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Introduction

The goal of this thesis is the study of finite-dimensional representations of so-called maximal compact sub-
algebras € (A) (R) of split-real Kac-Moody algebras g (A4) (R), where I mostly restrict myself to the situation
that A is a simply-laced generalized Cartan matrix of indefinite type.

The structure and representation theory of finite-dimensional compact Lie algebras ¢ is well-understood
for quite some time now and is treated in many standard text books both on the under-graduate and graduate
level ([H72, [SO7, [HN12]). Any finite-dimensional compact Lie algebra is reductive and any simple compact
Lie algebra is the compact real form of a complex simple Lie algebra which provides a strong link between the
two types of Lie algebras. Furthermore, simple split-real Lie algebras of finite dimension possess a maximal
compact subalgebra that is given as the fixed-point set of the Cartan-Chevalley involution, the most standard
example is probably so (n,R) as the maximal compact subalgebra of sl (n,R). The finite dimensional simple
Lie algebras over C and similarly the split-real simple Lie algebras are classified by Cartan matrices A or
equivalently by Dynkin diagrams D (A) and according to Serre’s construction (cp. [S65]), a simple complex
Lie algebra can be uniquely recovered from its Cartan matrix A. This way the Lie algebra is given by a
presentation in form of generators and relations that are encoded in the Cartan matrix. If one relaxes the
conditions on the matrix A in a certain way and performs a similar construction one obtains a Kac-Moody-
algebra (cp. [K90]) denoted by g(A) (K) as the construction can be performed over any field K. These Lie



algebras are always split in the sense that they contain a maximal abelian subalgebra whose adjoint action on
g (4) (K) is diagonalizable. As Kac-Moody-algebras possess a natural generalization of the Cartan-Chevalley
involution w, one can introduce the maximal compact subalgebra € (A) of g (A) (R) as the fixed point set of
w in analogy to the classical situation.

In contrast to the classical situation, neither maximal compact subalgebras of split-real Kac-Moody alge-
bras nor their complexification are of Kac-Moody type if A is not a Cartan matrix. This can be seen from
the fact that these Lie algebras admit finite-dimensional representations (see for instance [BHP06l, [DKNOG6),
HKL15]) despite being infinite-dimensional and in a lot of cases also perfect. Kac-Moody-algebras of irre-
ducible indefinite type on the other hand are essentially simple up to a finite-dimensional center contained in
their Cartan subalgebra and therefore cannot admit finite-dimensional representations. Very little is known
about the structure of these maximal compact subalgebras apart from a presentation result going back to
[B&9| and apart from a few examples, next to nothing is known about their representation theory.

The first nontrivial finite-dimensional representations were discovered in physics, where the finite dimen-
sional representations of € (F19) and € (Eg) play a crucial role for certain unified theories of gravity. In total,
there are four different representations known for € (Eyg), labeled S 1,83, 83 and Sz by their “spin”. Of these,
S1 and Sz were discovered first (see [BHP06, DKNOG]) as they arise as hidden symmetrles in the fermionic
sector of 1'1-dimensional super gravity. The discovery of such a hidden symmetry sparked additional research
concerning the representation theory of € (Ejo) which among other results produced the representations S%
and Sy (cp. [KN13, KN17]).

The representation S 1 has been studied mathematically in [HKLI5] for the first time, where its definition
was also extended to 1nclude all €(A) for A a symmetrizable generalized Cartan matrix. The representations
S 3, S 5 and § z build on these so-called generalized spin representations and a coordinate-free version of S: 3,
S 3 was given in [LK18] that goes back to their description in [KN13]. So far, such a description of Sz was
not available from a mathematical perspective.

As one my results I provide a unified description of the representations S 3, 8% and S 1 in terms of S% and
the Weyl group W (A). The representation is at first only given on the level of Berman generators (named
after the author of [B89]) of ¢ (A4). Furthermore, I study the lift of these representations to the group level,
thus linking [KN13| [KN17] to [GHKW17| which might be helpful for the scientific community as the two are
rather different in language. Just as € (A) (R) is defined as the fixed-point set of the Chevalley involution on
g (A) (R) one defines the maximal compact subgroup K(A) (R) as the fixed-point set of its lift to the Kac-
Moody group G(A) (R). Similar to the classical situation, it is a priori unclear if a given representation of
t(A4) (R) lifts to K(A) (R), as the fundamental group of K(A) (R) generally is nontrivial ([H20, HK2x]). M
result in this direction is that these representations do not lift to the maximal compact subgroup K(A) (R)
but only to its so-called spin-cover Spin(A) introduced in [GHKWI17] (this cover is simply connected in the
irreducible simply-laced case by [H20, HK2x| and [GHKW17]). This justifies the term spin representations.

Theorem A. Let A € Z"*™ be a simply-laced generalized Cartan matriz, let € (A) (R) be the mazimal compact
subalgebra of type A, let h* denote the dual Cartan subalgebra of g (A) (R) and let W(A) denote the Weyl
group of type A. Furthermore let n, : W(A) — End (Sym"™ (h*)) denote the representation that is induced by
the standard representation on b* and let p : €(A) (R) — End(C®) denote a generalized spin representation
as in [HKLI15]. Then the following assignment on the level of Berman generators Xi,...,X, of €(4) (R)
extends to a homomorphism of Lie algebras o,, : € (A) (R) — End(Sym" (h*) ® C?):

70 () = (1, (51 = 310) 29 (X)) forn = 1.2
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on (X;) = (nn (si) — %Id + f (ai)> ®2p(X;) form =3,

where f(«;) is a rank 1 matriz described in more detail in thm. . All these representations lift to the
group Spin(A) as described in [GHKW17)], while they do not lift to K(A) (R), the mazimal compact subgroup

of G (A) (R).

Another important part of this work is my study of (ir-)reducibility of these representations and some
of their tensor products. The properties of the image of the generalized spin representation S% have been
studied to great extent in [HKL15] and in the cases that I care about the most, these images always form a
semi-simple Lie algebra so that it is always possible to choose & 1 to be irreducible.

Theorem B. Let 81 be an irreducible generalized spin representation of €(A), let S21L+1 be the higher spin
representations descmbed in theorem@ and let A be reqular and simply-laced. Then Ss is irreducible. The

module Sg always splits into two orthogonal pieces S% x~ 8% P S%, where the properties of S% may vary from

case to case. gg is irreducible if Sym® (b*) has exactly two W (A)-invariant sub-modules, one of which will
always be the trivial W(A)-module.

Towards the properties of Sym? (h*) as a W (A)-module there exist examples in both directions even in
the situation of classical A. For A = A,_; the W(A)-module Sym? (h*) decomposes into more than two
factors, while the above condition is satisfied for A = F,, and n = 6,7,8 and one can show that this holds
for F1¢ as well by direct computation.

Corollary. The ¢ (E,,)-modules S%, S% and 55 forn € {6,7,8,10} are irreducible.
Towards tensor products I found the following

Theorem C. Assume that Sé, S% and gﬁ are irreducible € (A)-modules. Then S% ® S% and gg ® 8% are
irreducible. In particular, this holds for A = E,, with n € {6,7,8,10}.

It is a curious feature of these representations that their tensor products can again be irreducible as
such a behavior is rarely witnessed for semi-simple Lie algebras of finite dimension. In connection with
the representations’ kernels, the irreducible tensor products can provide new ideals of £(A) and therefore
provide a few more sporadic glimpses at its structure. For instance, I will show that the kernels of the
tensor products are precisely the intersections of the individual kernels. The original plan for this project
however was to find a system behind the representations Sz, which I did, that allows for a construction of
infinitely many independent finite-dimensional representations, which I failed at. The search for this sequence
of representations is connected to the hope that the corresponding kernels become more and more faithful
such that one can recover £ (A) from these representations (this would also show that £(A) is residually finite-
dimensional, as of yet it is unclear if this property holds for any € (A) of indefinite type). So far, this goal
could only be achieved for A of untwisted affine type (cp. [KKLN21]).

The text is structured as follows. I will start with a collection of standard results from Kac-Moody-
theory that are needed throughout the remainder. In section I will start with an example, the ¢(E,)-
series, and show that there exists a connection to Slodowy’s theory of gim-Lie algebras (a shorthand for
Generalized-Intersection-Matrix-Lie-algebras introduced in [S84]) that goes in the other direction than the one
in [S84], B89] I will explicitly derive a description of € (E,,) (C) that is adapted to its natural so (n, (C) algebra
(cp. prop. and show that it can be realized as the quotient of a certain gim-algebra (prop. [2.7). Such
a result can be expected to hold for other diagrams D(A) as well because the involved computatlons are not
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very specific to F,, but so far, I did not see an easy way to predict the resulting structure universally. Hence,
the structure theory of £(A) is connected to the structure theory of gim-Lie algebras which unfortunately is
not well-understood either.

In section [3|I will review the representations & L S 3, S 3 which are already known in mathematics, where
I will give a more unified description for Sz and S; in thm. than the one in [LK18§]. In section
I will translate the results from [KN13| [KN17] concerning Sz into a more mathematical and in particular
coordinate-free statement, where the main result is thm.

In section ]I connect these results to [GHKW17] by showing that all these representations lift to the spin
cover Spin(A) of the maximal compact subgroup K(A) < G(A). After reviewing only the most essential
parts of [GHKW17] I do this in two steps by first showing that the representations S 3, Sz lift to Spin(A)
but not to K(A) in prop. E and showing secondly that the representation S% lifts to Spin(A) as well but
not to K(A). T use this lift to the group level to deduce a parametrization result about the representation
matrices in props. and

Section [5| is again devoted to the example € (Ej). I reproduce the decompositions of S% and S% w.r.t.
the natural so (10)-subalgebra of £ (F1o) that were first mentioned in [KN13]. The main results are prop. [5.5
and thm. I translate the technical insight gained from this example into the more general statement
that S1 and Sz are € (A)-irreducible, whenever A is simply-laced, indecomposable and regular (cp. . As
mentioned in theorem |E|, one can also see in general that S 5 contains an invariant sub-module isomorphic

to S1 and that under the previous conditions on A the module S 5 splits into two invariant pieces S @ S 1

(cp. 15.10). There, I also show by examples that the (ir-)reducibility of gg depends on the case. I establish

in thm. that gg is irreducible for the case of € (Eg) (cp. also )
In section [6| I start with the description of a computer-based analysis of the tensor products S 3 ® S%

and 8z ® A’ (8%) of the € (E10)-modules S1 and Ss. Both these modules turn out to be irreducible and I

explain this fact theoretically for S 30 S 1 and S: 5 ® S 1 whenever all factors are irreducible and S 1 satisfies
certain properties in prop. [6.7

I conclude with sectionwhich treats the case t (A) for A of untwisted affine type. This is the only example
where an infinite series of f.d. representations is known (cp. prop. [7.20). This series of representations is in
fact enough to recover £(A) as it acts faithfully on the projective limit of these modules (cp. prop. [7.23).
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1 PRELIMINARIES

Part 1
Kac-Moody algebras, their involutory
subalgebras and the F,-series

If not specified otherwise, K always denotes the field of real or complex numbers. All results that are not
specific to R or C should also be true for any field of characteristic 0.

1 Preliminaries

In this section I will fix the notation concerning Kac-Moody algebras g and cite the standard results that I
will need later on. I will use the same notation as [K90]. In subsection I will review Berman’s results
concerning presentations of involutory subalgebras of Kac-Moody algebras where I also provide the definition
of a maximal compact subalgebra £ of g and cite the explicit formulas concerning their presentation from
[HKL15], as [B89] does not provide them explicitly for this particular case of involutory subalgebras. In section
[[-3]I will collect some results on highest weight representations of symmetrizable Kac-Moody algebras.

1.1 Kac-Moody algebras

Kac-Moody algebras can be constructed through a generalization of Serre’s construction of finite-dimensional
simple split Lie algebras over K. There one starts with a Cartan matrix A to which one associates a root
system A, a coroot system AY and a (split) Cartan subalgebra hx = spangAY in a natural way as the
(reduced, irreducible, crystallographic) root systems are classified by Cartan matrices. Then one introduces
the Chevalley generators ey, ..., e,, f1,..., fn and constructs the Lie algebra from generators and relations,
where the relations are pairwise and depend on the entries of A. A similar approach works for Kac-Moody
algebras but the resulting object can have quite different properties if A is not a Cartan matrix. Also, some
parts of the construction become more complicated. I start with recalling the standard definitions from [K90].
First of all, one needs to fix how one wants to deviate from Cartan matrices.

Definition 1.1. (Generalized Cartan matrixEI)
A matrix A = (a;5)"._, € Z™ " is called a generalized Cartan matrix (GCM) if Vi # j € {1,...,n}

1,j=1
ai; = 2
A5 S 0
a;5 = 0 & aj; = 0.

All Cartan matrices associated to the root system of a finite-dimensional semi-simple complex Lie algebra
satisfy the above axioms but the converse is not true. If A is a Cartan matrix, there exists a natural choice
of root system and Cartan subalgebra h of g. In the Kac-Moody setting one works with realizations instead,
where the following terminology is fairly standard (cp. [K90, sec. 1.1]).

Definition 1.2. (RealizatiorEb
Let A € K" ™ be of rank | < n and let h be a K-vector space of dimension 2n — [. For subsets I1 =

LCompare [K90] sec. 1.1], especially equations (C1-3).
2Compare equations (1.1.1-3) in [K90} sec. 1.1].



1 PRELIMINARIES 1.1 Kac-Moody algebras

{aq,...,an} Ch* and IIV = {af, ..., } the triple (h,II,IIV) is called a (K-)realization of A if IT and II
are linearly independent and such that

aj (o)) =a;; Vi, j € {1,...,n}.

One calls IT the simple roots and IIV the simple coroots. Two realizations (1, 11y, 1Y) and (b2, s, I1Y)
are called isomorphic if there exists an isomorphism of K-vector spaces ¢ : h; — b such that ¢ (IT}) = IIy
and ¢* : II; — II; such that ¢* (Ily) = Iy, where ¢* : b5 — b} denotes the dual map to .

A matrix A admits a unique-up-to-isomorphism realization (b, II, ITV) and the realizations of two matrices
A; and Aj are isomorphic if and only if A5 can be obtained from A; by a permutation of the index set (cp.
[K90, prop. 1.1]). A GCM A and correspondingly any of its realizations is called decomposable if it can be
A 0

brought into block diagonal form A =
0 A,

) with nontrivial A;, A5 by a permutation of the index set.
Definition 1.3. (Root lattice, height)ﬂ

Let (h,II,IIV) be a realization of a GCM A. One calls Q(A) := spanyIl the root lattice and QV(4) =
spanyIIV the coroot lattice. For a = Y " | k;a; € Q(A) one calls ht (o) := > | k; the height of a. One
imposes a partial order < on Q(A) via a < § if and only if 8 — a € Q4 (A), where Q4 =) " | Na,.

2(a|B)
(ala)
IT and (-|-) is a positive definite bilinear form on spangIl. For GCMs one drops the requirement of positive
definiteness but even then it is not always the case that there exists a bilinear form s.t. «; (o)) = %I;;))
This property is tied to the existence of a so-called symmetrization of A.

The entries of any Cartan matrix A are of the form where o and [ range over the simple roots

Definition 1.4. (Symmetrizabilityﬁ)

Let A = (a,ij)zjzl € Z"*™ be a GCM. A is called symmetrizable if there exists a regular diagonal matrix
D and a symmetric matrix B such that A = DB. The pair of matrices D and B is called a symmetrization
of A. The GCM A is called simply-laced if a;; € {0, —1} for all i # j.

One can show that it is always possible to achieve a symmetrization with B rational and D = diag (1, ...,&,)
such that ¢; > 0 for all i = 1,...,n. If A is indecomposable, then D is uniquely determined up to a con-
stant factor (cp. [K90l sec. 2.3]). I will now provide the definition of a Kac-Moody algebra associated to a
symmetrizable GCM A that I will use in the entire text. The definition I use is closer to [M18| def. 3.17]
than the one in [K90, sec. 1.2-3] but for symmetrizable A they coincide due to the Gabber-Kac-theorem (cp.
[GK&]1], also see [K90, thm. 9.11]).

Definition 1.5. (Kac-Moody algebra)
Let A € Z™*™ be a symmetrizable GCM with K-realization (h,II,IIV). Let g (A) (K) be the Lie algebra on
generators h U {e1,...,en, f1,-.., fn} subject to the relations

[hvh/} =0, [%fj] = 51’]’0%\‘/7
[h,e;] = a; (h)ei, [h, fi] = —ai (h) fi,

(
ad (e;)' " (ej) =0 =ad (fi)' =" (f;)
Vh,h €phand Vi,j€{1,...,n}. One calls g (A) (K) the split Kac-Moody algebra over K of type A.

3These definitions are also as in [K90] sec. 1.1].
4Compare [K90, eq. (2.1.1)].



1.1 Kac-Moody algebras 1 PRELIMINARIES

Now let n; be the subalgebra of g(A) (K) that is generated by eg,...,e, and let n_ be the subalgebra
generated by fi,..., fn. Then one has the following triangular decomposition as vector spaces (cp. [K90,
thm. 1.2 and sec. 1.3]):

g(A)(K)=n_@bhan,. 1)

This triangular decomposition induces a decomposition of the universal enveloping algebraﬂ
U(g(A)(K)) =Um_)Ub)U (ny)
according to the PBW-theorem (cp. [B36]).

Definition 1.6. (Root spaces)ﬂ

For a split Kac-Moody-algebra g = g(A4) (K) and o € b set g, = {x €g| [h,z]=a(h)zVhebh}. If
go # {0} and « # 0 one calls a a root, g, a root space and mult («) := dim g, the multiplicity of a. The
set of roots is denoted by A and due to it decomposes into a disjoint union A = A_ U A, C @ where
Ay ={a € A|a 2 0}. The vector space decomposition

g:@ga

aEA
is referred to as the root space decomposition of g.

Proposition 1.7. (Chevalley involution)
There exists an involutive automorphism w of g (A) (K) that is determined by

w(e)=—fi, w(fi)=—e€;, w(h)=—hVheh.
It is called the Chevalley involution and it satisfies w (go) = g—o for all o € A.

Proof. This statement can be found at the end of [K90, sec. 1.3], where it arises as a direct consequence of
[K90, thm. 1.2]. O

Definition 1.8. (Precursor of the invariant bilinear formEb
Let A € Z™*™ be a symmetrizable GCM with symmetrization A = DB, where D = diag(e1,...,e,) is
st. g >0foralli=1,...,n and let (h,I,ITV) be a realization of A according to def. Set b’ =
spang {ay,...,a’} and let h” be a complementary subspace of )’ C . Fix a symmetric K-bilinear form (-|-)
on h by
(h|alv) = oy (h) e; Yh €, (h1|h2) =0Vhy, hy € h//. (2)
According to [K90, lem. 2.1], (+|-) is non-degenerate on all of h and its kernel on the restriction to b’ is
equal to c :={h € h|la; (h) =0Vi=1,...,n}, which is equal to the center of g (cp. [K90, prop. 1.6]). Now

(+|*) induces an isomorphism v : h — h* which allows to induce a bilinear form on h*, also denoted by (:|-).
One collects the following formulas (cp. [K90, eqgs. (2.1.4-6)]):

V(hl) (hg) = (h1|h2) Vhy,hy €4,

v(a)) = e, (aﬂa}’) = bijeicj, (aglay) =bi Vi, j=1,...,n,

where b;; denote the entries of B in A’s symmetrization A = DB.

5The universal enveloping algebra (U (g) , ¢) consists of a unital associative algebra U (g) together with a map ¢ : g — U (g)
satisfying ¢ ([z,y]) = ¢(z) - ¢(y) — ¢(y) - ¢(z) for all z,y € g. It is universal, meaning that for all unital associative algebras
A and 9 : g — A satisfying ¢ ([z,y]) = ¥(z) - ¥(y) — ¥(y) - Y(x) for all z,y € g there exists a unige algebra homomorphism
¥ : U (g) — A such that ¥ = 3 o ¢.

6Compare [K90, sec. 1.3].

7Compare equations (2.1.2-3) of [K90].



1 PRELIMINARIES 1.1 Kac-Moody algebras

Proposition 1.9. (Invariant bilinear form)

Let g = g(A)(K) be a split Kac-Moody algebra with a symmetrizable GCM A and fix a symmetrization
A = DB with D = diag(e1,...,e,) s.t. ;>0 for all i =1,...,n. Then there exists a K-bilinear form (-|-)
on g s.t. (:|-)|p coincides with the bilinear form of def. and s.t.

(lz,y][2) = (z|ly,2]) Va,y,2 €,
(galgp) = OVa,BeA st a# -0,
1) lgato o is non-degenerate Vo € A
[z,y] = (z]y)v ™' () VT € g,y € g0, a € A.

This form is called the standard invariant bilinear form and it is unique w.r.t. a fired symmetrization.
Without such a reference it is unique up to scalar multiples if A is indecomposable.

Proof. This is essentially [K90, thm. 2.2] together with the conventions on D employed in [K90, sec. 2.3]. O

In terms of the standard invariant bilinear form one has without reference to a symmetrization A = DB
the relations (cp. [K90, eq. 2.3.5])

o = —2 (), A= (Q(O‘W>n (3)

(cvilevi) (cvilevi)

ij=1

Definition 1.10. (Integrable g (A) (K)—modulesﬂ)

Let V be a g(A) (K)-module and set V) == {v € V|h.v=A(h)v Vh € h} for A € h*. Call V) the weight
space to the weight A € h* if V), # 0 and call mult (A, V') := dim V), the multiplicity of A\. The module V" is
called h-diagonalizable if V = P reps V- It is called integrable if it is h-diagonalizable and the Chevalley
generators €i,...,en, f1,..., fn are locally nilpotent on V. An element x € g is called locally nilpotent if
for any v € V one can find N > 0 such that z/V.v = 0.

Fact 1.11. (This is a consequence of [K90, lem 3.5]) The Kac-Moody algebra g (A) (K) is an integrable
g (A) (K)-module w.r.t. the adjoint action of g (A) (K) on itself.

Proposition 1.12. (Cp. [K90, prop. 3.6])

Let V be an integrable g (A) (K)-module, denote the set of weights of V by P(V') and set g; = Kf; &Ko) Ke;.
Then w.r.t. g; the module V' decomposes into a direct sum of h-invariant, finite-dimensional, irreducible g;-
modules. For A € P(V) there exist p, q either nonnegative integers or equal to infinity such that \+to; € P(V)
if and only if t € [—p,q) NZ. If mult(\,V) < oo then p,q are finite and in this case p —q = A (). The
action of e; defines an injective linear map from Vi o, 10 Vai(t41)a, whenever —p <t < f%)\ () and the
multiplicities mult (A + ta;, V) as a function of t are symmetric w.r.t. t = f%)\ (). Also, if \,\+a; € P(V)
then there exists v € V) such that e;v # 0.

Corollary 1.13. (Cp. [K90, cor. 3.6])

For an integrable g (A) (K)-module V' and a weight A € P(V) s.t. A+ a; ¢ P(V) it follows from prop. that
A()) > 0. If conversely X is such that N — o; ¢ P(V') one has that A (o)) < 0. For A€ P(V) andi € I it
is always true that A — X (o)) o, € P(V) and that mult (A — X (o)) o, V') = mult (A, V).

The statement about the weight A — X (o)) a; above is quite important towards the action of the Weyl
group on the set of weights.

8Compare the beginning of [K90, sec. 3.6].
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Definition 1.14. (Weyl groupEb

Let g (A) (K) be a split Kac-Moody algebra associated to the GCM A € Z™"*™ and define the fundamental
reflections s; € GL (h*) for i = 1,...,n via

si(AN) =X = X(a))a; VA € b~
One defines the Weyl group W (A) of g(A) (K) as W (A) == (s1,...,5,) C GL(b*).
Another way of defining the Weyl group is by providing its presentation as a Coxeter group:
Proposition 1.15. (This is [K90, prop. 3.13]) Let A € Z"*" be a symmetrizable GCM and let
Zf AijQ5; = 0
Zf QijQ4; = 1
if aijaj; =2 (4)

Zf aija]—i =3
Zf A5 Qg5 Z 4.

3
<
I
o o ok W N

Then the Weyl group W (A) is given by the presentation

W (A) = (s1,...,8n] s2=eVic{l,...,n},
8i8jSi = 85885 """ V’L#]E{l,,n}>
—— N——
myj; factors my; factors

Here, m;; = 0 factors means that there exists no pairwise relation between s; and s;.

The Weyl group’s action on the weight system of an integrable module V' leaves the set of weights and
their multiplicities invariant:

Proposition 1.16. (Cp. [K90, prop. 3.7])

Let V' be an integrable g (A) (K)-module and let A € P(V). Then W (A).P(V) = P(V) and mult(w(\),V) =
mult (A, V) for all w € W(A). Specialized to the adjoint representation of g (A) (K) this yields that the root
system A is invariant under the action of W(A) and that mult(w () = mult (a) for all a € A, w € W(A).

Proposition 1.17. (Cp. [K90, prop. 3.9])

Let (-|-) denote the bilinear form on b* that is induced by the standard invariant bilinear form of g (A4) (K).
Then

(@) | (1)) = (A1) YA, € b, Vo € W(A),
i-e., (-]) is W(A)-invariant.
There exist three types - the finite, affine and indefinite type - of Kac-Moody algebras which possess quite

distinct features. One distinguishes and classifies them by their generalized Cartan matrices or equivalently
by the associated generalized Dynkin diagrams.

9This definition of Weyl groups in the Kac-Moody context is standard (cp. [K90, sec. 3.7|) as it is the straightforward
generalization of the definition in the classical setting of crystallographic root systems.



1 PRELIMINARIES 1.1 Kac-Moody algebras

Definition 1.18. (Generalized Dynkin diagra: To a GCM A = (aij)ijl one associates a generalized
Dynkin diagram D(A) with n vertices as follows. The vertices ¢ and j are connected by an edge if a;; # 0.
In general one depicts the edge (i, j) with a solid line and ordered pair (|a;;|, |a;;|) but if a;;a;; < 4 and such
that |a;;| > |aj;| one draws |a;;| lines instead with arrow pointing to node ¢ if |a;;| > 1.

Except for the case a;; = —2 = a;; (which results in an edge <) these exceptional rules produce rank
2 diagrams that are classical Dynkin diagrams. Generalized Dynkin diagrams D(A) and GCMs A are in
one-to-one correspondence and a GCM A is indecomposable if D(A) has only one connected component. For
a vector u € R, set w > 0if u; > 0foralli=1,...,n and similarly v > 0, u < 0, u < 0. The categorization
of Kac-Moody-algebras into the three types is due to the following theoremE

Theorem 1.19. Let A € Z™*™ be an indecomposable GCM. Then exactly one of the following applies:
(Finite) A is regular and 3u > 0 such that Au > 0. If Av > 0 then either v >0 or v =0.
(Affine) A is of rank n — 1 and there exists u >0 s.t. Au=0. If Av >0 then Av =0.
(Indefinite) There exists u > 0 such that Au < 0. If v > 0 and Av > 0 then v = 0.
Hence, A is of finite/affine/indefinite type if and only if there exists u > 0 such that Au > 0/ Au = 0/
Au < 0.

In [K90, sec. 4.8], all possible generalized Dynkin diagrams of finite and affine type are listed. The
indefinite type does not admit such a systematic classification.

In Kac-Moody algebras that are not of finite type, a new phenomenon arises in the root system. In
classical simple Lie algebras the root system is finite and every root can be written as w («;) for a suitable
simple root «; and an element w € W(A). In the affine and the indefinite case this is no longer true, which
motivates the following definition:

Definition 1.20. (Real and imaginary root@

Let g(A) be a Kac-Moody algebra with root system A. Call a root o € A real if there exists ¢ € I and
w € W(A)s.t. @ =w(a;) and denote the set of such roots by A" and set A := A" NA. Its complement
A" = A\ A" is called the set of imaginary roots and one again sets A" := A" N A . One associates
a reflection s, to every a € A"¢ via

So () =p—p(@)avVupeh” (5)
For a = Y | k;a; call supp (o) == {i € {1,...,n} |k; # 0} the support of a.
A lot of computations become easier with the following lemma:

Lemma 1.21. (This is a consequence of [K90, lem. 1.6])
Let g (A) be a Kac-Moody algebra with root system A and let o« € A. Then supp («) is a connected subset of
the generalized Dynkin diagram D(A).

Proposition 1.22. (This is [K90, prop. 5.1])
Let g(A) be a Kac-Moody algebra with root system A and let o = ), kjo; € A" be a real root. Then
mult (o) =1, ka € A if and only if k = £1. For 8 € A not necessarily real there exist nonnegative integers

10There exist different conventions concerning the edges of the diagram. I use Kac’s convention as described in [K90, ch. 4].

1'This is a specialized version of [K90, thm. 4.3], where I included the consequence of [K90, cor. 4.3 as well.

12This definition is standard, compare [K90, secs. 5.1-2]. Towards the well-definedness of the reflection one needs that
a = w () is equivalent to ¥ = w () as argued at the beginning of [K90, sec. 5.1]. This equivalence is shown in [K90, eq.
3.10.3].
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p,q such that 8+ ka € AU{0} if and only if k € [-p,q|NZ and one has p— q = B (") (cp. prop. [1.13). If
A is symmetrizable then

207! ()

(ala) >0, a¥ = (@)

, ki (ai]ag) € (al@)ZVa e A™.

If a # +oy for all i € {1,...,n} then there exists j € {1,...,n} such that |ht(s;c)| < |ht(a)|.
Concerning imaginary roots one has

Proposition 1.23. (This is [K90, prop. 5.2])

Let g(A) be a Kac-Moody algebra with root system A and (positive) imaginary roots A™ (resp. A" ). The
positive and negative imaginary roots are W (A)-invariant independently, i.e., W (A) .AY" C AY". For every
o € A there exists a root & € AV st a(e)) <0Vi=1,...,n and w € W(A) s.t. a =w(a@). If A is
symmetrizable then o € A™ if and only if (a]a) < 0.

There exist more detailed characterizations of the imaginary roots (cp. [K90, thm 5.4]) in terms of orbits
of the Weyl group but here I would only like to collect a crucial statement about their existence:

Theorem 1.24. (This is [K90, thm. 5.6])

Let A € Z"*™ be an indecomposable GCM and g (A) its associated Kac-Moody algebra. If A is of finite
type, then the set of imaginary roots A"™ is empty. If A is of affine type, there exists an isotmpz'ciEI r00t
§ =" kia; such that A" = {£md, m € N}, where the coefficients k; are the labels of the Dynkin diagrams
of affine type in [K90, sec. 4.8]. If A is of indefinite type there exists o« = > - | ki € Aim such that k; > 0
and o (o)) <0 for alli=1,...,n.

Also, one has the following characterization of isotropic roots:

Proposition 1.25. (This is [K90, prop. 5.7])
Let A be a symmetrizable GCM. Then o € A™ is isotropic,i.e., (a|a) = 0, if and only if there exists (3 s.t.
supp (B8) C D(A) is of affine type and w € W(A) s.t. w(f) = «a.

1.2 Some involutive subalgebras of the second kind

The involutory subalgebras of Berman studied in [B89] are fixed-point-subalgebras w.r.t. an automorphism
o of the Kac-Moody-algebra g (A) (K) which is built from three ingredients. In this subsection I will collect
a result of [B89] concerning their presentation and an adapted version from [HKL15| which will provide a
presentation of £ (A4) (R), the definition is given in by generators and relations. First and most essential
one defines the involutive automorphism 7 on the level of Chevalley generators via

nie)=fi, n(fi)=ei,n(a))=—-a/Vi=1,...,n. (6)

One can also include an automorphism 7 (which may include a field automorphism such as complex conju-
gation) of order 2 via (anti-)linear extension of

7(ei) = piei , T(fi) = p; M fi, 7 () = @) with p; € {£1}Vi=1,...,n. (7)

As a third component one can introduce automorphisms v arising from diagram automorphisms 7 of D(A).
For this define v via
’Y(el) = eﬂ(i)v Y (fl) = fﬂ'(i)a ’Y(a;/) = QX(i)VZ = 13 sy (8)

13 An isotropic root is a root « such that (a|a) = 0.
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Lemma 1.26. (Cp. [B89, rem. 1.7]) The maps defined on the level of generators in egs. @-@ extend
uniquely to automorphisms of g(A) (K). The automorphisms 1 and ~y commute and if p; = pr;) then T
commutes with both n and ~. Their product o = ny1 is an order-2 automorphism of g (A) (K) if v is of order
2.

Proof. One checks that each of the maps (6), (7)), (8) extends uniquely to an automorphism of g (A) (K) and
that n and 7 are of order 2. As pi_1 = p; one has that 7 and 7 always commute but for 7y = 47 one indeed
needs p; = pr(;)- It is also apparent that ny = 1. Finally,

o =iyt =n*y*r? = Id
because each of the involved automorphisms is of order 2, in case of v due to the assumptions of the lemma. O

Definition 1.27. (Maximal compact subalgebras)

Denote by o = ny7 the involutive automorphism of g(A) (K) defined by eqs. @, , . Denote by
s, = {x € g(A) (K) |o(x) = «} its fixed-point subalgebra. f K=R,y=TIdand p;, = —1foralli=1,...,n
I denote s, by €(A) (R) and call it the maximal compact subalgebra | of g (4) (R).

Proposition 1.28. (This is [B89, prop. 1.12]) The elements x; := e; + o (e;) and z; := h; + o (h;) for
1 < i <n generate s, defined in[1.27.

For the special case ¢ = 7y, Berman provides relations on the x;, z; such that s, is isomorphic to the
quotient algebra of the free Lie algebra on generators x;, z; by these relations.

Theorem 1.29. (Due to [B89]) For j # k € {1,...,n} define coefficients ch;k) € Z for all s,t € Z via

cé{bk) =1 and

Cs t (3.k)

Gk _ )0 if either s <0 ort <0 ort>s
cé{’kl')’t,l + (s = 1) [ajx + (s = 2)] 7y, otherwise.

Let 0 = ny with n and 7y as in egs. (@), (@) without the field automorphism 7. Then the involutive subalgebra
S5 from def. admits a presentation by generators x;, z; for 1 <i <n and relations

[z, 2] = 0=z + 2zx(j)
[z, 28] = (akj — Gnr)s) T

forj, ke {l,...,n} and

m—1
m ik
(adxr)*™ ™ (25) + Opn(i) D S v (ada)* ™ (27) + G 0825 = 0
t=0

if lajk| =2m and

2m—+2 ik 2
(ad k)™ 2 (25) + Otmti) D o1y o (0028) % (25) = Om 10 m(ry (21 — ) 75 = 0
t=0

14This terminology is as in [IKLI5] and the maximal compact subalgebra is not to be confused with the compact form as
defined in [K90, sec. 2.7] which is also denoted by ¢(A) there. The difference is that in [K90|, the involution is antilinear and
the resulting fixed-point subalgebra is a real form of g (A) (C), whereas in [HKL15| the base field is equal to R to begin with.
If A is of finite type, then £(A) (R) coincide with the maximal compact subalgebra of split-real g (A) (R) in the usual sense of
compactness, i.e., negative-definiteness of the Cartan-Killing-form.
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for|aji) =2m+1 for all j # k € {1,...,n}. The generators can be taken to be the same as in the previous
proposition, i.e., x; = e; + o (e;) and z; = h; + o (h;) for 1 <i <n.
Proof. This is [B89, thm. 1.31] together with [B89, prop. 1.18]. The coefficients UM are the same as in

s,t

[BRY, def. 1.17]. O

In principle, the same techniques that lead to theorem [1.29|can be applied to the case where 7 is nontrivial
but linear. One simply has to carry along the signs p;. In the case of maximal compact subalgebras € (A) the
generators and relations look simpler. As an adaption of Berman’s result [B89, thm. 1.31] one has

Theorem 1.30. (Cp. [HKL15, thm. 1.8]) Let g (A) (R) be a split-real symmetrizable Kac-Moody algebra with
Cheuvalley generators ey, ... en, f1,..., fn and Cartan subalgebra ty. Then the maximal compact subalgebra
€(A) (R) has a presentation by generators X1, ..., X, and relations

P, (adX;)(X;)=0Vi#je{l,. .. n},

where »
P (1) : [1.20 (t2 + (m— 2k)2) if m s odd,
e t H/?:Bl (t2 + (m— 2k)2> if m is even.
Concretely, one has X; = e; — f; for i =1,...,n and one calls these elements the Berman generators of
£(A4) (R).

For A simply-laced these relations spell out as follows:

Corollary 1.31. (Cp. [B89, thm. 1.31], also [HKLI15, thm. 1.8]) Let g (A) (R) be a split-real simply-laced
Kac-Moody algebra, let € (A) (R) be its mazimal compact subalgebra and denote by € (A) the edges of D (A).
Then € (A) (R) has a presentation by generators X1, ..., X, and relations

(X, [Xi, Xj]] = —X; V(i,7) € £(A)
[Xi, X;] =0V (i,5) ¢ E(A).

Lemma 1.32. The mazimal compact subalgebra € (A) (R) as well as its complexification t (A) (C) .= ¢ (A) (R)®r
C is filtered by A1 (A). Explicitly, one has a decomposition

b= P (9)
aEAL(A)

as vector spaces, where €, == (go B g—o) NE. For z, € £, x3 € 3 one has

[Ta, 2] € tasp @ Ei(a—p), (10)
where the sign depends on whether or not o — € Ay or f—a € Ay,

Proof. The filtered structure of ¢(A) is used both in [B89] and [HKLI5| to show the main results about the
presentations and It arises rather directly from the graded structure of g (4) (K). If e, € g, then
clearly e, + w(es) € € and it is not hard to see that such elements exhaust €, = (go ® g_o) N € because

w(ga) = g— and dimg, < oco. Also, t = @aeA+ £, because any x € £ can be decomposed w.r.t. the
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gradation of g as @ = }° cA(4) Va- The demand w(z) = x then implies w (va) = vga for all & € Ay (A).
Now eq. follows from

[Za 28] = [ea tw(ea),ep+w(ep)]
leas €] + [w (ea) ,w (eg)] + [ea,w (ep)] + [w (ea) , €]
e, e8] + w ([eas es]) + [ea,w (ep)] + w ([ea, w (ep)])

ctoip Eta_p

for a, f € A4 (A) such that o — 5 > 0. O

1.3 Integrable highest weight modules
In this subsection I will summarize some facts about highest weight modules of split Kac-Moody-algebras.

Definition 1.33. (Category QEI)
Let V be an h-diagonalizable g (A) (K)-module with finite-dimensional weight spaces. Let the set of weights
P(V) be such that there exist A1,..., A\, € h* such that

PV)c | JD(), D) ={peb lu<}.
j=1

The objects of the category O are g (A) (K)-modules V that satisfy the above properties. Its morphisms are
homomorphisms of such g (A) (K)-modules.

Due to the properties of h-diagonalizable modules, the category O is closed under taking quotients, direct
sums or tensor products. Also, any submodule U <V of a module V in O is again an object of O.

Definition 1.34. A g(A) (K)-module V is called a highest-weight module to the highest weight A if
there exists v # 0 such that]

howy =A(h)va Yhel, zuopy =0Vz €ny

and V =U (n_)vy. One calls vy a highest weight vector. A highest weight module M (A) to the highest
weight A is called a Verma module if every highest weight module to the highest weight A is a quotient of
M(A).

Verma modules are unique up to isomorphism and can be constructed by the use of induced modules.
The next definition of an induced module is standard:

Definition 1.35. Let V be a g;-module and let ¢ : g3 — g2 be a homomorphism of Lie algebras. Impose an
equivalence relation ~ on U (g2) ®x V' via bilinear extension of

yo(r) @ v~y @0

and call
U (g2) Qugy V =U(g2) ®x V /~ (11)

the induced go-module.

15 Compare [K90} sec. 9.1].
16Compare [K90} eqs. 9.2.1-3].

10
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Proposition 1.36. (Cp. [K90, prop. 1.2] and [K90, rem. 1.2])

Let A € b* and let g = g (A) (K) be a symmetrizable split Kac-Moody algebra. Define the (ny + b)-module
K as the one-dimensional K-vector space K - vy with action x.vy = 0V € ny and hvy = A(h) Vh € b.
Then

M(A) == U (9) un,+y) Ka (12)
is a Verma module to the highest weight A. The Verma module to the highest weight A is unique up to
isomorphism and it contains a unique mazimal submodule M’ (A) & M(A). Set

L(A)=M(A) /M (A). (13)
For A of spherical type, I will sometimes denote L (w) by T, for a dominant weight w € h*.

Definition 1.37. Let V be a g (A) (K)-module and let v € Vi. Then v is called primitivell”|if there exists
a submodule U C V such that v ¢ U but z.v € U Va € n;. In this case, A is called a primitive weight.

Obviously, highest weight vectors are always primitive, since then {0} is a submodule such that the above
demand is met.

Proposition 1.38. (This is [K90, prop. 9.3])
Let V be a g (A) (K)-module from the category O. Then V is generated by its primitive vectors and there
exists A € P(V) and 0 # v € V) such that x.v\ =0 for all x € ny. The following are equivalent:

(i) V is irreducible.

(i) Any primitive vector is a highest weight vector and V is a highest weight module.

(i1i) There exists A € b* such that V is isomorphic to L(A).

One has half of the Schur lemma for irreducible highest weight modules:

Lemma 1.39. (Cp. [K90, lem. 9.3]) Let L (A) be the irreducible highest weight module to the highest weight
A € b*. Then the only g (A) (K)-intertwining linear maps A : L(A) — L(A) are of the form A = c- Id for
some c € K.

Definition 1.40. Consider the irreducible g (A) (K)-module L (A). A nondegenerate bilinear form (-,-) on
L(A) that satisfies
{gu,v) = = (u,w(g)v) Vo € g, u,v € L(A)

is called a contravariant fornEgl, where w denotes the Chevalley involution.

Proposition 1.41. (This is [K90, prop. 9.4]) Every g(A) (K)-module L(A) as in possesses a con-
travariant form (-,-) that is symmetric and unique up to a constant prefactor. For all uw € V,,,v € Vy such
that 1 # X\ it satisfies

(u,v) =0 . (14)

Next, a result on complete reducibility.

Proposition 1.42. (This is [K90, prop. 9.9])

Let g (A) (K) be symmetrizable and let p € b* be such that p(a)) =1 for alli =1,...,n. For A € b* the
Verma module M (A) is irreducible if 2 (A + p|B) # (B|58) for all 0 # 8 € Q4. Let V be a g(A) (K)-module
from the category O such that for any two primitive weights A\, of V with 0 < A\ — pu =: 8 one has that
2(MN+plB) # (B|B). Then V is completely reducible.

17Compare [K90, sec. 9.3].
18Compare [K90} sec. 9.4].
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I would like to conclude this section with an observation about highest weight modules in connection to
the maximal compact subalgebra.

Proposition 1.43. Let V be a g (A) (K)-highest weight module to the weight A and highest weight vector vy .
ThenU (B)vp = V.

