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1 Introduction

In the standard model of particle physics, fermionic matter is divided into two categor-
ies, leptons and quarks. While all of these have a charge with respect to the electroweak
interaction, by definition only quarks have a charge under the strong nuclear force, i.e.
a colour charge. This seemingly small difference leads to a nature of the quarks that
is drastically different from that of the leptons. While the latter can be detected dir-
ectly in detectors, quarks can not – they are confined in bound states, the hadrons.
Explaining the spectrum of hadrons had been the initial motivation for introducing
the quark model. However, when quarks where introduced by Gell-Mann and Zweig in
1964 [1, 2], they where not believed in as physical particles, but a mere mathematical
trick. This is of course owed to the alleged property of confinement which means that
the existence of quarks can never be proven directly in an experiment.

That quarks are indeed more than a counting scheme has been realised when deep
inelastic scattering of electrons on nucleons confirmed a sub-structure of hadrons that
matched the prediction of the quark model. [3,4] The structure of hadrons is, after the
general hadron spectrum, the second way how we can test the quark model, especially
its modern interpretation in terms of a quantum field theory, quantum chromodynamics
(QCD).

The third way was first proposed in 1975 [5, 6], when it was realised that the quark
model predicts a new state of matter that exists at high temperatures or densities. In
these extreme conditions confinement is lost, and quarks and gluons form a plasma.
These conditions are believed to have existed about 14 billion years ago, when the uni-
verse was in a very hot and dense state, as well as in the interior of neutron stars. The
experimental creation of this form of matter is the driving force behind the programme
of heavy-ion collision. Evidence for the existence of the quark-gluon plasma has been
found in the SPS experiment at CERN [7], in RHIC at BNL [8], and most recently
at the LHC (CERN) [9]. This makes the experimental evidence for such a phase an
important pillar of our modern believe in the existence of quarks, and the exploration
of high temperatures and densities an excellent testing ground of QCD.

Not only on the experimental, but also on the theory side, describing the phases of
QCD is an ongoing endeavour. This is due to the complex structure of this theory,
and especially its strong coupling. This is a problem for standard perturbative schemes
which rely on a small coupling. Owing to asymptotic freedom, they can thus be applied
at large energy scales, but not in the infrared. However, many interesting phenomena
are found in the infrared, i.e. in non-perturbative QCD. Most importantly there is
the dynamical generation of quark mass (dynamical chiral symmetry breaking) and
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1 Introduction

confinement. The existence of both is firmly established, although for confinement this
is only true in the limit of infinitely heavy quarks. The interrelation between those
two phenomena is also not well understood today. There are examples of theories with
dynamically broken chiral symmetry but without confinement, like strongly-coupled
QED or the Nambu–Jona-Lasinio model. In three-dimensional QED a logarithmic
potential gives rise to confinement, while chiral symmetry is not necessarily broken.

There are speculations that QCD at large density [10] or magnetic field [11] might
be in a state of restored chiral symmetry but with confinement, however the existence
of this new phase is not proven yet.

At some large temperature both phenomena are known to vanish. In simulations of
full QCD at zero density on a lattice it has been established [12,13] that the transition
temperature for both, chiral symmetry restoration and deconfinement, are near-by. It
has also been established that the transition is a cross-over for physical quark masses.
If one allows the light and strange quark masses to vary, this is not always the case.
In the limit of infinitely heavy quarks (thus in the pure Yang-Mills theory) one finds
a first order phase transition. The same is true in the opposite limit of three massless
quarks, where one has a first order chiral phase transition. On the other hand, the
deconfinement transition in this case is not well defined.1 The situation for two massless
quarks is not resolved yet. If one assumes that the UA(1)-anomaly is broken at the
critical temperature, one finds a second order phase transition. On the other hand, a
restored anomaly is believed to lead to a phase transition of first order. This situation
is summarised in Fig. (1.1).
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Figure 1.1: So-called “Columbia plot” [14], the conjectured phase diagram in mu/d-ms

space. In the version to the left, the anomaly is not restored, in the version
to the right it is.

1In the sense of a linear rising potential / vanishing Polyakov loop.
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When we now turn to a finite net quark density, lattice simulations are running into
the so-called fermion sign problem, see e.g. [15] for a review. This prohibits the direct
evaluation of large densities on the lattice. One way of dealing with this situation is
to extrapolate from zero to finite density, which yields valuable insights in the phase
diagram at small densities. [16, 17]

In the past, a large effort was made to apply effective field theories to the problem of
the phase diagram. One example is the Nambu–Jona-Lasinio (NJL) model, see [18] for
a review. In the NJL model the gluon degrees of freedom are replaced by an effective
four-fermion coupling. This yields a theory that is technically much easier to treat than
QCD. The same holds for quark-meson models, where mesonic degrees of freedom are
explicitly taken into account, see for example [19]. To amend for the gluonic sector of
QCD, these models where extended to include Polyakov-loop variables. This yields the
Polyakov-loop extended NJL (PNJL) [20–22] and quark-meson (PQM) [23–25] models.

Color super-

conductor

T

µ

CEP?

Hadronic

phase

Quark-gluon plasm
a

Chiral & deconfinem
e
n
t?

In
h
.?

Figure 1.2: A sketched phase diagram in the µ− T plane.

In studies of effective field theories a picture for the phase diagram has emerged that
we show in Fig. (1.2). There, one finds a cross-over for the chiral transition at small
chemical potentials, that turns into a first order phase transition at a second order
critical end-point (CEP). The existence and position of the CEP depends strongly on
the parameters used in the model studies. In lattice QCD, a CEP has been reported
e.g. in [26] and [27]. However, the lattices in those studies where rather coarse. It is
also under debate whether the extrapolation methods in those works can be trusted
at the chemical potentials where the CEP is found. In a different approach, the line
separating the crossover from the first order region in Fig. (1.1) has been extended to
finite chemical potential e.g. in [28]. There, the first order region tends to shrink with
chemical potential. This is in contrast to the standard picture, where this region grows
until the physical point is inside the first order region. In consequence these results
hint against the existence of a CEP at least at not too large density. On the other
hand, the critical surface could bend back at larger density, or the critical end-point
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might not be connected to this surface at all. We therefore can not reliably determine
the existence and position of the CEP from the lattice yet.

At large densities at least one colour-superconducting phase appears, as can be
shown from studies at asymptotically large density. See e.g. [29] for a review on the
colour-superconducting phases. The area at low temperatures and medium densities
is the one least understood in the phase diagram. One new phase that might appear
is an inhomogeneous phase with space-dependent condensate, see e.g. [30, 31]. In this
area the effects of baryons are also believed to be important, which poses the difficult
question on how to include baryon and quark degrees of freedom in the same model.

Clearly, our methods of accessing the phase diagram are limited today, and we need
to develop complementary approaches to refine our understanding of in-medium QCD.
One set of non-perturbative frameworks that can be applied to QCD are the functional
methods, like the functional renormalisation group (FRG) and the Dyson-Schwinger
equations (DSEs). In contrast to the effective models, the functional methods yield
tools to directly describe the Yang-Mills sector of QCD. The idea is to use functional
relations to obtain infinite sets of equations that describe QCD (or any other quantum
field theory) exactly. For most practical purposes, however, we have to apply a trun-
cation scheme which cuts the infinite tower of equations and yields a finite solvable
set which approximates full QCD. The FRG method for QCD has been used in [32] to
study finite temperature and imaginary chemical potential. In [33] the gluon and ghost
propagators have been studied in quenched QCD. Determining the phase diagram at
real chemical potential from the FRG equations of QCD is an ongoing effort.

From Dyson-Schwinger equations some fundamental work concerning the QCD phase
diagram has been done in [34], and references therein. In [35] the colour-superconducting
phases at zero temperature and in [36,37] also at finite temperature have been studied.
The pure Yang-Mills sector was subject of a study in [38, 39]. Also in the quenched
case, the DSEs have been used to study the confinement-deconfinement transition
in [40–42]. This was the starting point to also include dynamical quarks and finite
chemical potential [43,44], which is the line of work that we will continue here.

The idea in this work is to employ the quark and gluon Dyson-Schwinger equations
at finite temperature and chemical potential to study the phase transitions of QCD.
In general, from DSEs the quark sector is more accessible than the Yang-Mills sector.
The opposite is true in lattice QCD; there, light fermions are expensive and a finite
chemical potential only accessible by extrapolation methods while quenched QCD is
comparatively cheap. We will exploit this complementarity by using lattice results for
the quenched gluon propagator and the DSEs for the quark and unquenched gluon
propagators. This allows us to study the interrelation of quarks and gluons at all
temperatures and chemical potentials. This is novel, since previous studies relied on
simpler approximations for the gluon input to the quark DSE. Also, in effective models
the coupling of quarks and gluons can only be described effectively by the Polyakov-loop
potential. From solutions of our truncated set of DSEs we can then study the chiral
and deconfinement phase transitions. As an order parameter for the chiral transition
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we will use the quark condensate, while for the confinement-deconfinement transition
an order parameter is much harder to access from DSEs. We will therefore use and
contrast different ways of describing confinement from the propagators. These are the
so-called dressed Polyakov loop, the Polyakov-loop potential and we shortly discuss
positivity violations in the quark spectral function.

This work is organised as follows: In chapter 2 we will discuss some general prop-
erties of QCD. In chapter 3 our order parameters for chiral symmetry breaking and
confinement will be introduced. We then turn towards our truncation scheme and
discuss our choice for the quark-gluon vertex in chapter 4. In the same chapter we
also discuss some technicalities of solving the quark DSE in the medium. In the fol-
lowing three chapters we will concentrate on different gluon propagators as an input
for the quark DSE. In chapter 5 the quenched case will be discussed, which serves as
a cross-check for our methods and as an input for the following work on unquenching
the gluon. In chapter 6 we will introduce an HTL/HDL-like truncation scheme for the
unquenched gluon propagator and study the resulting phase diagram. This truncation
will be improved in chapter 7, where the non-perturbatively unquenched gluon DSE
will be introduced. With the unquenched gluon we study the chiral and deconfinement
phase transitions and obtain the phase diagrams for Nf = 2 and Nf = 2+1 QCD. The
results for the propagators will be used in chapter 8 to study the Polyakov-loop poten-
tial. We will further improve our truncation scheme in chapter 9 where we will include
Goldstone modes explicitly. In chapter 10 we will summarise and give an outlook.
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2 Quantum chromodynamics

2.1 General properties

Quantum chromodynamics can be derived as a non-Abelian gauge theory for the gauge
group SU(3), where three is the number of colours. It is insightful to also study
generalisations to two colours, which we will briefly do in chapter 5. This is especially
of interest at finite chemical potential, where SU(2) lattice studies are not plagued
by the fermion sign problem. [45] It is also useful to take the limit of infinitely many
colours, where the theory becomes much simpler. This case is also frequently studied by
use of the gauge/gravity duality. For the rest of this chapter we can safely assume the
general case of an SU(Nc) gauge group, with generators T a. In Euclidean space-time
(see appendix A for our conventions), the Lagrangian of QCD is given by

LQCD = q̄
(
− /D +M

)
q − 1

4
TrcFµνFµν , (2.1)

with quark fields q = (u, d, s, . . . ), the quark mass matrix M = diag(mu,md,ms, . . . ),
the covariant derivative Dµ = ∂µ + igAµ, the field-strength tensor Fµν = [Dµ, Dν ] and
the gauge-fields Aµ = AaµT

a. The Lagrangian in Eq. (2.1) is not the most general
Lagrangian that satisfies gauge symmetry and renormalisability. An additional term
∝ θFµνF̃µν with F̃µν = εµνσρFσρ is also allowed. This θ-term is CP violating, and has
been shown to be close to zero, since it would give rise to an electric dipole moment
for the neutron, which is experimentally disfavoured [46, 47]. It is therefore usually
neglected, which we will also do here.

With the Lagrangian in Eq. (2.1) we can define the generating functional of QCD as

ZQCD[η, η̄, j] =

∫
DψDψ̄DA exp

(
−
∫
d4xLQCD + η̄ψ + ψ̄η + jA

)
, (2.2)

where we introduced Graßmannian sources η and η̄ for the fermion fields and the source
jµ for the gauge field.

The QCD Lagrangian is by construction gauge-invariant, that is under a transform-
ation

q →V (x)q, (2.3)

Aµ →V (x)AµV
†(x)− (∂µV (x))V †(x), (2.4)

for a local gauge transformation V (x) ∈ SU(Nc). In the generating functional, Eq. (2.2),
all configurations of Aµ are taken into account. Since gauge fields that are connected
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2 Quantum chromodynamics

via a gauge transformation, Eq. (2.4), have the same physical content, this leads to
over-counting. This necessitates the procedure of gauge fixing, i.e. of picking one
field configuration from the gauge orbit. This procedure is conventionally done along
the lines of Fadeev-Popov, see e.g. [48]. The result in a covariant gauge with gauge
parameter ξ is

Lg.f. = q̄
(
− /D +M

)
q − 1

4
TrcFµνFµν +

1

2ξ
Trc∂µAµ∂νAν + ic̄∂µDµc, (2.5)

with the ghost fields c, c̄. We will use Landau gauge throughout this work, which is
defined by taking the limit

ξ → 0. (2.6)

Gribov has shown in [49] that the Fadeev-Popov method of gauge fixing is incomplete.
Even in the gauge-fixed theory, the gauge fields are not unique, but multiple Gribov
copies of the same physical fields exist. This problem is dominant in the deep infrared.
However, we will study a medium with typical temperature scales well above the energy
scale where this ambiguity becomes important. We can therefore safely neglect the
Gribov problem in this work.

Having fixed the gauge in our Lagrangian we have to introduce a renormalisation
scheme before we can use the final Lagrangian. To this end we use a multiplicative
renormalisation scheme, where

ψ̄ψ → Z2ψ̄ψ, M → ZmM, g → Zgg,

Aµ →
√
Z3Aµ, c̄c→ Z̃3c̄c, (ξ → Zξξ), (2.7)

with the renormalisation constants Z2, Zm, Zg, Z3, Z̃3 and possible Zξ. In Landau
gauge Zξ is not needed. From these factors one can find the vertex renormalisation
constants

Z1F = ZgZ2

√
Z3, Z1 = Zg

√
Z3

3
, (2.8)

Z̃1 = ZgZ̃3

√
Z3, Z4 = Z2

gZ
2
3 , (2.9)

for the quark-gluon, three-gluon, ghost-gluon and four-gluon vertices. The renormalisa-
tion constants depend on the cutoff Λ and the renormalisation point ζ. They are used
to trade the Λ-dependence of a fundamentally divergent diagram for a ζ-dependence.

2.1.1 Chiral symmetry

One important symmetry of the QCD Lagrangian is chiral symmetry. This symmetry
and its breaking give rise to the hadron spectrum, and to the very existence of a phase
transition of QCD with light quarks.

Let us consider QCD for Nf massless quarks. With q = (u, d, s, . . . )T the quark part
of the Lagrangian 2.1 separates into parts for the left and right handed fields:

q̄
(
− /D

)
q = q̄L

(
− /D

)
qL + q̄R

(
− /D

)
qR, (2.10)

14



2.2 Functional relations

where qL = 1−γ5

2
q and qR = 1+γ5

2
q. We can now rotate the left and right handed fields

separately in flavour space:

qL → VLqL, qR → VRqR, (2.11)

with VL,R ∈ U(Nf ). That means we have a UL(Nf )×UR(Nf ) symmetry on the level of
the Lagrangian. This symmetry group can be decomposed as SUV (Nf )× SUA(Nf )×
UV (1) × UA(1), where V and A denote vector and axial-vector, respectively. The
SUV (Nf ) group describes isospin symmetry and is conserved even on a quantum level,
while the SUA(Nf ) group is broken by dynamical mass generation. This effect will
play a prominent role in this thesis. The UV (1) symmetry is associated with baryon
number conservation, which is an exact symmetry on the quantum level as well. In
contrast to that, the UA(1) is broken by the anomaly term.

When we add a mass matrix M = diag(mu,md,ms, . . . ) to the Lagrangian we note
that

q̄
(
− /D +M

)
q = q̄L

(
− /D

)
qL + q̄R

(
− /D

)
qR + q̄LMqR + q̄RMqL, (2.12)

i.e. the left- and right-handed fields mix. This breaks the UL(Nf )×UR(Nf ) symmetry
in the following way. The UV (1) and for mu = md = ms = . . . also the SUV (Nf )
symmetries are preserved, while the SUA(Nf ) and UA(1) are broken explicitly by the
quark mass, additionally to their breaking due to quantum effects.

The up and down quarks have a bare mass of about mu/d = 2−6 MeV, which is much
smaller than the scale of QCD, ΛQCD = O(1GeV). This gives rise to an approximate
SU(2) chiral symmetry on the classical level, which is broken dynamically. The pseudo-
Goldstone bosons that correspond to the generators of the broken symmetry are the
three pions. The strange quark has a bare mass of ms = O(100MeV). If one considers
ms as light, the chiral symmetry group is SU(3), with the additional pseudo-Goldstone
bosons being the four kaons and the eta meson. The η′ is a special meson, since it is
a would-be pseudo-Goldstone boson. However, the UA(1) anomaly gives a mass to the
η′ even for mu = md = ms = 0.

At finite temperature and/or finite baryon density, it is long established that dy-
namical mass generation is lost above some (pseudo-)critical temperature/density, and
the chiral SUA(Nf ) is approximately restored. It is not settled yet whether or not the
UA(1) symmetry is restored as well, i.e. if the anomaly term vanishes. A restoration
of this symmetry would have implications for the order of the phase transition for two
massless quarks, see [50].

2.2 Functional relations

From the generating functional of correlation functions Z[J ], with J being a short-hand
notation for all source terms, we can define the Schwinger functional

W [J ] = ln(Z[J ]), (2.13)
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2 Quantum chromodynamics

which generates connected correlation functions. The effective action is defined as the
Legendre transform of W with respect to the sources

Γ[Φ] = sup
J

(−W [J ] + JΦ) , (2.14)

and depends on the classical fields Φ = 〈ϕ〉. Here ϕ is a short-hand notation for all
fields, ϕ = (ψ, ψ̄, Aµ, c, c̄). The effective action generates one-particle irreducible (1PI)
correlation functions. This includes the propagators

D−1
ij (x, y) =

δ2Γ[Φ]

δΦi(x)δΦj(y)

∣∣∣∣
J=0

, (2.15)

where the sources are set to zero. For the derivation of higher correlation functions,
we will also need the propagators DJ , where the sources are not set to zero.

2.3 Dyson-Schwinger equations

In this work we will employ the Dyson-Schwinger equations for the quark and gluon
propagators in order to describe the thermal properties of QCD. Here we show their
derivation in the vacuum. In the medium the derivation is formally equal. We can thus
discuss the changes necessary for the introduction of finite temperature and density
later.

The key idea from which all DSEs are derived is that when a functional derivative
is added in the generating functional, Eq. (2.2) for QCD, the integral over the fields
vanishes: ∫

Dϕ δ

δϕ
e−S+

∫
Jϕ = 0, (2.16)

which is owed to Gauss’ theorem. Here S =
∫
d4xL is the action of our theory. From

Eq. (2.16) we can derive (see for example [51]) the master Dyson-Schwinger equation

δΓ

δΦ
=
δS

δϕ

∣∣∣∣
ϕ→Φ+DJ δ

δΦ

, (2.17)

with the propagator DJ that still depends on the sources. Now if we apply n more
derivatives on Eq. (2.17) and set, in the final step, the sources J to zero, we arrive at
the DSE for the n+ 1-point function. All of these equations depend on at least n+ 2-
point functions. Thus we are dealing with an infinite tower of equations that define the
theory at hand in an exact way. This, most notably, constitutes a non-perturbative
description of a QFT. As such, the DSEs are capable of describing phenomena like
dynamical chiral symmetry breaking and confinement, which shall be the exploited in
this thesis.
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2.4 Bound states in the Bethe-Salpeter framework

−1
= +

−1 −1

Figure 2.1: The quark DSE. The lines with and without the blob are the full and bare
quark propagators. The curly line is the (fully dressed) gluon propagator,
and the right vertex with the big blob is the fully dressed quark-gluon
vertex.

Most important for the following is the DSE for the quark propagator. This propag-
ator is defined by

S−1(x, y) :=
δ2Γ

δΨ(x)Ψ̄(y)

∣∣∣∣
J=0

, (2.18)

for which the DSE can be derived by using Eq. (2.17). For the vacuum theory in
momentum space the result is

S−1(p) = Z2S
−1
0 (p) + Z1FCF

∫
d4l

(2π)4
gγνS(l)gΓµ(l, p; q)Dµν(q), (2.19)

where CF = N2
c−1

2Nc
is the Casimir operator, stemming from the colour trace. We have

the bare propagator S−1
0 (p) = i/p+m, the fully dressed quark-gluon vertex Γµ and the

full gluon propagator Dµν . These correlation functions satisfy their own DSEs. For
practical purposes this necessitates the application of a truncation scheme. In vacuum,
the quark propagator S can be decomposed as

S−1(p) = i/pA(p2) +B(p2), (2.20)

with the vector and scalar dressing functions A and B. Sometimes one defines the wave
function renormalisation Z = 1/A and the mass function M = B/A. The dressing
functions are obtained from a self-consistent solution of Eq. (2.19).

2.4 Bound states in the Bethe-Salpeter framework

The Dyson-Schwinger framework is regularly used for studying bound states. This
can be done by referring to Bethe-Salpeter equations (BSEs) for two-body problems,
and the Fadeev equation for three-body problems, see e.g. [52]. Although studying
Bethe-Salpeter equations at finite temperature is outside the scope of this thesis, we
will use some concepts and results of the Bethe-Salpeter framework. One reason for
this is that contact to physical input in a confining theory can only be made via bound
states. Secondly we will use a model of the pion back-reaction in chapter 9. For these
reasons we now introduce the Bethe-Salpeter framework.
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= +T KT

= +reg.T

Figure 2.2: The rectangle represents the two-body propagator, while the elliptical blob
represents the 2PI scattering kernel.

The inhomogeneous Bethe-Salpeter equation describes the quark-antiquark two-body
propagator T in terms of the scattering kernel K. This equation is shown diagram-
matically in the upper part of Fig. (2.2).

We now assume a bound-state pole of the two-body propagator in the total mo-
mentum P , see the lower part of Fig. (2.2). Thus

T = reg.+ Γ̄
N

P 2 +M2
Γ, (2.21)

where Γ is the quark-meson vertex (Bethe-Salpeter amplitude), N is some normalisa-
tion constant, M the mass and P the momentum of the bound state. When we put
this form into the inhomogeneous BSE, we can project onto the bound state. This
yields the homogeneous BSE, which describes an on-shell meson.

= =

Figure 2.3: The homogeneous Bethe-Salpeter equation in its full (left) and ladder-
truncated (right) form.

In the untruncated form, we show the homogeneous BSE in the left part of Fig. (2.3).
It translates to

Γtu(p, P ) =

∫
d4l

(2π)4
Ktu,rs(p, l, P ) [S(l+)Γ(l, P )S(l−)]rs , (2.22)

and describes the coupling of a bound state, such as a pion, with quarks (Γ) in terms
of the quark-antiquark interaction kernel (K). This interaction is tightly linked to the
self-energy of the quarks via the axial-vector Ward-Takahashi identity (AxWTI). The
AxWTI is given by

− iPµΓ5µ(p, P ) = S−1(p+)γ5 + γ5S
−1(p−)− 2mΓ(p, P ), (2.23)
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2.4 Bound states in the Bethe-Salpeter framework

where Γ5µ is the axial-vector vertex and p± = P ± p/2. This can be put in a form
where the connection between the quark self-energy Σ and the interaction kernel K,
becomes apparent:

(Σ(p+)γ5 + γ5Σ(p−))tu =

∫
d4l

(2π)4
Ktu,rs(p, l, P ) (S(p+)γ5 + γ5S(p−))rs . (2.24)

This tells us that when we have specified the self-energy of the quark by choosing a
truncation, the kernel K has to take a specific form in order to comply with chiral sym-
metry. A truncation that is often used in the quark DSE is the rainbow approximation.
In this scheme, the quark-gluon vertex does not depend on the quark propagator, in
contrast to the Ball-Chiu construction that we will use later. Then, a kernel that solves
Eq. (2.24) is given by the ladder approximation, see the right part of Fig. (2.3).

