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Low Assumptions, High Dimensions

Abstract:

These days, statisticians often deal with complex, high dimensional datasets. Research-
ers in statistics and machine learning have responded by creating many new methods
for analyzing high dimensional data. However, many of these new methods depend on
strong assumptions. The challenge of bringing low assumption inference to high dimen-
sional settings requires new ways to think about the foundations of statistics. Traditional
foundational concerns, such as the Bayesian versus frequentist debate, have become less
important.

1. In the Olden Days

There is a joke about media bias from the comedian Al Franken:

“To make the argument that the media has a left- or right-wing, or
a liberal or a conservative bias, is like asking if the problem with
Al-Qaeda is: do they use too much oil in their hummus?”

I think a similar comment could be applied to the usual debates in the founda-
tions of statistical inference. The important foundation questions are not ‘Bayes
versus Frequentist’ or ‘Objective Bayesian versus Subjective Bayesian’.

To me, the most pressing foundational question is: how do we reconcile the
two most powerful needs in modern statistics: the need to make methods as-
sumption free and the need to make methods work in high dimensions. Methods
that hinge on weak assumptions are always valuable. But this is especially so
in high dimensional problems. The Bayes-Frequentist debate is not irrelevant
but it is not as central as it once was. I'll discuss Bayesian inference in section 4.

Our search for low assumption, high dimension methods is complicated by
the fact that our intuition in high dimensions is often misguided. In the olden
days, statistical models had low dimension d and large sample size n. These
models guided our intuition but this intuition is inadequate for modern data
where d > n.

An analogy from physics is helpful. Physics was initially guided by sim-
ple thought (and real) experiments about falling apples, balls rolling down in-
clined planes and moving objects bumping into each other. This approach guided
physics successfully for a while. But modern physics (quantum mechanics, fields
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theories, string theory etc.) shows that the intuition built from simple physical
scenarios is misleading. Research fields get more complex as they mature and
we have to give up our simple models. Similarly, the foundations of statistics
was once guided by simple thought experiments where the models were: cor-
rect, had a few, interpretable parameters and the biggest issue of the day was
Bayes versus frequentist. But this is no longer true. Modern problems involve
many of the following characteristics:
1. The number of parameters is larger then the number of data points.
2. Data can be numbers, images, text, video, manifolds, geometric objects,
etc.
3. The model is always wrong. We use models, and they lead to useful in-
sights but the parameters in the model are not meaningful.

2. Low Assumptions Inference

Before discussing high-dimensional statistics, let us begin with a discussion of
low assumptions inference.

I think most statisticians would agree that methods based on weak assump-
tions are generally preferable to methods based on strong assumptions. For
simple, low dimensional problems, low assumption inference is well-studied.
But the extensions to high-dimensions are far from obvious. I'll now describe
three approaches to low assumption inference which make increasingly weaker
assumptions.

2.1 Completely Nonparametric Inference

Let X1,...,X,, be random variables on R. We take our model to be the set 2 of all
distributions on the real line. Let 8 = T'(P) be a function of P. A confidence set
C=C(X4y,...,X},) is completely nonparametric if P*(T(P)e C)=1—a for all P €
22. Bahadur and Savage (1956) showed that there is no non-trivial completely
nonparametric confidence set when 7T'(P) is the mean of P. Donoho (1988) and
Tibshirani and Wasserman (1988) extended the Bahadur and Savage result to
other functionals T'.

On a more positive note, Donoho (1988) showed that completely nonpara-
metric one-sided inference is sometimes possible. For example, let M(P) be the
number of modes of the density of P. (If P has no density, then define M(P) to
be the limit of M(P % Kj) as h — 0 where K}, is a kernel with bandwidth A.)

Let &2 be a 1— a confidence set for P. (For example, invert the Kolomogorov-
Smirnov test.) Then C = [min{m(P): P € &},00) is a completely nonparametric
one-sided confidence interval for M(P). That is, for all P, P*(M(P) ¢ C). Donoho
gives examples of one-sided intervals for even more complex functionals.