Proof. One has that U (n_) vy =V and one proves the claim by induction on the “depths” of weight spaces.
Any weight A € P(V) has the shape A = A — « for @ € Q4 and one puts an N-gradation on the weight spaces
Vi by setting deg (Va_o) = ht («). Denote the corresponding decomposition of V' by

and note that each V,, is finite-dimensional. As U (¢) is a unital associative algebra one has that Vj =
Kupy C U (€) vy, where the equality V' = Kuv, follows from the fact that V is a highest weight module. Now
assume that EBQ;O Vi CU () vp. As Vv =spang {fiv | i € I, v € V,,} and X,v = (e; — f;) v one has that
fiv = e;v — X;v. But since e;v € V,,_1 if v € V,, there exist y, z € U () such that e;v = yvp and v = zvp by
induction. Hence,

fiv=yvr — X;zvp = (y — X;2)va € U (B) vp

for all i € I and v € V,,. This concludes the proof. O

2 A presentation of £(F),) (C) that is adapted to so (n,C)

In this section I will develop a description of the & (F,,) (C)-series that is adapted to its natural so (n,C)-
subalgebra which is given in the form of a presentation result by generators and relations in prop.
together with various additional relations that are obtained along the way. I use these relations to show
that € (E,) (C) is the quotient of a suitably chosen gim-algebra (see def. 2.5). It is known that gim-algebras
admit a presentation as an involutory subalgebra of a Kac-Moody algebra (cp. [S84) [B&9]). The involution
used is not the Chevalley involution but it is related to it by some sign- and diagram automorphisms. The
converse statement that a maximal compact subalgebra of indefinite type is isomorphic to the quotient of a
gim-algebra is new and provides another connection between the two objects.

For a split Kac-Moody algebra g(A) (K) and a Dynkin subdiagram D (B) C D (A) one always has a
natural inclusion g’ (B) (K) C g (A) (K) of subalgebras as g’ (B) (K) = (e;, fi,a) | i € Vp(p)), where Vp(p)
denotes the set of vertices of D (B) and g’ (B) (K) is the derived subalgebra g’ (B) (K) := [g (B) (K), g (B) (K)]
of g(B) (K). If B is regular then there is no difference between the two as the realization of B will coincide
with spang {a} |i € Vp(p)}. The Dynkin diagram of the E,-series can be viewed as an A,,_;-diagram with
an additional, exceptional, node. Therefore g (E,,) (K) contains g (A,—1) (K) naturally as a subalgebra by
restriction to the sub-diagram D (A,_1) C D(E,). As the Chevalley involution w is compatible with the
restriction to subdiagrams, i.e. w (g’ (B) (K)) C g’ (B) (K) whenever D (B) C D (A) one has that £ (B) (K) C
£ (A) (K). This can also be seen from their presentations since

E(B)(K) = (X;,i€Vpp) | P, (adX;) (X;) =0Vi,j € Vp)),
<Xi7 i€ VD(A) | P*aij (aXm) (XJ) =0Vije VD(A)> :

e
=
I

Hence, ¢ (E,) (R) contains € (4,,_1) (R) = so (n, R) naturally as a subalgebra. However, this so (n, R) is not in
split form. After complexification one has that € (E,,) (C) allows a natural D,, (C)-, resp. By, (C)-subalgebra

12



2.1 Fixing notation and the root space decomposition 2 ADAPTED PRESENTATION

n

(with m = |2]|) which is the complexification of € (A,_1) (R) = so (n,R). I will provide this description in
terms of the Chevalley generators of D,,, (C), resp. B, (C), the exceptional Berman generator X,, and some
relations among them in prop. The Cartan subalgebra of € (A4,_1) (C) does not act diagonally on X,
via the adjoint action which is why I replace X,, by two elements X that are diagonal. This provides a
description of ¢ (E,,) (C) that is graded by the root lattice of D, (C), resp. By, (C). Unfortunately it is not
graded by the respective root systems and it is unlikely that homogeneous components are finite-dimensional.
Especially the 0-eigenspace is likely to be infinite-dimensional. Such phenomena are known to occur for so-
called generalized intersection matrix algebras (gim-algebra for short). It turns out that there exists an
epimorphism of Lie algebras from a suitably constructed gim-algebra to £ (E,,) (C) which I will show in prop.
27

The section is structured as follows: First, an explicit realization of the Chevalley generators is given in
terms of the Berman generators of € (A,_1) (C) in section 2.1 where the more technical parts can be found in
the appendix[A7T] This explicit realization is used to obtain relations among the Chevalley generators and X
(resp. X,,) in section The definition of gim-algebras is given in section [2.2| and the result that € (E,,) (C)
is a quotient of a gim-algebra is proven in section 2.3] In section [2:4 I briefly sketch the consequences that
this presentation has for finite-dimensional ¢ (E,) (C)-modules or rather for the search of such modules.

2.1 Fixing notation and the root space decomposition
According to cor. |1.31] the maximal compact subalgebra ¢(E,) (R) of split-real E,, is generated by its n

Berman generators X, ..., X, which are subject to the relations
[(Xi, X51 = 0 if (i,)) ¢ €
(Xo, [Xi, XG]) = —X;if(i,j) €€,

where € denotes the set of edges in D (E,). I use the convention that the n-th node corresponds to the
one that sets apart D (E,,) from D (A, _1) (compare figure [I) but that the n-th node attaches to the third
node. As g(A,_1) (R) is split it is isomorphic to sl (n,R) and so one deduces £ (4,,—1) (R) = so (n,R). Since
D (A,_1) is a subdiagram of D (E,) one has that ¢ (A4,,_1) (R) is a subalgebra of ¢ (E,) (R) in such a way
that it is generated by X, Xo,... X,—1.

n

.....—.
1 2 3 4 n—1

Figure 1: The Dynkin diagram of E,,. Its A,,_i-subdiagram is obtained upon deletion of node n.

For n = 2m, so(n,R) is the real compact form of so (2m,C) = D,, (C) whereas for n = 2m + 1 it is
the real compact form of so (2m + 1,C) = B,, (C). In the following, I will determine a basis for both cases
that is adjusted to the root space decomposition of B,,, D,, respectively. My approach is derived from the
treatment of classical compact simple Lie algebras in [C84] app. GJ, although most choices that have to be
made along the way are rather natural.

First, fix a Cartan subalgebra for £(A,_1) (C). Since all Cartan subalgebras of finite-dimensional simple
Lie algebras are conjugate one can just pick any abelian subalgebra b of suitable dimension. If the adjoint

13



2 ADAPTED PRESENTATION 2.1 Fixing notation and the root space decomposition

action of h on € (A,,_1) (C) can be diagonalized one then knows that h is in fact a Cartan subalgebra. Choose
Hj:=—iXs;_1, forj=1,...,m (15)

as the generators of a distinguished abelian subalgebra

b :=spanc{Hi,...,Hn}. (16)

For i1,i9,...,ix € {1,...,n} set
Xai1+"‘+0t7‘,k = [Xi17 [Xi,z, [ .oy [Xik—NXikH]] (17)
and note that the order in the sum o, +- - -+, matters but as long as 41, i2, . .., i are such that {i1,... ik}

is a connected subdiagram of A,,_; it is quite unambiguous because an A,,_;-root is defined by its support.
I will sometimes also write

X0t = (X (X, [ [ X1 X ]]]] (18)
in cases where the other definition is too unwieldy. For f = a;, + - - + «a;, one also defines
eg = [611, [61'2, [ c [eikfl,eik]]ﬂ € g(En)ﬂ , e—gi=—w(eg) € g(En)_B , Xgp=eg—e_g. (19)
Here, the way 8 is decomposed into simple roots implicitly defines the structure constants. If the iy ...,
are pairwise different, the nested commutators and the description via are related as follows:
onil-'r'“-'raq‘,k = [Xi17 [X’Lé? I:? [X’ik,laXik]:I]]

(-1)* [firs [fizs [+ [finss fir] ]]]

— oo, + (1)

2k
- eai1+--'+aik + (_1) [w(ei1)7 [w(eiz)’ [ EEE) [w(eik—1)’w<eik)”]]
= eai1+...+aik +w (eail+.,.+aik) = eai1+"'+aik — efailf...,aik .

In the above computation it is crucial that the i;...,4; are pairwise different because only then one can
ensure that commutators such as [e;, [fi,, [+, [fiu_s» fir]]]] vanish.

For 1 < i < j < m define roots ,Bi(,lj), e ,Bfé) € A(A,—1) C A(FE,) and an order of how they are to be
constructed from simple roots by

67‘(71]) = (/9 + -+ agj_l s ﬂfi) = (9; + -+ 0‘2]’—2 (20)
lei) = (9;—1 + e+ azj_l , /Bfé) = Qigi_1 + 4 O‘2j—27 (21)

where the order of the summands in the above equations is not to be altered. Now for e1,e5 € {—1,1} se@

i
o prenr = (X0 —ieaX o —ie1 X s — e160X ) 22
acreats = 3 (X =Xy 01X —aiea Xy 22

for 1 <1i < j < m. Furthermore, if n = 2m + 1 set

€tr; = 7 - (Xazj_;,_“._;,_a"il F iXoczjq-‘rw-‘ranq) =1- (X @ F iXB(4) ) . (23)

Jym+1 Jym+1
19My choices for the Cartan subalgebra in and the Chevalley generators in and are close to the ones in [C84]
app. G.2| but my normalization differs.
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2.1 Fixing notation and the root space decomposition 2 ADAPTED PRESENTATION

Remark. For even n the support of the ﬁi(’];) for k € {1,2,3,4} and 1 < i < j < m ranges over the entire
A, _1-subdiagram whereas for odd n they never use the root a,, 1. This root only appears in the definition
of exr,. Effectively, the elements generate the subalgebra £ (A, _2) of type D,, that one obtains from
the nodes 1 to n — 2. Adding X,,_; or equivalently to the list of generators produces a Lie algebra of
type B, where all short root operators depend on Berman elements whose support contains o, 1.

Lemma 2.1. Consider the linear functionals L; : h* — C defined via L, (H;) = 6;;. Then with the above
definitions , and one has with 1,65 € {—1,1} that

[h, 681L7‘,+62L]‘:| = (ElLi + EQLj) (h) €eiLi+esl; Vhep (24)
and for n =2m + 1 one additionally has
[h, eiLj] =xL; (h) €tr, Vhebh. (25)

Thus, (@ and provide a root space decomposition of € (A, —1) (C) w.r.t. the Cartan subalgebra by spanned
by . Note that while the elements exr, exist in € (A,_1) (C) forn = 2m eq. is not valid in this case.

Proof. Observe that because of [X;, [X;, X;]] = — X for (4,7) € £ one has
[X2i—17X5(3):| = [ Xoi—1, [Xoio1, [Xoi, ... Xoj1]]]
[[X2z'—1, [Xoi—1, Xai]] aXa2i+1+"'+Ot2j—l} +0
= - |:X2i?X0¢2i+1+'”+0¢2j71:| == ggl; (26)
and
[Xzithﬂl(?]}} = —Xﬁfj)- (27)
Also,
[Xzi—hXﬂlg}j)} = XBE:?’ [XZi—laXBl(?j)} = Xﬂﬁf‘}’ (28)

which leads to (¢; ! = ¢;)

2
i . .
[H;,ec\Li4esr,] = -5 {XQFMXB’_(}J) - ZEzX,BZ(?]) - 161X55?J) - 5152XB§,4}}
1 . .
= 5 (Xﬁi(:sj) — ZsQXﬁE,? + ZE1X5§}]) + ElEQXBE?)
- By 9.6 o1 X X
- 2 ( Bl) T IERRg) T IELR g T E1E2 ﬁif?)
EleélLi+62Lj'
Also, one computes
X2j—1aX,3(1_>} = [Xojo1, Xogitotan 1| = [X2j-1,[Xai, .., [Xoj—2, Xoj_1]]]
1,7
= —[Xoi, ... [Xojo1,[Xoj1, Xojo]]] = [Xai, ... [Xoj—3, Xoj_2]]
X
52
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2 ADAPTED PRESENTATION 2.1 Fixing notation and the root space decomposition

and similarly
X y — ’X } —_— X bl [X ) — 7X & } - X Pl [X ) — 7X } - ;( .
[ 2=t ﬁt(:z]) Bz‘(,lj) -1 ’81(,31) B’Ejl]‘) 21 Bi(flj) 'Bf,sj)

This then yields

i2
2
=YX o tiex o —iax X
= 5 (X +iea X0 — i1 X + 102 X0)

[XQj_l,X

(1) — i€2X
ﬂi,j

[Hj, eleiJ,-sng] B8R ~ ZElXﬁE,sj) — 6162X{3§?}

)
—eo | X ) — 169X 420 — 161X 439 — €162 X 4>
2 2( L) T TR TRl T E1R2 A5
- 52651Li+52Lj

The relation
[Hj7651Li+52Lk] =0V #] 7£ k

can be seen from the A,,_i-root system. In this case ,81(2 + agj_1 ¢ A(A,—1) because either a root appears

with coefficient 2 if as;_1 € supp (ﬁf%) or supp (6% + agj_1> is disconnected. This shows with the filtered

structure of ¢ (see lemma [1.32) that [ng_l, X = 0. Also, by the same argument

0]
Bk

[Hi,eiLj] =—? |:X2iflaX @) :FiXBw) ] =0Vi#£j

Jj,m-+1 Jj,m+1

as H,, 1 does not exist. Finally,

[Hj7 eiLJ}

_i2 |:X2j717Xﬁ(2) :FiXﬁ(‘l) :|
J

,m+1 Jm+1
X (4) +iX (2) == (X (2) F 1 X (4) )
j,m+1 j,m+1 j,m1 j,m+1

:lzeiLj .

O

The previous lemma both provides a link between the Berman elements and a basis of so (n,C) that is
adapted to the respective root system. Its proof shows that it can be tedious to work out all relations of
interest which is why all these computations are collected in the appendix [A7T] The result is:

Proposition 2.2. Let H;, e.,1,yc,1; and exr, (only for n = 2m + 1) be as in , and . Then
one has for 1 <i< j<k

leeiLiteal; €—crLimesr;| = €1H; +exH,
[651Li+€2Li+17e*€2Li+1+€3Li+k] = 1 €eiLitesLits
[elei+52Lk7653L]‘_52Lk] = 7ie€1L1‘,+53Lj
and
[6€1Lm e€2Lj] = _QiealLi-i-EzLja [BL“ e—LJ = 2HZ
[e—ilLiv eElLH-EQLj] = i€52Lj’ [6_€2Lj ’ 651Li+52Lj] = —7:651[% :

16



2.2 GIM-Lie-algebras 2 ADAPTED PRESENTATION

2.2 GIM-Lie-algebras

GIM-Lie-algebras, where GIM is a shorthand for Generalized Intersection Matrix, are constructed similarly
to Kac-Moody algebras. One starts from a so-called generalized intersection matrix A (see def. where
one replaces the condition A;; < 0 for ¢ # j by 4;; <0< Aj; < 0and 4;; > 0 < Aj; > 0. Due to the
work [S84] of Slodowy, it is known that GIM-Lie-algebras fall into two classes. The first class consists of
those GIM-Lie-algebras which are in fact isomorphic to a Kac-Moody-algebra and the second class are those
which are isomorphic to an involutory subalgebra of a Kac-Moody-algebra. Such involutory subalgebras are
studied in Berman’s paper [B89|, where a description of them is provided via generators and relations. I will
collect the most essential definitions and results from [S84], but the ones relevant for this work can also be
found in [B89, sec. 2] which is more accessible.

Definition 2.3. (GIM) Let A € Z!*! such that
(1) Ay = 2Vi=1,...,1
(i) A < 0 & A <0Vi#j
(t5i) Ay; > 0 & A >0Vi#y,
then A is called a generalized intersection matrix (GIM). As in def. A is called symmetrizable if

there exist D, B € Q! such that D is diagonal and B is symmetric and it holds A = DB. One calls A
simply-laced if |A;;| € {0, 1} for all ¢ # j.

Note that GIMs possess a unique realization (h, TV, II) just as GCMs (compare and the following
paragraph).To a GIM one can associate a Dynkin-like diagram.

Definition 2.4. (GIM—diagram)E Let A € Z™" be a GIM and construct a diagram C(A) with n vertices
and edges according to the following rules:

1. Two vertices ¢ and j are connected by a dotted edge if A;; = a; (o) > 0.
2. Two vertices ¢ and j are connected by a solid edge if A4;; = a; (o)) < 0.

3. There is no edge between two vertices ¢ and j if A;; = 0.
4

. The edges (4, ) are equipped with the ordered pair (|A4;;],|A;:|) but if |A4;;] = 1 = |A,;| one draws a
single edge instead. Also, if A;;A;; < 4 one draws max (|A;;|, |A;;|) edges between the vertices with an
arrow pointing towards ¢ if |A;;| > 1 and an arrow pointing towards j if |A;;| > 1. Note that this may
result in an arrow < in the case that [A;;| =2 = [4;].

Definition 2.5. (GIM—Lie—algebra)@ Let A be a GIM with C-realization (h,IIV,1II) and let f be the free Lie
algebra over C generated by h and elements ey, e_, for a € II. Let J be the ideal in f generated by the
relations (identify hi, = +aV in the last line)

[h,h'] = 0Vh,h e,
[h,eo] = a(h)eq Yheb, aell,
[ease—a] = aYVaell,
ad (eq)™(H1=Ahe)) (o) = 0Va,B e L

20Cp. [S84] 4.1]
21Cp. [S84] 4.2], but the conventions concerning the edges’ labeling is closer to the conventions of [K90].
220, [S84) 4.4]
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2 ADAPTED PRESENTATION 2.3 The adapted presentation

Then gim(A) := 7 is called the GIM-Lie-algebra to A .

Starting from a GIM-Lie-algebra gim(A) with a symmetrizable GIM A € Z'*! construct a generalized
Dynkin diagram as follows. Take the GIM-diagram C (A) and double all the vertices, where the labels shall be
1., 0,1, 0 If A;; < 0 connect the vertices ¢ and j with a line labeled with an ordered pair (|A4;;|, |4,:])
and do the same with 7, j. If A;; > 0 connect i and j with a line labeled with an ordered pair (|A;;],]A;:])

and do the same with ¢ and j. This way one obtains a generalized Dynkin diagram D (Z) as in def. |1.18and

a Kac-Moody-algebra g (Z) associated to gim(A). If the GIM-diagram C(A) is connected one distinguishes
two cases:

1. D (ﬁ) is disconnected. In this case one says that C(A) is oriented. By [S84. prop. 4.6] D (Z)

decomposes into two isomorphic connected pieces D (Ag) @ D (Ap) and gim(A) is isomorphic to the
Kac-Moody-algebra g (Ap).

2. D (Z) is connected. In this case one calls C(A) unoriented. Then by [S84, prop. 4.8] (but see also

[B89, prop. 2.1]) gim(A) is isomorphic to s, (ﬁ) (recall the def. |1.27 and its presentation [1.29| that is
not contained in [S84]) where the automorphism is given by ¢ = 7y with 7 as in [6] and v (cp. eq.

associated to the diagram automorphism 7 (i) = 4,7(i) =i for all i = 1,.. ., 1.

Due to the involved diagram automorphism the resulting involutory subalgebra is quite different from the
case I want to consider. Recall from that the generators of s, are

vi=e+f;, my=e+fi, zi:a;/foz%/.
Denote by & the solid edges of A and by F the dotted ones. In the simply-laced case they satisfy the relations

(25, 2;] = 0if (i,§) ¢ £, ad (x:)° (z;) = 0 if (i,j) € €
[xx]} =0if (i,§) ¢ F , ad (z;) (x]) = 0if (i,j) € F

(2, 2] = 0, (25, 2k] = (Akj — Aniy) o [x%} = Oin(j)%i -
The relations of the form [X;, [X;, X;]] = — X are completely absent which is why one has to be a little more

resourceful to obtain a relation between GIM-Lie-algebras and the maximal compact subalgebra ¢ (E,) (C).

2.3 The adapted presentation

In the description via Berman generators, X, ..., X, —1 generate so (n,C) and only including X,, gives rise
to full ¢ (E,) (C). This Berman generator is not h-diagonal (with b the Cartan subalgebra of so (n,C) as in
(16)), the following two elements however, are:

Xy =i (X Fi[X3,Xn]) = (Xa, £iXa,1a,) (29)

This is verified easily as
[HjaX:t} =0 v] 7£ 2

18
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and

[Ho, X1] = —i*[X3, X0 Fi[X5, Xn]] = [X3, Xn] X,
— i (Xn T [Xs, X)) = £Xa

Since X + X_ = 2¢X,, one sees that
(X1, X1, Xn)e = (X, o, X, X, X)) = 8(E,) (C).

One has the following relations among the e.,r,4c,1, € s0(n,C) < €(E,) (C) and Xy. All stated elements
are nonzero unless explicitly stated and their explicit form in terms of Berman elements is computed in

appendix [A2}

(X4, X_| = 2Ho, [Ho, Xo] = + X4, [Hi, Xo] = 0 Vi #2, (30)
[X-i-a GELI_L2] = [X—aeELl-i-Lz] 5 [X+a 6_L2+5L3} = - [X—’ 6L2+€L3} 5 (31)
ad (X+)* (ecny51,) = 2621, 2L, ad (X2)” (€515 4er5) = —2641,1cLs, (32)
0= [X:I:aeslel:Lz] = [X+76+L2+€L3] = [X7367L2+€L3] = I:X:tve€1Li+€2L]':| V2<i< j? (33)

2 .
0=ad (X:t)Z (661L1+62LJ‘) =ad (661L1+62LJ‘) (X:E) Vji>3 (34)

For n = 2m + 1 there are additional relations among X4 and e.r,:

[Xﬂ:?eilq] #0, 0=ad (X:t)2 (eELl) =ad (eELl)z (X:t) ’ (35)
ad (X:t)2 (e:FLz) = —2e4r,, ad (eiL2)2 (X:F) = —2Xy, [X+7 e*Lz] = - [va 6+L2] (36)
0= [X:tv eﬂ:Lz] = ad (‘Xﬂ:)3 (GZFLQ) =ad (eﬂ:Lz)S (Xi) = [X:ta 661Lz‘] Vi> 2. (37)

Lemma 2.6. Consider the elements X1 defined in (@) and for n = 2m denote the Chevalley generators of
s0(n,C) < t(E,) (C) by

€ :=er, L, Ji'=e_Li4Li, hii=Hi—H;_1 i=1,...,m—1

€m = €L, _1+Lu> fm = €_L_1+Lm> hm = Hpp—1 + Hm+1~

Forn =2m+1 replace ep,, frn and hy, by ey, :=e€r,., fm :=e_r, , hm := 2H,,. Then one has the following
relations:

X1,y =0Vye{fi,eatU{es,...,em, f3,.- s fm} (38)

ad(X1)* (y) = 0= ad(y)* (X4) Vy € {e1, 2} U{ess- s em, fare ooy fn} (39)
(X_yl=0Vy€{er, fotU{es,....em, f3,..., fm} (40)

ad(X-)* (y) = 0=ad(y)* (X-) Vy € {fi.e2} Ufes,...em, S5 fin} (41)

Proof. The relations among X1 and the elements of so (n,C) are computed in various lemmas in section
and are stated in eqs. . O
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2.3 The adapted presentation

Consider the following GIMs BS,, DS, € Z(m+1)x(m+1),

2
-1
1

—2
2
-1

2
-1
2

-1

) D'?n: .
2
-1
-1

-1
2
0

-1
0
2

and denote the associated GIM-algebras over C by gim (B?,) (C) and gim (Dg,) (C). The following proposition
has been published without a proof in [KKLN21l appendix A] for n = 9 and is a result of the above

computations.
0
0 m-1 f m-1
voee ceee .—.—oooo ) e oo 1
1 2 m-1 m 1 2 m-1 m L2 m- m 1 2 m-2 m

Figure 2: The (GIM-)diagrams associated to B,,, BS,, Dy, and D¢, respectively.

Proposition 2.7. Forn = 2m+1 (n = 2m respectively) denote the Chevalley generators of g := gim (B¢, (C)
(respectively those of g := gim(Ds,)(C) ) by Ey,...,En, Fy,...,Fy and Hy,...,H,, . There exists a
surjective homomorphism of Lie algebras ¢ : g — € (E,,) (C) that is given on the level of generators via
¢ (Eo) = X4, ¢ (Fo) = X—, ¢(H,,) =2H>
Proof. One verifies that the defining relations between the generators from definition (2.5)) are satisfied. The
By~ (resp. Dy,-) relations are unproblematic and the relations
ad (Ep)” (Ey) = 0 =ad (E1)* (o), ad (Eo)® (F2) = 0 = ad (F»)? (Eo)

follow from equations (38{41). One also has to check that H.,, +— 2H, satisfies all necessary identities
which is the case. Thus, ¢ is a homomorphism of Lie-algebras. Surjectivity follows from the fact that all
Berman generators of € (Ea,,+1) (C) can be recovered from the image of the generators of gim (B¢,) (C). For

X1,..., X, this is a basis transformation within so (n,C) and for X,, one notes that implies
X, + X_ = 2iX,,.
The same holds for € (Es,,+1) (C) as the image of gim (D)) (C). O

Equip the natural subalgebra g(B,,) < gim(B;,) with the same basis and structure coefficients as
50 (2m +1,C) < €(E2m41) (C) but denote it by E. 1,1, and Eip,. Then the above result implies that
t (E2m+1) (C) is a nontrivial quotient of gim (Bg,) (C). This is because of elements like [Ey, [Eo, F1]]—2FL, +L,
which is nonzero but because of , stating that

ad (X+)2 (6€L1—L2) = 26€L1+L27
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2.3 The adapted presentation 2 ADAPTED PRESENTATION

it is equal to O in the image. Nontriviality of [Fy, [Fo, E1]] — 2EL, 1, follows because [Ey, [Eq, F1]] and
Er, 41, lie in different root spaces w.r.t. b} B and GIM-algebras are graded w.r.t. their root system. It is
also useful to provide an alternative description of t(E,) (C) by generators and relations.

Proposition 2.8. Let H;, e, 1, yc,1, and e+r, (only forn = 2m+1) be a weight space basis of § := g (D) (C)
(resp. § = g (Bm) (C)) with structure coefficients as in prop. Let g be the Lie algebra over C generated
by U {x4,x_} modulo the relations of § and the relations

[S(LF,.I',] = 2H27 [HQ,.’IJi] =txy, [Hhxi] =0V 7é 2,

[CL‘+, e€L1*L2] = [.%,7 e€L1+L2] ) [1‘+, e*L2+6L3] = - [:L‘,7 6L2+€L3] )

0= [Ts,ecr,+L,] = [T4, €1 Lotels] = [T € Lypeny] = (T4, €c,0,4e,1,] V2 <i <],
together with
[*+,€cr,,] =0
in the case of n =2m + 1 > 5. Then g = £(E,,) (C) via the following isomorphism ¢ : ¢ (E,,) (C) — g:

1

¢(X21) = 5(6L1;+Li+1 76L1_Li+1+e_Li+Li+1 7€_L1_Li+1) Vizl,...,m(resp. mfl), (42)

¢(X2j_1) = ZHJ Vj:l,...,m, (43)
)

(X)) = —b(asta) (49)

O (Xom) = —% (e4r,, +e—p, ) forn=2m+1. (45)

The inverse ¢! : —> ¢ (E ) ((C) is glven by 1dent1fy1ng the H;, ec,1,4e,1, and e, in g with their counter-

parts in £ (A, _ ) =~ g from (15), (22) and (23) as well as
¢~ (2x) = i (Xn F i [X3, Xn]) -
Proof. One checks with eqgs. , and that egs. , and are the correct translations

between so (n,C) from its description by Berman-generators and by its root space decomposition. Then
prop. implies that this is an isomorphism. The set of relations that defines g is a subset of the relations
1' that hold inside £ (E,,) (C) and therefore ¢! extends to a surjective homomorphism of Lie algebras
because all generators of £ (E,,) (C) are contained in the image.

So it suffices to study if the pairwise relations that include X, are satisfied after application of ¢. For
j # 2 one has that [¢ (X2;_1), ¢ (X,)] = 0 follows from (30). For j < 2 one has that [¢ (X2;),¢ (X,)] =0
follows from which only leaves the relations [X3, [X3, X,]] = —X,, and [X,, [X,, X3]] = —X3 to be
checked:

[0(Xs),[¢(X3), ¢ (Xn)]]

|:7;H2, |:ng, —% (x+ + x)”

= glHaes —o)=Glo ) = —0(Xa),

(6 (Xn), 6 (Xa) 6 (Xa)l] = =7 [os +aofos +a, Hol] = =7 [+ + o, —24 + 3]
—ﬁ (2Hy +2H3) = —iHy = —¢ (X3) .
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This shows that ¢ is a homomorphism of Lie algebras. Since zx =i (¢ (X,,) Fi¢ ([ X3, X,])), ¢ is surjective
and as ¢ and ¢! are inverses on the level of generators this shows that ¢ is an isomorphism of Lie algebras. [J

In view of prop. representations of gim (B?)) (C) could potentially be useful to find representations of
€ (Faom+1) (C) if it is possible to check whether or not a given representation factors through the projection
of proposition Conversely, the results from section [3| provide representations of gim (B?,) (C) of finite
dimension. The main benefit of prop. [2.§is that the set of relations one needs to check on a potential
representation is reduced compared to the set of relations given before. In particular, all relations involve
single commutators.

The weight of X is +Ly and in case of so(n, C) = B,,(C), it appears in the root lattice of B,,. Therefore,
it may be possible to check irreducible B,,-representations for conditions when they extend to representations
of ¢ (E,) (C). For n = 2m this is not possible because there X1 always map between D,,-irreps. as Lz is not
contained in the D,, root lattice.

2.4 An so(n)-adapted description of ¢ (F,)-modules

In this section I would like to outline an approach towards finite-dimensional representations of € (E,,) that is
based on the presentation of £ (E,) (C) given in Consider a By,-module V where m = | 2| (for n = 2m
we effectively consider a ¢ (E,1)-representation and restrict it to € (F,)). Denote the set of weights of V
by P(V). For a € A(B,,) the action of e, as defined in eqs. and on the weight spaces is known
from classical representation theory (cp. [GT50], also see [M0Q] for a modern derivation via Yangians and
the references therein for other work on the subject). This means that in principle the matrix elements
D(p, p+ a)ij in

m(ptor)
€aVp,i = Z D(p, b+ ) jivuta,;
j=1
are known, where {v, ;|i=1,...,m(u)} is a basis for the weight space V,,. Now X+ must map between the
weight spaces like
m(utLs)
X:tv;t,i = Z C(M,NiLZ)ﬂ CHESPWE
j=1

Now one can derive equations for the matrix elements C (u, pu + L) ;. Start with [Xy, X_] = 2Ho:

m(p—La) m(u+La)
[X+3X—]v,u,i = Z C(,ufaﬂfLQ)ji X+U#—L2,j - Z C(Maﬂ+L2)ji X—UIL"!‘LQJ
Jj=1 j=1

m(pu—"L2) m(u)

= ) ZC iy po = La) 3 C (j1 = Lo, 1) 5 .k
j=1 =

M(u+L2) m(u)

Z Z C(M7M+L2)]ZC(M+L27M)]€] U,k
J

m(p) [m(p+L2) m(p—L2)
= > Cpt Lo )y C (s + Lo) Z C(p— Lo, p)y; C (s pp— La) ;| Vpk
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so that
m(p+La) m(u—Lz)
Z C (p+ Loy p); C (s p+ La) Z C (b= Loy p); C (s pp — Lo) ;; = 211 (H2) 65 - (46)
=1

Now for the other defining relations it is most useful to pick the linear relations and . For [X,e_p,| =
—[X_, e4r,] one obtains

m(p—La) m(p+L2)
(Xioe—p]ops = Z D (p,p— LZ) ; X Uu—Lyj — Z C (s p+ LQ)ji €—LoVp+Lo,j
j=1 j=1

m(pu—Lz2) m(p)

= Z ZDM# Ly); C(N*L%N)kjvu,k
j=1 =

m(u+L2) M(u)

- > ZCM+L2 D (ji+ Lo, 1),y vk
j=1 k=1

m(pu+Ls) m(p—L2)
[(X—er,Jvui = Z D (p, 1+ LQ)j'L X VpsLaj — Z C (s p— LQ)ji €4+LoVu—Lo,j
j=1 j=1

m(p+L2) m(p)
= Z ZDMM+L2 i C (1t Loy 1)y vk
j=1

m(p— L2) m(p)

- > ZC pyi = La) 3y D (1= Loy 1) Oy
j=1 k=1

so that
m(p—La) m(p+L2)
> D(pp—L2); Clp—Lop)y; — >, Clup+La)y; D(p+ Lo, i)y,
Jj=1 Jj=1
m(u+La) m(u—Ls)
= > D(up+L);C(u+Lap) Z C (ppt = L2) j; D (1 — L, 1)y (47)
j=1

for all i,k = 1,...,m(u). Similar equations can be obtained from all the other relations and (37). Note
that all defining relations apart from [X;,X_] = 2H, are linear in the unknowns X.. So one could pursue
the strategy of first simplifying/solving the system of linear equations and then trying to solve eq. . One
could also investigate if it is possible to derive conditions under which the system of linear equations ,
, has more than just the trivial solution. Also note that among all highest weight vectors of V' (as
V' is not assumed to be irreducible as a Bp,-module) there exists a maximal one with weight A such that
A+ Ly ¢ P(V). Then egs. (46) and ( . ) become easier because all C' (A, A + Lo);; and C (A + Lo, A),; are
equal to 0. Th1s could potent ally open a door to deduce all other matrix elements of X1 inductively.
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3 HIGHER SPIN REPRESENTATIONS

Part II
Higher spin representations of simply-laced
maximal compact subalgebras

3 Higher spin representations

It is a genuinely fascinating feature of maximal compact subalgebras € (A) that they admit finite-dimensional
representations even if A is of indefinite type. In this section I will present all presently known nontrivial
finite-dimensional representations of € (A) for A a simply-laced GCM of indefinite type (the results also hold
for A finite or affine, but for these cases many more representations are known). All these representations
were first found during the investigation of € (Ej() as a hidden symmetry of certain super gravity theories (see
for instance [BHP06| and [DKNOG]). The lowest-dimensional representation of ¢ (Eo) arises as an extension
of the s0 (10, R)-Dirac spinor, which is why this representation is called the %—spin representation. In more
mathematical terms one takes the representation I'y & I'g of s0 (10, R), where «, 5 denote the fundamental
dominant weights that describe the two elementary spin representations of g (D5) (C), and shows that one can
establish an action of € (E1p) on this module. This extension can be described quite neatly in terms of Clifford
algebras (cp. and I will summarize the construction in section Based on the 3-spin representation
Sy one can build further representations on the carrier space Sym” (h*) @S, for n = 1,2, 3 and one calls these
representations the (n + %)—spin representations, hence “higher” spin representations. It is important to stress
that h* is not a representation of £ and therefore the higher spin representations are not the tensor product
of other representations. However, as dimbh* = 10 has the same dimension as the “vector representation”
I, of so(10,R), one treats each power of h* as if it added +1 to the spin which would indeed be the case
for the product representation I',, ® (I'y @ I'g) of so (10,R). I will treat the - and 2-spin representation in
section as they allow a uniform treatment via Weyl group actions on Sym" (h*). This approach has to
be augmented for the %—representation which I will explain in detail in section All these representations
already appeared in the physics literature: The %— and %—representations are discussed in ([BHP06], [DKNO06]),
the - and Z-representations are introduced in (JKN13], [KN17]). While all these sources only treat the case
FE1g, the representations are more general, as shown for S% in a mathematical setting in [HKL15]. The way
the higher spin representations Sz are constructed in ([KN13|, [KNIT7]) is directly seen to be generalizable
to the simply-laced case, and by the covering techniques of [HKLI5| this allows such representations for

any symmetrizable GCM A. A first mathematical treatment of the representations S% and Sg has been
given in [LK18|, where the main feature is that the coordinate-dependent formulation of (JKN13|, [KN17]) is
compared to a coordinate-free version that puts more emphasis on how the Weyl group W (A) describes the
action of £ (A). So far, such a coordinate-free description of S% in terms of the Weyl group was missing, which
is why section contains genuinely new material even though the representation S 1 was already known.
The main resulfs of this section are theorems and that provide the coordinate-free and Weyl-group

based description of the higher spin representations.

1 . .
3.1 The ;-spin representation S%

Let A be GCM, denote by g(A) (R) the split-real Kac-Moody algebra of type A and by €(A) its maximal
compact subalgebra. If not specified otherwise I will assume A to be of simply-laced type. First, I will
recall the definition of generalized %—spin representations which first appeared in the physics literature (see
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3.1 The %—spin representation S% 3 HIGHER SPIN REPRESENTATIONS

[DKNO6], [BHPO6]). Their first appearance in mathematical literature was [HKL15], whose conventions I
will use in the following summary. Afterwards I will provide a mathematical foundation for the calculus of
generalized I'-matrices from [KN13] which will be needed in section {4 to derive a parametrization result of
representation matrices.

Definition 3.1. (Cp. [HKL15| def. 3.6]) Let X, ..., X,, denote the Berman generators of £(A) for simply-
laced A. One calls a homomorphism p : ¢ — End (C?®) a generalized spin representation if

1
p(Xi)* = _iIdSXS Vi=1,...,n.

Proposition 3.2. Let {A, B} := AB + BA denote the anticommutator and let p : ¢ — End (C*) be a
generalized spin representation. Then one has (V1 <1i# j<n)
[p(Xi) , p(X;)] =0 ifa;=0
{p(Xi) , p(X;)} =0 ifay; =-1

Vice versa, given matrices Ay, ..., A, € C*** that satisfy
1
(i) A7 = —ids
(ZZ) [A“AJ] = 0 Zf Q5 = 0

(ZZZ) {A“ AJ} =0 Zf aij =-1 ,
the extension of the map X; — A; defines a generalized spin representation.
Proof. This is [HKL15], rem. 3.7]. O

Theorem 3.3. Let A be a symmetrizable GCM, then a generalized spin representatio@ exists. Its image
considered as a representation p : £ — End (R2S) is compact, hence reductive. It is furthermore semisimple
if for all i =1,...,n there exists j € {1,...,n} such that aj; is odd.

Proof. This is a merger of [HKL15, thm. 3.9] and [HKL15, thm. 3.14]. O
Note however, that the claim ¢ = ker p @ imp in case of a semisimple image is false.

Proposition 3.4. Let A be a simply-laced, indecomposable GCM of indefinite type and let p be a generalized
spin representation of €(A) according to def. . Furthermore, any ideal in € that is orthogonal to ker p is
trivial and hence, contrary to the claim of [HKLI15| thm. 8.14], € 2 ker p & imp.

Proof. Set
kerp:={z ct|p(x) =0}, kerpt :={z ct| (z|]y) =0Vy € kerp}

where ker p* only means the algebraic object without completion. One checks that ker p* is in fact an ideal:

(lz,2]ly) = — (@] [2.4) = 0 Ve € kerpt,y € kerp,z € &,

23T have not defined the notion of a generalized spin representation for diagrams which are not simply-laced. This is done in
[HEKL15, def. 3.13]. One obtains these representations by means of embedding g (A) into a larger Kac-Moody algebra g (ﬁ),

where A is a suitable GCM of simply-laced type, a so-called simply-laced cover of A. One then considers generalized spin
representations of £ (A) which is why the general case essentially follows from the simply-laced one.
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3 HIGHER SPIN REPRESENTATIONS 3.1 The %—spin representation S%

because ker p is an ideal (therefore [z, y] € ker p) and the bilinear form is invariant. Since (+|-) is anisotropic on
£ (see [K90, thm. 11.7]) one knows furthermore that ker p Nker p~ = {0}. Next, I will show that ker p~ = {0}.

Assume there exists a Berman generator X; € ker p-. Then, as A is indecomposable, one has that all
X; are in ker pt and hence ker pt = ¢ which shows that kerp = {0}, a contradiction because p is not
faithful (unless A is of finite type which was excluded in the assumptions). Hence, for at least one X; there
exists y € kerp s.t. (X;|ly) # 0. By invariance of the form this extends to any nested Berman element
Xsin) = (X, [X,, [+, X;,]]] which span €. Now one only needs to ensure that this property also holds
for linear combinations Y, ¢; Xg,of such elements. As to each X, there exists y; such that (Xg,|y;) # 0
there exist d; s.t. (Y1, ¢iXp| iy diyi) # 0. Hence, ker p~ = {0}. O

As the standard invariant form of g restricted to ¢ is negative deﬁnitdﬂ t has a completion as a Hilbert
space which I denote by ¢ and from this point of view the case is slightly more complicated. Let X and Y
be Hilbert spaces, then to each operator T': X D D(X) — Y that is defined on a dense subset D(X) there
exists a formally adjoint operator T7* : Y D D(T*) — X and T is bounded if and only if 7* is. As pis a
finite-dimensional representation one has dimY < oo and thus, p* is by default bounded. Therefore, p has a
continuous extension p : Eo End(Y"). Since p is continuous, ker p is closed and one obtains

%:kerﬁ@kerﬁJ'

as an orthogonal sum of vector spaces. Furthermore one has %/ ker p = imp as vector spaces and hence
t = ker p ® imp as vector spaces but that does not imply the same as ideals unless ¢ carries the structure of
a Hilbert Lie algebra. This is never the case if A is of indefinite type, as is shown in [KKLN21l appendix B].

Example 3.5. (Originally due to [DKN06| and [BHPO6], this phrasing is [HKL15| prop. A.14])

Let vy,...,v, € R™ be orthonormal w.r.t. the standard euclidean inner product (-, -) and denote their image
in the Clifford algebra CI (R™, (-,-)) by v1,...,v, as well. A generalized spin representation of ¢ (E,) (R) for
n > 4 is given by

1 1
X — §Ui0i+1 Vi=1,...,n—1, X, — 5’[}11}21)3.

In view of the fact that (X1,..., Xn—1)g = 50 (n,R) this shows quite explicitly that this representation is an
extension of the so (n, R)-Dirac spinor as the definition via X; — %’Uivi+1 is a particularly easy and direct
way to construct it.

Remark 3.6. Note that generalized spin representations need not be unique. Consider for instance AV3, the
affine extension of Az. Then the constructive procedure of [HKLI5| cor. 3.10] provides a generalized spin
representation p for which there exist distinct non-adjacent nodes 4, j such that p(X;) = p(X;). However,
one can check that

1 1 1 1
o (Xh) = 501027 ¢ (X3) = 5”2”3» ¢ (X3) = 5’03@47 ¢ (Xo) = 5”1”4,

where v, ..., vs denote the orthonormal basis elements of R* C CI (R4), also defines a generalized spin rep-
resentation. As all Berman generators have a distinct representation matrix under ¢, the two representations
can not be equivalent.

24Cp. K90, thm. 11.7], the hermitian form on ng ®nC C g(A) (C) becomes a bilinear form on n]ﬁ @®nl C g(A) (R) with the
same properties.
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3.1 The %—spin representation S% 3 HIGHER SPIN REPRESENTATIONS

The way prop. describes generalized spin representations is a local one, as everything reduces to
computations in rank 2 subalgebras. One can take a slightly more global perspective if one allows the root
system of g (A) to play a more dominant role. This can be done by introducing 2-cocycles on the root lattices
and associated linear maps, so-called generalized I'-matrices (this name stems from the origin of these maps
in physics as they occurred first as generalizations of the Dirac-matrices v,).