The Bethe-Salpeter amplitude (BSA) for the pion can (in vacuum) be decomposed
as

Γiπ(p, P ) = τ iγ5

[
E(p, P )− i/PF (p, P )− i/pp · PG(p, P ) + [/p, /P ]H(p, P )

]
, (2.25)

with the four scalar dressing functions E,F,G,H and the Pauli matrices τ i which
describe the flavour content of the pion. The amplitude depends on the relative quark
momentum p and the total momentum P , which is on-shell. If we choose the pion rest
frame as our frame of reference, then P = (0, 0, 0, iMπ)T .

Figure 2.4: The pion couples to axial-vector and pseudo-scalar currents. These are
represented by the wiggly line on the right with a vertex denoted by the
grey blob.

The amplitude needs to be normalised, either by the procedure described in [53,54]
or the equivalent one in [55]. With the normalised amplitude, it is possible to calculate
the axial-vector and pseudo-scalar residues for the pion, fπ and rπ. It can be shown
that fπ is the pion decay constant, which is defined as

〈0|Ja5,µ|πb(P )〉 = ifπδ
abPµ, (2.26)

where an axial-vector current J5 couples to a pion. In vacuum, our normalisation is
such that fπ ≈ 93 MeV. The pseudo-scalar residue rπ is proportional to the quark
condensate in the chiral limit. [56] The coupling of the pion to axial-vector/pseudo-
scalar currents is shown diagrammatically, in Fig. 2.4. The corresponding equations
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2 Quantum chromodynamics

read

fπPµ = 3Z2

∫
d4l

(2π)4
Tr [Γ(l, P )S(l+)γ5PµS(l−)] , (2.27)

rπ = 3Z2

∫
d4l

(2π)4
Tr [Γ(l, P )S(l+)γ5S(l−)] . (2.28)

From these constants one can, by referring to the AxWTI, find the generalised Gell–
Mann-Oakes-Renner relation

fπM
2
π = 2mrπ, (2.29)

with the renormalised bare quark mass m. [56]
The pion is the Goldstone boson of dynamical chiral symmetry breaking, and as such

tightly connected to the chiral dynamics in the quark sector. This can be used to solve
the BSE analytically in the chiral limit, by invoking the AxWTI. The result is

Γiπ(p, 0) = τ iγ5
B(p)

fπ
, (2.30)

with Mπ = 0. This relation can now be used to obtain fπ, by plugging Eq. (2.30) into
Eq. (2.27). The result is the Pagels-Stokar formula [57]:

f 2
π ≈ 12Z2

∫
d4l

(2π)4

B(l2)A(l2)

(l2A2(l2) +B2(l2))2

(
B(l2)− A(l2)

l2

2

dM(l2)

dl2

)
, (2.31)

where M = B/A. This is nevertheless only an approximation. The BSA dressing
functions F , G and H come with a factor P , which is set to zero. They contribute
to the final expression nonetheless, since the factor is balanced by the factor P on the
left-hand side of Eq. (2.27), such that not only E contributes to fπ, even in the chiral
limit. However, it is a good approximation, even at small pion masses.

In a similar way we can obtain rπ from

rπ ≈ 12Z2

∫
d4l

(2π)4

1

l2A2(l2) +B2(l2)

B(l2)

fπ
, (2.32)

where the F , G and H functions do not contribute. This allows us to approximate the
pion mass by using Eq. (2.29) for a small quark mass m. In chapter 7 we will use this
procedure to fix one vertex parameter and the quark mass to the pion decay constant
and mass. We will then generalise these formulas to finite temperature in chapter 9,
when we study the back-reaction of pions on the quark propagator.

2.5 Finite temperature and density

From now on we will consider QCD at finite temperature T and density n, or equival-
ently chemical potential µ. Since we already introduced QCD in a Euclidean space-time
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2.5 Finite temperature and density

in the last section, it is particularly easy to go to finite temperature. We have to con-
strain the time direction to a finite interval τ ∈ [0, β], where β = 1/T , and apply
appropriate boundary conditions for the bosonic and fermionic fields. The QCD action
changes according to

S =

∞∫
−∞

dτ

∫
d3x LQCD → S =

β∫
0

dτ

∫
d3x LQCD. (2.33)

For fermionic fields the boundary condition ψ(~x, τ) = −ψ(~x, τ + β), for bosonic fields
φ(~x, τ) = +φ(~x, τ + β) is applied.

We introduce the net density n =
∫
d4xψ†ψ, which counts the difference of quarks

and antiquarks of one flavour per volume, by adding the chemical potential µ as a
Lagrange multiplier. For one flavour, this modifies the generating functional∫

Dϕ exp

(
−S +

∫
Jϕ

)
→
∫
Dϕ exp

(
−S + µn+

∫
Jϕ

)
. (2.34)

Since ψ† = ψ̄γ4, we can move the nµ term to the quarks’ kinetic part of the Lagrangian∫
d4x

[
ψ̄(−/∂ +m)ψ

]
+ nµ =

∫
d4x

[
ψ̄(−~γ~∂ − γ4(∂4 − µ) +m)ψ

]
, (2.35)

and therefore the effect of the chemical potential is nothing but a modification of the
bare quark propagator. We thus find for the in-medium bare propagator in momentum
space

S0(p) =
1

iγ4(ωp + iµ) + i~γ~p+m
, (2.36)

with the Matsubara mode ωp = πT (2np + 1), np ∈ Z. We will use the short-hand
notation ω̃p = ωp + iµ for the fermionic Matsubara modes with chemical potential µ.

2.5.1 Fully dressed quark propagator in the medium

The full in-medium quark propagator can be decomposed with four dressing functions
as

S−1(p) = i~p~γA(p) + iω̃pγ4C(p) +B(p) + i~p~γ ω̃pγ4D(p), (2.37)

where the dressing functions depend on ~p2 and ωp only, e.g. A(p) = A(~p2, ωp). The
functions A and C are the generalisation of the inverse wave function renormalisation
in vacuum, Avac. = Z−1, to finite temperature. The scalar dressing function B plays
the role of a momentum-dependent mass, i.e. B 6= 0 signals chiral symmetry breaking,
either by an explicit quark mass or by dynamical mass generation. We have intro-
duced the fourth dressing function D here, which is not to be confused with the gluon
propagator Dµν . The D function signals breaking the of chiral symmetry just like the
B function, since

[~p~γ ω̃pγ4, γ5] = 0. (2.38)
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Usually, D is neglected. This is well justified, since D is small in a number of limits.
Firstly, D ≡ 0 in the vacuum (T = µ = 0), but it also vanishes at large temperat-
ures/densities when chiral symmetry is restored. Secondly, in the UV, D is power-law
suppressed since it does not have a perturbative expression. Finally, one can show that
in the rainbow-ladder truncation D ≡ 0 because the vertex is proportional to γµ. Only
when ~γ and γ4 are dressed differently, D can acquire a non-zero value. Additionally
we performed an explicit numerical evaluation and confirmed our expectation that D
does not contribute significantly to any observable. To conclude, D is found to be
unimportant and will be neglected throughout this work, and we use the propagator

S−1(p) = i~p~γA(p) + iω̃pγ4C(p) +B(p). (2.39)

The dressing functions at finite µ are complex, with vanishing imaginary part only at
µ = 0. The physical interpretation for this is the asymmetry of quarks and antiquarks
in a medium with a non-vanishing net quark density. They behave like

A(~p2,−ωp) = A∗(~p2, ωp), (2.40)

where ∗ denotes complex conjugation. The same applies for B, C, D, which renders
many Matsubara sums involving the quark propagator real.

2.5.2 Fully dressed gluon and ghost propagators in the medium

In the medium, the gluon propagator can be written as

Dµν(p) = PL
µν(p)

ZL(~p2, ωp)

p2
+ P T

µν(p)
ZT (~p2, ωp)

p2
, (2.41)

where the projectors PL
µν(p) and P T

µν(p) project onto the components longitudinal and
transversal to the heat bath:

P T
µν(p) = (1− δµ4)(1− δν4)

(
δµν −

pµpν
~p2

)
, (2.42)

PL
µν(p) = Pµν(p)− P T

µν(p), (2.43)

Pµν(p) = δµν −
pµpν
p2

, (2.44)

where Pµν projects transversal to the gluon momentum. The gluon is a boson and thus
ωp = 2πTnp, corresponding to periodic boundary conditions.

Being scalar, the ghost does not receive additional structure at finite temperature
and can be defined as

DG(p) = −G(~p2, ωp)

p2
, (2.45)

where again ωp = 2πTnp corresponds to a particle with periodic boundary conditions.
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2.5 Finite temperature and density

2.5.3 Dyson-Schwinger equations in the medium

We will obtain the propagators S and Dµν in the medium from their Dyson-Schwinger
equations. At finite T and µ, the derivation and formal structure of the DSEs is the
same as in the vacuum, which we outlined in section 2.3. To summarise the discussion
above, we have to apply three changes when we go to the medium.

1. The integral over momentum space now involves a sum over Matsubara modes∫
d4p

(2π)4
→ T

∑
n

∫
d3p

(2π)3
=:
∑∫
p

, (2.46)

where p4 → ωp with ωp = 2πTnp for bosons and ωp = πT (2np + 1) for fermions.
We will often use the short-hand notation on the right hand side of Eq. (2.46).

2. The bare quark propagator includes the chemical potential according to Eq. (2.36).
We introduce

ω̃p = ωp + iµ, (2.47)

for quarks as a short-hand notation.

3. The four-velocity uµ of the medium introduces an additional vector that has to be
taken into account when decomposing fully dressed Green’s functions. This also
entails that the dressing functions in general depend on more variables, e.g. p2 and
u · p instead of only p2. Alternatively, we can choose to take (uµ) = (0, 0, 0, 1)T ,
i.e. take the reference frame of the medium, and therefore give up explicit Lorentz
invariance. This is what we have done above, and means that the propagators’
dressing functions depend on ~p2 and ωp separately.

Following these changes, the quark DSE, which we introduced in Eq. (2.19) for the
vacuum, becomes

S−1(p) = Z2S
−1
0 (p) + Z1FCFT

∑
n

∫
d3l

(2π)3
gγνS(l)gΓµ(l, p; q)Dµν(q), (2.48)

in the medium. In order to solve the DSE we need to specify the full quark-gluon
vertex Γµ and the gluon propagator Dµν at finite temperature and chemical potential.
Then, with the decomposition Eq. (2.39), we project the DSE on the dressing functions
A, B and C by using the projectors

PA =
~p~γ

4i~p2
, PB =

1

4
, PC =

γ4

4iω̃p
, (2.49)

and taking the trace in Dirac space. The resulting coupled equations for A, B and C
will then be solved self-consistently.
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3 Order parameters for chiral
symmetry and confinement from
propagators

In this work we will solve the Dyson-Schwinger equations for the quark and gluon
propagators in a truncation to be defined below. The goal is to study the chiral and
deconfinement transitions. In this chapter we will make the connection between the
propagators and order parameters that describe these transitions.

3.1 Chiral symmetry: the quark condensate

From a solution of the quark DSE, a non-vanishing B function directly tells us that
chiral symmetry is broken. Since we want to study QCD with physical quark masses, B
is always non-zero, and there is strictly speaking no chiral phase transition. However, at
large temperature/density chiral symmetry is approximately restored and B becomes
small compared to its value in vacuum.

There are several equivalent order parameters for the approximate restoration of
chiral symmetry, for instance B(0), the pion decay constant or the commonly used
quark condensate. We will use the latter here, since it is a gauge-independent quantity
that can also be measured in lattice QCD.

From the quark propagator, Eq. (2.39), one can obtain the condensate1

〈ψ̄ψ〉 = NcZ2ZmT
∑
n

∫
d3l

(2π)3
TrD [S(l)] , (3.1)

where TrD is the trace in Dirac space. We find

〈ψ̄ψ〉 = 4NcZ2ZmT
∑
n

∫
d3l

(2π)3

B(l)

C2(l)ω̃2
l + A2(l)~l2 +B2(l)

, (3.2)

and it becomes obvious that for B = 0 we have 〈ψ̄ψ〉 = 0. This leads us to the
behaviour of our chiral order parameter

〈ψ̄ψ〉 =

{
0 if chiral symmetry is exact

non-zero if chiral symmetry is broken.
(3.3)

1We define the condensate to be positive in this work.
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3 Order parameters for chiral symmetry and confinement from propagators

For finite bare quark mass m the resulting quantity diverges quadratically with cutoff
Λ, it contains a term ∝ mΛ2. Since the divergence is independent of temperature and
density, it can safely be ignored when the order parameter is used only to find the
(pseudo-)critical temperature. We will later compare our results for the condensate to
lattice data, and therefore have to remove the divergence. This can be done by using
the condensates for light and strange quarks

∆l,s = 〈ψ̄ψ〉l −
ml

ms

〈ψ̄ψ〉s , (3.4)

where the divergent part msΛ
2 from the strange quark condensate 〈ψ̄ψ〉s cancels the

corresponding part of the light quark condensate 〈ψ̄ψ〉l when multiplied with the ratio
ml/ms of light to strange quark masses.

3.2 Confinement

One of the most important properties of QCD is the phenomenon of confinement, where
the theoretical understanding is still incomplete. See for example [58] for a discussion
of confinement in lattice QCD. There exist several confinement scenarios, which are
mainly concerned with the absence of free coloured particles (colour confinement) or
a linear rising potential between heavy quarks (quark confinement). In the first class
falls the Kugo-Ojima scenario [59, 60]. There, it can be shown that the colour charge
of a physical state vanishes, if the ghost dressing function is singular for p2 → 0 and
under a few more conditions. On the other hand, there is quark confinement. When
we look at the potential between an infinitely heavy quark and antiquark, we find a
form

V (r) =
α

r
+ σr, (3.5)

where we have a linear component σr. This means that the energy needed to separate a
quark-antiquark pair rises to infinity with the distance, which is a widely used notion of
confinement. However, in QCD with physical quark masses, the energy will eventually
be large enough for a quark-antiquark pair to be created, which is denoted as string
breaking [61]. The potential will therefore flatten above a certain distance. In this
sense, QCD with physical quarks is not confining. However, this does not mean that
coloured particles could be found in an experiment, since the string breaking always
happens in such a way that the asymptotic particles are colour-neutral.

3.2.1 Centre symmetry and the Polyakov loop

The Polyakov loop is an order parameter related to the linear rising potential, and
thus is most often used to study the confinement/deconfinement phase transition. It
is derived from the Wilson loop in time direction

P (~x) = Peig
∫ β
0 dτA4(~x,τ), (3.6)
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where P denotes the path-ordered product. From this we obtain the Polyakov loop
L(~x) by taking

L(~x) =
1

Nc

TrP (~x), (3.7)

and its expectation value
Φ = 〈L(~x)〉. (3.8)

It can now be shown that Φ is related to the free energy of a static quark, see e.g. [62].
One finds

Φ ∝ e−Fq/T , (3.9)

and thus

Φ =

{
0 if Fq =∞
non-zero if Fq <∞.

(3.10)

If Fq =∞, a free quark can not be produced and we are in that sense in the confined
phase. We therefore found the order parameter Φ, which is 0 in the confined phase,
and non-zero otherwise.

The Polyakov loop turns out to be sensitive to centre symmetry. The centre of an
SU(Nc) group is ZNc , containing the Nth roots of unity, where the elements are

zn = e2πin/Nc ∈ SU(Nc), (3.11)

with n ∈ 0, . . . , Nc − 1. To show the relation to centre symmetry, it is advantageous to
go to a lattice formulation. There, the gauge fields are described by the link variables
Uµ(~x, τ). The Polyakov loop is then obtained from

L(~x) =
1

Nc

Tr [Πi U4(~x, τi)] , (3.12)

such that we have a product of links along the time direction. A centre transformation
can now be performed by

U4(~x, τj)→ zU4(~x, τj), (3.13)

for one time slice τj and a centre element z. It is then owed to the commutativity of
the centre that we find

L(~x)→ zL(~x). (3.14)

Thus we have a broken centre symmetry2 if Φ 6= 0, where the theory picks one direction
of the centre group spontaneously. In the symmetric phase we find Φ = 0. The breaking
of centre symmetry is therefore equivalent to a finite Fq, and thus signals deconfinement.

When dynamical quarks are taken into account, centre symmetry is broken explicitly.
We therefore always find Φ 6= 0 in unquenched QCD, and can only define a pseudo-
critical temperature for a crossover transition. This might change when the full centre

2Centre symmetry is a global symmetry, its breaking does therefore not violate the Elitzur theorem
[63].
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symmetry Z6 of the standard model is taken into account, see [64]. If that is the
case, the fractional charges of the quarks have a natural role in the description of
confinement, which they lack in the pure QCD treatment.

The connection between centre symmetry and confinement allows us to construct an
order parameter for the latter by requiring it to be sensitive to a centre transformation.
We will exploit this by using the dressed Polyakov loop, which is more readily obtained
from the propagators of QCD than the Polyakov loop itself.

3.2.2 The dressed Polyakov loop

The idea of dual condensates has been introduced in [65–67]. We now shortly summar-
ise how this is connected to the Polyakov loop, which we discussed above.

The key observation is the following. We allow the quarks to not be anti-periodic
in Euclidean time. Instead, we let them adhere to generalised U(1)-valued boundary
conditions, such that ψ(~x, 1/T ) = eiϕψ(~x, 0) with ϕ ∈ [0, 2π[. Physical boundary
conditions are the special case of ϕ = π. In a lattice formulation one can write the
ϕ-dependent condensate as (see [41,67])

〈ψ̄ψ〉ϕ =
∑
l∈L

eiϕn(l)

(2am)|l|
U(l), (3.15)

where we sum over loops l of gauge connections in the set L of all closed loops. The
lattice spacing is a, |l| is the length of such a loop, and n(l) counts how many times it
winds around the Euclidean-time direction. As an abbreviation we define

U(l) ∝ 〈TrcΠlUµ(x)〉 , (3.16)

which is proportional to an expectation value of a product of gauge connections. Since
we sum over all closed loops, this includes a straight line going once around the
Euclidean time direction, 〈TrcΠiU4(~x, τi)〉. This is nothing but the Polyakov loop,
Eq. (3.12). Thus the Polyakov loop is “hidden” in the quark condensate. Extract-
ing this particular loop consists of two steps. First we take the Fourier transform
of Eq. (3.15) with respect to the boundary angle ϕ, from which we obtain the dual
condensate

Σn =

2π∫
0

dϕ

2π
e−iϕn〈ψ̄ψ〉ϕ. (3.17)

This contains only such loops that wind n times around the time direction. For n = ±1
this includes the Polyakov loop, but also spatial detours. For this reason the dual
condensate Σ+1 is called the dressed Polyakov loop. In contrast, the standard definition
of the Polyakov loop is sometimes called the “thin” Polyakov loop. In a medium with
finite net quark density the dual condensate Σ−1 corresponds to the conjugated dressed
Polyakov loop and is in general different from Σ+1. The second step is to take the limit
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m → ∞. Since loops are suppressed with 1/m|l|, see Eq. (3.15), the Polyakov loop
is the leading contribution in this limit. Note that this second step is not necessary
for Σn to be an order parameter for centre symmetry breaking. As it has been shown
in [67], it transforms under centre transformations like

Σn → znΣn, (3.18)

for a centre element z. Loops that are not straight have to pick up a factor z† for every
extra factor z they pick up, thus leaving an over-all factor zn.

Since the necessary input for obtaining the dressed Polyakov loop is the quark con-
densate at varied boundary conditions, we can access this order parameter for confine-
ment from functional methods. This has first been done in [40] for quenched QCD.

For unquenched QCD there are two possibilities to implement the boundary con-
ditions. If we implement them equally for the test quark in Eq. (3.17) and the sea
quarks, we can identify

ϕ = µI/T ± π, (3.19)

where µI is an imaginary chemical potential. This situation has been studied in the
PNJL model in [68]. The disadvantage of this is that we want to study a real chemical
potential. This would result in a complex chemical potential, and thus a theory where
every object becomes complex. The physical interpretation of this is unclear.

The other possibility is to employ sea quarks at the usual anti-periodic boundary
conditions ϕ = π. This is implemented by using for the ϕ-dependent condensate in
Eq. (3.17) the definition

〈ψ̄ψ〉ϕ =

∫
DψDψ̄DA

(
ψ̄ϕψϕ

)
e−S[ψ,ψ̄,A]+

∫
Jϕ, (3.20)

where ψϕ is the ϕ-dependent test quark field, while ψ is the physical quark field. We
neglect the ghost fields for simplicity. On the lattice this means to use a fermion
determinant with ϕ = π. This has been studied in [69]. In the PNJL model, the
fermionic fluctuations are subsumed in the Polyakov-loop variable. Taking this to be
independent of ϕ leads to a similar set-up. This has been studied in [70]. We will
follow this line here. In our approach this means that all quark loops are evaluated at
ϕ = π. The ϕ-dependent condensate is then obtained from the quark DSE defined for
Matsubara modes shifted by ϕ. Roberge-Weiss symmetry is broken by this procedure.
[32,71]

3.2.3 The Polyakov loop potential

In chapter 8 we will investigate another possibility to access the Polyakov loop from
functional methods, which is based on [72–74]. We will use the background-field method
to obtain a potential V (Ā4). Here Ā4 is a constant non-Abelian background that can
be connected to the Polyakov loop, Eq. (3.6). The Polyakov loop for the background
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3 Order parameters for chiral symmetry and confinement from propagators

field is an upper bound for the Polyakov loop for a non-constant field. As we will
see, this leads to a second way how we can construct an order parameter for centre
symmetry breaking from solutions of Dyson-Schwinger equations.

3.2.4 Positivity violations

So far, we used a notion of confinement that relies on the linear rising potential between
static quarks. A different confinement criterion is that of colour confinement, which is
connected to the spectral functions of quarks and gluons. The Osterwalder-Schrader
axioms for physical particles include the axiom of reflection positivity [75], which im-
plies the existence of a Källén-Lehmann spectral representation of the corresponding
propagator. For a propagator ∆(x) the condition of reflection positivity is∫

d4xd4yf ∗(~x,−x0)∆(x− y)f(~y, y0) ≥ 0, (3.21)

where f(x) ∈ C is a test function. The positivity of the spectral function is connected
to the Schwinger function, which is defined as a Fourier transformation

∆(t) = T
∑
n

e−iωnτ∆(ωn, ~p = 0) (3.22)

of the propagator in momentum space ∆(ωn, ~p). If the Schwinger function is negative
for some t, the spectral function must violate positivity as well. This was studied in [76]
for gluon and quark propagators in the vacuum. Positivity violations where found for
both.

In [77, 78] the quark spectral functions have been studied at finite temperature.
For the quark propagator above Tc, the spectral function was fitted to HTL results
with good agreement. Below Tc, positivity violations where found from the Schwinger
function, with no sign of them above Tc. We will follow that line of argument in this
thesis in section 7.8. In [79,80] a maximum-entropy method (MEM) has been applied
to determine the spectral function. It was found that at small temperatures the result
clearly has negative contributions, which vanish at temperatures slightly smaller than
the chiral critical temperature.
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4 The quark-gluon vertex and the
quark DSE at finite temperature

A truncation for the quark DSE consists of two parts, the gluon propagator and the
quark-gluon vertex. In vacuum studies, one often uses a combination of both in the
so-called rainbow truncation. In this approximation, the resulting effective coupling is
chosen such that hadronic observables are reproduced. This can then be used to obtain
many properties of e.g. hadrons. In this work, on the other hand, we want to study
effects of the medium. This makes a careful analysis of the temperature and density
dependence of the truncation necessary. To this end, we treat the gluon propagator
and the quark-gluon vertex separately. We will specify the gluon propagator in the
next chapters in different approximations, and now concentrate on the vertex.