However, things break down as soon as we increase the dimension. Even
when X; € R2, it can be shown that there is not even a one-sided nonparametric
confidence interval for M(P). A basic question which has not been answered (as
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far as I know) is: for which quantities do there exist non-trivial nonparametric
confidence intervals when the dimension d > 2? A more interesting question is:
for which quantities do there exist non-trivial nonparametric confidence inter-
vals when when the dimension d > n?

2.2 Inference without Models

P. Laurie Davies (and his co-workers) have written several interesting papers
where probability models, at least in the sense that we usually use them, are
eliminated. Data are treated as deterministic. One then looks for adequate
models rather than true models. His basic idea is that a distribution P is an ad-
equate approximation for x1,...,x,, if typical data sets of size n, generated under
P ‘look like’ x1,...,x,. In other words, he asks whether we can approximate the
deterministic data with a stochastic model.

For nonparametric regression, the idea is implemented as follows (Davies
and Kovac 2001; Davies, Kovac and Meise 2009). We observe (X1,Y7),...,
(X,,Y,). Given an regression function f, we can define the residuals

e(f)=(e1,...,€n)

where €¢; =Y; — f(X;). Now we apply a test for randomness to e(f). The partic-
ular test is not important in our discussion. Write R(e(f)) = 1 if randomness is
rejected and R(e(f)) = 0 if randomness is not rejected.

Next define a measure of complexity w(f). For example, ¥(f) might be the
number of maxima and minima of f. Finally, we define / to minimize w(f)
subject to R(e(f)) = 0. Thus, f is the simplest function such that the residuals
‘look random’.

Davies’ approach is intriguing but again, I have not seen extensions to high-
dimensional problems.

2.3 Individual Sequences

A more extreme example of using weak assumptions is to abandon probabil-
ity completely. This is the idea behind individual sequence prediction. This
is a large and well-researched area, yet most statisticians (and I suspect most
philosophers) have never heard of it.

We might say that, to a Bayesian, everything is random. To a frequentist,
some things are random. To researchers in individual sequence prediction, noth-
ing is random. Abandoning the idea that data are generated from some random
process is very appealing. After all, when we have data we really just have a
bunch of numbers. The idea that they were generated from a distribution is
usually just a fiction.

Here is a brief description of individual sequence prediction, taken from
Cesa-Bianchi and Lugosi (2006). We observe a sequence y1,%9,...,. For sim-
plicity assume these are binary. After observing y1,...,y;—1 we issue a prediction
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p: of y;. We suffer a loss ¢(y;, p;). Again, to keep it simple, let us suppose that
0y, pe) =ly:—pelt

We construct N algorithms Aj,...,An (called experts in this research area).
The algorithm A; takes the data y1,...,y;-1 and yields a prediction A;;. To
summarize: at time ¢:

1. Yousee y' ™! and (A1y,...,AN ).

2. You predict p;.

3. y; is revealed.

4. You suffer loss ¢(p¢, y:).
Define the cumulative loss of algorithm A; by L ;(y") = %Zf

1 |A;:— y:l. Define
the maximum regret

R, = max (Lp(y")—minLj(yn))
yte(0,1} J

and the minimax regret

V,, =inf max (Lp(yn)—minLj(yn)).
P yte{0,1) J

A number of authors (Vovk, Littelstone and Warmuth, Cesa-Bianchi and Lugosi)
have shown the following. If we define

N
Piy"™M =Y wjs1 Fj,
J=1

where wj ;1 o< exp{—ynL;, 1} and y = \/8logN/n then

logN
Lp(y™)— min L;(y") < .
(") 121]'151}\7 ") o

Moreover, this bound is tight. Note that there is no assumption about random-
ness (subjective or frequentist).