Definition 3.7. Let Q(A) denote the root lattice of g(A). A map ¢ : Q(A) x Q(A) — Cs is called an
associated, normalized 2-cocycle if

e(a, Be(B,a) = (=)D | g(a,0) =£(0,0) =1 (48)

e(a, Ble(a+ B,7) = ela, B+ 7)e(B,7) (49)
for all o, 8,7 € Q.

One verifies with a short computation that these relations imply

(o, @) = (—1)z(@l) (50)
and
. B) = e(B,a) if (a|f)=0 mod 2
= {_E(ﬂﬂl) if (¢|f)=1 mod 2. (51)

Lemma 3.8. Let A be a symmetrizable GCM with symmetrization A = DB s.t. the invariant bilinear form
on h* described by b;; = (ayley) satisfies (ciloy) = by € 2Z for all t = 1,...,n. Define a bilinear form
e:Q(A) x Q(A) = Z on the root lattice via bilinear extension of

by ifi<j
e, a;) =< 3b; ifi=j
0 ifi>].

Then ¢ : Q(A) x Q(A) — Cy = {—1,1} given by

e (0, ) i= (~1)%
is an associated normalized 2-cocycle called the standard 2-cocycle to Q(A).

Proof. One has
e (i, 05) + £ (aj, ;) = by

foralli,j=1,...,n. For =3" by and v = >_"" | ¢;a; this implies

e(By)+e(v.B) = Zbcj (ai, aj) +Zbcj (aj, ai)

E bicj (e a“aj )+¢ 04J,az E bic;b;;

= (ﬁh) VB,v € QA).
From this one has for all 8,7 € Q(A) that

£(8,7)e(7,8) = (_1)§(577)+§(%ﬁ) _ (_1)(ﬁ|’7)
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which implies together with bilinearity of e. Towards note that

e(a,B) +te(a+B8,y) = e(a,B)+el(e,y)+e(B,7)
= g(a,B+7)+e(B,7)
by bilinearity which implies
(o, B)e(a+B,y) = (71)§(a75)+§(a+ﬁﬁ) _ (71)§(aﬁ+7)+§(ﬁﬂ)
= e(a,f+7)e(B,7) Ya,B8,7 € Q(A).

O
Definition 3.9. (Cp. [KN13, eq. 4.6])) A map I' : Q(A) — C**5 is called a generalized I-matrix if
T(a)0(B) = (-1 T (BT (a) (52)
r(0) =1Id, T(a)* = (-1)*“*" | I(a) =T(~a) (53)
I(a)l(B) =e(a, BT (a + B) , (54)

for all a, B € @ (A) and an associated normalized 2-cocycle e.

Proposition 3.10. A generalized T'-matriz T : Q(A) — C3*° gives rise to a generalized spin representation
p: t—=C .

Proof. One checks with eq. that
['(ei)T () = =T(0y)I (i)

for adjacent simple roots and that
['(ei)l(a ) = T(a;)l(a)

for non-adjacent simple roots. This settles the relevant (anti-)commutators. One then verifies that

1
p(Xi) = §F(O‘i)
provides a proper normalization such that all requirements from prop. [3:2] are satisfied. O

Proposition 3.11. For a simply-laced GCM A , a generalized spin representation p : €(A) — C**° gives
rise to a generalized T'-matriz T' : Q(A) — C*** via

n—1
['(fa;) =2p(Xy), I'(ayg, + 4 ag,) = (H € (s Qiyy + - +Olin)> (i) T (e,)-
k=1

Proof. First of all one checks that equations , 3, are satisfied for o, 8 € Q(A) of height 1 and
2. Note that one can assume o = Z?:l k;a; with k; > 0 w.l.o.g. because I' (—c;) is by definition equal
to I' (av;) and the 2-cocycles do not distinguish between +a; because everything is counted only modulo 2,
as (—1)" = (=1)"" for n € Z. For height 2 one has to check if the definition of T' () for & = ; + o is
unambiguous:

[ (o + o) = € (ai, ;) T (i) T ()
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I'(aj + i) = e (aj,0:) T (a;) T (o) .

If (aj, ;) = =1 then I' (o) T’ (e;) = —T () T’ () from the properties of a generalized spin representation
and ¢ (o, o) € (o, o) = —1 which shows that I' (a; + ;) =T (0 + ). If (a4, ;) = 0 one has € (a;, ;) =
1 =c(aj,0;) as well as T' (o) T' (o) =T (rj) I’ (ov;) which again shows that I' (o + oj) =T (o + a5).

Now assume that equations (52), (53), hold for all o, 3 € Q(A); with ht (o) + ht (8) < n — 1 and
proceed with induction on the height n. In particular one has for all a, 5 € Q(A)4+ with ht (a)+ht (5) <n—1
that

e(@, )T (@) (B) =T (a+p)
is true and hence the definition of I" () for ht (y) < n — 1 is unambiguous. Now take o = a;; + -+ + ay,,

and 8,7 € Q(A)+ s.t. @ = f+ v and assume w.l.o.g. that § contains «;,. One needs to show I'(a) =
e(B,7)T(B)T (v) and to show this one multiplies from the left with I" (o, ):

e(B,7) T (i) T(B)T (v) =€ (B,7) e (e, B)T (B — e, ) T (7)),
where one exploits that ' (a;,) =T’ (—ay, ) and therefore
F'(B—a,)=T(-a +8)=c(~a;,, )T (—a;,) ' (B) = & (a,, B) T (i, ) T (B) .

All the relations used here hold, because the involved elements of the root lattice are of height less or equal
than n — 1. As ht (8 — a;,) + ht () = n — 1 one can now use that

I(B—ai)T(7) =e(B—ai,NI(B—a +7),
so that with e (8 —«a;,,7) =e (B + i, v) and f — oy, + v =0y, + -+ a4,
(B, T (i )T (B)T (v) =€ (B,7) ey, B) e (B+ iy, M T (i + -+ + i)
where now one uses cocycle property to show
e (s, +B,7) =€ (s, B) e (i, B+7)e(B,7)

and therefore
5(5,’)’)8(0@1,5)5(ﬂ+ai1,’y) = €(Oli1,ﬁ+"}’).

Thus,
eBNT ()T (BT (v) = elai,B+7)T (e + - +a,)
n—1
= E(Qiuo‘h +- +ain) (H € (aikvaik-H +"'+ain)> F(ai2)"'r(ain)
k=2
and with

elap, iy ++ai,) = ela,aq;,)e 2oy, i, + -+ ag,)e (i, i, + 0+ i)
(=1)-1-e (o, 0, + - +ai,)

this yields

k=1

n—1
e(B,7)T (e, )T(B)T (v) = — (H e (i, iy iy +...+ain)> T () T ().
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Compare this to

n—1
[(a)D (i + 0 +aq,) = <H & (i, @ig s +"'+O‘in)> T (0:,)?T () -+ T (ai,)
k=1

n—1
= - (H E(aik’aik+1 + +ain)> F(O‘ig)"'r(ain)v
k=1

because I' (ov;,)> = —Id. As left-multiplication with I (o, ) is an equivalence relation, this shows
eBNLBT (V) =T (i, +-- + i)

for all 3,7 of height < ns.t. B+~ =a;, +---+a;,. Now can be used to show via induction since
I'(a+ B) =T (B + «) spells out as

e(@,B)T ()T (B) = (B, )T (BT (a) & T(a)T(B) = (-1 T (B)I(a)
via ([48). One then uses this to compute

I (a+B)?

(e, /)T ()T (B)e (B,a) T (B)T ()

e(a,B)e (B, ) (*1)%(5‘@ (71)%(@1)
(_1)(a|5)+%(ﬂ|ﬂ)+%(a\a) _ (_1)%(a+6|a+ﬂ) .

O

Remark 3.12. Note that even though a generalized I-matrix provides a matrix for every root o € A(A), it
is a priori unclear if p (z) = ¢ (z) - I' (o) for all z € ¢, with a suitable ¢ (z) € K.

Lemma 3.13. Let A be a symmetrizable GCM with the additional assumptions from lemma(3.8 and let & be
the associated standard 2-cocycle. Then a generalized I'-matriz satisfies

T(a+B8)=T(a—pB), T(a+28) = (=) T (a) Va,B € Q(A). (55)

Proof. One has
e+ p)=e(a,B)T(a)T(B), I'(a—p)=e(a,=B)T' ()T (=f)
and due to one has I' (—8) =T (8). As ¢ is a standard 2-cocycle one computes

e(a,=B) = (-1 = (-1)7= ) = (-1 = e (a, )
so that the first part of follows. Towards the second part compute

e (,28) = ()= = (—1)= @ = 12D — 1 va, B € Q(A),

I'(28)

e(B,B)T(B)T(B) =e(B,B) (BT (=B) =¢e(B,B8)e(B,—B) T (0)
e(B,8)e(B,8) = (-1)19)

and therefore

T(a+28) = (a,28)T ()T (28) = (-1 T (a) Va, 8 € Q(A).
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Proposition 3.14. Let A be a symmetrizable GCM with the additional assumptions from lemma[3.8 and as-
sociated standard 2-cocycle . Furthermore, let (p, V') be a generalized spin representation with corresponding
generalized T-matriz T : Q(A) — End (V). For x € ¢, :=¢N (go ® g—_o) one has that

p(x) =c(z) T (a) forclz) e K (56)

Proof. For a € A (A) there exist simple roots 3i,..., 3, € II(A) such that « = 8; + --- + 3,. For such an
ordered decomposition of o set Xz, 1.4 5, = [Xp,,[Xg,.[...,Xp,]...]] as in eq. (I7). Then

p(Xoyo) = g 08 [0 (B2) [ T (8] ]
and since T' (o) T (8) = (=1)P T (8) ' (@) one has

0 if (a|B) €22
o7 ()T (B) if (alB) € Z\ 2Z.

This provides two possibilities for p (Xg,+...45,):

0

p(Xpytoip,) = 2% [T (B1),[T(B2),[... T (Bn)]...]] = {F(Bl)r(52)...p(g )

where the first case applies if there exists 7 such that (o;|a11 + -+ + ap) € 2Z. AsT(a) =T (61)T(B2) - T (Bn)
this shows the claim for elements of £ of the form Xg, 1...;5,. While it is true that these elements span £ it
does not show yet because Xg, ...y, is not necessarily contained in £, but may have parts in (arbi-
trarily many) €5 for 8 < a. Set t<, = P4, tg and let z € €,. Then there exist ordered decompositions

B§j)+~~~+ﬁrgj):aforjzl,...,k, ¢; € Kand r € €., such that

k
DX g spp) =TT,
Jj=1

Recall that the Lie-bracket is filtered w.r.t. A4 (A) as one has for y; € €,,y2 € € that [y1,y2] € tayps @
ti(a—p)- Now the remainder r possesses a decomposition r = @7 Y such that y, € £, is nonzero only if
v < aand o — vy € 2Q(A). This shows with that

k
ple) =D 0 (Xyp i) = plr) = ela) - T(a)

for all = € ¢, for all @ € A (A) via induction on ht (o) because T' (o) = £T' () if « — v € 2Q(A) according
to (55)- O

3.2 The higher spin representations S% and 83

In this subsection I summarize some of the results of [KN13| in the phrasing of [LKI8]. Set A™ > A =
{ar,...,an} U{a; + a5 | (4,5) € £(A)}.
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Proposition 3.15. Let ¢(A) be simply-laced, then a map T : A — End (V) which satisfies

[7(a),7(B)] = 0 if (|B)=0 (57)

{r(@),7(B)} = 7(a%p) if (alf)=Fland ke A (58)

for all o, B € A provides a finite-dimensional representation o of € via the assignment o (X;) := 7 (q;) ®
2p(X;) € End (V ®S), where X1,...,X,, denote the Berman generators of .

Proof. This is [KN13| eq. (5.1)], the above phrasing is as in [LK18]. O

A technical consequence of this is the following
Lemma 3.16. Let 7 : A — End (V) satisfy equations and @ Let (i,7), (j,k) € E(A) but (i,k) ¢
E(A), then
o([Xi, X;]) = 7(i+a;)@2([X; X;]) (59)
o ([Xi, [X5, Xi]]) = 7(ai+ o5 +ar) @20 (X5, [X5, Xi]]) - (60)
Remark. Note that the second factor in the tensor product is proportional to a generalized I'-matrix and
that the prefactor £1 depends on the order of the simple roots.

Proof. One computes
[0 (Xi),0(X5)] = 7() 7 (o) @4p(Xi) p(X;) — 7 (a;) 7 (i) @ 4p (X;) p (Xi
= 7()7 (o) ®4p(Xi) p(X5) + 7 (o) 7 (i) @ 4p (Xi) p (X;)
=7 (a;) 7 (i) @ 4p (Xi) p (X;) — 7 (o) 7 (i) @ 4p (X) p (X))
= {7 (), 7 ()} ©@4p (Xi) p(X;) — 7 () 7 () @ 4{p (X:) p (X;)}
regardless of (i, j) € £(A) ornot. If (i, j) € £(A) as is assumed then {p (X;),p (X;)} =0and {7 (a;) , 7 (e;)} =
7 (a; + o) so that one has
[0 (Xi), 0 (X5)] = 7 (i + ;) @4p (Xi) p(X;)
and since p (X;) p (X;) = 3 [p(Xi) p(X5) = p(X;) p(Xi)] = 5 [0 (Xi), p (X;)] one finds
[0 (Xi), 0 (X5)] = 7 (i + a5) @ 2p ([ X, X;])
as desired. In addition, if 4, j, k are as assumed then
{p(Xi),[p(X;),p(Xe)l} = p(Xi) p(X5) p(Xi) = p(Xi) p(Xk) p(X;)
+p (X5) p (X)) p (Xi) = p (Xi) p (X;) p(X5)
= 2p(Xi) p(X;) p(Xi) + 2p (X;) p (Xi) p (X5)
0
because p (X) p (X;) = p(X;) p(Xi) and p(X;) p(X;) = —p (X;) p(X;). With this and the previous result
one computes
o ([Xi, [X5, Xi]l) = [o(X3),[o(X;), 0 (X)]]
= {7 (), 7(a; +ar)} @4p (Xi) p ([X;, X))
—7 (o + o) 7 () @ {2p (Xi) , 2p ([X;, X))}

= Tlait oy o) @ [p(X0),p (X, Xi)] ~ 0
= 7(+a;+ o) ®2p([Xi, [X;, Xi]])
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This completes the proof. O

There are currently 3 nontrivial maps known (compare [KN17]) which satisfy egs. and , two
of which I have discussed in [LK1§| from a mathematical perspective. Back in 2018 it was unclear how a
“coordinate-free” form of the %—spin representation of [KN17| would look like. It turns out that the perspective
proposed by Paul Levy (see [LK18| rem. 4.2]) is the most useful towards a unified coordinate-free description
of these representations.

Let n : W(A) — End(V) be a finite-dimensional representation of the Weyl group W (A) for a simply-
laced GCM A. Let a, denote real roots with (o, 5) = —1 and let s, denote the reflection w.r.t. «.
Then &, 3 := (sq4,83) is a subgroup of W(A) which is isomorphic to &3, the symmetric group on three
letters. Now &3 possesses three distinct irreducible representations called the trivial, the sign and the
standard representation and denoted by U, U’ and E respectively. All its finite-dimensional representations
are completely reducible. The three conjugacy classes of S3 are given by cycles of different length:

C1:=le], Ca :=[(12)], C3 = [(123)]

and the character table is

L [a]C& ¢
U[1][1]1
U1 [ -1]1
E|2]0 |1

Table 1: Character table of G&3.

Proposition 3.17. (This is [LK18, rem. 4.2 (iv)], which is based on a remark by Paul Levy)
Let n: W(A) — End(V) be a finite-dimensional representation of the Weyl group W (A) for a simply-laced
GCM A. Then .

T:A™(A) = End(V), a—n(sq) — §Id (61)

satisfies eqs. and @) if the restriction of n to any Sy, o, such that a;, o are adjacent simple roots
does not contain the sign representation of S3 as an irreducible factor.

Proof. If (a|B) = 0 then s,, sg commute and so do 7(«), 7(8). For (a|8) = —1 one has

{r(),7(B)}

{1660 - 511(55) - 310}

1 (sa)n(sp) +1(s5) 1 (sa) =1 (sa) —n(sp) + %Id

and with s,43 = 535453 one has
1
T(a+B) =n(spsass) — §Id

so that 7 (a + 8) = {7(a), 7(B)} is equivalent to
0= —n(355a55) + 1 (sa) 1 (55) + 1 (55) 7 (50) =1 (50) =1 (35) + Id.
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For the trivial representation this is easily seen to be true, whereas it is false for the sign representation as
then

—1=n(sgsa3p) = n(sa) =1 (sp)-

One can set up the standard representation as the subspace spang {a, 5} C b*. In this basis one has

(-1 1 (1 0 (0 -1
o= o 1) T\ 1) T o
so that one computes
1 1\ /1 0 1 0\ /=1 1 0 -1 11 1 0
{Sa’sﬂ}_<o 1) (1 —1)+<1 —1)(0 1)‘(1 —1>+<—1 0)‘(0 —1)
0 1 1 0 11 1 0 10
—sa+5+{sa,55}—sa—55+ld = (1 0>+<0 _1>—<0 1)—(1 _1>+(0 1)

= 0.

and

Now G5 has only these three irreducible representations and as any finite-dimensional representation of &3
is completely reducible one concludes that provides a representation if 7 contains no copies of the sign
representation when restricted to Ga, - O

Proposition 3.18. Let Vi := h* and Vs := Sym? (b*) be the dual Cartan subalgebra and its symmetric product
with itself, respectively. Then the standard representation W (A) — O (§*) and the induced representation on
Va contain no copies of the sign representation when restricted to any Sy, o, for (i,j) € E(A).

Proof. For h* and the restriction to &,, o, consider the basis {a;,a;} U {b1,...,by_2} where the b; are
orthogonal to both «; and a;; and m := dim h*. Now span {«;, ¢ } forms a copy of the standard representation
of &4, ., while span {b,...,b,_2} decomposes into m — 2 copies of the trivial representation. For Sym? (6%)
one considers symmetric products of the above basis:

{oviau, aay, ajo} U{asbr, b [k=1,...,m =2} U{bpb |1 <k <1 <m—2}.

Now each byb; spans a trivial representation, while each pair {c;by, a;jb;} spans a standard representation.
For the last piece it is better to use the alternative basis elements {a;a;, aja;, (a5 + ;) (o + j)}. Then
one sees that oo, + oy + (o + ) (o + ) spans a trivial representation while their “trace-free” linear
combinations

{a1 - oyo; + as - aja; +as - (a; + o) (@ + o) | a1 + ag + a3 =0}

form a standard representation. O

Theorem 3.19. Let (n1, V1) and (12, V2) be the representations of the Weyl group from the previous propo-

sition. Then for n € {1,2} the map 7, : A — End(V,,), () = 1 (s0) — 11d satisfies egs. and @
The assignment
O2ngr : Xy = 7 (i) @ 2p(X5),

where X1, ..., X,, denote the Berman generators of £ and p denotes the %—spin representation from theorem
extends to a representation of €. This representation is called the 2”; -spin representation in [KNI1T7]

and [LK18].
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Proof. This is an immediate consequence of the previous proposition because one can apply proposition
whenever the restriction of 7, to &4, o, does not contain a copy of the sign representation. Note that
proposition [3.15] can be applied even if A is not regular. O

The above ansatz does not work for V3 := Sym? (b*), however. This is because for adjacent simple roots
a, 5 one can check that af(a + 3) spans a sign representation of &, g. This sign representation is in fact
the only one that appears in the decomposition of V3, a fact that I will collect for future reference:

Lemma 3.20. For a simply-laced GCM A the induced representation of the Weyl group W(A) on Sym? (6%)
contains ezactly one copy of the sign representation when restricted to &, g for adjacent simple roots o, 3 €
II(A). It is spanned by of (a + B) € Sym® (h*).

Proof. Again one uses a basis for h* that uses «, 5 and elements by, ..., b,,_2 orthogonal to both of them.
Then elements which contain at least one bj, behave like copies of V or Sym?(V') and therefore span trivial
or standard representations according to prop. [3.18 The only subspace left to consider is therefore elements
which contain only « and/or . It is 4-dimensional and one checks that af (a + ) is a copy of the sign
representation. One could try to find a basis for the remaining representations or one can use the characters
of &, 3. One has

Sa @ aaa — —aaa, aaf — aao + aaf,
54 1 af3f = —aaa — 203 — af3B, BBAB — aca + 3aaf + 3aBB + B85,
sg 1 ao — aaa + 3o + 3B + BBB, aaf — —aaf — 2068 — BBB,

sp:aff = aff+B6B, BAL— —BAB,

so that in this basis

11 -1 1 1 0 0 0 0 0 0 -1
0 1 -2 3 3 1.0 0 0 0 1 -3
o=l 0 -1 31”73 21 0o | %70 -1 2 -3
0 0 0 1 1 -1 1 -1 1 -1 1 -1

From this one computes the character of this representation (the class Cs is that of s,ss while that of s, and
Sg is Cg):
x = (4,0,1).

A comparison to the irreducible characters of &3 (cp. table [1)),
XU = (17 17 l)a Xvur = (17 _la 1) y XV = (2705 _1) )

shows that
X = Xvu + Xv + Xv-

Indeed, the sign representation occurs exactly once. O
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3.3 The higher spin representation S%

This section is dedicated to how to fix the Weyl-group type ansatz for extended spin representations of
simply-laced ¢ (A) = Fix,, (g(A)) over the module Sym®V ® S. The main result is thm. which is a

coordinate free version of the %—spin representation described in [KN13]. Throughout, V' := h* denotes the

dual of g(A)’s Cartan subalgebra and (p,S) denotes the }-spin representation of €(A). I will denote the
standard invariant form on bh* by @Q (-,-) in this section because it increases readability in comparison with
(|). The full representation o is given on the level of the Berman generators X1, ..., X,, via

o (Xi) =7 (i) ®2p (X;)
where 7 is defined in terms of the real roots of g(A). According to prop. [3.15] o provides a representation if

[r(@), 7(B)] = 0if Q(e, ) =0 (62)
{r(a),7(B)} = 7(a*p)if Q(a,p)=7F1 (63)

It therefore suffices to consider the map 7 but first, I will review the structure of Sym®V in more detail. Fix
a normalization on Sym®V w.r.t. V®3 by setting

1
Sym®V 3 vy v - vg 1= 30 Z Vg(1) ® Vg (2) ® Vg (3) - (64)
ceS3

As V = b* possesses a non-degenerate bilinear form @ (cp. there exists an induced form on V®3 and
Sym®V given by

1 2
Q(v1-va-v3, ur-uy-uz) = <3,> Yo Qs urm) - Q (Vo) tr3)

o,7T€EGC3

1
- 5 Z Q(v”(1)7u1)"'Q(UU(3)7UB)

foeBs

Let e1,..., e, be a basis of V and set

wij = Q(eney), (W)= (wy) ™" & > whan, =6k, (65)
kol

Definition 3.21. Define the symmetric insertion ¢ : V — Sym®V via

1 m
¥(v) = 3 Z Wo@e,@e+er@v@e +ep@e®0) .
Tokl=1

Symmetric insertions play an important role in invariant theory and one can show that this map does not
depend on the chosen basis (cp. [FH9I, secs. 17.3 & 19.5]). The analogous element in Sym?V, ¥ :=
> whlep ® e, spans the one-dimensional trivial submodule under the action of O(V). Start with an ansatz

Ha) = 58 — %1d+ fla) VaeA™(A), (66)
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where s2 denotes the induced Weyl reflection w.r.t. a on Sym®V. As there is only one copy of the sign
representation it seems plausible to assume f(«) to be of rank 1. T will go even one step further and associate
an element v(a) € Sym3V to a such that setting

fla):=wv(a)-Qv(x)])

in the ansatz solves ([62), (63). The more general approach would be to replace one v(a) by an element
w(a) that can be adjusted independently. However, the result will be that v(«) needs to equal w(«). As the
computation is lengthy, I decided to make it more tractable by assuming v(a) = w(«) from the start. Now
for Sym®V there are only two vectors which are related to o in a meaningful way: caa and ¥ («). Thus, set

v(a) =p-aca+q-Y(a) . (67)
Lemma 3.22. For «, 8 € A™(A) and A simply-laced one has with m = dimV that

s3 (10(B)) =1 (saB)

QW (), () =220 (a,6) . Qaa0,(5) =Q(a,5) -

Proof. The first statement reduces to the two-dimensional case:

Sy Z wrler @ ¢ = Zwkl (Z S(a)’}@ea> ® (Z S(a)3€b>
k.l a b

k=1

Z Wk S ()% S(a)5e, ® ey

k,la,b

g we, @ €p,
a,b

where S(a)%, denotes the representation matrix of s,on h*. The last line follows from the definition of what
it means for a linear map s, to leave the nondegenerate bilinear form @ invariant. Hence, s, intertwines
with 1, i.e. s2 01 = 1) 0 5,. The other statements can be computed directly:

1 m
Q (Y(a),vivav3) = 36 Z Zwle(a®ek®el+ek®a®el+ek®el®o¢,

ceG3 k,l=1

Uo(1) @ Vg (2) © Vo (3))

- ?16 Z Z W™ [Q (a,v(1)) Q (ers Vo(2)) Q (€1, v0(3)) +

c€BG3 k=1
Q (e vo(1)) Q (@, Vo(2)) Q (€1, V0(3)) + Q (er,Vo(1)) Q (€1, V0 (2) Q (@, Vo (3))]
1
= 35 2 [Q(a01) Q (Vo2 Vo3) + Q (2 00(2)) @ (v51), Vo(3)
ceG3
+Q (@, 05(3)) Q (Vo(1): Vo(2))]
|
= 5 2 Qev0) Q (ve@) Vo)
ceB3
1

= 3 (Q (o, v1) Q (v2,v3) + Q (a, v2) @ (v1,v3) + Q (@, v3) Q (v1,v2)]
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For vivov3 = 880 this specializes to

Q (¥(0), 858) = 3@ (0:5) Q(5,5) = Q (a1 ).

since for 8 € A"(A) one has Q (5,8) = 2 as A is simply-laced. Also, one computes
1 ki, ij
QW (), ¥ (B) = 36 Z WwQ(a®er e tep@a®e +ep,@e @ a
klyi,j
ﬁ®ei®€j+ei®ﬂ®6]‘+€i®€j®ﬂ)
1 -
= 3 D WM [Q (o, B) wiiwij + Q (o, €:) Q (ex, B wij + Q (a, €5) wii Q (e, B)
kylying

+Q (ex, B) Q (v, €5) wij + wii @ (@, B) wij + wiiQ (v, €5) Q (e, B)
Q (ex, B) wii@ (a, €5) + wii@ (er, B) Q (v, e5) + wiiwi; Q (o, B)]

1 ..
- 36 3Q (047 ﬁ) Z 4 Wklwzjwk:iwlj + 6Q (Oé, 6)
k,l,i,5
1 m+ 2
= —(3 6 =—F
2 Bm+6)Q (0, 8) = T2Q (. 5),
where one uses - y A ,
> wHutnany = 3 s = S = 6=
k,li,j k,ij ki i

O

Theorem 3.23. Let A be a simply-laced GCM and let p denote the %-spin representation of €(A) from
theorem [3.3. The assignment

o(X;)=7(;)®@2p(X;) Vi=1,...,m
on the level of Berman generators extends to a representation of €(A) if T satisfies the equations (@ and
@). The ansatz from eq. @ is

m(a) = 53 — %Id +v(a)Q (v (a)|) € End (Sym3 (b)) Ya € AT (A)

with v (a) = p- aaa+ q - (). This ansatz satisfies the equations (@ and @ if one fizes p and q to be

(e ==+1, m :=dimb)
12 F 24/6(m + 8) 1
€ y Pe = E—=.
(m+2)V3 V3
The representation is denoted by S% in the remainder of the text and called the %-spin representation as in

J[KN13|.
Proof. In the ansatz (66]), eq. (62) spells out to be

q+ (pe) = — (68)

[7(), 7(B)]

58— 31d+ f(0), 5} — 3 Td + /()

= [s3,53] + [s2, £(B)] + [f(a), s3]
+[f(a), £(B)]
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which needs to vanish for @ («, 8) = 0. In the case of Q («, 8) = F1 one has

{7(@), 7(8)} ;

{sg L a fa) s - %1d+ f(ﬁ)}
{st- grast - Jraf + (st s} + (50,53
(@), B} - fl@) ~ £(3)

1

!

This equation is satisfied if and only if
3 1 3 1 3 1
safild,sﬁf §Id + T (a, 8) :saiﬁf§fd, (69)

where

T(a,8) = {s0: f(B)} + { ()53} + {f(a), f(B)} — fla) = F(B) — f(a£B) . (70)

By lemma one has sg (v(a)) = v(a) for all g s.t. @ (o, 3) =0 as well as Q (v (a),v(8)) = 0. Thus,
the commutation relation is satisfied because the Weyl reflections s, and sz commute as well. For the
more interesting case of Q («, 5) = F1, eq. needs to be satisfied. From prop. it is known that

1 1 1
3 3 3

and image of T (a, 8) (defined in eq. (70)) must be the subspace of Sym®V which is spanned by the copies of
the sign representation of &3 = (sq, sg). From lemma one knows that there is only one copy and that
it is spanned by af(a + 8). One computes

holds on all representations of &3 = %, sp) which do not contain the sign representation. Hence, support
70)

sSvB)=v(Bta)=2v(a£ph)=—-Q(x,B) v(atp)

as well as

v(B)-Q (v(ﬁ), s3 (uluQU3)) = v(B)Q (v(sah),urusus) =v(B) - Q (v (B £ a),urusus)
= —Q(a,8) v(B) - Qw(axp),urusuz) Yujugug € Sym®V .

Thus,

{sa. FB)} +{f(a),s}} = v(a)-Qu(axh),)+v(axp) Qv(a),)

—Q(a,p)-v(B) - Qv(axp),) —Q(x,fB) - v(atp)-Q(f),) -
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With this, one determines 7' (a, 8) to be

T(@.f) = {sa:fB®)}+{f(e), 55} +{f(a), F(B)} = fla) = fla) = f(a £ )

= v(@)-Quaxp), ) +v(atp) Qv(a),)-Q(xf) v(B) Qv(atp),)
—Q(a,f)-v(a£p)-Qv(f),")
+X (0, 8) [v(a)- Qv (B),")+v(B) Qv(a),)]
—v(a)-Q(v(a),) —v(B)-Q(f),) —vlaxp) - Qv(a£p),)

= v(@)-Qu(atpf)+ X (,p)v(B)—v(a),")
+u(8) - Q (X (a,f)v(e) = Q(a, B)v (£ ) —v(f), )
tu(@tf)-Qv(a) - Q. f)-v(B) —v(atp), ).

Now the demand that T («, 8) may only be supported on the sign representation which is spanned by the
vector V,, 5 := - B - (o £ B) for Sym®V leads to three equations:

vieExB)+ X (a,B)v(B) —v(a) = ki-Vapg,
(@) =Q(a,f)v(axp)—v(B) = ko-Vagp,

X (o, B)w
v(@) =Q(a,B)-v(B) —v(a£B) = ks Vag,

which is equivalent to

viaxp)—v(a)+ X (o, 8)v () ki - Vapg,
~Q(a.B) [v(a£8) = QB X (@B)v(@) +Qa,h) v (B)] = ke Vap,
—[v(a£p) —v(a)+Q(xf) v(B) ks - Vag
By the definition of v(«) and linearity of ¢ one has

vla£f) —v(a)+Q8)v(d) = p-|(@£p)’ —a®F ) +q-[(aEp) —via)F V()]
1
=F

= 3plkaaf+aff]=+3p-af(a+p)

= _Q (aa 6) ' 3pVo¢,ﬂ-
Therefore, one has to demand that

X (e, 8) = Q (e, B)

in order to satisty all three equations concerning the support of T («, 3). The following computation shows
that this solves the corresponding problem towards the image as well.

T(a,8) = v()-Q(atf)+ X (a,p)v(B) —v(a), )
+o(8) - Q (X (o, B)v(a) = Q (e, B)v(a£p) —v(B), )
to(axp) Qv () —Q(,B) v(B) —v(atp), )
= —Q(a,B) 3p-v(a) Q(Vags,-)
+3p-v(B) - Q Vas, ) + Q(a, 8) - 3p-v(a£B)-Q(Vags, -)
= 3p-(fv(a) +v(B) Fv(axp)Q Vags, )
= —9p? Vap - QVag, ).
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3.3 The higher spin representation S% 3 HIGHER SPIN REPRESENTATIONS

One computes with lemma that

Q(a),v(B) = Qpaca+qy(a),pBBB+qv(B))
= p°Q(aaa, BBB) + paQ (Y(a), BBB) + pa@ (acer, 1h(B))
+4°Q (Y(), ¥ (B)

= Q.8 +20Q (0, 0) + ¢ T2Q (0,5, ()
so that
X (o, 8) =Q(v(a),v(B) =Q(xf)
is equivalent to
P ropg+ P2 (72)

12

Now that v («) has been determined so far as that T («, 3) has correct support and image, one needs to fix
p? in the ansatz for v(a) such that it solves eq. . For this one needs to evaluate all maps on V, g:

1 1 1
3 3 3
|:{Sa — ijd, 8,3 — ZId} + T(O[,B):| Va’ﬁ = |:SO¢:|:,8 — 2]d:| Va’ﬁ

3
Vap = —§Va,ﬁ

3 2
& |?' <—2) _9p2Q (Va>B7VO¢”3>

9 3
& (—18p2+>va,ﬁ =0

2 2
1
2

RN I

P 3
o pr = £ (73)

p:t ﬁ M
Plugging this into eq. and solving for ¢ yields
12F 24/6(m + 8
qx (pe) = —¢ ( ) (74)
(m+2)V3

O

For later use in section [4] it is convenient to collect the behavior of powers of f (a):

Lemma 3.24. Let (0, S%) be the I-spin representation described in thm. |3.25 For o (X;) =7 (o) ®2p (X;)

with 7 (a) =1 (sa) — 31d + f (o), where 1 is the induced representation of the Weyl group on Sym? (b*) and
f(a) € End (Sym?’ (h*)) as in @) and @ one has

f(@)? =4f(a) Ya € AT (75)

Proof. According to the ansatz one has f(a) = v(a) - Q(v(a)]) € End (Sym3 (b)) with v (@) =
p-aca+q-(a). As o is assumed to be a representation on must only consider the values

b _ _12F2,/6(m +38)
pi—i\/? q+ (pe) = —¢ 1 2)V3
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4 LIFT TO THE GROUP LEVEL 3.4 Further representations

according to prop. One immediately sees that

F@)?=v(@)-Q(a)|v(a) Q(@])=a-f(a)
and together with one has

m—+ 2
a = Q(v(a)7v(a))=8p2+4pq+q2T
2
B §7412:F2\/6(m+8)+(12;2\/6(m+8)> m 4 2
3 3(m +2) (m +2)23 6
8 48 8 6(m—|—8)+24+4(m+8):F8\/6(m+8)
3 3(m+2) 3(m+2) 3(m+2)
8 244+4m+32—48 8  4m+8 12
3 3(m +2) 3 3(m+2) 3

3.4 Further representations

So far, any attempts at extending the ansatz to higher powers Sym™ (h*) or other Schur modules S (h*),
where A is some partition of n, have failed. The reason is usually that the number of copies of the sign
representation exceeds the number of free parameters in the ansatz. An indicator of why the representation
S z is somewhat special is that the occurrence of exactly one sign representation is universal, it does not
depend on h*. In any other case I studied, the number of sign representations depended on the dimension
of h*. Another approach could be to study representations of the Weyl group that are not some Schur-
module of h* and therefore not obtained from the natural action on h*. However, these approaches limit
the spectrum of the Berman generators very much. In section I will show that the € (Eo) (C)-module Sz

contains so (10, C)-weights such as 2wy + o which would be impossible for any ansatz 7 (o) = n(so) — 21d as
in order to achieve a weight such as 2w; + « the map 7 () needs to have the eigenvalue 3 for some «;.

4 Lift to the group level

In this section I will show that the higher spin representations lift to the spin group Spin (A) for any simply-
laced GCM A. I will start with reviewing the construction of Spin(A) (in section which was introduced
in [GHKW17| and its relation to the “maximal compact subgroup” K(A) of the minimal split-real Kac-
Moody group of type A. For A indecomposable and simply-laced I will show that any finite-dimensional
representation (p, V) lifts to Spin(A) and formulate a criterion when it additionally lifts to K(A) (prop. [4.8).
I will apply this criterion in section to show that the higher spin representations lift only to Spin(A) in
propositions and which hence justifies the term spin representations. In section [£.3] I will use this
lift to deduce the form of representation matrices o () for all =, € €, with a € A’ up to constant nonzero

scalar multiples (see propositions and {4.17).

4.1 Maximal compact subgroups and their spin covers

The goal is to formulate a criterion (prop. that allows to check if a given finite-dimensional representation
(p, V) of £(A) lifts to the maximal compact subgroup K (A) of the split-real Kac-Moody-group &(A) or to
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4.1 Maximal compact subgroups and their spin covers 4 LIFT TO THE GROUP LEVEL

its spin cover Spin (A). In order to provide a description of these groups via amalgams and their properties
I will follow [GHKW17] closely. In particular, I will use the definitions and notations of [GHKW17].

Definition 4.1. (Amalgam of group@ Let I be an index set and let G;, G;; for ¢ # j € I be groups with
monomorphisms wfj : G; = Gyj. The set

A= {G;,Gij,¥ili #j €T}

is called an amalgam of groups and the wfj are called connecting homomorphisms. If G; = U for all
i € I then A is called an U-amalgam over I. It is continuous if all G;, G;; are topological groups with
continuous connecting homomorphisms ;.

Definition 4.2. (Universal enveloping group Let A = {Gi, Gij, wfj|i +£j€ I} be an amalgam of groups
and let G be a group together with a set of homomorphisms 7 := {7;; : G;; = G} such that 7;; oq/)jfj = Tik owfk
foralli # j # k € I. Then (G, 1) is called an enveloping group of A with enveloping homomorphisms
;5. It is called faithful, if all 7;; are injective. An enveloping group (G, 7) is called universal if there exists
a unique epimorphism 7 : G — H such that m o 7;; = 7;; for all i # j € I, whenever (H,7) is an enveloping
group of A.

It is true by universality that two universal enveloping groups of an amalgam are uniquely isomorphic.
One particular choice is the canonical universal enveloping group (CUEG) which is defined as in [GHKW17]
as

G(A) := < | Gijlall relations in Gyj, Vi#j #k, Vo € G, : ¢l (z) = gj(x)>. (76)
i#jel
According to lemma 1.3.2 of [IS02] the CUEG is indeed a universal enveloping group as the name suggests.
Usually, split minimal Kac-Moody groups over a field F associated to a Kac-Moody algebra g(A)(F) are
defined via the constructive Tits functor (see [T87]). As I am only interested in the simply-laced situation
over F = R or C I will use a different approach. Let II be a two-spherical generalized Dynkin diagram with
GCM A, &; = SL(2,F) split and &;; the split algebraic group over IF of type Ily; j;, where Iy, ;1 denotes
the subdiagram of II corresponding to the vertices ¢ and j. Each ®;; is generated by its two fundamental
root groups which define canonical inclusion maps (;Sﬁj : ®; — 6,;;. From the main result of [AM97] it follows
that the split minimal Kac-Moody group & over R of type II is a universal enveloping group of the amalgam
A= {®;,6;;,¢};}. Thus, one can identify the split minimal Kac-Moody group & over R of type II with this
amalgam. One can now introduce involutive automorphisms on &. The relevant involution in this case is
the Cartan-Chevalley involution 6 on & which is the analogue of w on g. Since & has a presentation by its
rank 2 subgroups one can define § on the ®;; and extend it to &. One simply demands that 6|e,; coincides
with the Cartan-Chevalley involution on the classical split-real Lie group &;;. The fixed-point subgroups Qﬁfj

coincide with the classical maximal-compact subgroups. Hence, it is natural to wonder whether &? can be
described by the universal enveloping group of an amalgam of the 05%. I will collect the relevant results from
[GHKW17] concerning this question.

In the simply-laced situation the rank 1 groups G; := Qﬁf are always isomorphic to SO(2) while the rank
2 groups Gyj := 65% are isomorphic either to SO(3) or SO(2) x SO(2). For a simply-laced GCM A € Z™*"

25Compare def. 3.1 and remark 3.4 of [GHKWI7]
26Compare definitions 3.5 and 3.6 of [GHKWI7]

43



4 LIFT TO THE GROUP LEVEL 4.1 Maximal compact subgroups and their spin covers

denote by II its generalized Dynkin diagram with edges £. With I = {1,...,n} set

SO(3 if (i,5) €&
Gij = ( ) 1 (Zd) c (77)
SO(2) x SO(2) if (i,5) ¢ €
For a general group H set
i1: H— HXH, h (h,e), ia: H— H x H, h+— (e, h). (78)

Let €12 : SO(2) — SO(3) describe the embedding via the upper-left SO(2)-subgroup and let ea3 : SO(2) —
SO(3) describe the embedding via the lower-right SO(2)-subgroup. These maps should be intuitively clear
from a presentation of the involved groups via matrices and I refer to [GHKW17, sec. 5| for a fully rigorous
introduction of them.

Definition 4.3. (Standard SO(2)-amalgamg®)Let A € Z"*" be a GCM and II its generalized Dynkin
diagram with labels I = {1,...,n}. An SO(2)-amalgam with respect to II and the chosen labels is defined
to be an amalgam

A={G:i=50(2),Gy, ¢li #j € I}
with Gy; as in and such that for all i < j € I

€12 (SO(2)) if (4,7) €
i (S0(2)) if (i,]) ¢

The standard SO(2)-amalgam with respect to IT and the chosen labels is defined as the amalgam

e23 (S0(2)) if (i,5) € €

9% (SO(2)) = { i2 (SO(2)) if (i,5) ¢ €.

o 0l (50(2) = {

A(H7SO(2)) = {GZ = SO(Q)erjv(szh 7&] € I}

with G; as in and for all i < j € I:

. e ifGg)e€ o = e if (i,5) € €
Vi i) e Y i i (44) €.

It is shown in [GHKWI17| as consequence 9.5 that the labeling of the generalized Dynkin diagram is
irrelevant for the isomorphism type of the standard SO(2)-amalgam and its CUEG@ A general SO(2)-
amalgam and the standard SO(2)-amalgam do not need to be isomorphic. However, this is the case if the
connecting homomorphisms are continuous (cp. [GHKWIT, thm. 9.8]) and therefore, the standard SO(2)-
amalgam A (II, SO(2)) is the unique up to isomorphism SO(2)-amalgam with respect to IT with continuous
connecting homomorphisms. It is pointed out in [GHKWI7, rem. 9.2] that the restriction to continuous
connecting homomorphisms is natural in the Kac-Moody setting with 2-spherical diagrams because split-real
Kac-Moody groups and their maximal compact subgroups carry a natural topology, known as the Kac-
Peterson topology, that induces the Lie topology on their spherical subgroups (cp. [KP83| and [HKM13]).