4.1 The quark-gluon vertex

In the vacuum, the full quark-gluon vertex has been investigated in a number of studies
from its DSE, see [81–84]. At finite temperature such a study is lacking so far. The
vertex DSE is already a serious task in the vacuum, in medium it becomes even more
complex. One reason is the increase of tensor structures, that are given by


γµ
kµ
qµ
uµ

⊗



1

/k

/q
/k/q

/u
/k/u

/q/u
/k/q/u


(4.1)

where u is the medium velocity. This leads to 32 tensor structures, of which 24 remain
after contracting with the transversal gluon propagator. The vertex satisfies the non-
Abelian Slavnov-Taylor identity (STI) which has been derived in [85] for the vacuum.
It is given by

qµΓµ(p, k; q) = G(q)
[
H(p, k)S−1(p)− S−1(k)H(p, k)

]
, (4.2)

where G is the ghost dressing function and H is the quark-ghost scattering kernel.
This identity gives us valuable insight in the full vertex. If we simplify the situation
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4 The quark-gluon vertex and the quark DSE at finite temperature

by going to the Abelian version of the STI, the Ward identity, we find

qµΓµ(p, k; q) = S−1(p)− S−1(k). (4.3)

A solution of this equation has been presented by Ball and Chiu. [86] We will use
the leading part of the Ball-Chiu vertex construction as a first approximation to the
medium effects of the vertex. This is given by

(Γµ(p, k; q)) =

(
A(p) + A(k)

2
~γ,
C(p) + C(k)

2
γ4

)
, (4.4)

in the medium. This term alone is not sufficient to allow for dynamical chiral symmetry
breaking. This is understandable, since in QCD the vertex receives further contribu-
tions from the ghost and ghost-quark scattering kernel, see Eq. (4.2). We compensate
this by further dressing the vertex with an ansatz function Γ, which subsumes the
non-Abelian contributions. In the UV this function is constrained from perturbation
theory. The combination of Γ2Z/A2, where Z is the gluon dressing, has to behave
like the running coupling. [81] Furthermore, in the UV temperature and density effects
are suppressed, and we can therefore safely use a function constant in T and µ. In
the IR, however, not only is Γ unknown, we can also expect medium effects. Lacking
knowledge of this function, we have to rely on a model input, which leads to a vertex
strength that is sufficient to allow for dynamical chiral symmetry breaking. We will
later fix the parameters in this IR part by demanding correct scales to emerge.

The resulting expression has already been used in [40,42] and reads

Γµ(p, k; q) = γµ · Γ(x) ·
(
δµ,4

C(p) + C(k)

2
+ δµ,i

A(p) + A(k)

2

)
,

Γ(x) =
d1

d2 + x
+

x

Λ2 + x

(
β0α(µ) ln[x/Λ2 + 1]

4π

)2δ

(4.5)

for quark momenta p, k and the gluon momentum q. In the upper line of Eq. (4.5) no
summation over µ is implied. We used x as a place holder for a squared momentum.
In the quark DSE we will use the gluon momentum, x = q2. In contrast to that, in
the gluon DSE we will have to use a different momentum dependence, discussed later.
We introduce d1 and the scales d2 and Λ as parameters of our vertex model. The form
of Γ is a simplified version of the so-called “soft-divergent model” introduced in [87].
Here, d1 sets the strength of the vertex in the IR, and will be the parameter that we
tune to get e.g. the expected amount of dynamical chiral symmetry breaking. The
parameters d2 and Λ control the running from the UV to the IR. For the UV part, we
have the anomalous dimension δ = −9 Nc

44Nc−8Nf
and β0 =

11Nc−2Nf
3

. We will later use

the abbreviations

Γs(p, q) =
A(p) + A(q)

2
, Γ4(p, q) =

C(p) + C(q)

2
, (4.6)
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4.2 Solving the Dyson-Schwinger equations in a medium

for the Ball-Chiu part of the vertex.

This vertex construction has two insufficiencies. Firstly, the infrared enhancement
d1

d2+x
in Eq. (4.5) does not depend on temperature. We expect this part to be suppressed

by temperature effects, which might be expressed by making d1 a function of T and µ.
We find that an ansatz with d1 ∝ 1/T above Tc leads to results closer to lattice QCD
at µ = 0. However, for now we will not introduce such a model since it can barely be
generalised to include a finite chemical potential.

Secondly, the full vertex contains 12 tensor structures in the vacuum, and 24 in the
medium. We only take one (two in the medium) of them into account. Especially a
scalar part ∝ pµ is believed to be important for chiral symmetry breaking [84], and
can thus be expected to play an important role around the phase transition where
chiral symmetry is restored. However, in this work we will not take this kind of tensor
structure into account, and a study of an improved vertex model will have to be explored
in future work.

4.2 Solving the Dyson-Schwinger equations in a
medium

In Eq. (2.48) we showed the quark DSE in the medium and defined the projectors
PA,B,C in Eq. (2.49). With the vertex ansatz Eq. (4.5) we can now apply the projectors
to get the equations for the quark dressing functions A, B and C. This results in

A(p) = Z2 · 1 +Z2CFg
2
∑∫
l

Γ(q2)

Dq(l)~p2
{A(l)KAA + C(l)KAC} , (4.7)

B(p) = Z2Zm ·mr +Z2CFg
2
∑∫
l

Γ(q2)

Dq(l)
B(l)KBB, (4.8)

C(p) = Z2 · 1 +Z2CFg
2
∑∫
l

Γ(q2)

Dq(l)ω̃p
{A(l)KCA + C(l)KCC} , (4.9)

where the gluon momentum is (ωq, ~q) = (ωp − ωl, ~p − ~l) and we introduced some
abbreviations. The quark denominator is Dq(p) = ~p2A2(p) + ω̃2

pC
2(p) +B2(p), and the
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4 The quark-gluon vertex and the quark DSE at finite temperature

kernels are

KAA = Γs

[
2
ZT
q2

~p · ~q ~l · ~q
~q2

+
ZL
q2

(
~p ·~lω2

q + 2~p · ~q ~l · ~q
q2

− 2
~p · ~q ~l · ~q

~q2

)]
+ Γ4

ZL
q2

~q2~p ·~l
q2

,

(4.10)

KAC =
ZL
q2

(Γs + Γ4)
ω̃lωq~p · ~q

q2
, (4.11)

KBB = Γs

(
2
ZT
q2

+
ZL
q2

ω2
q

q2

)
+ Γ4

ZL
q2

~q2

q2
, (4.12)

KCA =
ZL
q2

(Γs + Γ4)
ωq~l · ~q
q2

, (4.13)

KCC = Γs

(
2
ZT
q2
ω̃l +

ZL
q2

ω̃lω
2
q

q2

)
− Γ4

ZL
q2

~q2ω̃l
q2

, (4.14)

with the vertex dressings Γs = A(l)+A(p)
2

and Γ4 = C(l)+C(p)
2

from the Ball-Chiu con-
structions, as defined in Eq. (4.6). The momentum dependence in the vertex which
was left open in Eq. (4.5) is chosen here such that Γ depends on the gluon momentum,
q2, only. This is in line with rainbow-ladder truncations.

Eqs. (4.7-4.9) will be used throughout the rest of this work, since they are the
same for quenched and unquenched QCD. This only changes in Chapter 9 where we
will introduce a model for the back-reaction of pions on quarks, which will add an
additional self energy to the quark DSE. In order to solve Eqs. (4.7-4.9), we need to
specify the gluon propagator. This will be the task for a large part of this thesis.

For the numerical solution of Eqs. (4.7-4.9), we apply a fix-point iteration procedure.
Some numerical details on the solution of the quark DSE are given in App. B.1.
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5 Quenched QCD

Before we continue with unquenched QCD, we will briefly study the pure Yang-Mills
system, i.e. quenched QCD, in this chapter. This will not only serve as the basis for
the unquenched gluon DSE, it is also an important cross-check for our method and our
order parameters to reproduce the behaviour of quenched QCD. This is especially true
for the confinement order parameters, since confinement, if defined as a linear rising
potential, is strictly present only in quenched QCD. Dynamical quarks lead to string
breaking, respectively centre symmetry breaking, and therefore the Polyakov loop will
not be zero below Tc for Nf > 0. It is therefore crucial to show that an order parameter
for confinement has the expected properties in the quenched case.

=
−1

+ +

++

+ +

−1

Figure 5.1: The untruncated gluon DSE. The wiggly line is the gluon propagator, the
dashed line the ghost and the solid line the quark propagator. Propagators
and vertices denoted by a blob are fully dressed.

−1
= +

−1 −1

Figure 5.2: The ghost DSE. The dashed line is the ghost and the wiggly line the gluon
propagator. The blob denotes fully dressed propagators/vertices.

In Figs. (5.1,5.2) we show the gluon and ghost DSEs. If we neglect the quark loop,
i.e. the last diagram in Fig. (5.1), we recover quenched QCD. A study of this set
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5 Quenched QCD

of equations at finite temperature has been performed in [38, 39, 88, 89], and one is
currently in progress [90]. The Yang-Mills system has also been studied with the
functional renormalisation group (FRG) in [33].

However, all functional studies are plagued by truncation effects. These effects have
so far hindered especially the resolution of the quenched phase transition. This leaves
us with results from gauge-fixed lattice studies as the best source for the quenched
gluon as an input in our equations. This will further be explored in this chapter, which
is to a large degree a repetition of the work done in [40,42,91] with refined input data.
In the next chapters we will use this as a starting point for unquenching QCD.

5.1 Gluon propagator from gauge-fixed lattice QCD

Gauge-fixed lattice simulations have been used to obtain the quenched gluon propag-
ator in Landau gauge in several works. In [42, 92, 93] propagators on an improving
temperature grid have been presented, and used in [40,42,91] as an input to the quark
DSE in order to study dual condensates. We will continue this line of work here.
In [94] a different group presented gluon propagators that are basically in agreement
with those mentioned before.

Recalling Eq. (2.41), we can split the temperature-dependent gluon propagator into
two dressing functions. These are ZL and ZT for the gluon longitudinal and transversal
to the heat bath. In [40] an analytic function has been used as a fit of the dressing
functions to the lattice data. This function had one parameter, aT,L(T ), for each of
the gluon dressing functions. The fit had been performed for a set of temperatures.
In [42] the fit function has been generalised slightly by introducing a second parameter,
bT,L(T ). We will use this function here, which reads

ZT,L(p) =
p̂2

(p̂2 + 1)2

[(
ĉ

p̂2 + aT,L(T )

)bT,L(T )

+ p̂2

(
β0αµ
4π

ln(p̂2 + 1)

)γ]
, (5.1)

where aT,L(T ) and bT,L(T ) are the fit parameters which depend on temperature and
are different for the longitudinal and the transversal part. We use the abbreviations
p̂2 := p2/Λ2 and ĉ := c/Λ2. In the ultraviolet, the logarithmic term leads to the

perturbative running with β0 =
11Nc−2Nf

3
and the anomalous dimension γ =

−13Nc+4Nf
22Nc−4Nf

.

Here, Nf = 0. The parameters are Λ, c, aT,L and bT,L, where only the last two are taken
to be temperature-dependent. The temperature-independent parameters are chosen as
c = 11.5 GeV2 and Λ = 1.4 GeV. In [42] the parameters aT,L(T ) and bT,L(T ) have been
fitted to the lattice data at 16 temperatures. We perform a similar fit to the lattice
data from [93], where the gluon propagator was calculated for 27 temperatures, where
the additional data focusses around Tc. The resulting parameters are shown in App. D.

In Fig. 5.3 we show the gluon dressing functions from the lattice for three temper-
atures and the result of fitting Eq. (5.1) to them. The longitudinal part of the gluon
shows an increasing behaviour with temperature, which stops already below Tc. At Tc
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5.1 Gluon propagator from gauge-fixed lattice QCD
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Figure 5.3: Longitudinal (left) and transversal (right) gluon dressing functions. We
compare our fit to the lattice data from [93].

it shows a drastic decrease, and a further decreasing behaviour above Tc. In contrast
to that, the transversal part shows little temperature dependence. It decreases and
barely changes at Tc.

We will use the temperature grid on which the original gluon was obtained for our
quenched calculations. However, for unquenched QCD we will have to interpolate
between these data points. We do this by fitting polynomial functions to the fit results
aT,L(T ) and bT,L(T ). The resulting functions read, for t := T/Tc with Tc = 277 MeV,
as

aL(t) =

{
0.595− 0.9025 · t+ 0.4005 · t2 if t < 1
3.6199 · t− 3.4835 if t > 1

, (5.2)

aT (t) =

{
0.595 + 1.1010 · t2 if t < 1
0.8505 · t− 0.2965 if t > 1

, (5.3)

bL(t) =

{
1.355− 0.5741 · t+ 0.3287 · t2 if t < 1
0.1131 · t+ 0.9319 if t > 1

, (5.4)

bT (t) =

{
1.355 + 0.5548 · t2 if t < 1
0.4296 · t+ 0.7103 if t > 1

. (5.5)

In Fig. 5.4 we compare the set of parameters from [42] to our polynomial fit. At
T = 2.2 Tc the fits for bL and bT do not describe the data, but since we are mostly
interested in temperatures well below the quenched Tc this will not affect our results.
With this prescription our quenched gluon is fixed at all temperatures.

A note is in order here about the IR behaviour of the gluon and ghost propagators.
There exist two types of solutions, a so-called scaling solution and a class of decoupling
solutions, see e.g. [95]. This ambiguity is a consequence of Gribov copies, i.e. the
incomplete gauge-fixing [96]. The dressing functions in general behave like

Z(p2)→
(
p2
)−κA , G(p2)→

(
p2
)−κC , (5.6)
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Figure 5.4: The parameters aL/T and bL/T of the quenched gluon propagator compared
to the fitted functions Eqs. (5.2-5.5).

where Z and G are the gluon and ghost dressing functions, respectively. For the scaling
solution we have κ = κC = −κA/2 ∈ [1/2, 1]. For decoupling κA = −1 and κC = 0.
In Eq. (5.1) we assumed the IR behaviour of the gluon to be in the decoupling class,
since this is the favoured solution in most lattice simulations. The difference between
scaling and decoupling only becomes important at very small energy scales. Since we
have a temperature of order of 100 MeV, we expect that we will not be sensitive to
this ambiguity.

5.2 Dressed Polyakov loop for two and three colours

With the gluon fixed, it only remains to fix the parameters in the quark-gluon vertex.
We will use d2 = 0.5 GeV2 and Λ = 1.4 GeV as typical scales for QCD. In this quenched
calculation we set d1 = 4.5 GeV2. The quark mass is chosen as m(80 GeV) = 3 MeV.

In Fig. 5.5 we show the dressed Polyakov loop and the quark condensate as a function
of temperature. Additional to the SU(3) case, which we assume for the rest of this
work, we also show results for SU(2). Tc is 303 and 277 MeV for two and three
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Figure 5.5: Dressed Polyakov loop and quark condensate for SU(2) (left) and SU(3)
(right).

colours, respectively. On the lattice, Tc has been determined from the Polyakov loop.
We inherit this scale from the gluon input. At Tc we observe a rapid change of both
order parameters. While chiral symmetry is approximately restored, centre symmetry
is broken. Both transitions happen at the same temperature, which is the same as the
one determined from the Polyakov loop. Having more points on the temperature axis
than in the previous studies [40,42,91], the order of the phase transition becomes more
clearly visible. With the finite resolution on the temperature axis and with the finite-
volume input from the lattice, it is, strictly speaking, impossible to distinguish between
a first and a second order phase transition. Nonetheless, the transition determined from
the dual condensate in the SU(3)-case is clearly stronger than for two colours. This is
in agreement with the general expectation of a first (second) order phase transition for
three (two) colours. From the chiral phase transition this distinction can not be made
so clearly, although the condensate drops steeper for the three-colour case. Below Tc
we observe a rise of the condensate. This is in line with lattice calculations [97] of
quenched QCD. We can ascribe this behaviour to the longitudinal part of the gluon
propagator, which shows a similar rise. Note that the noisy behaviour of the condensate
below Tc is due to the lattice data, which are by nature noisy.

The most important result of this chapter is the consistency of the dressed Polyakov
loop with zero below Tc. This shows conserved centre symmetry, and most importantly
that our usage of the dressed Polyakov loop is capable of showing this. Had we used
different gluon propagators as an input in our quark DSE, we could not have gotten
this result. This is a non-trivial statement, although below Tc there is some dependence
of Σ1 on the vertex parameters. This has also been found in [98]. While Σ1 is less
consistent with zero for d1 6= 4.5 GeV2, the fact that we can find a parameter d1 for
which Σ1 ≈ 0 for T ∈ [0, Tc] proves that our vertex ansatz is sufficient for this purpose.
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5 Quenched QCD

5.3 Summary

We introduced quenched QCD in the Dyson-Schwinger framework. To this end, we used
results from gauge-fixed lattice QCD for the gluon propagator. We used a fit that has
been employed successfully in [42] and applied it to recently refined lattice data. From
this input we obtained the condensate and dressed Polyakov loop as order parameters
for chiral symmetry breaking and confinement. This has been mainly a repetition
of [42], but with the newer lattice data we could resolve the behaviour of the order
parameters around Tc more precisely. Our results are consistent with a transition of
first (second) order for SU(3) (SU(2)). This shows that our order parameters, especially
the dressed Polyakov loop, indeed can be used to study chiral symmetry breaking and
confinement.

To access the quenched gluon propagator at momenta outside the temperatures
where lattice data are available, we proposed a polynomial fit through the gluon para-
meters. With this as a basis we will put forward a truncation scheme for unquenched
QCD in the following two chapters.
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6 Nf = 2 QCD with bare sea quarks

In general the quark and gluon DSEs, Figs. (2.1,5.1), are coupled integral equations
which have to be solved simultaneously. In the last chapter we used lattice QCD results
for the pure Yang-Mills gluon propagator. In this and the next chapter we will use this
as the basis to develop an approximation for the unquenched gluon propagator. Here,
we will additionally use bare quarks in the quark loop of the gluon DSE. This is a huge
simplification in terms of numerics, since we can take the analytic results from the
hard thermal/dense loop (HTL/HDL) scheme. This amounts of two approximation
steps. First of all, the quarks in the loop are undressed and massless, which is a
reasonable approximation in the quark-gluon plasma. Secondly, in HTL approximation
appearances of the external momentum in the numerator of the integrand are neglected.
This means to neglect the vacuum part of the loop, and does certainly not affect the
thermal mass which is generated from the quark loop and which will turn out to be
the most important thermal effect.

6.1 Unquenching the gluon propagator

In the last chapter we studied quenched QCD. Diagrammatically speaking, this means
to drop the quark loop from the gluon DSE, see Fig. (5.1). Since we want to study full
QCD and its phase diagram, we have to unquench the gluon. This means we have to
take the quark loop into account, which will lead to a gluon propagator that depends
on the quark mass and the chemical potential.

=
−1

+
−1

N
f

Figure 6.1: The truncated gluon DSE with bare quarks in the quark loop. The gluon
propagator with the yellow dot denotes the quenched gluon propagator.

In general, one has to solve the fully coupled gluon, ghost and quark DSEs in order
to access the unquenched gluon propagator. This is a tremendous task outside the
scope of this work. Luckily, we can use an approximation that simplifies the situ-
ation considerably. We will substitute the Yang-Mills self-energies in the gluon DSE,
Eq. (5.1), by the inverse quenched gluon propagator. We keep the quark loop and
find the unquenched inverse gluon propagator as a result. In this approximation any
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6 Nf = 2 QCD with bare sea quarks

back-coupling effect of the sea quarks on the Yang-Mills self-energies is neglected. The
assumption that this approximation is reasonable can be checked by comparing to ex-
plicit solutions of the full quark-gluon-ghost system in the vacuum. In Fig. 6.2, we
show the result of this test on the ground of the Yang-Mills system as it was truncated
in [99, 100]. We solve the full system of equations, with quark loop in the Yang-Mills
self-energies taken into account, and in the approximation of merely adding the quark
loop to the quenched gluon. On the quark side we use the same quark-gluon vertex
as in the rest of this work, with d1 = 7.5 GeV2 and a quark mass of m(80 GeV) = 2
MeV.
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f
=2, full
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f
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Figure 6.2: Comparison of the full solution of the coupled quark, gluon and ghost DSEs
to our approximation. As a comparison we also show the quenched input.
Figure courtesy of Christian Fischer.

Note that the scale of the Yang-Mills sector changes when the quark loop is taken
into account. We accommodate this by requiring the gluon dressing function to have
its peak at the same value as in the quenched case. We find that indeed the fully and
the approximately unquenched gluon differ only on a 10 percent level.

However, at large temperatures and small quark masses the quark loop becomes
more important. This can be expected to also increase the back-coupling effects in
the Yang-Mills self-energies. In chapter 7, where we will include the full dressing of
the quarks in the quark loop, we can expect that our approximation holds up to Tc
similarly well as in the vacuum due to the dynamically generated quark mass. In this
chapter, on the other hand, this is not the case and we can expect larger truncation
effects. In section 7.5.1 we will furthermore compare the unquenched gluon with the
fully dressed quark loop at finite temperature to lattice results. There, the agreement
will be found to be on a similar level like in Fig. 6.2, but for a rather large quark mass.
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6.2 Results for µ = 0

6.1.1 Bare-quark approximation

The second approximation that we will use in this chapter is to use only bare quarks
in the quark loop. We still dress the quark-gluon vertex with the same ansatz we
use in the quark self-energy. This leads to a truncation that has also been used in
studies of the colour-superconducting phases [35, 36]. This is certainly valid for large
temperatures/densities, where QCD is in a weakly coupled phase. Around and below
the phase transition we will have to use an improved truncation that takes the quark
dressings into account. This will be studied in the next chapter.

The resulting gluon DSE is shown in Fig. 6.1. The quark loop is described by

Πµν(p) =
Z1FNf

2

∑∫
l

Tr
[
S0(l)gγµS0(q)gΓ0

ν(l, q; p)
]
, (6.1)

where S0 is the bare quark propagator and Γ0 is the quark-gluon vertex without the
Ball-Chiu terms. With the projectors Eqs. (2.42,2.43) we project this tensor on its
longitudinal and transversal parts. With this, the gluon DSE becomes(

ZT,L(~p2, ωp)
)−1

=
(
Zqu.
T,L(~p2, ωp)

)−1
+ ΠT,L(~p2, ωp)/p

2, (6.2)

where ΠT = P T
µνΠµν/2 and ΠL = PL

µνΠµν . We evaluate ΠT,L in HTL-like approximation,
following the line of [101]. The only difference to HTL is that we take the vertex dressing
function Γ into account, and take it to depend on the gluon momentum. This way, we
can perform the loop integration in the usual way. The result is

ΠL(~p2, ωp) = Γ(p2)
2m2

th.p
2

~p2

[
1 +

ωp
2|~p|

(
−π + 2atan

(
ωp
|~p|

))]
, (6.3)

ΠT (~p2, ωp) = Γ(p2)m2
th. −

ΠL(~p2, ωp)

2
, (6.4)

where the thermal mass is given by

m2
th. =

g2Nf

12

(
T 2 +

3

π2
µ2

)
. (6.5)

Note that lim~p2→0 ΠL(~p2, 0) = 2m2
th.Γ(0), while lim~p2→0 ΠT (~p2, 0) = 0. This means that

the quark loop leads to Debye screening of the electric part of the gluon propagator. In
the (colour-)superconducting phase a related Meissner mass appears in the magnetic
part.

