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1. Introduction 

1.1. Immune system 

The immune system is the body’s natural guardian against disease. It has evolved as a 

way for us to defend ourselves from invading pathogenic organisms like bacteria, 

parasites and viruses. It equals in complexity the intricacies of the brain and nervous 

system, displays several remarkable characteristics which include distinction between 

“self” and “non-self” and the ability to remember previous experiences and react 

accordingly. Based on the type of response whether it is unspecific or specific, immune 

system can be divided into innate and adaptive immune system respectively (Goldsby 

et al. 2000; Janeway et al. 2001). These two systems are integrated and often interact 

with each other (Hoebe et al. 2004). 

Our first line of defence against any invasion from outside is the innate immune system, 

which also includes a series of unspecific barriers that try to stop the invading 

organisms. Our body surfaces are defended by epithelium, which provides a physical 

barrier between the internal milieu and the external world that, contain pathogens. 

Infections occur only when pathogen can colonize or pass through these barriers. The 

low pH in the intestine and the presence of degrading enzymes also inhibit invading 

pathogens. If a microorganism crosses the epithelial barrier and begins to replicate in 

the tissues of host, in most cases it is immediately recognized by the mononuclear 

phagocytes, or macrophages, that reside in these tissues (Fig. 1). While many cell types 

are capable of endocytosis, only specialized cells like blood monocytes, tissue 

macrophages and neutrophils are capable of phagocytosis. The next line of barrier also 

includes the complement system, which consists of serum proteins that exist in from of 

inactive proenzymes, which gets activated in response to different specific and non-

specific immunologic mechanisms. Once activated, they lead to direct damage to the 

cell membrane of the pathogenic microorganisms or make them more prone to 

phagocytic uptake by binding to the pathogens (opsonisation). 
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Figure 1. Major events in the inflammatory response. A bacterial infection causes tissue damage 

with release of various vasoactive and chemotactic factors. These factors induce increased blood 

flow to the area, increased capillary permeability, and an influx of white blood cells, including 

phagocytes and lymphocytes, from the blood into the tissues. The serum proteins contained in 

the exudate have antibacterial properties, and the phagocytes begin to engulf the bacteria. 

(Goldsby et al. 2000). 

As is evident from the very name of it, “adaptive immune system”, it has the ability to 

adapt to the changes in the threat from the pathogenic microorganisms. Four attributes 

that characterize the adaptive immune system are: specificity, diversity, memory and 

self / non-self recognition.  The antigenic specificity of the immune system permits it to 

distinguish subtle differences among the antigens. The immune system is capable of 

generating tremendous diversity in generating its recognition molecules, allowing it to 

recognize billions of unique structure on foreign antigens (Fig. 2). Some of the cell types 

of the adaptive immune system are long lived and these cells contribute to the 

immunologic memory that makes it possible for the immune system to remember 

foreign molecules that it has experienced before. The next time the same foreign 
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molecule is recognized again, the immune system can mount a specific response much 

faster. Finally, the immune system normally responds only to foreign antigens, 

indicating that it is capable of self/nonself recognition. It is intuitive to think that the only 

important thing for the immune system is to defend the body from pathogenic 

microorganisms, but not to attack the own body is of the same importance, as the 

outcome of an inappropriate response to self molecules can be fatal. 

 

 

 

 

 

 

 

 

 

Figure 2. Distinctive membrane molecules on lymphocytes. (a) B cells have about 105 

molecules of membrane-bound antibody per cell. All the antibody molecules on a given B cell 

have the same antigenic specificity and can interact directly with antigen. (b) T cells bearing 

CD4 (CD4+ cells) recognize only extracellular antigen bound to class II MHC molecules. (c) T 

cells bearing CD8 (CD8+ cells) recognize only intracellular antigen associated with class I MHC 

molecules. In general, CD4+ cells act as helper cells and CD8+ cells act as cytotoxic cells. Both 

types of T cells express about 105 identical molecules of the antigenbinding T-cell receptor 

(TCR) per cell, all with the same antigenic specificity.(Goldsby et al. 2000). 

An effective immune response involves two major groups of cells: lymphocytes and 

antigen presenting cells. The lymphocytes can be of many different types and they are 

all produced by haematopoiesis in the bone marrow. The major groups of lymphocytes 

are T cells and B cells, and both these cell types are antigen specific in their mature 

state. Lymphocytes leave the bone marrow, circulate in the blood and lymphatic system, 

and reside in various lymphoid organs. Because they produce and display the antigen 

binding cell-surface receptors, lymophocytes mediate the defining immunologic 

attributes of specificity, diversity, memory and self / non-self recognition.  
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B cells function as professional antigen presenting cells and they produce antibodies as 

well as different cytokines. The antigen specific receptor of the T cells is called a T cell 

receptor while the antigen specific receptors of B cells are membrane bound antibodies. 

After binding of specific antigen to receptor antibodies, the antigen gets internalized and 

processed into small peptides, which will then be expressed on the surface of B cells 

with MHC class II. As soon as this MHC II-peptide is recognized by a T helper cell, it will 

activate the B cell to start proliferating and differentiating into antibody producing 

plasma cells or memory cells.  

The antibodies produced by B cells are either secreted (plasma cells) or remain as 

membrane bound receptors (memory cells). These molecules are antigen specific. 

There are five different isotypes of antibodies with different functions. These antibodies 

bind to antigens and result in opsonisation or complement activation (Kuby 1997). 

1.2. Autoimmunity  

The concept of autoimmunity was first predicted by Nobel Laureate Paul Ehrlich and he 

described it as `horror autotoxicus´. We now understand that, while mechanisms of self-

tolerance normally protect an individual from potentially self-reactive lymphocytes, there 

are failures. They result in an inappropriate response of the immune system against 

self-components termed autoimmunity. Autoimmune diseases result from three 

interacting components: genetic, environmental and regulatory (Ermann and Fathman 

2001). Potential mechanisms of loss of self tolerance and potential induction of 

autoimmunity could be: 

1 Abnormal B, T cell signalling : Abnormal T cell activation and cell death 

signalling underline the pathology of SLE (Kyttaris et al. 2005). Lupus B cells also 

exhibit abnormal signalling through the B-cell receptor (BCR) (Jenks and Sanz 

2009), mammalian target of rapamycin (mTOR) activation and enhanced Ca2+ 

flux (Fernandez et al. 2006). 

2 Abnormal B, T cell apoptosis : impaired clearance of apoptotic cardiocytes, in 

infants born to mothers with SLE or Sjogren’s syndrome has been linked to anti-
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SSA/Ro and –SSB/La antibodies in the pathogenesis of congenital heart block 

(Clancy et al. 2006).   

3 Abnormal autoantigen handling: abnormal clearance mechanisms can allow 

the persistence of antigenic stimulation. Immune responses that specificall target 

apoptotically modified form of lupus autoantigen have been identified in lupus 

patients (Greidinger 2001). 

4 Abnormal autoantigen modification: Although autoantigens targeted in 

systemic autoimmune diseases share little in common in terms of structure, 

subcellular distribution, or function in normal cells, these molecules are unified by 

becoming clustered and concentrated in the surface blebs of apoptotic cells. 

Furthermore, their structure is altered during some types of cell death to generate 

structures not previously generated during development and homeostasis 

(Rosen and Casciola-Rosen 2004). 

5 Abnormal recognition of MHC class II: A striking characteristic of human 

autoimmune diseases is the increased frequency of certain HLA class II alleles in 

affected individuals. Since alleles positively associated with autoimmune 

diseases share amino acid residues in the hypervariable HLA regions involved in 

peptide binding, it is likely that disease associated class II molecules have the 

capacity to bind the autoantigen and present it to T cells, thereby inducing and 

maintaining the autoimmune disease (Adorini 1992). 

6 Molecular mimicry: Although the triggering event in most autoimmune diseases 

is unknown, an infectious cause has long been postulated to explain the 

development of autoimmunity. Molecular mimicry is one mechanism by which 

infectious agents (or other exogenous substances) may trigger an immune 

response against autoantigens. According to this hypothesis a susceptible host 

acquires an infection with an agent that has antigens that are immunologically 

similar to the host antigens but differ sufficiently to induce an immune response 

when presented to T cells. As a result, the tolerance to autoantigens breaks 

down, and the pathogen-specific immune response that is generated cross-
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reacts with host structures to cause tissue damage and disease. In Guillain-Barré 

syndrome antigenic epitopes are shared between Campylobactor glycoproteins 

and structures of the myelin sheath (Albert and Inman 1999; Goodyear et al. 

1999) . 

5 Abnormal regulatory cells: The crucial role of regulatory cells in self-tolerance 

and autoimmunity has been clearly established in numerous types of regulatory 

cells, the majority of which are CD4+ T cells. Much focus has been placed on 

thymically derived CD4+CD25+ regulatory T cells, given that the depletion of this 

subset in murine models results in the spontaneous development of autoimmune 

diseases (Asano et al. 1996). 

6  Excessive polymorphism of autoantigens: Autoimmune diseases can be 

either organ-specific or systemic. In an organ-specific autoimmune disease, the 

immune response is directed to a target antigen unique to a single organ or 

gland, so that the manifestations are largely limited to that organ. The cells of the 

target organs may be damaged directly by humoral or cell-mediated effector 

mechanisms. Alternatively, the antibodies may overstimulate or block the normal 

function of the target organ. Few examples of this type of autoimmune disease 

are Hashimoto’s thyroiditis, Goodpasture’s syndrome, Insulin-dependent 

diabetes mellitus, which are mediated by direct cellular damage and others are 

Graves’ disease, Myasthenia gravis, which are mediated by stimulating or 

blocking autoantibodies (Besinger et al. 1983; Bach 1994; Drachman 1994).  In 

systemic autoimmune diseases, the response is directed towards a broad range 

of target antigens and involves a number of organs and tissues. These diseases 

reflect a general defect in immune regulation that results in hyperactive T cells 

and B cells. Tissue damage is widespread, both from cell-mediated immune 

responses and from direct cellular damage caused by autoantibodies or by 

accumulation of immune complexes (Klinman 1989; Lin et al. 1991). 

Myasthenia gravis (MG) usually presents in young adult or later adult life as muscle 

weakness and excessive fatigue during repetitive movements. It most often involves the 
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extraocular muscles of the eye with double vision and ptosis at onset, but usually 

progresses to generalized weakness. Cholinesterase inhibitors, by prolonging the action 

of ACh, tend to lead to clinical improvement. It is the prototype autoimmune disease 

mediated by pathogenic antibodies. These autoantibodies are directed against various 

nicotinic Acetylcholine receptor (AChR) on the neuromuscular junction or helper 

proteins of the receptor such as the muscle-specific kinase MUSK (Vincent and 

Newsom-Davis 1985; McConville et al. 2004). Interestingly, the anti-AChR antibodies do 

not block the receptor directly, but they lead to a cross-linking of receptor molecules and 

an internalisation of the receptor-antibody complexes (Elias et al. 1978; Appel et al. 

1979). 

1.3. Idiopathic inflammatory myopathies/ myositis 

The idiopathic inflammatory myopathies comprise several diseases of which 

polymyositis (PM), dermatomyositis (DM) and sporadic inclusion body myositis (IBM), 

collectively called myositis are the most common. Apart from these three well-

characterised syndromes, some patients can have postinfectious or unclassified 

myositis. The inflammatory myopathies are a heterogeneous group of subacute, 

chronic, or acute acquired diseases of skeletal muscle (Dalakas and Hohlfeld 2003) 

(Christopher-Stine and Plotz 2004). These disorders are characterized by a clinical 

spectrum which includes muscle, skin and lung diseases, other associations including 

cancer and specific autoantibodies (Bohan and Peter 1975 a; Bohan and Peter 1975 b; 

Love et al. 1991; Targoff 2006; Targoff et al. 2006). Their etiology is not known but 

genetic and environmental factors are believed to contribute to disease susceptibility 

and to clinical phenotypes.  

1.3.1. Clinical features 

The most often used diagnostic or classification criteria for PM and DM were proposed 

by Bohan and Peter in 1975 (Bohan and Peter 1975; Bohan and Peter 1975 a; Bohan 

and Peter 1975 b). Later in a proposed revision of the Bohan and Peter criteria, 

Magnetic resonance imaging to identify inflamed areas in muscle and autoantibodies 

were also included. Although all classifications identify these disorders as part of a 
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single disease spectrum, certain important features are used to separate subsets. 

• Symmetrical proximal muscle weakness of limb-girdle muscles and anterior neck 

flexors progressing over weeks to months, with or without disphagia or 

respiratory muscle involvement. 

• Elevation of serum skeletal muscle enzymes, particularly creatine phosphokinase 

(CK) often aldolase, serum alanine aminotransferase (ALAT), aspartate 

aminotransferase (ASAT) and lactate dehydrogenase (LD). 

• Electromyographic changes (EMG) indicating muscular impairment i.e. 

polyphasic short small motor neuron potentials, fibrillation, positive sharp waves, 

increased insertional irritability, and repetitive high frequency discharges. 

• Muscle biopsy evidence of Type I and II fibre phagocytosis, regeneration with 

basophila, large vesicular sarcolemal nuclei and prominent nucleoli, atrophy in a 

perifascicular distribution, variation in fibre size and inflammatory exudates, often 

perivascular. 

• Characteristic cutaneous manifestations of dermatomyositis (DM) including lilac 

discoloration of eyelids (heliotrope) with periorbital edema, a scaly, 

erythemathosis dermatitis over dorsum of the hands (especially the 

metacarpophalengeal and proximal interphalangeal joints (Gottron’s sign)). This 

type of distribution is considered to be virtually pathognomonic of DM. 

Myositis (refers to all three subsets) patients within different subsets have distinct 

clinical, histological and serological characteristics. Certain important features used to 

separate these subsets include the distinctions between childhood and adult onset, PM 

versus DM and the presence or absence of malignancy and other connective tissue 

diseases. This suggests the involvement of different mechanisms in the development of 

different subsets of myositis. 

Most patients with PM or DM present with subacute or slowly progressive, usually 

symmetric, proximal muscle weakness. These patients also suffer from decreased 
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muscle endurance and fatigue, disabling them from daily activities.   

DM is primarily characterized by muscular and cutaneous manifestations (Dalakas and 

Hohlfeld 2003; Briani et al. 2006; Callen and Wortmann 2006). The onset of DM may be 

acute or insidious and distal muscles being involved very late. The extensor muscles of 

the neck may be involved, causing difficulty in holding up the head. Myositis patients 

with severe muscle weakness can potentially end up wheelchair-bound and requiring 

assisted ventilation. The most common clinical signs are reduction of the muscular 

strength in the proximal muscles, contractures and, late in the course of the disease, 

muscular atrophy.    

