is a clear relation between Sm/Nd ratios and εNd values. Positive excursions in the

former coincide with negative peaks in the latter, and vice versa. Such relation, however, seems

to be valid only for seawater of the shelf aquafacies. During the semichatovae transgression, when

the Variscan oceanic waters entered shelf areas, the relation between  Sm/Nd ratios and Nd

isotopic signatures is not unequivocal. In the Ait ou Nebgui section, a strong positive excursion

in εNd is associated with a prominent increase of the Sm/Nd ratio. In two other locations, where

the oceanic aquafacies has been identified (Lahmida and Gara de Mrirt), the positive excursion in

εNd is contrasted by almost constant Sm/Nd ratios. Although no explanation can yet be proposed

for the REE behaviour during the semichatovae transgression, it appears that the Variscan oceanic

waters differed from the shelf aquafacies not only in thir Nd and C isotopic compositions, but also

in REE fractionation.

FANTON et al.(2002) found evidence in the Ordovician of North America that variations

in Sm/Nd ratios can correlate with changes in water depth. They suggested that an increase in

Sm/Nd usually coincides with increasing εNd and water depth and vice versa. However, their

conclusion is based on correlations that are not precise and unequivocal. In some cases, a

contrasting development of Sm/Nd and εNd is evident. Therefore, the general usefulness of the

Sm/Nd ratio of carbonate rocks as a tool for reconstruction of palaeo-water depth appears to be

questionable.

10.8    Sea-level fluctuations

The correlation of temporal variations in εNd values of conodonts with regression/transgression

events in the Upper Devonian of the Tafilalt Platform provides crucial evidence for the sensibility

of the Nd isotopic composition of seawater in response to fluctuations in the sea level (Fig. 49).

Although variations in εNd values may also result from changes in seawater circulation, the eustasy

appears to be the most effective factor that governed temporal changes in the Nd isotopic

composition of seawater. Because regressions accelerate erosional processes and thus provoke

an enhanced supply of nonradiogenic Nd to the ocean, they cause a decline in εNd. Consequently,

transgressions are responsible for positive shifts in εNd values of seawater. Thus, the εNd curves

seem to be very useful for deciphering sea-level fluctuations. Effects of other factors on temporal
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changes in εNd values can be minimized or even excluded by analysis of trends in different sections

located at various palaeoceanographic positions. 

On the basis of the εNd curves obtained during this study, an attempt has been made to

reconstruct the sea-level fluctuations during the Late Devonian. The amplitudes of sea-level

changes are proportional to peak dimensions in the εNd curves and the magnitude of erosional

events. The relative changes in sea level inferred from the Nd isotopic data are presented in Figure

50 and compared with the conventional Late Devonian eustatic sea-level curve derived from facies

data. The latter was constructed by JOHNSON et al. (1985) and modified by JOHNSON & SANDBERG

(1988) and SANDBERG et al. (1992). In the present study, an additional modification of this curve

has been performed by plotting against the quantitative biostratigraphic framework for the
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Frasnian (KLAPPER, 1997) and the Famennian (BELKA, unpublished). The new, isotopically-based

eustatic curve shows five main fluctuations labelled with numbers from I to V (Fig. 50):

I. This most prominent transgressive phase took place during the Zone 11 (jamieae). It is well

constrained by a strong positive excursion in εNd, which can be recognized in all of

investigated sections in the eastern Anti-Atlas (Figs. 37-39) and in the Moroccan Meseta

(Fig. 45). It correlates perfectly with the most pronounced Devonian transgression (cycle IId

sensu JOHNSON et al., 1985) recognized worldwide on the basis of facies onlap and

expansion of the conodont species Palmatolepis semichatovae (e.g. JOHNSON & SANDBERG,

1988; SANDBERG et al. 1992). The isotopic data reveal, however, a significantly shorter

duration of this transgression than previously postulated on the basis of facies data.

II. The regression within the uppermost part of the Zone 12 is indicated by a decrease in εNd

noticed in the Coumiac and Mrirt sections (Fig. 45-46). It is also supported by the presence

of a stratigraphic gap comprising the entire Zone 12 in the eastern Anti-Atlas (Figs. 37-38).

The lower Kellwasser unit in the Moroccan Meseta and the Montagne Noire developed

during this regression. It is important to note that SANDBERG et al. (1992) postulated that

the regression occurred immediately after the deposition of the Lower Kellwasser unit. 

III. This long-term highstand phase within the Zone 13 is well documented in the Coumiac

section (Fig. 46). It was interrupted by several, most probably subordinate fluctuations.

Another evidence for the sea-level rise in the Zone 13 is the positive shift in εNd recognized

in the Mech Irdane section (Fig. 37). SANDBERG et al. (1992) suggested  that this

transgressive phase terminated during deposition of the Upper Kellwasser unit. The Nd

isotopic data do not confirm this hypothesis; they document an earlier termination of this

phase.   

IV. This regression in the uppermost part of the Zone 13 is documented by a negative excursion

in the εNd curves of Coumiac (Fig. 46), Mrirt (Fig. 45) and Lahmida (Fig. 39). In the Mech

Irdane and Ait ou Nebgui sections (Figs. 37-38), it is responsible for shallowing resulting in

a stratigraphic gap that comprises the Frasnian/Famennian boundary level. Like during

regression II, organic-rich sediments (the Upper Kellwasser unit) was deposited during this

event. As indicated by data from Coumiac and Mrirt sections, the regression commenced

before the onset of the Kellwasser facies and terminated already before its end. The upper

part of the Upper Kellwasser unit was deposited already during the subsequent transgressive

trend. SANDBERG et al. (1992) proposed that, with the exception of its basal layer, the Upper
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Kellwasser unit developed entirely during a regressive regime.

V. The regression within the Upper crepida zone is based on the stratigraphic gap recognized

in the Mech Irdane section (Fig. 37). Negative peaks in εNd curves occur in the Coumiac and

Lahmida sections (Figs. 37, 40) but they are weak and insufficiently constrained by

biostratigraphy. JOHNSON & SANDBERG (1988) recognized a strong regressive event at more

or less the same stratigraphic level. A precise correlation with regression V is difficult

because they used an old zonal scheme with tripartite subdivision of the crepida zone.

11    Conclusions

The large number of conodont samples investigated during the present study allowed new insights

into the Nd isotopic and elemental systematics of conodonts. The data suggest that conodonts

provide a reliable record of the Nd isotopic signatures of ancient seawater. Hence, this study puts

constraints on the role of the Nd isotopic composition of conodonts as a tool for

palaeoceanography and sea-level research of the Paleozoic seas. It is concluded that:

1. Conodont fluorapatite contains large amounts of Nd. Although significant variation in Nd

concentrations occurs between different conodont elements within a single conodont sample,

each element in the sample yields identical Nd isotopic composition.

2. There is no correlation between Nd isotopic signatures of conodont samples, their Nd

content and the level of thermal alteration. Thus, it seems that Nd concentrations of

conodonts were not modified by secondary (diagenetic) processes. All this confirms earlier

suggestions that εNd values of conodonts represent a signature of a single reservoir, namely

that of ancient seawater.

3. Nd concentrations in conodont crowns (from 25 to 280 ppm) depend on their morphology;

the higher the surface /volume ratio of conodont elements the higher is their Nd content.

Conodonts with a similar shape achieved mostly a similar level of Nd concentration. This

proves the presence of a saturation limit for fluorapatite tissue exposed to seawater. Because

this saturation level was often attained for conodonts deposited on the carbonate platforms

and less frequently in the basinal realm, with a higher sedimentation rate, it is very likely that

conodonts have acquired their Nd prior to burial while still in contact with seawater. 

4. The relation between the morphology of conodonts and their Nd contents allows an easy
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approximation of the Nd concentration in conodont samples. This is very useful for isotopic

analysis, because samples can be spiked appropriately. 

5. Shark teeth and fragments of placoderms are more susceptible to diagenetic alteration than

conodonts. If unaltered, shark teeth and placoderm tissue exhibit slightly less radiogenic εNd

values than coeval conodonts. Their Sm/Nd isotopic system can already be disturbed by a

moderate thermal overprint. Nevertheless, fossil fish remains can be useful as

palaeoceanographic proxies in the Palaeozoic shallow-water or lagoonal sediments where

conodonts are generally rare or absent. 