For the vertex parameters we will carry on with those used in the quenched study,
i.e. d1 = 4.5 GeV2.

6.2 Results for µ = 0

We will first test our truncation for µ = 0 and Nf = 2. Going from quenched to
unquenched QCD has the main effect of reducing the gluon propagator. We thus
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Figure 6.3: The quark condensate as well as the dressed Polyakov loop as a function of
temperature in two-flavour QCD with bare sea quarks.

expect to find a lower value for Tc. In Fig. 6.3 we show the quark condensate and the
dressed Polyakov loop. As expected, the transition temperature is reduced and we find
a cross-over in contrast to the first order phase transition in quenched QCD. This is in
line with results from lattice QCD, where for physical quark masses also a cross-over
is found with a Tc in the same ballpark. We will define Tc by

max

[
dO
dm

]
, (6.6)

where O is the order parameter, either the quark condensate or the dual condensate.

For the chiral transition we find T
Nf=2
c = 180±5 MeV and for deconfinement T

Nf=2

deconf =
195± 5 MeV.

In the quenched case, as discussed in the last chapter, we found an increase of the
quark condensate below Tc. This we attributed to the longitudinal part of the gluon
propagator, which shows the same rising behaviour. This behaviour vanishes in the
unquenched case, where we find a monotonically decreasing condensate. This can be
understood by the Debye screening mass from the quark loop, which suppresses the
longitudinal gluon propagator.

The dual order parameter shows a non-zero value for all temperatures, which is
the same behaviour that the (thin) Polyakov loop in lattice simulations shows. This
can be interpreted as the breaking of centre symmetry by the presence of dynamical
quarks. We find that chiral restoration and deconfinement, which are of cross-over
nature, happen in the same temperature regime. This is again in agreement with
lattice simulations.
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6.3 Finite chemical potential

Figure 6.4: The quark condensate σ = 〈ψ̄ψ〉ϕ as a function of temperature and bound-
ary angle ϕ at fixed quark chemical potential µ = 0 MeV.

In Fig. 6.4 we show the condensate as a function of temperature and the quark
boundary angle ϕ. For small temperatures, we find a condensate that barely depends on
ϕ. When the temperature is increased, chiral symmetry is restored and the condensate
at ϕ = π drops. In contrast to that, for ϕ = 0, 2π the condensate continues to increase
even in the chirally symmetric phase. This has already been discussed in Ref. [40]. In
the Fourier transform for the dual condensate, this leads to a small value of Σ1 for low
temperatures, and a larger value of Σ1 above Tc.

To conclude, we find the expected physics at µ = 0. This shows that with our
unquenched gluon propagator we capture the main effects when going from quenched
to unquenched QCD. This gives us confidence to proceed with finite chemical potential,
where a direct comparison with lattice results is no longer possible.

6.3 Finite chemical potential

When we switch on the chemical potential, we find a new feature of the condensate
in the T − ϕ plane. For ϕ 6= 0, π, 2π the boundary angle acts similar to an imaginary
chemical potential. Together with the finite value of µ, we have a situation similar to
a complex chemical potential. This has the effect of rendering the quark condensate
complex. The real and imaginary parts of the condensate are shown in Fig. 6.5 for
µ = 200 MeV. The imaginary part of the condensate is antisymmetric around ϕ = π.
If we now look at the Fourier transform

Σ±1 =

∫
ϕ

e∓iϕ〈ψ̄ψ〉ϕ =

∫
ϕ

cosϕRe〈ψ̄ψ〉ϕ ± sinϕIm〈ψ̄ψ〉ϕ, (6.7)
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6 Nf = 2 QCD with bare sea quarks

Figure 6.5: The real and imaginary parts of the quark condensate σ = 〈ψ̄ψ〉ϕ as a
function of temperature and boundary angle ϕ at fixed quark chemical
potential µ = 200 MeV.

we find a real result for Σ±1. However, Σ+1 6= Σ−1 for µ > 0. This reflects that
at finite µ quarks and antiquarks are different. It is well-known that the Polyakov
loop and its conjugate behave differently at finite µ. What we find here is the same
phenomenon, and we will call Σ−1 the dressed conjugated Polyakov loop. Also, we find
a jump of the condensate in ϕ-direction for T > Tc at finite µ. This structure has also
been found in NJL studies of the dual condensate [102], although the interpretation of
the dual condensate as an order parameter for centre symmetry does not hold in the
NJL model. This points towards a general feature of the condensate at finite µ and
unphysical ϕ. We observe that the temperature at which the jump is first developed
decreases with increasing chemical potential. However, this jump does not reflect in
a jump of the resulting dual condensates. The function Σ±1(T ) is still continuous,
at least for chemical potentials up to the critical end-point. We can now calculate
the phase diagram for chiral symmetry restoration and deconfinement. The result is
shown in Fig. 6.6. At small chemical potential we find a crossover for both transitions,
as explained above for µ = 0. We find a pseudo-critical temperature for deconfinement
that is larger than that for chiral restoration by up to 20 MeV. Although this difference
increases slightly around µ = 50 MeV, it decreases for larger µ, and vanishes at about
µ = 200 MeV. The deconfinement temperatures evaluated from Σ+1 and Σ−1 are
identical in the limits of our numerical precision, although Σ+1 > Σ−1 for µ > 0. We
will show the dual condensates at finite µ in the next chapter.

For the chiral transition we find a crossover that gets steeper with increasing chemical
potential, until it turns into a first order phase transition at a critical end-point (CEP)
which is located at (µEP , TEP ) ≈ (280, 95) MeV. Above the CEP, we find a co-existence
region, in which one needs to evaluate the pressure in order to obtain the phase that
is realised physically. Since we do not have access to the pressure in this work, we can
thus not resolve the transition temperature in the first order region and will only denote
the spinodals. See App. B.1.2 for our numerical procedure for finding the spinodals.
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6.3 Finite chemical potential
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Figure 6.6: The phase diagram for chiral symmetry restoration and deconfinement of
quarks (Σ1) and antiquarks (Σ−1) in the HTL-like approximation with two
flavours.

The CEP is located at a relatively large chemical potential, with µEP/TEP ≈ 3. This
can be attributed to the inclusion of fermionic fluctuations. A similar conclusion has
been drawn in the framework of the PQM model [25]. This is especially interesting for
extrapolations of lattice simulations to finite chemical potential. These fail at µ/T ≈ 1.
In [103] no signal for a CEP has been found for µ/T < 1, which agrees with the findings
in our and the PQM model.

On the other hand, we do not expect our current truncation to be valid in the
area of the phase diagram where we find the CEP. For chemical potentials of this
magnitude one expects that baryons play an important role. Also, entirely new phases
may be found instead of the first order phase transition, for instance an inhomogeneous
phase. [31]

We do not calculate the dual condensates in the first order region. To do so credibly
one would have to obtain the phase of the lower pressure. This is not only hindered
by our technical problems of accessing the pressure, it is also in general a problem at
unphysical boundary conditions. There, one would find a complex pressure similar to
the complex condensate that we discussed above. With the complex numbers being
unordered, one could not determine which phase has the lower pressure. A possible
solution would be to resort to e.g. taking the absolute value or the real part of the
pressure for the comparison. This has been done in the NJL-model studies of the dual
condensate [102]. However, this is merely a pragmatic treatment of a more fundamental
problem. The solution of this problem might require a better understanding of the
dual condensates. The only statement that can be made at the moment is that above
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6 Nf = 2 QCD with bare sea quarks

the upper spinodal, the dual condensates will acquire a large value. Thus a phase
of confined but chirally symmetric matter could only be found inside the coexistence
region, if at all.

6.4 Summary

In this chapter we introduced a truncation for unquenched gluon propagators with
bare sea quarks. The idea is to add the quark loop to the quenched gluon propagator,
neglecting unquenching effects in the Yang-Mills self-energies. This approximation was
found to work well in the vacuum, where explicit calculations of both, the approximated
and the full system are possible. We therefore applied it to finite temperature and
density as well.

We found that our truncation reproduces a lot of the physics that is expected in
unquenched QCD, namely a cross-over transition at µ = 0 for both, chiral restoration
and deconfinement. We obtain the standard version of the QCD phase diagram, with
a CEP at relatively large µ. The dual order parameters lead to the expected behaviour
at µ = 0, and to a deconfinement transition that is near-by the chiral restoration at
all accessible chemical potentials. A novel feature of the condensate appeared when
finite chemical potentials and unphysical quark boundary conditions ϕ were taken into
account. The condensate showed a first order transition in ϕ-direction, for µ sufficiently
large and temperatures above Tc. This behaviour is independent of the truncation, and
can even be found in the NJL model.

The success of obtaining the expected behaviour of unquenched QCD makes this
technically relatively simple truncation for the unquenched gluon propagator a good
choice for further studies of QCD at finite density with Dyson-Schwinger equations,
when only qualitative features are of interest. However, we expect this truncation to
be too simple to describe the physics close to the phase transition correctly. This is the
main motivation to improve upon this situation in the next chapter, where we include
fully dressed quarks in the quark loop. This is technically much more demanding than
the HTL approximation. Nevertheless, this will be necessary to yield more quantitative
results and to include strange quarks in a non-trivial way.
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7 Nf = 2 and Nf = 2 + 1 QCD with fully
dressed sea quarks

In the last chapter we approximated the quark loop in the gluon DSE by considering the
quarks to be bare. We only dressed the quark-gluon vertex, which is only a reasonable
approximation well above the phase transition. In this chapter we therefore improve
the truncation by explicitly taking the fully dressed quark propagator in the quark
loop into account. This leads to a coupled system of equations for the quark and gluon
propagators, which will make the gluon sensitive to the chiral dynamics in the quark
sector. In this truncation we are able to couple light and strange quarks.

7.1 Improved truncation scheme

−1
= +

−1 −1

u/d u/d u/d , s s s

−1
= +

−1 −1

m

=
−1

+
−1

2 +
u/d s

Figure 7.1: The coupled system of light-quark, strange-quark and gluon DSEs. The
thin and thick lines represent light and strange quarks, the yellow dot in
the gluon DSE the quenched gluon.

We show the system of quark and gluon DSEs in this truncation in Fig. 7.1, where
we already add a strange quark for the Nf = 2 + 1 case. The DSEs read[

Sf (p)
]−1

= Zf
2

[
Sf0 (p)

]−1

+ CFZ
f
2Z

f
1F

∑∫
l

gγµS
f (l)gΓfν(l, p; q)Dµν(q), (7.1)

D−1
µν (p) =

[
Dqu.
µν (p)

]−1 −
Nf∑
f

Zf
2

2

∑∫
l

Tr
[
gγµS

f (l)gΓfν(l, q; p)S
f (q)

]
︸ ︷︷ ︸

Πµν(p)

, (7.2)
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7 Nf = 2 and Nf = 2 + 1 QCD with fully dressed sea quarks

for quarks of flavour f ∈ {u, d, s}. We choose the relative momentum q = p− l in the
quark DSE, and q = p + l in the quark loop Πµν . In the quark loop we evaluate the
vertex ansatz function at Γ(l2, q2, p2) = Γ(l2 + q2), i.e. for the sum of squared quark
momenta. In the same way as in the previous chapter, we will project the quark loop
on the transversal and longitudinal parts

ΠT (p) = P T
µν(p)Π

T
µν(p)/2, (7.3)

ΠL(p) = PL
µν(p)Π

L
µν(p). (7.4)

The quark loop contributes to the thermal masses of the gluon. This is the domin-
ant thermal effect. To make the thermal mass explicit, we can split the quark-loop
contribution into an IR-finite and vanishing part

ΠT,L(~p2, ωp) = −2
(
mT,L
th.

)2

+ ΠT,L
reg.(~p

2, ωp), (7.5)

where ΠT,L
reg. is similar to the quark loop in vacuum. The thermal masses are defined as(

mT,L
th.

)2

= −1

2
ΠT,L(~p2, ωp = 0)

∣∣
~p→0

, (7.6)

where the electric screening mass mL is known as the Debye mass and is always present
in the medium. In contrast to that, the magnetic screening mass mT is the Meissner
mass and appears only in the colour-superconducting phase.

7.2 UV finiteness of the quark loop

Before we can evaluate Eq. (7.2), we need to take care of a spurious quadratic divergence
that appears in the gluon self-energies. This divergence appears due to the use of a
cutoff, which breaks translational invariance. It leads to a term similar to a thermal
mass, i.e. we get

ΠL(0) = aT 2 + bµ2 + cΛ2, (7.7)

with some constants a, b, c and the cutoff Λ. We have to remove only the last term
carefully, without spoiling the other two terms.

Let us investigate the situation in the vacuum first, since medium effects do not
contribute to the divergence. Additionally to the quadratic divergence, we find a
spurious component longitudinal to the gluon momentum. We can split a general
gluon self-energy Πµν into

Πµν = ΠLPLµν + ΠT P Tµν , (7.8)

where L, T now denote longitudinal and transversal with respect to the gluon mo-
mentum, and should not be confused with L, T which denote longitudinal and trans-
versal with respect to the heat bath. The corresponding projectors are

PLµν =
pµpν
p2

, P Tµν = δµν −
pµpν
p2

. (7.9)
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7.2 UV finiteness of the quark loop

The longitudinal part is quadratically divergent, ΠL ∝ Λ2. We can use this to cancel
the divergence in the transversal part by defining

Πr
µν = Πµν − δµν

pαpβ
p2

Παβ (7.10)

= P Tµν
(
ΠT − ΠL

)
, (7.11)

see [104]. This is the same as using the Brown-Pennington projector PBP
µν = δµν −

4pµpν
p2 [105, 106] on Πµν directly. The quadratic divergence from the transversal and

longitudinal part cancel, and the result is only logarithmically divergent.
We can now use the projectors longitudinal and transversal with respect to the

heat-bath on Eq. (7.10), which yields in some sense the generalisation of the Brown-
Pennington projector to finite temperature. Thus we get the quark loop (or potentially
the other gluon self-energies) at finite temperature without the quadratic divergence.
With the quark-gluon vertex from Eq. (4.5) the result is

ΠT (~p2, 0) =
4Z2g

2

2

∑∫
l

Γ(l2, q2, p2)

Dq(l)Dq(q)

{
A(l)A(q)Γs

(
3

(~l · ~p)2

~p2
+ 2~l~p−~l2

)}
, (7.12)

ΠL(~p2, 0) =
4Z2g

2

2

∑∫
l

Γ(l2, q2, p2)

Dq(l)Dq(q)

{
A(l)A(q)

[
Γs

(
2
~l · ~p~p · ~q
~p2

−~l~q
)

+ Γ4
~l · ~q

]

+B(l)B(q) [Γ4 − Γs] + C(l)C(q)
[
−ω̃2

l (Γs + Γ4)
]}

, (7.13)

where we have q = p+l, and the quark denominator Dq(p) = ~p2A2(p)+ω̃2
pC

2(p)+B2(p).
The factor 4 comes from the Dirac trace. We neglected the momentum dependence
of Γs(l, q) and Γ4(l, q) which we defined in Eq. (4.6) for brevity. These equations are
defined for one quark flavour. Some further details on how we evaluate the resulting
expressions are given in App. (B.2).

As indicated in Eqs. (7.12,7.13), we only evaluate the zero mode explicitly. The
higher modes are accessed by using ΠT,L(~p2, ωp)→ ΠT,L(~p2 + ω2

p, 0). We use the same
approximation in the quenched gluon propagator, where we only have the zero mode
from the lattice. As the most important medium effect we can now extract the thermal
masses from Eqs. (7.12,7.13). To this end we take the limit ~p2 → 0, and obtain

2
(
mT
th.

)2
= 0, (7.14)

2
(
mL
th.

)2
= −4Z2g

2

2

∑∫
l

Γ(l2, l2, 0)

D2
q(l)

{
A2(l)~l2

(
−1

3
Γs(l, l) + Γ4(l, l)

)

+B2(l) (−Γs(l, l) + Γ4(l, l))− C2(l)ω̃2
l (Γs(l, l) + Γ4(l, l))

}
. (7.15)

This includes the correct high-temperature/density limit,
(
mT
th.

)2
= 0 and

(
mL
th.

)2
=

g2

12

(
T 2 + 3µ

2

π2

)
i.e. the HTL result from the last chapter. We therefore validated that
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7 Nf = 2 and Nf = 2 + 1 QCD with fully dressed sea quarks

our approach of removing the quadratic divergence does not impair the medium effects
of the quark loop, we only removed the Λ2-term in Eq. (7.7).

7.3 The coupling of light and strange quarks

Our truncation scheme allows for a non-trivial coupling of light and strange quarks.
In the vacuum, a similar set-up has been studied in [99], but the present work is the
first study of in-medium QCD with Nf = 2 + 1 in the Dyson-Schwinger framework. In
Fig. 7.1 we show the coupled system of light quark, strange quark and gluon. However,
there are further unquenching effects that we do not take into account. Besides the
back-coupling of the quark loop in the Yang-Mills self-energies, there are quark loop
effects in the quark-gluon vertex. One possibility of addressing these effects is to take
the back-coupling of mesons into account. We shall study this in chapter 9. Especially
the exchange of kaons could lead to a further coupling of light and strange quarks
that we do not include in the present chapter. Furthermore diquark and baryon effects
might play an important role at high densities and low temperatures [107]. These are
not discussed in this work.

We will set the strange-quark chemical potential to zero. It is possible in our frame-
work to use different chemical potentials for up, down and strange quarks. This could
be used to study non-zero charge and strangeness chemical potentials µQ and µS. This
would be useful to better model the situation in heavy-ion collisions, see e.g. [108].
However, the biggest effect can be expected to come from the light-quark chemical
potential, since strange quarks are suppressed by their larger mass. We will leave a
further study of the different chemical potentials for future work.

7.4 Fixing the parameters

So far, we fixed the vertex parameters d1, d2 and Λ as well as the light-quark mass
such that the results where in the right ballpark. In this chapter we will strive for more
quantitative results. To this end, we will keep d2 = 0.5 GeV2 and Λ = 1.4 GeV as in
the previous chapters. For the strange-quark mass we use ms/ml = 27, see e.g. [109].
We will use two sets for the two remaining parameters d1 and ml. In both cases we fix
the parameters in the full Nf = 2 + 1 calculation, and use them also for Nf = 2. This
effectively neglects the impact of the strange quark on the quark-gluon vertex.

For set A we choose d1 and ml such that in the vacuum fπ and Mπ are reproduced.
To do so, we first set ml = 0, but keep an ms > 0. We then use the Pagels-Stokar
formulae Eqs. (2.31,2.32) to obtain the chiral fχπ and rχπ . We demand fχπ ≈ 88 MeV,
which is the expected pion decay constant in the chiral limit, see [110]. With Eq. (2.29)
we then determine ml for Mπ = 137 MeV, and thus ms. From this procedure we obtain
d1 = 7.6 GeV2, ml = 1.2 MeV and ms = 32.4 MeV.

52



7.5 Results for Nf = 2

For set B we fit the resulting condensate ∆l,s, see Eq. (3.4), to the results of cor-
responding lattice studies [12]. The best such fit is obtained for d1 = 8.3 GeV2 and
ml = 0.9 MeV, thus ms = 24.3 MeV. We show the resulting condensate in Fig. 7.7.
From these parameters we get fχπ ≈ 96 MeV and Mπ ≈ 141 MeV. Obviously fπ is
slightly too large in this set, while Mπ is reasonable.

Note that we use some approximations in the determination for fπ and Mπ. First
of all, the Pagels-Stokar formula is known to underestimate fπ. We would thus expect
that in set A d1 is too large, while in set B fπ would turn out larger in a full calculation.
Secondly, the Gell–Mann-Oakes-Renner relation is only strictly valid for the trivial case
ml = 0. However, for the light quark masses, we do not expect a strong deviation from
a full calculation.

d1 ml ms fχπ Mπ Tc 〈ψ̄ψ〉1/3χ

set A 7.6 1.2 32.4 88 137 149 397
set B 8.3 0.9 24.3 96 141 161 424
set C 7.5 2 54 88 179 156 397

Table 7.1: Summary of our parameter sets. d1 is given in GeV2, the other values
in MeV. χ denotes chiral light quarks. The quark masses are given at a
renormalisation scale of 80 GeV. The values for Tc have been obtained for
Nf = 2 + 1.

We summarize the parameters and some results in table (7.1). It is noteworthy that
the differences between sets A and B are not too large, although the philosophies in their
determination are quite different. In simpler rainbow-ladder studies the parameters are
tuned to vacuum observables, similar to our set A. In those studies Tc usually turns
out rather small [111], while we find a reasonable agreement with the lattice here.

Note that in [44] we constructed our parameter set along the reasoning of set A.
However, we made a mistake, and forgot the factor 2 in Eq. (2.29) which results in a
too large pion mass. In Tab. (7.1) we called this set C and will only use it in results
that show some qualitative features.

7.5 Results for Nf = 2

7.5.1 Comparison to unquenched gluon propagator from lattice
QCD

Before we continue with physical quark masses and non-zero chemical potentials, we
can test our truncation of the gluon DSE by comparing to lattice data that have
recently been published in [112]. To match the lattice set-up, we choose a quark mass
of ml = 6 MeV at d1 = 7.6 GeV2, which leads to a pion mass of Mπ ≈ 316 MeV in
the Gell-Mann–Oakes–Renner relation. This is the smallest pion mass that has been
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7 Nf = 2 and Nf = 2 + 1 QCD with fully dressed sea quarks

used in [112]. Fig. 7.2 shows the resulting gluon dressing functions ZL,T (p2) for three
different temperatures. As a comparison we also show the quenched input into our
calculations. This serves to better identify the influence of the quark loop.
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Figure 7.2: Longitudinal and transversal parts of the unquenched gluon propagator,
compared to the lattice data for Mπ = 316 MeV from [112].

There is a qualitative agreement of our model with the lattice data in three import-
ant effects. First of all, the quark loop leads to a reduction of the gluon propagator
in the infrared and the mid-momentum regime. The strength of this reduction is very
similar in our calculation and in the lattice data. Secondly, the transversal part is only
moderately affected by the temperature, compared to the longitudinal part. This can
be understood from Eq. (7.6), where a Debye mass is only generated in the longit-
udinal part. Thirdly, the longitudinal part decreases with temperature. This is most
pronounced in the infrared. In contrast to this, the quenched propagator shows a grow-
ing ZL in this temperature regime. This can again be attributed to the Debye mass,
which affects the infrared longitudinal part.

However, there is also some disagreement between our results and the lattice data.
In the IR around p = 0.5 GeV our solution of ZT is larger than the lattice result. Also,
the maximum of ZL,T is in our case somewhat smaller. These effects might hint at a
change of scales that would be induced by the full back-coupling of the quark loop in
the Yang-Mills self-energies. In the UV, not shown in Fig. 7.2, the lattice is plagued
by artefacts from the missing O(4) invariance. This leads to a bad comparison with
our propagator, which is artificial.

Overall, this comparison assures us that we take at least the qualitative features
of the unquenched gluon at finite temperature into account. Also the amount of un-
quenching, i.e. the difference of the quenched to the unquenched propagator, agrees
on a quantitative level. This also shows that our quark-gluon vertex ansatz works well,
since this is an input in the quark-loop diagram. In Fig. 6.2, we compared the approx-
imation of adding the quark loop to the quenched propagator with a full solution of the
coupled quark-gluon-ghost system in the vacuum, and found a good agreement. With
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7.5 Results for Nf = 2

the comparison of Fig. 7.2, we now have proof that this approximation works well also
at finite temperature. On the other hand, in this comparison we used a pion mass
of 316 MeV and two flavours. With lighter quark masses, most importantly at their
physical values and with Nf = 2+1, the quark loop will become stronger. This will also
lead to stronger back-coupling effects in the Yang-Mills sector. Thus we can expect our
truncation to be worse in this situation than in the comparison in Fig. 7.2. It would
certainly be highly interesting to solve the full set of gluon, ghost and quark DSEs at
finite temperature. With this full solution one could further test our truncation scheme
also at physical quark masses.