The embeddings €12, €25 : SO(2) < SO(3) have canonical counterparts €12, €23 : Spin(2) — Spin(3) (cp.
[GHKW17, lem. 6.10]) and one defines the standard Spin(2)-amalgam w.r.t. II accordingly:

27Cp. [GHKWIT, def. 9.1]

281n fact I have dropped some subtleties concerning the diagram’s labeling in the above definition to begin with because of
this consequence. Also, I have not defined what it means for two amalgams to be isomorphic. For this section it suffices to
understand this as equivalent to an isomorphism of the CUEGs.
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4.1 Maximal compact subgroups and their spin covers 4 LIFT TO THE GROUP LEVEL

Definition 4.4. (Standard Spin(2)—amalgan@ Let A € Z"*™ be a GCM and II its generalized Dynkin
diagram with labels 7 = {1,...,n}. Set

G, = {Spm(s) if (i,5) € & 79

Spin(2) x Spin(2),/((—1,-1)) if (i,5) ¢ £.
A Spin(2)-amalgam with respect to IT and the chosen labels is defined as the amalgam
A={G; = Spin(2),Gij,di;li #j € I}
such that for all ¢ < j € I

€12 (szn(?)) if (7,,]) S
i1 (Spin(2))  if (i,j) ¢

€93 (Spin(2)) if (i,5) € &

oL (Spin(2)) = { iz (Spin(2)) if (i,5) ¢ £.

o 0,(50(2) = {

The standard Spin(2)-amalgam with respect to II and the chosen labels is defined as the amalgam
A(IL Spin(2)) == {G; = Spin(2), Gy, o};li # j € I}

with G;; as in and for all i < j € I:
i e if (i) e& o = €os if (4,5) €&
Ul it () ¢ €T de if (4,9) ¢ €.

Just as in the SO(2)-case one can show that the labeling does not matter (JGHKW17, cor. 10.7]) and that
any continuous Spin(2)-amalgam with respect to II is isomorphic ( [GHKW17, thm. 10.9]) to A (I, Spin(2)).

Definition 4.5. (Spin group w.r.t. II @For a simply-laced GCM A with associated generalized Dynkin
diagram II, define Spin(II) as the CUEG of the standard Spin(2)-amalgam A (II, Spin(2)).

Now two important results are

Theorem 4.6. (Cp. [GHKWI7, thm. 11.2])Let A be a simply-laced GCM with generalized Dynkin diagram 11
and & the minimal split-real Kac-Moody group of type A. Then the mazimal compact subgroup K (I1) := & is
a faithful universal covering group of the standard SO(2)-amalgam A (I1, SO(2)), where 0 denotes the Cartan
Cheuvalley involution on &.

Theorem 4.7. (Cp. |[GHKWI, thm. 11.17])For a simply-laced GCM A with generalized Dynkin diagram
IT the group Spin(I) is a 2"™-fold central extension of K(II) where n is the number of connected components
of II.

I would like to formulate a criterion that allows one to check the lifting properties of a given finite-
dimensional representation p : € — End(V').

29Cp. [GHKWIT, def. 10.1]
30Cp. [GHKWIT, def. 11.5]
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4 LIFT TO THE GROUP LEVEL 4.1 Maximal compact subgroups and their spin covers

(b LX]I)Z —~
t; — End(U) & K;

o,
on| ¢ |ow O I

[?J ? GL(U) Ezg [?ij

.

Figure 3: The various exponential maps and homomorphisms between Lie algebras and groups form com-
mutative diagrams due to the properties of finite-dimensional Lie-groups.

Proposition 4.8. Let A be a simply-laced irreducible GCM with generalized Dynkin diagram I1. Let p :
€(A) (R) — End(V) be a finite-dimensional representation then one of the following two cases occurs:

—1Id
exp (27mp (X)) = { Vi Viel, (80)
Idy
where the X; denote the Berman-generators of €(A) (R). The representation p lifts to a representation )
of Spin(II) in both cases but it lifts to K (II) only in the second case. As only one of the two cases can occur
it suffices to check the exponential on a single Berman generator.

Proof. Denote by ¢; := (X, : j € J) the canonical subalgebras generated by the subdiagram JcI If Jis
spherical and (¢,U) is a f.d. irreducible representation, there exists a Lie group K with Lie algebra €; and
an exponential map exp, : £; — K, together with a group homomorphism  : K; — GL(U) such that the
first diagram in figure [3|commutes. Since every finite-dimensional representation of £; is completely reducible
the same is true for p. As SO(2) = U(1) = Spin(2) one has for any rank 1-subdiagram that p lifts to the
desired group because one can adjust the normalization in exp,. In the rank 2 case there occur differences
when (i,j) € €. There, p always lifts to Spin(3) as it is the fundamental cover of €; j; = s0(3). This lift
is compatible with the adjoint action on £; ;1 and since X; and X; are conjugate via the adjoint action of
Spin(3), one has that exp (2mp (X;)) = +Idy implies the same for X;. As the diagram is irreducible and
simply-laced X; can be conjugated to X; for j € I arbitrary via successive conjugations inside rank-2 groups
Kjljz'

If a restricted representation py; ;3 also lifts to SO(3) can be determined by any 1-parameter subgroup
due to conjugation. The adjoint action of s0(3) on itself lifts to SO(3) and therefore is suitable to determine
the Berman generators’ normalization w.r.t. exponentiation. Recall that [X;, [X;, X;]] = —X so one has

2

n o 2n+1
exp (¢ adx,) (X;) = Z(( 0 X+Z e . x)
n=0

_ o (6) X, +sin(6) X0 X,

This shows that the exponential of the ady, is 2n-periodic and hence, any representation that lifts to SO(3)
has to satisfy case two of (80). Conversely any representation that falls under case one of does not
lift to SO(3) but only to Spin(3). Now similar to the proof of theorem 11.14 of [GHKW17| these lifts

induce enveloping homomorphisms 7 = {Tij : I?ij — GL(V)} of the amalga A (II, Spin(2)) in case one

31Gince the Lie algebra is called &, I replace the names of the G;; from definitions 1) and 1) by K;; and R’ij respectively.
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4.2 Lift of higher spin representations 4 LIFT TO THE GROUP LEVEL

of and 7 = {r;; : Kij = GL(V)} of A(I, SO(2)) in case two of (80). Towards this one identifies the
K for |J] < 2 with their exponential image of £; under exp; : 5 — K; which induces canonical connecting
monomorphisms ¢, : K; — K;; that are compatible with exponentiation, i.e., ¢}; 0 exp; = exp;; o (¥;),

(see the second diagram in figure . Then the 7;; : K;; — GL(V) can be defined via 7;; (exp,; () =
exp (p(x)) Va € £ ;1 and because p is globally defined on £ one has

Tij © W:j (exp; (z)) = exp (p(z)) = T, © wfk (exp; (z)) YV € .

4.2 Lift of higher spin representations
Given a higher spin representation o (X;) := 7 (o) ® I' (a;) as in and set

Y (@) :=exp(¢-0(Xy)). (81)

Proposition 4.9. Let (0,V) be the - or 2-spin representation of € (A) (R) from theoremfor A simply-
laced. Then one has

Li(g) = [cos (¢) cos (‘5) - 1d ® Id — cos (¢) sin (‘5) IdOT (o) +
sin () sin (2) 0 (s) ® Id + sin (@) cos (ﬁ) n(s)®T (ai)} , (82)

and (o,V) lifts to Spin (A) but not to K(A).

Proof. One has for the 3- and 2-spin representation with 7 (a;) = n(s;) — 3, 7 ()" = a(n) + b(n)n (s;) and
T (0;)*" = (=1)" that

Ei(¢) = ZET(%)“@’F(O@)”

_ iﬂ (2n) - Id®Id+Z(2 )+¢1)jn (2n+1) - Id@T ()

_|_
= Ai(9)- Id®1d+A2(¢)‘Id@r(ai)‘f'As((b)' (i)®1d+144(¢)'77(5i)®r(0@)7

with - - )n o - ¢2n
A1(¢):aw( z;) 2n+1 a(2n + 1),
A3<¢>:2(‘(12>n)‘!“b< =3 e aan +1),
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One determines with () =0 for &> n and of = ¢ that
ror = (n0-3) =3 ({) et
- ;i (3¢) s 27+ ,i () oo (7
= (" Li:o () o om0 (547 ) <—2>2“] |
Nowset ()= (142" = 5 (1) # = £ (1) # and note hat?)
gmm = 2 )+ 73], Ti}@mﬂzm“ = L) - e

From this one finds that

k=0
S (o) 2t =g s =5 (5) -5 ()
This yields ) o s\ ) [\t g 241
a<2n>—2'[<z> “(3) ]’“@"“*z'[@ ()|
bamy = L. W" (g)ﬂ b=t [(;)2”“ e ]

Now

X1\ 42n X1\ 420
a0 = 2 ln = Ly LU

= 1sin<¢>—1sin<3¢>
T2 2 2 2

32For a holomorphic function f with Laurent series f (z) = > 0% ;anz™ and a g-th root of unity w one has in general that
>0 o Agm4pzd™TP = é Zg;é wkPf (wF . 2). For ¢ =2, w = —1and p = 0,1 this specializes to the expressions below.
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S - 15 C0 e (1) (3]

As ()

Il
N
o
o
w0
VR
IS
N———
|

[\
Q
o
[
7N
w
I\D‘& |

As(9) = Z%Wb@n—kl) _ %ZM
. 2 .

Use the trigonometric identities:

sina +sin 8 =2 - sin (Oé—;ﬁ> cos <a;6> , siha —sin 8 = 2 - cos (W) sin <a§ﬁ>

cosa + cos 8 = 2 - cos (M) cos (a—ﬁ>’ cosacosﬂQosin<a;6>sin<a_6>

2 2 2

to obtain
_ ¢ _ (¢ o s g ¢
A1 (¢) = cos (¢)-cos 5 ) As (¢p) = — cos (¢) sin 5 ) As (¢) = sin (¢) sin 5 ) Ay (@) = sin (¢) cos 5 )
Now for ¢ = 27 one has A; = —1 while A, = A3 = A4 = 0 so that
exp(2m -0 (X;)) =—-Id® Id

which in combination with prop. shows that these representations only lift to Spin(A). O

The representation (0’, Sg) has a slightly modified structure compared to S% and Sg. Iftn: W — GL(V)
denotes the action of the Weyl group on V for V € {f)*, Sym? (h*), Sym? (h*)} then

o(X;)=7() @7 (e;), 7()=n(84)— %Id—kf(a) Va e Alf

according to , where f («) is a linear rank one map for all o € A’ with the following propertieﬁ

fl@)?=a-f(a), n(sa) f(@) = f(@)n(sa) = = (). (83)
Denote 7 () :=1 (so) — 31d, then one has
7(0) f(0) = (0) 7 (a) = —5  (a). (84

330ne has a = 4 according to eq. {75) but one can do this computation for a general a and I will comment on possible other
values for a later on, so I will leave it undetermined for now.
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4 LIFT TO THE GROUP LEVEL 4.2 Lift of higher spin representations

which provides

r@" = )+ )" Xn:<Z)?(a)""“f(a)’“—%(a)"+zn:1(z> <—2>n_ka’“f(a)

Si(0) = exploo(X Z 2 (@) ®T (an)"

& 2n 2n+1

- Z ¢ ()" @ Id + Z 72) fl; ()" @ T (o)
n=0 ’
oo 2n 2n+1

- Z ¢ 7 (o)™ @ Id + Z )+¢1)T ()" @ T ()
n=0 ’

=3X;($)
_1\™ i2n 2n 2n

+at D o™ (12)n)qf l(a - ;) - (2 ] flow) © Id

)
|37
+at [sin ((a— 3) ¢> + sin (;;5)] [ (i) @T ()

where ¥, (¢) coincides with the expression from for a different 7 : W(A) — GL(V). From prop. [.9 one
knows that 3; is 4m-periodic as the proof only relies on the fact that 7 is a representation of the Weyl group.
The periodicity of the remainder in the above expression depends on the eigenvalue a of f (04)2 = af(a).
Hence, with a = 4 from eq. one obtains

51 () =54 (6) + [cos (;0;) ~ cos (;QS)} fla)eld+ g [Sin (2¢>) +sin <3¢>} fla)®T (),

which shows that il is 4m-periodic as well. Note that in comparison to the %— and g—representations the
highest “frequency” that occurs is g and not % For the special case € (E19) this frequency is connected to the
different weight structure of the module under its so (10)-subalgebra. The “highest” highest weights that occur
in 83 and So are wy +« and wo+a respectively, where I chose the order such that o > 8 > w3 > ws > wi1. Now
Whlle S z exhlblts the so0 (10)-highest weight w3 + «, there exists a highest weight vector vay, 4+ to the Welght

2wy 4+ « as well. The action of H; = —iX1 on vay, 44 18 dlagonal with eigenvalue (2w; + ) (H;) = 2+ 2 5= %

which is consistent with the above occurrence of the frequency in the exponential.

50



4.3 Compatibility with W*Pi* (II)-action 4 LIFT TO THE GROUP LEVEL

The eigenvalue a = 4 is indirectly fixed by the demand that o defines a representation of €. If one does not

take this fact into account and determines the adjoint action ; (%) o (X;) %; (—Z) one finds (after a tedious

computation) that the result is proportional to o ([X;, X;]) only if @ = Omod 4. As the action realizes the
action of the (spin-extended) Weyl group if 3; defines a representation, this constrains the possible eigenvalues
of f(a) to 4Z. For future reference:

Proposition 4.10. Let (o,V) be the %—spin representation of € (A) (R) from prop. for A simply-laced.
Then the lifts 3; to the fundamental rank 1-groups are given by

% (6) =% (¢) + i [cos <;¢> — cos <‘;’¢>} f (o) ®Id+ i [Sin (2(;5) + sin (‘;’gbﬂ [ (i) ®T (o), (85)

where ¥; («) is as in with the induced representation of the Weyl group n : W(A) — GL(Sym® (h*)).
The I-spin representation (0, S%) lifts to Spin (A) but not to K(A).

4.3 Compatibility with W™ (II)-action

In this section, the goal is to show that the higher spin representations behave well with the action of the
spin-extended Weyl group introduced in [GHKW17| sec. 18]. This result is used to derive the representation
matrix of x, € ¢, for « € A" up to a sign.

Let A be a symmetrizable GCM with associated generalized Dynkin diagram II, set

(i) 0 if A;j is even
n(i,7) =
P10 i Ay is odd

and recall the m;; from eq. . The Weyl group W (II) is not contained in the minimal Kac-Moody group
G (II). Given the adjoint action or in fact any integrable representation 7 of g one can set

t; = expm (f;)exp (—7 (e;)) expm (fi)

which have the property that the weight spaces V) of the representation are conjugated like (cp. [K90, lem.
3.8])

ti (Va) = Vs, (86)
where s; denotes the simple Weyl reflection s; € W (II). To each integrable representation (m, V) one
associates a group G™ < GL (V) which is generated by the expw (¢f;),expm (¢a;) and expm (¢e;) for
¢ € K. The t; now generate a subgroup W (II) < G™ which contains an abelian normal subgroup D™ = (7).
If ker m C b one has that W (IT) /D™ = W (II) (this is [K90, rem. 3.8], originally due to [KP83]).

Without reference to any representation I use the definitions of the extended Weyl group We** (II) and
the spin extended Weyl group WP (II) from [GHKWIT, def. 18.4]:

Definition 4.11. The extended Weyl group We (II) to the generalized 2-spherical Dynkin diagram II
is defined by its presentation (n := |I|)

(T1) W (TT) = (ty,...,t,] ti =eViel, (87)
— 2n(z,5 . .
(T2) ey =" it e, (88)
(TS) tit]‘ti e = tjtitj - Vi 75] S I> . (89)
N——
my; factors my; factors
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4 LIFT TO THE GROUP LEVEL 4.3  Compatibility with WsPin (IT)-action

and similarly the spin-extended Weyl group W*Pi" (1) is defined by

(R1) W™ () = (ry,...,rn| 3 =eViel, (90)
(R2) r]._lrfrj = r?r?n(i’j) Vi#jel, (91)
(R3) Ti’l“jTi"':TjTiTj-~'Vi7éj€I>. (92)
—_—— —
my; factors my; factors

From [KP83, cor. 2.4] together with a few steps explained in [GHKWI7, rem. 18.5]) one has that

Wweet (TI) = W (II) as defined above for representations 7 that satisfy kerm C h. Now as a matter of fact
K (TI) contains We®! (TI) and its spin cover Spin (II) contains WP (II). In order to see this one first defines
the following subgroups of Spin (II) and K (II):

Definition 4.12. (Cp. [GHKWI7, def. 18.3]) Let II be a simply-laced generalized Dynkin diagram, let
A (11, Spin(2)) be the standard spin-amalgam of type IT with connecting monomorphisms qﬁﬁj :G; — Gy, and
let A (I, SO(2)) be the standard SO(2)-amalgam of type II with connecting monomorphisms ¢}, : G; — Gi;.
Denote the enveloping homomorphisms of the amalgams by 1@]» : G‘ij — Spin (II) and v;; : G;; — II. As in
[GHKW17, 8.1] denote by S : R — Spin(2) and D : R — SO(2) the 2w-periodic covering mapﬁ For i # j
set

Py = i 0 G (S (%)) . W) = (#]i € ) < Spin (1),

5= vyool (D(3)), W= Glien < k).

Note that W (IT) = We=t (IT) by [KP85, cor. 2.4] together with [GHKWI7, rem. 18.5] as mentioned
carlier. For W (IT) one has from [GHKW17, thm. 18.15] that w (IT) = W*P (II), where the isomorphism
is given by #; — r; for all i € I. Now the spin representations of € lift only to Spin (IT) which is a central
extension of K (II).

Proposition 4.13. The adjoint action of Spin (I1) on € factors through the natural projection ¢ : Spin (II) —
K (IT). Furthermore one has an action on g via

Adg (x) = Adyg) () Vg € Spin(Il), x € g. (93)
This action satisfies for r; € WP (1)
Ady, (00) = Guy Ve € A (94)
and for allw € W (I) and o € A there exists & € WP (I1) such that Adg (8a) = Guw.a-

Proof. The adjoint action of Spin (II) on ¢ factors through ¢ because ker ¢ is central. Therefore, the adjoint
action of W*P'" (II) on g factors through the projection to We®! (II) (the observation that the center Z = ker

cos a sin

34Explicitly one has D(a) = (7 sino  cosa

) and S(a) = cosa + sin aejez, where e1, ez € Cl (RQ) are orthonormal w.r.t.

the euclidean form.

52



4.3 Compatibility with W*Pi* (II)-action 4 LIFT TO THE GROUP LEVEL

lies inside W*Pi™ (1) is [GHKWI7, 18.11]) and that We! (II) acts like (94) has been mentioned earlier in
(86). According to [KP85, cor. 2.3 b)] there exists a unique map from W (II) to We*! (II) such that

e — e
S, — ot
ww' = o il (wd) =1 (w) + (W)
This way it is always possible to find a word w in W**! to a reduced word w € W. Since any ambiguity in
WsPin (II) conmsists of central terms and therefore is removed by the projection to W% (II) one can just fix
the following translation for a reduced word w € W (II):

W= 84, -8, > W =14 -y, € WP (T
O

This implies that one can perform all W (II)-conjugations of root spaces by the action with W Pi® (1)
as well. In the following I will show that such conjugations on ¢ behave well with the %—spin representation

(sé : p).

Lemma 4.14. Let II (resp. A) be simply—lacecﬁ and let p : ¢(A) — End(V) be a finite-dimensional
representation that lifts to K (II) or Spin (II), where the lift is denoted by Q). Then one has

p(Ady (2)) = 2(9) p(2) 2(9) ™" Vg € Spin (IT), Var € E(A).
Proof. According to [K90, (3.8.1)] one has

exp (p (a)) p (z) exp (—p (a)) = p(exp (ad a) (z)) (95)

for all a,z € ¢ such that p(a), ad(a) and p(z) are locally nilpotent. As pointed out later in [K90. sec. 3.8]
the above formula is also correct if p(a) is locally finite and the span of the ad(a)™(z) for n € N is finite-
dimensional, which is in particular the case if ad(a) is locally finite or locally nilpotent. This is true because
in the derivation of one uses the binomial formula of associative algebras,

in combination with the exponential of linear maps exp(a) = > -, %a". The necessary rearrangements of

the two infinite sums is easy for locally nilpotent maps because then only finitely many terms are relevant.
If the maps are only locally finite, one can still rearrange the terms because for any v € V or z € ¢, the
evaluation of the exponential can be done on a finite-dimensional vector space where it exists unconditionally.
Therefore, eq. is satisfied for all ad-locally finite elements a € £ because V is finite-dimensional. The
elements of ¢(A) which are ad-locally finite include the Berman-elements z, = e, — w(eq) for a € A”¢
because the e, are locally nilpotent for o € A’°. In particular, all a € €; for J spherical are ad-locally finite,
where £; = (X;|j € J CI) and J is called spherical if the corresponding sub-diagram of II is a spherical
Dynkin diagram. For J spherical, there exists a well-defined exponential map expy : ;5 — K, where K

35The proof also works for 2-spherical and symmetrizable but as I have not introduced the groups K(IT) and Spin(II) for
diagrams that are not simply-laced, I will only discuss the simply-laced situation.
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4 LIFT TO THE GROUP LEVEL 4.3  Compatibility with WsPin (IT)-action

PJ
EJ — End(U)

eprl O lexp

J

Figure 4: The above diagram commutes because the involved Lie groups and Lie lagebras as well as the
representation are finite-dimensional.

can denote either the maximal compact subgroup K; < G or its spin cover. For connected compact Lie
groups the exponential map is onto, so that any g € K; can be written aﬂ g = exp;(a) for a € t;. Denote
the restriction of Q to K; by Q2 (the restriction of p to €; will be denoted by p; if necessary) and note that
it satisfies (in other words, diagram |4| commutes)

Q(g) =y (exp,(a)) = exp (ps(a)) = exp(p(a)) Vg =exp,a € K.

With this compute for all a € £5,2 € £

- exp (p(a)) p(x) exp (—p(a))

195)

D) (e (ad o) (@)

P (Aduxy, (1)) = p (Ady ()

The penultimate equality holds because for finite-dimensional Lie groups the exponential map intertwines
with finite-dimensional representations of the group and the Lie-algebra and hence, Ad, exp and ad form a

commutative diagram here. As any g € K (IT) or Spin (II) is a finite product of elements in the fundamental
rank 1 subgroups this shows the claim of the lemma by applying the above equation finitely many times. [

Q2 (expy(a)) p(2)$2s (exp,(a))

Lemma 4.15. Let (8%,,0) be a generalized spin representation of ¢(A) as in def. with generalized
I'-matrices according to prop. for A simply-laced. Set

Ti(¢) = exp (¢ p(Xi)), (96)
then one has for all « € A

I'(«) if (alay) € 2Z

BT ()F9) = {cosqb T(a)+sing - -T(a)T (o) if (a]ay) €2Z+1

I'(a) if (a]ay) € 2Z

e = {E(Oéi,a)r(si-a) if (alag) €2Z+1"

where € : Q (A) x Q (A) — {1} is the standard normalized 2-cocycle from lemma and r; ==7; (%) are
the generators of WP (A) on the representation side.

360ne does not really need this fact in such a strong version, it suffices to note that for a connected finite-dimensional Lie
group any element can be written as the product of finitely many exponentials.
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4.3 Compatibility with W*Pi* (II)-action 4 LIFT TO THE GROUP LEVEL

Proof. One has p(X;) = 3T (a;) and so the exponential is given by
7: (20) ;== exp (2¢ - p(X;)) = cos ¢ - Id + sin ¢TI («;) .
Then
7i(20) T ()75 (20)7 = exp (20 p(Xi)) D(e) exp (=20 p (X))
= cos? ¢-T(a) —sin® @I (o) T'(a)T (;)
+singcosg (T (1) T (a) T (@) T ()
= cos?¢-D(a) —sin? ¢ (a;)° T ()
—sin? ¢I' (o) [T (@), T ()]
+singeos [T (1), T ()
= T'(a)— (sin® ¢l (o) +singcos o) [ (), ()]
From one has that
o if (a|ay) € 2Z
I (@), T a)] = {—2r ()T (a) if (a|os) € 27+ 1
and therefore with 2T" (o;) T (o;) T () = —2T" («v) one has
~ a7 -1 _ F(Oé) if (a|ai) € 27
P (20) T ()7 (26) {(1 —2sin® @) I' () + 2sin g cos ¢ (o) T () if (afey) € 2Z + 1.

With cos? ¢ — sin? ¢ = cos 2¢, 2sin ¢ cos ¢ = sin 2¢ this simplifies to

I (a) if (afa;) €22
cos2¢T (o) 4+ sin 24T (o) T () if (a]ey;) € 2Z 41

Furthermore, with (54)), and (ala;) € 2Z + 1 and one has

7 (20)T (a)7i (20) " = {

IF'(a)T'(a) = e(o,0)T (i +a) =¢(a;,a)T (a—a;)
= el >r( e )

= e(a;a)T (s.0)
while for (a|a;) € 27

Pa) =1 (o= 2100 ) — (i),
so that in total
T (s;.a) =T (a) it (a]ay) € 2Z

~ -~ -1 _
7 (20) T ()7 (20) = {COS 20T (@) +5in 26 - € (o, @) T (s;.0) if (ala;) €2Z+1°

Now r; =7 (g) generate WP on the image side, so that one obtains the desired Weyl-group-like conjuga-
tion

T () r=? I (a) if (a)a;) €2
ner {5(%04)F(8i-04) if (ala;)€2Z+1"
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4 LIFT TO THE GROUP LEVEL 4.3  Compatibility with WsPin (IT)-action

By the I'matrix calculus from lemma one knows that p (z,) for 2, € €N (ga D g—o) is given by a
generalized I'-matrix, i.e.,

p(ra) =c(za) T (a),
with ¢ (z,) € C. However, one does not know when ¢ (x,) # 0. The next proposition answers this question
for some cases. The previous lemma basically implies that ¢ (z,) # 0 depends on the orbit of the Weyl
grou

Proposition 4.16. (Cp. [KN13]) Let (S%,p) be a generalized spin representation of ¢(A) for A simply-laced
and indecomposable. Let 0 # x € ¢, then

pl@)=c-T(a) st.c£0ifae A™(A), p(x)=0 if a is an isotropic root.
For a,f € A" s.t. a — 3 € 2Q(A) and 0 # x, € £, and 0 # xp € ¥g there exists c € K\ {0} s.t.

p(aa) =c-plas).

Proof. Let T' and € be as in the previous lemma then one obtains the representation matrices of £, , with

lemma [ 14] as
p(Ads (22)) = p(Ads (22) = Q@) p(22) 2 (@)

where @ € W (A) and @ € W*P"(A) are the corresponding elements to w € W (A) from prop. Since
AT =W(A) - {aq,...,an}, all &, for « € A" are conjugate to &,, for any ¢ € I (A is indecomposable and
simply-laced). As £,, = K- X; and the p(X;) # 0 because of p(X;)*> = —11d one has p(z) # 0 for all
0#£zet, for all « € A™.

If o, 8 € A™ such that 27 := a — § € 2Q(A) then

I'(a)=T(8+27) = (-1 ()

by and since p (o) = ¢ (zo) T (@), p(xg) = c(x3) ' (B) with ¢ (z4) # 0 # c(x3) one knows that the two
are proportional.

For an affine null root ¢ the space €5 is spanned by all [zq,,Zs—q,;] for i € I. Now (a;]6 — a;) = —2 and
therefore [I' (a;) , I (6 — ;)] = 0 which shows 5 C ker p. In fact the same argument works for any affine null
root n - 4. According to [K90, prop. 5.7] any isotropic root is W (A)-equivalent to an imaginary root whose
support is a sub-diagram of affine type, hence any isotropic is W (A)-conjugate to an affine null root n-4. By
prop. one then has again that

0 (Adz (25)) = p (Ads (@05)) = 2(@) p (25) 2 (@) = 0.
O
Proposition 4.17. {Cp. JIKN13]) Let o : ¢(A) — End(V) ® End (6%) denote the 3- , the 5-, or the

%—spm representation (cp. thms. and . Let 0 # x4 € t, for a € A", then there exists c¢(xy) # 0
s.t.
o (zq) =c(zq) 7() T ().

Furthermore, if x, is conjugate to X; for some i € I, then c(z,) € {—1,+1}.

3TMost of these statements can be found in [KN13] in one way or another. The focus here is more on the Weyl group than in
[KN13] and I do not need the assumption that it is possible to write any positive real root v in the form v = a + 3, where a, 8
are positive real roots.

38The idea to use the root lattice of E1p as a way of parametrizing the Z-spin representations of £ (FE1o) first appeared in

2
[KN13]. The authors checked that the root-dependent formula is correct for all suitably normalized Berman-elements z € o
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4.3 Compatibility with W*Pi* (II)-action 4 LIFT TO THE GROUP LEVEL

Proof. Denote the lift of o to the group Spin(A) by % for Sa and Ss and denote the lifts to the fundamental

rank 1 subgroups of Spin(A) by ¥;. For & 1 denote the lift of o by Z because the formulas for S7 will split
into a piece that is identical to that of S: 3 and an additional term. Then prop. provides the formula

S (¢) = [cos((b)cos((;)-Id®ld—cos(¢)sin(;b>-Id®F(ai)+

sin (¢) sin (3) -1 (8;) ® Id + sin (¢) cos (;b) n(s)®T (ai)}
for S 3 and S 5 which specializes to

™

¥ (:lzg) = % n(s)@UIdET (o)) .

For & 7 prop. 4.10] provides the following formula for the lift of o:

= 1 5 3 1 5 3
500 =200+ g oo (50) oo (55)| 1@ @10+ 3 sn (50) +an (30) | r@a 0T a0,
where ¥, (¢) is the same expression as above. This expression specializes to

5, (ﬁ:g) -, (ﬁ:g) - % ) (s1) ® (Id £ T (o))

because cos (i%’) = cos (i‘%ﬂ) and sin (i%’r) = —sin (i%”). As X; (resp. 3 ) is 4m-periodic, the X; (g)
(resp. X; (g) ) generate the spin-extended Weyl group W*P™(A) on the representation side. As in the
previous proposition one uses that one can obtain the representation matrices of W-conjugates via

0 (Ads (2a)) = 0 (Ads (2a) = S (@) 0 (22) S @) ",

where @ € W' (A) is the image of & € W*P""(A) under projection. Now one computes

i (g) o (X;) X (—g) %77 () ® (Id+T (a;)) - 7 (o) ® T () -1 (s5) @ (Id — T (a;))

= %(77(81) 7(a;)n (si)) © (Id + T (i) T () (Id = T (i)

and

(Id+T ()T (o) (I1d - T(a)) = T(a;)+T ()T (a;) ~ T (a)) T (a > I ()T (o) T (@)
2T (ay) if (aila;) =
= 92 T'(a)T(a;) if (aufaj) =

=e(o,05)T(ait+ay)

with o € A7 and ht(a) < 100. Their argument for an extension to all real roots is to decompose “a given (positive) real root «
into two other (positive) real roots 8 and v by a = 8+ +” (J[KN13, p. 18]). When I started investigating these representations
I could not find a proof of such a decomposition, although its existence appears very reasonable in the simply-laced situation.
During a discussion with the first author of [KN13] he came up with the idea of using Weyl group conjugation to show that this
parametrization holds for all real roots. This proposition fills in all technical details that one needs to do so. A key ingredient
is that one can achieve the action of the Weyl group via the action of W3P(A) and that this action is compatible with the
representation. Hence, one needs to build the bridge to [GHKWTI7| in order to have a firm grip on W*Pi"(A) and Spin(A).
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For S5 and Ss one has 7 () =1 (s;) — 11d and therefore

neorann(s) = i) (n(s) - 514) n(s) = (ssys) - 314

1
= 1N (Ssi.aj) - Eld = T(Si.aj).

For Sy one has 7 (a;) =17 (s;) — $Id+ f (o) with f (o) = v (a;) Q (v () ]|-) and v (a;) as in eq. From
lemma it follows that 7 (s;) v (o) = v (s;.a;) and so one computes
n(si) flag)n(si) = n(si)v(a;)Qv(ag)])n(si)
= v (si.0) Q (v (si0y)[-) = [ (siy)

and

D7) () = ns) 1) - 51+ £ (@) n(s)

= n (Ss,;.aj) — %Id+ f (si.aj) = T(Si.Oéj) .

In total this provides

v i T (si.05) @ T () if (a]aj) =0
Zi (5) o (X)) % (_5) - {f(ai,aj)(?(si-o‘j) T (o + ) i (qilay) = -1

for Sz and Ss as well as for Sz because 3; (£Z) =% (+£%) and so
2 2 2

)P (g) o(X;)%; (7g> =c-7(s;.05) ®T (s5.5) ,

where c is either 1 or € (o, ), hence ¢ = £1. Now this implies
(@) (X)E@) " =c-7(wy) @7 (way), (97)

where ¥ now denotes the lift of any S» for n = 3,5,7 and w € W is the projection of &. As any real root
space g, is W -conjugate and hence, W*P™"-conjugate to a simple root space g,, and the same is true for
t., eq. implies that all 0 # xz, € £, for o € A" have a nontrivial image because the multiplicity of real
roots is equal to 1. O

5 Decompositions of the £ (£) (C)-module S» under so (10, C)

In this section, I will alternate between studying the higher spin representations S 3 and & 3 for general £(A)
and for the example of €(E1o). I will analyze how the higher spin representations Sz and S of £ (E1o) (C)
decompose under restriction to so (10,C) which will reproduce some results of [KN17]. The representation
S1 of € (E1g) (C) is not irreducible under so (10, C) but splits into two irreducible parts I'q @& I's denoted by

their respective highest weights o and 8. Under € (F1o) (C) and € (E19) (R) however, it is irreducible. The
same holds for S 3 whose decomposition into irreducible so (10, C)-modules is given in prop. In prop.
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I furthermore provide a general criterion on the GCM A that ensures irreducibility of S 3. The module
S% splits into an invariant copy of S% and its orthogonal complement gg, called the trace-free part, is also
invariant if the GCM A is regular (see prop. . The trace-free part §% can be irreducible or not even
for A of classical type as is shown in the remark of prop. [5.10] so here no general statement is possible
but the question can be reduced to the question of W (A)-irreducible submodules of Sym? (h*). Theorem
shows that for £ (FEp), the trace-free spin representation S 3 is irreducible and furthermore provides its
decomposition into irreducible so (10, C)-modules.

5.1 The 2-spin representation of ¢ (F)

As a vector space the € (F1g)-module is 8% =~ h*®.S, where S = C3? is the module of the %—spin representation.

On b*, the action basically works via Weyl-reflections and elements in ¢ (Ag) (C) only include the reflections

$1,...,89. Hence there should exist an W (Ag)-invariant subspace of h*:
Lemma 5.1. There exists a vector v € b* such that s; (v) = v for all i =1,...,9. This vector is unique up
to scalar multiples and in the basis {a1,...,a10} of b* it is given by
7 14 10
=c-|=-,—,7,6,5,4,3,2,1, — 98
/U C (3’ 3 ) ) ) b b ) ) ) 3 > ( )

Proof. Note that s; (v) = v is equivalent to (v|e;) = 0. This makes v any solution of
(vlag) =0fori=1,...,9

and since the aq, . .., ag are linearly independent and (+|-) is non-degenerate these equations define a dim (h*)—
9 = 1 dimensional subspace. Let v = Z}il a;o; then

(ai|v) =0 & —a;—1+2a; — a1 =0fori=4,...,8
and

2@9—&8:0, 2@3—&2—&4—@10:0

20,2—@1—(13:0, 2&1—@2:0

This implies
ag = 2(197 ar = 2a8 — ag = SCLQ, ag — 2(17 — asg = 4(197

ag_ = (k+1)ag for k=0,...,6 , az = 2a; .

Using the equation 2ay — a; — asz = 0 then yields a; = Zag and ultimately one finds

3
10
a10:2a3—a2—a4=§a9
so that _— 10
=c- (=, = 4,3,2,1, —
v & <3? 377?6557 737 7 53>
for c € R, C. O
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Remark. Note that (v|ayg) =c- (=7 + £) = —1c so that for ¢ = 3 one has
Ves = (7,14,21,18,15,12,9,6,3,10) = —wyg , (99)

where wyg is the 10-th fundamental weight®] of Eyq.
With v as above one has for i = 1,...,9 that

c(XDves=7()vR20(X;))s=v@p(X;)sVseS.

As p was initially defined such that its restriction to € (Ag) (C) coincides with the classical spin representation,
one recovers just that.

Proposition 5.2. Upon restriction to so (10, C) the generalized -spin representation of £ (E1o) (C) over the
module S% =V ® S contains a copy of the %—spm representation I'q ® I'g. The corresponding highest weight
vectors in the so (10, C)-module are given by v ® s, and v @ sg, where v L spanc {oq, g, ..., a9} and sq, s
denote the highest weight vectors in S.

There are still other so (10, C)-irreducible parts contained in the %spin representation. Consider the set of
vectors a1 @sy where sy is a weight vector to the weight A € Ay (T'y) , Aw (I'g). Then (recall H; = —iXs;_1)
one has

U(Hj)Oq X s\ = 7'(042]‘,1)011 ® 2p (Hj)SA =2\ (Hj) -T(agj,l)al & Sx

—3)\(HJ‘)'O(1®S)\ j=1 (100)
/\(Hj)~ozl®s>\ ]:2,,5

Hence, these vectors are hp,-diagonal. In order to be a highest weight vector it is also required that
o (ew) oy ®sy=0for j =1,...,5, where v; denote the positive simple roots of Ds. So one could determine
the action of the Chevalley generators e,,, ..., ey, and see if there is a vector a; ® sy with these properties.
However, one can proceed more generally and find the highest weight vectors with less computational effort.

First, spell out V ® S in a basis that is diagonal w.r.t. the action of hp,. Let ¢1,...,t5 € V be pairwise
orthogonal and orthogonal to a1, as,...,a9. Then

BZ{0417043,...,ag}U{tl,...,t5} (101)
is an orthogonal basis of V.

Lemma 5.3. For V =b* and S the generalized %—spm representation’s module, the action of hp, is diagonal
on elements of the form w ® sy, where w € B and sy € S is a weight vector to the weight A € A (T, & 'g).
The Ds-weight system of the €(E1o)-module Sy is

5
1
A% = {2 Z%’Li | at most one a; = +3, the others + 1} , (102)
i=1

where as usual L; € Y, are defined via L; (Hj) = 0i5.

39Tn general, the fundamental weights are defined by w; (a}/> = 4;; but for the simply-laced case this is equivalent to

(wilag) = 645
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Proof. As
o(Hj)w® sy =1 (agj—1)w®2p(Hj)sx =2\ (Hj) T (agj—1) w & sy

and 7 (@2j—1) = Say,_, — 31d one has

—§w ifw= Q251

T(Oégj_l)’w = {1 2

sw ifweB\{ag1} .

Since B is a basis of V' and S decomposes into weight spaces this clearly provides an hp,-diagonal basis for
V®S. Now
o (H]) Q91 X 8\ = (1 — 46”) A (H]) S Q91 @ Sy

and so possible modifications to the weights of A (I'y, @ I'g) consist of multiplying the prefactor of up to one
L; by —3. Since (cp. [FH91l ch. 20])

5
1
AT, ®Tg) = {2ZaiLi | ai,...,a5 € {il}}
=1

this provides all the weights of V' ® S to be as in eq. O

Now that a decomposition of V' ® S into weight spaces has been obtained, determining its decomposition
into irreducible so (10, C)-modules is equivalent to finding all highest weight vectors in V ® S.

Proposition 5.4. The vectors a1 ® sy, and a1 ® Sy, , where \y = f —w1, A2 = a — wy, are highest weight
vectors to the weights B + w1, a + wy respectively.

Proof. Highest weights A of Dy have the shape (cp. [FH9I, chps. 18 & 20])
A:n1L1+n2(L1+L2)+n3(L1+L2+L3)+%(L1+L47L5)+%(L1+L4+L5)

and the only weights in A% for which the coefficients of Lq,..., L4 are positive are of the shape a + alL;
or 8+ aL; for some i € {1,...,5} and a € {0,1}. The only highest weights that can appear this way are
L1+ a=w; +a,w + 8, aand . So given a weight vector vy = w ® sy to the weight wi + « or wy 4 5 one
can immediately conclude that this vector is a highest weight vector. Now observe that

1 1 1

Moo= —glit (Lt Ls+La) —gLls=f—Li=f-w €A(la)
1 1

Ay = _§L1+§(L2+L3+L4+L5):0‘_L1:O‘_wleA(Fﬁ)

have the property that multiplying the coefficient of L; by —3 yields the weights 8 + w; and « + wy respec-
tively@ Therefore a1 ® sy, and a1 ® sy, are HWVs to the weights § + w; and « + w; respectively. O

Proposition 5.5. The 2-spin representation Ss of € (E1o) (C) is irreducible. Upon restriction to its so (10, C)-

subalgebra it decomposes as
S% g50(10,((:) Fa 5>} Fﬁ © Fa+w1 ©® Fﬁerl .

40Gince I'y and I'g are conjugate to each other, Ay € A (F/;) if —X2 € A(Tw) and so one sees that —A\2 = —a + L1 is located
at depth 6 whereas A\; is located at depth 4 in the weight diagram (cp. figure .
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50 (10, C)-weight diagram of ',

A=%<G1L1+"'+G5L5) H

(@1 az asz a4 a5)

(+1 +1 +1 +1 +1)

(+1 +1 +1 -1 —1)

(41 +1 —1 +1 —1)

(+1 -1 +1 +1 —1) (+1 +1 -1 =1 +1)

L

(-1 41 +1 +1 1) |(+1 =1 +1 =1 +1)

_———

(=1 +1 +1 —1 +1)

(+1 =1 =1 +1 +1)

(-1 +1 —1 +1 +1)

(+1 -1 -1 -1 —1)

i

(-1 +1 -1 —1 —1)

e

(-1 =1 +1 —1 —1)

(-1 =1 41 +1 +1)

(-1 —1 —1 +1 —1)

(-1 —1 =1 —1 +1)

Figure 5: The weight diagram of the irreducible representation T'y, of 50 (10,C). The lines that are drawn
indicate which simple root has to be subtracted to descend to the lower weights. For example the very first

line starts at position 5 to indicate that v5 = L4 4+ L5 needs to be substracted. Recall that the other simple
roots are given by v, = L; — L;y1 for i =1,... 4.

