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V. Summary

Influenza A virus (IAV) infection can cause severe pneumonia and lead to acute 
respiratory distress syndrome and ultimately death. Despite damage by viral 
replication, imbalanced production of anti-viral cytokines (“cytokine storm”) resulting 
in inflammation can also lead to severe lung destruction. Therapeutics as vaccines 
and anti-viral drugs target components of the virus itself resulting in resistant 
variants. Therefore new therapeutic measures are urgently needed. IAV has been 
shown to activate the NF-B and MAPK (Raf/EK/ERK) signalling pathway. These 
pathways seem to have both pro- and anti-viral effects, by promoting nuclear export 
of the viral genome and by inducing expression of anti-viral pro-inflammatory factors.
Therefore it was postulated that the inhibition of these signalling pathways will 
simultaneously reduce virus replication as well as modulate cytokine production 
without affecting host defence.
Using specific IKK- (Bay-11-7082) and MEK- (U0126) inhibitors at non-toxic 
concentrations, I analysed the effect of NF-B and MAPK pathway inhibition on 
propagation of a highly pathogenic avian influenza virus (strain A/FPV/Bratislava/79, 
H7N7) and a human influenza virus (strain A/PR/8/34, H1N1) and the virus-induced 
cytokine induction in infected human lung epithelia cells (A549) and mice primary 
alveolar epithelial cells (AECs), in vitro. Experiments were also performed in an in 
vivo mouse model for “proof of principle” applying the above inhibitors and the 
A/PR/8/34 virus for infection.
Results show, (1) by western blot and transcription factor assay that both pathways 
(NF-B and MAPK) are activated upon IAV infection in A549 cells; (2) that both 
inhibitors (IKK-, MEK-inhibitor), used at non-toxic concentrations, lead to decrease in 
signalling, virus titres (FFU assay) and (3) reduced cytokine expression (multiplex 
cytokine assay and ELISA), in vitro (A549 and AECs) as well as in vivo (mice). I also 
observed differences in the virus-induced (FPV and PR8) cytokine release when 
comparing different cell types (A549, AECs) as well as in the mouse model.
The results demonstrate that inhibition of NF-B and Raf/MEK/ERK pathway can be 
used to simultaneously reduce virus titres and modulate pro-inflammatory cytokine 
expression in vitro as well as in vivo. This could be of importance for future 
therapeutic strategies to treat influenza pneumonia and virus induced “Cytokine
Storm”.
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VI. Zusammenfassung

Eine Infektion mit dem Influenza A virus (IAV) kann schwere Pneumonien 
verursachen, die zum akuten Atemnotsyndrom und schließlich zum Tod führen 
können. Neben der Schädigung durch die virale Replikation, kann auch die in einer 
überschießende Entzündung resultierende, ungeregelte Produktion von anti-viralen 
Zytokinen („Zytokinsturm“), zu einer ernsthaften Schädigung der Lunge führen. 
Impfstoffe und anti-virale Substanzen als Therapeutika richten sich in der Regel 
gegen bestimmte virale Funktionen und Virusbestandteile und führen somit schnell 
zu Resistenzen. Daher sind neue therapeutische Möglichkeiten dringend notwendig. 
Es konnte bereits nachgewiesen werden, dass IAV den NF-B und den MAPK 
(Raf/MEK/ERK) Signalweg aktivieren. Diese Signalwege scheinen beide, durch die 
gleichzeitige Förderung des Kernexports des viralen Genoms und der 
Expressionsregulation von anti-viralen pro-inflammatorischen Faktoren, pro-und anti-
virale Effekte zu besitzen. Daher wurde postuliert, dass durch die Hemmung dieser 
Signalwege sowohl die Virusvermehrung reduziert werden kann, als auch die 
Zytokinproduktion moduliert werden kann bei gleichzeitigen Erhalt der Wirstabwehr.
Unter Verwendung spezifischer Inhibitoren beider Signalwege (IKK-Inhibitor: Bay-11-
7082, MEK-Inhibitor: U0126) in nicht-toxischen Konzentrationen analysierte ich in 
vitro den Effekt der NF-B- und MAPK-Signalwegsinhibition in Bezug auf die 
Vermehrung, eines hochpathogenen aviärern Influenzavirus (HPAIV, Stamm 
A/FPV/Bratislava/79, H7N7) und eines humanen Influenzavirus (Stamm A/PR/8/34, 
H1N1), sowie die Zytokininduktion in infizierten humanen Lungenepithelzellen (A549) 
und alveolären primären Mäuseepithelzellen (AECs). Auch wurden zur Bestätigung 
der Hypothese in einem Modelorganismus diese Experimente unter Verwendung der 
oben genannten Inhibitoren und des A/PR/8/34 Virus in einem Mausmodell in vivo
durchgeführt. 
Die Resultate zeigten, dass (1) beide Signalwege (NF-B und MAPK) durch die IAV 
Infektion von A549-Zellen aktiviert werden – nachgewiesen durch Westernblot-
Analysen und Messung der Transkriptionsfaktor-Aktivierung, (2) beide Inhibitoren 
(IKK-, MEK-Inhibitor) unter Verwendung in nicht-toxischer Konzentrationen zur 
Verringerung des Virustiters führen (FFU-Assay) und (3) die Zytokinexpression 
(„multiplex cytokine assay“ und ELISA) in vitro (A549 und AECs), sowie in vivo
(Mausmodel) verringert ist. Dabei konnte gezeigt werden, dass die Zytokininduktion 
abhängig ist vom (1) Zellmodel (A549 oder AECs) oder Mausmodel und (2) vom 
Virusstamm (FPV oder PR8)
Die Resultate demonstrieren, dass die Inhibition der NF-B und Raf/MEK/ERK-
Signalwege dazu verwendet werden können gleichzeitig Virustiter zu reduzieren und 
pro-inflammatorische Zytokinexpression in vitro, sowie in vivo zu beeinflussen. Dies 
könnte zukünftig für die Behandlung von Influenzapneumonien im Bezug auf die 
Hemmung der Virusvermehrung und Modulation der virusinduzierten 
Zytokinausschüttung von großer Bedeutung sein.  
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1. Introduction