6. Temporal trends in Nd isotopic composition of conodonts reflect sea-level fluctuations. The

εNd values decreased during regression phases when enhanced erosion accelerated supply of

low radiogenic Nd from old continental sources. A rise in sea level generated a positive shift

in εNd values due to input of more radiogenic oceanic water into the seawater reservoir of the

shelf areas. The range and rate of changes in εNd values depended on the dynamics of eustatic

sea-level fluctuations and also on the palaeoceanographic position of the studied sections.

The method has a great potential for sea-level research and palaeoceanography because sea-

level changes can be recognized independently from facies, biota and lithology. Sea-level

fluctuations can even be recognized in successions yielding a uniform, monotonous

lithological development, which are useless for sequence stratigraphy and conventional facies

analysis.

7. On the basis of temporal fluctuations in the Nd isotopic composition of conodonts from the

western part of the Variscan realm (Anti-Atlas, Moroccan Meseta, Montagne Noire) an

eustatic sea-level curve for the late Frasnian and early Famennian was constructed. It reveals

five prominent eustatic events. These are: 

I - “semichtovae” transgression during the Zone 11

II - regression at the end of the Zone 12

III - highstand phase in the Zone 13

IV - regression at the end of the Zone 13

V - regression during the Upper crepida Zone 

8. Nd isotopic data do not confirm the hitherto commonly postulated transgressive character

of the Kellwasser lithology. In the western part of the Variscan realm, the onset and duration

of the organic-rich Kellwasser facies is strongly diachronous. In the eastern Anti-Atlas, its

development began during the regressive phase in the lower part of the Zone 11. Similarly,
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the Upper and Lower Kellwasser Limestones in the Coumiac and Mrirt sections were

deposited during the regressions II and IV, respectively. These two eustatic events are

responsible for the extensive erosion and the origin of stratigraphic gaps on the carbonate

platforms of the Anti-Atlas.

9. On the basis of the lateral variations in εNd of conodonts an attempt was made to reconstruct

the seawater circulation on the Anti-Atlas shelf. Data from two horizons, the base and the

top of the Kellwasser facies, were selected for this purpose. During the onset of the

Kellwasser facies (Zone 11) a general seawater flow from the southwest towards the east

was recognized. The circulation pattern was complex due to local riverine input from the

West African Craton in the south and from the exposed Precambrian basement in the west.

During the end of the Kellwasser facies (rhomboidea Zone) seawater circulation was

dominated by a general westward flow and a much weaker countercurrent in the central

Tafilalt. The isotopically based circulation patterns are in very good agreement with

orientation of orthoconic cephalopods, which is interpreted to be created by currents. The

episodic entrance of oceanic waters on the shelf during the Frasnian (Zone 11) documents

the connection of the Anti-Atlas shelf area with the Rheic Ocean to the southwest and with

the Variscan Sea to the north. 

10. Regionally different Nd isotopic and Sm/Nd elemental characteristics of conodonts in the

Variscan realm indicate the presence of two different water masses. The oceanic aquafacies

was characterized by high radiogenic εNd values (from -2 to -5), similar to those of the

modern Pacific Ocean. The shelf aquafacies yielded low εNd values (from -6 to -12),

reflecting Nd supply from Precambrian continental sources, and a wide range of Sm/Nd

ratios, comparable with those of the modern epeiric seas. Both aquafacies differed not only

in their Nd isotopic signatures but also showed different C isotopic evolution. The

geochemical decoupling between different aquafacies in the Variscan realm testifies a

restricted water exchange between shelves and the ocean. The oceanic waters entered the

shelf areas only episodically during transgressions. Fluctuations of the sea level modified the

participation of both aquafacies on the shelves and produced temporal and spatial variations

in the Nd isotopic signal. 
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Appendix

Table. 1. Register of localities.

Locality 

code
Locality Coordinates

Conodont

CAI
Country

AA Afrou n’Akhou N 30/38'886 / W 5/05'079 4 Morocco

AN Ait ou Nebgui N 30/45'294 / W 4/54'958 3.5-4 Morocco

AS Jebel Amessoui N 31/01'359 / W 4/17'238 4.5 Morocco

AZ Azzel Matti N 25/37'735 / E 0/55'915 1 Algeria

BF Bou Ifarherioun W N 31/07'568 / W 4/18'889 4 Morocco

BI Bou Ifarherioun E N 31/07'738 / W 4/17'555 4 Morocco

BK Klucze N 50/20'000 / E 19/33'750 2.5 Poland

BO Boleslaw N 50/14'000 / E 19/16'000 1 Poland

CO Coumiac N 43/28'306 / E 3/03'643 2.5 France

DU Dule N 50/46'865 / E 21/05'234 2 Poland

DZ Dzikowiec N 50/34'253 / E 16/34'830 2.5 Poland

EL El Kahla N 31/08'162 / W 4/13'873 4 Morocco

ER Erfoud N 31/25'886 / W 4/13'175 4 Morocco

GA Galezice N 50/50'811 / E 20/23'426 1.5 Poland

HB Hassi Boulmane N 30/41'766 / W 4/43'238 4 Morocco

HL Hamar Laghdad N 31/22'663 / W 4/02'952 4 Morocco

IH Jebel Irhs 1 N 31/15'706 / W 4/22'349 4 Morocco

IN Injar N 31/22'098 / W 3/51'714 4-4.5 Morocco

IS Jebel Irhs 2 N 31/14'891 / W 4/22'095 4 Morocco

IT Irht n’Teslit N 30/54'293 / W4/58'254 4.5 Morocco

JR Jebel Rheris N 31/16'359 / W 4/43'365 4.5-5 Morocco

JT Jebel Tamamate N 26/14'886 / E 0/46'934 1.5 Algeria

KA Kadzielnia N 50/51'751 / E 20/37'103 1.5 Poland

KO Kowala N 50/47'257 / E 20/33'783 1.5 Poland

LH Lahmida N 31/30'670 / W 4/19'262 3.5-4 Morocco

MI Mech Irdane N 31/13'622 / W 4/21'187 4 Morocco

MM Madene el Mrakib N 30/44'158 / W 4/42'794 4 Morocco

MR Gara de Mrirt N 33/08'831 / W 5/31'391 4.5-5 Morocco

MS Mimsmarn N 30/53'614 / W 4/58'190 4.5 Morocco

OC Ouidane Chebbi N 31/14'324 / W 3/48'254 4 Morocco

OJ Oum el Jerane N 30/59'402 / W 4/08'286 3.5 Morocco

OT Otara N 31/08'288 / W 4/22'317 4 Morocco

PO Pomorzany N 50/17'330 / E 19/20'000 2.5 Poland

RH Rich Haroun N 31/19'864 / W 4/10'825 4 Morocco

SO Sosnowiec N 50/17'500 / E 19/09'500 3-4 Poland

ST Stokowka N 50/49'932 / E 20/25'652 1.5 Poland

TA Oued Talilit N 31/00'598 / W 4/16'095 4.5 Morocco

TD Tisserdimine N 31/16'929 / W 3/58'825 4 Morocco

TG Todowa Grzaba N 50/50'662 / E 20/23'936 1.5 Poland
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Locality 

code
Locality Coordinates

Conodont

CAI
Country

TH Takkat ou el Heyene N 31/00'714 / W 4/07'696 4 Morocco

TM Taourirt Mouchane N 30/37'989 / W 4/48'127 4 Morocco

TT Tiouririne Toungaline N 30/37'826 / W 5/01'397 4 Morocco

WB Wolbrom N 50/23'000 / E 19/45'000 2.5 Poland

Table 2. Taxonomic content and age of the samples.