62



5.1 The 2-spin representation of £ (E1o) 5 DECOMPOSITIONS

Proof. There are two complementary subspaces of h* ® S that are invariant under s0(10,C). The first
is spanned by elements of the form V; := {v® s | s € S} where v is the vector from lemma that is
orthogonal to aq,...,a9. The subspace V5 :={a; ® s | s € S,i=1,...,9} is also invariant under so(10, C),
because s;o; € span {a1,..., a9} foralli,j € {1,...,9}. Since dim Vi +dim Vo = 1-324+9-32 = 320 = dimS%
one concludes that 8% = V1 & V5 as an orthogonal direct sum of so (10, C)-modules. Note that orthogonality
is defined w.r.t. the standard inner product on .S and the invariant bilinear form on h*. The invariant bilinear
form on h* is indefinite but one has that its restrictions to K - wyg and K{aq,..., a9} are non-degenerate so
that h* splits into orthogonal complements

One had already seen Vi = S 2 T, ©I'5 as s0 (10, C)-modules in proposition and from proposition
it follows that Vo = I'4y, @ I'gyw,. The last equality follows from dim (Tqqw, B Tgtw,) = 2- 144 =
288 = dim V5. Thus,

S% =50(10,C) Lo ®Tg ®layw, ®T4w, -

Given the vector v = —w1o from lemma [5.1] eq. one notes that

1 1
7 (a10) (v) = 5” — aqo (a1olv) = 51} + a1

and therefore
o (Xi)v®s=v®p(Xio)s+2a10®p(Xi0)s .

€T, @ ¢r. T

Since the %—spin representation is known to be irreducibl it has to mix I', and I'g and therefore there
needs to exist s € S such that p (X10) s # 0. Displaying o (X10) as a block matrix

7(%u) = (§ ) € Hom (T ©T5) & (Tasr © i) (103

this shows that B is non-zero and A can not be decomposed, meaning it is irreducible. Observing that
7 (a10) (a3) = Las + a1 shows that (v|7 (a10) (a3)) = 1 and therefore

o (Xi)azs®s=a®p(Xio)s+2v®p(X)s

where a is the part of 27 (a19) (vg) that is orthogonal to v. Now a3 ® s € T'qyw, @ gt for all s € S and
by the properties of p one has p (X10) s # 0 for all s # 0. This implies that C in eq. is nonzero. Since
the weight vectors to I'o4.,, and I'g4., are of the form o; ® sy, a; ® s, with ¢ =1,...,9, A a weight of I'g
and x a weight of I', one can again rely on p to mix between I'y,,, and I'gy,, so that D is also irreducible.
This shows that the 3-spin representation is irreducible as a € (Fyg) (C) —representation. O

There exists an alternative way of showing irreducibility that relies certain polynomial identities of the
representation matrices and I will use variants of this trick again in section [6.2

41This follows for instance from [AKLI5, thm. A] which says that the image of £ (E10) (R) under p is isomorphic to so (32).
After complexification this acts irreducibly on S = C32. One can also use prop. to show this. The commutation relations
satisfied by X4 are not compatible with the weight system of a single highest weight module w.r.t. Ds because £Ls ¢ Q (Ds).
Hence, X10 o< X4 + X_ has to mix the highest weight modules I'y, and I'g of 50 (10,C) in S = T'o, ®T'g.
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Lemma 5.6. Let (0,V ® S) denote the 3- or -spin representation of € (A) (K) for A simply-laced. Then
one has for « € A’° and X, € ¢, s.t. (Xo|Xo) = (Xi|X;) for somei=1,...,n that

5 : 7 3 5 41
0(X,)? = <77(sa) — ) @1d, 0(Xa)’ = =20 (Xa) + -I1d®2p(Xa), 0(Xa)' = -2 (n (Sa) — ) ®Id
4 4 4 2 40
2 7 20 41
Id®p(Xa) =30 (Xa)® + 57 (Xa), n(s0) ®Id=—"F0 (Xa)* — <5° (Xa)? (104)
Id® Id = ga(xa)‘br %Oa(xa)? (105)

where n denotes the representation of the Weyl group W (A) on V. Hence, for all w € W(A) there exists
y1 €U (B) s.t. 0 (y1) =n(w) ® Id and for all x € ¢ there exists yo € U (£) s.t. 0 (y2) = I[d® p (z).

Proof. One has from prop. [£.17] that

7 (%) = (n(s0) ~ 3 ) & T(@) = (n(s) -~ 3 ) 20 (X2).

where the prefactor is just a sign, because X, has the same norm as X;. One now computes

P05 = (nisu) ~ 3) ©Co (% = (ns0) -2 014,

o) = (6= 5) (16 = §) @200 = (5 - o)) @20 (%)
= 1 (nlw) - ) @20 (%) =~ o (Xo) + 2100 2 (),

5\ 5 25
(n(sa)—4> ®Id= (—277(sa)—|—1+16> ® Id

5 41
2 eI
2 (’7(8“) 40) @ 1d

and from there (104)) and (105 follow. As the s; generate W(A) and the X; generate £ one can always find
y1,y2 €U (€) s.t. o (y1) = n(w) @ Id and o (y2) = Id ® p (x) which completes the proof. O

Q
S

R

S
I

Lemma 5.7. Let A € Z™*™ be a simply-laced generalized Cartan matriz of full rank and let b* be the dual
Cartan subalgebra to a realization of A. Then h* is an irreducible W (A)-module.

Proof. Assume that h* contains an invariant submodule V' that is not all of h*. Because the invariant bilinear
form is nondegenerate for any 0 # v € V there needs to exist ¢ € {1,...,n} such that (v|o;) # 0. Hence
siv =v — (v|e;) a; € V by invariance but then also «; € V because (v]a;) # 0. But W (A) .o; = A™(A) and
so V = b*in contradiction to the original assumption. Hence, h* is an irreducible W (A)-module. O

Remark. Note that the assumption about full rank is necessary. In the affine situation one has that K- d,
where § denotes the null root, is an invariant subspace of h* as a W(A)-module.
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Proposition 5.8. Let A € Z"*™ be a simply-laced indecomposable GCM of full rank greater than two. Then
there exists an irreducible generalized spin representation S% and the € (A)-module 8% is irreducible if built
on this irreducible S%.

Proof. First of all, why can S% be assumed to be irreducible? According to thm. (originally [HKL15,
thm. 3.14]) the image of p : £(A) — End (Sé) is semi-simple if A is such that to each ¢ there exists j

with a;; odd. This is the case for A simply-laced, indecomposable and of rank greater than two. Hence,
S% is a finite-dimensional imp-module and therefore completely reducible. One now restricts to an arbitrary
decomposition factor in order to obtain an irreducible generalized spin representation.

In view of lemmas and the irreducibility of S% follows from the fact that h* is an irreducible
W (A)-module and that S 1 s irreducible as well as long as one can show that any nontrivial submodule
needs to contain an elementary tensor a ® s € h* ® S%. This is because then one has

UBU CU(E) (a@s) =UW(A){a} oU (&) {s},

where the last equality follows from lemma As U (W(A)){a} is a W (A)-invariant submodule of h* one
deduces from lemmathat U (W(A)){a} = b* and the same argument shows U (¢) {s} as S1 was assumed
to be irreducible.

Now let U be an invariant submodule of S 3 then for now one can only assume the most general form for

u € U, where m = dim (S%> and {by,...,by} is some basis of S%:

U = Zn: idicjai ® bj eU. (106)

i=1 j=1

Under the proposition’s assumptions one knows from thm. that the image of p : €(A) — End (8%) is
semi-simple. As S 1 is an irreducible finite-dimensional imp -module it is a highest weight module w.r.t. 6,

where h is a Cartan subalgebra of imp. Denote the triangular decomposition of imp by n_ & f) ®n,. Then
the basis {b1,..., by} of S% can be assumed to be a weight space basis and the decomposition 1} can be
rewritten as

m(\)
u = Xn: Z Z dicg.’\)ai ® bg)‘) eU,

i=1 \eP j=1

where P denotes the weights of S% w.r.t. h Since any weight A can be written as A = A — Z§=1 ki7y; with

k; € Ng and 71,...,7 the simple roots of imp, the depth |\| = 22:1 k; provides a partial order on the

)

weights. The above decomposition contains one or more bg-A of maximal depth, where different weights A of

the same depth may occur. To each of these bé’\), there exists an element esr’\’j) € ny s.t. esr’\’j)bg’\) = ngj\j)bA

with Hg»,)}) = 1 is equal to the highest weight vector, because by is up to prefactors the only nontrivial

primitive (w.r.t. imp) vector of S1. Furthermore, one has that eﬂr)"j)bg“’i) =0if A # pand || < |A,
which is again a consequence of by’s uniqueness. From lemma one knows that there exists y € U (£) s.t.
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o(y) = Id®p( O )> and therefore

m() n m(A)
P = XY el (B =303 ddnla by
i=1 AeP j=1 =1 j=1
n m(X)
= ZZdC(A) ]kaz Rby =v®bp € U.
=1 j=1

Note that one can find e(f’k) s.t. v # 0 because otherwise there exists e.. € U (ny) s.t. e w with

w = ng(f) cg)‘)by‘) is a nonzero primitive vector that is not proportional to by which is a contradiction.
Hence, U contains an elementary tensor and by the argument given at the beginning of this proof this shows

that U must be all of S%. O

Lemma 5.9. Let A be a simply-laced indecomposable GCM. Then the generalized spin representations (U, S%)
of €(A) (R) for n € {3,5,7} admit a contravariant bilinear form, i.e., a nondegenerate bilinear form (-, )
with respect to which the representation matrices o (X;) of the Berman generators are skew-adjoint.

Proof. Denote the module Sz = V ® 5, where V' is some symmetric power of h* and S is the %—spin
representation of £(A) (K). Since A has no isolated nodes, the %—spin representation is compact according
to prop. Hence, the p(X;) are skew-adjoint w.r.t. an inner product (-|-)g on S. Now b* carries the
invariant bilinear form (-|-) which induces a nondegenerate bilinear form (-|-);, on V' such that both the Weyl
reflections s, and projections are symmetric w.r.t. (-|-),,. Define a bilinear form on V' ® S via their product:

() =0y @(])g, (a®@s,bt) = (alb), - (s|t)g YVa,beV, s,t€S.

This bilinear form is nondegenerate and the o (X;) = 7 (a;) ® 2p (X;) are skew-adjoint because 7 («;) consists
of (induced) Weyl reflections and projections (hence symmetric w.r.t. (-|-);, ), while the p(X;) are skew-
adjoint w.r.t. (+|-)g- O

5.2 The 2-spin representation of ¢ (E)

The 3 5-spin representation is not irreducible but contains an invariant submodule isomorphic to 81 such that
its orthogonal complement is also invariant. This works for any indecomposable simply-laced A:

Proposition 5.10. Let A be an indecomposable simply-laced GCM and let 85 be the representation from
thm. . With respect to the bilinear form of lemma Ss decomposes into a direct sum of invariant
submodules as

S ggg@‘s%.

5
2

The module Ss is called the “trace-free” part osz It is irreducible, if the W (A)-module Sym? (h*) decomposes
into two irreducible factors, where one of them is the trivial representation.

Remark. In the proof below it will become clear that the factor S 1 above is due to a W (A)-invariant element

¥ € Sym? (h*) that exists for arbitrary types A as it is constructed from the invariant bilinear form on h*.
The behavior of the remainder of Sym? (h*) however can not be predicted universally and can be irreducible
or not; an example for the latter case is A = A,,_;. The Weyl group W (A,,_1) is isomorphic to the symmetric
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group on n letters &,, and bh* is isomorphic to its standard representation denoted by V as in [FH91, ch 4].
According to [FH91), ex. 4.19], Sym’V 2 U gV @ Vin—2,2) where U denotes the trivial representation and
Vin—2,2) the irreducible representation associated to the partition (n — 2,2) of n. Hence, the remainder is
not irreducible but consists of two irreducible submodules. For W (A,,—1) the above decomposition would be
83 =85 853 ®Sy1. For Eg, E7 and Eg the picture is different. According to [GPO0L tbls. C.4-6], W (E,)
for n = 6,7,8 admits an irreducible character of degree (n—2|— 1) — 1 that occur in Sym? (V), where V
denotes the standard representation of W (E,,).

Proof. According to lemma the action of £ (A) on V®.S can be split into an action on V and S respectively,
ie. for all w € W(A) there exists y; € U (¢) s.t. o (y1) = n(w) ® Id and for all = € ¢ there exists yo € U (8)
sit. o (y2) = Id ® p(x). The action on V = Sym? (h*) is fully determined by the action of W (A4). The
symmetric element

U= Zwklek ® e (107)

k,l

with w from eq. is invariant under any A € End (V) that is induced by an orthogonal transformation
g € O(h*) (cp. [EHII, secs. 17.3 & 19.5]). As W (A) < O (b*) this immediately implies that ¥ is invariant
under the action of W (A). Also, (¥|¥) = dimb* and as the image of py1 : €(A) — End (S5) is compact, the
bilinear form on S can be chosen to be positive-definite. Hence, K- ¥ ® S is anisotropic w.r.t. the form
of lemma and therefore its orthogonal complement is an invariant submodule, too. If UL is irreducible
w.r.t. the action of W(A), then S is irreducible by the same argument as in the proof of prop. O

I will work out the example for £ (E1) and show explicitly that S. 5 is irreducible as no general statements
about the representation theory of indefinite Weyl groups seems to be known (and even the classical cases
differ from case to case as apparent from the above remark).

Proposition 5.11. Let v,,v5 € S = C3? be highest weight vectors to the representations I',,I's of 50(10,C)
and denote by U the symmetric element in Sym? (6*). Let v = —wig € b* be the vector perpendicular to
{a1,...,a9} and denote by vz :=v-v+ U the projection of v-v to (spanC\I/)J‘ c Sym® (b*). Then ¥ @ v,,
Vg and v32 @y, V32@va are highest weight vectors to the weights o, 8 respectively. Under all of € (Eqg) (C),
(spanc¥) ® S is the irreducible submodule isomorphic to S% from prop. |5.10,

Proof. One has

1 1
T () U = (n(sai)—2> U= §\I/Vz': 1,...,10,

2 2
Thus, for all x € s0(10, C), the action of o(z) on ¥ ® s and vs2 @ s reduces to that of p(x):

1 1 )
7 () v32 = (n(sai) - ) v3p = —v3a Vi=1,...,9.

o)V @s=V®p(x)s, 0(x)v32@s=v32Qp(x)sVseS, Vo eso(10,C).

For ¥, this holds for all Berman generators and therefore also under € (E1¢) (K) which shows that (spanc¥)®.S
is irreducible. Towards the concrete form of the projection vss = v - v + ¥ note that

(P)|v) = Z Wi (e; ® ejler ®ex) = Z wijwlkwilek = Z5jl5lj = 6jj =10.
i,k i,k il

42This can be seen from the value of by in this table. For an irreducible character x a value of by = d means that Sym¢? (V)
is the smallest symmetric product of V' that affords x as an irreducible component.
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Now (u-w|¥) = (ulw) Vu,w € h* and v = —w1o one has
(’U ®U‘\I/) = (w10|w10) = — (v|w10) = —10,

because k1p = 10 in v = Zjﬂl k;a; according to eq. (@D
With this and v -v = %v ® v one finds that
(v®v|P)

VRV — ——— UV =vxv+ V¥
(P|w)

is perpendicular to W. O

Lemma 5.12. An bp, -diagonal basis ong is given by the set {b; - b; @ sx | bj,b; e BYi < jAe ATy &Tp)},
where B = {a1,as3,...,a9,t1,...,t4,t5 == v} with v = —w1g from (@) is the orthogonal basis of b* (cp. eq.
and {sx | A € A(L'a ® ')} is an hp,-diagonal basis of S. The weights of S5 as a s0 (10, C)-module are

As

5
1
= {2 ZaiLi | up to two a; = £3, the others + 1} . (108)

i=1

Proof. By using the orthogonal basis B = {a1,as,...,a9,t1,...,t4,t5} of eq. (101)), one immediately obtains
such a basis for Sym?V. One finds
O'(Hj) (Oll' ~ak®3>\) = [2 (1*251',2]'—1) (1*262j—1,k) — 1])\(HJ) ;- A @ Sy
o (Hj) (ti o ® S)\) [2 (1 - 252j—1,k) — 1] A (HJ) t; - ap X Sy
O'(Hj)(lfi'tk@S)\) )\(H]) tl”tk@S)\

which shows ([108)). O

According to the previous lemma the potential highest weights that can appear are «, 8,w1 + o, w1 +
B, w2 + a and wy + B and only the respective multiplicities are unknown. In order to describe the HWVs to

the weights w; + o and wy 4 5 one needs to specify the orthogonal basis B further. So far, only t5 := v = —wyg
was set. It is possible to take to,t3,t4 € span{as,...,ag} so that ¢; and ¢5 are the only elements of B that
involve ap and ajg in their decomposition into simple roots. However, as (¢5]t1) = — (wio|t1) = 0 must be
satisfied it follows that ¢ € spang {a1,...,a9}.

Proposition 5.13. In Sg restricted to so (10, C) there is one highest weight vector each to the weights we +
and wy + B. The multiplicity of the weights w1 + a,wi + B in S% is 5 each and to each of them there exist
two highest weight vectors. The highest weight vectors are

(€3] (2)

1) (2)
Vo =01 L1 @ 8x, Vg pq =01 t5 @8N, Uy, g =0a1-11 @8N, U, 5= a1 15 s\,

UL/JQ—‘,-OL = Q103 ® 'S)\37 vu&—‘rﬁ = Q1 Qa3 ® 5)47

with My = a—w; € ATg), a =08 —w1 € A(Ty), dga=a—ws € A(Ty), My = f—w2 € A(T'g) and
0 # sy, vectors in the corresponding weight space. The vectors ti,ts are elements of the orthogonal basis B
of b* described in eq. such that to, t3,t4 € spanf{as,..., a9}, t5 = —wio and t1 € span{ay, ..., ag}.
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Proof. Expressing the weights wo + a and ws + S in terms of Ly, ..., L5 one has
1
wy t+a = L1+L2+ (L1+ +L5):§(3 3 1 1 1)
1
wptf = LitLy+g (L1+ = L)=5(3 3 1.1 -1

and one therefore needs a vector r ® s, that satisfies

BA(Hj)r®@sy j=1,2

U(Hj)(’r@s)‘)_{)\(HJ)r@S)\ 1=3,4,5

to obtain these weights. A vector that has the above properties is 7 = 3 - a3 and the appropriate weights
A3 and A4 are given by

1

AT,) > )\3:OZ—UJ2:2(—1 -1 1 1 1) (109)
A > M=f-wm=g(-1 -1 1 1 -1). (110)

From lemma one has that there are no higher weights than ws +a and ws + 3in S 3 and since neither
is contained in the weight system of the other both must be highest weights. Recall the welghts

M = a—Li=a—w € A(Ip)
o = B-Li=p-weAl,)

from prop. then for ¢ = 1,...,5 the vectors ay - t; ® sy, and a; -t; @ sy, are weight vectors to the weights
w1 + a and w; + B respectively. Not all of them are highest weight vectors to the weights w; + a or wy + 3
however, aﬁ

mult (w1 + a;ws + B) = 3, mult (wy + B5wa + ) = 3.
One can also see this from an argument concerning the dimension of Sg: h* has dimension 10 and S has
dimension 32. Hence, S% = Sym?V ® S has dimension 55 - 32 = 1760. The sum of highest weight modules
Tyt ®Tw,+p is of dimension 2-560 = 1120. Since 1760 — 1120 = 640 and dim (T'y, 4o D T'w,+8) = 288 there

can be at most two vectors each to the weights wy + o and w; + 8 which are also highest weight vectors.
Observe that

wita=wr+f-(Lea—Ls)=wa+B—-(n2+13+n), vitf=wt+a—(72+73+7)

and that the HWVSs vy, 14, Vw44 are of the shape (o - a3) ® sy for suitable A. The to,t3,t4 were chosen
such that they are contained in spang {as, a4, ..., a9}. Now the e,w involve commutators of the Berman
generators Xo; 1, Xoj, Xoj41 (see eq. and so the action of o ( [ foﬁj = 2, 3,4 involves several of the
reflections 7 (O[Qj_l + Olgj), T (042]‘), T (012]'_1 + ao; + a2j+1), (0[2_7 + a2]+1) on o -a3 € Sym V. The action
on «aq is always trivial, So both ¢; and t5 := v cannot be obtained by descent from («; - @3) ® s) because

they contain o - ap and a1 aqp in a decomposition w.r.t. the basis {a;a;|1 < i < j < 10}, which makes
JU @)
Vor+ar Yo +ar YV 48
43 A direct computation of this would be possible by application of the Weyl character formula. Alternatively, one can use
Software solutions such as Sagemath [SAGE]|, and there in particular the routines connected to the WeylCharacterRing.
44Note that in the case of studying Vi, +a C 'y,+p one has j = 2,3,5 but e_; uses the same commutators as e—~, and so
the argument holds here as well.

and vw + 5 highest weight vectors. O
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5 DECOMPOSITIONS 5.2 The 2-spin representation of £ (E1)

Theorem 5.14. (cp. |[KN13, sec. 5.1]) The t(E1) (C)-module Ss splits upon restriction to its so (10, C)-
subalgebra as
S% g50(10,(3) Pista ®Lustp ®2 % (Fw1+0¢ @ le‘i‘ﬁ) ® 2 x (Fu ©® Fﬁ) (111)

with highest weight vectors

(a1-a3)®sy, , (a1 as)®@sx, < Dupra @ Luyip
(041 'tj)®s>\2 ) (051 'tj)®3k1 7j:175 <~ Fw1+a®rw1+6
V32 Q8q , V32®53 < [a®Ig

\IJ(X)SQ,\I/®85 — I‘a@rg

where \f =a —w1 , o= —wi, \g=a —ws , A = —wa, U is the symmetric element in Sym?> (5*) (cp.

, V32 from prop. and t1,ts as in prop. .

As a t(Eqp)-module S% is mot irreducible, it splits as
S 285 @ Si,
2 2 2

where S1 = {V ®s|s € S} and orthogonality is defined w.r.t. the contravariant form on Sg described in
lemma . The trace-free part gg 1s irreducible.

Proof. Adding up the dimensions of the highest weight modules provided in propositions and yields

dim (Typta @ Luwytp) +2-dim Ty 40 D Tw48) +2-dim (T @ T'p)
1120 +2-288 42 - 32
= 1120 + 640 = 1760
dimS% .

Hence, these so (10, C)-modules exhaust S%. The split of Sg into a copy of S% given by {¥ ® s|s € S} and

an invariant complement was shown in prop. In order to show irreducibility of S. 3 I will pursue the
strategy of showing that the so (10, C)-modules are mixed under the full € (E1g)-action. If (-,-) denotes the
50 (10, C)-contravariant bilinear form on S3 w.r.t. which the decomposition in (111) is orthogonal, then a
s0 (10, C)-module U; mixes with Uz under the action of € (E1g) (C) if there exists u; € U (¢ (E10) (C)) Uy and
ug € Uy s.t. (uy,us) # 0. Since (-, -) is not necessarily contravariant w.r.t. € (F19) (C) this does not need to be
a symmetric relation. However, I will show that this question can be reduced to a question of orthogonality
in Sym? (h*) w.r.t. the induced invariant bilinear form (-|-).

According to lemma there exists y1 € U (8) s.t. o (y1) = n(w) ® Id for all w € W(A) and there
exists y2 € U (£) s.t. o (y2) = Id® p(x) for all z € ¢. Since S is an irreducible im (p)-module and im (p) is
simple for E1q, one can figure out if modules are mixed by just looking at the Sym? (h*)-component, because
the highest weight vectors of all so (10, C)-modules are elementary tensors. The highest weight vectors have
the Sym2 (h*)-factors U, vgo = t5 - t5 + U, oy - £1, aq - t5 and aq - 3. One observes that all these vectors
are perpendicular w.r.t. the standard invariant form (:|-) on Sym? (h*). As a consequence, the so (10, C)-
modules are orthogonal w.r.t. the contravariant bilinear form described in lemma [5.9} This form restricted
to any so (10, C)-module is therefore proportional to the so (10, C)-contravariant form as this is unique up to
constant multiples. For some this multiple should be negative because (-|-) has mixed signature and indeed
this is the case for a; - t5. Hence, two so (10, C)-modules U; and U, are mixed under the action of € (Eg) (C)
if there exist wy,ws € W (Eqg) s.t. (wiug|waug) # 0, where u; and uy denote the Sym? (h*)-factors of the

70
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HWVs of Uy and Us . Any mixing that is found this way is symmetric because (-|-) is W (E1)-invariant.
Now gg is irreducible if any so (10, C)-module in 53 mixes with every other so (10, C)-module in gg Note
that “mixing” is a transitive relation, because the action of U (so0 (10, C)) on an irreducible so (10, C)-module
is transitive. The rest is a case-by-case computation.

First, show that vz and «ajts mix (recall t5 = —wyg). One has sjgvzs = (wio — a10)2 + ¥ and also that
there exists w € W (Ag) <W (Elo) s.t. w (alwlo) = 7W10- With (a7w10|\11) = (a7|w10) = W10 (Oéy) =0 and
(wio]wig) = —10 one computes

(a7w10| (wio — a10)® + \If) = (a7wig|wiy — 2wioao + )
= 0— 2 [(a7|wio) (wio]aio) + (ar|ang) (wiolwio)] + (ar|aig) (wiolaio)
= —10—-1=-11

and concludes that v3s and aqts5 mix in both directions.

Next, show that ajwip and ajas mix. There exists w € W(Ag) s.t. w(ajas) = ayar and then
s10 (1ar) = a1 - (a7 + ayp0) is not perpendicular to ajwig. One concludes that vse, aits and ajag all
mix among each other.

The last case is to show that a;t; mixes with any of the others symmetrically. As ¢t; L {a1,a3,...,a9}
there needs to exist ¢ = 1,...,5 s.t. (t1]ag;) # 0 and for convenience set (¢1|ag;) = —c with ¢ # 0. Continue
by case distinction and start with i = 1, then

So (Oéltl) = (a1 =+ Ozz) (tl + COQ) = aqt1 + cajag + sty + casas
(82 (altl) |0410l3) = (a1t1 + cajas + a2t1 —+ capun ‘ alag)
C C
= 0+§(—2+1)+0+c:§7§0.

In the other case i > 2 one has that there exists w € W (4g) s.t. w (a1a3) = ajag; and therefore

(arti|w (anasz)) = (aaty | agas;)
1
= 5(—20—1—0):—07&0
shows that a1t; and a3 mix symmetrically. O

6 Tensor products of higher spin representations

This section is dedicated to the study of tensor products of some of the higher spin representations described
in section [3] The first subsection is dedicated to higher spin representations of € (F1g) in a computer-based
approach, where the main goal is to deduce the decomposition into so (10, C)-modules and determine if the
tensor products are (ir-)reducible and in case of reducibility if they are completely reducible. Apart from

the reproduction of some of the results of section |5 the main result is that S3 ® S1 and S3 ® A’ (S%)

are irreducible ¢ (Ejp)-modules. In section I will approach this intriguing result from a more general
perspective as I will show in proposition for arbitrary indecomposable simply-laced types that the tensor
products S% ® S% and Sg ® S% are irreducible if each of the factors is.
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6 TENSOR PRODUCTS 6.1 Computational point of view

6.1 Computational point of view

In this section I will lay out the algorithms and findings which underlie my computer-based analysis of
tensor products of generalized spin representations of ¢ (E1o). My analysis has been conducted using Sage 9.0
([SAGE]). The results are obtained for the complexification € (E1g) (C) of ¢ (E19) (R) but results concerning
irreducibility also hold for £ (E1o) (R). As some of the computations can be performed on a regular computer
but others require the use of a computer cluster, the details of which result was obtained how and in particular
how these results can be reproducedﬁ is treated in full detail in appendix [B} I will start by describing the
algorithm that is used to obtain the so (10, C)-decomposition of the €(E;p) (C)-modules and how one can
use it to test for irreducibility. Afterwards I will discuss each of my findings for the analytically known test

cases S% and 8% as well as the tensor products /\2 (S%), Sym? (S%>, Sg ® S% and S% ® (/\2 S%). The last
two are the the first nontrivial examples of lowest dimension and therefore their analysis is still feasible with
computer-based methods.

6.1.1 The algorithm

The results of section [3| provide the representation matrices for the Berman generators of ¢(Ejg). This
involves fixing the matrices for the generalized spin representation S% from theorem as well as providing

the (induced) Weyl reflections on h* and Sym?h*. This provides the Berman generators’ representation
matrices via the tensor product. Together with egs. and the Weyl canonical form of s0(10,C)
can be computed, which is a particular choice of root space basis (cp. [C84L app. G]). If one chooses
o(X1),...,0(Xy) to be skew-hermitian, then the standard inner product of C" defines a contravariant form
w.r.t. 50(10,C) which is used to define orthogonality (details can be found in sec. [B.I).

I used two approaches to obtain so (10, C)-decompositions of the given representations. One of them
scales rather poorly but still provides an interesting example of how one can end up with a decomposition s.t.
the representation matrices of so0 (10, C) are not block-diagonal despite the representation being completely
reducible.

The first approach is to determine the so (10, C)-highest weight vectors rather straightforwardly in two
steps. First, determine the vector space of primitive vectors, i.e., the intersection of the kernels of E1, ..., E5.
Afterwards one determines a basis of weight vectors for this vector space which will automatically yield highest
weight vectors. I used this approach for preliminary computations with Ss and S1 ® S1, the only occurrence
of this method in the final version is S 5 since the major issue with this approach is that computation of the
kernels becomes quite expensive. Hence, for most of the time I used the following approach which I will refer
to as the orbit-method (which has nothing to do with Kirillov’s orbit method).

Start with a reasonably unique vector of the module. My choice was to pick the highest weight vector
of an so (10, C)-module that occurs only with multiplicity one in the decomposition and therefore is unique
up to scalar multiples. From this highest weight vector one constructs an explicit basis of the corresponding
50 (10, C)-module which I denote by V4. Now one can apply X9 to each basis vector of V5 and the result will
never@ be in V7 unless it is trivial. For vy € V; pick the part of Xgv, that is orthogonal to Vi, denoted by
(X10vx), ;. Given some vector v successively apply E;s for ¢ € {1,...,5} until one reaches a vector w with
the propérty that F;w = 0 for all § = 1,...,5. In all performed computations these primitive vectors were

45 A1l the Sagemath-notebooks and scripts are available online here: http://dx.doi.org/10.22029/jlupub-533.

46This is a consequence of the weight system of f.d. irreducible so (10, C)-modules. If X is a weight then A\ & L is not because
any weight of an highest weight module is of the form A — Z?zl k;i7vi, where k; € Ng and +; are the simple Ds-roots. Since L3
is not part of the Ds-root lattice, A == Lo cannot be a weight if X is as long as the module is f.d. and irreducible because then it
is a highest weight module. But now X109 = —% (X4 + X_) and X4 are hp,-diagonal with weight +L2. Hence X1ovy cannot
lie inside V7.
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also highest weight vectors even though exceptions can in principle occur (see sec. for details). To this
new highest weight vector one now constructs the corresponding so (10, C)-module V5. Denote the projection
to V; by m;, and write

(X100a) 1, = X100a — Y mi (X10va)
i=1

where n is the number of so (10, C)-modules that one has already foundm Now go back to Xjgv) and pick
the part orthogonal to Vi @ V3, i.e. (Xjovy) 120 and repeat the procedure until the orthogonal piece is zero.
Note that this may take several iterations. Consider the case where (Xigvy), ; can be decomposed into the

sum (X1ov,\)l71 = v,(f) + U,(f)’) + vff) where vff) € V; such that p is of depth ko > k3 > k4 w.r.t. the highest

weights Ao, Az, Ay of Vi, V3, V) respectively. Then the first iteration wil yield vf?) as highest weight vector
because the others are annihilated after at most k3, k4 steps up. In the second iteration (Xigvy), , will only

consist of v,(f’) + v,(:l) because v&z) can be expressed in terms of the basis of the previously added module V5.

If one has computed the n modules V1, ..., V, s.t. (Xlov,\)L’n = 0 one proceeds with the next basis vector
of V1. Once all elements of V; have been checked this way, one continues with V5 and so on.

This way one obtains the € (Ej)-orbit of the first so(10, C)-module V4 = L(A;). The orbit now requires
additional analysis because one cannot a priori conclude that such an orbit is an irreducible submodule. This
is because it may be reducible but not completely reducible. For this one needs to compute if an so(10)-
module L(A;) can be reached from L(A;) via some intermediate modules L (A;,),..., L (4;, ). Towards this
one computes an adjacency matrix A,q; that encodes which modules are connected by a single application
of X1p. Irreducibility of the € (E1g)-orbit is then equivalent to the question if any two points in the directed
graph described by this adjacency matrix A,q; are connected by a directed path. This is equivalent to saying
that the directed graph defined by A,4; is strongly connected. If the orbits of a module L(A;) do not exhaust
the entire £ (E1g)-module one has to find a vector that is not contained in the orbit. There are several ways
to do this, one being the construction of a random vector. But one can also use some analytical insight into
the module for this as I will do in the analysis of Sg.

6.1.2 Decomposition and orbits of S% and Sg

These are the first test cases, as the results are known analytically (cp. prop. ﬁ and thm. . For & 3

one implements the weight vector sy € Sy of the weight —3Ly + 3 (L1 4+ Ly + L3 + Ly) manually and then
builds the tensor product wi := a1 ® sy, where a1 € h* denotes the first simple root of F1g. The vector w,
is a highest weight vector of weight %Ll + % (L1 + Ly + L3+ Ly) = w1 + « as is also shown in prop.
Now the € (F1g)-orbit of its highest weight module is computed according to the algorithm described in the
previous section. The orbit includes the highest weight modules (in this order) to the following weights:

AM=wi+ta, Ao=wi+8, As=a, Ay =8.

470One would generally expect these modules to be orthogonal because one started with a vector that is orthogonal. T explicitly
show this in lemma [B.2] but it is simply a consequence of properties of contravariant forms.
48To be fully precise: There exists a choice of successively applying E;s to (X10vr), 1 s.t. this claim is true. It can always

happen that Ejv =0 but Eiv(> # 0 so that if the algorithm starts with application of E; the result will be different.
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The adjacency matrix of X;o displays which modules L (A;) are mixed under Xig:

01 1 0
1 0 0 1
Aadj (XIO) = 1 0 0 1
01 1 0

The graph corresponding to Aqq; (X10) is shown to be strongly connected which shows that S 3 isirreducible as
a £ (F19) (C)-module, because the orbit contains the entire module. Hence, it is so as a € (E1g) (R)-moduld™]
although there one might not have the same so(10)-irreducible pieces in the decomposition (for instance
Luy 4o @ Ty, +5 may be one irreducible piece if one restricts to R-linear combinations of Xj,..., Xy). Note
that the adjacency matrix is symmetric, i.e., if a module L (A;) is mapped to L (A;) under X;o the converse
is also true.

For & 3 1 begin with a different approach and compute the so (10, C)-highest weight vectors directly from
the intersection of the kernels of Ei,...,Es which yields the subspace of primitive vectors. Afterwards,
diagonalize a random linear combination H := Zi’:l AiH; restricted to the subspace of primitive vectors.
This yields the following so (10, C)-decomposition of S:

AOZB,Alzﬂ’A2:w1+ﬁ7A3:w1+ﬂ
A=a,As=a, A\¢g=wi1+a, A\ =wi +«

As=was+ B, Ng=ws +a
Checking which L (A;) are mapped to which L (A;) yields the adjacency matrixlﬂ

01 111000 1
0 0 01 0000
11 00071110
110 001 110

A |t 1 oo 01 110

=10 1 0 0 0 00 00
001111 00 1
0011110 0 1
00111100 1
110000111

One can already see that it is not symmetric and that something interesting is going on in lines 2 and 6 which
correspond to the weight A; = 8 and A5 = a. Via U (£(E10) (C)) one can reach every module L (A;) if one
starts in module L (A;) for i € {0,...,9}\ {1,5}. For L (A1) the only other module that can be reached is
L (A5) and vice versa. Hence the module is reducible under € (E1g) (C) but is it also completely reducible?
If one looks at the so (10, C)-decomposition one realizes that the highest weights o and 8 both occur with
multiplicity 2 inside the decomposition. The question therefore is if there exists a linear combination of the
highest weight vectors v&l),v((f) and vgl), vg) such that the representation matrices become block diagonal.
One could of course determine this by solving a linear system of equations but I would like to display how the

other approach via ¢ (Eqp)-orbits avoids this ambiguity of mixing isomorphic representations to begin with.

491f U is any nontrivial invariant submodule w.r.t. the action of €(FE10) (C) then it is also invariant w.r.t. the action of
t(E10) (R) as it is a real form of £ (E19) (C).
50T left out the diagonal because it will always be empty. This is because if A is a weight of L (A) then both A & Lo are not.
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Application of the orbit method to the module L (Ag) with highest weight ws + «, which is of multiplicity
1 inside the decomposition, determines the orbit, denoted by S 5, to contain the following modules

A(()l):wQ—i-oz, Aﬁl):w2+ﬁ, Aél):w1—|—04, Agl):wl—ka

V=g A =w 8, A =0 48, AT =
The adjacency matrix to this orbit has the shape

1111000
1 000111
10 00111
A0 _ |1 00 01 11
af =11 0 0 0 11 1
01111 00
011110 0
01 11100

which is symmetric. Furthermore, the corresponding graph is connected so that this orbit is irreducible. This
shows that Ss splits into the above orbit Ss and I',, @ I'g such that Ss is irreducible. By the analytical
study from thm. one knows that there exists a copy of § 1= S ) Fﬁ that is invariant under the full

t(FE). AsT,@Tg = (A;l)) oL (Afll)) C Sg are not invariant this shows that the remainder has to be
isomorphic to S%. Thus, the split is given as a split of ¢ (FEjg)-invariant modules.

The above analysis shows that it is important how one sets up the s0(10)-modules which appear multiple
times as this may result in a decomposition that is not block-diagonal. If one computes a weight space basis
of the space of primitive vectors one will almost always be in the situation, where the action is reducible but
not in block-diagonal form. This is because no choice of basis for the highest weight vectors to the same
weight is preferred in this case in contrast to the other approach. Starting with a s0(10)-module that occurs
only once yields a unique so (10)-decomposition of the ¢ (E1g)-orbit of that module and therefore a reducible
structure is not the outcome of an unlucky choice of highest weight vectors but inherent to the module’s
¢ (F1)-structure.

6.1.3 Decomposition and orbits of S% ®S%, /\2 S% and Sym? (S%)

In this subsection I will decompose the € (FEp)-invariant submodules of the tensor representation S 1 ® S 1
with the orbit method before applying it to S 1® S 3 in the next subsection. This is the largest test case
since thanks to the fact that impy = =~ 50(32) (cp [HKL15 thm. A]) one knows that the irreducible pieces
of S% ® S% are /\2 S%,Sm (8%) and 1 where Sy (8%) denotes the traceless symmetric part of the tensor
product and 1 is the trivial representation. One can apply the method to S1 1 ® S 1 but in order to increase
performance, I decided to work directly with /\ S 1 and Sym? S% as the ﬁrst one is needed later anyways.
For the exterior product one knows theoretlcallylﬂ that under s0(10)

2
A\S:=18T,, ®2x Ty, &Taip.

51For [SAGE] this is a simple computation in the character ring of Ds.
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Since the weight a4+  does not appear in the other representations, the orbit method will work best if one
starts from this highest weight module. A vector to this weight is

1
Vo =S, NSg = —=(Sq Q S5 — 83 X Su
+8 =7 ( 8= 85 © 5a)
and the orbit method applied to this module finds the following modules with highest weights

M=a+8,Ah=ws, As=ws, Ay =0, As =wy

and one concludes that this exhausts /\2 S%. The adjacency matrix of X;¢9 w.r.t. this decomposition is
computed to be

0110 0
10010
A =11 00 01
0100 0
0010 0

Note that this adjacency matrix is symmetric. Under the full action of € (E19) (C) this orbit turns out to be
irreducible as expected.

For Sym? (S é) one has the following so0(10)-decompositions on abstract grounds:

Sym?(S) = 1@2x Ty, Ty, ®Tays ®Taq ®Tas.

The vector

1
Vatp = Sa * S8 = ﬁ(sa®8g+sﬁ®8a)
is a vector to the weight a + 3 and one obtains the following highest weights in the orbit connected to I'o4:
M=a+p,M =28, =20, Aa=w1, As =wz, Ag =w1.
With respect to this decomposition, the adjacency matrix of X;¢ is equal to

0 0

ALy =

OO R =
O OO0 O~
O OO0 O~
SO OO O =
—_ 0 O =
O = OO OO

and as the corresponding graph is undirected and connected one concludes that the orbit is irreducible under
£ (E10) (C) and thus under £ (E1o) (R). A comparison to the theoretically predicted decomposition shows that
the orbit lacks the trivial representation. The trivial representation can be computed by direct intersection
of the kernels of all Berman generators, as this is still feasible in this dimension. The resulting vector is then
shown to be orthogonal to all the other so(10)-modules. Since all Berman generators act trivially on this
vector, there is no mixing between the trivial representation and the above orbit. This shows reducibility of

Sym? (8%) into two ¢ (Eyg)-irreducible pieces:
Sym? (5%) = Sy (S%) @1,
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where
Sia1 (S3) 22X Tuy @ T, @ Tays @ Taq g

Since 8% ® S% >~ Sym? (S%> <) /\2 S% this completes the analysis of S% ® S%. In agreement with the
representation theory of s0(32) one has seen that S1 ® Sy splits into three irreducible pieces.

6.1.4 Decomposition and orbits of S% ®S% and S% ® (/\2 S%)

The goal is to decompose Sz ® S and Sz ® (/\2 S%> via the orbit method. The result will be that both
modules are irreducible under the action of € (Ejo) (C). This computation may not work on any PC as it is
quite memory intensive. The computation of 8% ® (/\2 S%> is modified such that it needs less memory in
comparison to the approach used for S 3@ S 1 but trades this for a longer (relative) run time.

Under the restriction to s0(10,C) the module splits as follows (plug the so (10, C)-decompositions of S3
and Sy into [SAGE] and multiply the characters):

S% ® S% = Fw1+204 2 Fw1+2ﬂ ®2x (Fw1+a+,3 @ Fw1+w3 @ Fw1+w2 @ F2w1 Gl @ F2,3)
P4 X (Corp®dTy, ®T,, ®T,,) &2 x Ty.

As before one first constructs with a little guesswork the weight vector sy € 8% with weight A = —%Ll +
% (Ly + L3 + L4 + Ls). The tensor product w := a1 ® sy is then a highest weight vector of S% to the weight
3Ly + 3 (Le+ Lz + Ly + Ls) = wy + o . The tensor product of w with s, the highest weight vector of
', C S 1 then provides a vector to the weight w; + 2 which is confirmed as a highest weight vector by
checkmg that E; (w ® sq) = 0 holds for all ¢ = 1,...,5. This mus be the case as the weight wy + 2« is not
contained in any of the other so (10, C)- representatlons. Afterwards the full s0(10, C)-module associated to
this highest weight vector is constructed. Therefore, one can be assured that the computed €(F1q)-orbit gives
some meaningful answer because I',, 42, occurs with multiplicity one in this decomposition. It turns out
that the orbit contains each of the above s0(10)-modules and so one knows that it is the entire module. In
order to investigate reducibility one computes the adjacency matrix A,q; of X19 which is a 32 x 32 matrix for
S 3@ S 1 The corresponding graph is analyzed and shown to be strongly connected (the adjacency matrix
is not symmetrlc in this case). Hence, the £ (E1o) (C)-module S ® S is irreducible which came as a slight
surprise; I will take this point up again in the next section. This 1mphes that S 3 ® S 1 is irreducible as a
t (E10) (R)-module as well.