1.3.2. Extramuscular manifestations 

1.3.2.1. Cutaneous manifestations: Dermatomyositis is identified by a characteristic 

rash accompanying or, preceding muscle weakness. The most common and peculiar 

skin manifestations are: (1) violaceous erythematous papules which may be observed 

on the extensor surface of metacarpophalangeal, proximal and distal interphalangeal 

joints (Gottron’s sign) (Fig. 3 A), while Gottron’s papules are found covering other bony 

prominences such as elbows, knees etc; (2) heliotrope rash, a purplish erythema, with 

or without oedema, in a symmetrical distribution involving periorbital skin (Fig. 3 B). 

Several other cutaneous features, characteristic of the disease are malar erythema, 

periungual teleangiectasia with or without dystrophic cuticles, vasculitic skin 

manifestations consisting of subcutaneous nodules, erythema, periungual infarctions, 

and digital ulcers, calcification in the subcutaneous tissues leading to subcutaneous 

painful hard nodules, and Raynaud’s phenomenon which is more common in patients 

with idiopathic DM and in DM associated with connective tissue diseases. 
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Figure 3. Rash in dermatomyositis. (A) Gottron’s rash (circled); (B) Heliotrop rash (circled). 

In children, DM resembles the adult disease, except for more frequent subcutaneous 

calcifications, vasculitic skin changes, and extramuscular manifestations.  

DM can be associated with cancer or may overlap with systemic sclerosis and mixed 

connective-tissue disease. Patients with inflammatory myopathies have higher risk of 

malignancy than the normal population. In DM, it has been reported to occur in 

approximately 30% of cases with a higher occurrence in men and in old age (Dalakas 

and Hohlfeld 2003; Briani et al. 2006; Callen and Wortmann 2006). 

1.3.2.2. Pulmonary disease: Pulmonary complications constitute important clinical 

manifestations of PM or DM. The lungs may be involved either primarily or as a 

complication of muscle weakness. The reported prevalence of lung involvement in PM 

and DM varies from 5 to 65 %, (Hepper et al. 1964; Marie et al. 1998; Douglas et al. 

2001; Fathi et al. 2004) depending on whether clinical, radiological, functional or 

pathological criteria have been used. The most common pulmonary disorder in PM and 

DM is interstitial lung disease (ILD), not always related to muscle symptoms and is one 

of the hallmarks of anti-synthetase syndrome. ILD can appear before, at the same time 

or after the onset of skin or muscle symptoms. The presence of ILD in patients with 
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myositis affects the prognosis, with increased morbidity and mortality, and this often 

also has an influence on the choice of immunosuppressive treatment. 

1.3.2.3. Heart involvement:  The clinical cardiac manifestations most frequently 

reported in IIMs, myositis, are congestive heart failure, conduction abnormalities and 

coronary artery disease. The frequency of heart involvement in myositis varies between 

6% and 75% depending on patient selection, definition of heart involvement, whether 

clinical manifest or subclinical cardiac involvement is considered, and methods used to 

detect cardiac involvement (Bohan et al. 1977; Gottdiener et al. 1978; Taylor et al. 

1993). Also children with juvenile DM may develop cardiac involvement although the 

frequency seems to be low. ECG abnormalities observed in PM and DM patients 

include atrial and ventricular arrhythmias, bundle branch block, A-V blocks, high- grade 

heart block, prolongation of PR-intervals, ventricular premature beats, left atrial 

abnormality, abnormal Q-waves, as well as non-specific ST-T wave changes. 

Though clinically significant cardiac involvement is infrequent in PM and DM, but 

cardiovascular manifestations constitute a major cause of death (Bohan et al. 1977 ; 

Hochberg et al. 1986). Based on available data it can be suggested that inflammation of 

the heart muscle could be important in the pathophysiologic mechanisms which could 

lead to myocarditis and congestive heart failure or conduction disturbances in patients 

with myositis.  

1.3.2.4. Other organ involvement: Other organs that are frequently involved in 

myositis are the pharyngeal and gastrointestinal muscles. The most common GI 

symptom is dysphagia and disordered esophageal motility. 

1.3.2.5. Malignancy: Although all the inflammatory myopathies can have a chance 

association with malignant disease, especially in older age-groups, the frequency of 

cancer is definitely increased in DM (Sigurgeirsson et al. 1992; Buchbinder et al. 2001). 

The most common cancers are those of the ovaries, gastrointestinal tract, lung, and 

breast and non-Hodgkin lymphomas (Hill et al. 2001). The increased risk is both at the 

time of DM diagnosis but also after more than 10 years duration of disease (Callen 

2002). There have been some recent reports linking polymyositis also with malignancy 
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of one or the other type. These reports include: paraneoplastic polymyositis associated 

with; squamous cell carcinoma of the lung (Gabrilovich et al. 2006); with transitional cell 

carcinoma of the bladder (Bouropoulos et al. 1997); thymic carcinoma (Inoue et al. 

2009) and a renal carcinoma (Wurzer et al. 1993).  

1.3.2.6. Overlap syndromes: PM and DM are seen in association with various 

autoimmune and connective tissue diseases (Table 1). The term overlap syndrome 

indicates that certain clinical signs are shared by both disorders. Myositis-overlap 

syndromes are characterized by a heterogeneous group of clinical syndromes of which 

many are closely linked with specific autoantibodies. It is only DM, and not PM, that truly 

overlaps and that too only with systemic sclerosis and mixed connective-tissue 

diseases. In a recent report DM has been shown to overlap with lupus (Dayal and 

Isenberg 2002). 

 

Table 1. Conditions and factors associated with inflammatory myopathies (Dalakas and Hohlfeld 

2003). 

 

1.3.3. Epidemiology 

The IIMs are rare disorders and the reports of incidence and prevalence are limited. In 

PM/DM several different classification systems have been proposed. Although all 

classifications identify these disorders as part of a single disease spectrum, certain 

important features are used to separate subsets. The different incidences in different 

population based studies, might be due to varying inclusion criteria as well as varying 

case retrieval strategies used in these studies, which makes comparisons difficult, but 
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ethnic or geographical differences can not be excluded (Benbassat et al. 1980; Oddis et 

al. 1990; Weitoft 1997).  

1.3.3.1. Incidence by Age, Race and Sex: Although inflammatory myopathy can occur 

at any age, the observed pattern of incidence includes childhood and adult peak and a 

paucity of patients with onset in the adolescent and young adult years. The incidence 

sex ratio is: 2.5:1 female to male (Benbassat et al. 1980; Oddis et al. 1990; Leff et al. 

1991; Symmons et al. 1995; Vegosen et al. 2007). This ratio is lower (nearly 1:1) in 

childhood disease and with associated malignancy, but is very high 10:1 when there is 

an associated connective tissue disease. PM/DM has a 3-4:1 Black to White incidence 

ratio. 

1.3.3.2. Environmental factors: The etiology of myositis is most likely interplay 

between genetic susceptibility and exposure to certain environmental factors. Disease 

onset is more frequent in the winter and spring months, especially in childhood cases, 

consistent with precipitation by viral and bacterial infections. Seasonal patterns in the 

onset of myositis characterized by disease-specific autoantibodies such as anti-Jo1 and 

anti-signal recognition particle (SRP) has been reported, indicating a common 

environmental factor contributing to the disease (Leff et al. 1991; Vegosen et al. 2007). 

In one study, PM/DM patients reported excessive physical exercise, antedating illness 

significantly more frequently than controls, but this association has not been confirmed. 

1.3.3.3. Genetic susceptibility: Myositis is associated with certain HLA-DR genotypes 

(Arnett et al. 1996; Shamim et al. 2000; Badrising et al. 2004; O'Hanlon et al. 2006). 

White children with DM and adults with PM have an increased frequency of HLA-

B8/DR3, and HLA-B14 and B40 have been observed more commonly in adults with DM 

coexisting with another connective tissue disease. HLA is considerably more closely 

linked to several recently identified serum autoantibodies which have been found to 

define clinically homogenous patient groups. Anti-Jo1 antibody patients have a 

significantly increased frequency of HLA-DRw52 compared with control person, and 

those with anti-PM-Scl, nearly all possess HLA-DR3 or DRw52. 
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1.3.3.4. Viral infections: Many patients with myositis have reported that their clinical 

symptoms have appeared and persisted after a cold or flu episode. Infection with 

different viruses such as coxacievirus, adenovirus, parvovirus B19 and the retrovirus 

human immunodeficiency virus (HIV) has been associated with myositis (Travers et al. 

1977; Dalakas et al. 1986; Harland et al. 1991; Jongen et al. 1994; Chevrel et al. 2000; 

Crowson et al. 2000; Douche-Aourik et al. 2003; Dalakas et al. 2007). Potential 

mechanisms through which an infection can lead to an autoimmune disease process 

include molecular mimicry, epitope spreading, bystander activation, polyclonal activation 

and viral superantigen activation (Wucherpfennig 2001). 

1.3.4. Etiology 

As the name idiopathic inflammatory myopathies, the causes of the PM or DM are 

unknown. However, infectious agents, drugs, toxins, genetic factors all have claimed for 

attention as etiologic agents in IIMs. The rarity of myositis has precluded concordance 

studies in twins, but reports of multicase families support a familial predisposition 

(Shamim et al. 2000). According to a recent study different immunogenetic profiles 

influence both clinical phenotype and the pattern of circulating myositis-specific 

autoantibodies (Chinoy et al. 2006).   

A recent work provides evidence that seasonal birth distributions of Hispanic juvenile 

IIM patients, juvenile IIM patients with the p155 autoantibody, and juvenile patients with 

certain HLA alleles differ from the birth distributions of patients in other subgroups or 

from the birth distribution of a population of individuals not known to have an 

autoimmune disease. It also suggests that early environmental influences have a 

greater influence on childhood-onset myositis than on adult-onset myositis (Vegosen et 

al. 2007). 

1.3.5. Pathogenesis 

1.3.5.1. Immune mechanisms: The causes and pathogenesis of myositis remains 

unclear but immune mechanisms are strongly implicated. The autoimmune origin of 

these diseases is supported by their association with other autoimmune disorders, 

autoantibodies (Targoff 2002), and histocompatibility genes; the evidence of T-cell-
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mediated myocytotoxicity or complement-mediated microangiopathy, and their response 

to immunotherapy. Investigations of skeletal muscle tissue suggest that both the 

skeletal muscle fibres and the microvasculature could serve as targets of the immune 

response through involvement of mononuclear inflammatory cells and their mediators 

(Hohlfeld and Engel 1994; Targoff 2000; Dalakas 2002 a; Dalakas and Hohlfeld 2003).  

1.3.5.2. Inflammatory infiltrates: Based on major patterns of inflammatory infiltrates in 

skeletal muscle tissue in myositis, these diseases can be distinguished: (a) Endomysial 

infiltrates with primarily CD8+ T cells surrounding and invading muscle fibers and with 

macrophages, less common CD4+ T cells, mainly observed in patients with PM and 

IBM; (b) Perivascular infiltrates predominantly composed of CD4+T cells, macrophages 

and occasionally B cells are mainly detected in DM patients (Fig. 4 A and B) (Arahata 

and Engel 1984; Engel and Arahata 1984). Though these diseases share three 

dominant histological features that are ultimately responsible for the clinical signs of 

muscle weakeness: inflammation, fibrosis and loss of muscle fibers, yet they are 

clinically and immunopathologically distinct (Engel and Arahata 1984; Hohlfeld and 

Engel 1994; Dalakas 1995).  

  

 

Figure 4. (A) H & E staining of a muscle from Dermatomyositis patient showing perivascular 

infiltration. (B) H & E staining of a muscle from Polymyositis patient showing endomysial 

infiltration. 



Introduction 

16 

 

1.3.5.3. Immune cells in myositis: T cells are frequently present in the muscle tissue 

in all subsets of myositis but with large individual variations. Electron microscopy 

studies of inflamed muscle tissue from polymyositis patients suggested that CD8+T 

cells are cytotoxic to muscle fibres (Arahata and Engel 1986). These CD8+ as well as 

CD4+ muscle-infiltrating T cells have been shown to be perforin positive (Goebels et al. 

1996), suggesting a possible T cell-muscle cell interaction. In patients with PM and IBM, 

but not in DM, only certain T cells of specific TCRα and TCRβ families are recruited to 

the muscle from the circulation (Mantegazza et al. 1993; O'Hanlon et al. 1994a; Bender 

et al. 1995). Cloning and sequencing of the amplified endomysial or autoinvasive TCR-

gene families have demonstrated a restricted use of the Jβ gene with a conserved 

amino acid sequence in the CDR3 region, indicating that CD8+ cells are specifically 

selected and clonally expanded in situ by muscle specific autoantigens (Salajegheh et 

al. 2007). A cytotoxic effect of T cells is still a subject of controversy since no muscle-

specific antigens have been identified and since an expression of the co-stimulatory 

molecules CD80/86, normally required for functional interaction, has not been detected 

in inflamed muscle fibres (Yamada et al. 2001).  

Though inflammatory cell infiltrates in muscle tissue, often decrease after conventional 

immunosuppressive treatment, yet in some cases the inflammatory cells may persist 

(Bunch et al. 1980; Lundberg and Chung 2000; Korotkova et al. 2008). 

1.3.5.4. Immunological molecules: In the skeletal muscle tissue of healthy individuals 

only the presence of occasional mononuclear cells or expression of immunological 

molecules can be observed (Malm et al. 2000; Dorph et al. 2006). Inflammatory cells, 

adhesion molecules, pro-inflammatory cytokines and chemokines detected by 

immunohistochemistry are usually over-expressed in muscle tissue of myositis patients 

compared to in healthy individuals, leading to the belief of their involvement in the 

pathogenesis of myositis. Complement activation leading to the formation and 

deposition of membranolytic attack complex on the endomysial microvasculature, 

resulting in capillary necrosis, inflammation, ischemia and perifscicular atrophy has 

been seen in DM (Hohlfeld and Engel 1994; Dalakas 2002 b; Dalakas and Hohlfeld 

2003) while in polymyositis an antigen-directed and MHC class I restricted CD8 T cel 
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mediated cytotoxicity has been implicated. The above is supported by following reports: 

the cytotoxicity of endomysial T cells to autologous myotubes (Hohlfeld and Engel 

1994); the clonal expansion of autoinvasive T cells and the restricted usage of T cell 

receptor gene families (Mantegazza et al. 1993; O'Hanlon et al. 1994b; Bender et al. 

1995; Amemiya et al. 2000; Benveniste et al. 2001; Nishio et al. 2001); the upregulation 

of co-stimulatory molecules (Behrens et al. 1998; Murata and Dalakas 1999); and the 

release of perforin granules by autoinvasive CD8 cells to lyse muscle fibres (Goebels et 

al. 1996). Upregulated chemokines, cytokines and adhesion molecules enhance the 

transmigration of T cells from the circulation to the muscle (Choi and Dalakas 2000; 

Figarella-Branger et al. 2003). What triggers complement activation in DM or T cell 

activation in PM still remains unclear. 