Knowing that our truncation leads to reasonable results for the gluon propagator,
we are encouraged to go on to physical quark masses and finite chemical potential.

7.5.2 The phase transition at µ = 0
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Figure 7.3: The quark loop dressing functions ΠL, ΠT and Π in the vacuum, without
renormalisation. We also show the pure thermal mass term m2

th./p
2. Here

we used parameter set A at T = 100 MeV and µ = 0.

Let us now discuss physical quark masses in the two-flavour case. The general
features that we will find here are also valid for 2 + 1 flavours.

To illustrate again how the medium affects the quark loop, we show the quark-loop
dressing functions in Fig. 7.3. This serves as a proof for Eq. (7.5), where we split the
quark loop into an IR-vanishing and an IR-finite part from the thermal masses. While
ΠT is very similar to the vacuum quark-loop, ΠL/p

2 clearly shows an m2
th./p

2 behaviour
in the IR. This is evidently the dominant thermal effect in the quark loop, while the
difference of the IR-vanishing part to the vacuum quark loop is comparably small. At
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Figure 7.4: We show the quark condensate and the dressed Polyakov loop as the order
parameters together with the squared thermal gluon mass as a function of
T . We use Nf = 2 and µ = 0 with parameter set A.

momenta p > πT , thermal effects are suppressed and ΠL,T approach the vacuum quark
loop.

In Fig. 7.4 we show the order parameters for chiral symmetry breaking and confine-
ment together with the Debye mass the gluon acquires through the quark loop. We
used parameter set A here. With set B the critical temperature is larger, while all
qualitative features are the same. As expected in unquenched QCD with finite quark
mass, both phase transitions are cross-overs. The quark condensate drops from a large
to a small value at around Tc = 198 MeV. In the same temperature regime, the dressed
Polyakov loop rises from a small to a large value. We find that in the temperature
range T ∈ [80, 125] MeV, the dressed Polyakov loop takes a slightly negative value.
This happens because the condensate at ϕ = π is larger than at ϕ = 0, 2π. The effect
is rather small, and likely to be an artefact of our quark-gluon vertex, which has no
dependence on ϕ.

So far, these results are qualitatively the same as in chapter 6, where we discussed
the HTL-like approximation of the quark loop. That is, the quark loop leads to a
smaller transition temperature than in quenched QCD, and turns the first order phase
transition into a crossover. We also find similar critical temperatures for chiral res-
toration and deconfinement. The new feature in the improved truncation is visible in
the behaviour of the Debye mass. For small temperatures, the quark loop and there-
fore also the Debye mass, is suppressed by the large dynamically generated quark mass.
When the quark mass is reduced around the phase transition, the Debye mass increases
and approaches the m2

th. ∝ T 2 behaviour above Tc. In Fig. 6.3 we showed the order
parameters at µ = 0 in the HTL-like approximation. The most important difference
to Fig. 7.4 is visible below Tc. There, the order parameters in HTL-like approximation
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7.5 Results for Nf = 2

show a stronger dependence on the temperature. Also, the dual condensate is larger
compared to the results from the fully dressed quark loop. We can attribute these
observations to the over-estimation of the Debye mass in the hadronic phase in the
HTL-like approximation. This explains the behaviour of the condensate, and can also
be interpreted as an over-estimation of centre-symmetry breaking, and thus the larger
dressed Polyakov loop.

The coupling of quark and gluon DSE has an accelerating effect on the phase trans-
ition. With the increasing thermal gluon mass, the unquenched gluon propagator is
reduced. Since the quark self-energy depends linearly on the gluon, it is also reduced
which leads to a smaller generated quark mass. A smaller quark mass in turn leads to
an increased thermal gluon mass. This effect is certainly not present in the HTL-like
approximation used above, and leads to a steeper crossover. We will see in the next
section that this also strongly affects the phase diagram.

7.5.3 The phase diagram
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Figure 7.5: The phase diagram for 2 flavours in the µ−T -plane. Here, like everywhere
else in this work, µ is the quark chemical potential. The black/red lines
correspond to the full solution of the dressed quark loop, while we repeat the
results from the HTL-like approximation in lighter colours as a comparison.
The results for the upper lines (higher T ) are from parameter set B, the
lower lines from parameter set A.

Let us now turn to finite chemical potential. We will again determine the critical
temperatures from the derivative of the order parameters with respect to the quark
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7 Nf = 2 and Nf = 2 + 1 QCD with fully dressed sea quarks

mass, see Eq. (6.6). In Fig. 7.5 we show the resulting phase diagram for chiral restora-
tion and deconfinement and compare to the HTL-like approximation introduced in the
last chapter. We find that at µ = 0, Tc ≈ 198 MeV in parameter set A and Tc ≈ 217
MeV in set B. This difference of ∆Tc ≈ 20 MeV is approximately the same for all
chemical potentials. Again, we find that the crossover turns into a first order phase
transition at a second-order critical end-point (CEP). For parameter set A we find
a CEP at (µCEP , TCEP ) ≈ (150 MeV, 158 MeV), and therefore µCEP/TCEP ≈ 0.95.
With parameter set B, the CEP is at slightly smaller chemical potential and larger
temperature, with (µCEP , TCEP ) ≈ (137 MeV, 181 MeV), and µCEP/TCEP ≈ 0.76. It
is generally expected that the position of the CEP depends on the quark mass m, and
is at smaller µ for smaller quark mass. Our results are consistent with this expectation,
the smaller µCEP in set B can be understood from the smaller quark mass compared
to set A. In set C, see [44] the CEP is at larger µ compared to set A, due to the
even larger (and unphysical) quark masses. Since set A was designed to reproduce the
physical pion mass and decay constant, we expect that our prediction of the CEP is
more realistic in this parameter set.

For all parameter sets, the ratio µCEP/TCEP found here is considerably smaller than
in the HTL-like truncation. We can attribute this to the accelerated phase transition
that we discussed above. Since we find a steeper crossover with growing chemical
potential, we hit the CEP sooner when we start from a steeper crossover at µ = 0.
This shows the importance of non-perturbative effects around the phase transition.
However, we will see below that the addition of strange quarks brings the CEP to
larger µ again.

For the deconfinement transition we now determine Td from Σ+1 and Σ−1. See
App. B.3 for some details on the numerical difficulties in the evaluation of the dual
condensates. We again find near-by pseudo-critical temperatures for chiral restoration
and deconfinement. Just like in the HTL-like approximation, the difference between Td
and Tχ is slightly increasing for small chemical potentials, and vanishes already before
the CEP is encountered. This behaviour clearly is a general feature of the dual condens-
ate in the way that we implement it. Compared to the HTL-like approximation, the
difference between Td and Tχ is now reduced to only a few MeV. This can be explained
by the sensitivity of the gluon to the chiral transition when the full quark loop is taken
into account, and means that the deconfinement transition is affected by chiral restor-
ation. Below and close to the chiral phase transition, the sea quarks are suppressed
by the generated quark mass. This leads to a smaller amount of centre-symmetry
breaking, an effect that vanishes when chiral symmetry is restored. The smaller dif-
ference between Tχ and Td is also connected to the accelerated phase transition, which
makes the crossover region smaller, and thus leads to a more constraint definition of
the pseudo-critical temperatures. We also find that the deconfinement temperatures
determined from Σ+1 and Σ−1 are the same within the numerical precision.

In [25] and similar work, fermionic fluctuations were included by taking the Debye
screening mass for bare quarks into account. The CEP was found at large chemical
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potential and small temperature. This way of introducing fermionic fluctuations is quite
similar to our HTL-like truncation, and indeed we found a CEP at a similar location in
the last chapter. We thus agree on the effect of fermionic fluctuations, however, when
we take the full dressing of the quark loop into account, this effect diminishes. We find
the Debye mass to be strongly suppressed in the hadronic phase, and to change rapidly
at the chiral transition. This leads to a CEP at much smaller chemical potential, which
suggests that in [25] the influence of the fermionic fluctuations was overestimated.

7.6 Results for Nf = 2 + 1

We now include strange quarks, and study their effects on the order parameters as well
as the phase diagram. This leads to the most enhanced truncation that we discuss in
this chapter, which will also be the basis for the following chapter about the Polyakov-
loop potential.

7.6.1 Order parameters at zero and finite chemical potential

Figure 7.6: The Debye screening mass for the temperatures and chemical potentials
that will be relevant for the phase diagram. We normalise by the asymptotic
(HTL) value. For this plot, we used parameter set A.

Let us first have a look at the impact of the quark fluctuations on the gluon at all
chemical potentials. This is most pronounced in the Debye mass, which we already
discussed in the last section for µ = 0 and Nf = 2. In Fig. (7.6) we show m2

th./m
2
th.,HTL,

where m2
th.,HTL =

g2Nf
12

(T 2 + 3µ2/π2), for a range of temperatures and chemical po-
tentials. In the hadronic phase, the Debye mass is suppressed by the generated quark
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Figure 7.7: The finite condensate ∆l,s, compared to Nf = 2 + 1 lattice data [12]. We
normalise the condensate to its zero-temperature value, and show results
for parameter sets A and B.

mass. In the quark-gluon plasma, it approaches the asymptotic HTL-limit from above.
Around the phase transition the Debye mass rises, showing a jump for large chemical
potentials where we find a first order phase transition. It is interesting that at small
temperatures, m2

th. decreases with the chemical potential and even becomes slightly
negative for large µ and small T . This is compensated by the thermal mass from
the Yang-Mills sector, which is always larger than the negative contribution from the
quark sector. In [37] it has been shown that this behaviour is connected to violations
of the Silver-Blaze property. However, this seems to be a relatively small violation.
Also, we will concentrate on higher temperatures, where the Silver-Blaze property is
not important, and where m2

th. > 0. The behaviour of the Debye mass shows that our
gluon is sensitive to the chiral transition and to the chemical potential in a non-trivial
way.

We now turn to the quark sector. As a further test of our truncation, we compare
the condensate at zero chemical potential to corresponding lattice results [12]. In order
to do so, we need to use a version of the condensate that is finite. This is given by ∆l,s,
defined in Eq. (3.4). Here, the quadratic divergence between light and strange quark
condensate cancels. The result is shown in Fig. 7.7.

We find a clear difference between our parameter sets A and B. For set B, the
agreement with the lattice is very good at all temperatures. This is of course due
to the fit of the light quark mass and the vertex strength to the lattice condensate.
However, with a two-parameter fit it is not trivial that we can obtain a result that agrees
pointwise with the lattice. Had we done the same in our HTL-like approximation, we
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would not have achieved this level of agreement. This can easily be understood in
terms of the Debye screening mass. With the fully dressed quark-loop, we have a
suppression of this mass below Tc and an accelerating effect in vicinity of Tc, see the
discussion above. The HTL-like approximation misses those features, which leads to
a condensate that has a weaker crossover behaviour, see Fig. 6.3. Especially below Tc
the condensate lies below the lattice result due to an overestimated thermal effect from
the gluon.

For set A, we find a very similar shape of the condensate as a function of temperature.
However, Tc is too small by a few MeV when compared to the lattice. This is due to the
weaker vertex strength that is necessary to obtain a physical value for the pion decay
constant in the vacuum. We also find that the condensate in the chirally symmetric
phase is too large compared to the lattice value. In set B, this is compensated by a
smaller quark mass. The overestimation of chiral symmetry breaking in the restored
phase can be understood in terms of our vertex ansatz function Γ. There, we do not
take any thermal effects into account. Thermal effects are only present in the Ball-
Chiu part of the vertex, which is not very strong. In contrast to that, it has been
argued in [77] that the vertex strength d1 should be reduced above Tc. This was found
by comparing spectral functions to lattice results in quenched QCD. The constant d1

therefore leads to an overestimation of dynamical chiral symmetry breaking in the
quark-gluon plasma. In chapter 9, we will improve the vertex truncation by taking
meson correlations into account.

Besides the insufficiencies of our truncation, we find that the comparison of our
condensate at zero density to lattice data works very well. Although we can not
find one parameter set where the vacuum values for the pion observables as well as the
comparison to the lattice condensate work at the same time, we find that the difference
between sets A and B are not too large. This encourages us to trust our truncation at
least at small densities.

We now turn on the chemical potential and solve the coupled set of DSEs. In
Fig. 7.8, we show the resulting light and strange quark condensates. We do not remove
the quadratic divergence here, and subtract an arbitrary number from the strange
quark condensate for the sake of clarity. For the light quark condensate we find a
crossover that becomes steeper with growing chemical potential. Eventually it turns
into a first order phase transition. The strange quark condensate reacts in a similar
way on the transition in the light quark condensate. It has a crossover-like behaviour
at small densities and exhibits a jump in the first order regime. However, due to the
larger strange quark mass, the condensate continues to drop for larger temperatures.
The inflection point of the strange quark condensate is at T sc ≈ 245 MeV, and does
not depend strongly on the light-quark chemical potential. At large chemical potential
we find that the strange quark condensate first rises slightly before it drops. This is
similar to the behaviour of the condensate in simpler truncations, which might hint
towards this being a truncation artefact. The reaction of the strange quark condensate
on the light quark phase transition is mediated by the gluon. The reduced light quark
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7 Nf = 2 and Nf = 2 + 1 QCD with fully dressed sea quarks

Figure 7.8: The upper surface shows the strange quark condensate and the lower surface
that of the light quarks. Here we use parameter set A.

Figure 7.9: The dual condensates Σ+1 (left) and Σ−1 (right) as functions of T and µ.
The units for Σ±1 are arbitrary. Here we use parameter set C.

mass leads to a larger thermal gluon mass, see Fig. 7.6, which leads to a reduced
strange quark mass. This shows how light and strange quarks are coupled in our
truncation. The amount of flavour-mixing through this effect is, however, rather small.
Additionally, chiral restoration effects in the quark-gluon vertex can be expected to
have an important impact on the behaviour of the strange quark at and above the
phase transition.

In Fig. 7.9, we show the dual condensates Σ+1 and Σ−1 at finite chemical potential.
As already mentioned in Chapter 6, the condensate at finite chemical potential and
boundary conditions ϕ 6∈ {0, π, 2π} develops an imaginary part. This is the reason
why Σ+1 and Σ−1 differ for µ > 0. We observe that Σ−1 > Σ+1 for µ > 0. However,
the transition temperature is similar for both. We also note that the phase transition
is more pronounced in Σ−1, which motivates to use it to define the deconfinement
transition temperature. This we will do in the phase diagram below. In contrast to
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Figure 7.10: The phase diagram for Nf = 2+1. The upper lines (larger T ) are obtained
from parameter set B, the lower lines from parameter set A. In the lighter
colours we repeat the results from Nf = 2. In all cases, the deconfinement
transition is determined from Σ−1.

the quark condensate, we do not observe a clear jump in Σ±1 at chemical potentials
beyond the CEP. The nature of the deconfinement phase transition in this area remains
unclear, and could be consistent with a crossover or second order transition. This is
mainly due to the elaborate numerics in this region, which makes a finer resolution
around Tc cumbersome.

7.6.2 Phase diagram for Nf = 2 + 1

From the order parameters that we discussed above, we obtain the phase diagram
shown in Fig. 7.10.

We also compare to the Nf = 2 results from Fig. 7.5, in order to understand the
influence of the strange quark. The main effect is evidently a reduction of the crit-
ical temperatures by about 50 MeV, which can be explained by the stronger sup-
pression of the gluon due to the additional quark. The critical end-point moves
to slightly larger chemical potentials. This is the known effect of fermionic fluc-
tuations on the CEP, which is rather small here due to the large suppression by
the strange quark mass. For parameter set A we find the CEP at (µCEP , TCEP ) ≈
(174 MeV, 101 MeV), such that µCEP/TCEP ≈ 1.76. For parameter set B we find
(µCEP , TCEP ) ≈ (166 MeV, 117 MeV), µCEP/TCEP ≈ 1.42. Similar to the Nf = 2
case, the CEP in set B is at smaller µ due to the smaller quark mass.

The deconfinement transition shows the same qualitative behaviour as in the Nf = 2
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7 Nf = 2 and Nf = 2 + 1 QCD with fully dressed sea quarks

case. The strange quark leads to stronger centre symmetry breaking, and thus a weaker
crossover. As a consequence, the difference between the critical temperatures for the
chiral and deconfinement transitions at small density is a few MeV larger than in the
Nf = 2 case. For chemical potentials between 25− 75 MeV, we find a larger splitting
between the chiral and deconfinement pseudo-critical temperatures compared to µ = 0.
This effect was already present for two flavours as well as for the HTL approximation,
but is more pronounced when strange quarks are taken into account.

In Fig. 7.10, we determine the deconfinement temperature only from Σ−1. This is
due to a large numerical error in the determination of the derivative of Σ+1, see the
discussion around Fig. 7.9 and appendix B.3 for details. The numerical uncertainties
affects only the mid-density area, i.e. µ ≈ 25 − 100 MeV, where also the effect of a
stronger splitting between deconfinement and chiral restoration is observed. At larger
chemical potentials we find coinciding phase transitions from the quark condensate,
the dressed Polyakov loop and its conjugate.

7.7 Curvature of the critical line

Lattice QCD at large densities is hindered by the fermion sign problem. Nonetheless,
it is possible to obtain the curvature of the phase transition line at zero chemical
potential, which serves as an important comparison.

We can use a Taylor expansion of Tc(µ) around µ = 0. The odd terms vanish due to
the µ↔ −µ symmetry, and we find

Tc(µ) = Tc(0)

[
1− κ

(
µ

Tc(0)

)2

+O
(

µ4

T 4
c (0)

)]
, (7.16)

where κ is the curvature. Different lattice collaborations agree on a value of κ ≈ 0.059
for Nf = 2+1, see [103] and [113]. For Nf = 2, κ seems to be smaller with κ ≈ 0.051(3)
reported in [114]. The increase of the curvature, when more flavours are taken into
account, is in line with large-Nc arguments [115].

In order to extract κ, we fit Eq. (7.16) to our result for the chiral Tc(µ) on the
interval µ ∈ [0, 25] MeV. For the HTL-like approximation we use µ ∈ [0, 50] MeV.
For these intervals the µ4-term is negligible. We summarise our findings in table 7.2,
where we also repeat the results for Tc and the position of the CEP. We find that in
all our calculations, κ is much larger than in the corresponding lattice results. For
2 + 1 flavours we find κ ≈ 0.28 with realistic quark masses, which is almost a factor 5
larger than the value extracted from lattice studies. In this regard, we agree with the
quark-meson model and its Polyakov-loop extended version [19, 116]. In [116] it has
been argued that a part of the discrepancy might be due to volume effects in the lattice
calculations. On the other side, the inclusion of effects from the UA(1) anomaly might
lead to a smaller κ in model studies, see [117]. In the present work such effects are not
included. A possible way of including anomaly effects might be along the reasoning
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Nf Tc(µ = 0) CEP κ
HTL 2 183 (280,90) 0.23
Set A 2 198 (150,158) 0.41

2+1 149 (174,101) 0.28
Set B 2 217 (137,181) 0.50

2+1 161 (166,117) 0.31
Set C 2 202 (171,154) 0.41

2+1 156 (190,100) 0.30

Table 7.2: Summary for the critical temperature, the location of the CEP and the
curvature κ. Temperature and chemical potential are given in MeV.

of [118]. Note also that there is some ambiguity in the determination of κ, since the
chiral transition is a crossover around µ = 0. For the definition of Tc, we used the
chiral susceptibility here. If we use the maximum of the temperature-derivative of the
chiral condensate, the pseudo-critical temperature in the crossover region is smaller
(Tc(0) ≈ 142.9 MeV) while it is unchanged at the CEP. The curvature must therefore
be smaller, and indeed we find κ ≈ 0.23 for Nf = 2 + 1 with parameter set A, cf.
κ ≈ 0.28 from the susceptibility. In [103], Tc has been defined from the inflection point
of the condensate, therefore we find that a part of the disagreement comes from the
different definitions of Tc. However, κ ≈ 0.23 is still almost a factor of 4 too large.

It is interesting that the improved truncation leads to a larger value for κ compared
to the HTL-like approximation. We also fail to reproduce the Nf -dependence of κ.
In our results κ decreases when strange quarks are included, in contrast to what we
discussed above. This might be due to the influence of Goldstone bosons on the phase
transition line. We will study this possibility in chapter 9.

The different parameter sets lead to comparable results for κ, especially for Nf =
2 + 1. We also find that κ grows monotonically with Tc(0).

7.8 Dressing and Schwinger functions

7.8.1 T and µ dependence of the IR dressing functions

We now take a step back and investigate the dressing functions themselves. We will
concentrate on the infrared, since there the medium effects are most pronounced.

To this end we have a look at the real and imaginary parts of the dressing functions,
evaluated at ~p2 = 0 and ωp = πT . As an abbreviation we use F (0) = F (~p2 = 0, πT ) for
a dressing function F ∈ {A,B,C}. The real part of B, i.e. ReB(0) shows the typical
behaviour of an order parameter of chiral symmetry, just like the chiral condensate
that we discussed in Fig. 7.8. In the left part of Fig. 7.11 we show ImB(0). At µ = 0
quarks and antiquarks are symmetrical, thus ImB(0) = 0. With growing chemical
potential, the difference between quarks and antiquarks grows, which is reflected in a
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Figure 7.11: The left figure shows ImB(0), the right figure ReA(0)/ReC(0), evaluated
at ~p2 = 0, ωp = πT . Here we used parameter set C.

growing ImB(0). Interestingly, its absolute value is maximal close to the chiral phase
transition. In the right part of Fig. 7.11 we show ReA(0)/ReC(0). In [77], it was
argued that, if A and C were constant,

√
A/C could be interpreted as the velocity v of

a quasi-particle. Thus, in the deconfined region one expects A/C < 1. Below Tc, this
relation does not hold, and a quasi-particle picture for quarks can not be applied. This
scenario seems to hold for all µ. The reversing order of A(0) and C(0) might therefore
be connected to the deconfinement transition.

7.8.2 Schwinger function

In section 3.2.4, we discussed a different notion of confinement, the violation of Osterwalder-
Schrader axioms for physical particles. To study this at finite temperature we fol-
low [78]. The quark spectral function ρ(~p, ω) is defined implicitly by

S(~p, ωn) =

∞∫
−∞

dω

2π

ρ(~p, ω)

iωn − ω
, (7.17)

where we can use the decomposition

ρ(~p, ω) = −i
/~p

|~p|ρv(~p, ω) + γ4ρ4(~p, ω) + ρs(~p, ω). (7.18)

We will restrict ourselves to the ~p = 0 case, where we define the projectors

P± =
1∓ γ4

2
, (7.19)

which project the quark onto positive and negative energy components.1 This can be
used to distinguish between quarks and antiquarks at finite chemical potential. We

1In [77,78] the P± defined in Eq. (7.19) have been labelled L±.
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can then decompose the quark propagator at vanishing spatial momentum as

S(~0, ωn) = (S+(ωn)P+ + S−(ωn)P−) γ4, (7.20)

where

S±(ωn) = − iω̃nC(~0, ωn)±B(~0, ωn)

ω̃2
nC

2(~0, ωn) +B2(~0, ωn)
. (7.21)

We can define the spectral functions corresponding to S± as

ρ±(ω) = ρ4(~0, ω)± ρs(~0, ω). (7.22)

We will now study whether ρ+ and ρ− are positive for all ω. Ideally, one could extract
ρ± directly from the quark propagator. This can be done by using the maximum-
entropy method, for example. However, this is beyond the scope of this work, and
we will use a different procedure instead. In [78] a connection between the Schwinger
functions that correspond to ρ± and the positivity of ρ± was found. To this end, we
define the Schwinger functions

S±(τ) = −T
∑
n

e−iωnτS±(ωn). (7.23)

In [76], the Schwinger function2 in the vacuum was found to show an oscillating beha-
viour and to become negative for some values of τ . The first zero crossing was found
at τ ≈ 5.8 fm. However, at finite temperature the Euclidean time direction becomes
finite. A Euclidean time of 5.8 fm can only be accessed at T ≤ 34 MeV. (Note that
this zero crossing was obtained in a different truncation scheme, and might be different
in our case.) We can thus expect to find zero crossings of the Schwinger functions only
for rather small temperatures. We will therefore rely on an alternative, which only
provides a necessary but no sufficient proof for positivity violations. In [78], it was
found that

ρ±(ω) ≥ 0 ⇒ ∂2 lnS±(τ)

∂τ 2
≥ 0, (7.24)

i.e. for a positive definite spectral function the second logarithmic derivative of the
Schwinger function is positive definite. Conversely, for a Schwinger function with a
negative second logarithmic derivative the spectral functions needs to violate posit-
ivity. We can use this as a necessary condition for positivity violation. It is not a
sufficient condition, since if the Schwinger function does not fulfil Eq. (7.24), the spec-
tral function might violate positivity nonetheless. That is, we can find a lower bound
for the temperature at which the quark spectral function becomes positive definite.