1.1. Influenza viruses

1.1.1. Different types of influenza viruses

Influenza viruses belong to the family of the Orthomyxoviridae and are subdivided 

into three genera depending on the antigenic differences of their nucleo- and matrix 

proteins: type A, B and C. They also differ with respect to host range, variability of the 

surface glycoproteins, genome organization and morphology. The influenza A viruses 

are responsible for major pandemic outbreaks of influenza and for most of the well-

known annual flu epidemics. Influenza C is different from the A and B type, and 

generally causes only mild cold-type disease in humans. Type A influenza viruses 

can infect in general birds and mammals (Figure 1.1), whereas type B and C 

influenza viruses are normally only found in humans. The primary reservoir of all 

influenza A viruses are wild aquatic birds. Type A influenza viruses are further 

classified into subtypes based on two surface glycoproteins of the virus; the 

haemagglutinin (HA: H1-H16) and the neuraminidase (NA: N1-N9) proteins. Unlike 

influenza A viruses, type B and C influenza viruses are not classified into subtypes

[1].

Figure 1.1: The reservoir of influenza A viruses. The hypothesis is that wild aquatic birds are the 

primordial reservoir of all influenza viruses for avian and mammalian species. Direct transmission of 

influenza between pigs and humans has been shown (solid line). There is also extensive evidence for 

transmission between wild ducks and other species. The five different host groups are based on 

phylogenetic analysis of the nucleoproteins of a large number of different influenza viruses (adapted 

from: Webster,[2]).
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1.1.2. Influenza A virus

1.1.2.1. Morphology and genome structure of influenza A virus

Influenza A viruses (IAVs) are enveloped viruses and consist of eight segmented 

single-stranded RNAs of negative polarity with between 890 to 2341 nucleotides 

each that code for at least 10 viral proteins [1, 3] (Figure 1.2 and Table 1.1). 

Influenza A viruses particles are pleomorphic, in general spherical and have a size of 

approximately 80 to 120 nm in diameter [1].

The lipid envelope is derived from the host cell membrane during viral budding from 

cell surface  and consists of a lipid bilayer presenting spike-like projections (about 

500) on the outside, which represent the structural glycoproteins HA 

(haemagglutinin) and NA (neuraminidase). The matrix protein M1 underlies the 

inside, and the M2 (ion channel) protein is also a trans-membrane protein and is 

found in the lipid bilayer of the viral envelope [1, 3, 4].