1.3.5.5. Humoral immunity: Presence of B cells in DM and to a lesser extent in PM 

and IBM patients support the involvement of humoral adaptive immunity in these 

diseases (Arahata and Engel 1984; Greenberg et al. 2005; Bradshaw et al. 2007). It 

appears that the disease is driven, at least partly, by a loss of self tolerance with the 

production of autoantibodies. Up to 80% of patients with PM or DM, but less commonly 

in patients with IBM, have autoantibodies (Levine 2005; Noss et al. 2006). Evidently, 

plasma cells detected in muscle tissues of PM and IBM patients had undergone 

oligoclonal expansion, and affinity maturation as well as isotype switching had occurred 

in individual cells, suggesting that antigen drives a B cell antigen-specific response in 

muscle tissue of myositis patients (Bradshaw et al. 2007).  

The most common autoantibodies are antinuclear autoantibodies. Some of the 

autoantibodies are often found in other inflammatory connective tissue diseases (for eg. 

Anti-PMScl, anti-SSA, and anti-SSB) and are called myositis-associated autoantibodies. 

Other autoantibodies, called myositis specific autoantibodies, are more specific for 

myositis, although they might not be found exclusively in myositis but occasionally in 

other patients. Recent investigations have demonstrated that about 20% to 30% of 

myositis patients have autoantibodies seen mainly in patients with myositis. Anti-Jo-1 

(antihistidyl-tRNA synthetase) is the most prevalent MSA (myositis specific antibodies) 

and the most common of the eight anti-aminoacyl-tRNA synthetase autoantibodies 
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(anti-ARSs) currently described (Nishikai and Reichlin 1980; Mimori et al. 2007; 

Gunawardena et al. 2009a). These autoantibodies target cytoplasmic enzymes that 

catalyze the binding of specific amino acids to their cognate tRNA and define the anti-

synthetase syndrome (ASS) (Targoff and Reichlin 1985). Autoantibodies to Mi-2 are 

detected in patients with hallmark dermatomyositis features. Mi-2 is a nuclear helicase 

protein that forms part of the nucleosome remodelling deacetylase (NuRD) complex 

playing a role in gene transcription (Wang and Zhang 2001). In recent years, a number 

of novel MSAs have also been described. Sato et al. (Sato et al. 2005) identified an 

autoantibody in Japanese patients with clinically amyopathic dermatomyositis (CADM) 

and rapidly progressive lung disease. This autoantibody (known as anti-CADM140) 

targets a cytoplasmic 140-kDa protein melanoma-differentiation associated gene 5 

(MDA5). This autoantigen is involved in the innate immune defence against viral 

infections through the detection of viral dsDNA (Takeuchi and Akira 2008). In addition, 

anti-p155/140 autoantibodies have been reported in adult and juvenile dermatomyositis 

(Targoff et al. 2006; Kaji et al. 2007; Chinoy et al. 2007 a). Targoff et al. identified 

p155/140 as transcriptional intermediary factor 1-gamma (TIF1-g), a nuclear protein 

involved in cellular differentiation. The most striking feature of anti-p155/140 

autoantibodies is the association with malignancy in adults. Gunawardena et al. have 

described autoantibodies to a p140 kDa target in juvenile dermatomyositis 

(Gunawardena et al. 2009b). The p140 kDa target has recently been identified as 

nuclear matrix protein NXP-2, involved in nuclear transcription. Finally, Betteridge et al. 

have described anti-SAE (small ubiquitin-like modifier activating enzyme) 

autoantibodies in adult dermatomyositis patients (Betteridge et al. 2007; Betteridge et 

al. 2009 a). The target autoantigen, small ubiquitin like modifier-activating enzyme is a 

protein involved in posttranslational modification that is located in both the nucleus and 

cytoplasm of cells (Dohmen 2004). 

1.3.5.6. Major histocompatibility complex (MHC) class I antigen: The Major 

Histocompatibility Complex (MHC) is a set of molecules displayed on cell surfaces that 

are responsible for lymphocyte recognition and "antigen presentation". The MHC 

molecules control the immune response through recognition of "self" and "non-self". The 

Class I and Class II MHC molecules belong to a group of molecules known as the 
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Immunoglobulin Supergene Family, which includes immunoglobulins, T-cell receptors, 

CD4, CD8, and others.  Class I MHC molecules bind peptides and present them to 

CD8+T cells. In general these peptides are derived from enoodgenous intracellular 

proteins that are digested in the cytosol. The peptides are then transported from the 

cytosol into the cisternae of the endoplasmic reticulum, where they interact with class I 

MHC molecules. This process is know as the cytosolic or endogenous processing 

pathway (Fig. 5). 

Muscle fibres of most myositis patients, in contrast to those of healthy individuals, 

express MHC class I antigen. The over-expression of MHC class I molecules is an early 

event in many autoimmune diseases, since it is a prerequisite for the cytolytic action of 

cytotoxic T lymphocytes. MHC class I molecules by themselves can have a deleterious 

effect on cell types that do not constitutively express these molecules (Nagaraju 2005). 

Normal human skeletal myoblasts constitutively express low levels of MHC class I 

molecules under cell culture conditions (Hohlfeld and Engel 1991; Nagaraju et al. 1998). 

Muscle fibres of healthy individuals do not express detectable levels of MHC class I 

antigens, although these fibres have been shown to express MHC class I in several 

autoimmune muscle diseases (Appleyard et al. 1985; Emslie-Smith et al. 1989). A 

transgenic mouse model that constitutively over-expresses MHC class I in skeletal 

muscle fibres develops clinical, biochemical, histological and immunological features 

similar to those of human myositis (Nagaraju et al. 2000). Some investigators advocate 

characterize DM patients histologically by MHC class I antigen expression 

predominantly located to perifascicular muscle. 

The explanation for the MHC class I expression on muscle fibres in human myositis is 

unknown. An endoplasmic reticulum stress response is suggested to be a link between 

MHC class I up-regulation and muscle damage and dysfunction in PM and DM. Over-

expression of MHC class I induced an ER-stress response in mouse model, by up-

regulating nuclear factor (NF)-kB, which is strongly activated in myositis and can 

suppress myoblast differentiation and induce pro-inflammatory cytokines causing 

muscle damage. 
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Figure 5. Cytosolic and nuclear proteins are degraded by the proteasome into peptides. The 

transporter for antigen processing (TAP) then translocates peptides into the lumen of the 

endoplasmic reticulum (ER) while consuming ATP. MHC class I heterodimers wait in the ER 

for the third subunit, a peptide. Peptide binding is required for correct folding of MHC class I 

molecules and release from the ER and transport to the plasma membrane, where the peptide is 

presented to the immune system. TCR, T-cell receptor (Kuby 1997).  

1.3.5.7. Enhanced autoantigen expression: Casciola-Rosen et al demonstrated 

enhanced expression of both Mi-2 and Jo-1 in myositis muscle compared with normal 

muscle, and this was primarily observed in regenerating muscle rather than in mature 

myotubes (Casciola-Rosen et al. 2005). They also showed that myositis autoantigen 

expression is also markedly increased in several cancers known to be associated with 

autoimmune myositis, but not in their related normal tissues, showing the similarity 

between tomor cells and undifferentiated myoblasts. Work from Casciola-Rosen et al. 
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and Zampieri et al supports the hypothesis that the presence of candidate myositis 

autoantigens during reparative myogenesis and in cancer-associated myositis, an 

autoimmune response directed against cancer, cross reacting to regenerating muscle 

cells can drive induction and propagation of the autoimmune response (Casciola-Rosen 

et al. 2005; Zampieri et al. 2008).   

1.3.6. Treatment  

The general recommended treatment of PM and DM is based on immunosuppressive 

agents, starting with high dosage of glucocorticosteroids often in combination with 

methotrexate, azathioprine (Oddis 1994; Adams and Plotz 1995; Mastaglia et al. 1997). 

Glucocorticosteroids can reduce the inflammatory infiltrates in muscle tissue and 

thereby decrease the expression of some pro-inflammatory molecules and adhesion 

molecules (Lundberg and Chung 2000). 

In a placebo-controlled trial high-dose IVIg was beneficial in treatment resistant DM 

patients, both regarding muscle function and muscle histopathology (Dalakas et al. 

1993). Although the clinical effects were accompanied by decreased ICAM-1 and MHC 

class I expression in repeat muscle biopsies, the number of patients that were subject to 

repeat biopsy was small. In case of PM patients treated with IVIg, only the clinical 

reports are available to date (Cherin et al. 1990; Cherin et al. 1991; Cherin et al. 2002; 

Danieli et al. 2002). So before plunging to start treating myositis patients with IVIg, 

further investigation of the underlying molecular mechanisms is necessary.     

There are few studies reporting varying effects of treatment with tumor necrosis factor 

(TNF) blockers in patients with PM or DM. TNF blockade has been inconsistent and 

even worsened disease in some reported cases (Hengstman et al. 2003; Hengstman et 

al. 2004), again underscoring the need to understand the molecular mechanisms 

involved in these diseases. 
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2. Aim  

Since inflammatory histopathology could be found in the muscles of IIM patients and 

steroids or other immunosuppressantrs are helpful in DM/PM, an autoimmune etiology 

was proposed in these diseases. Aim of the study was to identify and characterize the 

muscle specific autoantigens in IIMs, using different autoantibody detection methods 

and protein biochemistry approach, such as 2-DE and mass spectrometry. The project 

aimed at answering following questions: 

First, do the patients have muscle-specific or endothelial cell specific autoantibodies? If 

yes, which are the underlying autoantigens? 

Second, do the autoantibodies from myositis patients have any functional effects? 

Thirdly, do the statins, reported to stimulate expression of MHC class I on muscle cells 

leading to the development of myopathy, affect expression of MHC class I , TAP and 

LMP ( involved in class I antigen presentation) in vitro on muscle cells? 
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3. Patients 

Serum was obtained from 41 patients with inflammatory muscle diseases (mean age 

50.3 ± 17.8 years; 24 female / 17 male) after informed consent and approval of the local 

ethical committee. 11 patients had polymyositis and 15 patients had dermatomyositis 

according to the criteria of Bohan and Peter (Bohan and Peter 1975; Bohan and Peter 

1975 a; Bohan and Peter 1975 b). The other myositis patients (n=15) had unclassified 

or postinfectious myositis. The epidemiological data of the groups are given in table 2. 

The mean duration of myositis at the time the serum sample was obtained was 1.1 ± 0.7 

years. Sera of 26 healthy people (HC) served as controls (mean age 51.5 ± 18.2 years, 

15f / 11m).  

 

 

Diagnosis n Mean age ±±±± StDev Female / Male 

Dermatomyositis 15 42.4 ±±±± 19.0 12f / 3m 

Polymyositis 11 63.1 ±±±± 12.1 6f / 5m 

Unclassified 

myositis 
15 49.2 ±±±± 14.9 6f / 9m 

 

Table 2. Patient data of myositis patients. 
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4. Materials 

4.1. Chemicals and Solutions 

 

Acetic Acid 100% Merck 
Agarose multipurpose Bioline GmbH 
Ammoniumpersulfat APS Roth 
Antioxidant Invitrogen 
5-bromo 4-chloro 3-indolyl phosphate / nitro-blue 
tetrazolium chloride (BCIP/NBT)-Blue Liquid 
Substrate 

Sigma Aldrich 

BDH crystalline Trypsin (bovine pancreas) Sigma Aldrich 
Bovine Serum Albumine, Fraction V (BSA)  Sigma Aldrich 
Bromphenolblue Neolab 
β-Mercaptoethanol                                                  
    

Fluka 

CelLyticTM M Cell Lysis Reagent Sigma 
Deoxiribunuclease 1, Type 4 bovine pancreas Sigma Aldrich 
Destilled Water „Aqua ad injectabilia“ Braun 
D(+)Glucose Gibco 
Dimethylsulfoxide (DMSO) Roth 
Ethylendiamintetracetic acid (EDTA) 0,5M  Roth 
Ethanol 100 %             Sigma Aldrich 
Ethanol for Molecularbiology 100%  Merck 
Ethidiumbromid  Merck 
Ficoll-PaqueTM Plus Amersham 
5-Fluoro-2´-deoxyuridine Merck 
Glycerol Roth 
Glycin Merck 
H-EBSS Gibco 
Hepes Sigma 
Interferon γ (IFN-γ)  Provitro 
IgG-Standard Sigma 
Isopropanol Merck 
Potassiumchlorid (KCl) Merck 
Potassiumdihydrogenphosphat (KH2PO4) Merck 
4x SDS sample Buffer (for WB) Invitrogen 

Methanol Merck 
Magnesiumsulphate (MgSO4) Sigma 

Sodiumchloride (NaCl) Roth 

Sodiumhydrogencarbonate (NaHCO3) Merck 
Disodiumhydrogenphosphate (Na2HPO4) Merck 

Sodiumdihydrogenphoaphate (NaH2PO4) Merck 

Sodiumazide (NaN3) Merck 

Non-fat dry milk, blotting grade  Bio-Rad 



        Materials 

25 

 

NuPage SDS MOPS Running Buffer Invitrogen 
PageRuler™ Prestained Protein Ladder  Fermentas 

Paraformaldehyde (PFA) Sigma Aldrich 

Phosphate Buffered Saline (PBS) 10x (for 
cellcultur!) 