Sample Fossils             Taxonomic content Age Area

MI-0/1 conodonts palmatolepids, ancyrodellids Zone 8 Anti-Atlas

MI-1B conodonts ancyrodellids Zone 8 - 11 Anti-Atlas

MI-1T conodonts bulk Zone 11 Anti-Atlas

MI-2B conodonts ancyrodellids Zone 11 Anti-Atlas

MI-3B conodonts ancyrodellids Zone 11 Anti-Atlas

MI-3T conodonts ancyrodellids Zone 11 Anti-Atlas

MI-4B conodonts bulk Zone 13 Anti-Atlas

MI-4T conodonts ancyrodellids Zone 13 Anti-Atlas

MI-5T conodonts bulk Zone 13 Anti-Atlas

MI-7B conodonts bulk Middle triangularis Anti-Atlas

MI-7T conodonts palmatolepids, icriodids Middle triangularis Anti-Atlas

MI-8M conodonts palmatolepids Middle triangularis Anti-Atlas

MI-9B conodonts palmatolepids, ramiforms Middle triangularis Anti-Atlas

MI-9M conodonts palmatolepids, ramiforms Upper triangularis Anti-Atlas

MI- 9T conodonts palmatolepids Upper triangularis Anti-Atlas

MI-10B conodonts palmatolepids, ramiforms Upper triangularis Anti-Atlas

MI-10T conodonts palamatolepids Lower crepida Anti-Atlas

MI-11B conodonts palmatolepids Uppermost crepida Anti-Atlas

MI-11T conodonts palmatolepids rhomboidea Anti-Atlas

MI-12 conodonts palmatolepids rhomboidea Anti-Atlas

MI-13 conodonts palmatolepids Lower marginifera Anti-Atlas

MI-14 conodonts bulk Lower marginifera Anti-Atlas

MI-15 conodonts palmatolepids Lower trachytera Anti-Atlas

MI-16 conodonts bulk Lower - Upper trachytera Anti-Atlas

MI-18 conodonts bulk postera - expansa Anti-Atlas

AN-1 conodonts bulk Zone 7 - 11 Anti-Atlas

AN-2 conodonts ancyrodellids Zone 7 - 11 Anti-Atlas

AN-3 conodonts bulk Zone 11 Anti-Atlas

AN-4B conodonts ramiforms Zone 11 Anti-Atlas

AN-4M conodonts ancyrodellids Zone 11 Anti-Atlas

AN-4T conodonts bulk Zone 11 Anti-Atlas

AN-5 conodonts bulk Zone 11 Anti-Atlas

AN-6 conodonts bulk Zone 11 Anti-Atlas
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Sample Fossils             Taxonomic content Age Area

AN-8 conodonts ancyrodellids Zone 11 Anti-Atlas

AN-8a conodonts ancyrodellids Zone 11 Anti-Atlas

AN-9T conodonts ramiforms Zone 11 Anti-Atlas

AN-10 conodonts bulk Zone 13 Anti-Atlas

AN-11 conodonts ancyrodellids Zone 13 Anti-Atlas

AN-12B conodonts ancyrodellids Upper triangularis Anti-Atlas

AN-12T conodonts palamtolepids Uppermost crepida - rhomboidea Anti-Atlas

AN-12T-1 conodonts palmatolepids Upper crepida Anti-Atlas

AN-12T-2 conodonts palmatolepids Lower - Middle crepida Anti-Atlas

AN-13B conodonts palmatolepids,some basal bodies rhomboidea Anti-Atlas

AN-14 conodonts palmatolepids rhomboidea Anti-Atlas

LH-5 conodonts bulk Zone 6 Anti-Atlas

LH-6 conodonts polignathids Zone 11 Anti-Atlas

LH-7 conodonts bulk Zone 11 Anti-Atlas

LH-8 conodonts bulk Zone 11 Anti-Atlas

LH-9 conodonts polignathids Zone 11 Anti-Atlas

LH-10 conodonts bulk Zone 11 Anti-Atlas

LH-11 conodonts bulk Zone 11 Anti-Atlas

LH-12 conodonts bulk Zone 11 Anti-Atlas

LH-13 conodonts bulk Zone 11 Anti-Atlas

LH-14 conodonts bulk Zone 11 Anti-Atlas

LH-18 conodonts bulk Zone 13 Anti-Atlas

LH-19 conodonts bulk Zone 13 Anti-Atlas

LH-20 conodonts bulk Zone 13 Anti-Atlas

LH-21 conodonts palmatolepids Zone 13 Anti-Atlas

LH-22 conodonts bulk Zone 13 Anti-Atlas

LH-23 conodonts  ancyrodellids Zone 13 Anti-Atlas

LH-24 conodonts bulk Zone 13 Anti-Atlas

LH-25 conodonts palmatolepids triangularis Anti-Atlas

LH-26 conodonts palmatolepids triangularis Anti-Atlas

LH-34 conodonts bulk crepida Anti-Atlas

LH-38 conodonts palmatolepids Uppermost crepida Anti-Atlas

LH-39 conodonts icriodids, palmatolepids Uppermost crepida Anti-Atlas

LH-40 conodonts palmatolepids rhomboidea Anti-Atlas

LH-43 conodonts bulk rhomboidea Anti-Atlas

LH-44 conodonts palmatolepids rhomboidea Anti-Atlas

LH-47 conodonts ramiforms rhomboidea Anti-Atlas

LH-48 conodonts polignathids rhomboidea Anti-Atlas

LH-49 conodonts bulk rhomboidea Anti-Atlas

LH-50 conodonts bulk Lower marginifera Anti-Atlas

LH-51 conodonts bulk Lower marginifera Anti-Atlas

LH-52 conodonts palmatolepids Upper marginifera Anti-Atlas

LH-56 conodonts palmatolepids expansa Anti-Atlas

AA-3B conodonts bulk Zone 11 Anti-Atlas

AS-2 conodonts bulk Zone 11 Anti-Atlas
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Sample Fossils             Taxonomic content Age Area

AS-3 conodonts bulk rhomboidea Anti-Atlas

AZ-12 conodonts polignathids Zone 1 - 4 Algeria

BF-1 conodonts bispathodids expansa Anti-Atlas

BF-2 conodonts polignathids, icriodids expansa Anti-Atlas

BF-3 conodonts bispathodids expansa Anti-Atlas

BI-1T conodonts bulk Zone 11 Anti-Atlas

BI-2B conodonts bulk Zone 11 Anti-Atlas

BI-2T conodonts palmatolepids Uppermost crepida Anti-Atlas

BI-B/3 conodonts bulk Lower marginifera Anti-Atlas

EL-01 conodonts ancyrodellids Zone 10 - 11 Anti-Atlas

ER-1T conodonts bulk Zone 11 Anti-Atlas

ER-2B conodonts bulk Zone 11 Anti-Atlas

ER-2T conodonts  bulk Uppermost crepida  Anti-Atlas

ER-3B conodonts bulk rhomboidea Anti-Atlas

HL-2B conodonts ancyrodellids Zone 11 Anti-Atlas

HL-2T conodonts palmatolepids, some basal bodies Uppermost crepida Anti-Atlas

IH-1B conodonts ancyrodellids Zone 11 Anti-Atlas

IH-2B conodonts palmatolepids, icriodids Uppermost crepida Anti-Atlas

IN-8 conodonts bulk Zone 11 Anti-Atlas

IT-4B conodonts bulk Zone 11 Anti-Atlas

JR-1 conodonts bulk Zone 11 Anti-Atlas

JT-20 conodonts gnathodids Visean Algeria

MM-4B conodonts ramiforms Zone 11 Anti-Atlas

OC-II-39 conodonts bulk Zone 6 Anti-Atlas

OJ-A conodonts bispathodids expansa Anti-Atlas

OJ-B conodonts bispathodids expansa Anti-Atlas

OJ-C conodonts bulk expansa Anti-Atlas

OH-1 conodonts bulk Zone 11 Anti-Atlas

OT-19 conodonts bulk Zone 13 Anti-Atlas

OT-23 conodonts palmatolepids Middle triangularis Anti-Atlas

RH-5B conodonts bulk Zone 11 Anti-Atlas

RH-5et conodonts palmatolepids rhomboidea Anti-Atlas

TH-2 conodonts bulk Zone 11 Anti-Atlas

TH-4 conodonts palmatolepids Uppermost crepida Anti-Atlas

TM-7T conodonts bulk Uppermost crepida Anti-Atlas

MR-96 conodonts palmatolepids Zone 9 - 10 Moroccan Meseta

MR-97 conodonts bulk Zone 11 Moroccan Meseta

MR-98 conodonts palmatolepids Zone 11 Moroccan Meseta

MR-99 conodonts bulk Zone 11 Moroccan Meseta

MR-0 conodonts bulk Zone 11 Moroccan Meseta

MR-1T conodonts bulk Zone 12 Moroccan Meseta

MR-2B conodonts bulk Zone 12 Moroccan Meseta

MR-2T conodonts bulk Zone 12 Moroccan Meseta

MR-3B conodonts bulk Zone 13 Moroccan Meseta

MR-3M conodonts palmatolepids Zone 13 Moroccan Meseta



101

Sample Fossils             Taxonomic content Age Area

MR-3T conodonts bulk Zone 13 Moroccan Meseta

MR-4A conodonts bulk Zone 13 Moroccan Meseta

MR-4B conodonts bulk Zone 13 Moroccan Meseta

MR-4C conodonts bulk Lower triangularis Moroccan Meseta

MR-5B conodonts palmatolepids Lower triangularis Moroccan Meseta

MR-5B2 conodonts palmatolepids, icriodids Lower triangularis Moroccan Meseta

MR-5T conodonts bulk Middle triangularis Moroccan Meseta

DZ-2B conodonts bispathodids Upper expansa - Lower praesulcata southern Poland

DZ-22 conodonts polignathids Upper expansa - Lower praesulcata southern Poland

KA-1 conodonts bulk, basal bodies Lower crepida southern Poland

KA-2 conodonts polignathids, palmatolepids, basal Lower marginifera southern Poland