In order to do a similar analysis for S 3 ® (/\2 S 1 ) one definitely should work on a computer cluster as

the computations take time and are still memory-intensive despite some optimizations in comparison to the
previous computation. Under restriction to s6(10,C) the module splits into a total of 116 modules as follows
(again, plug the Ds-characters of S3 and A’ Sy into [SAGE] and multiply them):

o (/2\5;)

Il

Luit2a48 @ Twitar28 ® 3 X (L tws+a ® Doy tws+8)

®4 x (Fw1+w2+a D Fw1+w2+ﬁ @ F2W1+a D Fw1+,3 D F2a+6 ® Fa+2ﬂ)
®l'sa @ F35 ®8x (Fw3+a D Fw3+5) & 11 x (sz+a D szJrﬂ)
®13 x (rw1+a @Fwﬁ-ﬁ) ® 9 x (Fa D F,B) :
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Again one starts by producing a unique-up-to-prefactor highest weight vector, in this case of Iy, 42443, and
computes the first module. To this module one then again applies the orbit method which yields that the
orbit contains all 116 so (10, C)-modules. A subsequent analysis of these modules and how they mix under
X0 showed that the representation is irreducible, as the graph created from the adjacency matrix A,q; (X10)
is strongly connected.

The above two examples exhibit the curious feature that the tensor product of two irreducible represen-
tations is again irreducible, which is something one rarely observes for semisimple, finite-dimensional, Lie
algebras. As I will explain in the next section, these representations have the same kernel because /\2 S%
and S1 do. Hence, the only additional information about ¢ (E79) would come from the tensor products
Sg 28 ,S% ® S% ,S% ® S%, .... Without further optimization, these representations cannot be computed in
reasonable time.

The main caveat of my implementation is that it is not parallelized. The main issue here is that the only
substantial acceleration would come from parallelization of matrix multiplication. My implementation via
Sage uses symbolic implementations of certain fields (which Sage provides plenty of) which allows for an exact
evaluation instead of an approximate one in comparison to the use of floats. My attempt at parallelization of
these matrix multiplications turned out to be slower. Parallelized matrix multiplication over arbitrary fields
is (at least in version 9.0) nontrivial in Sage and the amount of time to set this up successfully didn’t seem
worth the time, as the code still runs in reasonable time and the goal was to obtain any information about
how the tensor products behave. If one wants to analyze more and higher tensor products, this is something
one needs to address if one still wants to compute exactly. If not, one can just switch to SciPy or NumPy

and use their implementations of parallelized matrix multiplication. The reasons why S 5 and Sy (8 1 ) are
not among the analyzed tensor products and S z is not analyzed at all is that their matrices contain certain

normalization factors that are not rational. For the computations of 3 ©® S1 and s ® (/\2 S%) one can

actually use Sage’s implementation of the rational numbers which is quite fast. For Sjy (S%) one encounters

the additional problem that the involved matrices are rather dense in the basis that is induced from the one
used for S 1

6.2 Irreducibility and ideals

In this section I would like to collect some theoretical considerations concerning the tensor product repre-
sentations. I will show that the kernels of most of these representations are given by the intersection of the
individual kernels, which is of interest as the kernels are usually not contained in each other and therefore
the intersection provides a smaller ideal. Also, I provide a result on the action of £(A) on tensor product
representations Sz ® S 1 There one observes that the action factors, meaning that one can act on the factors
individually. This is essentially a consequence of the S%—representation matrices squaring to —i[ d.

Let p; : €(A)(C) — End(V;) be f.d. representations for ¢ = 1,2 and = € £ such that « € ker p; and
x € ker ps. Then one has = € ker (p; ® pa) because of

(P1®@p2) () vOw) = (p1(z)v) @w+v& (p2 () w)
= 0Qw+v®0=0VveVi,wel,.

Hence, in general ker p; Nker po C ker (p1 ® p2). But what does the nontrivial condition = € ker (p1 ® p2)
but x ¢ ker (p;) imply?
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Towards this consider bases {ej,...,e,} and {fi,..., fm} of V1, resp. Vo. Then one computes
pr(z)e; ® fj+ei @ pa(z)f; = 0

~ Zpl kzek®f]+pl( )zzei®f]’
k;éz

+Zp2 Z)ije ® fi+ pa(z)je @ f; = 0VI<i<n, 1<j<m.
1#1

Since e ® f; and e; ® f; are linearly independent for k # ¢ and [ # j this holds if and only if p;(z) and
p2(x) are diagonal matrices such that pi(z); = —p2(x);; # 0 forall 1 <i < n,1 < j < m or in other
terms if the matrices are proportional to the identity. The prefactor needs to be different from 0 as otherwise
p1(z) = 0 = pa(z) and therefore x € ker (p1) in contradiction to the assumption. In short one has the
following

Lemma 6.1. Let p; : € (A) (C) = End(V;) for i =1,2 be f.d. representations and let x € ker (p1 ® p2). Then
either x € ker (p1) Nker (p2) or there exists 0 # X € C such that

p1(z) = X Idy, und pa(z) = =X\ - Idy,. (112)

Aunother important piece of information is that powers (regular, symmetric or antisymmetric) of finite-
dimensional representations don’t produce larger kernels:

Lemma 6.2. Let p: ¢ (A) (C) = End(V) be a finite-dimensional representation, then
ker (p ® p) = ker (p), ker (Sym™(p)) = ker (p), ker (A"p) =kerp, as long as n < dim(V).
Proof. For p ® p one can apply the previous lemma and for Sym™(p) one observes the following, where
{b1,...,bn} is any basis of V:
x.b; by b; :n~Zp(x)jibj'bi~~bi:0 = p(x)ji:OVi,jzl,...,m
j=1

For A"V it is instructional to look at A*V first:

rhiANbj = Z ), b A b +Zp )5 bi A by
k= k=1
= (p@)i+p(@);) bi A +Zp Jus b A+ 3 p (@) i A by

k#i k#j
As by, A b is linearly independent from all b; A b; if k # 4 and [ # j this is equal to 0 if and only if

p(z); =0VEk #iand p(x)ii—’_p(x)jj =0Vi#j.

The second condition yields p (z),; =0 for all i = 1,...,m if m > 2. In the same manner one has in
RRTUR O SEE I L SRS 9 SRR TS
k=1 k=1 j#iy
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that x.b;, A--- Ab;, = 0is equivalent to Y7, p(x), ; = 0and p (z);; = 0 for all j # i because the terms in
the second sum are linearly independent. Again, if n < m then Y7, p(z); ; = 0 implies p(z), , =0 for
allip =1,...,m. 0

Proposition 6.3. Let A be simply-laced and indecomposable, then for all the higher spin representations
(p%,S%) of €(A) for n=1,3,5,7 one has ker pny @ pny = ker pry Nker pna.

Proof. All these representations satisfy that there exists a non-degenerate bilinear form on the module w.r.t.
which the action of € (A) is skew (cp. lemma/(5.9). Hence, the representation matrices must be traceless which
excludes the second case of lemma [6.11 O

Note that the above proposition also holds in the case of € (Eg) (or more generally, if A is not of full rank)
but its implications are rather trivial as the kernels form a chain of inclusions

kerp% gkerp% gkerp% gkerp%

as is shown in [KN2I]. The next proposition shows for the example £ (F1o) that this condition can provide
truly smaller ideals.

Proposition 6.4. (Due to a personal discussion with Azel Kleinschmidt) For € (F19) one has ker (p%) N

ker (p%) C ker (p%) forn=1,3.

Proof. Show first that ker (p%> ¢ ker (p%) Towards this choose suitably normalized z,, € €, = (ga ® g—o)N
€, g € g with o, 8 € A’ such that

py (2a) = 3T(), py (5) = 3T(5)

py (o) = (50— 514) ST(@), py (09) = (55 - 314) 1)

according to4.16{and [4.17} If now o — 3 = v € 2Q (E1p) then I'(«) = I'(5) and therefore z, — 23 € ker (p%).
On the other hand,

Sa —sg = Id—al(al)—Id+ B(8])
—(v+B8)(v+8)+B8(BI)
= -0k -=-801) =06
= Pz (Ta) = pz (25) = (50 — sp) @ () #0.
As impy = 50(32) (cp. [KNI3, sec. 4.4], also [HKLI5, thm. Al) and imps = s0(32,288) (cp. [KNI13} sec.

4.5]) one knows that ker (p%) ¢ ker (p%)because otherwise s0(32,288) would also be able to act on S1 via
factoring through s0(32) but s0(32,288) does not admit an irreducible module of dimension 32. O

A similar argument as above should work for S% and S 1 as computation of im Ps should show that

ker (pg) ¢ ker (p%). Similarly this could show ker (pg) ¢ ker (p%) and conversely one needs to investigate
whether there exist linear combinations }_; s, with 8; — 8; € 2Q (E10) such that . sg, =0 € GL(h*) but
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Zj sg; 70 € Gl (Sym2 (f)*)) Therefore, investigation of S% ® S% and S% ® 53 are interesting as they are

irreducible (for the second one this result is shown soon). Also, their triple product S% ® S% ® Ss could be
of interest if one can show that the pairwise intersections of their kernels are not contained in each other.

The polynomial identities from lemma imply a factorization of the action of ¢(A) on the tensor
products S% ® S% and S% ® S%.

Lemma 6.5. Let A be a simply-laced GCM and let (p, S%) denote a generalized spin representation according

to def. and let (0, 3%) for n =3 or 5 denote a higher spin representation from theorem . Denote the
tensor product of o and p by p then one has

Hiep(@) = [u (@) + 51 (2)° + 2;)#(33)} o eld= [u @ + (@)~ 2 <x>} (113)

forallx € ¢, a € A" that have the same norm as a Berman generator. This implies that for each © € U (¥),
there exist y1,y2 € U (€) such that p(y1) = Id® p(x) and p(y2) = o (x) ® Id.

Proof. Use from lemma [5.6] that

16 40

9° (X)) + i (X;)?=1d € End (Sz) forn=3,5

for all Berman generators X; and suitably normalized Berman elements = € ¢, for a € A™. Recall that
for such x one has p(z)° = —1Id € End (S%). Denote by p the Lie-tensor product of ¢ and p. One now
computes

pE)=oc(@)@Id+Id® p(x)

1 (2)? = o (@)@ Id+ 20 (2) ® p(z) — i[d@]d

3 1
w(z) =o(x)@Id+30 (z)* @ p(x) — 1o (@) @ld—J1dep(x)
3 1 _ 3 2 1
w(z)” + Z[L(:L’) =o0(z)" @Id+30 ()" @p(x)— §J(m)®fd.
Furthermore, with
49 5 2
o(x)" = 161d 2a(ac)

one simplifies

1 3

w(z)* + G () = o@)'@Id+o@)’@p()+30@)’@p(x) — 0 (z)* © Id

5o @Peld- o e )

9 15 1
- Rld@)ld—l—lla(x)?’@p(x)—Za(x)2®ld—§a(x)®p(ac).
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u(x)5+iu(x)3 = o(2)' ®p(2) — o (2)® ®Idf%a( )3®Id—14—50(x)2®p(:£)
—%O’(l’)z®P((E)+é0($)®]d+%0’($)®]d+%Id@ﬂ(l’)
. 91d®p(x) 100 ()% ® p (2) - %0 (@) ® Id — %f (@2 ® p()
ieo (@)@ Id+ - 1d@ p(2)
= —%o(x)séb]d—%?o(m)z@p( )+ 1(13 (x )®Id+ﬁfd®,0( )
5 1 19 3 11 45 19 /3 1
u(zx) +<4+4>u(x) = ma(m)®1d+161d®p(x)—4<4a(m)®fd+4ld®p(x)>
w(z)® +5u(x)® = —§a(az)®1d+§1d®p(x)
p@) 450 @)+ ) = 1A ()
p@) 45 (@)~ Dp) = —so()@ld

which shows eq. (113]). Now for each x € U (), there exist y1,y2 € U (£) such that p(y1) = Id ® p(x) and
t(y2) = o () ® Id because the X; generate &. O

Lemma 6.6. Let g be a semi-simple finite-dimensional Lie algebra with Cartan subalgebra by and let U be a
finite-dimensional g-module with weight space decomposition U = ®A6P(U) Uy. Then projection to Uy can
be achieved within U (h), i.e. for each A € P(U) there ezists an element II, € U (h) s.t. I U, = {0} for all
w# X and I\Uy = U,.

Proof. Let {Hy,...,H;} be an orthonormal basis of h and set
P (U) = {p€ PU) | n(Hi) # A (H))}

Then

, H; — p(H;)
mo= N S =am
HEP; A (U)

has the property that with u, € U, and v € P; 5 (U)
mia(u) =0V v e P (U), ma(un) =uyYuy € U,.

But then
<H7TL)\> uy) =0Vu, €U, s.t. v#£ A, (Hm,\> ) Yuy € Uy,

as any v # A is contained in at least one P;  (U). O
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Proposition 6.7. Let A € Z"™*" be a simply laced, indecomposable, regular GCM s.t. n > 2. Let (p, Sé)

denote an irreducible generalized spin representation according to def. and let (0, S%), (O’, gg denote a
&5.1). Then

higher spin representation from theorem (respectively the trace-free part of S% from prop.
(,u,S% ®S%) is irreducible and if g’% is irreducible then the same holds for (,u,g’g ®S%).

Remark. It may be possible to drop the assumption about A being indecomposable, as long as the diagram
is not totally disconnected. In the proof one uses that imp is semisimple (which follows from thm. under
the assumption that A is simply-laced and indecomposable). If one allows isolated nodes for instance then
imp is just compact, hence reductive but if its semisimple part s C imp is nonzero, one would still have that
S 1 is a highest weight module w.r.t. s as the abelian part of imp acts diagonally anyways. Therefore one

needs to make sure that there exists a sub-diagram of II(A) that meets the demands of the proposition.

Proof. Let U be an invariant submodule of V ® W, where V' € {S% , gg} and W = Sé- According to lemma

one can act on W separately, i.e. for each z € U (£), there exist y1,y2 € U () such that p (y1) = Id®@p ()
and i (y2) = o (r) ® Id. Under the assumptions of the proposition one obtains from thm. that imp is
semisimple. Hence, over C there exists a weight space decomposition of W = @/\eP(W) Wy w.r.t. a Cartan

subalgebra b of imp. Then any element in U can be written as

dimV dim W

=Sy e, (s
i=1 AeP(W) j=1
where {b;|i=1,...,dimV} is any basis of V and {wf\j) [Ae P(W),j=1,... ,dimWA} is a weight space

basis of W. Let 7y be the projector to the weight space Wy, i.e. the linear map 7wy : W — W) s.t. myw =0
Vw € W, with u # X and 7w, = Id. From lemma [6.6] one knows that there exists an element 7, y in

u (h) s.t. aw = mx. Then there exists o € U (£ (A) (C)) s.t.

dim V dim Wy dim V dim Wy
o= p@)u=10T\w Z Z Z cidf\j)bi@)wg\j) = Z Z cidg\i’j)bi@@wg\j)
i=1 XxeP(W) j=1 i=1  j=1
dim V dim Wy dim V
= Z cib; ® Z d(;’j)w({) = Z cibi ® w;
i=1 j=1 i=1

for a weight A € P(W) that occurs in the decomposition 1} of u and w; == Y9 df\i’j)wf\j) € Wi. As

j=1
imp is semisimple its complexification (if one started over R) admits a triangular decomposition n_ @hén and
as W is irreducible, there exists ey € U (1) s.t.

erw; = kywy, k; € C,

where wy is the (up to prefactors) unique highest weight vector of W.
Then by lemma [6.5] there again exists an element x € U (£(A) (C)) s.t. p(x) =1 ® ey and therefore

dimV dimV
(l®e)u = Z cibi @ kjwp = (Z cikibi> Quwp=vQwp €U
i=1 i=1
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7 AFFINE CASE

is an elementary tensor that is contained in U, where v/ # 0 because the b; are linearly independent and
at least one k; can be assumed to be nonzero. One now applies lemma [6-5] one last time together with
irreducibility of V, W (for S 3 this follows from prop. and for S 3 this was an assumption) to obtain

UE(A) U = U (E(A) ) QUEA)) g =V & W
which shows irreducibility of V @ W. O

Corollary 6.8. Let S% denote the generalized spin representation of € (FE1) from example and let S%

szvnd gg denote the higher spin representations of € (E1o) from thm. and prop. . Then S% ®S% and
Sg ®S% are irreducible.

For now it remains an open question how to adapt the above strategy to the case of S 3® S 25 where one
does not have the result on the image on one of the factors. A closer look on the images could be worthwhile
as there always exists a nondegenerate bilinear form w.r.t. which the representation matrices are skew-adjoint
and I have the feeling that this fact could be exploited more. Also, one would have to take lemma to the
next level. It should be possible to derive polynomials that show how the action on the two pieces factors
but the computation will probably be much longer than the above one. Another approach is to weaken the

assumptions in that regard that one assumes the existence of a spherical subalgebra ¢ (A) such that V or W

admit a multiplicity-free decomposition w.r.t. € (A) (C). Together with a factorized action the above proof
then works with slight modifications.

7 An infinite series of representations of maximal compact subalge-
bras of affine Kac-Moody-algebras

In this section I will present results that were obtained in joint work with A. Kleinschmidt, R. Kohl and H.
Nicolai and that are currently in the process of being published, which is why I will refer to the preprint
[KKLN21]. I will use the same terminology as in [KKLN21]. The proofs are essentially the ones in [KKLN21]|
although I occasionally decided to restructure or expand them.

Untwisted affine Kac-Moody algebras g(A) admit a realization as the central extension of the loop algebra
£(g) = £ ®k g, where § denotes the unique classical subalgebra of g(A) (see def. for details) and £ are
the Laurent polynomials over K. One can show without much effort, that €(A) is contained in £(g) and
furthermore has a vector space decomposition €(4) = £+ ® Ep L ® p, where g = E@p is the Cartan
decomposition of §. The composition is such that £ is a subring of £ and £~ is a £T-module, just as tis
a subalgebra of g and p is a -module. Any homomorphism ¢ : £ — R of rings with involution will provide
a homomorphism of Lie algebras p : £t @t® £ ®p - RT @ td R~ ®p. I will reproduce a result of
[KKLN21] that there exist such homomorphism for R = K][u]] and certain quotients of it (power series which
are truncated at degree N). Afterwards, I will study the induced representation of RT ® t® R ®p of a
t-module V. It will be crucial, that multiplication in R and its quotients behaves differently w.r.t. the degree
than in £ which makes it possible analyze the action on the induced module and describe some invariant
submodules. The main result (in [KKLN2I] and in this section) is that there exist infinitely many reducible
but not completely reducible representations of € (A). The projective limit of this series of representations is
shown to provide a faithful representation of £ (A).
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7.1 Maximal compact subalgebras of untwisted affine Kac-Moody-algebras 7 AFFINE CASE

7.1 Maximal compact subalgebras of untwisted affine Kac-Moody-algebras

Let A be a generalized Cartan matrix of affine type and II(A) its associated generalized Dynkin diagram.
According to [K90, prop. 4.7], A is of affine type if and only if det A = 0 and all proper principal minors of
A are positive. This implies that any proper sub-diagram of II(A) is a union of generalized Dynkin diagrams
of finite type but the converse is generally not true (a major source of counterexamples are rank 2 diagrams
with non-spherical edges). The generalized Dynkin diagrams of affine type are classified in [K90, sec. 4.8]
and a subclass, the untwisted affine ones, are given in table Aff 1 of [K90, sec. 4.8]. All of them can be
obtained by adding an additional node to an existing generalized Dynkin diagram of finite type, which is
often called affine extension.

Definition 7.1. (Current algebra@ Let R be a commutative, unital K-algebra and let g be a semi-simple
finite dimensional Lie algebra over K. Then R ®g g with the Lie bracket

[a®z,b®y] = (ab) @ [z,y],

is called the current algebra of g over R, where [-,-]; denotes the Lie bracket of g. Let £ := K [t,t7}]
denote the Laurent polynomials over K, then the current algebra of g over £ is called the loop algebra of
g which will be denoted by £ (g). For g and any of its subalgebras, g C £ (g) always refers to the canonical
inclusion 1 ® g C £(g).

Typically, I will denote the loop parameter by ¢, i.e., I consider £ as the ring of Laurent polynomials in the
variable ¢, which is rather common (cp. for instance [K90, sec. 7]). The untwisted affine Kac-Moody algebras
admit a rather explicit description in terms of the loops algebra over a distinguished finite-dimensional simple
subalgebra g together with an enlargement of the Cartan subalgebra h of g by elements that are usually
denoted by K and d.

Definition 7.2. (Affine extension) Let g be a simple finite dimensional Lie algebra over K and £ (§) its loop

algebra. Let 1) be a K-valued 2-cocycle on £(g) and let £(g) ¢ K- K denote the universal central extension

of £(g) by a one dimensional center, which is spanned by K, w.r.t. the 2-cocycle ¥. Now let d denote the
d

derivation on £ (g) given by t - 2 and set

@ =L@ eK KaoK-d,
where the bracket is defined as
[+ a1 K + bid,y + a2 K + bod] = [z,y] + bid(y) — bed(x) + Y(x,y)K Va,y € §, a1,a2,b1,b0 € K. (115)

Call £ (§) the affine extension of §.

While the above description is rather explicit as soon as one fixes a 2-cocycle 1, the question remains how
this description relates to the constructive definition of KM-algebras given in def.

Proposition 7.3. (This is [K90, thm. 7.4] together with [K90, sec. 7.6])

Let g be a simple finite-dimensional Lie algebra over K. To its Cartan matriz A € Zm*™ gssociate the
so-called extended Cartan matriz A by setting A;; .= 3; (B}) for alli,j =0,...,n with By = —0, By = —0",
where 0 denotes the highest root of the root system of g and B; = ay, B =« Vi =1,...,n. Then the affine

52The term seems to originate from particle physics in the 1960s and has made its way into mathematics since, where it is
usually understood in the way of this definition.
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extension £ (g) from def. is isomorphic to the untwisted affine Kac-Moody algebra g(A)(K) constructed

as in def. [1.5] )

The Cartan subalgebra of g(A)(K) is given bb =h+K-K+K-d and the additional simple (co-)root is
apg = 0—0 (resp. af = JWK*MX’&V)’ where § is defined via 6(d) =1 and 6(h) =0V h € UK-K. Let E;, F;
fori=1,... n denote the Chevalley generators of § and let Fy € §o be normalized s.t. (Fo|lw (Fp)) = —%

(010) 7
where w denotes the Chevalley involution of §. Set Eg := —w (Fy), then the Chevalley generators of g(A)(K)
are given by
€0 :t®E0, €; — 1®E1, f0:t71®F0, fl :1®Fz VZ:].,,TL

~

The Chevalley involution w on g(A)(K) = e (g) is given by
wit)@z+a - K+b-d)=q(t ") @d(x)—a-K—-b-dVge Lz €g, abeK (116)

Corollary 7.4. (Cp. [KKLN21, eq. (2.6)]) If A is a GCM of untwisted affine type, the mazimal compact

subalgebra € (A) (K) is contained in the loop algebra £(g) C E(g) Denote by n : £ — £ the involution
determined by t" — (—1)"t" Vn € Ny and denote its =1 eigenspaces by £+. Then

LA (K) 2L, 0tol op

as vector spaces, where g = ¢ ® p denotes the Cartan decomposition of g.

Proof. From prop. [7.3]and in particular eq. (116)) it follows that K,d ¢ €(A) (K). Recall that the Chevalley
involution on g was denoted by & and check that Wie(g) = N ® w which immediately implies that the +1
eigenspace of w on £®g is equal to (£4 ® g4 )@ (L_ ® g_), where the + denote the respective +1 eigenspaces

w.r.t. n and @. But the 1 eigenspaces of g w.r.t. & are exactly £ and p from the Cartan decomposition of
g. O

7.2 R-models of maximal compact subalgebras

If one wants to view £€(A4) (K) 2 £, ® b e ® p from a more abstract perspective, one can replace £ by
any ring with involution. In [KKLN2I| the ring of formal power series in a single variable u, the ring of
polynomials in v and quotients thereof are considered and they are referred to as so-called parabolic models
N (K [u]]), N(K[u]) and N (Py) of £(A) (K). Here, I use a slightly different notation and name for this
object, as I would like to display the ring in question as well as the finite-dimensional root datum from A
more explicitly.

Definition 7.5. (Cp. [KKLN21] eq. 3.1, rem. 13]) Let R b(oe a unital, associative K-algebra with involution
n, whose +1 eigenspaces are denoted by R4 and let § = £ @ p be the Cartan decomposition of a finite-
dimensional, simple split Lie algebra g = g (A) (K). Denote the extended Cartan matrix of A by A and
define a subalgebra

m(R,A) =R, ®¢BR_®p

of the current algebra of g over R. Call 91 (R, A) the R-model of £ (A4) (K).

530ne does not write this as a direct sum as in def. because there it is meant as a direct sum of vector spaces without
respect to any bilinear form but if one puts a standard invariant form on g(A) one sees that w.r.t. this form K and d are not
orthogonal to each other, although both of them are orthogonal to £ (§).
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In the sequel R-models of K with R such that there exist homomorphisms £ — R that respect the
involution will become important.

Lemma 7.6. Let Ry, R be unital commutative K-algebras with involution such that there exists a homo-
morphism ¢ : R1 — Rs. Then ¢ defines a homomorphism of Lie algebras

p:‘ﬂ(Rl,/i) —>‘)T(R2,/01), p(pRx)=0¢(p)RxVp€E Ry, z€§.

Remark. Since £(A) (K) is isomorphic to its £-model this result applies whenever R; = £, where £ denotes
the Laurent polynomials over K.

P?“OOf. Let P1,DP2 S Rf; q1,92 S R;; Z1,T2 S E; Y1,Y2 S ‘37 then

P1 @14+ ¢ @y1,p2 ® T2+ g2 @ y2] = pip2 @ [x1, 2] + 1g2 @ (Y1, y2] + P1g2 @ [T1,Y2] — 12 ® [22, y1] .

Now
p(rhs) = ¢(pip2) ® [r1,22] + ¢ (q1G2) @ [y1,y2] + ¢ (P1g2) @ [T1,Y2] — ¢ (q1P2) @ [72, Y1]
and
p(lhs) = [pp1@z1+q Y1), p(p2®@ T2+ g2 Qy2)]
= ¢(p1) ®(p2) ® [r1,72] + ¢ (q1) ¢ (92) @ [y1, 2]
+¢ (p1) ¢ (q2) ® [21,92] — & (q1) ¢ (p2) @ [22,91]

= p(r.hs)

because ¢ is a homomorphism of commutative K-algebras. O

In order to determine if a given K-linear map ¢ : £ — R is a homomorphism it is useful to spell out the
multiplication of the basis elements of £ = £, & £_. Since £4 = spany {t" £¢~"|n € N} one has

() () = e
"+t (" —t™) = P () _sen (0 — m) (t'”’m‘ - t""’m|)
(tn _ t—n) (tm _ t—m) — qntm + t—(n+m) _ (tn—m + t—(n—m)) )

Lemma 7.7. (Cp. [KKLN21, lem. 3]) Let P = K|[[u]] denote the algebra of formal power series with
coefficients in K. The coefficients (+1)" ag]l\; and (+£1)" ag;\;ﬂ with

n n—1
(n) _ o, 2n\ (N—-k+n-1 (n) o 2n N—-k+n-1
v kzo(?k>< N—k ) GNn =72 ;0 2% + 1 N—k (117)
define two homomorphisms of K-algebras ¢ : £ — P by linear extension of
(" + ") e @ED" Y alu?, () e (DY el utt (118)
k=0 k=0

The map Y e cpuf — Zzio(—l)kckuk defines an involution on P such that ¢ (£+) C Py, where Py are
the +1 eigenspaces of P, which are the even and odd formal power series respectively.
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7 AFFINE CASE 7.2 R-models of maximal compact subalgebras

Proof. The above coefficients arise as the coefficients of Taylor series of the meromorphic functions fi”) :
z > z™ 4+ z7™ after application of a Md6bius transformation. The Mdbius transformations map the Riemann
sphere C*° onto itself and define automorphisms of the algebra of meromorphic functions M (C>). Now

the Taylor series T' (fj([”) : fim)) of the transformed functions f\", f™ coincides with the product of the

individual Taylor series T’ (ﬂ"» -T (ﬁm)> if the radius of convergence for all involved series is nonzero.

As the product on power series is given by convolution, this provides a homomorphism of algebras. So the
only thing to show is that the coefficients in (117 indeed arise as the Taylor coefficients of the transformed

functions ﬁn) .

I will use the Mdbius transformations

’_>1—Z -1
mi:z , =m
1 1—|—Z 1 1
and
1+z2 1 1-=2
mo @ 2 > , Mgy 1 Z —
1—=z 1+ 2
One has

A omitz) =

= ) S () e

k=0
n 2 n —
2> k-0 (27;) 22k for ™ omy!
- 2
-2y <2k —Ti 1) 2241 for M oyt

Expand (1 — 22) ~" into a power series which is convergent for |z| < 1:

A AR P e

k=n—1 k=0

= (1_22)‘":i(’“+2‘1>22k.

k=0
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Therefore

pota - E(TIEE)
() ()

=0 k=0

~

oo min{n,N}

S (YT ()
_ 2i2<1\7 k+n—1)<§z>Z2N

N=0 k=0
00

= Z ag;\;zz]v Vil <1
N=0

with (Z) =0 for k£ < 0 in the penultimate step and

n—1
(n) 1 _ I+n-1 2k+2l+1
emy = 23 () (47):

1=0
oo n—1
_ l+n—-1 2n 2k+21+1
= 22y () ()
1=0 k=0
oo min{n—1,N} N ko 1 9
N=Ii+k B — n— n ON+1
e (YT ()

min{n—1,N}

- > N—-k+n-1 2n IN+1
- ey X ()G
N=0 k=0
= Z a2N+1z2N+1 Vz| < 1.
The same computation goes through with m; ' instead of m;'. From

ezt @) = (0" (152) 207 (F2) = con i emt o

one deduces that (—1)"(1;7\; and (—1 )"aéj\?Jrl are the coefficients corresponding to mo.

O

Proposition 7.8. (Cp. [KKLN21, prop. 5]) Let A be of untwisted affine type, denote by A the unique

Cartan matriz whose extended Cartan matriz is A and set P .= K|[[u]]. Let ag;), agz)ﬂ be
and define p1 : £ (A) (K) =N (IP’, A) as the linear extension of

(t"+tT") @a > (£1)" Zag,:)u% ®r Vzre E,
k=0

89

as in eq.

(119)



7 AFFINE CASE 7.2 R-models of maximal compact subalgebras

(" —t ) @y (F)" D b u* ey vyep. (120)
k=0
Then p+ is a homomorphism of Lie algebras.

Proof. This follows immediately from lemmas [7.6] and [7.7] O

Proposition 7.9. (Cp. [KKLN21, cor. 7]) Let A and P be as in prop. let iy denote the ideal in P
that is generated by the element uN 1 =3 /5, ny1u” and set Py := K([[u]] /in. Then the quotient map
7wy : P Py induces homomorphisms p(iN) E(A)(K) — M (]P’N, A) via p(iN) ‘= TN o px, where py is given
in prop. [7.8

Proof. The quotient map 7y : P — Py is a homomorphism of K-algebras which by lemma [7.6] implies a
homomorphism of the R-models 91 (P, A) Rl (IP’N,/i). By prop. ﬁ one has a homomorphism pi :

t(4) (K) —>‘ﬁ(]P’,/i), so set p(iN) = TN O pPxt- O
The next lemma will be needed to show that p4 is injective but not surjective.

Lemma 7.10. (This is [KKLN21, lem. 8]) To each m € N and linearly independent q, ..., qm € K[u] there
exist Ni,..., Ny, € N such that the “evaluation matriz” € (N1, ..., Ny) = (¢ (]\fj))znj.:1 is of full rank and
therefore invertible.

Proof. Use induction on n. For n = 1 the matrix & = (g; (V1)) is regular iff ¢; (N7) # 0. Since ¢ (u) = 0 only
for finitely many w € K there exist infinitely many N € N with that property. Now assume that Ny,..., N,
are chosen such that £™ (Ny,..., N,) is regular. Consider the (n + 1) x (n + 1)-matrix

a(N1)  @a(N2) - @a(Na)  q(u)
g2 (N1)
5(n+1)(u) = : .
qn (N1) Gn (Nn) — qn (u)
dn+1 (Nl) e gn+1 (Nn) gn+1 (u)

and denote by Si(ZH) its minors with the i-th row and j-th column removed. Then

(D) (N, .. Ny)

det EM V() = | (Ny,...,N,) n,n+1

dn+1 (’LL) —dn (u) ’

+o o (S0 (w) - ERY (N, )

)

where I use the notation 51‘(,2111) (N1,...,Np) to indicate that these minors do not depend on w. It follows
that

n+1
det MV (w) = " ¢;q5(u)
1

+

<.
Il

with ¢,4+1 # 0 because by the induction hypothesis ’8(") (N, .. .,Nn)| # 0. As q1,...,qny1 are linearly
independent the above polynomial is nonzero and therefore there exist only finitely many u € K such that
det £+ () = 0. Thus, there exist infinitely many u € N such that £+ (u) is regular. This proves the
claim by induction on n. O
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Proposition 7.11. (Cp. [KKLN21), prop. 9]) Let A and P be as in prop. then py : €(A) (K) — 0N (]P’7 A)
from prop. is injective. Furthermore,

{Z o™ @+ Y e @y | [{N]ey £ 0} <oo, ety efa} Nim ps = {1}
N=0 N=0

Proof. Note that £+ ® £ and £~ ®§ are mapped to different subspaces of 9 (IP’, A) under p+ and therefore
one can analyze their images separately. Consider elements of the form

K K

= Z (" +tT) @y, v = Z (" =t @y,

i=1 i=1

for z; € t and y; € S One has

K oo co K

) = 33 Y o= 33 ) e
i=1 N=0 =0 i=1
K

&0 = Y ()" aly)e; YN € No.

i=1

Spelling this out in a basis of £ shows that the above equation has nontrivial solutions if and only if
K
ST (ED) ali s =0YN >0 (121)
i=1

does, where now z; is a K-valued indeterminate. It is (cp. eq. [117)
(n) _ “~(2n\ (n+N—k—1
an =2 (ka) < N—k
k=0
(n)

and so a4y is given by the evaluation of p, € K[z] at = N s.t. deg(p,) = n —1 . If the nq,...,ng
are pairwise distinct, the p,,,...,pn, are each of different degree and therefore linearly independent. For
Ni,..., Nk € N one has a finite subsystem of linear equations of (121

K
Sags = 0VEe{N,..., Nk}

& Y pu(k)z = 0VEe{N,..., Nk} (122)

K

and according to lemma 1} there exist Ni,..., Nk such that there exists an inverse to (pn, (N;)); i1

This shows that lb hence also lb only admits the trivial solution z; = 0 for all 4. As the agf\; 41 are
also polynomials in N of degree n — 1, exactly the same computation shows that p+ (y) =0fory € £_®p
if and only if v = 0 and therefore p4 is injective.

91
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This only leaves to determine which elements in 1 (]P’, A) whose power series factor is a finite power series

are contained in the image of p+ and which are not. As N (]P’, A) = (]P’+ ® E) @ (P_ ®p) as vector spaces,

this decomposition holds for imp, as well and one can restrict the analysis to the case of P, ® ¢. Towards
this, let X = 3", 3" v5banu®™ @z € Py @ € be s.t. byy # 0 for only finitely many N € N. If X € impy

there exists x := Zf{:l ci (B +17) @ ay 8.t
K oo
Y S Y o= 33 (1 e o = X b 03,
i=1 N=0 N=0 i=1 N>0 j

where the n; can be chosen such that they are pairwise distinct. Let Ky := maxy {N | bany # O}and assume
Ky > 1, then

CZ OVN>K0

Mx

i=1

But as aéN) = p;(N) with p; of degree n; — 1 this implies

D e (E)" pi(N) =0VN > K,

which is a contradiction to the fact that Zjvzl ¢j (£1)"™ p; can be equal to 0 only at finitely many points (the
polynomial is nonzero, because the p; have different degree). If however Ky = 0, then > y YN0 b2 yutlN ®

z; =bp-1®@x9 €N (]P’7 A) for zg € £ and since ag\), = 20,0 one has that 1 ®% C imp4 as one can pick
X:70'1®IEE(A)(K) to obtain by - 1 ® xg = p+ (x) = bo - 1 ® xp. O

The Lie algebra 2 (]P’N, A) is graded by Z /(N 4 1)Z as it inherits the grading of Py. One has the graded

decomposition
LN/2] L(N-1)/2]

(]PN, ) @ Ear) @ @ P(ak+1) (123)

as in [KKLN21] eq. 3.19], where
%(%) = spang {(U% +iv)@z|re ?} ; P(2k+1) = spang {(UzkH +inv)®ylye p} (124)
with iy = (uNH).

Proposition 7.12. (Cp. [KKLN21, prop. 11])Let A , Py and p(iN) (E(4)(K) -7 (PN,A) be as in prop.

then ,o(iN) is surjective.

Proof Since I assume g to be s1mp1e and non-compact, one can apply [HN12 13.1.10] which yields that
= [p,p] and that p is a simple g-module. Thus, for any = € € or y € p there exist yi,...,y, € P
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st @ = [y, [y2,---,[---,yL]]] and z1,...,20 € P st. y = [z1,[22,.. ., [ 2m]]] I L = [N/2] and
M = |(N —1)/2] one has

LM [|(N-1)/2] N
11 ) a;TkL:)Jrl (@ +in) | = (11 af" | uN iy
j=1 k=0 Jj=1

As yl(") = (t" —t ") ®y for y, € p is mapped to @,E(:Agfl)/% P(2k+1) under piN) one obtains

o (0 o ]}
o2 ([0, T4, [ o)) =

so that the highest homogeneous components E( ) and ]3( M) (cp. egs. and D are contained in imp(iN).
One can now peel off the remaining homogeneous components successively which shows the claim by induction.
O

UN Jri]\/) [ %(L),

Tl +iN) R TRS fi(M),

N

1
[[a” | (
j=1
N

1
[[a” ) (
Jj=1

Proposition 7.13. (Cp. [KKLN21, prop. 12]) Let A , Px and p(iN) E(A)(K) =0 (PN,A) be as in prop.

and €3y, §(2k+1) as in eq. . Then the radical of N (PN,IZD is given by

R IN/2) LN=1)/2] )
J(N) =3 (E(O)) ® @ Eop) @ @ Pkt CN (PN,A> ;
k=1 k=0

where (E(0)> 15 the cente of%. This provides the following Levi decomposition for N (IP’N, A) :

] o]

Ny (K) = {?(0),3(0)} X J(N)-

Proof. The graded decomposition 1' of N (]P’N, A) implies that

(o) [e]

[9(21@—1)713(21—1)} C Eorya-2), |:E(2k)7p(2l—1):| € Prtai-1) [{%(%),{3(21)} C €2k+21)

with €9y = {0} = E(QZH) for k > [N/2] and | > [(N —1)/2]. This shows that J(y) is an ideal, so analyze

the derived series 38(,)). The lowest degree that occurs in 38\;) = [J(N),ﬁ(N)} is equal to 1, because the

factors of degree 0 commute with each other. Thus, J(n) is solvable because after N + 2 steps the derived

Lie algebra 32%;2) only contains elements of degree N + 1 or higher, which are all equal to 0. Now take any

o

54Gince A is a generalized Dynkin diagram of untwisted affine type, 3 (E(O)) is nontrivial only if A = C’l(l) or A= A<11>. In

the latter case, € (A1) = K so this is rather a special case.
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toy\ 3 (E(O)> = {E(O),B(O)] as those are the only elements left to add to J(n). The derived subalgebra

€0y, E(O)} is semisimple and so is the ideal jo in |€(), €(0)| generated by = and therefore jo is not solvable.

In consequence, the ideal generated by J(n) + @ is not solvable which shows that J() is a maximal solvable
ideal, hence the radical of 91 (IP’N, A) as dim (IP’N, A) < 0. O

Proposition 7.14. (Cp. [KKLN21, rem. 14]) Let A , Py and piN) (4 (K) - M (PN,A) be as in the
previous proposition but now consider only K = C. The representation is irreducible if and only if it is the

o

tensor product of an irreducible [{%(0), {?(0)] -module with a 1-dimensional N (IP’N, A) -module.

Proof. As a consequence of Lie’s theorem (cp. for instance [HN12, thm 5.4.8]) one has that every irreducible
f.d. representation V of a complex and f.d. Lie algebra g is of the form V = Vy® L, where Vj is an irreducible
representation of the semisimple part g, := g,/ rad (g) and L is a one-dimensional representation (cp. [FHII,

prop. 9.17]). As M (]P’N,fi) is finite-dimensional and the image of p(iN) is surjective the claim follows from

the observation that the semisimple part of 91 (IE"N7 A) is [E(O), {%(0)} . O

Proposition 7.15. (Cp. [KKLN21, prop. 15]) Let A , Px and p;N) t(A)(K) - M (IP’N,A) be as in prop.
[7-9, then the kernels satisfy
kerp(i )5 ker p(NH) VN eN.

Proof. Set x(py = ("™ +t"") @ x for x € £ and Yim) = (t™ —t7™) @ x for y € p. Then one spells out the
truncated version of eqs. (119) and (120)):

) = . o
PE () = (ED™ Y agu? @a pL (yom) = (ED™ D agwtT @y
= n=0

Now obtain the kernel conditions as linear systems of equations:

E

Lv/2]

(N) (Zb 2 (s )) _ Z :|:]. mlb Z (mz) 2n
i=1

IN/2) s M
— Z <Z (£1)™ biag’zi’)> Wrer=0

n=0 i=1
M
& Y (@F)™M bl = 0¥n=0,...,[N/2].
=1

In the same way one finds that
<szy<m7)> =0 Z )™ biai"), =0Yn=0,..., (N —1)/2].
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If one goes from N to N + 1, then the above equations will not change. Instead, one additional equation will

appear and so one concludes that
(N) (N+1)

kerpy’ Dkerpy .
O
Remark 7.16. In [KN21| sec. 4] it is shown that the kernels of the higher spin representations O2ng1 :

t(Eg) (K) — End (S%> for n = 0,1, 2,3 coincide with the intersections of the above kernels like this:
ker o2nt1 = ker pf) N ker p(_n).
2

7.3 Induced representations

Given a £-module V the induced t(A)-module U is in general infinite-dimensional and hard to analyze. In

this section, I will study the induced representations of the K[u]-model 91 (K[u], A) of ¢(A)(K) and show how

they admit quotients that are finite-dimensional representations of £(A)(K). Throughout this subsection, let
A be a GCM of untwisted affine type and A its unique sub-GCM of finite type whose extended Cartan matrix
is A.