Gibco 

Poly-L-lysin-hydrobromide  Sigma 

Ponceau S Sigma / Roth 

Protease Inhibitor Cocktail Sigma 
Protein G-Sepharose  GE Healthcare Bio-Science AB 
Quick Load 1kb DNA Ladder Biolabs 

RNAse free Water  

Rotiphorese Gel 30 = 30 % Acrylamide-Mix Applichem 

Sample reducing Agent (10x) Roth 

Saponin Invitrogen 

Sodiumdodecylsulfate (SDS) Sigma 

Tris-Acetat-EDTA Buffer (TAE) 10x Neolab 
Trichlor-Acetic acid (20%) Roth 

Trishydroxymethylaminomethan (Tris) Roth 

Tris-HCl  Sigma 

Trypanblue USB 
Trypsin (2,5g/l)  Roth 

5% Trypsin-EDTA (10x) Gibco 

Trypsin inhibitor Type I-S: from Soybean Gibco 
Trypsin Type XII-S Sigma Aldrich 

Tween20 Sigma Aldrich 

  

4.2.  Consumables 

 

Cellstar® 6 Well Cell Culture Plate Greiner bio-one 
Cellstar® Plastikpipettes (5 ml, 10 ml) Greiner bio-one 
Cellstar® U-shape with Lid, TC-Plate, 96 well, sterile    Greiner Bio-one 
Cellstar®  75 cm2 Cell cultur flasks Greiner Bio-one 
Cryobox 136x136x130 mm Ratiolab GmbH 
Cryo TubeTM vials (1,8 ml; 4,5 ml) Nunc 
Disposable scalpel, sterile Feather safity razorco 
2D-well Gradient gel NuPage 4-12% (1,0 mm thick) Invitrogen 
Disposable cuvettes Ratiolab 
FACS-Tubes 0,5 ml  38x6,5 mm PS Sarstedt 
Falcon 5ml Polystyrene Round-Bottom Tube Becton Dickinson 
Falcon® Plastic pipettes 25 ml Becton Dickinson Labware 
Falcon tubes (15 und 50 ml) Becton Dickinson 
Gel documentation Thermal Image System FTI-500 Fuji Film 
Tissue culture dishes steril 35,0 / 10 mm  Greiner bio-one 
Glaswares (different sorts) Fisherbrand; IDL; Schott&Gen; 
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Simax 
Kodan® Tinktur Forte (alcoholic skin disinfectant) Schülke & Mayr 
LightCycler® Capillaries [20 µl] (for Real time-PCR) Roche 
Minisart single use filter (0,2 µm, 0,45 µm) Biotech 
Neubauer improved  Brand 
Nitra-Tex® powder free  Ansell 
Nitrocellulose membrane Biometra 
NobaGlove® –Latex powder free NOBA GmbH 
NunclonTM surface 96-Well plates with flat bottom  NuncTM 
Parafilm American National Can 
Glas Pasteur pipettes  150 mm Brand 
Pipette tipps (10µl, 100µl, 1000µl) Sarstedt 
PP-PCR-Tubes 0,2ml thin walled Greiner bio-one 
Grid inserts for Cryobox Ratiolab GmbH 
Reaction tubes 1,5 ml Sarstedt 
Safety-Multifly®–Set, sterile, pyrogenfree 
(Cannulae) 

Sarstedt 

Servapor® dialysis tubing (6mm, 25mm) Serva Electrophoresis GmbH 
S-Monovette® 7,5 ml Z (Serum-Tubes) Sarstedt 
Sterile Pipette tips with filter Nerbe Plus 
UV-spectroscopic cuvettes Bio-Rad 
Whatmann-Filterpaper 3 mm  A. Hartenstein 
Cell scrapper Greiner bio-one 
                                                 

4.3. Instruments 

 

 Liquid Nitrogen tank Arpege 75 
Blotapparatur Invitrogen 
ClasII Type A/B3 (Sterilbank)  Nuaire Biological Safety 

Cabinets 
Easia shaker Medgenix diagnostics 
FACSCalibur Becoton Dickinson 
Fluorescence microscope DM RB                                 Leitz 
Gel documentation Image Masters VDS Pharmacia Biotech 
Gel electrophoresis chamber Peqlab 
Gel trays und Gel combs Peqlab 
Heating block / Thermoshaker Peqlab 
HiTrapTM Protein G HP (1ml und 5ml Protein G 
columns) 

Amersham Biosciences 

Inverse Light microscope MBL 3100 A.Krüss Optronic 
Refrigerators and Freezers Bosch, Liebherr, Nuaire, Santo, 

Premium 
Light Cycler 1.5    Roche Diagnostics 
LightCycler centrifuge adapter Roche Diagnostics 
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Magnetic mixer IKA® Werke 
Microwell SHARP Electronics 
Multiscan Ex (ELISA-Reader) Thermo Electron Corporation 
NalgeneTM Cryo 1 °C Freezing Container Nalgene® 
NOVEX Xcell surelock Blotting chamber Invitrogen 
PC-System, Printer Hewlett Packard 
pH-Meter Schott Geräte 
Pipettes (different volumes) Gilson, Eppendorf 
Pipette boy Integra Biosciences 
ProSpec (Nephelometer) Dade Behring 
Pump P-1 (Pump for IgG purification) Pharmacia Biotech 
Rotamax 120 (Shaker) Heidolph 
Swivel platform Peqlab 
SmartSpecTM Plus Spectrophotometer  Bio-Rad 
Sonopuls HD 2070 (Ultra sonicator) Bandelin Elektronik 
Power pack Peqlab 
Steri-Cult 200 Incubator for cell culture Labotec GmbH 
Sterile bench Köttermann 
Thermocycler Biometra 
Table top centrifuge EBA 20 Hettich 
Table top centrifuge micro 120 Hettich 
Universal 32 R (centrifuge) Hettich 
Vortex Minishaker IKA® Werke 
Vortexer Vortex-Genie2 Scientific Industries 
Weighing balance Sartorius AG 
Waterbath Memmert 
Centrifuge Typ 2-6 Sigma 
Centrifuge Universal 32 R (cell culture)  Hettich 

 

4.4.  Molecular biology and biochemistry kits 

 

Cytotoxicity Detection Kit (LDH) Roche Applied Science 
Quanti FastTM SYBR Green PCR Kit Qiagen 
RevertAidTM First Strand cDNA Synthesis Kit Fermentas 

 
 

4.5. Buffers and Solutions 

 

DNA-loading buffer (10x): 250 mg 
33 ml  
60 ml 
7 ml 

 Bromphenolblue 
Tris (150 mM, pH 7.6) 
Glycerol  
H2O 
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Ethidium bromide staining solution 2.5 mg 

1 L 
 

 Ethidiumbromide 
1x TAE 
                                                 

FACS buffer 500 ml 
5 ml 
5 ml 

 1x PBS  
10 % NaN3 

Fetal calf serum (FCS) 
 

Glycine buffer 3.75 g 
In 500 ml 

 Glycine 
dH2O  
pH  9.0 
 

IgG-Elution buffer 0.75 g 
100 ml 

 

 Glycine 
dH2O 
pH 2.7  
(= 0.1 M) 
 

Blocking buffer 0.4 g 
10 ml 

 Non fat dry milk 
PBS Tween 
 
 
 

1 % Paraformaldehyde (PFA)  1 g 
100 ml 

 PFA 
1x PBS 
 

PBS (10x) 
 
 

80 g 
2 g 

14.4 g 
2.4 g 

Dissolve in 1 L 

 NaCl 
KCl 
Na2HPO4 

KH2PO4 

dH2O  
 

1x PBS 900 ml 
100 ml 

 

 dH2O 
PBS (10x) 

PBS Tween 1 L 
500 µl 

 1x PBS 
Tween 20  
 

Permeabilisation buffer 500 ml 
0.5 g 

 FACS buffer 
Saponin 
 

Poly-L-Lysin 60 ml 
3 mg 

 dH2O  
Poly-L-Lysin 
 

Ponceau S-solution 0.25 g 
15 ml Make up 

100 ml 

 Ponceau S 
Trichloracetate (TCA) 
with H2O (protect from light) 
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Protein (SDS)-loading-Buffer 4x  

 

25 ml 
4 g 

40 ml 
0.8 ml 

 
20 ml 

2 pinches 
in 100 ml 

 1M tris pH 6.8  
SDS 
Glycerin 
0.5 EDTA (pH between 7.5 
und 8.5) 
Methanol 
Bromphenol blue 
with dH2O (short term storage 
4C, long term storage at -20 
C) 
 
 

Stacking gel buffer 9.09 g 
in 50 ml 

 Tris-HCl 
dH2O dissolve 
adjust pH to 6.8 
 
 
 
 

SDS (10%)    100 g 
in 900 ml  

 
 

make up 1 L  
 

 SDS  
dH2O dissolve by  
heating at 37°C  
 

SDS-running buffer (10x) 

 

10 g 
30.3 g 

144.1 g 
in 1 L 

 SDS 
Tris 
Glycin 
H2O  
 

TAE (Tris-Acetate-EDTA)-buffer 

(50x) 

242 g 
57.1 ml 
100 ml 

Make upto 1 L 

 Tris 
Acetic Acid 
0.5M EDTA 
with dH2O  
adjust pH to 8.5  
 

TBS-buffer 4.5 g 
0.71 g 
0.15 g 
5.5 g 

2.5 ml 
500 ml 

 NaCl 
Na2HPO4 
NaH2PO4 
Non fat dry milk 
Tween 20 
dH2O 
 

Transfer-buffer 1.513 g 
5.63 g 

 Tris (25 mM) 
Glycin (150 mM) 
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50 ml Methanol (10 %) 
Adjust pH to 8.3 
 

Resolving gel buffer 18.17 g 
Disslove in 100 

ml 

 Tris-HCl 
dH2O  
adjust pH to 8.8 
 

Trypsin-solution 10 ml 
2.5 mg 

 

 Solution 1H 
Trypsin 

Trypsin Inhibitor solution 10 ml 
1.6 ml 

 Solution 1H 
Konz. D/T-I Lsg 

4.6. Media and solutions for cell culture 

 

TE671 RPMI1640 10 % 
2mM 
1 % 

 
 

 Fetal calf serum (FCS) 
Glutamin (200 mM) 
PenStrep (Penicillin/ 
Streptomycin) 
 

Gibco 
Hyclone 
Gibco 
Gibco 

C2C12 RPMI1640 10 % 
2mM 
1 % 

 
 

 Fetal calf serum (FCS) 
Glutamin (200 mM) 
PenStrep (Penicillin/ 
Streptomycin) 
 

Gibco 
Hyclone 
Gibco 
Gibco 

SKMC RPMI1640 10 % 
2mM 
1 % 

 
 

 Fetal calf serum (FCS) 
Glutamin (200 mM) 
PenStrep (Penicillin/ 
Streptomycin) 
 

Gibco 
Hyclone 
Gibco 
Gibco 

HEK 293 RPMI1640     

Eahy 296 DMEM 10 % 
2mM 
1 % 

 
1X 
1% 

 Fetal calf serum (FCS) 
Glutamin (200 mM) 
PenStrep (Penicillin/ 
Streptomycin) 
HAT 
SodiumPyruvate 

 

HCMEC Microvascular 
endothelial 

   Provitro 
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cell growth 
medium 

HDMEC Endothelial 
Cell Growth 
Medium MV  

   Promocell 

 

4.7. Cell lines 

 
Name Origin Source 

   

TE671 
 

Rhabdomyosarcoma 
Prof. H. Wiendl, Würzburg 

 
C2C12 Mouse myoblast ECCAC 

SKMC 
Primary human 

skeletal muscle cells 
PromoCell, Heidelberg 

HEK 293 Fibroblast cells  

HCMEC 
Human chorionic 

microvascular 
endothelial cells 

Prof. K.T. Preissner, Giessen 

Eahy926 Endothelial cells Prof. K.T.Preissner, Giessen 

HDMEC 
Human dermal 
microvascular 

endothelial cells 
PromoCell, Heidelberg 

 

 

4.8. Antibodies 

 

Ab-Name against raised in Conjugation Company 

GAPDH human mouse - Chemicon 
HLA-ABC (MHC I) human mouse - Dako 
IgG human rabbit AP Dako 
IgG human rabbit FITC Dako 
IgG mouse rabbit FITC Dako 
Isotype-control  mouse FITC R&D Systems 
Isotyp-control  mouse - Dako 
 

 

  

 

 

 



        Materials 

32 

 

4.9. Primers 

 

Description 

 

Nucleotide sequence 

 

NCBI GenBank 

   

PBGD 8F (fwd) 5´-TGCAACGGCGGAAGAAAAC-3´ NM_00190 

PBGD 3.1 R (rev) 5´-GGCTCCGATGGTGAAGCC-3´  

MHC class I(fwd) 5’ - GCTACTACAACCAGAGCGAGG - 3’ NM_002116 

MHC class I(rev) 5’ - CCTCGTTCAGGGCGATGTA - 3’  

LMP 2 (fwd) 5’- CGTTGTGATGGGTTCTGA - 3’ NM_148954 

LMP 2 (rev) 5’ - GCAATAGCGTCTGTGGTG - 3’  

LMP 7 (fwd) 5’ - TGGGGACGGAGAAAGGA - 3’ NM_148954 

LMP 7 (rev) 5’ - GGCTGCCGACACTGAAAT - 3’  

TAP 1 (fwd) 5’ - TGGTCTGTTGACTCCCTTACAC - 3’ NM_00593 

TAP 1 (rev) 5’ - AAATACCTGTGGCTCTTGTCC - 3’  

TAP 2 (fwd) 5’ - TACAACACCCGCCATCAG - 3 NM_018833 

TAP 2 (rev) 5 ’- AGGTCTCTCCGCCAATACAG - 3’  

 

4.10. Software 

 

CellQuest®  BD (FACSCalibur)  

Excel 2002 Microsoft  

Graph Pad Prism Software Version 4.02 (Statistical analysis + Grafics)  

Microsoft Office PowerPoint 2003  

Microsoft Office Word 2003  

QC-Net (Unity Real Time) Bio Rad (Nephalometer analysis) 

Roche Molecular Biochemicals Light Cycler Software Version 3.5 (LightCycler)  

Windows 2002 Microsoft  

WinMDI 2.9 (analysis of FACS data)  
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5. Methods 

5.1. Cell culture 

Human primary skeletal muscle cells (SKMC) (PromoCell, Heidelberg, Germany) were 

cultured in skeletal muscle cell growth medium with supplements (PromoCell, 

Heidelberg, Germany). Human rhabdomyosarcoma cell line (TE671) was purchased 

from ATCC (Manassas, VA, USA) and cultured in RPMI Glutamax medium 

supplemented with 10% FCS (fetal calf serum) and 1% penicillin-streptomycin. Mouse 

C2C12 cells (ECACC) were cultured in DMEM Glutamax medium with 10% FCS and 

1% penicillin-streptomycin. C2C12 cells were also differentiated to form myotubes by 

culturing them in a medium containing 2% horse serum instead of FBS. The medium 

used for culture of Ea.hy 926 cells (a kind gift from Department of Biochemistry, 

Giessen) was DMEM containing 10 mM Hepes, 2mM L-glutamine, antibiotics (1% 

penicillin-streptomycin), HAT (Hypoxanthine 100µM; aminopterin 0.4 µM; and thymidine 

16 µM) 1% Na-pyruvate and 10% FCS. Human dermal microvascular endothelial cells 

(HDMEC) (PromoCell, Heidelberg, Germany) were cultured in endothelial cell growth 

medium MV with supplements (Promocell, Heidelberg, Germany). HCMEC cells were 

grown on dishes pre-coated with collagen. The medium was endothelial cell growth 

medium with supplements (PromoCell, Heidelberg, Germany). All cell lines were 

maintained at 37°C and 5% CO2.  