KA-5 conodonts palmatolepids, basal bodies Lower marginifera southern Poland

KA-6 conodonts bulk, basal bodies Lower marginifera southern Poland

KA-7 conodonts bulk, basal bodies Lower marginifera southern Poland

KA-8 conodonts bulk, baal bodies Lower marginifera southern Poland

KO-3 conodonts bulk Lower marginifera southern Poland

CO-21 conodonts bulk Zone 12 Montagne Noire

CO-23d conodonts bulk Zone 12 Montagne Noire

CO-23e conodonts bulk Zone 12 Montagne Noire

CO-24a conodonts ancyrodellids, ramiforms Zone 12 Montagne Noire

CO-24b conodonts icriodids Zone 13 Montagne Noire

CO-24d conodonts bulk Zone 13 Montagne Noire

CO-24e conodonts bulk Zone 13 Montagne Noire

CO-25a conodonts bulk Zone 13 Montagne Noire

CO-25b conodonts palmatolepids Zone 13 Montagne Noire

CO-26c conodonts palmatolepids Zone 13 Montagne Noire

CO-27 conodonts bulk Zone 13 Montagne Noire

CO-28a conodonts bulk Zone 13 Montagne Noire

CO-29a conodonts bulk Zone 13 Montagne Noire

CO-29d conodonts bulk Zone 13 Montagne Noire

CO-30a conodonts bulk Zone 13 Montagne Noire

CO-31a conodonts bulk Zone 13 Montagne Noire

CO-31c conodonts palmatolepids, ancyrodellids Zone 13 Montagne Noire

CO-31e2 conodonts ancyrodellids Zone 13 Montagne Noire

CO-31f conodonts bulk Zone 13 Montagne Noire

CO-31g conodonts bulk Zone 13 Montagne Noire

CO-32a conodonts bulk Lower triangularis Montagne Noire

CO-32b conodonts bulk Lower triangularis Montagne Noire

CO-32d conodonts palmatolepids Middle triangularis Montagne Noire

CO-32f conodonts palmatolepids Middle triangularis Montagne Noire

CO34a conodonts bulk Upper triangularis Montagne Noire

CO-35b conodonts bulk Upper triangularis Montagne Noire

CO-35e conodonts palmatolepids Upper triangularis Montagne Noire

CO-36B conodonts palmatolepids Upper triangularis Montagne Noire

CO-36T conodonts palmatolepids Upper triangularis Montagne Noire
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Sample Fossils             Taxonomic content Age Area

CO-37aB conodonts bulk Upper triangularis Montagne Noire

CO-37bB conodonts bulk Lower crepida Montagne Noire

CO-37bT conodonts bulk Lower crepida Montagne Noire

CO-38B conodonts bulk Middle crepida Montagne Noire

CO-39T conodonts palmatolepids Middle crepida Montagne Noire

CO-40T conodonts palmatolepids Upper crepida Montagne Noire

CO-41 conodonts palmatolepids Upper crepida Montagne Noire

CO-43B conodonts bulk Upper crepida Montagne Noire

CO-44 conodonts bulk Upper crepida Montagne Noire

CO-46 conodonts bulk Upper crepida Montagne Noire

CO-47 conodonts bulk Upper crepida Montagne Noire

CO-49T conodonts bulk Upper crepida Montagne Noire

CO-51B conodonts palmatolepids Uppermost crepida Montagne Noire

CO-51T conodonts bulk Uppermost crepida Montagne Noire

CO-52 conodonts palmatolepids  rhomboidea Montagne Noire

CO-53 conodonts bulk rhomboidea Montagne Noire

CO-56 conodonts palmatolepids rhomboidea Montagne Noire

CO-24a placoderms -------------- Zone 12 Montagne Noire

CO-35b shark teeth -------------- Upper triangularis Montagne Noire

CO-37aB shark teeth -------------- Upper triangularis Montagne Noire

CO-37bT shark teeth -------------- Lower crepida Montagne Noire

CO-38B shark teeth -------------- Middle crepida Montagne Noire

CO-39T shark teeth -------------- Middle crepida Montagne Noire

CO-40T shark teeth -------------- Upper crepida Montagne Noire

CO-41 shark teeth -------------- Upper crepida Montagne Noire

CO-43B shark teeth -------------- Upper crepida Montagne Noire

CO-44 shark teeth -------------- Upper crepida Montagne Noire

CO-47 shark teeth -------------- Upper crepida Montagne Noire

CO-49T shark teeth -------------- Upper crepida Montagne Noire

CO-51T shark teeth -------------- Uppermost crepida Montagne Noire

MI-4B placoderms -------------- Zone 13 Montagne Noire

KA-2 shark teeth -------------- Lower marginifera southern Poland

KA-2 placoderms -------------- Lower marginifera southern Poland

KA-5 shark teeth -------------- Lower marginifera southern Poland

JT-20 shark teeth -------------- Visean Algeria

EL-01 placoderms -------------- Zone 10 - 11 Anti-Atlas

BF-1 shark teeth -------------- expansa Anti-Atlas

BF-2 placoderms -------------- expansa Anti-Atlas
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Table 3. Sm-Nd isotopic data of conodont samples from the Anti-Atlas, Moroccan Meseta and southern

Poland. 

Sample   
Weight

(mg)  

Sm   

(ppm)

Nd   

(ppm)

147Sm/
144Nd

    143Nd/144Nd

143Nd/144Nd

 (365  M a)

εNd      

(365  M a)