The viral HA is a trimer, which comprises three individual HA monomers, whereas the 

NA is a tetramer. HA is five times more abundant than NA [5]. The HA is synthesized 

as a single polypeptide chain (HA0), which is subsequently cleaved into two subunits, 

HA1 and HA2 [5-10]. Cleavage of HA0 is essential for the molecule to be able to 

mediate membrane fusion between the viral envelope and the host cell membrane

and for infectivity [5, 8, 11]. HA1 and HA2 appear as two distinct subunits, with HA1 

being the globular domain at the distal end of the spike, which is responsible for 

binding of the virus to the cellular sialic acid receptor [5]. HA1 is also responsible for 

the major antigenic epitopes of the molecule to which the host will direct a

neutralizing antibody response [6, 8]. The HA2 forms the stem of the viral spike and 

contains a conserved region of 20-amino acid residues, mostly hydrophobic at the N-

terminus [5, 8]. This sequence is generally referred to as the “fusion peptide”, and is

responsible for triggering the fusion between the viral envelope and the host cell 

membrane [5, 8, 9].

The NA is the second major surface antigen of the virus and plays an important role 

in efficient viral budding [2, 4, 5]. It displays enzymatic activity towards a terminal 

sialic acid and an adjacent sugar residue [5]. Since sialic acid receptors are present 

on the cell surface, the neuraminidase activity of NA permits release and prevents 

reattachment or aggregation, of the newly formed virions from the surface of the 

infected cells [2, 4, 5].
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Figure 1.2.A: Cartoon of the influenza virion. The eight viral RNA segments were separated by 

electrophoresis (left). The corresponding gene products and their localization within the virus particle 

are depicted on the right. The only non-structural virus protein, the NS1, is only found inside infected 

cells. (Adapted from Ludwig et al.[12])

Table 1.1.: Influenza A virus proteins and functions (strain A/PR/8/34, H1N1)

(Modified from Ludwig et al. [13])

Segment vRNA (nt) Protein AA Functions

1 2341 PB2 759 subunit of  RDRP; "Cap-snatching"

2 2341 PB1

PB1-F2

757

87

catalytic subunit of  RDRP; elongation

apoptosis?

3 2233 PA 716 subunit of  RDRP

4 1778 HA 566 haemagglutinin; surface-glycoprotein; 

receptor binding; membrane fusion

5 1565 NP 498 nucleoprotein; encapsidation of vRNA and cRNA; part of 

transcriptase complex; nuclear/cytoplasmic transport of vRNA

6 1413 NA 454 neuraminidase; surface-glycoprotein; 

receptor disruption, virus releasing

7 1027 M1

M2

252

97

matrix protein

ion channel activity ; protecting HA-conformation

8 890 NS1

NEP/NS2

230

121

post-transcription regulator; inhibition of (i) pre-mRMA 

splicing, (ii) polyadenylation (iii) PKR-activation

nuclear export factor
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Oseltamivir (Tamiflu) and zanamivir (Relenza) are neuraminidase inhibitors (NAI) and 

the only two approved NAI in humans. These drugs are sialic acid analogues, which 

inhibit the enzymatic activity of NA, thus slowing down the release of progeny virions 

from infected cells [12, 14, 15].

A third integral membrane protein, the M2, forms a homotetramer and is expressed 

on the virus surface. M2 functions as a pH-activated proton channel and is essential 

for viral uncoating in the viral infection cycle [1, 5, 16, 17]. It permits entry of protons 

from the endosome into the viral particle, thereby weakening and disrupting the 

interaction between the viral genome and the M1 protein [1, 5]. M2 also seems to be 

important for viruses with intracellular cleaved HAs (such as H5 and H7 subtypes of 

avian viruses) by regulating the intra-compartmental pH in the trans Golgi network 

(TGN) above the threshold at which conformational changes of the HA occur [1, 5].

M2 is the target for the influenza drugs amantadine and rimantadine [17]. Blocking of 

the M2 channel with amantadine slows the dissociation of M1 from ribonucleoprotein 

complexes (RNPs) (see below) and the viral membrane, inhibiting subsequent steps 

in the viral life cycle [1, 5, 17].

Influenza A and B virus genomes consist of eight negative-sense single-stranded 

RNAs. The viral RNA is assembled with the viral RNA-dependent RNA-polymerase 

(RDRP), which is itself a complex of three subunits: PB1, PB2 and PA, and the 

nucleocapsid protein NP to form ribonucleoprotein complexes (RNPs) [1, 5] (Figure 

1.2.B). The main function of NP is to encapsidates the virus genome, leading to RNA 

transcription, replication and packaging [18]. The RNPs are surrounded by a layer of 

the matrix protein, M1, which is the most abundant structural protein of influenza 

virus and is thought to act as an adaptor protein between the lipid envelope and the 

internal RNP particles [19].