We can turn this into an “order parameter” for positivity violation. We obtain
S± from Eq. (7.23) and evaluate the second logarithmic derivative numerically. The
amount of Euclidean time where positivity is violated can than be defined as

L± = µ
({
τT ∈ [0, 1] : ∂2 lnS±(τ)/∂τ 2 < 0

})
, (7.25)

2In [76] the Schwinger function was defined from the scalar part only, i.e. Eq. (7.21) without the
C-term in the numerator.
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7 Nf = 2 and Nf = 2 + 1 QCD with fully dressed sea quarks

where µ(A) is the Borel measure of the set A. If L± > 0 we find positivity violations,
while for L± = 0 the quark spectral function ρ± might be positive definite.

7.8.3 Results for µ = 0 with Nf = 2 + 1

Let us first investigate the case of vanishing density. For the quenched case, this was
discussed in [77], and we can apply these ideas to the unquenched case. We will use
our truncation scheme with 2 + 1 flavours, and we will study the Schwinger function
of the light quark.
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Figure 7.12: Parameter set A with µ = 0 and Nf = 2 + 1. Left figure: the Schwinger
function and the absolute value of its second logarithmic derivative for
T = 100 and 200 MeV. Right figure: “order parameter” L+ as a function
of T , together with the finite condensate ∆l,s as a comparison.

In Fig. 7.12 we show the Schwinger function S+, its second logarithmic derivative
and the “order parameter” L+ for µ = 0. Here, S+(τ) = S−(1/T − τ) since quarks
and anti-quarks are completely symmetric at vanishing density. In the left figure we
compare the situation below and above Tc. At T = 100 MeV the Schwinger function is
strictly positive, but its second logarithmic derivative is negative over a large range of
τ . The negative curvature of S+ is also visible to the plain eye on the logarithmic plot.
This changes for T = 200 MeV, where ∂2 lnS±(τ)/∂τ 2 > 0 for all τ . Thus, we can not
find evidence for a violation of positivity, although we would like to stress again that
our criterion can not rule it out. The Schwinger function of the strange quark shows
positivity violations at temperatures up to T ≈ 220 MeV. This is connected to the
higher chiral restoration temperature for the strange quark.

From L+, which we show on the right hand side of Fig. 7.12, we can determine the
amount of positivity violations as a function of temperature. Clearly, L+ is reduced
with increasing temperature and vanishes at T = 142.5 ± 2.5 MeV. This is very close
to the chiral Tc ≈ 149 MeV (142.9 MeV), determined from the susceptibility (inflection
point). This suggests that for µ = 0 the quark changes nature at Tc, and turns from
an unphysical particle to one that might be physical in the sense of the Osterwalder-
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Schrader axioms. These results are similar to the quenched studies in [77], and the
rainbow-ladder studies in [119] We also agree with results from the maximum-entropy
method that have been presented in [80]. There, it was found that the spectral function
is positive definite above Tc.

7.8.4 Results at finite density

Let us now turn to finite chemical potential. There, quarks and antiquarks are no
longer equal. This results in different Schwinger functions S+(τ) and S−(τ), which also
implies that in general L+ 6= L−.
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Figure 7.13: Parameter set A with µ = 200 MeV and Nf = 2+1. The left figure shows
the Schwinger functions S+ and S− together with their second logarithmic
derivative at T = 100 MeV. The right figure shows the condensate and
the “order parameters” L± as functions of the temperature.

In the right part of Fig. 7.13, we show L+ and L− at µ = 200 MeV and Nf = 2 + 1.
This is already in the first order region, with Tc ≈ 93 MeV, see Fig. 7.10. We find that
the possible restoration of reflection positivity coincides with the chiral restoration for
S+ within the numerical precision. However, L− becomes zero about 15 MeV above
the chiral transition. This is a new feature of the Schwinger functions at finite chemical
potential and with strange quarks taken into account. We show S± in the region where
chiral symmetry is already restored but positivity still violated by S− in the left part
of Fig. 7.13. It is clear that the area where d2 ln(S−(τ))/dτ 2 is negative is too large to
be explained by numerical artefacts.

In Fig. 7.14 we show the phase diagrams for 2 and 2 + 1 flavours together with
the “deconfinement” temperatures extracted from the point where L± = 0. For two
flavours the effect described above, i.e. the persistence of positivity violations above
Tc, is absent. Although L+ and L− become zero at slightly different temperatures, this
always happens near the chiral restoration temperature, and coincides in the first-order
region. For Nf = 2 + 1 this changes. At chemical potentials above 100 MeV clearly an
area develops where L− > 0, but chiral symmetry is already restored.
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Figure 7.14: The phase diagrams for Nf = 2 (left figure) and Nf = 2 + 1 (right figure).
The temperatures where L+ and L− become zero are denoted by the blue
and green lines. Again, parameter set A was used.

The origin of this behaviour has to be studied in more detail in future work by obtain-
ing the spectral function directly. From the dual condensate and also the Polyakov-loop
potential (see next chapter) we always find near-by transitions for deconfinement and
chiral restoration, the behaviour of S− with Nf = 2 + 1 is the only hint so far for a
splitting of these transitions.

7.9 Summary

In this chapter, we proposed a novel truncation scheme for the coupled system of
unquenched quark and gluon propagators. This is the main progress achieved in this
work. We solved the problem of the quadratic divergence in the quark loop at finite
temperature, by using a generalisation of the Brown-Pennington projector for finite
temperature. With this, we were able to successfully compare the resulting unquenched
gluon propagator to recent lattice results of the same object. The agreement is not
only qualitatively, but also quantitatively on a good level. From the quark loop we
extracted the Debye screening mass, which shows a strong reaction on the chiral phase
transition. This can not be captured by the HTL-like approximation that we used
in the last chapter. Dressing the quark loop leads to a suppression of the fermionic
fluctuations, and thus a CEP at smaller µ than with bare quarks in the loop. This is
an important result from our study and suggests that studies in effective models have
to treat fermionic fluctuations with great care.

With the gluon being sensitive to the quark sector, we were able to couple light and
strange quarks and obtained the first Nf = 2+1 phase diagram from Dyson-Schwinger
equations. At zero density we found that our model can reproduce the condensate
obtained on the lattice to a very good accuracy. The effect of the strange quark was
found to be mainly a reduction of Tc. At finite density, the critical end-point was found
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at a chemical potential about 20− 30 MeV larger than without strange quarks.
We determined the deconfinement transition temperature from the dressed Polyakov

loop, and found it to be near-by the chiral restoration temperature for Nf = 2 and
Nf = 2 + 1. This is in qualitative agreement with the HTL-like approximation. The
difference of the chiral and deconfinement transition temperatures was found to be
much smaller than in the HTL-like case, which we can attribute to the sensitivity
of the gluon to the chiral dynamics in the fully coupled truncation. However, when
strange quarks are taken into account, this difference becomes larger due to the stronger
explicit breaking of centre symmetry. At medium chemical potentials we found a larger
difference of the transition temperatures than at zero chemical potential. The reason
for this behaviour is not well understood yet, and might be an artefact.

As a further test of our model, we compared the curvature of the phase boundary
at µ = 0 with lattice results. We found that, similarly to studies in effective models,
the curvature is much larger than that obtained on the lattice. We also found a wrong
ordering with the number of flavours. While on the lattice 2 + 1 flavours lead to a
larger curvature, in our truncation the curvature was found to decrease. This certainly
requires an improvement of our truncation scheme.

We finally gave an outlook on the quark spectral functions and the violation of
positivity therein. We found the quark to have a positivity violating spectral function
at least up to Tc. At finite density the (possible) restoration of positivity was found
to always be near the chiral transition temperatures in the two-flavour case. For 2 + 1
flavours, however, a small gap was found at large densities where positivity seems to
be violated although chiral symmetry is already approximately restored.

Given the success of our truncation to obtain an unquenched gluon propagator in
agreement with lattice results, we have a good starting point for further studies of
thermal QCD. We will exploit this in the next chapter to obtain the Polyakov-loop
potential from the propagators.
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8 Polyakov-loop potential

In the last chapters, we used the dual condensate as an order parameter for confinement.
This object is sensitive to centre symmetry and reduces to the ordinary Polyakov loop
for large quark masses. The main reason to use this observable is that it is unknown
how to calculate the ordinary Polyakov loop from correlation functions. Quite recently,
a new method to obtain an observable that is closely related to the Polyakov loop has
been developed in [72–74]. The idea is to use the background-field method to introduce
a constant A4 gauge field. From this, the Polyakov-loop potential can be deduced, and
by finding its minimum we get an upper bound for the Polyakov loop. This procedure
has been used for Yang-Mills theory in [72,73,120] and for QCD at imaginary chemical
potential in [32]. In [72], an integrated version of the flow equation with neglected
RG improvement terms has been used. Using this approximation, it was possible to
connect the infrared behaviour of the Yang-Mills Green’s functions with a vanishing
Polyakov loop at small temperatures. In [121], the same ansatz has been used in a
study to describe the quenched phase transition as well as an input to a chiral model.
Going beyond this approximation, in [74], besides a full FRG and a 2PI calculation,
the DSE for the background-field has been used to derive the Polyakov-loop potential.
We will follow this work in this chapter.

With the Polyakov-loop potential, we can access a second order parameter for centre
symmetry, which can be compared to the results from the dual condensate. This will
help to clarify how strong the behaviour of the deconfinement line at finite µ, that
we found in the last chapter, is affected by artefacts of the dual condensate. This is
especially interesting for the larger splitting of chiral and deconfinement temperatures
around µ = 50 − 75 MeV that we found, and which was most pronounced in our
Nf = 2 + 1 calculation.

Furthermore, the Polyakov-loop potential serves as an input in Polyakov-loop ex-
tended effective field theories, like the PQM and PNJL models. In these models, the
philosophy is to replace the coupling of quarks to gluon fields by a background field
that can be associated with a Polyakov loop variable. To this end, the Lagrangian
takes the form

LP−model = q̄
(
−γµ(∂µ + igĀµ)

)
q + U(Φ[Ā], Φ̄[Ā]) + . . . , (8.1)

where Ā is the background field from which the Polyakov-loop and its conjugate, Φ and
Φ̄, can be obtained. The Polyakov-loop potential is U , a model input that is usually
fitted to thermodynamic observables from quenched lattice QCD, see e.g. [22]. In this
procedure one usually neglects fermionic contributions in the Yang-Mills sector. When
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the Polyakov-loop potential is determined from the QCD Green’s functions, this is equi-
valent to taking the quenched ghost and gluon propagators as input. In [25], fermionic
fluctuations were included via scale changes determined from the perturbative running
of the QCD coupling. It was found that these contributions are important especially
at large µ, where a closer connection between chiral restoration and the deconfinement
transition was found. With our results of the non-perturbatively unquenched gluon
propagator, we can access the Polyakov-loop potential at zero and finite chemical po-
tential. This serves as a cross-check for model assumptions about this potential. The
results of this chapter have been published in [122].

8.1 Background-field method

We will firstly review the basic ideas presented in [72, 74]. We begin with adding a
constant field Āµ to the fluctuating field aµ

Aµ = aµ + Āµ, (8.2)

such that 〈Aµ〉 = Āµ. With the covariant derivative Dµ(A) = ∂µ + igAµ, we can define
the Landau-de Witt gauge

D̄µaµ = 0, (8.3)

which is an extension of Landau gauge. As an abbreviation we write D̄µ = Dµ(Ā).
This leads to a modification of the gauge fixed Lagrangian, Eq. (2.5), according to

1

2ξ
Trc∂µAµ∂νAν + ic̄∂µDµc →

1

2ξ
TrcD̄µaµD̄νaν + ic̄D̄µDµc. (8.4)

The bare propagators and vertices change accordingly. See also [123] for details on the
background-field formalism.

With the background field we can find an order parameter for confinement. We can
define the Polyakov loop as

L[A4] =
1

Nc

TrPei
∫
dτgA4(~x,τ), (8.5)

where A4 is in the fundamental representation, see also section 3.2.1. If we evaluate
the Polyakov loop for the background-field Ā4 instead of the full fluctuating field we
find, due to the Jensen inequality [72],

L[〈A4〉] ≥ 〈L[A4]〉. (8.6)

Here 〈L[A4]〉 is the expectation value of the Polyakov loop which is usually taken
as the order parameter for confinement. Eq. (8.6) implies that if L[〈A4〉] = 0, also
〈L[A4]〉 = 0. It can also be shown, that in the centre-symmetric phase, L[〈A4〉] = 0
[73] and we therefore can use L[〈A4〉] as an order parameter for confinement as well.
However, L[〈A4〉] serves only as an upper bound for 〈L[A4]〉, and we can expect an
underestimation of the (pseudo-)critical temperatures.

74



8.2 DSE for the background field

8.2 DSE for the background field

In [74], the DSE for the background field has been derived. To this end, we take the
master DSE, Eq. (2.17), and apply it to Ā4. This yields

δΓ[Φ]

δĀ4

=
δS[Φ]

δĀ4

+
1

2
S

(3)

Ā4aa
Ga −

1

6
S

(4)

Ā4aaa
G3
aΓ

(3)
aaa − S(3)

Ā4cc̄
Gc + S

(4)

Ā4ac̄c
G2
cGaΓ

(3)
acc̄ − S(3)

Ā4ψψ̄
Gψ,

(8.7)

where we adopt the notation from [74], e.g. S
(3)

Ā4aa
= Z3

δ3S
δĀ4δaδa

defines the bare vertex
of the background field and two gluon propagators. The propagators for gluon, ghost
and quark fields are denoted by Ga, Gc and Gψ, respectively. Eq. (8.7) is shown
diagrammatically in Fig. (8.1). It involves one- and two-loop diagrams. Note that the
second two-loop diagram, involving a four-point function that connects two ghost fields
with the background and a gluon field, only appears in the presence of the background
field. The quark loop is shown for one flavour only.

dV (Ā4)
dĀ4

= δ(Γ−S)
δĀ4

= − −+ −

Figure 8.1: The DSE for the background field Ā. It is denoted by the wavy line on the
bottom, in contrast to the gluon which is represented by the curly line.

We will discard the two-loop diagrams for the sake of simplicity here. This is justified
on two grounds. Firstly, we follow the argument of [74], where the renormalisation
scheme was chosen such that the two-loop terms are minimised near Tc. Secondly,
we shall concentrate on the influence of quarks on the Polyakov-loop potential. As
we will see, the quark loop dominates the phase transition in unquenched QCD and
the glue part serves more as a confining background, even with the unquenched gluon
propagator.

If we neglect the two-loop diagrams, Eq. (8.7) defines dV (Ā4)

dĀ4
solely in terms of the

gluon, ghost and quark propagators, since the vertices are bare. In [74], the vertices

S
(3)

Ā4aa
and S

(3)

Ā4cc̄
have been given as

S
(3)

Āρaµaν
= S(3)

aρaµaν +
1

ξ

δ
(
D̄µD̄ν

)
δAρ

, (8.8)

S
(3)

Āρcc̄
= 2S

(3)
aρcc̄, (8.9)

with the gauge parameter ξ. Eq. (8.9) is evaluated at vanishing momentum of the
background field. See also [123] for Feynman rules in the background field method.
The last term in Eq. (8.8) contributes to the final expression despite ξ → 0, since it
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combines with the longitudinal part ∝ ξ of the gluon propagator. We give some details
on this evaluation and the vertices for vanishing background field S

(3)
aρaµaν and S

(3)
aρcc̄ in

App. C.1. For the quark fields we find the vertex

S
(3)

Āµψψ̄
= igγµ. (8.10)

The colour structure of the quark loop is detailed in App. C.2. With the vertices
and the propagators in presence of the background field, we can solve Eq. (8.7). By
numerical integration we can then access the potential V (Ā4) up to an integration
constant. What remains is to define the propagators in the presence of the background
field.

8.3 Propagators in the background field

In chapter 7 we used the quark and gluon DSEs to obtain the quark and gluon propag-
ators in Landau gauge for Nf = 2 and Nf = 2 + 1. The ghost propagator did not play
a role so far, and we need to specify it now.
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Figure 8.2: The quenched lattice ghost below T qu.c = 277 MeV, together with our fit,
represented by the red line. Figure (without our fit) taken from [42].

For the quenched ghost, we can use the lattice results from [42], which correspond to
the quenched gluon input in our calculations. Fig. 8.2 shows the propagator for tem-
peratures below the quenched phase transition. This is the only temperature interval
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needed in this study. The ghost shows little dependence on the temperature, which
can be explained to some degree by the ghost DSE. If one assumes a bare ghost-gluon
vertex, an assumption often made in studies of the DSEs for the Yang-Mills system,
the ghost is determined in the IR from the transversal gluon propagator. In contrast to
the longitudinal gluon, the transversal gluon depends only weakly on the temperature.

This justifies to use a temperature-independent fit for the quenched ghost. We model
the fit function with a logarithmic tail in the UV, and a finite IR enhancement. Note
that this corresponds to the decoupling solution of the Yang-Mills system. This is also
implemented in the gluon propagator, see the discussion in chapter 5. The fit function
reads

G(p2) =
a

bp2 + 1
+

(
β0αµ
4π

log(p̂2 + 0.1) + 1

)δ
, (8.11)

where for the parameters in the IR we find a = 0.42 and b = 2.5 GeV−2. In the UV
δ = −9/44 is the anomalous dimension of the ghost, and we choose p̂2 = p2/Λ2 with
Λ = 2 GeV. The resulting fit function is shown in Fig. 8.2 together with the lattice
data.

The ghost propagator is only indirectly affected by the unquenching process. In
lattice simulations of quenched [94] and Nf = 2 unquenched [112] QCD, the ghost has
been found to be almost unchanged. This supports our approximation of taking the
quenched ghost as an input also in the Nf > 0 case. From the ghost DSE, see Fig. 5.2,
we expect the ghost dressing function to be reduced for a reduced gluon propagator.
Since the ghost in the picture of the Polyakov-loop potential is confining, we expect an
unquenched ghost to lead to weaker confinement, or a larger Polyakov loop.

So far, all propagators have been obtained in Landau gauge. However, we now
need the propagators in Landau-de Witt gauge, i.e. in the presence of a constant
background-field. We will approximate the propagators in the background field by the
Landau gauge propagators, by using

D(Ā4;ωn, ~p
2) = D(0;ωn + gĀ4, ~p

2), (8.12)

where D is any propagator of QCD. This approximation has been justified in [74].
We take Ā4 to be in the Cartan sub-algebra of SU(3). For practical purposes, we

take Ā4 = Ā3
4T

3 where T 3 is a generator of SU(3). We evaluate the propagators for the
matrix-valued argument ωp + gĀ4 by evaluating them on the eigenvalues. The gluon
and ghost propagators belong to the adjoint, quarks to the fundamental representation
of SU(Nc). The corresponding eigenvalues of ωp + gĀ4 for the Nc = 3 case are

evadj. = {ωp, ωp, ωp ± πTϕ, ωp ± πTϕ, ωp ± 2πTϕ} , (8.13)

evfund. = {ωp, ωp ± πTϕ} . (8.14)

Here, we introduced the scalar ϕ as a measure for the background-field. Evidently, the
eigenvalues are periodic in ϕ, and we can constrain ϕ ∈ [0, 1]. A function f therefore
becomes

f(ωn + gĀ4) =
∑
x∈ev

f(x), (8.15)
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with the eigenvalues ev of either the adjoint or the fundamental representation. With
this decomposition, we can obtain L[〈A4〉] as a function of ϕ. To this end, we obtain
Eq. (8.5) for Ā4 in the fundamental representation, which yields

L(ϕ) =
1 + 2 cos(πϕ)

3
. (8.16)

For ϕ = 2
3

the Polyakov loop vanishes, and we are in the confined phase. Deconfinement
then means that a ϕ < 2

3
is realised.

8.4 Numerical evaluation

Let us first start with the glue part of the Polyakov-loop potential. We evaluate
Eq. (8.7) without the two-loop diagrams and with the vertices in Eqs. (8.8,8.9). We
then apply the eigenmode decomposition from Eq. (8.15). One part of the sum can
then be written as

dVglue(ϕ)

dϕ
=
∑∫
l

ωϕl

(
1

l2
+ Z3DL(l) + 2Z3DT (l)− 2Z̃3DG(l)

)
, (8.17)

where ωϕl = 2πT (n + ϕ). The propagators are DL,T (l2) =
ZL,T (l2)

l2
for the gluon and

DG(l2) = G(l2)
l2

for the ghost propagator. They are evaluated at l = (~l, ωϕl ). The
first term comes from the polarisation longitudinal to the gluon momentum, see also
App. C.1. It does not receive a dressing in Landau gauge, and is the derivative of the
Weiss potential [124].

For the quark loop, we take the vertex Eq. (8.10). For a quark of flavour f we then
find

dV f
q (ϕ)

dϕ
=
∑∫
l

TrD[iγ4S
f ] = 4

∑∫
l

ω̃ϕl C
f (l)

(ω̃ϕl C
f (l))2 +~l2 (Af (l))2 + (Bf (l))2

, (8.18)

with ω̃ϕl = 2πT (n + 1
2

+ ϕ) + iµf where µu/d = µ and µs = 0. Eqs. (8.17,8.18) can be
integrated numerically with respect to ϕ, neglecting an integration constant. The full
Polyakov-loop potential is then obtained from

V (Ā4) = 2Vglue(ϕ) + 4Vglue

(ϕ
2

)
− 4

Nf∑
f

[
V f
q

(ϕ
2

)
+ V f

q

(
−ϕ

2

)]
, (8.19)

where we used that Vglue(−ϕ) = Vglue(ϕ). At finite µ, Vq becomes complex. However,
the imaginary parts of Vq(ϕ/2) and Vq(−ϕ/2) cancel, giving a real potential.
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8.5 Results

In this section we will use our truncation scheme for Nf = 2 + 1 with parameter set A.
We obtain the unquenched quark and gluon propagators from their Dyson-Schwinger
equations and use those results as an input in Eqs. (8.17,8.18).

Figure 8.3: The left figure shows the Polyakov-loop potential at µ = 0, the right figure
as a function of µ at T = 115 MeV. We normalise by pSB = 19π2

36
T 4 +

3
2
T 2µ2 + 3

4π2µ
4.

The resulting Polyakov-loop potential as a function of temperature at µ = 0 is shown
in the left part of Fig. 8.3. At small temperatures, the minimum of the potential is
close to ϕ = 2

3
, which is the confining value where L[〈A4〉] = 0. It is not exactly at

the confining value due to the presence of centre-symmetry breaking quarks. When
the temperature grows, the minimum of the potential moves further away from the
confining value, and approaches ϕ = 0. This corresponds to L[〈A4〉] = 1. A similar
behaviour is found at finite chemical potential. In the right part of Fig. 8.3 we show the
Polyakov-loop potential at fixed T = 115 MeV as a function of µ. Again, the minimum
moves away from a position close to the confining value, and approaches ϕ = 0. We
chose the temperature of 115 MeV close to, but above, the critical end-point. The more
rapid change of the potential as a function of µ is therefore derived from the steeper
chiral crossover. Note that the glue part of the potential is always negative (or zero),
while the quark part is positive.1 This explains the large positive value of the potential
around ϕ = 1 in the chirally restored phase. There, the contribution of the quark loop
is largest.