 Mech Irdane section

MI-0/1* 5.94 42.9 137.8 0.1881 0.512153 ± 9 0.511704 -9.1

MI-1B 2.31 15.4 52.0 0.1794 0.512072 ± 10 0.511643 -10.2

MI-1T 1.60 16.2 45.6 0.2143 0.512165 ± 10 0.511656 -10.0

MI-2B 1.66 21.9 55.4 0.2388 0.512195 ± 10 0.511624 -10.6

MI-3B* 6.00 50.1 147.0 0.2059 0.512225 ± 8 0.511733 -8.5

MI-3T 2.87 9.8 31.1 0.1899 0.512124 ± 9 0.511670 -9.7

MI-4B 1.72 32.1 100.4 0.1932 0.512186 ± 10 0.511724 -8.7

MI-4T 1.93 15.1 57.5 0.1591 0.512078 ± 10 0.511698 -9.2

MI-5T 1.91 9.2 30.6 0.1823 0.512071 ± 10 0.511635 -10.4

MI-7B* 3.60 47.5 184.4 0.1557 0.512088 ± 11 0.511716 -8.8

MI-7T 2.07 34.0 114.0 0.1804 0.512129 ± 10 0.511697 -9.2

MI-8M 1.37 53.5 179.7 0.1799 0.512124 ± 8 0.511694 -9.2

MI-9B 1.41 48.9 159.2 0.1856 0.512122 ± 10 0.511678 -9.6

MI-9M 1.57 34.5 115.1 0.1813 0.512137 ± 9 0.511704 -9.1

MI- 9T* 3.08 75.9 286.4 0.1603 0.512094 ± 6 0.511711 -8.9

MI-10B 1.55 26.7 86.8 0.1860 0.512156 ± 10 0.511711 -8.9

MI-10T* 4.99 36.0 116.0 0.1874 0.512136 ± 8 0.511688 -9.4

MI-11B* 3.11 24.7 91.3 0.1635 0.512138 ± 8 0.511747 -8.2

MI-11T 6.39 19.1 64.9 0.1777 0.512168 ± 8 0.511743 -8.3

MI-12* 3.96 34.8 102.9 0.2044 0.512232 ± 8 0.511744 -8.3

MI-13* 5.06 15.0 45.9 0.1976 0.512220 ± 15 0.511748 -8.2

MI-14* 9.36 25.8 75.4 0.2069 0.512253 ± 8 0.511759 -8.0

MI-15* 3.05 32.6 79.1 0.2492 0.512264 ± 8 0.511669 -9.7

MI-16* 11.03 25.9 80.0 0.1957 0.512189 ± 7 0.511721 -8.7

MI-18 1.45 53.5 140.5 0.2230 0.512285 ± 10 0.511736 -8.4

Ait ou Nebgui section 

AN-1* 8.64 32.7 97.7 0.2025 0.512182 ± 7 0.511697 -9.2

AN-2 * 6.23 26.8 88.1 0.1839 0.512252 ± 10 0.511813 -6.9

AN-3 3.59 45.7 110.3 0.2506 0.512401 ± 12 0.511802 -7.1

AN-4B 2.36 28.5 102.7 0.1679 0.512205 ± 9 0.511804 -7.1

AN-4M* 6.39 27.9 106.2 0.1589 0.512132 ± 6 0.511752 -8.1

AN-4T 3.98 26.3 68.5 0.2318 0.512401 ± 11 0.511847 -6.3

AN-5* 2.23 37.4 72.8 0.3103 0.512772 ± 10 0.512031 -2.7

AN-6* 8.53 33.1 78.1 0.2558 0.512543 ± 9 0.511931 -4.6

AN-8* 7.01 23.4 73.0 0.1941 0.512366 ± 10 0.511902 -5.2

AN-8a* 6.01 23.6 81.1 0.1761 0.512148 ± 7  0.511727 -8.6

AN-9T 2.05 28.9 86.6 0.2015 0.512229 ± 10 0.511748 -8.2

AN-10* 8.10 30.5 90.2 0.2044 0.512203 ± 8 0.511715 -8.8
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Sample   
Weight

(mg)  

Sm   

(ppm)

Nd   

(ppm)

147Sm/
144Nd

    143Nd/144Nd

143Nd/144Nd

 (365  M a)

εNd      

(365  M a)

AN-11 3.80 26.3 97.5 0.1629 0.512138 ± 10 0.511749 -8.2

AN-12B* 3.44 20.9 96.9 0.1307 0.512050 ± 9 0.511738 -8.4

AN-12T* 3.62 37.5 115.2 0.1970 0.512221 ± 10 0.511750 -8.2

AN-12T-1 1.13 45.9 173.4 0.1598 0.512111 ± 10 0.511729 -8.6

AN-12T-2* 1.61 41.2 153.9 0.1618 0.512140 ± 9 0.511754 -8.1

AN-13B 1.90 154.7 501.0 0.1867 0.512181 ± 10 0.511735 -8.5

AN-14 1.86 78.9 272.0 0.1753 0.512137 ± 10 0.511718 -8.8

Lahmida section

LH-5* 8.43 18.9 44.2 0.2588 0.512313 ± 12 0.511694 -9.2

LH-6* 9.15 24.3 83.3 0.1760 0.512134 ± 8 0.511714 -8.9

LH-7* 12.41 31.7 65.9 0.2906 0.512422 ± 9 0.511727 -8.6

LH-8* 1.03 34.3 78.1 0.2655 0.512481 ± 17 0.511846 -6.3

LH-9* 6.08 37.6 74.7 0.3041 0.512586 ± 10 0.511859 -6.0

LH-10* 11.46 24.2 55.1 0.2650 0.512335 ± 8 0.511701 -9.1

LH-11 3.11 33.7 43.5 0.4683 0.512806 ± 10 0.511687 -9.4

LH-12* 2.71 27.0 31.7 0.5153 0.512927 ± 9 0.511695 -9.2

LH-13* 9.02 29.4 86.4 0.2058 0.512281 ± 10 0.511789 -7.4

LH-14 6.80 24.1 28.9 0.5051 0.512898 ± 9 0.511691 -9.3

LH-18 1.14 59.2 143.9 0.2485 0.512226 ± 10 0.511632 -10.5

LH-19 1.20 49.1 77.4 0.3838 0.512659 ± 10 0.511741 -8.3

LH-20 2.25 24.1 32.5 0.4494 0.512648 ± 11 0.511574 -11.6

LH-21 2.12 17.7 25.5 0.4205 0.512619 ± 11 0.511614 -10.8

LH-22 2.00 18.3 37.5 0.2947 0.512403 ± 11 0.511698 -9.2

LH-23 3.68 19.4 59.6 0.1972 0.512274 ± 11 0.511803 -7.1

LH-24 3.89 25.0 59.6 0.2531 0.512219 ± 11 0.511614 -10.8

LH-25 2.36 41.9 83.1 0.3050 0.512411 ± 10 0.511682 -9.5

LH-26 2.86 23.3 57.9 0.2429 0.512308 ± 10 0.511728 -8.6

LH-34* 4.38 37.6 69.1 0.3294 0.512473 ± 8 0.511685 -9.4

LH-38 11.51 66.1 139.8 0.2856 0.512422 ± 12 0.511740 -8.4

LH-39* 5.91 27.7 34.7 0.4821 0.512813 ± 8 0.511661 -9.9

LH-40* 3.79 75.5 225.9 0.2021 0.512256 ± 6 0.511773 -7.7

LH-43 6.26 55.6 143.0 0.2348 0.512303 ± 11 0.511742 -8.3

LH-44 4.75 33.1 79.4 0.2518 0.512317 ± 13 0.511716 -8.8

LH-47 6.60 38.8 91.4 0.2566 0.512294 ± 10 0.511681 -9.5

LH-48* 2.68 28.7 50.6 0.3428 0.512531 ± 13 0.511712 -8.9

LH-49 4.69 38.8 63.1 0.3718 0.512539 ± 10 0.511650 -10.1

LH-50 1.76 23.7 40.2 0.3562 0.512494 ± 11 0.511643 -10.3

LH-51 1.85 26.5 50.8 0.3156 0.512413 ± 11 0.511659 -9.9

LH-52 7.40 37.6 74.3 0.3056 0.512387 ± 10 0.511657 -10.0

LH-56* 7.53 67.7 162.0 0.2528 0.512344 ± 9 0.511740 -8.4

other locations in the Anti-Atlas and Algeria

AA-3B 6.29 9.0 31.2 0.1753 0.512091 ±  10 0.511672 -9.7

AS-2* 7.19 76.1 221.4 0.2079 0.512119  ± 9 0.511623 -10.6
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Sample   
Weight

(mg)  

Sm   

(ppm)

Nd   

(ppm)

147Sm/
144Nd

    143Nd/144Nd

143Nd/144Nd

 (365  M a)

εNd      

(365  M a)