5.2. Flow cytometry 

5.2.1. Autoantibody detection by flow cytometry 

We recently introduced flow cytometry (FACS) to detect autoantibodies in 

neuroimmunological diseases (Blaes et al. 2000). To avoid unspecific binding to 

ubiquitous antigens we pre-absorbed the sera by incubating in PBS containing 1% FCS 

and 0.1% NaN3 (FACS buffer) with HEK 293 cells for 24 hours at 4ºC (serum dilution 

1/10) prior to incubation with the other cell cultures. The different cell lines in culture 

were detached by incubation in 0.025% trypsin-EDTA (Gibco) in phosphate buffered 

saline (PBS) for 1-3 minutes at room temperature, and were then washed in fresh PBS. 
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To see the binding of sera to the detached cells, cells were resuspended in FACS 

buffer. Briefly, cells were washed twice in FACS buffer and then incubated with patient 

or control sera (1:100) for 30 min at 4°C. Secondary antibody polyclonal rabbit anti-

human immunoglobulin FITC –conjugated (DAKO) was used in a 1:100 dilution (30 min 

at 4°C in dark). Isotype matched non-binding antibodies were used as controls for 

specific binding. After secondary antibody staining, cells were washed twice in FACS 

buffer and analyzed in a Becton Dickinson FACScan flow cytometer (Beckton-

Dickinson, Heidelberg, Germany). Data were analyzed using CELLQUEST® software. 

Mean fluorescence intensitiy (mfi) was measured for each sample. A percentage above 

mean mfi + 2.5 standard deviations of the controls was considered positive.  

5.2.2. MHC Class I detection 

 MHC class I antigen expression was determined using flow cytometry (FACS) analysis. 

Briefly, cells were washed twice in PBS supplemented with 1% fetal calf serum and 

0.1% sodium azide (FACS buffer) throughout the experiment  and then incubated with 

mouse anti-human MHC class I antibody (1:100) for 30 min at 4°C. Secondary antibody 

(rabbit anti-mouse immunoglobulin FITC -conjugated) was used in a 1:100 dilution (30 

min at 4°C in dark). Isotype matched non-binding antibodies were used as controls for 

specific binding. After secondary antibody staining, cells were washed twice in FACS 

buffer and analyzed in a Becton Dickinson FACScan flow cytometer. Data were 

analyzed using CELLQUEST® software. 

5.3. RNA isolation, RT-PCR, and Real time PCR 

Total cellular RNA was isolated and MHC class I, LMP2, LMP7, TAP1 and TAP2 

expression were analyzed by real time PCR. Primer sequences used for PCR were 

designed using Primer Premier 5® software. Primer sequences are mentioned in Table 

9. PBGD mRNA was used as a housekeeping gene, because its level is neither affected 

by IFN-γ nor by statin treatment. A mix of the following reaction components was 

prepared for each sample: 8 µl water, 1 µl forward primer (10 µM), 1 µl reverse primer 

(10 µM), 10 µl QuantiFast SYBR Green PCR kit® (Qiagen, Germany) and 1 µl of 

reverse transcribed mRNA sample as PCR template. Capillaries were closed, 
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centrifuged and placed into the rotor. The following general real-time PCR protocol was 

used: denaturation program (10 min at 95°C), a three-segment amplification repeated 

40 times (20 s at 95°C; 20 s at different annealing temperature for each primer pair; 30 

s at 72°C), melting curve program (60–99°C), and finally a cooling down to 40◦C.  

 5.4. Cytotoxicity assay 

Cytotoxicity was assessed with an lactate dehydrogenase (LDH)-cytotoxicity detection 

kit (Roche Diagnostics), which measures LDH activity released from the cytosol of 

damaged cells. Cells were grown in 96-well culture plates, at 37 °C, for 24 h to near 

confluence. At this time they were incubated for more than 24 h in the absence or the 

presence of IgGs from myositis patients or healthy controls. Cells grown in 96-well 

plates were exposed to various concentrations of IgGs (50 to 800 µM) for 24 h. After 24 

h, 100 µl of supernatant per well was harvested and transferred into a new 96-well, flat-

bottom plate. LDH substrate (100µl) was added to each well and incubated for 30 min at 

room temperature (RT) protected from light. The absorbance of the samples was 

measure at 490 nm with an ELISA reader. Cytotoxicity was calculated with the formula: 

% cytotoxicity = (experimental value - low control) x 100/(high control - low control), 

where low control is assay medium plus cells and high control is assay medium (plus 

2% Triton X-100) plus cells.  

5.5. Calcium imaging 

Relative changes in the intracellular Ca2+ concentration were measured using the Ca2+ -

sensitive fluorescent dye fura-2 as described previously (Haschke, Schafer et al. 2002). 

The wavelength, at which fura-2 is maximally excited, shifts in dependence of the 

cytoplasmatic Ca2+ concentration. The HUVECs grown on coverslips were loaded for 60 

min with 2.5 µmol/L fura-2 acetoxymethylester (fura-2/AM). Fura-2 was then washed 

away. In these experiments, the cells were first superfused with tyroid solution (1 

mL/min), baseline was recorded, and then control or myositis IgG were added at the 

concentration of 30 mg/L, and then the effect was recorded for approximately 30 min. 

Experiments were carried out at room temperature on an inverted microscope (Olympus 

IX-50) equipped with an epifluorescence and an image analysis system (Till Photonics, 
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Martinsried, Germany). The emission above 470 nm was measured from several 

regions of interest, each with the size of about one cell. The cells were excited 

alternatively at 340 and 380 nm and the ratio of the emission signal at both excitation 

wavelengths was calculated. Data were sampled at 0.33 Hz. The baseline in the 

fluorescence ratio of fura-2 was measured during at least 5 min, Superfusing with a 

standard or a Ca2+ free Tyrode solution (depending on the experiment), before any IgG 

was administered. ATP (ATP, 50 µmol/l) was used for vitality test of cells. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Fura-2 loaded endothelial cells. 

 

5.5. Protein extraction 

When cells were confluent, monolayers were washed twice with 1 % PBS and then 

incubated with 0.025% trypsin-EDTA (Gibco) for 1-3 minutes at room temperature to 

detach them. Cells were centrifuged and then resuspended in 1 % PBS. Cells were 

lysed using Dounce homogeniser and ultra sonication (3 times, 15 seconds for each). 

The cell extract was centrifuged at 14,000 rpm and the supernatant was collected. 

Protein quantification was performed on the supernatant using Bradford method. 
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5.5. One-dimensional gel electrophoresis (1-DE) 

Proteins were separated by 1-DE on 4% to 12% precast Bis–Tris NuPAGE gels, using 

MOPS running buffer (Invitrogen, Carlsbad, CA, USA). After separation, proteins were 

transferred onto nitrocellulose membranes (Hybond™-c extra; GE Healthcare Life 

Sciences, Piscataway, NY, USA) and stained with Ponceau red (Sigma-Aldrich). 

Membranes were cut and strips were first saturated with PBS–5% dry milk, and then 

incubated with patient sera (1:100 dilution) for 1 hour followed by incubation with 

biotinylated conjugated mouse monoclonal anti-human IgG (Fc) (Southern 

Biotechnology Associates Inc., Birmingham, AL, USA) and alkaline phosphatase-

conjugated streptavidin (CALTAG; Invitrogen), and finally revealed with NBT/BCIP 

(Roche Applied Science, Indianapolis, IN, USA). Each step was followed by three 

washes with PBS/Tween 0.05% buffer. 

5.6. Two-dimensional gel electrophoresis (2-DE) 

Adherent cells were washed with PBS and than disrupted by grinding under liquid 

nitrogen in a mortar. Proteins were solubilised in sample solution (8 M urea, 2 M 

thiourea, 2% pharmalyte buffer [v/v, pH 3-10]; 4% CHAPS; 30 mM DTT, 20 mM Tris). 

Samples were incubated for 2 hours at 4°C, vortexed, centrifuged (18.000 × g, 30 min) 

and the supernatant was subjected to isoelectric focusing (IEF) after protein 

determination (BCA Protein Assay, Pierce, Rockford, IL). 

2-DE was performed as described (O'Farrell 1975; Gorg, Obermaier et al. 2000). 

Proteins were rehydrated over night of immobilized pH gradient (IPG) strips, 11 cm, pH 

3-10 linear, (Amersham Biosciences, Freiburg, Germany). IEF of 250 - 460 µg protein 

per strip was carried out in a Multiphor chamber (Amersham Biosciences) at 20°C. 

Electrophoresis was carried out in SDS gels (10% or 15% acrylamide) at 25°C (600 V 

for 3.5 hours) in a Hoefer SE600 (Amersham Biosciences) chamber. The gels were 

either stained with Coomassie or blotted. Stained gels were scanned and molecular 

weight of the proteins was calculated using the protein ladder (Invitrogen, Karlsruhe, 

Germany) and pI (isoelectric point) of the proteins were determined according to the pH 

value of the strips. Some gels were blotted onto polyvinylidene difluoride membrane 
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(PVDF; Hybond-P, Amersham Biosciences) by tank blotting (Hoefer Transphor, 

Amersham Biosciences) using Towbin buffer with 20% ethanol for 570 Vh at 5°C. Anti-

human HRP (Dako Cytomation, Hamburg, Germany) and ECL Western Blotting System 

(Amersham Biosciences) or autoradiography was used to visualize reactivities. 

5.7. Protein identification by peptide mass fingerprinting 

Myositis and HC sera were analyzed by western blot using 2-DE membranes. Positive 

spots were excised from Coomassie stained gels and were washed once with water and 

twice with 50 mM ammonium hydrogen carbonate: acetonitrile (1:1) and acetonitrile, 

alternately. Gel pieces were incubated in a minimal volume of a 10 ng/µL trypsin 

solution (sequencing grade, Roche Diagnostics, Mannheim, Germany) in 25 mM 

ammonium hydrogen carbonate (16 h, 37°C). Peptides were extracted with 10 µL of 1% 

(v/v) trifluoroacetic acid. 1 µL of the solution was mixed with 1 µL 2.5-dihidroxybenzoic 

acid (20 mg/ml) in 1% phosphoric acid, 50% acetonitrile on a stainless steel target and 

air dried (dried droplet). Mass fingerprints of tryptic digests were obtained by MALDI-

TOF mass spectrometry using an UltraflexTM TOF/TOF mass spectrometer (Bruker 

Daltonik). Proteins were identified by database searching with peptide masses using the 

MASCOT search engine. Protein identification was completed by significant Z scores or 

by significant p < 0.05 probability-based Mowse Scores, respectively. 

5.8. Statistical Analysis 

Frequency of autoantibodies and comparison with clinical data was analysed by 

Fisher’s exact test. Surface binding were analysed by two-tailed Student’s t-test 

between Myositis and HC groups after validating the normal distribution of these 

datasets (Kolmogorov-Smirnov test). The comparison of cytotoxicity cytotoxicity level 

between different groups was done using one way ANOVA. All statistical analyses were 

performed using Prism® 4.02 Software (Graph Pad Inc.). The probability level accepted 

for significance was p < 0.05.  

Differences between groups in flow cytometry experiments were analyzed by the 

Kruskal Wallis test followed by the Mann Whitney U test for a posteriori comparison of 
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means. Results are expressed as mean of triplicates ± SD. All reported p values are 

based on two-tailed statistic test, with a level of significance established at 5%. 

Analyses were performed using GraphPad PRISM 4.0 (San Diego, CA). 

The relative expression ratio of target gene transcripts in comparison to a reference 

gene transcript was calculated based on the PCR efficiency and crossing point 

deviation of each investigated transcript, as described in an in-depth report of a 

mathematical model (Pfaffl 2001). 
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6. Results 

6.1. Presence of surface binding autoantobodies 

Flow cytometry was used to show the surface binding of autoantibodies to different cell 

lines (muscle endothelial and fibroblast cell lines). These cells were incubated with 

1:100 diluted sera and IgG binding to the cells was measured by flow cytometry after 

the application of a FITC-labelled anti-human IgG secondary antibody. Eight of 26 

patients (26.9%) tested, but none of the controls showed binding to TE671 cells (t test, 

p<0.0001) (Fig. 7). None of the patients or controls showed substantial binding to 

SKMC, or to undifferentiated C2C12 or myotubes-differentiated (Fig. 7). Additionally, 

there was no significant binding to the control cell line HEK 293 (Fig. 10). When the 

resulty were analyzed based on the different myositis groups (DM, PM, OIM), all three 

subgroups had elevated binding to TE671 cells compared to controls. However, there 

was no difference between the myositis subgroups in surface binding to the different 

muscle cell lines (Fig. 8). DM patients showed a tendency to a higher surface-binding 

against C2C12 mouse muscle cells. Interestingly, the patients’ sera did not bind to the 

rat cardiomyocyte cell line HL-1 (Fig. 9).  

The patients have also been tested for the binding to three different endothelial cell 

lines. No significant binding could be found to the HCMEC or Ea.Hy926 cells. However, 

5/26 (19.2%) patients showed binding above the cut-off to HDMEC cells at a level 

higher than the mean ± 2.5 standard deviations of the healthy control sera (Fig. 10). 

Though DM patients were expected to show more binding compared to PM patients but 

in our experiments I could not see this difference. 
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Figure 7. Surface binding of myositis sera to different muscle cell lines (expressed as mean 

fluorescence intensity) compared to healthy control sera. Cut off, marked as horizontal line, was 

determined as mean of the controls + 2.5 x std. dev. Myositis patients have more binding to 

TE671 cell line compared to healthy controls.  
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Figure 8. Surface binding of OIM, PM and DM sera to different muscle cell lines (expressed as 

mean fluorescence intensity) compared to healthy control sera. Cut off, marked as horizontal 

line, was determined as mean of the controls + 2.5 x std. dev. Myositis patients have more 

binding to TE671 cell line compared to healthy controls.  
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Figure 9. PM and DM patient sera have been analyzed using flow cytometry for the presence of 

surface binding autoantibodies to mouse primary cardimyocytes (HL-1 cells). There is no 

significant difference between the binding of control and patient sera. 
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Figure 10. Surface binding of myositis sera to different endothelial cell lines (expressed as mean 

fluorescence intensity) compared to healthy control sera. Cut off, marked as horizontal line, was 

determined as mean of the controls + 2.5 x std. dev. Myositis patients have more binding to 

HDMEC cell line compared to healthy controls.  
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In a recent report statins have been implicated to trigger myositis. Therefore, muscle 

cell lines (TE671 and SKMC) were treated with different statins (Lovastatin, Mevastatin 

and Simvastatin) in combination with IFN-γ to increase the immunogenecity of the 

muscle cells. These cells were then used to analyze the binding of myositis sera using 

flow cytometry. In TE671 cells, only the treatment with mevastatin led to an increased 

binding of myositis sera, whereas the binding to simvastatin was even lower than to 

unstimulated TE671 (p<0.001 and p<0.05). Using the primary muscle cell line SKMC, 

Mevastatin- and Simvastatin-treated cells show significant higher binding of myositis 

sera (Fig. 11). The different patient groups (OIM, DM, and PM) were then analyzed. DM 

patients showed higher binding to simvastatin-stimulated SKMC compared to OIM and 

PM patients (p<0.05 and p<0.01, Fig. 12) There was no difference between different 

patients in binding to Mevastatin treated SKMC cells (Fig. 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Surface binding of PM and DM patient sera to statin (Lovastatin, Mevastatin and 

Simvastatin) treated TE671 and SKMC cells. Cells were first treated with different statins for 48 

Hrs and then analyzed by flow cytometry for binding of autoantibodies to these cells. 
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Figure 12. Surface binding of PM and DM patient sera to statin (Lovastatin, Mevastatin and 

Simvastatin) treated TE671 and SKMC cells. Cells were first treated with different statins for 48 

Hrs and then analyzed by flow cytometry for binding of autoantibodies to these cells. 
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6.2.  Western blotting of autoantibodies with muscle cell extract 

Next the myositis sera were checked for their binding to muscle cell protein using 

western blotting. As is shown in Fig. 13, patient sera recognized a protein in the size 

range of 97-120 KDa which was absent in the fibroblast cell lysate. It again shows that 

PM and DM patients do have muscle antigen specific autoantibodies. 