In summary, we can do sensible inference without invoking probability at all.
Why are scholars in foundations ignoring this?

3. Low Assumptions in High Dimensions

Can we apply some of this thinking to high dimensional problems? Let us con-
sider a few specific cases.

1 See the book by Cesa-Bianchi and Lugosi (2006) and various papers by: Cesa-Bianchi, Lugosi,
Rakhlin, Bartlett, Freund, Feder, Merhav, Gutman, Vovk, Shafer, Littlestone, Warmuth, Schapire
and others.
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3.1 Prediction

Consider linear prediction. We observe (X1,Y1),...,(X,,Y,) where Y; € R and
X; € R%. We want to predict the next Y given a new X.

A linear predictor has the form L(x; ) = fT«x. Traditional, low dimensional
thinking involves (i) estimating by least squares, (ii) treating the linear model
as if it is correct and (iii) treating the f’s as meaningful quantities. None of
these ideas make sense when d > n. Instead we (i) estimate f using sparse
regression, (i) assume that the linear model is incorrect and (iii) we make no
attempt to interpret the f’s.

For example, we can estimate f using the lasso (Tibshirani 1996) where f is
chosen to minimize

S (v - pTX )+ MBI

12

where ||Bll1 = Z;.lzl |6;]. This is equivalent to minimizing Y ;(Y; — ﬁTX,-)2 sub-
ject to ||Bll1 < C. The estimator § can be found quickly since this is a convex
minimization. Furthermore, ﬁ is sparse: most of its entries are 0. (The regular-
ization parameter is typically chosen by cross-validation.) Our predictor is then
L(x,p) = pTx.

The lasso (and its variants) has been used successfully in so many applica-
tion areas that one cannot doubt its usefulness. This is interesting because the
linear model is certainly wrong and is also uncheckable. For example, if Y is
a disease outcome and X represents the expression levels of 50,000 genes, it is
inconceivable that the mean of Y given X = x would be linear.

Greenshtein and Ritov (2004) provide a low assumption justification for the
lasso: it approximates the best sparse linear predictor. Let R(8) = E(Y — BT X)?
denote the risk of predicting a new Y from a new X. Define the best, sparse lin-
ear predictor to be L. (x) = T x where B, = argmin g, <7, R(p) is the best, sparse

linear predictor. Let 8 be the lasso estimator. Under very weak assumptions, it

can be shown that
N 1
R(H)-R(p.)<Op (Lﬂ/%d).

Thus, the lasso ‘works’ under very weak conditions. This reasoning can even be
extended to nonparametric versions of the lasso (Ravikumar, Lafferty, Liu and
Wasserman 2009).

3.2 Salient Structure

A more difficult challenge is to give a low assumption interpretation to the many
‘structure finding’ algorithms that are now common for estimating high dimen-
sional data.

As an example, we consider forest density estimation (Liu, Xu, Gu, Gupta,
Lafferty and Wasserman 2011). Let XD . X" pe n vectors, drawn from a
distribution P where X = (X ii),...,Xg)). Imagine measuring d genes on n
subjects, for example. Let X = (X1,...,X3) denote a generic random variable.
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One way to explore the structure of P is to consider the undirected graph G
whose d vertices X1,...,Xy correspond to the d elements of the vector X. An
edge is omitted between X; and X; if and only if X; and X; are independent
conditional on the other variables. Graphs of this form are now routinely used
to find gene networks, for example.

The preferred method for estimating the graph G is to assume that P is mul-
tivariate Normal with mean vector y and covariance matrix Z. In this case, an
edge between X; and X; is missing if and only if Q;; = 0 where Q = -1, Esti-
mating Q when d is large can be done using the graphical lasso. We maximize
the Gaussian likelihood subject to the sparsity penalty 3;.;1Q;;| < L.