AS-3* 10.64 26.1 91.2 0.1733 0.512119  ± 7 0.511705 -9.0

AZ-12 3.20 12.1 29.9 0.2440 0.512251 ± 10 0.511668 -9.8

BF-1 2.18 48.0 114.9 0.2525 0.512296 ± 9 0.511692 -9.3

BF-2* 6.45 29.6 81.0 0.2211 0.512220 ± 9 0.511691 -9.3

BF-3 2.62 42.3 94.6 0.2701 0.512197 ± 15 0.511552 -12.0

BI-1T 2.72 41.0 76.1 0.3255 0.512526 ± 11 0.511748 -8.2

BI-2B* 8.13 39.8 101.8 0.2363 0.512286 ± 10 0.511721 -8.7

BI-2T* 4.91 47.4 138.9 0.2065 0.512256 ± 7 0.511762 -7.9

BI-B/3 3.53 26.1 49.5 0.3185 0.512411 ± 22 0.511650 -10.1

EL-01* 4.82 42.3 123.8 0.2065 0.512176 ± 9 0.511682 -9.5

ER-1T* 8.19 22.6 43.3 0.3151 0.512508 ± 10 0.511755 -8.1

ER-2B* 6.15 30.3 77.9 0.2355 0.512316 ± 9 0.511753 -8.1

ER-2T 2.25 30.6 46.8 0.3948 0.512582 ± 13 0.511639 -10.3

ER-3B* 4.09 51.3 105.4 0.2944 0.512395 ± 11 0.511691 -9.3

HL-2B* 9.01 8.3 24.8 0.2033 0.512120  ± 9 0.511634 -10.4

HL-2T* 2.74 58.1 176.7 0.1987 0.512235 ± 8 0.511760 -8.0

IH-1B 6.55 26.2 73.5 0.2155 0.512231 ± 11 0.511715 -8.8

IH-2B* 5.32 18.1 57.0 0.1919 0.512225 ± 8 0.511766 -7.8

IN-8 2.94 38.6 65.0 0.3594 0.512644 ± 12 0.511785 -7.5

IT-4B 4.45 24.0 79.2 0.1836 0.512222 ± 11 0.511783 -7.5

JR-1* 7.80 24.8 83.8 0.1791 0.512069 ± 6 0.511641 -10.3

JT-20 3.18 41.4 131.1 0.1908 0.512134 ± 10 0.511678 -9.6

MM-4B 3.62 27.2 70.8 0.2327 0.512257 ± 12 0.511701 -9.1

OC-II-39 2.16 26.7 49.8 0.3240 0.512426 ± 10 0.511651 -10.1

OJ-A 3.55 24.3 57.4 0.2562 0.512231 ± 10 0.511618 -10.7

OJ-B 2.30 25.2 61.1 0.2495 0.512251 ± 10 0.511654 -10.0

OJ-C 2.77 19.5 49.4 0.2387 0.512246 ± 10 0.511675 -9.6

OH-1 5.89 16.6 40.5 0.2476 0.512241 ± 11 0.511649 -10.1

OT-19 1.41 36.3 131.0 0.1675 0.512115 ± 10 0.511715 -8.8

OT-23 0.90 60.9 165.7 0.2222 0.512220 ± 10 0.511689 -9.4

RH-5B 3.20 24.1 40.4 0.3614 0.512537 ± 13 0.511674 -9.6

RH-5et* 5.16 25.1 45.6 0.3332 0.512495 ± 8 0.511699 -9.2

TH-2* 7.13 34.7 70.5 0.2977 0.512309 ± 7 0.511598 -11.1

TH-4* 7.45 40.3 137.5 0.1770 0.512148 ± 8 0.511725 -8.6

TM-7T* 2.87 38.9 76.2 0.3085 0.512421 ± 9 0.511684 -9.4

  Mrirt section 

MR-96* 5.08 38.1 133.0 0.1733 0.512303 ± 7 0.511889 -5.4

MR-97* 9.10 33.0 132.7 0.1504 0.512326 ± 8 0.511967 -3.9

MR-98* 7.94 48.1 153.0 0.1899 0.512491 ± 8 0.512037 -2.6

MR-99* 7.41 32.6 112.6 0.1751 0.512130 ± 12 0.511675 -8.9

MR-0* 6.62 33.8 115.9 0.1760 0.512128 ± 7 0.511708 -9.0

MR-1T 2.61 23.7 96.8 0.1480 0.512085 ± 10 0.511731 -8.5

MR-2B 1.79 40.6 131.5 0.1866 0.512137 ± 15 0.511691 -9.3

MR-2T 2.27 11.9 57.8 0.1242 0.512024 ± 10 0.511727 -8.6
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Sample   
Weight

(mg)  

Sm   

(ppm)

Nd   

(ppm)

147Sm/
144Nd

    143Nd/144Nd

143Nd/144Nd

 (365  M a)

εNd      

(365  M a)

MR-3B* 8.28 27.1 102.4 0.1598 0.512110 ± 8 0.511728 -8.6

MR-3M* 3.89 29.4 120.7 0.1475 0.512084 ± 12 0.511731 -8.5

MR-3T* 9.12 41.9 124.6 0.2034 0.512217 ± 8 0.511731 -8.5

MR-4A* 8.67 68.5 158.9 0.2606 0.512311 ± 9 0.511688 -9.4

MR-4B* 4.36 55.5 136.3 0.2459 0.512300 ± 7 0.511713 -8.9

MR-4C* 8.27 41.6 122.9 0.2046 0.512216 ± 8 0.511727 -8.6

MR-5B* 5.78 50.5 198.4 0.1534 0.512079 ± 9 0.511712 -8.9

MR-5B2* 5.37 59.8 235.2 0.1539 0.512073 ± 12 0.511705 -9.0

MR-5T* 6.06 33.6 140.6 0.1444 0.512053 ± 9 0.511708 -9.0

southern Poland 

DZ-2B 6.19 31.4 112.3 0.1689 0.512417 ± 12 0.512013 -3.0

DZ-22 9.93 35.6 135.4 0.1592 0.512293 ± 11 0.512290 -5.0

KA-1 1.48 55.1 234.4 0.1422 0.512103 ± 9 0.511763 -7.9

KA-2 1.57 61.8 273.4 0.1366 0.512090 ± 10 0.511764 -7.9

KA-5 1.55 77.1 313.8 0.1485 0.512072 ± 10 0.511992 -8.8

KA-6 1.65 70.0 283.6 0.1492 0.512117 ± 9 0.512037 -7.9

KA-7 1.45 77.8 295.7 0.1591 0.512160 ± 10 0.512183 -7.6

KA-8 4.15 80.6 317.6 0.1534 0.512153 ± 12 0.512150 -7.4

KO-3 1.66 46.2 198.2 0.1410 0.512082 ± 11 0.512074 -8.2

Errors:

For samples measured in Munich: 143Nd/144Nd <1.1×10-5 (2σm, within-run error), external precision <1.9×10-5;

* For samples measured in Giessen: 143Nd/144Nd <0.8×10-5 (2σm, within-run error), external precision <1.6×10-5

Table 4. Sm-Nd and Sr isotopic data of conodont samples from the Coumiac section.

Sample 
Weight

(mg)  

Sm

(ppm)

Nd   

(ppm)

147Sm/
144Nd

  143Nd/144Nd
143Nd/144Nd

(365  M a)

εNd    

 (365  M a)

87Sr/86Sr    

CO-21* 12.78 20.0 65.1 0.1858 0.512172 ± 8 0.511728 -8.6           ---

CO-23d* 7.43 15.8 45.5 0.2098 0.512224 ± 10 0.511723 -8.7 0.708094 ± 11

CO-23e* 7.30 12.6 45.3 0.1682 0.512162 ± 10 0.511760 -8.0 0.708896 ± 14

CO-24a* 6.64 40.3 140.1 0.1739 0.512150 ± 11 0.511734 -8.5 0.708111 ± 8

CO-24b* 7.38 78.7 222.1 0.2143 0.512209 ± 10 0.511697 -9.2 0.708146 ± 10

CO-24d* 5.31 24.4 64.5 0.2285 0.512230 ± 11 0.511684 -9.5 0.708130 ± 12

CO-24e* 3.98 21.6 51.9 0.2517 0.512273 ± 10 0.511671 -9.7 0.708102 ± 19

CO-25a* 3.85 13.8 47.0 0.1779 0.512166 ± 11 0.511741 -8.3 0.708101 ± 10

CO-25b* 4.55 17.1 57.2 0.1804 0.512176 ± 8 0.511745 -8.3 0.708199 ± 33

CO-26c* 7.92 13.3 38.9 0.2074 0.512219 ± 8 0.511724 -8.7           ---

CO-27 9.86 15.3 45.7 0.2026 0.512271 ± 11 0.511787 -7.4 0.708170 ± 12

CO-28a 7.18 10.6 36.9 0.1742 0.512198 ± 13 0.511782 -7.5 0.708134 ± 13
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Sample 
Weight

(mg)  

Sm

(ppm)

Nd   

(ppm)

147Sm/
144Nd

  143Nd/144Nd
143Nd/144Nd

(365  M a)

εNd    

 (365  M a)