Lemma 7.17. (Cp. [KKLN21, eqs. 4.1-3]) The Lie algebra N (K [u] ,A) is N-graded via

N (K [u] ,A) — émm N, = spang {u" x|z EE} if n is even,
n=0 spang {u" @ y|y € p}  if n is odd,

and contains the mazimal proper ideal (3 (E) denotes the center of% as before)

3=3(t) e P
n=1
Its universal enveloping algebra decomposes as
L[(fﬁ(K[u],A)):L{([E,z])J/{(G). (125)

Proof. The gradation is inherited from the degree of the monomials ™ that generate K[u]. The argument
that J is a maximal proper ideal is a slight variation of the argument used in prop. J is certainly an

o O o
ideal and as {{’7{ is not only semisimple but in fact simple because of the assumptions on A and A, the ideal

generated by any z € N (K [u] ,A) \J = [37 {’} contains [E, {%] . Therefore, J is a maximal proper ideal. The

decomposition of the UEA follows from the vector space decomposition
N (K], 4) = {e,e] o3 (t) o P
n=1

and application of the PBW-theorem, as it is possible to establish an order which places degree 0-elements
on the left in the PBW-basis of I/ (‘)’t (K [u] ,A)) O
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Remark. Note that J is no longer solvable in contrast to J(N) in prop. [7.13

Definition 7.18. (Induced module) Let V be af.d. -module and € := N (K [u] ,A) ,Uu (E) =U (‘)’t (K [u] ,A))

as in the previous lemma. Then the induced t-module is defined as the U (E) -left-module
Ind§(V) = U (&) @y, V-
The tensor product ®M(E) is defined by viewing U (E) as ald (E) -right-module:
a®z-v=(a-2)Qv, a-(b®v)=(a-b)®v Va,bel, xel/{(%), veV.
The grading of K[u] and the decomposition of U (‘)’t (K [u] ,A)) have consequences for the structure

of the induced representation:

Lemma 7.19. (Cp. [KKLN21, lem. 17]) Let V be a f.d. %—module, E=0 (K [u] ,fi), u (E) =U (‘ﬁ (K [u] ,A)) ,
and consider the induced module Indg(V). The N-grading of U (%) extends to an N-grading of Indg(V). If

K = C, then this grading can be extended to an N X G—gmdin where h denotes the Cartan subalgebra of 3
As a t-module one has .
Ind{(V) = U (3) 0x V (126)

with J the mazimal proper ideal from lemma|7.17 sz is semisimple. If% is not semisimple than exclude 3 (E)
from the definition of J.

Proof. From lemma [7.17| one has that € admits an N-grading which extends to U/ (%) One then sets

deg(z®@v) =deg(z) Ve eld (%) ,vevV
which is compatible with Du(e) because deg(x) =0 for all z € U (E) One has

z-(y@v):$y®v:(yx—i—[x,y])@v:y@x-v—k[x,y}®UVJ:EU(%),yeM(%),UEV

which shows that left multiplication can be written in terms of the action on a tensor product of t-modules.
One now needs to show that 1' holds as K-vector spaces. For x € U (E) and y € U (J) one has that

[,y eU (J)U (E) (this can be seen by successive application of the ideal property of J) and therefore
(U (E) U (3)) ®u(§) V=U(J) ®u(%) V.

Since 3N & = {0} one has U (E) NU (J) = K- 1 and therefore U (J) Du(t) V=U(J) @k V as K-vector spaces
which shows ([126)). O

55For K = R this does not work because then € is not split.
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Proposition 7.20. (Cp. [KKLN21, prop. 18]) Let V be a t-module and denote the graded decomposition of
its induced N (K [u] ,A) -module 0 = Ind?(K[u]’A)(V) by

0 = émn.
n=0

Then BNy = @,y Uy is an invariant submodule and the quotient B,V Ny admits an action of N (Pm A)
and thus, one of £(A). The module U /Uy is finite-dimensional if V is.

Proof. Uy is an invariant submodule of 2 because the degree of any element in 91 (K [u] ,A) is greater

or equal than 0. Now any monomial element u" ® x € N (K [u] ,/i) with n > N acts trivially on 2,0,
because the only nontrivial homogeneous components of U,y have degree k € {0,..., N}. Denote by Iy
the ideal in K[u] generated by u™V*! then the action of M (K [u] ,fl) factors through 91 (K [u] /TN, A) As
Klu] /Iy = Py this shows that 2,U ) is a N (PN, A) -module and by prop. it is a ¢(A)-module. Each
graded component of U (J) is finite-dimensional because every element of J has degree 1 or higher (recall that

one excludes 3 t) from J here if it is nontrivial). Hence, 0,y is finite-dimensional if V' is according to
eq. (126). O

Definition 7.21. (Projective limit) Let I be a directed set and (G;),.; a family of objects in a category C
together with a family of morphisms m;; : G; — G; for all ¢ < j such that

Wii:IdGiV’iGI, Wijoﬂjk:’/’rikViSjSkGI.

Then ((Gi)ie,  (Ti)seser
is the universal object G € C s.t. there exist morphisms 7; : G — G; for ¢ € I s.t.

) is called a projective system. The projective limit (G, (7;)) of ((Gi)iel , (ﬂ-ij)i<jel)

T = T O T; VZS]GI
The 7;; are called bonding maps and the m; are referred to as the limit maps.

Example 7.22. In categories where projective limits exist one typically constructs the projective limit as
follows (cp. [HMQT, prop. 1.18] in the context of topological groups):

1}1£1Gi = {(gi)iel e[[Gilmjle)=aVi<ije I} (127)

icl i€l

Another example is that the ring (resp. commutative K-algebra) of formal power series K [[u]] is the projective
limit of the Py in the category of rings over K (resp. commutative K-algebras).

(Klu],A) (

Proposition 7.23. (Cp. [KKLNZ21, prop. 20]) Let V be a finite-dimensional t-module and 0 = Ind%n V)

its induced N (K [u] ,A) -module with graded decomposition G = @, ,V,. Denote its formal completion by

V= {(vn) |vp €V},
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then B admits a faithful action of N (K [[u]] ,A) Furthermore, U is the projective limit of the B,/ VN in
the category of N (K [[u]] ,A) -modules.

Proof. Consider the following action of x = (2,,), cy € N (]K [[u]] ,A) on v = (vy),cy € U

(x-v), = Zxkvn_k Vn e N. (128)
k=0

Forxe‘)’t(K[[u]],/ol) s.t. I3n > 0 with z,, # 0 pick v = (v9,0,0,0,...) € B with vy # 0, then

x-v= (g Vg, L1 Voy...)

is such that x, - vo # 0 because of eq. (126). If x = (x0,0,...) one uses eq. (126) again because U (J) is a
faithful ¢-module (and therefore the action is faithful even if V' is the trivial representation).
For U, /U () and B,V (yr) with N < M one has that B n),V(ar) is a submodule of UV, U5 such that

(B Bany) / (Bwvy/Bary) =B,/ Vwy-

Denote by
mvm B,/ By = B/ By, (vo,---,vm) = (vo, .-, UN)

the resulting bonding map. Also,
Bny = {(tn)pen € T|vn =0Yn < N}
is a submodule of U because of eq. and is such that
B,/ V(ny =D,/ D).
Denote the corresponding projection which will be the limit map by
a0 — E/ﬁ(N) =0,/ V().

Note that all maps myps and 7y are compatible with the action of 91 (K [[u]] ,A) because of eq. (128). In

order to show universality, I will show that there exists a map from U to the projective limit as constructed

in eq. (127):

lgn%/‘ﬂ(m = {(UN)NGN € H (Qj/m(]\/)) | Tij ('Uj) = V; Vi S] S N} .

NeN NeN

This map is given by
N
¢:= ] rv: T~ lim B,/ By, (vi) = (Q?;)
i= NeN

NeN NeN

which shows that 2 is isomorphic to the projective limit of the B,/ V(N O
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Corollary 7.24. (Cp. [KKLN21, porp. 20]) If A is of untwisted affine type, then € (A) (K) is residually
finite-dimensional in the sense that to each x € € (A) (K) there exists a f.d. representation p s.t. p(z) # 0.

Proof. Let z € (A) (K) be nontrivial and denote by pi : £(A) (K) — N (K[[u]] ,ﬁ) the monomorphism

from prop. [7.11} As U is a faithful 0 (K [[u]] ,/Dl) -module there exists v = (v;) € U s.t.

p(x)v # 0.

In view of eq. (128)) this implies that there exist N < M € N s.t.
N M
p(x) (Z vi> = Zul #0
i=0 i=0
and hence p{*" (M) A i i
py (x) #0, where pi. 7 : 8(A) (K) — 9N (P, A) denotes the epimorphism from prop. [7.9 O

8 Open questions and further research

As could have been expected, answering some of the questions concerning the higher spin representations of
€ (A) raised several new ones. For the particular case of € (Ejg) one of the most pressing questions is, under
which conditions a finite-dimensional &-module admits an action of (E10), where is a £ natural subalgebra of
t (E10). There exist several phrasings of this problems, a rather technical one that works over £ = s0 (10,C)
has been outlined in sec. Other phrasing work with € := € (Es) @ so0(2) or & := € (Ey) (cp. [KN21]),
where in particular the case of € (Eg) yields interesting features. As explained in [KN21|, all known & (E1¢)-
modules split into two € (Fg)-modules that are related by “chirality”, or in other terms they factor through
the homomorphisms pSEN) from cor. where the signs between the two modules differ. This could be an
important clue but as the Sz are all built on & 1 it could also just be a remnant of S 1 Another approach for

£ := 50 (10,C) stems from the observation that U (E) AX10} w.r.t. the adjoint action is isomorphic to Ty,

(see as a t-module. Therefore the question can be rephrased to “Which f.d. so (10, C)-modules U admit
a linear operator X € End(U) that transformﬁ in I',,,”. While the properties of such operators are known
by the Wigner-Eckert-theorem (cp. [C97], sec. 5.4]) T am not aware of results on their existence, although
this seems like a question that representation theory of semi-simple Lie algebras could be able to answer.
Another open question concerns the (ir-)reducibility of S 1 and other tensor products such as S 1® S 1

53 ® S%, gg ® S% ® S%,... both in general as well as in the particular case € (Ejp). Here, I would be
interested in the question whether or not one can use the contravariant form on the representation side to
deduce semi-simplicity of the image, as this property of (,0, S 1 ) proved highly useful. In addition this could

open up a path that allows the characterization of the images in concrete cases, such as the F,-series, similar
to [HKL15].

A more abstract question is if finite-dimensional £ (A)-modules are completely reducible if A is indefinite
but regular. One knows that this statement is false for A of affine type, but the modules I studied in section

56 Assume there exist X1,..., Xn € End(U), where (p, U) denotes a g-module s.t. [p(y), X;] C span {X1,...,X,} forally € g.
Then span {X1,...,Xn} is a finite-dimensional representation I'y, of g and an operator X € End(U) is said to transform in I'y,
if X €span{Xi,...,Xn}
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8 OPEN QUESTIONS AND FURTHER RESEARCH

satisfy this property. Also, the connection between € (A) and gim-Lie algebras has been barely touched in
this thesis.

Finally, the affine situation appears to allow for further investigation, as the R-models from def.
appear like a blend of Lie-triples with generalized current algebras. The representation theory of both has
been studied individually (cp. for instance [HP02] and [FL0O7]) and maybe one can combine the methods of
both worlds to find out more about the representation theory of Lie algebras of type (Ry ® £) @ (R— ® p).
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A COMPUTATIONS FOR SECTION 2

A Computations for section

In this appendix I collect the rather technical computations of section [2| Throughout, ¢,e1,e2,e5 € {—1,1}
are placeholders for signs. Also, the Berman elements X ), ..., X, are defined as in eq. where
Y} i,

[324(3), - 752(74]») are defined in egs. and .

A.1 Computation of the so(n,C)-structure coefficients

First, collect the pairwise commutation relations of the X (1), e X 5(4)

Lemma A.1. With B” ,...,ﬂfi as in egs. (l) I) and X5<k) as in one has
XKoo o] = [Xo Kagg] = Ko X9 Kopm] = X Kypp | = 20000
(X K] = 0= [Xa X
Proof. Initially one finds

(51(,1]') 51(2])) = (agi+ -+ agj_lag + -+ agj2) = (ﬁfg + a8 ) =2-1=1

and similarly one computes all others as well. One obtains

(50] w(z)) ( (l)lﬁ(3)> ( (1)|B )

(4216 =0, (£21) =1, (5915) =

This leads to (cp. eq.

[ Ko Xam ]| = [ese = e_gmrepm —e_gm] = |egmre_gm] = [e_s0.e50]
With [egj_1, 61‘] =0 V(Z, 2] — 1) ¢ £ one has

65(1) = [€2z', [ B [62]‘—27 62j—1]]] = — [621', [ B [€2j—1, €2j—2]]]
= —ad(ezj-1) ([le2s, [. .-, [eaj—s, e2;2]]]) = — [ezg‘fla%@?}
2,3
e (65;};) - [fzj*l’e—ﬁﬁ?]
and with £ (61(23) - agj,l> ¢ A (Ag) one finds
{Xﬂib”Xﬂf}} = (-1 H% e M ﬁf)} HfQJ e ﬂ”’] ’eﬁf}]

- o h{ A [ L
)] e (620

- (5§,j |042j71) esj—1+ (5123 |0¢2j71> faj—1

= egj—1— foj—1 = Xoj—1 .
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A COMPUTATIONS FOR SECTION 2 A.1 Computation of the so(n, C)-structure coefficients

Similarly, with eﬁ’f} = — [egj,l,eﬁgﬂ and 6—65? = {fQj*l’e—ﬁﬁ} one finds

[Xaﬁi?’Xﬁii?] - [eﬁii?’e—ﬁi?} - [e—ﬂii?’eﬁif?]

[821'—1’ [eﬂg4?,675;4)}] - {f%’—l’ [675?4?7‘3&4?”
4 4

= |:62j—17 (B( )) :| |:fj 1, (B( )> :|

- (52'(;”0423'71) e2j—1 + (51'(743”0423'71) faj—1

= egj—1 — faj—1 = Xoj_1.

From €g0) = [ezi_l,eﬁm} and €_p) = = [fgi_1,675<1)] however, one deduces
7 ) @, i,

X, 0, X } = - {e ,€ } — [e ,e }
[ ﬁz(la) B1(3J) ﬂz(la) 7ﬁz(37) 7B£11) ﬁz(i)
= [fan {"’Bf}j”e—ﬂi}jﬂ = [ean, {"’—BE}}’%E}}H
1 Vv 1 \
- [(@( 4)> s foicn| — (3},}) ) €2i—1

= (51-(,1]-)|Oé2i—1) J2ic1 — (52-(71]-)|042i—1> €21

= —fo—1+ez—1=Xoi1.

Since epa) = {egi,l, eﬁ@)} the computation for {Xﬁ@) , XB<4)] = X5, 1 works exactly the same way. One has
i i i i
s Xgn] = [eamrenn] = [eamesm] = le_smmesn] + [e_mie ]
= 0-0-0+0=0

since B(l) (4) ¢ A (Ep). Similarly one finds {Xﬂi(zj) , Xﬁi(gj):| =0. O

Lemma A.2. With e 1, 1e,1, and H; as in egs. and one has

[661Li+62LJ‘76761L1762LJ‘] = ElH’i +52Hj
[eflLi+52Li+176—52L1+1+53Li+k] = i €eyLi+esLitk for k> 2.
Proof. Start with the ﬁrst relatlon As only the roots ﬁ(l) e i(i') appear one has to realize that only the

combinations 51-’ Bl G ﬁ i BZ G ,6’(2) Bz}j and ﬁ(g) B are positive roots. This is best seen from the
fact that Ag-roots are characterized umquely by their support and sign, as their support has to be connected
(cp. [K90, lem. 1.6]) and each root as,...,q,_1 can appear at most once. Thus, the only combinations
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A1 Computation of the so(n, C)-structure coefficients A COMPUTATIONS FOR SECTION 2

among the Bz G- ,Bi(jlj) are differences of these roots which result in a connected support. This yields
[eglLﬁ_gzLj,e_glL,i_EZLJ = —1 Xﬁ(l? - iEQXB(Q) - Z'€1Xﬁ(3) - €1€2X6§4),
4 1,7 57 57 2,7

Xﬂi(jlj) + Z.EQXﬁE?j) + ialXﬂi(rsj) — EngXﬂﬁf?}
= 5 (= [y K] e [Xogn X
ter Xy, Ko 22 | Xy, X0 )
and from lemma [AT] one then has that
[€ciLiteslys €—erLimesl;| = —% 261 X0 1 + 262 X5, 1]
and with H; = —iX5;_1 one concludes
[€ciLiteslys €—erLi—esL,] = €1H; +e2Hj .
Towards the second relation consider that only the following roots are nonzero:
51(11)+1 + 51'(-131,1‘% = 61(11)-% ) 51(11)+1 ﬂi(i)l,i+k = 51(21)+k ) 61(21)+1 + 51‘(-3%)17%‘% - ﬂi(ll)““
Bz ,i+1 +ﬁz+1 i+k 61 itk 0 Bz ,i+1 +ﬁz+1 i+k 61 itk 0 Bz ,i+1 +ﬁz+1 i+k T 61 itk

(4) (3) (4) (4)
Biiv1+ Berl ik = Biivk > Bida T 62+1 ik = Biitk -
With this one computes

—4 [651L1+E2Li+1 , 6—82Li+1+€3Li+k:| = |:Xﬂl§1i)+1 - i52X5§2i)+1 - ileﬂESi)H - 6162Xﬁ§4i)+1 ,
X — 163X 42 + ie9 X L3 + e9e3X (4 }
Big1,itr Bi1, itk Bi1, itk Bif1 itk

- x4 . X.a ]—ig[Xlxz ]+52{X X s
[ BB ik 3B B 2 [ B3 B

_iegeg {X5§2»)+1’X5<4) } — &1 {Xl?( +1,X5(1) }

i+1,i+k i+1,i+k

—E1€3 [X,B(S) ’X,B(Z) } — it’:‘l&‘g |:Xﬂ(4) ’XB(S) }

iit1 i+1,i+k ii41 i+1,i+k

—616363 |:X,8(4) ’Xﬂ(4) :|

i,i+1 i+1,i4+k

All commutators in the above equation yield an element +X by the way these are defined. The sign is

Bl
determined as follows (1 <i<j<l<n):

[X(i,iJrl,...,j)’X(j+1,...,l):| _ {7ad (X)) (X(i,...,jfl)> ,X(j+1,...,z)}
—ad (X;) ({X(iy-»»yjfl)’X(j+1,,..,l)D
+[X<z, =1 ad (X )(X(]-H ))}

0 + |:X(i7"').j71),X(.j7"')l):|
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A COMPUTATIONS FOR SECTION 2 A.1 Computation of the so(n, C)-structure coefficients

and by induction [X(i’i“‘l""’j),X(j+1""’l)] = X (0 which fixes all signs to be

(m1) (mz2) (m3)
Koy Xy | =+ Xy VAR + 800 = BT (129)
With this:
“learai catminnn] = Xy, —iaXye + Xy —teXye  —eXgo,
—€1€3XB(4) — ’iElXﬁ(s) - 5153Xﬁ<4)
iitk itk iitk
= 2- (X (1) lEgX (2) Z€1X (3) €1€3X (4) )
ﬁi,i+k 61 itk B1 sitk 7 itk

= 4 €e1LitesLliyy -

Lemma A.3. Let v,71,72 be positiveA, _1-roots such that v = v1 + 72 and e, = [e4,, e4,] then
[X“/’ X71] =X

Y2 [X“/’XW] =-X

;-
Proof. If v = ~v1 + 72 then v +v; ¢ A(A,_1) but v —~; for ¢ = 1,2 is. Thus, [e,,e,,] = 0. Also, if
71 + 72 € A(An—1) one knows that v; —v2 ¢ A (A,—1) and hence, [e,,,e_,,] = 0. One computes
Xy, Xl = —leyem] —le—y, 6]
—[levseps] ey ]+ [le—rie—ra] s €]
= [le—yi,en]iey,] +0—[leg 6y, 6-9,] +0
[ exa] = (1, e
= —(12lm) (ey, —e—r,) = Xy,

and

[(Xy, Xy,] = —ley,enn] — [y, 5,]

—[leyss €] emna] + [le—yyse—ra] s €4,
= levis (12)"] = [e=n (92)"]
(r2lm) - (e, =€) = =X,

Lemma A.4. For1<i<j<m one has

[X @ X (k)] — 0 fork =34, [ @ (k)} 0 fork=1,2
ﬁi,7n+1 ﬁ'i,j 1 m+1 ﬁb g
oo o] = Xm0 [X |=x
(Koo Xam] =Ko (Ko X = oo
N [ |=x
[ 50 Ko | = Xa@ o [Xam o Xe B
and
|:X (2) X (k)] —0f07‘k—2,4, { (4) (k):| OfOT‘IC_]. 3
/BJ m+1 Bi,j J nL+1 ﬁz g
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A1 Computation of the so(n, C)-structure coefficients A COMPUTATIONS FOR SECTION 2

X X } X [X X } _
[ B B (PRI R S AL e B
[Xﬂ;‘im Xﬁﬁ?ﬂ = X520 [Xam Xﬂzﬂ = —Xpw

Proof. One has from the definition of the B that

BE L £ BN ¢ A(A,y) for k=34,

1) 2 2 4
BZ m+1 B( +6]( m+1 ﬂfTZL+1 ﬂ( ) +ﬁj(7731+1

and
ﬂi(?w,-l (k) ¢ A(A,_q) for k=1,2,

4 4)
ﬂl(”gi"rl:ﬂlj +Bjm+17 Bzm-&-l_ﬂ( /Bjm+1

Therefore

X

) ) X
Bimy1’ B

[X }:Ofork::3,4, [X5<4) , BW} —0fork=1,2
i,m+1 .7

and one computes with lemma[A.3] that

o ] = s o] =

i,m41 j,mA41 j,m41
Koo Ko ] = [Kaman, o Xam] = X,
Note that the assumptions on the ordering of the Berman generators in lemma are met because 7 < j.
For example,
2
/Bi(,,zlﬂ = Qi+ Qo = Qg e Qi1 Qg Qo

pi B
Similarly one computes that
Koo Xom] = (Koo, K] = X2
X K] = X Y] = X0
For the others one checks that

B(l) =+ 6(,27314-1 - 51'(,27214-17 5(3) + 5(,2731-&-1 - Bz m+1’

2) 4 4
B( + 6] m41 — Bz sma1) /8( IBJ( 731+1 = ﬁi(m)wrl

are the only nonzero combinations of the involved roots which implies with eq. (129) that

|:XB]<27)7L+1 XBEkJ):| =0 for k = 2,4, [XB](47),1+1 Xﬁfkj):| =0 for k = 1,3

Ko o K] == [Xp, Xy | =X,
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A COMPUTATIONS FOR SECTION 2 A.1 Computation of the so(n, C)-structure coefficients

[Xpo X pw| == [Xp0, Xy | ==X,

J,m—+1 J,m+1 i,m+1

X X ]:-k‘,x }:—X ,
Koo Xoe] = = (X oo, | = X,
Koo XKoo ] == Ko Xam | = =X
O
Lemma A.5. Fori < j < k the only nonzero commutators [Xﬁ<,n1),Xﬁ(m2>] are
ok
[Xﬁm,Xﬁ(l)} =~ X5m [Xﬁu),XB(S)} = —X@gi}a [Xﬁ@),XB(z)} = —X@g}; ; [Xﬁ,(z),Xﬁ(zx)} = —ng?j),
[Xﬁm,Xﬂ;ﬂ = —Xﬁg’s]) ) [Xﬂm,XﬂJ(_ﬂ = _XBE,‘?’ [Xﬂm),Xﬂm} = _Xﬁi(? ) [Xﬁm),Xﬁw} = —Xﬂgijy-
Proof. Apply lemma (A.3) and eq. (129) together with definitions and to obtain
X Xa] = [Xaeam Xaop] = =X X0, HX K| ==Xy,
|: 5(1) ,3(1) ,3,(1])+ﬂ(1) (1) 51(1]) ﬁ(l) (3) ﬁZ(ZJ)JFB(S) ﬂ(3) ﬁz(z])
|: (2)7 (2):| |: ,31(1_7)4’6(2)’ ):| 551) ’ |: 5(2)7 (4)] |: ,352])+ﬁ(4)’ (4):| 5(2)7
) ) = ’ ) ) )| — )
[ 8%) (1)} [ 553;>+5(1) )} Bf‘? { 5&) (3)] { 57(43)+5(3) B¢, } B(4)
[ <4>, <2>} [ 553?“3(2)7 (2)} 55? ) { 5(4)7 <4)] { B<4>+5<4>, (4)] ﬁf?
O
Lemma A.6. With ec,1, 1,1, as in eq. one has fori < j <k
[eflLi+52Lk7eESLj_52Lk] = _iealLi"t‘ESLj'
Proof. Start with
1 .
I:eElLiJrEQLk?eE?,L]'f&‘QLk} = _Z |:Xﬁ1(,1k) - ZEQXﬂ@) - Zngﬁ(3) - ElEzXﬁ(,‘lk)
Xﬂu) + ZEQXIB@) - ZEgXﬁ(3) + €3€2X5(2}
and apply the previous lemma to find
e feariannonan] = X - ieXye - 91X - Xy
X (1) + ZEQX (2) —ie3X 3 + €369 X (4)}
B ) Y B
= — + ie3 X —e2X +ie2es X
By TR T TR e
+ie1X 43 + 163X +7;€1€§X 3) + 618383)( (4)
= -2 (Xﬁi(,lj) — 7;63Xﬁ£i? — i€1X5§?J) — €1€3X5i(f1j)>
= i CeiLi+esL;
so that [eflLi+€2Lk’ e€3Lj—62Lk-] =—i- €eyL;+esL;- O
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Lemma A.7. For1 <i<j<m and e, asin eq. (@ one has
[eleuesng] == 72i661L7ﬁ+€2LJ‘5 [eLia G—Li] = 2Hl

I:eféilLiﬂ 661Li+52ij| = ieEQL]'7 [efsng ) elei+82L]':| = _ielei .

Proof. Compute with lemma that

[eElLi7eg2ij| = - [X (2) —i€1X,8(4) ,XB(2) — 12X (9 }
iym1 iomeb1 j,m41 j.om41
= X, 1) —i1eaX 29 —ie1 X 3) —€169X
R ¥ R ¥
= 72i651Li+52L]"
Also,
[eLi,e_Li] = f[XB(z) 7Z‘X/3(4) ,XB(Q) +iXB(4)
i,m1 iom1 i,m1 iom1
= 20Xy Xy | = —2iXe,, = 2H;
i,m1 il
according to lemma With lemma [A74] one computes that
le—ciLis€erLitesr;] = .- [X @ Fie1X X pm —ieaX o) —ie1X g3 —€182X (@}
' 7 2 im41 Bimt1 B;; B B;; B;;
- Iix jeo X X je3eq X
= —3 2 T E2A W + &1 g  TEIE2X g
§m41 Jm1 jm41 §m41
= - (X (2) *i€2X (4) ) = i€s2L»
jm41 41 J
and
l6—coL, €erLitesl;] = ! {X @  tieeX a X o) —ieaX e —ie1 X e — 182X <4>}
7 7 2 J,m+1 Bj i1 B;; B B B;j
= —1 (—X (2) + 161X @ —e2X (2) —|—i€1€2X (4) )
2 Bitmt1 Bi 41 2 Bi i1 2 Bi 1
= X (2) 7i61X (4) = 7i651L‘.
Biimt1 B m1 *

A.2 Computation of relations

In this subsection, all relations stated in eqs. — are shown.
Lemma A.8. One has with Xy =i (Xq, £iXa,tas) from eq. (29):

[XJra eELl*LQ] = X02+043+Oén - igXOt1+Oéz+as+an = [vaeELﬂrLz]
ad (X+>2 (6€L1—L2) =2€cn,+Ls> ad (X—)2 (66L1+L2) =2ecr,-1,

ad (X+)3 (6€L1—L2) =0=ad (X—)3 (66L1+L2) ) ad (651L1—L2)2 (X+) =0=ad (651L1+L2)2 (X—) :
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Proof. Starting from

CeiLi+esls = . (X ;1% —iEQX ;2; — iSlXﬂiag — €1€2Xﬂ§42)>

N .

one computes

1 . .
[(Xi,eciniverls] = D) [(Xans Xastas = 1€2Xa, — €1 X0 +astas — €162Xa; +as)
T3 [Xostan Xastas — 1€2Xa, — €1 X0, +astas — €162Xa; +as]

2
1 1
= +5Xatasta, T0— 561X +astasta, T0
2 2
5E )
+0 £ Z252X0z2+a3+ocn +0=£ 55152Xa1+a2+a3+an
1 i
= 5 (0 Fe2) Xaztagran = 561 (1 F €2) Xartastastan
1Feo

= D) (Xastastan, — €1 X0 tas+astan)

which implies that
[X+7 651L1+L2] =0= [X*’ 651L1*L2] .

Furthermore, one immediately deduces

[X-H 661L1—L2] = XOé2+043+Otn - ileOé1+C¥2+0t3+an = [X—’€€1L1+L2] .

With [X;,X_] = 2H, one computes further that

ad (X4)? (ecra-1,) = [Xio [ X ee,ni—no]] = (X4 [X_s e, 1, 11,]]
= [2Hz,ec,n,40,) +[X_,0] =20, 1,41,

ad (X4)* (ec,ry-1,) = 2[X4 ec,0,42,] =0

ad (X_)* (ec, 1, +L,) (X [Xo s eernvra]] = [ X [ Xy ey, 1))
= [-2Hy,ec,n,-1,) + [X+,0] = 2ec, 1, -1,

ad (X_)? (ec,1,11,) = 2[X_,ee,n,-1,] =0.

In order to obtain the other Serre-type relations one has

2
ad (651L1*L2) (X+) = [e€1L1*L23 [661L1*L2a X+]] = [681L1*L27 [661L1+L27X*]]
[[661L1—L276€1L1+L2] aX—} + [651L1+L27 [GEILI_LQ?X—H

2
ad (681L1+L2) (X—) = [681L1+L2’ [€€1L1+L27X—H = [681L1+L27 [681L1—L27X+]]
= [[651L1+L27€€1L1*L2] 7X+} + [€€1L1*L27 [661L1+L27X+H
= 0.
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Lemma A.9. One has with X4 =i (Xq, £iXa,as) from eq. (29):

[X+7€*L2+€Lj] = _iXan+ﬁ§?; - 8X%+B§‘2 == [X*’€L2+€Lj]
ad (X+)2 (67L2+5Lj) = _26L2+€L_77 ad (X*)Q (6L2+€L_7’) = _267L2+€Lj
ad ()(4,)‘3 (6,L2+€Lj) =0=ad (X,)S (6L2+5Lj) y ad (6,L2+5Lj)2 (X+) =0=ad (6L2+5Lj)2 (X,) .

Proof. Note that the support of ﬁélj) and 652]) starts at a4 whereas the support of 553]) and 554} starts at as.
Hence,
an + B8, o+ BY), s+ o + BE), a5+ an + 8L ¢ A (),

because (ag + ap | 553])) =0= (ag + ay | Bglj)) From this one computes with ag + BSJ) = ﬂégj), o3 + 552]) =

ng and lemma that

[Xi)eertnier,] = —f[Xanj:iXa"JrayXﬁél?—iaX
2J

—_

—1e1X 3 —e1eX
527]'

2 4
BE) LY

— DN

= —= (0 +0— ilean"l'Bé?; - ElEXocn-i-B;?)

) .
:F§ (Xan+a3+B§,1; N ZsXan-l-as-&-ﬂéi)- +0+ 0)
g 1 i €
= 5 Xanrs® T 3518 X0 160 T 5% 0,150 T 5% a, 460

7 €
3 F DX, o T3 EF DX, a

which shows
[X+7 €L2+5Lj:| - 0 - I:Xfa e*Lg#»ELj}

[X+76—L2+5Lj] = —1X éa) —eX

an+p8 g - [X—aeLz-l-sLj]

ant+85) =

From this one goes on to deduce

ad (67L2+5L]-)2(X+) =t e Loter; [Xoerioter,]]
= 0+[X_,0]=0
ad (€L2+5Lj)2(Xf) =+ [eLoter;s [XoreLoyer,]]
= 0+[X.,0]=0
ad (X3)? (e—ry4er,) = —ad(Xy) ([X_,erpser,]) = —2 [Hoseryier,] +0
= —2ep,terL,
= ad(X})® (e—pgter,) = O
ad (X_)? (epy4er;) = —ad(X_) ([Xi.e—rp4er,]) =2 [Hose—py4er,] +0
= —2e_L,teL;
= ad(X_)* (ersger,) = O.
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Lemma A.10. One has for i > 2 that
[Xi?eflLi+52Lj:| =0= [Xi7eE1Lz‘ :

Proof. This is seen directly from the fact that for ¢ > 2

an £ 8%, g+ an £ 8% ¢ A(E,) VE=1,....4

70
and therefore all commutators vanish. O

Together, lemmas and show eqs. (3I)-(33). The next lemma shows eq. and the
nontrivial part of .

Lemma A.11. One has the following relations among X+ and e.r,, :

[X+,exr,] =0, [Xi,e_p,] = *QiXa 489 = (X, eir,]
nt B2 my1

ad<X+)2 (€*L2) = —2er,, ad (X+)3 (e*Lz) =0=uad (X*>3 (6+L2)’ ad (X*)2 (6+L2) =—2e_p,
ad(exr,)” (Xz) = —2X1, ad(exr,)’ (X3) =0.

Proof. One computes

[Xi, 65L2] = 42 Xa, £1Xa, +as, X3<2) - 'L.EXB(AL)
2,m+1 2,m+1
= 0+ ZEX‘XH+BQ?;/+1 T ZX(an+0‘3)+r3§,27)n+1 +0
= i(EI F 1) Xan+ﬁz(>jlv)n+1
because X(an+a3)+ﬁ§?}wl = Xan,+(a3+ﬁ§?;+1) = Xan+5éi)ﬂ+1' This implies the first line of relations. From
this one goes on to compute
ad (X})* (e—,) = —[Xq,[X_ eqp,]]=—[2Ha, e4p,] +0
= —2€L2
= ad (X)) (e-1,) = 0
ad (X_)* (e4,) = —[X,[Xy e p,]] = [2Hs,e 1] +0
= —26,L2
= ad(X_)’(eq4r,) = 0.
For the last line one checks that
2
ad(exr,)” (X5) = ad(exr,) (lexr,, X5]) = —ad (exL,) ([exL,, X))

= —[+2Hy, X+] - 0=—2X4
= ad(esr,)’ (X5) = 0.

The next lemma shows eq. (130):
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Lemma A.12. One has the following relations among Xy and e.r,, :

0# [Xi,ecr,] = —Xaﬁgfgnﬂ + Z€Xa"+ﬂﬁ>n+l Fi Xan+a3,XBfT>n+J Fe [XamaaaXﬂmH] (130)

ad(X+)? (ecr,) = 0= ad (ecr,)” (Xz).

Proof. The first result (130) follows from expansion of

(Xeyer] = &2 {Xan:tz’X%Jr%,Xﬁf)H—isXBm) }

1,m+1
= —-X (2) +i€X (4) F1 {Xan+a3aX (2) } Fe {Xan+a3,X (4) ] ,
n B mt1 Bi 1 B1m+1

a7l+ﬁ1,m+1

where this is nonzero because (ﬁi’;)wﬂan) = (61 1 lom + a3> for kK = 2,4. Since all the pairwise
sums of roots yield different E,,-roots, the above expression is nonzero. One computes further that

2
ad (e, )? (Xs) = 42 {ad (Xﬁizzw) —jead (Xﬁﬁm)} (iXa, F X, tas)
2
—1 { ( 5§2) +1) —jead ( §2) +1) ad (XﬁYD +1) —jead (XﬁYL) +1) ad (Xﬂf) +1)
2
~<ad (X ) }
2
+ ( (2) ) — tead ( (2) ) ad (X (4) ) — jead (X (4) ) ad (X (2) )
B1 ym+1 By ,m41 Bl,m+1 51,m+1 51,m+1

2
—& ad( (@) } antas)

B1 1

In general, let o,y € A(A,—1) and § € A(E,,) such that 6 ta ¢ A (E,) and (y]0) = —1 with § —y ¢ A (E,).
Then one computes

[Xw [Xa+'va5]] = Xy, [Xav [Xw X6]] - | Xy, [XavXé]
=0

[Xavad (X,)° (X5)| = | [Xes X, [X, X5
=Xaty
= ad(X,)ad (X;)? (X5) — ad (Xaqs) ad (X)) (X5) .
This is equivalent to
{ad (Xq4~)ad (X5) +ad (X)) ad (Xa4+)} (X5) = ad (X4 ) ad (XW)2 (Xs5) =0, (131)

where the last equality follows from the A (E,,)-root system: Neither § — v nor § + 2~ are roots and therefore
ad (XV)2 (Xs) = c- X5 with ¢ # 0. But § £ a ¢ A(F,) and thus, the application of ad (X,) in the end

renders the expression zero. This applies in the above cases with § € {a,, ap, + s}, v = Bﬁ)nH, a=o.
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A COMPUTATIONS FOR SECTION 2 A.2 Computation of relations

Again, let o,y € A(A,—1) and 6 € A (E,,) such that d o ¢ A (E,,) and (v]6) = —1 with 6 —v ¢ A (E,),
then
2d (Xass)? (X5) = [Xas [Xar Xo], X5]
= [Xaty [Xa, [X5, Xs]] = O]
a) (Katry, [ Xy, X5]]) = [[Xa, Xags] s [Xy, Xs]]
o) ad (Xaty) ad (X)) (X5) + ad (X,)* (X5)
2)7 (Xs), (132)

where the last equality again follows from the A (E,,)-root system: v+ € A (E,) but (v + «|y+ ) = 0 and
(v+0)—(v+a)=—-a+d ¢ A(FE,) implies that ad (Xo4+) ad (X)) (X;5) = 0. Applying and to
ad (ecp,)” (X+) shows that it needs to vanish. For the last relation ad (X+) (ecz,) = 0 one could in principle
do a similar computation but it is easier to rewrite e.r, = ¢- [ecr,+1,,€51,] and use that [Xt,e.r,4+7,] =0

and ad (X4)° (exr,) = —2e4r, according to lemmas and together with [e.r,+1,,e+1,] = 0. O

Lemma A.13. One has for j > 3 that

ad (X
ad (X
ad (X

2 2
[Xi7€E1L1+€2L]J # 0, a'd(X:t) (661L1+€2L]‘) =0=ad (661L1+62L]‘) (X:t)
Proof. First observe that
€eyLi+e2L; = —1 [661L1—L276L2+€2L]‘] =—1 [651L1+L276—L2+82LJ

which implies that

ad (X+)2 <661L1+E2L]‘) = —i [ad (X+)2 (661L1*L2) 7€L2+€2L]} +0

_27’ [€€1L1+L276L2+62LJ‘] = 0

ad (X*)Q (651L1+52Lj) = —1 |:ad (X*)z (€€1L1+L2) 76*L2+€2L]} +0
= _2Z [661L17L2767L2+62Lj} = 0 .
The second relation is shown similarly to lemma With the shorthand ad(z) =: ¥ one has that

i3

2 e . . = 2 .
ad (ec, 1y +esr;) (Xi) 1 {Xﬁu) —iea X @ = ie1 X ® — 5152X5§4]?} (Xa, T X0, +a5)

= —— {deXﬁ(k) + chl ( B(k)X (z) + Xﬂiliiﬁgkj)} (onn)
{deXﬁm + chz ( 5<k>X w + X'ﬁil,;f(ﬁ%)} (Xan+as)

with dy = 1, dy = —€2 = 1 d3 =2 =-1,d4 = 8182 = 1 and o3 = —e169 = c¢14 (the others won’t
matter). The involved roots ﬁ are all of the shape a; +51 jtazi where one or both roots a1, ag;_1 may
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be absent. Since ai,a2;—1 L an, a3 one can apply the result (132) from the proof of the previous lemma.

Note that signs from the order X, 3 = =X, do not matter in the square terms XZY“-) and so one obtains
»J

Xﬁ(m (Xa,) = ng)- (Xa,) )N(;ik) (Xaytas) = Xﬁ@) (Xan+as) VE=1,2,3,4.

This yields (as Zk:l dp, =0)

4 4
Y2 —_ 0 — Y2
D Xy () = 0= 3 X (Koo as).

For the pairs (1, 2), (1, 3), (2,4) and (3, 4) one can apply (131)) as in the previous lemma because each anticom-
mutator yields a term proportional to X, (Xs) with o € {1, 91} and § € {e,, v, + a3} which vanishes.

For (2,3) and (1,4) however, this strategy does not work. Instead one has that because (Bl 3 \517]> =0=
(ﬁgwu) the corresponding X 5 commute. Now
5+ 83+ 8% =5+ 81 + 1Y) € A(E,) for 6 € {an, an + a3}

One then computes with § + /J’Lj + /J’Lj ¢ A(E,) and [X,,, Xs] =0 that

f(ﬁf;f(ﬁf; (X;5) = XalXﬁu)XB@ (X5) — XB@)XMXB(Z) (X5)
= 00— XB(U (f(al)?ﬁm - Xﬁ@)Xal) (X5) +0
1,5 1,5 1,5
= -X (1)X @ (Xs). (133)
5179 Bl,j

Note that oy —|—B§2) ﬁl implies [Xal , Xﬁ@)} = XB<4) in my sign convention because A, _1-Berman elements
o 1] 1,5

are built from left to right. With co3 = ¢q4 this implies that
{623 <Xﬂ(2)Xﬁ(3) + )?553; Xﬁﬁ)) + c14 (Xﬂ(l)X5(4) + XB(A’;J) Xﬂ(1)> } (Xg)

= 2623X5(3)_X6(2? (X(;) =+ 2014)?,8(1).)25(4). (X(;) =0.
1,5 1,5 1,5 1,5

This shows eq. .

B Documentation of tensor products and reproducability

In this section I will explain in detail how the computer-based analysis of £ (E1o)-modules from section@works
and how to reproduce the results. Section explains how the representation matrices are implemented
and which codes reproduce themﬂ whereas section deals with the decomposition into s0(10, C)-modules.
Section explains in detail how the %—spin representation S 1 is set up analytically in a weight space basis
w.r.t. $0(10,C) such that the representation matrices are as sparse as possible. In section I provide a
technical documentation for most of the functions that are used in my scripts and notebooks. One important
thing to note is that in all of the codes the exceptional Berman generator is called Xo while throughout this
document it is called X;.

57All the Sagemath-notebooks and scripts are available online here: http://dx.doi.org/10.22029/jlupub-533.
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B REPRODUCABILITY B.1 Generating the representation matrices

B.1 Generating the representation matrices

In order to perform and analyze the so (10, C)-decompositions of the € (FEq)-representations it is necessary
to spell out how so0 (10, C) is generated in terms of the Berman generators of ¢ (E1g). Based on section [2[ and
more precisely eq. (22)) one has that for j = 1,2, 3,4 a Weyl canonical basis for so (10, C) is given via

1 . .

Ep = 5 ([Xaj, Xoj1] +i- Xoj — i+ [Xoj—1, [Xoj, Xoja]] + [Xzj-1, Xaj])
1 . .

Es = 3 ([Xs, Xo] —i- Xg —i-[Xy, [Xs, Xo]] — [X7, Xg])
1 _ .