 

Figure 13. Immunoblot incubated with the patient’s serum on TE671 cells (A) and on HEK 293 

(B) as non-muscle control.  Cell lysate was prepared from muscle and fibroblast cells and run 

onto a 4-12% gradient SDS-PAGE. After blotting of proteins to nitrocellulose membrane, the 

membranes were incubated with patients and healthy control sera and then the binding was 

visualized by using enzyme conjugated secondary antibody and NBT substrate. Line 1 to 15 

represents health controls and line 16 to 40 patients. Patient sera show a specific reactivity, to 

proteins from muscle cell lysate, in range of 97-112 KDa ((A) inside the rectangle) which is 

absent in blot of fibroblast cell lysate (B).  
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6.3. Identification of autoantigens in muscle cells 

Our experiments have shown the presence of surface binding autoantibodies in myositis 

patients. To see if they bind to intracellular antigens, western blotting was performed 

using the cell extract from muscle cells. It has been found that 10 out of 25 (40.0%) 

myositis patients show a specific band, against muscle cell lysate, between 95-110 KDa 

(Fig. 13 see the boxed area), compared to none aginst fibroblast cell lysate ( 5 DM, 1 

PM, and 4 OIM).  

In order to identify muscle proteins targeted by serum IgG from myositis patients, 

muscle proteins from TE671 cells were submitted to 2-DE and transferred to PVDF 

membranes (Fig. 14). Serum IgGs from 4 different myositis patients and a healthy 

control individual were incubated with the PVDF membranes transferred with muscle 

proteins. 

Among many spots transferred to the PVDF membranes, 60 or so spots were 

recognized by serum IgG from patients and controls. Only the spots which showed 

immunoreactivity with patients’ serum IgGs were submitted to MALDI-TOF mass 

spectrometric analysis. These spots were identified as glycyl-tRNA synthetase, aldose 

reductase, Proteasome subunit beta type 7 precursor and others (Table 3). 
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Figure 14. 2D-PAGE blots of cell lysate from TE671 cells with healthy control (A) and patient 

(B). Cell lysate was prepared and first applied to isoelectric focussing and then the isoelectric 

strips were placed onto SDS-PAGE for second dimensional electrophoresis. After the 

electrophoresis the protein were blotted to PVDF membranes and these membranes were then 

probed with either control (A) or myositis (B) sera.  
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Spot-
Nr. 

Protein Accession 
number 
Human 

M 
(kDa) 
exp. 

M 
(kDa) 
theor

. 

pI 
exp. 

pI 
theor

. 

Mowse 
score 
(>55) 

Seq. 
cov. 
(%) 

Number 
of ident. 
peptides 

1 glycyl-tRNA 
synthetase 

SYG 75 83.8 5.7 6.61 206 38 28 

2 Annexin A2  
+ 
Aldose reductase 

ANXA2 
 

ALDR 

35 38.8 
 
 

7.0 7.57 
 
 

350 
162 
160 

54 
 

72 

20 
 

22 

3 Proteasome subunit 
beta type 7 
precursor + 
Platelet-activating 
factor 
acetylhydrolase IB 
subunit beta 

PSB7 
 
 
 
 

PA1B2 

28 30.3 
 
 
 
 

25.7 

5.5 7.57 
 
 
 
 

5.57 

259 
143 

 
 
 

109 

59 
 
 
 
 

47 

18 
 
 
 
 

12 

4 Proteasome subunit 
beta type 7 
precursor  

PSB7 28 30.3 5.6 7.57 155 57 16 

Blank ___ 
 

 --  --     

BSA BSA 
 
 
 
 

 --  --  144   

 

Table 3. Summary of proteins identified from the spots picked up from 2D gel after 

immunoblotting. 

6.4. Cytotoxic effect of autoantibodies 

To measure the cytotoxic effect of different patients’ IgG on various cell lines, cells were 

incubated with purified IgGs in 96 well plates for 24 hours and later the cytotoxicity was 

measured using LDH cytotoxicity assay kit. Before incubating the cells with IgGs, first 

cells were plated at different densities for 24 hours in 1% FBS medium and then 

incubated with IgGs to find out the right cell density for further experiments. It has been 

deduced that 10,000 cells per well is the optimum cell density which has a linear 

function in the cytotoxicity assay. Ten thousands cells per well were then incubated with 

various concentrations of purified IgGs (50 to 800 µM), and it was found that for some 

cells the effective IgG concentration was 10 ug/ml and for some 50 ug/ml. The above 

density of cells and appropriate concentration of IgGs was then used for further 
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experiments. The results obtained after 24 hours incubation of IgGs with different cell 

lines are summarised in (Fig. 15). The cytotoxic effects of myositis IgG was visible only 

against the endothelial cell lines Ea.Hy and HDMEC (student’s t test) p<0.05. Though 

surface binding antibodies have been found in myositis sera against TE671, which is an 

established model cell line for muscles, I could not see any cytotoxicity in this cell line. 

None of the healthy controls showed any cytotoxicity (Fig. 15). 
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Figure 15. Purified IgGs from PM and DM patients have been tested with endothelial and 

muscle cell lines for their cytotoxic effects using LDH assay. Cells were incubated with IgGs for 

24 hours and then supernatant was used to detect cytotoxicity using LDH cytotoxicity assay.  
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6.5. Effect of autoantibodies on endothelial calcium flux 

As has already been shown that IgG from some of the patients show cytotoxicity against 

endothelial cells, it becomes necessary to check if this cytotoxic effect is due to change 

in Ca2+ influx. To investigate this effect HUVEC cells, which are an established model 

for Ca2+ measurement, were used. The cells were cultured on coverglass and then 

mounted on the microscope in Ca2+ free medium. The IgG were then added to the cells 

after monitoring the cells for 5 minutes without adding anything. Two myositis patients 

IgG (1 DM and 1 PM) and a control IgG were used for the experiment. It has been found 

that HUVEC cells show a significant change in calcium influx after addition of IgGs from 

myositis patients while healthy control IgG failed to induce any change in calcium influx 

(Fig. 16). 
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Figure 16. Purified IgGs (3g/L) were added to the primary HUVEC cells and then Ca
2+

 influx 

was measured using image analysis system (Till Photonics, Martinsried, Germany). 
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6.6. Effects of statins on muscles cells 

In surface binding experiments using flow cytometry, it could be shown that statins 

treatment of SKMC cells do indeed affect the surface binding of myositis sera to these 

cells (p<0.001) (Fig. 11). The very obvious difference was seen in mevastatin (p<0.01) 

and simvastain (p<0.01) treated cells, but lovastatin treatment did not show any 

increase in surface binding. However, in case of TE671 cells no difference could be 

seen, infact simvastatin treated TE671 show less surface binding to myositis sera even 

compared to controls (Fig. 11) 

Statins, have been prescribed extensively for their cholesterol-lowering properties and 

efficacy in cardiovascular diseases (Greenwood et al. 2006). Statins also have 

additional immunomodulatory properties that operate independently of lipid lowering. In 

some patients, statins can induce necrotizing or inflammatory myopathies (Needham et 

al. 2007). Increased MHC class I expression has been shown in muscle biopsies of 

statin-induced myopathy. Therefore, the effect of statins on the expression of MHC 

class I in muscle cells was investigated in order to evaluate the hypothesis of an altered 

immunogenecity of muscle cells induced by statins. 

6.6.1. Statins enhance IFN-γ-induced MHC class I expression in TE671 but not in 
SKMC 

The effect of statins on the MHC class I expression was analyzed in two different 

muscle cell lines – the established cell line TE671 and the primary cell line SKMC. 

Additionally, all three statins (Lovastatin, Mevastatin and Simvastatin) were also tested 

for their ability to affect IFN-γ-induced MHC class I expression in TE671 and SKMC cell 

lines. First, cells were treated with different concentrations of statins to see if they show 

any dose dependent effect on MHC class I expression, but they failed to show any dose 

dependency (Fig. 18). Therefore 10 µM concentrations of statins was used in further 

experiments, as it has been cited in other reports as well. Cells were treated with statins 

(10µM) and/ or with IFN-γ (100ng/ml) for 48 hours, and MHC class I expression was 

examined using flow cytometry. 

SKMC and TE671 in the untreated condition expressed MHC class I (Fig. 19 and 20). 
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IFN-γ showed an induction of MHC class I expression in both cell lines (MFI 781 vs. 312 

in controls in SKMC; MFI 85 vs. 28 in TE671). Surprisingly, statins alone induced a 

significant reduction of the baseline expression of MHC class I in primary muscle cells 

(SKMC); however, they had no effect in TE671 (Fig. 19 and 20).  

Statins alter the IFN-γ-induced expression of MHC class I differently in SKMC and in 

TE671.  Statins significantly reduced the IFN-γ-induced MHC class I expression in 

primary muscle cells (SKMC) (a decrease in MFI from 781 to 312) while they promoted 

a robust opposite effect in TE671 (an increase in MFI from 85 to 200) (Fig. 19 and 20).  

Further, this effect has been checked at the RNA level, and it was found to complement 

the protein level. I could detect an increase in MHC class I gene expression after IFN-γ 

treatment in SKMC (17.8 fold) and TE671 (8.9 fold) (Fig. 21). The expression of MHC 

class I was not substantially affected by any statin treatment in any of the cell lines. This 

highlights the ineffectiveness of statins to enhance the MHC class I expression in vitro. 

A.       B. 

 

Figure 17. Effect of statins on MHC class I expression accessed by flow cytometry. (A) and (B) 

are representative flow cytometry analysis of MHC class I expression following different 

treatments of SKMC and TE671, respectively.  
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Figure 18. Effect of different concentrations of statins on MHC class I surface expression. 

SKMC and TE671 cells were treated with different concentrations of statins ranging from 10 nM 

to 10 µM.  

 

On the other hand, a 53-fold increase in MHC class I gene expression on average was 

detected when SKMC cells were treated with statins along with IFN-γ (Fig. 21). This 

effect could nevertheless not be seen at the protein level, which might indicate possible 

involvement of a translational regulation of MHC class I in primary cells. A positive effect 

was also exhibited in the case of simvastatin and slightly in the case of lovastatin on 

IFN-γ-induced expression of MHC class I in the TE671 cell line, in accordance with the 

FACS data (Fig. 21).  
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Figure 19. Effect of statins on MHC class I expression assessed by flow cytometry. (A, B, C) 

SKMC cells treated with IFN-γ (100ng/ml), statins (10µM) or statins along with IFN-γ. 

Treatment with statins reduced significantly MHC class I expression and IFN-γ inducible MHC 

class I expression in SKMC. (A) Treatment with Lovastatin; (B) treatment with Mevastatin; and 

(C) treatment with Simvastatin. Data are represented as mean of triplicates ± SD. *Values 

significantly different from corresponding treatment (Kruskal Wallis test followed by the Mann 

Whitney test, p < 0.05). 
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Figure 20. Effect of statins on MHC class I expression accessed by flow cytometry. (A, B, C) 

TE671 cell line treated with IFN-γ (100ng/ml), statins (10µM) or statins along with IFN-γ. 

Statins showed differential effects in two different cell lines. Treatment with statins reduced 

significantly MHC class I expression and IFN-γ inducible MHC class I expression in SKMC. 

Same treatment here showed no considerable effect on MHC class I expression although 

conversely enhanced IFN-γ-induced MHC class I expression in TE671. (A) Treatment with 

Lovastatin; (B) treatment with Mevastatin; and (C) treatment with Simvastatin. Data are 

represented as mean of triplicates ± SD. *Values significantly different from corresponding 

treatment (Kruskal Wallis test followed by the Mann Whitney test, p < 0.05). 
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Figure 21. Effect of statins on MHC class I expression at transcriptional level accessed by real-

time PCR in (A) SKMC cells and (B) TE671 cells. The graphic shows the fold induction level 

of MHC class I expression compared to untreated cells. These values are representative of three 

experiments done in triplicate. 
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6.6.2. TAP and LMP expression 

The assembly of MHC class I molecules with peptides is orchestrated by several 

factors, including the transporter associated with antigen processing (TAP) (Raghavan 

et al. 2008). TAP1 and TAP2 gene products are responsible for the transport of the 

peptides from the cytosol to the endoplasmic reticulum, where peptides bind to newly 

sythesized MHC class I (Elliott 1997). The low- molecular-mass polypeptides 2 (LMP2) 

and 7 (LMP 7) increase the amount of generated peptides available for binding to MHC 

class I molecules (Driscoll et al. 1993; Gaczynska et al. 1994; Groettrup et al. 1995; 

Niedermann et al. 1995). Up-regulation of the TAP and LMP genes by immune 

regulators, such as interferon-gamma (IFN-γ), leads to an increase in MHC class I 

expression (Yang et al. 1992; Boes et al. 1994; Tanaka 1994). Determination of TAP1, 

TAP2, LMP2 and LMP7 expression was done at RNA level after 48 h of treatment with 

IFN-γ, statins, or a combination of both. IFN-γ treatment increased the expression of all 

four genes (TAP1, TAP2, LMP2 and LMP7) (Table4). Statins alone increased the 

expression level of TAP1 (5 fold) and LMP7 (2.8 fold) in SKMC cells, but they failed to 

show any effect in TE671. No significant change could be detected in other genes 

evaluated in response to statin treatment. All three statins potentiated the IFN-γ 

induction of TAP2, LMP2 and LMP7 in SKMC but not in TE671 (Table 4). 