87Sr/86Sr    

CO-29a* 6.04 13.7 44.6 0.1852 0.512208 ± 9 0.511766 -7.9 0.708077 ± 9

CO-29d* 5.45 23.0 78.8 0.1762 0.512189 ± 6 0.511768 -7.8 0.708138 ± 11

CO-30a 3.52 18.8 62.2 0.1830 0.512178 ± 11 0.511740 -8.3 0.708082 ± 10

CO-31a 7.91 19.5 57.4 0.2052 0.512260 ± 10 0.511769 -7.8 0.708130 ± 10

CO-31c 6.94 18.8 56.0 0.2032 0.512267 ± 11 0.511781 -7.5 0.708106 ± 11

CO-31e2 8.46 19.7 58.0 0.2052 0.512281 ± 10 0.511790 -7.4 0.708133 ± 10

CO-31f* 7.05 28.5 93.2 0.1847 0.512153 ± 7 0.511711 -8.9 0.708117 ± 9

CO-31g* 3.29 30.0 72.6 0.2497 0.512300 ± 8 0.511703 -9.1 0.708107 ± 10

CO-32a* 1.49 40.0 131.7 0.1837 0.512185 ± 9 0.511746 -8.2 0.708155 ± 9

CO-32b* 3.60 24.0 85.2 0.1705 0.512124 ± 7 0.511717 -8.8 0.708142 ± 19

CO-32d* 7.34 54.2 154.5 0.2122 0.512205 ± 7 0.511697 -9.2 0.708175 ± 7

CO-32f* 3.11 49.4 121.0 0.2466 0.512251 ± 7 0.511661 -9.9 0.708178 ± 10

CO34a* 1.96 32.1 79.3 0.2445 0.512278 ± 10 0.511694 -9.3 0.708150 ± 9

CO-35b 4.22 49.2 129.8 0.2291 0.512233 ± 13 0.511685 -9.4 0.708174 ± 14

CO-35e* 4.16 50.4 114.5 0.2662 0.512314 ± 9 0.511678 -9.6 0.708186 ± 16

CO-36B* 4.00 53.9 119.6 0.2726 0.512318 ± 8 0.511666 -9.8 0.708180 ± 10

CO-36T* 3.14 64.3 151.4 0.2568 0.512289 ± 8 0.511676 -9.6 0.708200 ± 8

CO-37aB 3.54 85.8 202.6 0.2560 0.512291 ± 15 0.511679 -9.5 0.708238 ± 11

CO-37bB* 3.53 27.1 57.6 0.2839 0.512347 ± 9 0.511668 -9.8 0.708161 ± 9

CO-37bT 3.87 47.8 124.6 0.2318 0.512268 ± 16 0.511714 -8.9 0.708176 ± 10

CO-38B* 3.06 41.9 112.1 0.2258 0.512251 ± 9 0.511711 -8.9 0.708161 ± 20

CO-39T* 4.77 90.6 209.0 0.2621 0.512275 ± 8 0.511648 -10.1 0.708197 ± 8

CO-40T 2.18 63.0 153.9 0.2473 0.512282 ± 20 0.511691 -9.2           ---

CO-41 4.48 53.3 123.9 0.2600 0.512340 ± 10 0.511719 -8.8 0.708226 ± 11

CO-43B 3.34 41.8 109.5 0.2308 0.512277 ± 18 0.511725 -8.6 0.708217 ± 10

CO-44* 3.87 44.4 105.9 0.2533 0.512275 ± 8 0.511669 -9.7 0.708191 ± 10

CO-46* 4.48 40.6 98.1 0.2502 0.512275 ± 8 0.511677 -9.6 0.708169 ± 8

CO-47 4.27 45.3 125.4 0.2185 0.512271 ± 10 0.511749 -8.2 0.708210 ± 11

CO-49T 1.73 36.6 91.1 0.2432 0.512255 ± 11 0.511674 -9.6 0.708217 ± 24

CO-51B 3.25 73.5 196.8 0.2258 0.512223 ± 10 0.511683 -9.5 0.708251 ± 21

CO-51T 3.94 30.4 79.0 0.2325 0.512287 ± 10 0.511732 -8.5 0.708230 ± 25

CO-52* 6.67 29.3 70.4 0.2522 0.512321 ± 7 0.511718 -8.8           ---

CO-53* 5.08 35.6 98.3 0.2191 0.512262 ± 8 0.511739 -8.4           ---

CO-56 3.60 49.6 138.6 0.2166 0.512218 ± 10 0.511700 -9.1 0.708260 ± 22

Errors: 

For samples measured in Munich: 143Nd/144Nd <1.1×10-5 (2σm, within-run error), external precision <1.9×10-5;

* For samples measured in Giessen: 143Nd/144Nd <0.8×10-5 (2σm, within-run error), external precision <1.6×10-5

and 87Sr/86Sr < 1.6×10-5 (2σm , within-run error), external precision 2.8×10-5
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Table 5. Sm-Nd and Sr isotopic data of fish remains (shark teeth, placoderms). Placoderm samples are

marked (p).

Sample
Weight

(mg)  

Sm   

(ppm)

Nd   

(ppm)

147Sm/
144Nd

  143Nd/144Nd
143Nd/144Nd

(365  M a)

εNd     

(365  M a)

87Sr/86Sr

CO-24a (p)* 0.90 616.8 2230.0 0.1672 0.512165 ± 8 0.511765 -7.9 ----

CO-35b 0.39 527.4 1288.7 0.2474 0.512206 ± 12 0.511615 -10.8 0.708958 ± 74

CO-37aB 0.62 735.9 1654.2 0.2689 0.512308 ± 12 0.511665 -9.8 ----

CO-37bT 0.48 546.5 1442.3 0.2291 0.512246 ± 16 0.511699 -9.2 0.709499 ± 10

CO-38B* 0.32 638.3 1824.5 0.2115 0.512179 ± 8 0.511673 -9.7 0.709348 ± 16

CO-39T* 0.27 822.5 1957.5 0.2540 0.512258 ± 8 0.511651 -10.1 ----

CO-40T 0.24 876.8 2142.1 0.2475 0.512268 ± 10 0.511676 -9.4 0.709146 ± 25

CO-41 0.50 801.7 1885.9 0.2570 0.512305 ± 11 0.511691 -9.3 0.709128 ± 11

CO-43B 0.56 686.6 1762.9 0.2355 0.512219 ± 19 0.511656 -10.0 0.709085 ± 10

CO-44* 0.30 667.2 1752.6 0.2302 0.512189 ± 8 0.511639 -10.3 0.708859 ± 42

CO-47 0.27 520.0 1312.6 0.2395 0.512229 ± 11 0.511656 -10.0 0.708990 ± 14

CO-49T 0.55 588.3 1464.5 0.2428 0.512223 ± 11 0.511642 -10.3 0.709036 ± 54

CO-51T 0.58 461.6 1234.9 0.2260 0.512215 ± 10 0.511675 -9.6 0.709062 ± 42

MI-4B (p) 6.35 131.4 444.7 0.1787 0.512103 ± 13 0.511676 -9.6 ----

KA-2 0.39 510.1 2320.2 0.1329 0.512073 ± 10 0.511755 -8.1 ----

KA-2 (p) 1.79 419.5 1852.6 0.1369 0.512057 ± 9 0.511729 -8.6 ----

KA-5 1.74 709.3 3016.8 0.1421 0.512055 ± 8 0.511715 -8.8 ----

JT-20 0.56 590.9 1966.9 0.1816 0.512084 ± 11 0.511650 -10.1 ----

EL-01(p) 1.26 160.4 618.0 0.1569 0.512123 ± 15 0.511748 -8.2 ----

BF-1 0.41 492.9 1474.1 0.2022 0.512236 ± 9 0.511753 -8.1 ----

BF-2 (p) 11.58 50.0 128.3 0.2356 0.512276 ± 10 0.512286 -8.9 ----

Errors:

For samples measured in Munich: 143Nd/144Nd <1.1×10-5 (2σm, within-run error), external precision <1.9×10-5;

* For samples measured in Giessen: 143Nd/144Nd <0.8×10-5 (2σm, within-run error), external precision <1.6×10-5

and 87Sr/86Sr < 1.6×10-5 (2σm , within-run error), external precision 2.8×10-5

Table 6. Additional taxonomic, stratigraphic and isotopic (Sm-Nd) data of conodont samples from southern

Poland and Anti-Atlas  provided by Z. Belka, University of Halle.