Fy o= 5 ([Xog, Xoja] =0 Xoj + - [Xoj1, [Xoj, Xoja]] + [Xoj1, Xa5])
1 . .

Fs = 3 ([Xs, Xo] +1i- X+ i [X7, [Xs, Xo]] — [X7, X5])

hj = —7- (X2j71 — X2j+1) s h5 = —7- (X7 +Xg), Hj = —q- ngfl, hR = spanR {Xl,Xg, e ,Xg}.

The major difference between the Weyl-canonical basis and the Chevalley basis is that [E;, F;| = —d;;h;
instead of +d;;h;. Also, in my implementation of the Berman generators, the £; and F; will be real and in
some cases even rational which allows for faster exact computations in Sagemath because one can use the
rational number field instead of the symbolic ring. Assume that the representation matrices of the Berman
generators of € (Ag) (R) are chosen to be skew-hermitian, i.e. XZT =—X, fori € {1,...,9}. Together with the
additional i in the definition of hq,...,hs and Hy,..., Hs this provides that R-linear combinations of those
are hermitian and that F- and F-type Weyl-operators are skew-conjugate to each other:

W, =ho Vhe €i-br, El = —F; .

Furthermore If one manages to realize these relations in a representation of £(FEjg) over C" one has the
advantage that the standard hermitian inner product of C™ is proportional to the hermitian form that is
induced by the so (10, C)-contravariant bilinear form. With respect to this form, the different so (10, C)-
modules are orthogonal, which I will exploit in decompositions. Note that the additional Berman generator
X0 is excluded from this. Its representation matrix will in most cases not be skew-hermitian. The only case

where this will happen is for powers of (S% , p%), since im (p%) is coincidentally isomorphic to $0(32) on the

level of matrix algebras (cp. [HKL15]).

The above definitions of the so0 (10, C)-generators in terms of Berman-generators are implemented in the
functions get_E_ladder, get_F_ladder, get_H_weyl and get_H_orth (see section for a technical doc-
umentation) which give back the matrices as a list with 5 entries. A test of the Weyl-relations is implemented
for dense and sparse matrices separately, called ladder_check and ladder_check_sparse respectively (see
(C.1.2). The sparse check is considerably faster then the dense one in most cases studied as it checks relations
R(A, B) = 0 for sparse matrices A, B by computing the matrix norm of the sparse matrix R(A, B) which is
quite fast.

Additional tests are available for the Berman relations of € (F1g) as spelled out in section via the
functions Berman_check and Berman_check_sparse for dense and sparse matrices respectively.

As in section I spell out Ds-weights w.r.t. the orthonormal basis Hy,..., Hs of hr (D5). A weight A
can be written as \ = Ele a;L; with L; € b (Ds) such that L; (H;) = ¢;; and a; € %Z. The fundamental
weights of Dy are

W1:L1 y WQ:L1+L2 s W3:L1—|—L2—|—L3
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1 1
ﬂii(L1+L2+L3+L4*L5) 5 a:§(L1+L2+L3+L4+L5)

and for a dominant weight A I will denote the associated highest weight module by 'y or L (A).

The generation of the representation matrices is implemented in the Sagemath 9.0-notebook
“Generating_representation_matrices” and the therein called script “generation routines.sage”. The
notebook consists of several very similar blocks. In each block one first creates the Berman generators and
performs a test of the Berman relations. Afterwards one computes the Weyl canonical form and performs the
corresponding tests as well which includes testing the skewness properties described above. Afterwards the
matrices are stored in a suitably named folder in a sparse format. For the tensor products of representation
matrices one can skip the tests and I have done so for larger dimensions as these tests are rather expensive.
Running the entire notebook can take between 3 and 4 days as the last block (creation of the S% ® /\2 S%—
representation matrices) is time-consuming. In the following I will describe some details about the individual
construction of the representation matrices.

B.1.1 Representation matrices for 8%

The representation matrices of the Berman generators of ¢ (E7g) are set up w.r.t. the basis developed in
section (B.3). The only result that is essentially needed from this section is the following lemma.

Lemma B.1. With respect to a weight basis

{8)\ | A E A(FQ)UA(FB) = {ZaiLi ‘ a; = i;}}
=1

of the s0 (10, C)-module T'y, ® ', define matrices p (X;) fori=1,...,10 as follows:
p(Xgj_1)sx = i-p(Hj)sx=1-A(H;)sxVj=1,...,5,

) . )
p(Xaj) sy = ~ 5 SA=2AH) Ly —2A(H, 1) Lyt Vi=1,...,4, p(Xi0)sx = ~ 5 SA-2A(Ha) La

where L; (H;) = 6;5. Then the matrices p(X1),...,p(X10) form a generalized spin representation of € (E1)
as in def. (3.1}

The representation matrices for all Berman generators are skew-hermitian in the above initialization. Since
every weight in I'y @ I'g has multiplicity one, one simply identifies each weight with one of the euclidean basis
vectors of C*2. T will also collect a result on orthogonality of highest weight modules.

Lemma B.2. Let L (A1) C V and L(A3) C V be concrete realizations of highest weight modules inside a
larger vector space V = C"™. Assume that E1,...,FE5, F1,..., F5, hy,...,hs are representation matrices that
satisfy the relations of the Weyl canonical form of so (10,C) and in addition are such that EZT = —F;. Then
if the highest weight vectors vy, and vp, are orthogonal w.r.t. the standard hermitian product on C", the
modules L (A1) and L (A2) are orthogonal w.r.t. each other. Note that the highest weight vectors are always
orthogonal to each other if their highest weights are different.

Proof. A weight vector of shape vy = (Hle Fj) vp is said to be of depth k. Assume orthogonality to hold
for vectors of depth k. Then for vy € L (A1) and v, € L (A2) such that Fyuy and Fjv, are vectors to the
same weight one computes with [E;, Fj] = h;; € b
(FiualFjou) = —(oalEiFju.) = — (0x|FjEvy) — (valhijvon)
= (Ejua|Eivu) — p(hij) (oalve) = 0.
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Since the weight spaces of depth k + 1 are spanned by such vectors, it follows that these weight spaces are
orthogonal. The claim follows by induction as it is assumed to be true for the highest weight vectors. Towards
the criterion about different highest weights: If Ay # Ao there exists ¢ = 1,...,5 such that Aq(h;) # As(hy)
but then

Al (hl) (UA1 |UA2) = (hivAl |UA2) = (UAl |hirUA2) = A2 (hl) (UA1 |UA2)
and thus, (va,|va,) = 0. O

B.1.2 Representation matrices for S% and Sg

For S% one first needs an implementation of h* of Ejg. Towards this I use the Wall-basis B = {ey,...,e10}
for h* (E10) (R) from [KN13] (adjusted to the enumeration of Ejg in figure[l) in which the simple roots have
the shape

Qj 1= €5 — €541 ijl,...,g, Q19 -— —€1 — €2 — €3.

In terms of B the invariant bilinear form @ on bh* is given by the matrix
1., .
Gij :51']' 7§ VZ,] = 1,...10,

so that B is not orthonormal w.r.t. @ but it is so w.r.t. the inner product (-|-) of C!* by definition. The
Weyl reflection
2Q(v, )
Sa(v) =v— "
= Qe

w.r.t. a real Fjg-root « is therefore given explicitly in terms of B by

a Vv € h*

(sa)p = (ei‘sa(€j>);2:1 .

In the code this is facilitated by the routine weyl_orth (see |C.1.5) and as it turns out the matrices for the
simple Weyl reflections sq,, - .., Sq,, are rather sparse (they have a density of about 10 — 15 % which is quite
good for an invertible 10 x 10-matrix). According to theorem

g

[V

1
X (sm—Qld)@Qp(X,») Vi=1,...,10

defines a representation of € (E1p) known as the %—spin representation 8%. Thus, in addition to implementing

the maps s, — %Id one has to obtain the tensor product matrix, which is simply the Kronecker product of the
two matrices. With the functions tensor_homemade (see[C.1.4) and weyl_orth (see|C.1.5) the generation of
the S%—matrices is straightforward. Together with the above matrices for s, one produces the representation
matrices for S% via
1
os: Xim (n(sai) — 2) ®2p(X;) Vi=1,...,10,

where 7 denotes the induced representation of the Weyl group on Sym? (V). In order to set this up, one
needs to fix certain normalizations and relate linear indexation to indexation by multi-indices. All this is
implemented in the functions normalizers (which facilitates normalization and index conversion for Sym®(V')

in general) and induced_map_sparse_sym2 which is specialized to Sym?V. The technical documentation
of these functions is given in sections and Note that I did not make the effort to work over the
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50(1,9)-irreducible Schur-module Sjg) (V') which excludes the so-called trace part. In a best case scenario, this
would decrease the dimension of the S 5 -representation by 32 which is not negligible if one wants to cons1der
tensor product representations of Ss with other representations. However, in the current basis a subtraction
of the trace part will lead to a s1gn1ﬁcant increase in density of the involved matrices which will mitigate the
benefits of a slightly smaller dimension.

B.1.3 Representation matrices for tensor products

In order to implement the representation matrices of Sym? (S% ) one needs the restriction of maps in

End (V ® V) to Sym? (V), in this case one needs to restrict the map

p (X)) @ Id+Id® p(X;)

to Sym? (S%). This is facilitated by the function Lie_sym2 (see|C.1.9) together with the already mentioned

function normalizers (see [C.1.6).

Similar to the symmetric case one needs a grip on the basis and the restriction of the Lie algebra tensor
product to /\2 S%. The first part is dealt with via the function normalizers_ext (see while the
second problem is attended to by Lie_ext2 (see|C.1.11).

For regular tensor product representations such as S 1® S 1 one simply needs to use the representation
matrices of S 1 and implement the Lie algebra tensor product

(z,y) 2@ Id+1d®y

which is done in the function Lie_tensor (see . For §s ® §1 and S5 ® A S1 one also uses the
function Lie_tensor (see section with the previously computed representation matrices. Note that
it is not necessary to compute the Weyl canonical form from the Berman generators as one can just take
the Lie-tensor product of the individual factors. A direct computation is very time-consuming and even the
seemingly simple approach via Lie-tensor products took almost 3 days to terminate for S 3 ® /\2 S 1

B.2 Decomposition into so(10)-modules in the notebooks

The decomposition into so(10)-modules is performed in the notebook “Decompositions” which again consists
out of very similar blocks where each block treats a particular € (E1p)-module. First, the representation
matrices are read in from file, where two options exist: read_in_SR and read_in_QQ. The last option works
only for some representation matrices because it assumes all matrix entries can be coerced to a rational
number (this does not work for S 5 for instance because normalization of the symmetric matrices includes
%) Hence, the first option which uses the symbolic ring in Sage is the default, although it is substantially
slower. Afterwards one constructs an so (10)-highest weight vector that serves as the starting point of the
investigation via the orbit method described in section [6.1.1] Usually, this builds on analytic insight into
the module and one mostly needs the functions vec_tensor (see , induced_vector_sparse_ext2 (see
C.2.8) or induced_vector_sparse_sym2 to perform tensor products of vectors and det_weight_v2 (see
C.2.4) to determine the weight that the constructed vector has (this function produces an error if one picks
an inhomogeneous vector).

Then one needs one of the most essential functions of my code: The function that constructs a weight
space basis for a highest weight module named weights_and_vectors (described in detail in section [C.2.5).
It builds heavily on the theory of Kashiwara crystals and their implementation in Sage which originally was
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the reason because of which I decided to perform this analysis in Sage. Now one goes on to compute the
orbit of the initial s0(10)-module w.r.t. the full action of € (E1p).

Starting from the highest weight vector vy one applies Xio to each weight vector vy € L(A) to the
weight A\. The image Xjov) is then projected away from the already known representation L(A) via orthog-
onal projection, facilitated by the function project_away (see . As one knows that X719 maps the
weight space L(A), into weight spaces to the weights A\ = Lo one only needs to consider the basis vectors
for these weight spaces. One collects them via the function retrieve_known_weight_vectors (see [C.2.10)
while the possible weight spaces are determined by the function possible_weights (see|C.2.11)). Afterwards
this set of vectors is orthogonalized by the function orthogonalize_v2 (see [C.2.12). Later on the func-
tion retrieve_known_weight_vectors will be replaced by retrieve_known_weight_vectors_from_file
which reads the weight vectors from disk (this is necessary at a certain point because one cannot store all
50 (10)-modules in working memory). One then finds the associated highest weight vector(s) to X1pvx. This
is implemented in find_primitive (see , determination of the weight space is again det_weight_v2
(see[C.2.4). Afterwards one saves the modules to disk.

Towards the analysis of the orbit one first checks if an s0(10)-module L(A;) can be reached from L(A;)
via X7g. This is done by the function check_modules (see and the results are stored in an adjacency
matrix Aqqj. The graph associated to this matrix is directed and its nodes are so(10)-modules. The function
orbit (see determines all modules L(A;) that can be reached from the module L(A;) via & (FEjo)-
action. It is used to check if the orbits of all L(Ay),...,L(A,) are equal. Out of paranoia I also double
checked for some modules if they are indeed orthogonal as they should be.

An alternative approach to obtain the s0(10)-decompositions of the modules that was described in section
|§| is to compute the s0(10)-highest weight vectors directly. Determination of the vector space of primitive
vectors, i.e., the intersection of the kernels of Fi,...,E5 is done by the function get_primitives (see
section . A Dbasis of weight vectors for this vector space is obtained by diagonalizing a random linear
combination Zle A;H; of the orthonormal basis of h* (Ds) restricted to the space of primitive vectors. This
is implemented in the function get_HWVs (see section . However, this approach scales very badly and
therefore is only used once for S s to demonstrate how one can end up with a reducible structure such that
it remains unclear whether or not the representation is completely reducible.

Towards the setup of this computation on a computer cluster there exist scripts called orbit_serial
and mixing_parallel. As the names suggest, the first script does not support parallelization, whereas the
other one does. The computations in orbit_serial are hard to parallelize as this script creates the orbit
associated to an initial so (10)-module and one always needs the information about the modules that one
has already found. Once the orbit is found however, its analysis is easily parallelized. Hence the decision to
split the analysis into two pieces because on most computer cluster there exist different nodes for parallel
and serial computations.

In orbit_serial all the steps to create the orbit are wrapped in a function called analyze_module
that can be found in the script distributed. All relevant information such as where to find the represen-
tation matrices and the so (10)-modules that were already computed are read in from the initialization file
configuration_serial. In this file, two important pieces of information are how many so (10)-modules were
already found (keyword: number of known modules) and at which of these modules the analysis shall start
(keyword: module to_start at). This setup has the advantage that the computation can be paused and
continued if for instance cluster resources are scarce. Note that one can track how much working memory
is usedﬁ and that one can abort the computation if a certain threshold is exceeded. Only a single so (10)-
module is stored in working memory at once during the computation as the necessary basis vectors are read

58Note however that this may not always give the correct result on a computer cluster as it is possible that the result is the
amount of memory currently used on the entire node and not just the amount of memory that is used by this code.
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in from disk via the function retrieve_known_weight_vectors_from_file. Due to this the computation
does not use that much memory but it is time-consuming.

The analysis of which so (10)-modules mix under the full £ (Eg)-action takes place in the script
mixing_parallel. This script uses functions from two other scripts, decomposition_routines and mixing_routines,
as well as the python multiprocessing package. Again, the precise job information is read in from the file
configuration_mixing. The core of this script is the function analyze_mixing which basically receives as
input the identification number of an so (10)-module V; and then determines to which other so (10)-modules
V; there exist v € V; and w € V; sit. (I-Xqov|w) # 0. As this computation has to be done for all
50 (10)-modules anyways this is parallelized easily. In addition one saves a lot of time by excluding some
of the modules based on analytic considerations. One can check that U (so (10,C)) . X709 w.r.t. the adjoint
action forms a highest weight module to the weight ws. Hence, all highest weights that can appear in an
analysis of Xjgvy for vy € L (A) are the highest weights that appear in L (w3) ® L (A). If one sets the option
enforce_Kostant_rule to True, only the modules which appear in this tensor product are checked for an
overlap, which reduces the amount of modules that need to be checked significantly.

One needs to create an initial module in order to run orbit_serial, and for 3 ® S1 and 83 ® (/\2 S%)

this is provided in the script initial_modules, as these computations may be too expensive in the notebook
version.

B.3 Analytical setup of the representation 8%

The core of all higher spin representations of ¢(E1¢) is the generalized spin representation S%. I will provide
its description by starting with the classical spin representation of s0(10, C) and work out how the remaining
Berman generator of ¢(Ey) acts on it. I mostly use the conventions and some of the results of [FH91, ch.
20] concerning spin representations but at some point my normalizations differ slightly.

For V. = C'9 consider a split V = W @ W* such that W and W* are isotropic with respect to a
nondegenerate bilinear form @, i.e. Q (wi|wz) =0V w;,wy € W and Vwy,ws € W*. Pick bases {a1,...,a5}
and {b1,...,bs} for W and W* such that @ (a;|b;) = &;;. For A € End(W) one has that AT € End(W*)
as W and W* are duals. It holds Q (Aw,w*) = Q (w, ATw*) for all w € W, w* € W* and from this one
deduces that the map

A 0
pA = (O —AT> € End(V)

is skew:
Q (pavlw) = Q (Awlw') = Q (w]ATw*) = —Q (wlpaw®).

Now use the diagonal matrices diag(ds,...,ds, —d1,...,—ds) as a Cartan subalgebra § for g := so (V,Q).
The other skew endomorphisms can be parametrized by exploiting an isomorphism to the exterior algebra of
V. Define @zpy : V — V via (cp. [FHI1L eq. 20.4])

<Pz/\y(v) =2 [Q (y,’U)l‘ - Q (SC,’U) y} Vx,y,v evV.

With respect to the above bases one has g, np, = 2Fi; — 2545 i4+5, where F;; denotes the matrix which has
a 1 at position (4, 7) and 0 everywhere else. Denote by L; the linear functional that sends E;; — E;y5.45 to
1 and is 0 on the other diagonal matrices. Then w.r.t. these functionals the root spaces are given as follows:

(pai/\aj € qu‘,+Lj ) ‘Pai/\bj € gLi—Lj ) <pbi/\bj € g—Li,—Lj'

119



B REPRODUCABILITY B.3 Analytical setup of the representation S%

Now consider the exterior algebra S = A®* W together with the following action of V:
WaW sv=w+w*" : v- ¥ =v2- (WA +iu (V)),

where Gy« (V1 A -+ Avg) = Zle Q (w*,v;) (1) vy A+~ AD; A+ Avg. Tt is a fact that this map respects
Clifford multiplicatior@ ie.,

(v-w+w-v) P=2Qv,w) - YVv,weV,YeS.

Thus, the action of V extends to an action of Cl (V, Q) turning S into a Clifford module. Since so (V, @) can be
embedded into C1(V, Q) via a Lie-algebra homomorphism, § becomes a so (V, Q)-module. The homomorphism
makes extensive use of the parametrization by the exterior product /\2 V' (which is an isomorphism of vector
spaces and therefore injective):

2
1 1
AV 3 ey gony = g oyl = 5 (@ y—y-2) € CLV,Q)

An b-diagonal basis of S is given by {a;, A--- Aay, | 41,...,0k € {1,...,5}} since one checks:

1
a; \b; — Z (aibi — biai)

1
Painb;-Qiy N~ Na;, = 1 (albl — blal) cai, N ANag,
= T[ai/\lbfz (@ig N Nag,,) =iy, (a; Aaig A+ Nag,))
1 , 1.
= §ai/\zbi (ail/\~~/\aik)—§zbt (ai Nag, N+ Najy,)

. %ail/\---/\aik if?;E{Z'l,...,Z'k}
—%ail/\---/\aik 1f2§é{21,,2k}
How is this related to the spin representation that is used to construct Sé? Consider the following basis

transformation:

1 ) 1 ;
% =75 (vj +ivjys) 5 bj = 7 (vj — ivj45)

UjZ%(aﬂLbj) , Uj+5=\_7;(aj—bj) Vi<j<5
then
Q (vj,vg) = %Q(aj—i—bj,ak—l—bk):éjk V1<j5,k<5
Q (vj,vke5) = *%Q(aj+bj,ak*bk):0V1§j7k§5
Q (Vj15,Vk45) = _%Q(aj_bj»ak_bk): ik V1< j,k<5

59This is [FH9I, lem. 20.9] but note that my normalization differs by a factor of /2 which is compensated for later by a

different normalizeation of the map /\2 V — Cl(V,Q), where [FH91 eq. 20.6] uses a factor of % but T use i.
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shows that {v1,...,v10} is a standard basis of (V, Q). With respect to a standard basis {e1,...,e10} the
representation of € (Ejg) (R) is given bym

1 ) 1
p(X;) = 3CiCit1 V1<i<9, p(Xo) = 5€162€3

where the Berman generators are labeled as in figure [} The bases {vi,...,v10} and {e1,...,e10} are now
related by renumeration:
€2i—1 = Vi , €2; = Ujy5 .

)

Recall that hc was spanned by ¢q; s, Which maps to % [a;,b;] = —%vjvj+5 = —gegj_1e2; and therefore
be = spang {—ip (X;) | i€ {1,3,5,7,9}}

My preferred convention is that the orthonormal basis {Hj, ..., Hs} is equal to the above generating set and
the weights are spelled out w.r.t. these orthonormal basis elements. Explicitly, fix Ly, ..., Ls by demanding

L; (Hj) = 0ij .
With this,

1 . . N ;
Lai, Ao Nag, if i € {ir,...,ix}

Cainte-aiy A A ag, = N ,

! k {—éail/\-~-/\aik ifi ¢ {ir,...,ix}
implies

Hoa A Ao = %ail/\.../\aik 1f2€{7,1,,'lk}

cap, AN Aag, = . . .

v k —%ail/\---/\aik ifi & {ir,... ik}

and therefore the weight structure of S can be understood from this basis for A®*W. The two i-spin
representations of so (10), denoted by T'y, I's with highest weights oo = %(Ll +Lo+---+Ls) and 8 =
% (L1 + -+ Ly — Ls), have the following weights, all of multiplicity one:

5
A(Fa) = {chLl | Cc; = :l:% ,|{Z 1C > O}‘ S {1,3,5}},

i=1

5
1
A(g) = { E L | ¢ :i§ JHiie; >0} € {0,2,4}},
i=1

The even and odd number of signs above is reflected in the split of A® W into A" W & A°™ W where
/\Odd W corresponds to I'y. All of this can also be found in [FH91) prop.20.15]. Now analyze how X acts
on Si:

2

1 ) ) 1
p(Xl()) = —€1€2€3 = ZH1€3 = ZHli (CLQ —+ bg)

2 V2
Set I = {iy,...,ix} and impose i1 < i3 < --- < i) then the action of as and bs on the hc-diagonal basis of S
is given by
as-aj, N---Na;, = \/5@2/\&1‘1/\'“/\&%
0 if2el

—V2a;, Nag A---Nay, ifip=1,2¢1
\/50,2/\&1‘1/\"’/\ailC 1f21>2

60Gee [HKL15, example 3.2] for this particular phrasing, the representation is originally due to [BHP06] and also [DKNQ§].
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and
k
by aj, N---ANa;, = \@Z(—l)jHQ(ag,a”)ail/\...f/ij/\~-~/\aik
j=1
0 if2¢1r1
= —V2a;, Nag, A Nag,  if i =2
V2ai, A+ Aai, if iy =2

which combines to (Aj == A,c; ar)

Apupey if1,2¢1
L oa, = A fi=12¢1
—Angy =2

Ap\f23 ifi; = 2.
This can be rephrased more compactly with the weight component A(Hy). Towards this consider first
Hi A = {+%ﬁl li 1 <!
sAr if1¢1
Note that either adding or removing as in A; can always be phrased in terms of weights as
S\ F7 C* SX—2X(H)L,

To make this more precise: For A € A(I'y) UA (Tg) set sy = Ay where I = {i | \(H;) = 3}. If now 2 ¢ I
then

— . e — . A = = —2)\ H —
V2T e {—AIU{Z} if i =1 (H)sr-arom) L

as A(H;) = F3. For 2 € I one computes

1 1 —AI\{Q} if ip =2
S8y = —w3- A = = —2X\(H _
U3 SX V3 - Ag { e if iy =2 (H1)sy 2X\(H2) Lo

V2 V2

which results in
p (Xlo) Sy = 72)\(H1)p(X1) . S/\—2)\(H2)L2
= —2)\(H1) e Hl *SA—2A(H2) Lo
= —2iA(H1)*Sx—ox(#2) Lo

7
p(X10) sx = ~3SA-2A(H2) L Vsy €Sy . (134)
The only missing piece is the action of the Berman generators Xo, Xy, ..., Xg:

Lemma B.3. One has for s) € S% as above that
7
p(Xaj)sx = T 5 SA=2A(H,) L —2A(H, 1)Lyt -
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Proof. First of all, note that
1 1 .
p(X2j) = Jezjeajor = — (a5 = bj)(aj41 +bj41) YVi=1,.... 4
Perform this computation via case distinction. Case 1: j,j +1€ [

7 )
p(Xoj) Ar = =7 (aj = bj)(a1 +bj1)Ar = 7bibj1As

i e i
= V2 DTN AL Gy = 5 ANy

or in terms of the weight vectors

(3
p(Xzj) sx = T3 SA-2AH) L —2A(Hys1) Lt -

Case2: jel,j+1¢1.

i i
p(Xag) Ar = =7 (a; = bj)(ajr +bj+1)Ar = Jbjaj1 A
) 2 )
= V2D EDT GGy = —3Angin e

or in terms of the weight vectors

7 7
p(Xaj) sy = TGIA-LiHLipn = TG SA-2AH) L —2A(Hy41) Lyt -

Case3: j¢I,j+1€el.

i i
p(Xo) Ar = —7(a; = bj)(aj1 +bj1)Ar = —7abj Ar
1 2 7
= V2D A ARGy = =5 Aupn e
—_———

needs k—1 swaps

or in terms of the weight vectors

1 1

p(Xzj) sx = 7§S>\+L_7‘—L.7‘+1 = 7§S>\—2>\(H1)Lj—2)\(Hj+1)Lj+1 :
Cased: j,j+1¢ 1.
) 1
p(Xoj) Ar = —7(aj = bj)(aj1 +bj+1)Ar = — 75051 Ar
i =2 7
= — V2 Mg A A== Ag e
or in terms of the weight vectors
7 )
P(ij) S\ = —58,\+Lj+L,-+1 = —53/\72>\(Hj)Lj72,\(Hj+1)Lj+1 .
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C Technical documentation

Here, I gather technical details and documentation of the functions that I use in the notebooks.

C.1 Documentation of functions that are used to generate matrices and vectors

Most of these functions are located in the script “generation_routines.sage”.

C.1.1 get_E_ladder and relatives

The functions get_E_ladder (Bermans), get_F_ladder (Bermans), get_H_weyl(Bermans) and
get_H_orth(Bermans) compute the elements of the Weyl-canonical form of so (10, C) as described in section
All of them expect as input the Berman generators Xi,..., X0 as a list of 10 matrices (dense or
sparse). Their output is always a list of 5 matrices corresponding to the E;, F;, h; or H;. The commutator
is computed with the function Com(A,B) which is just the regular definition of the commutator AB — BA.
The parameters a and b inside the functions were set to experiment with different normalizations, since the
normalization of [C84] eq. G.19-20] which I originally used did not behave the way I expected it to. I find
it likely that the normalization of [C84] differs because the author uses explicit matrices and therefore the
explicit Killing form defined by the trace.

C.1.2 1ladder_check and ladder_check_sparse

Both functions take the same arguments (E_ladder, F_ladder, H_weyl, Cartan_matrix, silent=False)
and check if the following relations for the Weyl canonical form are satisfied where £ denotes the edges in
the simply-laced Dynkin diagram of type A, where A is a simply-laced Cartan matrix:

(B, Fj] = =85, [hi, Ej] = Ay By, [hi, Fj] = — Ay Fy

The arguments E_ladder, F_ladder and H_weyl correspond to the F;, F; and h; respectively and need to
be a list of dim (Cartan _matrixz) matrices each. The argument Cartan_matrix is the Cartan matrix of
the type to be checked and needs to be a square matrix of a classical, simply-laced Cartan type (everything
else will produce an error message). The optional argument silent gives the opportunity to chose between
intermediate output to the console of the test routine or silence. The first case can be of interest for large
matrices as the tests then take some time. The equalities are tested by rephrasing each relation in the form
R(A, B) = 0 and then computing the matrix norm of the left-hand side. There the two versions differ because
check_ladder uses the function norm() that is provided by Sage whereas check_ladder_sparse uses my
own function mat_norm2_sparse which is adapted to sparse matrices and computes the square of the matrix
2-norm |[A||* = 3, ; aZ;. The output of the functions is a list of 4 matrices, where the first matrix encodes
if the relations between E; and E; hold. The second one is for F; and Fj, then the relations between F; and
F; and ultimately the relations among h; and Ej, Fj.
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C.1.3 Berman_check and Berman_check_sparse

Berman_check_sparse(Bermans,Cartan_matrix,silent=False) works similar to ladder_check_sparse
above, just that the relations to be checked now are (£ denotes the set of edges in the generalized Dynkin
diagram of type Cartan_matrix)

[(Xi, X;] =01if (i,5) ¢ €, [Xi, [Xi, X]] = =X if (i,7) € €,

where the X; are the Berman generators Bermans handed over as a list of n sparse matrices, where n is the
dimension of Cartan_matrix, which now is allowed to be a generalized simply-laced Cartan matrix. The
output is a n x n matrix which encodes if the relation between X; and X; holds or not.

C.1.4 tensor_homemade

The function tensor_homemade (A,B) expects two sparse matrices as input and hands back the Kronecker
product of the two matrices A and B as a sparse matrix. The advantage towards the Sage routine
A.tensor_product(B) is that it exploits the sparse structure of the matrices by iterating only over the
nonzero elements of both matrices (I am not sure if this issue was fixed from Sage 8.7 to 9.0, so this fix may
be unnecessary).

C.1.5 weyl_orth

The function weyl_orth(root,G) expects a real root for root and the matrix corresponding to the invariant
bilinear form of h* for G, both spelled out in the standard orthonormal basis of C" where n = dimb*. It
returns the matrix representation of the Weyl reflection s, w.r.t. the standard basis of C" as a sparse matrix.

C.1.6 normalizers

The function normalizers(m,dim) computes a normalized basis of Sym™V where V has dimension dim. The
output are two lists in the form [list1,1list2]. The first list consists of pairs [(i1,...,%m),n] where i3 <
oo <y €40,...,m — 1} are the multi-indices corresponding to the symmetrized basis vector (eg, ..., €m—_1
is the standard orthonormal basis of V)

Citoigy = Z Cig1) Q- €igim)
0'667n
and n is such that (n-e;, ; |n-e; . 4,) = 1. The second output is just the list of tuples (iy,...,1,,) for
i1 < - < iy € {0,...,m — 1} and is meant to serve as a translation between multi-indices and linear

indexation. The value n is computed by normalizing

€jr.jm) = Z (eipu) |eja<1)) (eip(m> |€j‘,<m))

0,pEG

(Ciy i

to 1. The summation over the correct multi-indices is facilitated by the Sage routine SemistandardTableaux
where one only has to take care of shifting the indices back by 1 (Python uses indices from 0 to dim — 1 but
the entries in the tableaux start at 1, probably to ensure compatibility with actions of the symmetric group).
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C.1.7 induced_map_sparse_sym2

The function induced_map_sparse_sym2(A,basis,linear) expects a nxXn matrix A in sparse representation
together with a normalized basis of Sym®V , where V 22 K", for basis as in the first output of normalizers.
The argument linear is the list of multi-indices given by the second output of normalizers. The output
is a sparse matrix that equals A ® A restricted to Sym?V in the normalized basis. It is important that A is
given in the standard basis of V = K™. Since the normalized basis is orthonormal the entries of A ® A can
be computed via

(n (ilv i2) 6i1i2| n (j17j2) A® Aej1j2) =n (ih i2) n (jlv.jQ) Z Aip(nja(l)A’ip(z)ja(z)
p,0ESy

which is done in the main body of the function. Before that it calls the function create_indices_sym2(A)
which determines from the nonzero entries of A the only elements of the induced matrix that can be nonzero.

C.1.8 Lie_tensor

The function Lie_tensor(A1,A2) expects two sparse square matrices A; and As of dimension n; and no as
input and returns the sparse matrix A1 ® Idn,xn, + Idn, xn; ® A2 . The knowledge that the other matrix
is always the identity matrix can help to save some time in comparison to calling the tensor product of A;
with Id,,,xn, which is why it has its own implementation here.

C.1.9 Lie_sym2

The function Lie_sym2(A,basis,linear,A_dim) expects a sparse matrix A together with its dimension as
A_dim. The arguments basis and linear are the outputs of normalizers. The output is the restriction A;,4
of AQ Id+Id® A to Sym?V in a sparse format (here, one need the dimension of A because the matrix might
otherwise be too small). As the basis is orthonormal one again computes the matrix elements of A;,q via
the induced scalar product. The function create_indices_Lie_sym?2 that is called within Lie_sym2 tells us
which indices are potentially nonzero.

C.1.10 normalizers_ext

The function normalizers_ext works almost exactly as the function normalizers with the only difference
that one calls SemistandardTableaux of Sage with a differently shaped tableaux that corresponds to the
exterior product of rank m instead of the symmetric product.

C.1.11 Lie_ext2

Does the same thing as Lie_sym2 but for the exterior product.

C.1.12 skew_properties

The function skew_properties(Bermans,E_ladder,F_ladder,silent=False) checks for each sparse matrix
in the list Bermans if it is skew hermitian or not. Afterwards it checks if

El =—-FVi=1,...,5,
where F; is the i-th entry of E_ladder and F; is the i-th entry of F_ladder, which both are expected to

be lists of the same length with sparse matrices of matching dimensions as entries. The test is conducted
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by computation of the matrix norm’s square of X; + XZ and Ej + F; with matrix_norm2_sparse. The
conjugation transpose is performed with the function my_sparse_dagger, since it is faster then the Sage
routine A.conjugate_transpose() for sparse matrices (at least in version 8.7, maybe this issue no longer
exists).

C.2 Documentation of functions that are used for so(10)-decompositions
C.2.1 get_primitives

The function get_primitives(E) expects a list [E1,..., Ex] of matrices E; € K"*™. It determines the
intersection K = ﬂi—“:l ker (E;) of the kernels of E; and returns a matrix, where each column is a basis vector
for this subspace of K". It accepts sparse matrices but it calls the Sage routine E.right_kernel() which I
suspect to perform a conversion to dense format internally.

C.2.2 get_HWVs

The function get_HWVs(H,primitives,silent=True) expects a list of commuting matrices that can be
diagonalized over the vector space generated by the vectors in the matrix primitives. If successful it returns
a basis of simultaneous eigenvectors for the space spanned by primitives. The simultaneous diagonalization
is performed by diagonalizing a random linear combination of the matrices in H which works in most cases.
As T didn’t have any trouble with this function, I did not implement real error handling in case it doesn’t
work, like trying again with a different linear combination. The optional argument silent provides printed
outputs of intermediate computations to the terminal if set to False.

C.2.3 find_primitive

The function find_primitive(E_ladder,v) takes a list of ladder operators of type E as its first input. The
second input is a vector v to which one wants to find an associated primitive vector. All matrices and vectors
should be sparse. The idea is the following: v can be expressed as a linear combination of weight vectors vy
and each A can be written as A = A — Zle kio; with k; € Ng. Applying E; to vy maps it to the weight
space A + «;. One can only go up a finite number of steps this way because at some point one would exceed
the highest weight A and thus applying FE; yields 0 for all ¢ € {1,...,d} at this point. This is exactly the
definition of a primitive vector.

The function step_up tries to find the first ¢ € {1,...,d} such that F;v # 0 where it tries in the same
order as the F; are sorted in E_ladder and gives back the result F;v as its second output if E;v #£ 0. It
returns v if all E;u =0 for all i =1,...,d. The first output of step_up is a Boolean indicating if the output
is F;v or v. One now simply applies step_up until a primitive vector is found and returns this. In order to
be efficient, step_up uses my sparse inner product dot_sparse which is why the inputs need to be sparse as
well.

C.2.4 det_weight_v2 (det_weight is the old one for non-sparse, v2 is for sparse types)

The function det_weight_v2(v,H) computes the weight of a simultaneous sparse eigenvector v of the sparse
matrices in the list H by solving the equation h-v — x -v = 0 for x € C where h ranges over the list H. It
returns the weight in form of a tuple of rational numbers. The length of the tuple is equal to the length of
H. If the vector that was handed over is not a pure weight vector, an error message is returned.
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C.2.5 weights_and_vectors

The function weights_and_vectors(highest_weight, highest_vector, F_ladder, silent_inner=True,
no_check=False, orth=False) expects as input a highest weight A of type D5 in form of a tuple of length

5 whose entries are A (H;), where the H; are the orthonormal basis of hp.. The corresponding highest vector

is handed over as highest_vector which can be a dense or sparse vector. The representation matrices of
Fy, ..., F5 of the Weyl-canonical form are handed over as a list of 5 matrices as the argument F_ladder.

The optional argument silent_inner enables printing the currently evaluated level (of descent) during the

process for longer computations. The output of weights_and_vectors is a dictionary. The keys are weights

A, in form of a tuple of length 5 spelling out A = Zle a;L;, of the irreducible Ds-representation to the

highest weight highest_weight. The entry to a weight A is a list of vectors that form a basis of the weight

space V), inside the irreducible representation.

How it works: Call a weight A = A — Zle kia; of level Y. k;. The function loops over the levels of the
highest weight module starting with the highest weight at level 0. It builds a temporary basis called B
which is a list where the entry at position ¢ will contain the dictionary of weight spaces of level-i weights.
Each of these weight spaces consists of a list of pairs, where each pair consists of a point in the Kashiwara
crystal of type D5 and shape highest_weight and the actual vector in terms of the explicit representation
(w.r.t. which the F_ladder are representations matrices of Fy,...,F5). This basis is initialized at level 0
with the highest weight vector. Iteratively one adds level by level where the function new_vectors(elem,
points,F) is used. This function expects a pair [crystal_point, vector] as elem, a list of crystal points
as points, and the list of the five representation matrices for Fi, ..., Fy as F. It returns the list of pairs that
can be reached from elem by descent with one of the F; and an updated list of crystal points that are all
crystal points on the current level that one already has. For instance, as f; and f3 commute, the vectors
fifsva and f3fiva are equal and for this example assume they are nonzero. Then at level 1 the first element
that will be handled is f,vas and one of the new pairs is f3fiva. Once the loop reaches the element fzvy it
will realize that fi fsva is nonzero but it will not add it to the list of new_pairs because the crystal point
corresponding to f3fiva has already been added to the list of known points and equals that of f; fsvs. This
recognition of equalities happens internally by the Sage implementation of Kashiwara crystals. This way one
obtains a full list of weight spaces, sorted by level, where the weight vectors are given by pairs of points in
the Kashiwara crystal and actual vectors. From this, one extracts a dictionary where each weight space basis
is accessed by the weight as a key and the crystal points are dropped. One additional remark: Once a new
level is computed it is checked for consistency because in the past this turned out to be an issue as bases were
linearly dependent though having the correct number of vectors. I am not sure, if this still an issue because
I redid the entire function at some point. This part can be turned off by no_check=True. Also, one has the
option to normalize the bases via orth=True.

C.2.6 vec_tensor

The function vec_tensor(a,b) is an implementation for the tensor product of two sparse vectors a and b
which returns their tensor product in a sparse format.

C.2.7 induced_vector_sparse_sym2

The function induced_vector_sparse_sym2(v,w,basis,linear) takes two sparse vectors v and w as input
together with the two lists from normalizers(m=2,dim) as arguments for basis and linear. It determines
the list of entries that could be nonzero via the function create_vector_indices_sym2(v,w) and then
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computes the entry for all these multi-indices according to the rule

n (i1, 42) IR CAICH
21 > v
p,0ESy

(n (i1,12) €, €5, | V1 - v2) =

where by definition v - w = % (v®w —w®wv). The output of induced_vector_sparse_sym2 is a sparse

vector with entries in the symbolic ring and the dimension dim.

C.2.8 induced_vector_sparse_ext2

The function induced_vector_sparse_ext2(v,w,basis,linear) takes two sparse vectors v and w as input
together with the two lists from normalizers_ext(m=2,dim) as arguments for basis and linear (in that or-
der). It determines the list of entries that could be nonzero via the function create_vector_indices_ext2(v,w)
and then computes the entry for all these multi-indices according to the rule

(61‘1 A €iqy | u N\ 11) = Uiy Uiy — Uy Vjy

where by definition v Aw = % (v®w —w ®wv). The output of induced_vector_sparse_ext2 is is a sparse
vector with entries in the symbolic ring and the dimension dim.

C.2.9 project_away

The function project_away(v,basis) takes a sparse vector v as input and subtracts the projection to the
subspace that is spanned by the orthogonal vectors basis which are handed over as a list of sparse vectors.
This function does not work if the vectors in basis are not orthogonal.

C.2.10 retrieve_known_weight_vectors

The function retrieve_known_weight_vectors(weights,modules) takes as input a list of weights together
with a list of s0(10)-modules for the argument modules. It returns a list of all vectors within these modules
that are weight vectors for one of the weights in weights. More precisely:

The input weights is a list of tuples representing weights. The structure of modules has to be such that
each entry is a list [highest_weight,weight_spaces] where highest_weight is a tuple that is the highest
weight of the module while weight_spaces is a dictionary where the keys are tuples corresponding to weights
and the entry is a list of vectors that form a basis for the weight space.

C.2.11 possible_weights

The function possible_weights(weight) takes as input a tuple (a1 a5) that corresponds to a Ds-
weight A = Zle a;L; and returns the weights A — Lo and A\ + Ly as a list of two tuples.

C.2.12 orthogonalize_v2

The function orthogonalize_v2(basis) takes as input a list of sparse vectors and returns a list of sparse
vectors that are orthogonal and span the same subspace as basis. It uses the sparse hermitian inner product
dot_sparse.
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C.2.13 check_modules

The function check_modules(modulel,module2,A_mat) expects two Ds-modules modulel and module2 to-
gether with a matrix A_mat as arguments. The modules are of the shape [highest_weight,weight_spaces]
where highest_weight is the highest weight of the module as a tuple (although this part is irrelevant for the
function) and weight_spaces is a dictionary. The keys of this dictionary are Ds-weights as tuples, the entry
of the weight A is a list of vectors that form a basis for the weight space V) inside the module. The function
checks if there exists any vy in modulel and v, in module2 such that (v,|Avy) # 0 where (-|-) denotes the
standard hermitian product. If such a pair exists, the function returns 1 otherwise it returns 0.

C.2.14 orbit

The function orbit(incidence,L,start) expects an incidence matrix A as incidence, i.e. a matrix with
entries 0 and 1 that is a square L x L matrix. The argument start is an integer i between 0 and L — 1.
The function determines for which j in {0,...,L — 1} there exists a chain of integers i1,...,i; such that
Aji, Asyig -+ Ay ; = 1 and returns all the j for which this is possible as a list.
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