 

 
 
 
 
 
 
 
 
 
 
 
 



           Results 

61 

 

GENE / TREATMENT IFN-γ lova meva simva 
IFN-γ 

+ 
lova 

IFN-γ 
+ 

meva 

IFN-γ 
+ 

simva 

SKMC LMP2 17.83 1.29 0.94 1,10 30.21 36.03 37.09 

 LMP7 9.45 2.40 1.77 2.87 11.62 16.22 16.35 

 TAP1 28.03 4.81 2.53 5.06 90.82 89.21 123.37 

 TAP2 8.47 0.33 0.71 0.27 16.53 10.47 18.83 

TE671 LMP2 123.05 0.66 0.61 0.60 97.40 101.19 104.91 

 LMP7 23.87 0.78 0.85 0.59 23.84 25.40 8.51 

 TAP1 53.77 0.80 0.73 1.34 53.86 49.13 38.61 

 TAP2 7.96 0.72 0.41 0.82 6.24 9.31 5.09 

 

Table 4. Relative gene expression analysis by quantitative real time PCR of genes involved in 

MHC class I antigen presentation after statins and/or IFN-γ treatment in muscle cell lines. 
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7. Discussion 

In this thesis, a combination of different autoantibody detection methods and protein 

biochemistry methods, such as 2D-gelelectrophoresis and mass spectrometry has been 

used to detect muscle- or muscle-endothelium-specific autoantigens and their 

functionality in inflammatory myopathies. The identification of such antigens could 

contribute significantly to elucidate the physiopathology of these diseases. 

7.1. Surface binding autoantibodies 

It could be shown that a significant number of myositis patients have autoantibodies 

against surface epitopes of muscle cells. This binding was specific to muscle cells since 

there was no reactivity either in control sera or against fibroblasts. At the same time 

there was no surface binding to C2C12 mouse muscle cell line either undifferentiated or 

differentiated or to primary muscle cells SKMC. This might be due to a species 

specificity of the autoantibodies (Katsumata et al. 2007) and the differences between 

the primary cells and rhabdomyosarcoma cells. Previous studies have reported that 

over 50% of the patients have autoantibodies diected against intracellular antigens, 

although with improved detection techniques, recent studies have shown this frequency 

to be nearer 80% (Gunawardena et al. 2009 a). These autoantibodies can be 

categorized into myositis-associated autoantibodies (MAAs) and myositis-specific 

autoantibodies (MSAs). The MAAs, anti-U1-RNP, anti-U3-RNP, anti-PM-Scl and anti-

Ku, are principally seen in myositis-scleroderma overlap syndromes (Koenig et al. 

2007), whereas the MSAs (anti-ARS, anti-SRP, anti-Mi-2, and anti-SAE etc.) are highly 

selective, mutually exclusive and are associated with particular genotypes and clinical 

phenotypes within the myositis spectrum (Love et al. 1991; Chinoy et al. 2006; O'Hanlon 

et al. 2006; Gunawardena et al. 2009 a). MSAs target either nuclear or cytoplasmic 

components of the cell that are involved in gene transcription, protein translocation and 

antiviral responses. In a recent study Gunawardena et al. have discussed the use of 

MSAs to define patients into clinical syndromes, which might help in predicting the 

outcomes and influence the treatment strategies (Gunawardena et al. 2008). Though in 

our experiments these surface binding autoantibodies could not differentiate among 
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different myositis groups (DM, PM and OIM) we did see that DM patients showed an 

increased affinity towards undifferentiated C2C12 mouse muscle cells. The question of 

whether autoantibodies are simply epiphenomena or directly linked to pathogenesis 

remains unclear. Several attractive paradigms have been proposed to explain why 

certain intracellular proteins are selectively targeted by autoantibodies (Helmers et al. 

2009; Gunawardena et al. 2009 a).  

Statin treatment of muscle cells increased the binding of myositis sera to these cells 

depending on the different statins used and the cell lines tested. This effect was more 

pronounced in primary muscle cells SKMC, where mevastatin and simvastatin treated 

cells showed significantly increased binding to myositis sera compared to untreated 

cells. DM patients showed the highest binding to simvastatin treated primary muscle 

cell. This clearly indicates that statins definitely play a role in statins induced myositis.  

The availability of MSAs for classifying the patients does not help much in predicting the 

outcome of disease (Gunawardena et al. 2009 a). The future development of assays 

that test for MSAs in routine clinical practice is important. Investigating the structure and 

function of target molecules, and whether autoantibodies themselves have functional 

roles appears critical for understanding the pathogenic mechanisms in this complex 

spectrum of diseases. Though these disorders are believed to be mediated by cellular 

immune mechanisms, several investigators have identified immunoglobulin and 

complement in the muscles (Whitaker and Engel 1972; Kissel et al. 1986) and focused 

on vascular deposition of autoantibodies in relation to pathogenesis. Pathogenic role of 

anti endothelial cell antibodies (AECA) have been implicated in several diseases 

including autoimmune rheumatic diseases and (Domiciano et al. 2009; Jarius et al. 

2009). Konstantin et al. developed a cellular ELISA to detect AECA in patients with 

IIMs. Fourteen of 19 patients (77%) were shown to have EC-binding activities. Yet, the 

main message from their study was that EC-specific  IgG autoantibodies were more 

often encountered in MCTD and SS-associated myositis than in idiopathic PM and DM 

(Salojin et al. 1997). This group contemplated that AECA might be pathogenic through 

complement activation, antibody dependent cell cytotoxicity, or apoptosis of EC (Cines 

et al. 1984; Meroni 1994; Bordron et al. 1998). As the involvement of the endothelium is 
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suggested in the pathogenesis of these IIMs, especially in DM (Nagaraju et al. 2006), I 

also looked for the presence of anti endothelial cell antibodies. Any surface binding 

antibodies could not be shown to the endothelial cell lines tested, yet surprisingly these 

antibodies showed cytotoxicity against endothelial cells. In Wegener’s granulomatosis 

(WG), Holmen et al. showed that WG IgG bind strongly to HKMEC but not to HUVEC 

and other endothelial cell lines (Holmen et al. 2007), which shows that these 

autoantibodies are specific for kidney EC and not just any EC. It seems that in our 

experiments also these autoantibodies are very specific, but then again any surface 

binding to human dermal micro-vascular endothelial cells (HDMEC) could not be shown.  

7.2. Proteomic approach to identify autoantigens 

In IIMs, like most autoimmune diseases, several autoantigens participate in the 

pathogenesis, and epitope spreading is accountable for disease induction, progression 

and inflammatory relapses. Knowledge of the targeted autoantigens is therefore 

indispensable for understanding the nature of acute autoimmune responses during 

recurrent attacks. Furthermore identifying persons at risk to develop several 

autoimmune diseases is based upon the presence of an autoreactive response to 

several autoantigens prior to disease state (Verge et al. 1996; LaGasse et al. 2002; 

Maclaren et al. 2003; Scofield 2004). The accuracy of prediction increases by 

combining autoantigens to identify potential novel candidate autoantigens in IIMs. In 

current study the IgG binding profile to the muscle cells proteome was tested.  

A proteomic approach based on 2D immunoblotting was used, which combines 2D 

electrophoresis and immunoblotting. The 2D electrophoresis is a classical method for 

proteome analysis. It is a powerful tool to investigate differential patterns of qualitative 

and quantitative protein expression. Theoretically, all the proteins in the cells are 

separated in one gel. In the present method, 2D immunoblotting was performed and 

analysis of the western blot images was done with computer systems. The matching 

procedure allows determining the precise localization of relevant protein spots. 

Thereafter the selected protein spots were identified by mass spectrometry. Thus, this 

technical approach of 2D immunoblotting with mass spectrometry also called 
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“serological proteome analysis” (SERPA) potentially enables the detection and 

identification of new target antigens. So far, proteome-based technologies have been 

successfully used in tumor immunology for the identification of tumor-specific 

autoantigens (Seliger and Kellner 2002; Unwin et al. 2003). In the very last years, 2D 

immunoblotting with mass spectrometry have been used to identify new antigens 

targeted by autoantibodies, including myelin protein Po in autoimmune inner ear 

disease (Cao et al. 1996), heterogeneous nuclear ribbonucleoprotein A2/B1 in 

autoimmune hepatitis,(Huguet et al. 2004) ATP synthase beta chain in celiac 

disease,(Stulik et al. 2003) and α-enolase in Behcet’s disease (Lee et al. 2003). In 

rheumatoid arthritis, autoantibodies directed against α-enolase and its citrullinated 

molecule have also been detected (Saulot et al. 2002; Kinloch et al. 2005). Another 

approach, the SEREX method (serological analysis of recombinant cDNA expression 

library), has been developed for the serological definition of immunogenic tumor 

antigens (Chen et al. 1997; Fernandez Madrid et al. 2005; Kuboshima et al. 2006). 

Recent studies indicate that the SEREX approach may also be utilized for the analysis 

of complex immune responses involved in autoimmune diseases (Krebs et al. 2003). 

Whereas human proteins are   directly used as source of antigens in 2D 

immunoblotting, proteins are expressed in E. coli in SEREX approach. Although several 

improvements can be made in the SEREX approach (Fernandez Madrid et al. 2005), 

the use of human cells as a direct source of proteins seem to us more straightforward 

and relevant for researches in autoimmune diseases than using proteins expressed in 

E.Coli. 

Sera from 26 patients and 15 healthy subjects were analyzed by western 

immunoblotting with total cell lysate from TE671, C2C12 and HEK 293 cell lines. 

Seropositivity was based on immunoreactivity with different proteins at serum dilutions 

of 1/100. With TE671 cell lysate, 12 sera from 26 (46%) myositis patients produced a 

specific band in the region between 97 and 191 KDa which was not present in healthy 

controls. This immunoreactivity failed to appear with HEK 293 (Fig. 13) and therefore, 

was considered to be muscle specific. 

These results further show the presence of a specific protein band in western blotting of 
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muscle cell lysate with patient sera which was not present in control sera and fibroblast 

cell lysate. Though specific spots in 2-D electrophoresis of muscle cell proteins were 

found, yet these proteins are not muscle specific instead ubiquitously expressed. The 

identified proteins include Proteasome subunit beta type 7 precursor proteins. Anti-

proteasome antibodies have already been reported in various diseases including SLE, 

primary sjögren’s syndrome, PM and DM (Scheffler et al. 2008). They have also 

discussed that the autoimmune response against proteasomes is diverse and not 

disease specific, and due to frequent and extended antibody reactivity, the proteasome 

is one of the prominent autoantigens in systemic autoimmune disorders. The 

autoantigens themselves might play a role in disease mechanisms. Enhanced 

expression of Mi-2 and Jo-1 in myositis muscle compared with normal muscle, that too 

primarily in regenerating muscles rather than in mature myotubes very nicely supports 

the hypothesis that the presence of myositis candidate autoantigens during reparative 

myogenesis can drive induction and propagation of the autoimmune response 

(Casciola-Rosen et al. 2005). Mi-2, which is essential for the development and repair of 

the basal epidermis (Kashiwagi et al. 2007), is preferentially expressed in DM muscle 

rather than PM muscle, supporting the association between DM and Mi-2 (Casciola-

Rosen et al. 2005). Certain autoantigenic-tRNA synthetases (histidyl, asparaginyl and 

tyrosyl) have chemoattractant properties and can induce leukocyte migration through 

the CCR5 and CCR3 receptors (Howard et al. 2002; Wakasugi et al. 2002).  

As the involvement of the endothelium is suggested in the pathogenesis of these 

diseases (Nagaraju et al. 2006), the presence of anti endothelial cell antibodies has also 

been analyzed. Any surface binding antibodies could not be shown to any of the 

endothelial cell lines tested, yet surprisingly these antibodies showed cytotoxicity 

against endothelial cells. 

7.3. Functional effects of autoantibodies 

Functional autoantibodies that act at ion channels or receptors and disrupt autonomic or 

cardiovascular functions have been described in autoimmune diseases including 

Lambert-Eaton Myasthenic syndrome (LEMS) (Waterman et al. 1997), Scleroderma 
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(Goldblatt et al. 2002), Sjögren’s syndrome (Waterman et al. 2000), and others 

(Gleicher et al. 2007; Jackson et al. 2008; Maciejewska-Rodrigues et al. 2010). LEMS 

IgG impairs transmitter release from parasypathetic and sympathetic neurons through 

down-regulation of one or more subtypes of voltage-gated calcium channels (Waterman 

et al. 1997).  The IgG from patients with primary Sjögren’s syndrome show two effects 

on the submandibular glands. First, it may act as an inducer of the proinflammatory 

molecule (PGE2), which then inhibits Na+/K+ -ATPase activity. Secondly, it may be 

involved in dry mouth pathogenesis by abolishing the Na+/K+ -ATPase inhibition and the 

net K+ efflux stimulation of the salivary glands (Passafaro et al. 2010).  

Since disturbances of cell functions often lead to an increased cell death rate, possible 

cytotoxicity of myositis-IgG on muscle and endothelial cells has been investigated. 

These autoantibodies showed no surface binding to any of the endothelial cells, but 

they did show their cytotoxic effects against these cells. Since binding of obviously 

functional autoantibodies it could not be shown, one might speculate that the antigens 

responsible for the cytotoxic effect are expressed at low level on the cell surface. 

Another explanation could be that, the autoantibodies are low-affinity binding IgGs and 

our method (flow cytometry) is not able to discriminate the specific binding from 

background. Low-affinity binding autoantibodies have also been recently found in 

patients with myasthenia gravis where no anti-AChR antibodies could be found in 

normal tests (Leite et al. 2008).     

Calcium is an important messenger in intracellular signalling mechanisms; therefore it 

has been contemplated that the cytotoxic antibodies might have an effect on stimulated 

calcium flux. The results show that the purified IgG from patients indeed triggered a 

rapid calcium flux response in HUVECs while healthy control IgG did not show any 

effect at all. This change in Ca2+ might be responsible for the cytotoxic effects of 

antibodies.  

HUVECs are a well established model to study the changes in calcium flux. A change in 

calcium flux is the first feature of cell activation, which initiates and coordinates specific 

cellular activities after a given stimuli. Calcium is an important intracellular messenger 
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that is involved in modulating a vast array of cellular events. Signalling events through 

the BCR in SLE B cells are abnormal, as indicated by increased intracellular calcium 

flux and phosphorylation of multiple proteins. Stimulation of freshly isolated peripheral 

blood B cells from patients with SLE with BCR ligand led to unusually high calcium 

responses and increased tyrosine phosphorylation of proteins relative to peripheral 

blood B cells from healthy individuals and disease controls (Pugh-Bernard et al. 2006). 

The signalling alterations found in this study did not correlate with disease activity or 

treatment, and clearly demonstrate the existence of SLE-specific signalling alterations in 

B cells. 

7.4. Skeletal muscle cell MHC I expression in response to statin 
treatment 

The major histocompatibility complex (MHC) genes are located on chromosome 17 (in 

the case of H-2) and 6 (human leukocyte antigen [HLA]) in mice and humans, 

respectively. MHC class I molecules are composed of a transmembrane heavy-chain 

glycoprotein (H), a non-covalently associated soluble protein called ß2-microglobulin, 

and a short peptide of 8-10 residues derived from endogenous proteins. These genes 

are constitutively expressed in most adult tissues, although the relative levels of class I 

expression in different tissues vary widely.  