From the minimum of the potential we determine the Polyakov loop L[〈A4〉]. The
result is shown in Fig. 8.4. It is clear that the transition always happens in the same
temperature regime where also the chiral transition takes place. This behaviour can
be explained by the quark-loop diagram in Fig. 8.1. If we assume a bare quark of mass
M , the integrand of the quark loop goes like 1/(l2 + M2), i.e. it is suppressed with
the quark mass. In the chirally broken phase, where the quark mass is large, the quark
loop has therefore little effect on the Polyakov-loop potential, which is thus dominated

1Strictly speaking, the difference V (ϕ)− V (0) is positive/negative.
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8 Polyakov-loop potential

Figure 8.4: The order parameter L[〈A4〉] as a function of T and µ.

by the confining glue sector. It is noteworthy at this point that the unquenching
of the gluon propagator does not change the strictly confining nature of the pure-glue
Polyakov-loop potential. As the temperature approaches Tc, the quark mass is reduced.
This leads to a growing contribution of the quark loop, which increases the amount of
deconfinement in the potential. In the chirally symmetric phase we then find that the
potential is dominated by the quark loop, and L[〈A4〉] approaches 1.

At finite chemical potential the effect is the same. We therefore can not find a
splitting of chiral and deconfinement transitions in this approach. Once the chiral
phase transition becomes first order, the quark mass shows a jump. This is reflected
in a jump of the quark loop, and therefore also a jump in the Polyakov loop. This is
clearly visible in Fig. 8.1.2 This is a clear difference to the dressed Polyakov loop, see
Fig. 7.9. There, the shape of Σ±1 was found to be consistent with a second order or
crossover transition, while here we clearly find a first order phase transition. Another
important difference to the dual condensates is that we can not distinguish between
the Polyakov loop and its conjugate, which are in general different at finite chemical
potential. For the dual condensates this distinction can be made by using Σ+1 and
Σ−1.

We now take the derivative of L[〈A4〉] with respect to T and determine its maximum.
This we will use to define the pseudo-critical temperature of deconfinement. In Fig. 8.5
we show the resulting phase diagram and compare it to the chiral transition and the
deconfinement transition obtained from the dressed Polyakov loop. It is important
to note that we used the maximum of the T -derivative of the order parameters for
all critical lines here. That is why the lines from the chiral and dual condensate are
lower in the crossover region than in Fig. 7.10. We find that the critical temperatures

2Note that for technical reasons we show a continuous surface in the figure, omitting the jump in
the order parameter.
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Figure 8.5: The phase diagram for the chiral transition compared to the deconfinement
transition obtained from the dressed Polyakov loop as well as the Polyakov-
loop potential. The shaded blue area shows the width of the transition from
the Polyakov-loop potential.

for all three order parameters agree up to ∆T ≈ 7 MeV. They converge to the same
temperature when the critical end-point is approached, and coincide there. We also
show the width of the deconfinement transition here, which we obtain from

dL[〈A4〉]
dT

> 0.8 · dL[〈A4〉]
dT

∣∣∣∣
max

, (8.20)

i.e. the area where the derivative of the Polyakov loop reaches 80 percent of its maximal
value. This shows how the transition becomes steeper with growing chemical potential,
until it becomes a first-order phase transition at the CEP. We also find that Tc for all
three order parameters lies inside this area, which suggests that the difference is only
due to the crossover nature of the transition below the CEP.

From the Polyakov-loop potential we therefore confirm our findings from the dressed
Polyakov loop. There is no sign of a splitting of the chiral and deconfinement transitions
at least up to the CEP. We also confirm our interpretation of the behaviour of Tc
determined from the dressed Polyakov loop around µ = 75 MeV. There we found a
larger difference to the chiral transition than at smaller or larger chemical potentials.
We assumed this to be an artefact of the dual condensates. Indeed, no sign of such a
behaviour is found from the Polyakov-loop potential.
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8 Polyakov-loop potential

8.5.1 Influence of the chemical potential on the glue potential

So far, we considered the full potential, including the quark loop. As an input to
Polyakov-loop extended effective models, the pure glue potential, i.e. the Eq. (8.7)
without the quark loop is of interest. In [125], the glue potential from the FRG was
used to improve such effective models at vanishing density. With our solutions of the
gluon DSE at finite µ, we are in the position to extend this to the full phase diagram.

The only influence of the chemical potential on Vglue is via the quark-loop in the gluon
DSE, see Fig. 7.1, since we take the quenched ghost as an input. In our truncation, we
can therefore split the unquenched gluon loop in Fig. 8.1 into a loop with the quenched
gluon and an unquenching diagram, see Fig. 8.6. We therefore find the only difference
of VYM and Vglue to be the two-loop diagram in the right of Fig. 8.6.

= −

Figure 8.6: The unquenched gluon loop (left) can be split into the quenched loop (yel-
low dot) and a two-loop diagram involving both propagators and a quark
loop.

In Fig. 8.7 we show the pure glue potential Vglue at µ = 0, 100 and 200 MeV at
T = 115 MeV. At the largest chemical potential, we are already in the quark-gluon
plasma. Fig. 8.7 is related to the right part of Fig. 8.3, where at the same temperature
the full Polyakov-loop potential was shown as a function of chemical potential.

The influence of unquenching the pure glue potential is evidently a reduction of the
gluon propagator, and therefore a deeper potential, since the ghost in our approx-
imation is unaffected by the unquenching process. This is visible in Fig. 8.7. With
growing chemical potential the quark loop becomes stronger, and therefore the po-
tential deeper. If we would include unquenching effects in the ghost by solving the
ghost DSE, we would find a reduction of this effect. Since the effect of the chemical
potential on the glue potential is already rather small, we conclude that neglecting a
µ-dependence in model studies is well justified.

8.6 Summary

In this chapter, we studied a recently developed method to study the Polyakov-loop
potential, based on the Green’s functions of QCD, by introducing a background field.
We applied this to our results for the unquenched quark and gluon propagators at
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Figure 8.7: The pure glue potential for three different chemical potentials at T = 115
MeV.

finite temperature and chemical potential. Thus, we could obtain the Polyakov-loop
potential at finite density from QCD degrees of freedom for the first time.

If we obtain the Polyakov loop from the background field, we find an order parameter
for confinement. This order parameter shows a transition that is tightly linked to the
chiral restoration, since it is triggered by a quark loop. We therefore confirm our earlier
findings from the dressed Polyakov loop, in so far as the chiral and deconfinement
transitions always happen at similar temperatures. A qualitative difference to the
dressed Polyakov loop was found at the first order phase transition at large densities.
There, from the Polyakov-loop potential, we find a strong first order phase transition.
The dressed Polyakov loop does not show this behaviour, and might even be a crossover
or second order phase transition.

In future studies of Dyson-Schwinger equations in a medium, the order parameter
obtained in this chapter might be preferred over the dressed Polyakov loop for two
reasons. First of all, it is technically much easier to obtain. For the dressed Polyakov
loop, the quark DSE needs to be solved for a set of boundary conditions ϕ. At large
densities and temperatures above Tc, we found a jump in ϕ-direction, which needs to
be resolved to a high accuracy in order for the dressed Polyakov loop to be stable. In
contrast to that, the Polyakov-loop potential can be obtained from one solution of the
quark and gluon DSEs. The numerical costs are therefore much smaller. Secondly,
some doubt remains concerning the applicability of the dressed Polyakov loop outside
of lattice QCD. This is due to the possibility to find a “deconfinement” phase transition
from this order parameter even in the NJL model, which does not feature confinement
in the first place. This certainly is an artefact, and raises the question how far our
results are affected by the same artificial behaviour.
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8 Polyakov-loop potential

Finally, the present work is a good starting point for further studies. By being able
to obtain the Polyakov-loop potential everywhere in the phase diagram we can make
contact to effective models which have to rely on a model input for the potential. A
further possibility is to investigate the upper-right corner of the Columbia plot (see
Fig. 1.1), i.e. the case of heavy quarks.

84



9 The influence of mesons on the
phase diagram

So far, we paid attention mainly to the glue part of our truncation scheme, and used a
relatively simple model for the quark-gluon vertex. While this worked quite well so far,
there is good reason to improve the vertex ansatz. As we have seen in Fig. (7.7), we
over-estimate the amount of chiral symmetry breaking in the high-temperature phase.
We traced this back to the constant infrared strength, defined by d1, of our vertex ansatz
function. In an improved model, d1 might be taken as temperature dependent. Also,
the scalar part of the vertex is known to be important for chiral symmetry breaking,
as it vanishes in the chirally restored phase. A study of a truncated form of the vertex
DSE, back-coupled to the quark and gluon DSEs, is certainly highly desirable. While
this has to remain for future work, one may notice and exploit many physical effects in
the vertex. In this chapter, we will use the vertex DSE to introduce the back-reaction
of pions onto the quark propagator. Since pions are the pseudo-Goldstone bosons of
chiral symmetry breaking, it is no surprise that their interplay is important at the
phase transition. Indeed it was shown in [50] that the meson sector dominates the
physics at the phase transition for very small quark masses. This leads to the scaling
analysis that suggests a second order phase transition in the O(4) universality class.

In [126] a model for the pion back-reaction was introduced in the vacuum. This
model was used in [87] and subsequent works to study pion cloud effects in meson
phenomenology. In [127] this model was adopted to the CFL phase at large chemical
potentials, and in [128,129] to finite temperature. The main result of [129] is that this
model can reproduce the correct O(4) scaling behaviour for Nf = 2, if one assumes
that the pion decay constant fπ scales appropriately. We will first give a summary of
this model and then apply it to the phase diagram in this chapter.

9.1 Pion back-reaction from the vertex DSE

In Fig. (9.1), we show the vertex DSE in terms of two-particle irreducible (2PI) Green’s
functions. The first three loops belong to the non-Abelian dressing of the vertex, while
the last diagram is also present in Abelian theories. It involves a quark-antiquark
scattering kernel. It has been argued in [126], that this kernel contains a meson pole,
shown in the first diagram of Fig. 9.2, as well as poles from diquarks and baryons
(second and third loop).
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9 The influence of mesons on the phase diagram

= + + + +

Figure 9.1: The DSE for the quark-gluon vertex. The big blobs symbolise the 2PI
Green’s function. All internal propagators are dressed, which is not shown
here. The dashed line in the second loop corresponds to the ghost propag-
ator.

⇒

N,∆, . . .

diqu.
+

π, ρ, . . .

+

diqu.

Figure 9.2: The hadron poles in the quark-antiquark scattering kernel. The diagrams
describe meson, diquark and baryon exchange.

In the vertex ansatz we used so far, one might consider the pion pole to be included
effectively. This of course omits all medium effects that the pion might contribute.
The basic concept of the pion back-reaction is now to make the pion pole explicit, as
shown in the left part of Fig. (9.3). Our old vertex is now considered to be without
the pion pole, and we add the one-loop term that describes the pion exchange. When
this diagram is inserted into the quark’s self energy, we get a two-loop diagram, shown
in the right part of Fig. (9.3). This two-loop diagram can be approximated by a one-
loop diagram, by referring to the homogeneous pion Bethe-Salpeter equation (BSE),
see Fig. (2.3). However, this is only an approximation: the quark-gluon vertex in the
two-loop diagram is undressed, while it is fully dressed in the BSE. Secondly, with the
pion contribution there also exists a pion exchange diagram in the BSE, which is not
considered here. This leads to the question how the dressing of the left pion-quark
vertex in the right-most diagram of Fig. (9.3) can best be described. In the original
work, see [126], both pion-quark vertices where equally dressed with the pion Bethe-
Salpeter amplitude. In later work [130], this was believed to be an over-estimation
of the pion effects, and one vertex was taken to be bare. However, in the scaling
analysis [129] it was shown that the correct scaling at Tc can only be obtained when
both vertices have the same scaling behaviour. Since we are not interested in the scaling
behaviour here, we will dress only one vertex to avoid over-estimating the impact of
the pions on the phase diagram. We checked by explicit calculations that this choice
does not affect the results qualitatively.
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⇒ +

π
⇒

Figure 9.3: The left diagram shows the pion-pole contribution in the vertex. In the
pion-exchange diagram, the internal propagators and quark-pion vertices
are dressed. In the right diagram we show the approximation of turning
the two-loop diagram into a one-loop diagram.

−1
=

−1 −1
++

Figure 9.4: The resulting quark DSE with the pion exchange diagram.

This leads to the quark DSE shown in Fig. (9.4). Note that the modification of the
quark-gluon vertex is only done on the level of the quark DSE. We omit the additional
two-loop diagram that is generated in the gluon DSE, which is a quark-loop with a
pion exchange.

9.2 The pion-quark vertex at finite temperature

To close the set of equations, we need to specify the pion-quark vertex. For on-shell
pions this is defined by the homogeneous pion BSE, Eq. (2.22).

For the complete back-reaction onto the quarks, one would have to solve the BSE
at finite temperature/density. This is not only beyond of the scope of this work, it
is also not necessary for an impression of the qualitative effects. In section 2.4 we
have repeated the result of solving the BSE in the chiral limit, that entails Γπ(p, P ) =
γ5B(p2)/fπ in the vacuum. With this, fπ, rπ and Mπ could be approximated. We will
now have to generalise these approximations to finite temperature.

First of all, the relation E = B/fπ, where E has been defined in Eq. (2.25) as the
dominant BSA dressing, is only true in the chiral limit. When a finite quark mass is
introduced, the UV behaviour is different: while the B-function develops a logarithmic
running [131], the E-function retains the chiral behaviour, i.e. a power law. This
affects the finiteness of integrals involving Γπ, e.g. for rπ, see Eq. (2.28). To amend
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the situation we introduce the correct UV behaviour by hand, by using

E(p2) ≈ B(p2)r(p2)

fπ
, (9.1)

r(p2) =
a

a+ p2
, (9.2)

where we introduce the regulator r with parameter a = 80 GeV2. The regulator is
constructed such that E(p2) = B(p2)/fπ in the IR, and ∝ 1/p2 in the UV. The next
challenge is to develop a Pagels-Stokar-like formula for fπ at finite temperature.

9.2.1 Pion decay constants at finite temperature

It has been pointed out in [132] that for a system where Lorentz invariance is broken,
e.g. when we choose the reference frame of the medium, there are two distinct pion
decay constants. While for vanishing temperature fπ is defined though Eq. (2.26), in
the medium we have the

〈0|Ja5,i|πb(P )〉 = if sπδ
abPi, (9.3)

〈0|Ja5,4|πb(P )〉 = if tπδ
abP4, (9.4)

where i ∈ {1, 2, 3}. In [133, 134] it has been noted that f tπ and f sπ have a different
behaviour around Tc. Transversal to the heat bath, f sπ is an order parameter that shows
the scaling behaviour tν/2 with t = (Tc − T )/Tc and critical exponent ν. Longitudinal
to the heat bath, f tπ stays finite even at Tc. Also, the pion velocity can be obtained
from u = f sπ/f

t
π. To generalise Eq. (2.27), we therefore have, in the Bethe-Salpeter

formalism,

f sπPi = 3Z2

∑∫
l

Tr [Γ(l, P )S(l+)γ5PiS(l−)] , (9.5)

f tπP4 = 3Z2

∑∫
l

Tr [Γ(l, P )S(l+)γ5P4S(l−)] , (9.6)

where l± = l ± P/2. We now take Γπ = γ5E, and let P → 0. This yields the gener-
alisation of the Pagels-Stokar formula to finite temperature. The resulting equations
are

f sπ = 12Z2

∑∫
l

E

[
σAσB +~l2 cos2 ϑ

(
∂σA

∂~l2
σB − σA

∂σB

∂~l2

)]
, (9.7)

f tπ = 12Z2

∑∫
l

E

[
σCσB + ω̃l

(
∂σC
∂P4

σB − σC
∂σB
∂P4

)∣∣∣∣
P4→0

]
, (9.8)
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9.2 The pion-quark vertex at finite temperature

where σF = F/(ω̃2
l C

2 + ~l2A2 + B2). Note that in Eq. (9.8), we need the derivative of
the quark dressing functions with respect to P4 = iMπ. This necessitates a complex
continuation of the quark propagator, which is in general needed in the Bethe-Salpeter
formalism. This is beyond the scope of this work, however. For the sake of simplicity

we will therefore use f tπ
!

= f sπ. We can solve Eq. (9.7) solely on grounds of the quark
propagator for real momenta. This approximation also implies u = 1, and can not
be used to obtain the O(4)-scaling behaviour expected in the chiral limit for Nf = 2.
However, we are mainly interested in the situation of physical quark masses.

9.2.2 Closing the system of equations

We will take only the E function of the full Bethe-Salpeter amplitude into account, i.e.
we will use

Γπ(p, P ) = γ5E(p, P ), (9.9)

and also apply the regulator defined in Eqs. (9.1,9.2). This is a good approximation,
since E dominates the full amplitude. We can expect this to also hold at finite tem-
perature by comparing to finite volume studies, see [135]. There, the Bethe-Salpeter
equation has been solved in a finite volume. This is insofar similar to a finite temper-
ature as chiral symmetry is restored below a critical volume. It has been found that E
is dominant also close to and below the critical volume.

In [129] it has been shown that with the AxWTI in the medium we have

E =
B

f tπ
, (9.10)

in the chiral limit, and a pion propagator

Dπ(~p2, ωp) =
1

ω2
p + u2(~p2 +M2

π)
, (9.11)

where u is the pion velocity. In order to obtain Mπ we will use the Gell–Mann-Oakes-
Renner relation for which we need the residue rπ. Since this is obtained from coupling
the pion to a pseudo-scalar current, there is only one rπ even at finite temperature. It
is straight-forward to adapt the Pagels-Stokar-like relation Eq. (2.32) from the vacuum
to finite temperature. The result is

rπ = Z212
∑∫ E(l)

~l2A2(l) + ω̃2
l C

2(l) +B2(l)
. (9.12)

With this we can approximate M2
π ≈ 2mrπ/f

s
π and we have all ingredients needed for

the pion-exchange diagram.
We write the quark DSE from Fig. (9.4) as

S−1 = Z2S
−1
0 + Z2ΣYM + ftΣ

π, (9.13)
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where ΣYM and Σπ are the gluon and pion exchange diagrams. The factor ft = 3
stems from the Nf = 2 flavour trace.1 Now we project the self-energy onto the quark
dressing functions with the projectors from Eq. (2.49), and we obtain

Σπ
A =

∑∫
l

σAE

(
p+ l

2

)
Dπ(q)

~l~p

~p2
, (9.14)

Σπ
B =

∑∫
l

σBE

(
p+ l

2

)
Dπ(q), (9.15)

Σπ
C =

∑∫
l

σCE

(
p+ l

2

)
Dπ(q)

ω̃l
ω̃p
, (9.16)

where the momentum dependence of the Bethe-Salpeter amplitudes has been chosen
the same way as in the literature, see e.g. [126].

9.3 Results for two flavours
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Figure 9.5: The pion decay constant f sπ (left) and mass Mπ (right) for µ = 0 and
µ = 175 MeV.

In this section we will again use the parameter set A, where Mπ has the physical
value for Nf = 2 + 1. In Figure 9.5, we show f sπ and Mπ as a function of temperature
for two densities. Note that our approximations become worse for larger Mπ, i.e. at
larger temperatures. The behaviour is nonetheless as expected. While f sπ behaves as
an order parameter, Mπ grows when chiral symmetry is restored. At µ = 175 MeV we
observe a jump in f sπ and Mπ at the first order phase transition. Note that below and
above the phase transition E(0) = B(0)/fπ is roughly the same, since B(0) and fπ are
equivalent order parameters for the chiral transition. Thus, the pion back-reaction is
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Figure 9.6: The phase diagram with and without pion back-reaction, and with a res-
caled vertex strength for better comparison.

only suppressed by the growing thermal pion mass.
In Fig. (9.6), we show the diagram for the chiral phase transition. We compare this

to the result from Fig. (7.5), where no back-reaction of pions was included. The effect
is mainly a reduction of Tc by about 20 MeV for all µ. The critical end-point is affected
only slightly, and moves by a few MeV to larger chemical potentials. To remove the
effect of the reduced Tc on the comparison, we also show a result where the vertex
strength parameter d1 is set to 8.5 GeV2. At this value, Tc(µ = 0) is almost the same
as for the calculation without pion back-reaction. We note that this affects the position
of the CEP in the µ direction only slightly. We thus find that upon rescaling the vertex
the phase diagram with and without pions is almost identical. This suggests that in
future studies the explicit back-reaction of pions may be neglected.

Without rescaling, the curvature with pions taken into account is slightly smaller,
with κ = 0.37, cf. κ = 0.41 without pions. When we rescale the vertex, the curvature
increases to κ = 0.45, and is thus slightly larger than without pion back-reaction.
Although this makes our comparison to the lattice data worse, it points towards an
interesting effect. In the Nf = 2 + 1 calculation, we noticed that the larger number of
flavours decreases the curvature. On the lattice, the effect is opposite. If we extrapolate
the effect of back-coupling the Nf = 2 Goldstone-bosons to Nf = 2 + 1, we expect an
increase of the curvature. We thus suspect that, if we included an effect that brings our
curvature closer to that found in lattice simulations, the back-coupling of Goldstone-
bosons might be important to get the correct Nf dependence. This will be further

1Pictorial, e.g. the u quark couples to a π+, but only half a π0. Together with a normalisation factor√
2 per vertex we obtain

√
2
2 · (1 + 1

2 ) = 3.
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investigated in the next section.
We do not show the deconfinement transition in Fig. 9.6. On one hand this is

because we do not expect the pion back-reaction to change the general behaviour that
we found before, i.e. near-by phase transitions. On the other hand, the evaluation
of the dual condensate is problematic here. In the quark-pion self-energy, the quark
is actually the sea quark, while the test quark is part of the pion. Since we keep the
boundary condition ϕ for the sea quarks physical while we vary it for the test quark,
we would have to evaluate the pion for one quark at ϕ and one at ϕ = π. How this
affects the properties of the pion and the Bethe-Salpeter amplitude is unknown. We
will therefore not investigate the dual condensates with pion back-reaction taken into
account. Alternatively we could use the Polyakov-loop potential that we studied in
the last chapter. However, the mechanism that connects chiral and deconfinement
transitions in that potential is not affected by the inclusion of the pions. We therefore
have no reason to believe that the results will be any different.

9.4 Results for three flavours

We now further test the hypothesis mentioned above, that the inclusion of Goldstone
bosons might yield the correct Nf -dependence of the curvature κ. To this end, we
do the same calculations as described above, but with 3 identical light quark flavours.
The larger strange quark mass for Nf = 2 + 1 leads to larger meson masses, and
thus suppresses them further, but only mildly since the physical meson masses are still
rather small. We thus expect the strongest effect to come from the number of meson
degrees of freedom and not their precise masses. Therefore, we expect the effect of the
Goldstone bosons for 3 and 2 + 1 flavours to be very similar.

Having 3 equal flavours means that the quark loop in the gluon DSE becomes
stronger, and that the factor in front of the pion self-energy is increased. In Eq. (9.13),
we have to replace the flavour factor ft = 3 = τ iτ i with ft = 16/3 = λaλa to accom-
modate for the larger number of Goldstone bosons.

Without Goldstone bosons we find Tc(0) = 134.5 MeV. This is about 14 MeV smaller
than in the 2 + 1 flavour case. For κ we obtain 0.25, which is smaller than 0.28 for
Nf = 2 + 1. This shows again that κ in our approach depends monotonically on Tc(0).