Sample   Age Taxonomic content
Conodont

 CAI

Sm   

 (ppm)

Nd   

(ppm)

   εNd    

(360  M a)

BK-1 Lower praesulcata bulk 25 12.3 54.5 -3.7

BK-2 Lower expansa bulk 25 15.1 65.1 -7.2

BO-1 anchoralis bulk 1 8.5 38.0 -2.0

BO-2 crenulata bulk 1 15.6 64.2 -4.2

BO-3 crenulata bulk 1 11.4 47.2 -5.2
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Sample   Age Taxonomic content
Conodont

 CAI

Sm   

 (ppm)

Nd   

(ppm)

   εNd    

(360  M a)

BO-4 anchoralis bulk 2 25.0 101.5 -1.8

DU-1 Upper marginifera bulk 2 20.2 90.7 -7.1

GA-1 Lower postera/Upper postera bulk 15 21.2 132.6 -4.4

GA-2/1 Middle expansa palmatolepids 2 10.2 48.1 -5.1

GA-2/2 Middle expansa polignathids 2 14.0 66.3 -5.0

GA-2/3 Middle expansa bispathodids 2 11.4 53.0 -5.4

GA-2/4 Middle expansa bulk 2 9.1 42.4 -5.1

GA-3/1 Lower expansa polignathids 2 40.2 141.0 -4.1

GA-3/2 Lower expansa bulk 2 60.3 220.0 -4.0

HB-3B/1 jamieae ramiforms 4 22.3 70.1 -9.1

HB-3B/2 jamieae icriodids 4 21.2 68.0 -8.9

IS-4B Middle expansa bulk 4 19.3 41.2 -10.8

KA-3/1 Upper crepida palmatolepids 15 57.6 234.2 -9.2

KA-3/2 Upper crepida palmatolepids 15 41.9 170.0 -9.5

KA-4/1 rhomboidea polignathids 15 5.8 25.3 -8.1

KA-4/2 rhomboidea palmatolepids 15 43.8 197.1 -8.2

MI-2B winchelli ancyrodellids 4 185 45.5 -10.1

MI-2B winchelli ramiforms 4 17.3 45.9 -10.2

MS-5B/1 jamieae ramiforms 4 18.6 67.3 -8.6

MS-5B/2 jamieae ramiforms 4 12.4 32.4 -1.0

MS-5B/3 jamieae ancyrodellids 4 22.0 80.9 -8.4

MS-5B/4 jamieae icriodids 4 26.7 97.1 -8.2

OT-29 Upper crepida palmatolepids 4 90.9 245.5 -9.2

PO-1 Upper expansa bulk, basal bodies 25 19.6 954 -3.3

PO-2/1 Lower expansa bulk 25 8.6 34.9 -7.4

PO-2/2 Lower expansa polignathids 25 12.7 49.9 -7.7

PO-2/3 Lower expansa palmatolepids, basal bodies 25 179.0 690.0 -7.5

SO-1 anchoralis bulk 35 66.0 265.1 -3.9

SO-2 anchoralis bulk 35 16.8 72.8 -5.3

ST-1/1 Lower marginifera bulk 2 26.2 95.3 -3.7

ST-1/2 Lower marginifera palmatolepids, basal bodies 2 131.8 466.7 -3.8

ST-1/3 Lower marginifera palmatolepids, basal bodies 2 57.5 213.6 -3.8

TA-8 Upper expansa/Lower praesulcata bispathodids 45 17.2 37.7 -10.1

TG-1 Upper/Uppermost marginifera palmatolepids, basal bodies 1.5-2 107.0 464.7 -7.6

TG-1M Lower trachytera bulk, basal bodies 1.5-2 184.4 816.0 -6.9

TG-2 Lower trachytera palmatolepids, basal bodies 1.5-2 92.2 408.0 -7.6

TG-4 Lower trachytera palmatolepids, basal bodies 1.5-2 67.4 290.4 -7.2

TG-5T Lower trachytera palmatolepids, basal bodies 1.5-2 106.2 464.8 -7.1

TG-6B Upper trachytera bulk, basal bodies 1.5-2 71.8 293.2 -4.6

TG-7 Upper trachytera/Lower postera palmatolepids, basal bodies 1.5-2 84.5 378.2 -6.8

TG-9 Lower expansa bulk, basal bodies 1.5-2 97.8 437.7 -6.2

TG-10 Lower expansa palmatolepids, basal bodies 1.5-2 175.3 764.0 -6.8

TG-11 Lower expansa palmatolepids, basal bodies 1.5-2 162.7 704.1 -6.3

TG-13 Lower/Middle expansa bulk, basal bodies 1.5-2 75.5 329.6 -6.3

TG-25/1 anchoralis (?) scaliognathids 15 35.0 138.6 -1.6

TG-25/2 anchoralis (?) polignathids 15 24.7 97.2 -1.8
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Sample   Age Taxonomic content
Conodont

 CAI

Sm   

 (ppm)

Nd   

(ppm)

   εNd    

(360  M a)

TG-25/3 anchoralis (?) polignathids 15 31.3 125.3 -1.6

TG-26/1 Lower praesulcata palmatolepids 1.5-2 25.3 103.2 -3.3

TG-26/2 Lower praesulcata bulk 1.5-2 13.6 56.7 -3.5

TG-26/3 Lower praesulcata bispathodids 1.5-2 15.6 62.7 -3.3

TG-26/4 Lower praesulcata bispathodids 1.5-2 16.0 63.7 -3.0

TM-7B/1 winchelli icriodids 4 24.2 62.1 -6.1

TM-7B/2 winchelli ancyrodellids 4 31.9 100.3 -5.6

TT-4T Lower expansa bispathodids 4 14.0 26.3 -10.5

WB-1 Middle expansa bulk 25 6.6 27.1 -7.1

Table 7. Results of ICP-MS analysis of selected conodont samples. Concentrations are given in ppm.

         Sample 

Element

AN-   

  8a

  AN-

12T-1

Coum

28a

Coum

31e2

 K-M-

Base
MI-3T

 ΜΙ−
12

MI-18 525-27 525-41

Na 5604 4823 5629 3711 10264 4350 5144 6737 7287 7750

Mg 369 461 471 149 431 463 501 390 390 638

Al 2152 1958 953 1502 744 3543 765 770 713 1393

K 260 230 278 733 195 242 82 166 176 145

Sc <0.00 <0.001 0.07 <0.001 3 0.09 0.20 0.35 0.07 0.69

Cr 3 3 3 1 1 2 2 2 3 9

Mn 9 15 29 27 8 37 566 1771 37 352

Fe 3145 4055 2855 2784 1502 2477 2349 3138 1676 3129

Co 0.33 0.67 0.98 0.40 1 3 3 3 <0.001 1

Ni 14 8 9 <0.001 1 81 <0.001 24 <0.001 <0.001

Cu <0.00 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Zn 785 <0.001 <0.001 <0.001 <0.001 82 <0.001 <0.001 <0.001 <0.001

As 30 35 46 12 3 14 3 8 <0.001 8

Sr 5106 5568 4714 3494 5850 4544 5842 5615 6313 5912

Y 57 64 80 73 217 52 54 130 204 174

Cd 7 <0.001 0.53 <0.001 0.69 0.55 0.47 0.14 <0.001 <0.001

Ba <0.00 304 <0.001 <0.001 136 742 294 <0.001 2412 401

La 17 25 18 13 82 16 17 48 19 23

Ce 63 91 44 30 185 59 65 813 63 154

Pr 13 22 11 8 50 12 14 26 16 18

Nd 72 130 58 48 242 65 80 145 94 98

Sm 21 34 17 16 58 19 22 57 54 46

Eu 4 7 4 4 12 5 5 16 17 13

Gd 21 31 18 20 56 18 19 68 87 61

Tb 3 4 2 3 7 2 2 7 12 8

Dy 11 16 13 13 36 10 10 30 50 40

Ho 2 2 2 2 6 2 2 4 7 6

Er 3 4 5 4 13 3 3 7 13 11
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         Sample 

Element

AN-   

  8a

  AN-

12T-1

Coum

28a

Coum

31e2

 K-M-

Base
MI-3T

 ΜΙ−
12

MI-18 525-27 525-41

Tm 0.30 0.32 0.45 0.44 1 0.27 0.31 0.59 1 1

Yb 1 1 2 2 6 1 1 2 5 4

Lu 0.11 0.11 0.21 0.20 0.69 0.12 0.14 0.25 0.44 0.41

Pb 23 21 <0.001 <0.001 10 <0.001 <0.001 <0.001 <0.001 <0.001

Th 6 16 2 1 6 4 6 9 7 15

U 15 61 2 2 7 36 4 2 6 2
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