MHC class I over expression is an early event in many autoimmune diseases, 

particularly in tissues such as muscle, pancreatic ß cells, neuronal cells, and thyrocytes 

that show little or no constitutive expression (Hanafusa et al. 1983; Bottazzo et al. 1985; 

Foulis et al. 1987; McDouall et al. 1989). Abnormal high expression of these molecules 

can occur in the absence of an inflammatory infiltrate, suggesting that it may be 

independent of, and possibly precede, the effects of cytokines released from infiltrating 

mononuclear cells. Normal human skeletal myoblasts constitutively express low levels 

of HLA class I molecules under cell culture conditions (Hohlfeld and Engel 1991; 

Nagaraju et al. 1998). Muscle fibres in mormal individuals do not express detectable 

levels of MHC class I antigens (Emslie-Smith et al. 1989; Hohlfeld and Engel 1991). 

Muscle fibres from patients with IIMs show consistently strong expression of MHC class 

I molecules (Rowe et al. 1983; Appleyard et al. 1985; Karpati et al. 1988; Emslie-Smith 



    Discussion 

69 

 

et al. 1989; McDouall et al. 1989; Bartoccioni et al. 1994). Class I MHC may play 

multiple roles in myositis serving both to initiate the disease as well as maintain ongoing 

muscle damage. A big part of IIM immunogenetic research has continued to 

concentrate on the MHC. In IIM it has long been recognized that HLA status relates to 

disease specific serologivcal subtypes, which in turn associate with distinct clinical 

phenotypes (Love et al. 1991).  

The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, generically referred to 

as statins, have been prescribed extensively for their cholesterol lowering properties 

and efficacy in cardiovascular diseases (Greenwood et al. 2006). Statins also have 

additional immunomodulatory properties that operate independently of lipid lowering. In 

some patients, statins can induce necrotizing or inflammatory myopathies (Needham et 

al. 2007). However, basic mechanisms governing this property are so far unknown. 

Recently, increased MHC class I expression has been demonstrated in muscle fibers of 

patients afflicted with statin-induced myopathies. The over-expression of MHC class I 

molecules is an early event in many autoimmune diseases, since it is a prerequisite for 

the cytolytic action of cytotoxic T lymphocytes. MHC class I molecules by themselves 

can have a deleterious effect on cell types that do not constitutively express these 

molecules (Nagaraju 2005). Normal human skeletal myoblasts constitutively express 

low levels of MHC class I molecules under cell culture conditions (Hohlfeld and Engel 

1991; Nagaraju et al. 1998). Muscle fibres of healthy individuals do not express 

detectable levels of MHC class I antigens, although these fibres have been shown to 

express MHC class I in several autoimmune muscle diseases (Appleyard et al. 1985; 

Emslie-Smith et al. 1989).  

The assembly of MHC class I molecules with peptides is orchestrated by several factors 

including the transporter associated with antigen processing (TAP)(Raghavan et al. 

2008). TAP1 and TAP2 gene products are responsible for the transport of peptides from 

the cytosol to the endoplasmic reticulum where peptides bind to newly synthesized 

MHC class I (Elliott 1997). The low molecular mass polypeptides 2 (LMP2) and 7 

(LMP7) increase the amount of generated peptides available for binding to MHC class I 

antigens (Driscoll et al. 1993; Gaczynska et al. 1994; Groettrup et al. 1995; Niedermann 
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et al. 1995). Up-regulation of the TAP and LMP genes by immune regulators, such as 

interferon gamma (IFN-γ) lead to an increase in MHC class I expression (Yang et al. 

1992; Boes et al. 1994; Tanaka 1994). 

The mechanism responsible for widespread expression of MHC class I in statin-

associated myopathy is unclear (Needham et al. 2007). Therefore, the effect of statins 

on the MHC class I expression has been investigated in vitro on primary cultured 

muscle cells and the rhabdomyosarcoma cell line TE671, which is often used as a 

model cell line for skeletal muscle diseases. Surprisingly, statins impaired the IFN-γ-

inducible MHC class I expression in primary skeletal muscle cells SKMC while they 

potentiate the same effect in TE671. In primary skeletal muscle cells, statins alone 

showed even a decrease in surface expression of MHC class I.  

The potential effect of three statins has also been investigated on MHC class I 

expression and regulation in response to IFN-γ in primary skeletal muscle cell cultures 

and the rhabdomyosarcoma cell line TE671, the latter being used often as a model for 

skeletal muscle diseases. In the primary skeletal muscle cells, statins alone not only 

down-regulated the constitutive MHC class I expression but also impaired the IFN-γ-

induced MHC class I expression. In contrast, in the TE671, statins alone did not affect 

the constitutive MHC class I expression, albeit they enhanced the IFN-γ-induced MHC 

class I expression. Expression of MHC class I in muscle fibers is a ubiquitous feature of 

inflammatory myopathies, and it may be a diagnostic marker for inflammatory 

myopathies (Sundaram et al. 2008). MHC class I is not expressed on the sarcolemma 

of normal muscle fibers. Its presence has been reported as a marker of immune 

activation, since it is involved in antigen recognition by CD8+ T cells (Hohlfeld and 

Engel 1994). Transgenic mice that display up-regulation of MHC class I expression 

develop a self sustaining autoimmune myositis, supporting the role of MHC class I in the 

pathogenesis of myositis. Nonetheless, Confalonieri et al failed to find any T-cell 

cytotoxicity accompanied with up-regulated MHC class I expression in their 

dysferlinopathic patients (Confalonieri et al. 2003). However, a higher MHC class I 

expression has also been found in muscular dystrophies that lack the dysferlin protein 

(Confalonieri et al. 2003). Therefore it may be that the induction of MHC class I is a 
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general phenomenon in muscle cells affected by different etiologies. Our data show that 

statins alone are not able to induce MHC class I in primary muscle cells. The results 

also suggest that TE671 may not be an ideal model of skeletal muscle cells, since the 

cell line behaves in our study more like a tumor cell as has been seen in other tumor 

cell lines (Tilkin-Mariame et al. 2005). In the murine B16F10 melanoma cell line and in 

human melanoma cell lines, these authors demonstrated that statins and 

geranylgeranyl transferase inhibitors enhance IFN-γ induced expression of MHC class I 

antigen.   

Additionally, the effect of statins was also tested on different gene products associated 

with MHC class I surface expression, namely TAP1 and 2 and LMP 2 and 7. IFN-γ 

treatment increased the expression of all four genes. No substantial change could be 

detected in response to statin treatment; nevertheless, all three statins augmented a 

further two times increase over IFN-γ induction of TAP1 expression in primary muscle 

cells but not in TE671. In the latter cells, it seems that increased MHC class I 

expression induced by the combination of statins + IFN-γ treatment is not due to a 

reinforcement of the up-regulation of TAP and LMP genes by statins, because I was 

able to demonstrate the same level of expression as by IFN-γ treatment alone.  

In the primary muscle cells, statins increased the IFN- γ-induced mRNA expression of 

MHC class I, TAP and LMP genes, however the surface expression of MHC I was 

reduced. Since the proteins of the antigen-presenting machinery (TAP1/2 and LMP2/7) 

are also induced, the negative effect on the MHC I surface expression could be caused 

by disturbances in lipid raft formations or an activated control pathway on the protein 

level. The latter hypothesis is supported by the observation of an increased MHC I 

expression in patients with dysferlinopathies and dysferlin-deficient mice (Kostek et al. 

2002; Confalonieri et al. 2003). In the TE671 rhabdomyosarcoma cells, this mechanism 

may be defective as a result of the dedifferentiation of the cell. As reported above, 

tumor cell lines in general seem to behave differently to statin treatment (Tilkin-Mariame 

et al. 2005). 

Our data show a different effect of statins in vitro in comparison to previous reported in 
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vivo studies, by showing increased MHC class I expression in muscle biopsies from 

patients with statin-induced myopathies. This might be due to the presence of other 

cytokines in vivo which are absent in our in vitro system. Our findings are partially in 

agreement with the previous report that statin treatment led to the development of 

myositis, which was reported in association with an increased MHC class I expression 

on muscle cells (Needham et al. 2007). Conceivably, the presence of other players like 

IFN-γ or a different genetic background like association with certain HLA types might 

also be crucial to the development of statins–induced myopathies. In idiopathic 

inflammatory myopathies polymorphisms of the IFN-gamma gene have been reported 

to be a risk factor for the development of myositis. This altered IFN-gamma may have 

different effects in the MHC expression in patients with myositis and also statin-induced 

myopathy (Chinoy et al. 2007 b). Recently, a polymorphism in the SLCO1B1 gene, 

which codes for an organic anion-transporting polypeptide family member (OATP1B1) 

was shown to be associated with an increased risk for development of statin-induced 

myopathy (Link et al. 2008).  This polymorphism obviously increases the plasma 

concentration of statins (Pasanen et al. 2007) but there are no data to link the function 

of OATP1B1 and the MHC class I expression. Additionally the observed effect of the 

statins on MHC class I expression were not dose-dependent in our study. Investigations 

about the effect of statins on MHC class I molecules seem to be all the more important, 

since statins are the leading therapeutic regimen for the treatment of cardiovascular 

disease (Greenwood et al. 2006) and recently have been contemplated to be used as a 

novel immunomodulator. Future studies should therefore attempt to investigate cytokine 

regulation in patients with statin-induced myopathies and to establish the role of MHC I 

expression on muscle cell lines. 

Taken together this data establish that the PM and DM patients have surface binding 

autoantibodies, which show cytotoxic effects towards endothelial cells and affect the 

Ca2+ influx in these cells as well. Interestingly statin treatment of muscle cells seem to 

increase the immunogenicity of muscle cells, shown by an increased IgG binding of 

myositis sera. It proves that the autoantibodies in PM and DM patients do have 

functional role in the development of these diseases. Further, above data also show that 

statins alone reduced the expression of MHC I in SKMC and had no effect on MHC I in 
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TE671. Statins potentiated the MHC I-inducing effect of IFN-gamma in TE671, but not in 

SKMC, neither on the protein level, nor on mRNA level. This leads to the conclusion 

that the increased muscle MHC I expression in statin-induced myopathy might not be 

induced directly by statins themselves. 
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8. Summary 

Polymyositis and Dermatomyositis are both inflammatory muscle diseases. Although 

different autoantibodies have been reported in DM/PM, pure muscle specific antigens 

are rarely known.  

The current study focuses on identification of proteins, responding to antibodies from 

inflammatory myositis and screens those proteins using proteomic approach. At the 

same time the functional effects of the specific autoantibodies has also been 

investigated by using cytotoxicity assay and calcium imaging.  

Flow cytometric antibody binding showed that myositis patients have autoantibodies 

against surface epitopes of muscle cells but not to endothelial cells. As statins have 

been implicated in inducing myopathy with increased expression of MHC class I in 

muscle cells, statin treated cells have been analysed for surface binding of patient sera. 

Patients’ sera showed increased binding to mevastatin and simvastatin treated primary 

muscle cells but not to rhabdomyosarcoma cells. The 2D approach has been used to 

identify muscle specific autonantigens but we could not find any specific autoantigens. 

Interestingly the purified IgG from myositis patients showed cytotoxic effects against 

endothelial cells but not to muscle cells. In further assessing the functional effects of 

autoantibodies It has been found that the purified patients’ IgG but not control IgG 

changed Ca2+ influx in endothelial cells. When analysed for statins induced changes in 

MHC class I expression and other proteins (TAP and LMP) at protein and RNA level, 

statins alone surprisingly reduced the expression of MHC I in SKMC and had no effect 

on MHC I in TE671. Statins potentiated the MHC I-inducing effect of IFN-gamma in 

TE671, but not in SKMC, neither on the protein level, nor on mRNA level. This leads to 

the conclusion that the increased muscle MHC I expression in statin-induced myopathy 

might not be induced directly by statins themselves.  The increased binding of myositis 

sera to stain treated muscle cells and to primary muscle cells and the functional effects 

of these autoantibodies point to a pathogenic role of the humoral immune system in 

inflammatory muscle diseases. 
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9. Zusammenfassung

Polymyositis und Dermatomyositis sind Erkrankungen aus dem Formenkreis der 

entzündlichen Muskelerkrankungen. Obwohl verschiedene Autoantikörper bei diesen 

Erkrankungen beschrieben wurden, sind Muskel- oder Endothel-spezifische 

Autoantikörper kaum bekannt.  

In der vorliegenden Studie wurden Autoantikörper und deren Spezifität mit einem 

Proteomansatz und ihre möglichen funktionellen Effekte mit Zytotoxizitäts- und 

Calciumfluxmessungen bei entzündlichen Muskelerkrankungen untersucht. 

Mit Hilfe der Durchflusszytometrie konnte gezeigt werden, dass Myositispatienten 

Autoantikörper gegen Oberflächenepitope von Muskelzellen, aber nicht Endothelzellen 

haben. Eine Behandlung von Muskelzellen  mit Statinen, die vereinzelt Myositiden 

erzeugen können, führt zu einer erheblichen Zunahme der Bindung von Myositis IgG an 

primäre Muskelzellkulturen, aber nicht an die Rhabdomyosarkomzelllinie TE671. Die 

2D-Gelelektrophorese mit anschließendem Blot  führte nicht zur Identifizierung 

entsprechender muskel-spezifischer Autoantigene. Interessanterweise führte Myositis 

IgG zu zytotoxischen Effekten bei Endothelzellen, nicht jedoch bei Muskelzellen. 

Myositis IgG-Fraktionen, aber nicht IgG von Kontrollen beeinflussten auch den 

Calciuminflux in Endothelzellen.  

Aufgrund der Beobachtung, dass bei Statin-induzierten Myopathien MHC Klasse I auf 

Muskelzellen erhöht gefunden wurde, untersuchte ich den Einfluss von Statinen auf die 

MHC Klasse I Expression in vitro. Dabei zeigte sich, dass Statine sogar zu einer 

Verminderung der MHC I Expression in primären Muskelzellen (SKMC) führen, bei 

TE671 Zellen war kein Effekt nachweisbar. Während Statine die Interferon-γ induzierte 

MHC I Expression auf der Muskeltumorzelllinie TE671 potenzierten, wurde die MHC I 

Expression auf SKMC vermindert. Dies ließ sich auf Protein- und mRNA Level zeigen, 

was zu der Schlussfolgerung führt, dass die MHC I Expression bei diesen Myopathien 

kein direkter Effekt der Statine ist.  
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Die von uns nachgewiesenen Antikörper gegen Oberflächenepitope, insbesondere auch 

die verstärkte Bindung an Statin-behandelte Muskelzellen, und die funktionellen Effekte 

der Autoantikörper legen eine pathogene Rolle des humoralen Immunsystems bei 

inflammatorischen Muskelerkrankungen nahe. 
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