When we take the Goldstone bosons into account and leave the vertex parameters
unchanged, we find Tc(0) = 103 MeV and κ = 0.23. This is qualitatively the same
effect that we found for the Nf = 2 case, i.e. a reduction of Tc(0) as well as a reduction
of κ. We then rescale the vertex strength such that we obtain Tc(0) = 135.5 MeV. This
can be achieved with d1 = 9.3 GeV2. For the curvature this leads to κ = 0.28, which
is larger than without the back-coupling of Goldstone bosons.

In Tab. (9.1) we summarise our findings for the curvature. If we compare the results
without the meson back-coupling and with the rescaled back-coupling, we find that for
2 flavours κ grows by ≈ 9%. With 3 equal flavours κ grows by ≈ 11%. This is the
expected effect, i.e. a larger value for κ when more of Goldstone modes are taken into
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Nf no g.b. with g.b. with g.b., rescaled
2 0.41 0.37 0.45

2 + 1 0.28 − −
3 0.25 0.23 0.28

Table 9.1: The curvature for different number of flavours, without and with Goldstone
bosons (g.b.) taken into account. Rescaled refers to changing the vertex
parameter d1 such that Tc(0) is the same as without g.b.

account. However, it is rather small and the ordering of κ with Nf is still wrong, even
when the Goldstone bosons are taken into account. We therefore found an effect that
might be important for the Nf -dependence of the curvature, once we find a κ in the
right ballpark.

9.5 Notes about the generalisation to 2 + 1 flavours

l s

κ

Figure 9.7: The self-energy of a light quark with a kaon exchange.

So far we only considered two and three equal flavours, hence only the back-reaction
of degenerate mesons. In section 7.3, we discussed the effects of strange quarks in
unquenched QCD. We argued that additionally to the unquenching effects in the gluon,
strange and light quarks couple through the exchange of mesons like kaons. To this
end, we can extend the discussion from above to the pseudo-Goldstone bosons of the
Nf = 2 + 1 case. This leads to the exchange of the π, κ and η mesons. The resulting
equations for light and strange quark are

S−1
l = S−1

0,l + ΣYM
l +3Σπ

l + 2Σκ
l +

1

3
Ση
l , (9.17)

S−1
s = S−1

0,s + ΣYM
s + 4Σκ

s +
4

3
Ση
s , (9.18)

where Σm
f is the self-energy contribution of meson m on flavour f . Such a model would

lead to a stronger reaction of the strange quark on the light-quark phase transition.

Let us now have a closer look on Σκ
l . For the kaon exchange in the light quark DSE

we obtain the diagram in Fig. (9.7). If we project onto the B-function in the usual

93



9 The influence of mesons on the phase diagram

way, we obtain

Bl(p) = Z2Zmml + ΣYM
B (p) + 3Σπ

B(p) + 2Σκ
B(p) +

1

3
Ση
B(p), (9.19)

Σκ
B(p) =

∑∫
l

σB,s(l)Eκ

(
p+ l

2

)
Dκ(q), (9.20)

where σB,s = Bs/(ω̃
2
l C

2
s +~l2A2

s +B2
s ) is determined from the strange quark, and Eκ is

the scalar dressing of the kaon Bethe-Salpeter amplitude.
If we now assume ml = 0 but ms > 0, we find a peculiar situation. The Wigner

solution of the light quark DSE, i.e. Bl = 0, is only allowed for Eκ = 0, since σB,s > 0
for all temperatures. This leaves us with two possibilities: either Eκ = 0 for light
quarks in the Wigner phase, or the Wigner phase vanishes when the back-reaction
with kaons is taken into account. If we assume the first solution, we set an important
constraint on the model for the kaon amplitude. This constraint, however, is not met
by our ansatz Eq. (9.10). Would we assume that B in this equation is Bl, the kaon
decay constant fκ would vanish for Bl → 0, and Eκ → 0

0
. We therefore need to get

a better understanding of the kaon Bethe-Salpeter amplitude at finite temperature
before we can employ the meson back-coupling to the Nf = 2 + 1 case. However, the
situation might change once we improve the approximations made in this model.

9.6 Summary

In this chapter we implemented the back-reaction of Goldstone bosons. This is mo-
tivated from the quark-gluon vertex DSE, where a quark-antiquark scattering kernel
appears, and is an effective improvement of our vertex ansatz. This entails a second
unquenching effect, additional to the quark-loop contribution to the gluon propagator.
The main effect of including Goldstone modes is a reduction of Tc at all chemical po-
tentials, which is the expected effect for unquenching the theory further. For 2 flavours
the pions lead to a Tc about 20 MeV smaller, while the critical end-point moves only
slightly to larger µ. We find that a rescaled vertex parameter d1 can compensate the
effect of the pions to a large degree. With the rescaling taken into account the CEP
is at almost the same point as without pion back-coupling. One main result of this
chapter is thus that the pion contribution, at least in the approximations used here, can
be neglected in future studies of the phase diagram with Dyson-Schwinger equations.

However, we found that the curvature of the critical line at µ = 0 is sensitive to the
inclusion of pion degrees of freedom. With the rescaled vertex strength, the curvature
is increased by about ten percent. When we go from Nf = 2 to Nf = 3 we find a larger
effect in this direction, since more Goldstone degrees of freedom exist. We identified
this as a possible explanation for the Nf -dependence of the curvature, which we do
not capture correctly in our truncation so far. If we would include some effect that
reduces the curvature to a value near that found in lattice simulations, we therefore
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9.6 Summary

might need to include the Goldstone back-coupling in order to obtain the correct results
for different number of flavours. We finally made a comment on the back-coupling of
mesons in the Nf = 2+1 case, which can not be achieved in the current approximation
scheme.

In future studies, this model might be the basis to include diquark or even baryon
degrees of freedom. In Fig. 9.2 the corresponding exchange diagrams have been in-
cluded.
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10 Conclusion and outlook

In this work we studied the chiral and deconfinement phase transition from solutions
of quark and gluon Dyson-Schwinger equations. We employed the quark condensate
and the dressed Polyakov loop as order parameters for chiral symmetry breaking and
confinement, respectively. The starting point was quenched QCD. There, we used input
from gauge-fixed lattice calculations for the quenched gluon propagator as an input to
the quark DSE. For three (two) colours we found a phase transition consistent with
first (second) order, which shows that our order parameters give the expected results.

With the quenched gluon as an input, we then went on to unquenched QCD by
adding the quark loop. With bare quarks in the loop, we found a crossover at van-
ishing density and a CEP at large chemical potential. This is similar to the inclusion
of fermionic fluctuations in the PQM model, where the CEP is located at a similar
chemical potential. We found the critical temperatures for chiral restoration and de-
confinement to be near-by at all chemical potentials.

Then, we introduced a truncation where the fully dressed quark loop was calculated.
In this model, we found results for the gluon propagator that are in good agreement
with gauge-fixed lattice simulations. We found that, when the fully dressed quark
loop is taken into account, the condensate at zero density can be fitted excellently to
corresponding lattice results. The full dressing of the quark loop diminishes the effect
of the fermionic fluctuations on the CEP, which was found at much smaller chemical
potential than with bare quarks in the loop.

We also showed the first solution of the coupled Dyson-Schwinger equations for
light and strange quark propagators in the medium. This leads to the strange quark
mimicking the chiral phase transition from the light quark, a non-trivial effect that
is owed to the unquenched gluon propagator. The impact of the strange quark on
the phase transition line for the light quarks was found to be mainly a reduction of
the critical temperatures. From the dressed Polyakov loop we found a deconfinement
transition that is always near the chiral transition at all chemical potentials, similar to
the simpler model with bare sea quarks.

To test a different notion of confinement we then investigated the Schwinger function
of the quark propagator, which can be used to test for positivity violations in the quark
spectral functions. For two flavours, we found a (possible) restoration of positivity near
the chiral transition at all chemical potentials. However, for 2 + 1 flavours we found
a sign for positivity violations above the chiral critical temperature at large chemical
potential. This makes further investigations of the spectral functions at finite density
necessary.
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With the quark, gluon and ghost propagators at our disposal, we then investigated
the Polyakov-loop potential. We calculated this potential for the first time at finite
chemical potential from the basic QCD degrees of freedom. From the minimum of the
Polyakov-loop potential we obtained a second order parameter for centre symmetry.
The resulting deconfinement transition temperature was found to be very close to the
chiral transition temperature. In this respect we confirmed our findings from the dual
order parameters. We further looked at the pure glue potential, and found a rather
week dependence on the chemical potential. This is of interest for effective models,
where the Polyakov-loop potential is an important input.

In the last part of this work, we further improved our truncation by taking the back-
reaction of Goldstone bosons into account. We found little impact of this improvement
on the position of the critical end-point. At small densities we identified a mechanism
that might explain the behaviour of the curvature of the critical line when the number
of flavours is changed. When including Goldstone bosons we found that the curvature
becomes larger, and concluded that with more flavours – and thus more Goldstone
bosons – the curvature grows. This is in line with results from the lattice. However,
the curvature in this work always turns out much larger than predicted by the lattice

We believe that the truncation presented in this work is a good starting point for fur-
ther explorations of QCD in a hot and dense medium. The results can already be used
to obtain the quark spectral function from fitting routines or the MEM. One may also
investigate further thermodynamic observables like the quark number susceptibilities
(qns). The qns of the strange quark is often used as a phenomenologically motivated
order parameter for confinement. It would be interesting to study if the model presen-
ted here is capable of reproducing lattice results of the strange qns. If that is possible
a continuation to finite chemical potential would be highly interesting.

The inclusions of fermionic fluctuation in a non-perturbative way might also be
important when finite magnetic fields are taken into account.

One might also construct a method to continue the quark propagator for complex
p4. A solution of this would be interesting in itself, since the analytic structure of the
quark propagator is believed to be connected to quark confinement. This would also
open the possibility to study real-time observables, like viscosities, as well as the Bethe-
Salpeter equations for mesons, such as the pion. From this one could also improve our
approximations for the pion back-reaction.

Further possibilities would be the extension to imaginary or iso-spin chemical po-
tentials. There, no sign problem exists on the lattice. This would lead to comparisons
and tests for our truncation of the DSEs.

Finally, the present truncation can be improved in several ways. First of all, there
is already finished work and work in progress for a solution of the Yang-Mills sector
at finite temperature. If this could be used to also take unquenching effects in the
gluon into account, the basic assumption of our truncation of the gluon DSE could be
cross-checked and improved. There are several ways of improving our model for the
quark-gluon vertex. One might be to study its infrared divergence which was found to
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be connected to the UA(1) anomaly. Including the anomaly might proof important for
the curvature of the critical line. In the long term it will certainly be possible to solve
the DSE for the quark-gluon vertex in some approximation. This will yield valuable
insights in our understanding of chiral symmetry breaking in the medium. Also, the
back-reaction of diquarks and baryons might be included along the ideas of the pion
back-reaction. These degrees of freedom are believed to be important at large chemical
potentials.
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A Conventions

A.1 Euclidean space

Throughout this work we use a Euclidean space with metric gµν = δµν . The Euclidean
quantum field theory can be connected to one in Minkowski space-time by analytic
continuation. We use

p = (p1, p2, p3, p4)T = (~p, p4)T , x = (x1, x2, x3, τ)T = (~x, τ)T , (A.1)

as a convention for the momenta and coordinate-space vectors. The connection to
Minkowski space-time is

τ = −it p4 = ωn = ip0 (A.2)

where t is the Minkowski time variable, and p0 the zeroth momentum component in
Minkowski space-time. The Dirac matrices in Euclidean space obey

{γµ, γν} = 2δµν , (A.3)

γ2
1 = γ2

2 = γ2
3 = γ2

4 = 1, (A.4)

where {·, ·} is the anti-commutator.
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B Numerical details

B.1 The quark DSE

In principle, the evaluation of the quark DSE is straight forward. The divergence is
mild, and a simple iterative algorithm is enough to find solutions, even in the first order
area. However, some tricks are useful to optimize the numerical cost.

ωΛ

|~p|

ωp p

p′

Figure B.1: For large momenta, we can rotate p to p′.

The medium is well-known to affect mainly the infrared part of the dressing func-
tions. Since in the vacuum the dressing functions are O(4)-invariant – they do not
distinguish between p4 and ~p – so must be the in-medium dressing functions in the
UV. It follows that we can approximate the dressing functions by calculating only up
to a maximal Matsubara mode ωΛ. All higher modes can be rotated to this largest
mode, as illustrated in Fig. B.1. Mathematically speaking we have

F (ωp, ~p
2)→ F (ω′p, ~p

′2) = F (ωΛ, ω
2
p − ω2

Λ + ~p2), (B.1)

such that p′2 = p2, where F is some dressing function. This allows us to calculate the
dressing functions for a rather small number of Matsubara modes instead of going up
to the cut-off. In the quark DSE we usually use ω−5 . . . ω4, while for the gluon we only
take ω0 into account.

For large n the Matsubara modes ωn get dense. This allows, at least in the quark
DSE, to substitute the Matsubara sum for large n by a continuous integral. We thus
use

T
∞∑

n=−∞

→ T
N∑

n=−N−1

+

ω−N−1−πT∫
−Λ

dp4

2π
+

Λ∫
ωN+πT

dp4

2π
. (B.2)
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Note, however, that this approximation usually goes horribly wrong in quark-loop
diagrams.

B.1.1 Renormalisation

We renormalise by obtaining Z2 and Zm in the vacuum, since the medium does not
contribute to the divergences. We use a renormalisation point of ζ = 80 GeV, and
apply a momentum subtraction scheme. That is, we demand

A(ζ2) = 1, (B.3)

B(ζ2) = m, (B.4)

where m = m(ζ) is the renormalised bare quark mass.

B.1.2 Finding multiple solutions of the quark DSE

In general, the quark DSE has a large number of solutions (see e.g. [136] for a discussion
of this in QED3). In the vacuum, a näıve iteration method is sufficient to find the
physical solution. This is also true at finite temperature, as long as the phase transition
is not of first order. Around a first order phase transition there is a region of co-
existence, where two solutions exist, one of which is energetically preferred. These
solutions correspond to the chirally symmetric and restored phases in our case. To find
the boundary of the co-existence region we need to find both solutions. This can be
achieved by starting the iteration of the quark DSE once with a small seed function B0

for B, for which we use 10 MeV, and once with a large value, where we choose 1 GeV.

In the unquenched case, with coupled quark and gluon DSEs, we furthermore use the
following procedure. We start by obtaining the quark loop from a bare propagator with
m = B0. With the resulting unquenched gluon propagator we then solve the quark
DSE, and iterate the quark-gluon system. For a small B0 this means to start with a
small interaction strength, which will let the system run into the small-B solution of
the quark DSE. For a large B0 the initial interaction strength is large, and we find the
large-B solution.

B.2 The quark loop in the gluon DSE

Due to the quadratic divergence, the evaluation of the quark loop must be treated with
great care. We already discussed some of the issues in section 7.2. In the evaluation
of the thermal mass m2

th. we furthermore find three more procedures to be necessary.
Firstly, the Matsubara sum must be evaluated explicitly, the approximation Eq. (B.2)
results in a reappearance of the quadratic divergence. Secondly, the cutoff dependence
is rather large in this object, and we find it to converge only at Λ = 2 TeV. The third
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point is that the integral should be performed with an O(4)-invariant cutoff, i.e.

T
∑
n

∫
d3p→ T

N∑
n=−N−1

Λ′2−ω2
n∫

ε2

d~p2 |~p|
2

∫
dΩ, (B.5)

where Λ′ = πT (2N + 2) is a temperature-dependent cutoff, that is chosen close to the
fixed cutoff Λ by taking N from the Matsubara mode closest to Λ.

Figure B.2: The integrand of the thermal mass in perturbation theory.

The need for an O(4)-invariant cutoff is illustrated in Fig. B.2. The figure shows
the integrand of the thermal gluon mass, Eq. (7.15), for A = C = 1, B = 0. The
measure for spherical coordinates is included. The plot shows positive and negative
contributions that cancel exactly for T = 0, where ω = l4 is a continuous variable.
In hyper-spherical coordinates the integration over the angle ϑ4, which is the angle
between l4 and ~l, cancels and the thermal mass is zero. At finite temperature ω = ωn
is discreet, and an integration over ϑ4 not possible. One thus has cancelling effects
only after the Matsubara sum and the spatial integration have been performed.

We furthermore find that the difference |A−C| might lead to a quadratic divergence,
if it does not fall off quickly enough. Since this difference is a pure thermal effect, it
should go like |A − C| ∝ exp(−p/T ) for large p. However, numerically this difference
is larger, and needs to be removed by hand. To this end, we set A(p2) = C(p2) for
p2 > 40 GeV2, which is an energy scale that has been found to work best.

B.3 Evaluation of the dual condensates

In Eq. (3.17) we defined the dual condensates as Fourier transform of the quark con-
densate for boundary condition ϕ. In the numerical evaluation of this, especially at
finite density, one runs into a few difficulties.
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First of all, for a cut-off Λ and quark mass m the condensate is divergent with mΛ2.
This term does not depend on ϕ, and thus drops out in the Fourier transform. This
is visible in Fig. 5.5 where we show Σ+1 for quenched QCD. There we found a dual
condensate that is consistent with zero below Tc, which provides proof that indeed the
divergence cancels. Nonetheless, for a large quark mass, the evaluation of Eq. (3.17)
becomes quite sensitive on the numerical details. This might be due to the divergence,
i.e. a bad signal-to-noise ratio. This, together with numerical problems in the quark
DSE, unfortunately hinders the limit m → ∞ for the test quark. In this limit the
dressed Polyakov loop is dominated by the thin one, which could therefore be accessed,
would one be able to take the limit numerically.

If we turn on the chemical potential, we find a jump of the condensate in ϕ-direction.
This was shown in Fig. 6.5 for the HTL-like approximation. The ϕ-integral has thus
to be evaluated with great care. Luckily, we find that the jump appears in most cases
well above the deconfinement temperature, and we can ignore this problem if we are
just interested in determining the deconfinement temperature. For a determination
of Σ±1 above Tc we apply an adaptive integration method. To this end we employ a
Gauss-Kronrod algorithm of orders three and seven. This has been used for Fig. 7.9.
The effect of the adaptive integration is a very precise resolution of 〈ψ̄ψ〉ϕ around the
jump. The numerical effort for this is huge, since resolving the jump is hindered by
critical slowing down, and results in numerical run-times of the order of weeks.
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C Evaluation of the background-field
DSE

C.1 Yang-Mills part

For the gluon and ghost loop we can follow [74] in the evaluation of the DSE for
the background field. In section 8.2 we repeated the vertices for the coupling of the
background field to gluon and ghost, leaving the definition of the ordinary vertices
open. They are(

S(3)
aρaµaν

)abc
µνρ

(p, q, k) = gfabc (δµν(p− q)ρ + δνρ(q − k)µ + δρµ(k − p)ν) , (C.1)(
S

(3)
aρcc̄

)abc
µ

(p, q, k) = gfabcqµ. (C.2)

The ghost loop is evaluated straightforwardly, since the ghost is a scalar. For the gluon
loop we encounter an additional complexity by the gauge part of the vertex, Eq. (8.8).
The gluon propagator can be written as

Dµν = DTµν + ξD̄µ
1

D̄2
D̄ν , (C.3)

where T denotes transversal to the gluon momentum. Together with the gauge part
of the vertex, Eq. (8.8), we obtain

δ

δĀµ

1

2
Tr
[
ln
(
−D̄2

)]
, (C.4)

which is the derivative of the Weiss potential. This is the first part of Eq. (8.17).

C.2 Quark loop

In the last section we ignored the colour structure of the loops. Without the background
field any loop of Fig. 8.1 would vanish due to the colour trace involved, e.g. the ghost
loop would be ∝ fabcδac = 0. Let us examine how this changes in the presence of
the background field for the quark loop, which has not been discussed in [74]. In the
presence of the background field we can write the inverse propagator as

S−1 = p4γ4C + ~p~γA+B, (C.5)
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where p4 = ω̃p + gĀ4. If we assume Ā4 = Ā3
4
λ3

2
we can split the inverse propagator into

a part diagonal in colour space and one proportional to λ3 as

S−1 = d1 + aλ3. (C.6)

The colour structure of the quark loop is then schematically written as

Sij
(
λ3
)
ji

= (a− d)−1 + (a+ d)−1, (C.7)

such that we recover the quark part of Eq. (8.19).
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D Gluon fit at finite temperature

In Tab. (D.1) we show the fit results aT,L(T ) and bT,L(T ) for the quenched gluon
propagator in Yang-Mills theory with two and three colours. The input lattice data is
taken from reference [93].

SU(3) SU(2)
T/Tc aL bL aT bT aL bL aT bT
0.361 0.29567 1.09275 0.62218 1.29798 0.65152 1.46758 1.47936 2.08134
0.44 0.18260 1.03256 0.52943 1.22042 0.78840 1.60681 1.28255 1.87418
0.451 0.23248 1.07438 0.72195 1.36889 0.45501 1.36958 1.54486 2.11416
0.549 0.16101 1.08178 0.83129 1.48887 0.31802 1.26464 1.31946 1.89318
0.603 0.15188 1.05689 1.01143 1.57588 0.24538 1.1994 1.43415 1.89887
0.733 0.07633 1.01709 2.3809 2.85269 0.19171 1.22958 1.38301 1.88193
0.903 0.07842 1.06605 1.05309 1.46572 0.15347 1.26558 1.53785 1.84233
0.925 0.08227 1.1021 0.99772 1.43206 0.13216 1.22851 1.47611 1.7706
0.947 0.06870 1.06355 1.88604 2.17354 0.13772 1.23005 1.46541 1.75731
0.968 0.06481 1.07286 1.06106 1.47005 0.13040 1.20892 1.441 1.74285
0.974 0.06101 1.05938 1.37587 1.6823 0.1348 1.22137 1.44207 1.74256
0.98 0.05995 1.06543 0.93796 1.38259 0.14110 1.27387 1.45362 1.75598
0.986 0.06154 1.06812 0.98667 1.42748 0.13627 1.24268 1.46095 1.77597
0.991 0.05526 1.04881 1.09137 1.47191 0.13565 1.22437 1.52035 1.84982
0.996 0.07606 1.0386 0.92578 1.37917 0.13972 1.22201 1.40715 1.69906

1 0.13841 0.98595 0.69330 1.27618 0.17256 1.24356 1.45887 1.79928
1.005 0.10538 0.89338 0.59384 1.17859 0.18431 1.22535 1.45696 1.81378
1.01 0.21321 1.00521 0.70669 1.32059 0.25249 1.23504 1.51804 1.88951
1.02 0.24654 1.01209 0.69189 1.28319 0.35245 1.268 1.38173 1.73514
1.025 0.43520 1.19735 0.68257 1.28175 0.48215 1.34332 1.38838 1.74171
1.03 0.34843 1.09821 0.65923 1.25966 0.48564 1.34751 1.39136 1.7691
1.04 0.37110 1.08848 0.70072 1.3089 0.76786 1.54997 1.40566 1.79054
1.06 0.49990 1.16938 0.75533 1.37162 0.87753 1.56108 1.38763 1.77732
1.08 0.63905 1.23382 0.65493 1.22316 1.10256 1.69241 1.34978 1.75341
1.1 0.53422 1.11342 0.63614 1.19496 1.09275 1.64844 1.44497 1.86777
1.81 0.80583 0.84197 1.15243 1.37157 1.77988 0.77193 1.67666 1.61259
2.2 0.52230 0.58698 1.33834 1.26879 2.05434 0.45680 1.5094 1.34957

Table D.1: Fit results for three and two colour quenched QCD.
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D Gluon fit at finite temperature

Note that we used a different normalisation of the gluon propagator then in [42],
which is why the values differ at the temperatures that where already used in that
reference.
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