There are many apparent successes using the graphical lasso. But we have
moved far from the world of low assumptions. The forest approach attempts to
remedy this. Suppose we require the graph to be a forest, which means that the
graph has no cycles. Under this assumption, the density of P can be written as

p]k(xjaxk)
pex)= H pi;) H 5 Pj(x)pr(xg)

where j ~ £ means there is an edge between X; and X;. Low assumption in-
ference is now possible because, despite the fact that d might be large, we need
only estimate one and two-dimensional marginals of P which can be done very
nonparametrically. An example is shown in figure 1.

What have we done here? We have traded a strong distributional assumption
on P for a strong structural assumption on the graph G. My sense is that the lat-
ter is preferable. But currently, we have no way to make that intuition precise.
More importantly, I doubt very much that any of the variables are truly condi-
tionally independent of any other variables. Yet I don’t think that renders the
graph useless. Rather, I think that the graph is capturing a salient structure.
Again, I don’t know how to make this precise or give it a secure foundational jus-
tification. More importantly, I don’t know how to make sensible (and rigorous)
uncertainty statements in a problem like this.

What’s happening here is that statisticians are reacting to challenging prob-
lems by creating new methods. The methods appear to be reasonable and effec-
tive. But they lack philosophical foundations.

4. Bayes?

What is the role of Bayesian inference in our high dimensional world? In prin-
ciple, low assumption Bayesian inference is possible. We simply put a prior 7
on the set of all distributions 2. The rest follows from Bayes theorem. But this
is clearly unsatisfactory. The resulting priors have no guarantees, except the
solipsistic guarantee that the answer is consistent with the assumed prior.
There are some successes with nonparametric Bayesian methods in difficult
machine learning problems. But the answers are usually checked against held
out data. This is quite sensible but then this is Bayesian in form not substance.
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Figure 1: Graph estimation (from Liu, Xu, Gu, Gupta, Lafferty and Wasserman 2011).
Top row: Gaussian data. Bottom row: Non-Gaussian data. First column: true graph.
Middle column: forest estimator. Right column: graphical lasso.

It is worth recalling the main result from Freedman (1965) which shows how
hard it is to construct good priors on large spaces. Let A be the set of distri-
butions on {1,2,3,...,}. Let II be the set of priors on A. The pair (A,u) € A xII
is consistent if the posterior under u converges to a point mass at A a.s. with
respect to A. Endow A with the weak™ topology: A, — A if 1,,(i) — A(Z) for all i.
Endow I with the weak* topology: p, — p if [fdu, — [ fdp for all bounded,
continuous functions f. Put the product topology on A xII. A set is nowhere
dense if the interior of its closure is empty. A set is meager if it is a countable
union of nowhere dense sets. A meager set is the topological version of a null
set.

Theorem 1 (Freedman 1965)
The set of consistent pairs (A, ) is meager.

A corollary of the theorem is that most Bayesians will disagree with each other.
As Freedman puts it:

“[...]11t is easy to prove that for essentially any pair of Bayesians,
each thinks the other is crazy.”
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The lesson is that it is hard to choose a good prior even on the set of distribu-
tions for a countable set. Constructing sensible, low assumption priors for high
dimensional problems can only be more vexing.

5. Conclusion
According to Wikipedia:

“Foundations of statistics is the usual name for the epistemologi-
cal debate in statistics over how one should conduct inductive infer-
ence from data. Among the issues considered in statistical inference
are the question of Bayesian inference versus frequentist inference,
the distinction between Fisher’s ‘significance testing’ and Neyman-
Pearson ‘hypothesis testing’, and whether the likelihood principle
should be followed. Some of these issues have been debated for up to
200 years without resolution.”

Wikipedia references Efron (1978) for this definition. It is telling that this def-
inition is from a paper written over 20 years ago. Perhaps it is time to rethink
what we mean by ‘the foundations of statistics’. The best way to do this is to
look at the wide array of new problems that statisticians (and computer scien-
tists) are facing with the deluge of high dimensional complex data that is now
SO common.
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