All viral segments encode for one protein except for segment 7 and 8 which have 

overlapping reading frames and will give rise to the proteins M1, M2 and NS1, NS2 

(also called nuclear export protein NEP) respectively, by splicing of the primary 

mRNA transcript [5] (Figure 1.2. and Table 1.1.). Also, some influenza viruses 

encode for another protein, PB1-F2, in the +1 reading frame of the PB1 gene [20].

M1 protein associates tightly with the vRNP both in the virion as well as during virus 

assembly in the infected cell [19, 21, 22]. After the protons have entered the virion via 

the M2, the M1 is released from the RNPs, and the RNPs are then rapidly imported 

from the virion, which has fused with the endosomal membrane, into the nucleus, by 
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an active mechanism, through the nuclear pore complexes (NPC) [23]. The M1 

protein association to vRNP has been shown to be important also for nuclear RNP

export, late in the replication cycle, and this association also seems to prevent the re-

import of the newly synthesized vRNPs back into the nucleus [22-24].

NS2 is present in low copies in the virion, whereas the NS1 is the only true non 

structural protein, but it is highly abundant inside infected cells [5].

Figure 1.2.B: The influenza virus RNP structure. The NP (blue) is associated with (-) sense single-

stranded RNA (black line), and the three subunits of RNA-dependent RNA-polymerase (RDRP): PB1 

(yellow), PB2 (orange) and PA (green), which bind at a short duplex region of the vRNA. (Adapted 

from Portela and Digard, [18])

1.1.2.2. Propagation and genome replication of influenza A virus

Influenza viruses bind to sialic acid residues that are ubiquitously present on 

glycoproteins or glycolipids on the host cell surface [1, 4] (Figure 1.3). The main 

targets of IAV in humans are epithelial cells of the upper and lower respiratory tract, 

but they can also infect macrophages, dendritic cells and other leukocytes [25]. The 

virus binds to the cell via its receptor-binding pocket at the conserved distal tip of the 

HA molecule [8]. Different IAV HAs show different receptor binding specificities 

depending on the nature of the glycosidic linkage between the terminal sialic acid 

and the penultimate galactose residue on the carbohydrate side chains on the 

receptor [8]. Human influenza viruses preferentially bind to sialic acids attached to 

galactose in 2,6 configuration, whereas avian viruses have a preference for sialic 

acids attached to galactose in an 2,3 linkage [8, 26-29]. In humans influenza viruses 

infection is mainly a respiratory disease and the sialic acid 2,6 linkage is abundant 

in the lungs, whereas in birds it is enteric and the sialic acid 2,3 linkage is mainly 

found in the intestine. This difference is thought to be the basis for the restriction in 
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transmission of avian influenza viruses directly to humans [8]. On the other hand, 

pigs have receptors with both type of linkage between sialic acid and galactose, and 

therefore are susceptible to infection with either human or avian viruses. Co-infection 

of pigs with different influenza viruses is considered one way by which new viruses 

with pandemic potential may arise [8, 26]. 

Virus binding to receptors initiates uptake through so-called receptor-mediated 

endocytosis. In this process, virus particles are internalised by the host cell plasma 

membrane. The vesicles thus formed subsequently fuse with intracellular 

compartments called endosomes, which progress from mild acidic to late endosomes 

with decreasing internal pH. One of the important steps in IAV infection is the fusion 

reaction between the viral envelope and the endosomal membrane. For this, the 

maintenance of a low pH inside the endosomes (pH5-6), by proton pumps within the 

endosomal membrane, is of utmost importance. Upon pH decrease the HA suffers a 

major conformational change in its structure thereby leading to movement of the 

fusion peptide sequences of HA2, previously buried within the stem of the HA trimer, 

to the distal tip of the HA spike, allowing their insertion into the target membrane 

(Figure 1.3) [8-10]. This then allows for merging of the two membranes, through 

which the viral core penetrates into the cell cytosol [30, 31]. M2 proton channel

activity is required for the uncoating process. M2 facilitates the flow of ions from the 

endosome into the virion interior, leading to disruption of protein-protein interactions, 

thus dissociating M1 from RNPs and viral membrane [1, 5].

The RNP complexes released into the host cell cytosol are transported intact to the 

nucleus, through the nuclear pore complex (NPC). All four proteins of the RNP 

complex (NP, PB1, PB2 and PA) contain nuclear localization signals (NLS) and are 

actively transported into the nucleus, where replication and transcription of viral RNA 

(vRNA) takes place (Figure 1.3 and 1.6) whereas M1 may enter the nucleus by 

passive diffusion because of its small size [32-36]. In the nucleus the negative (-) 

sense vRNAs are transcribed to positive (+) sense messenger RNAs (mRNAs) by the 

replicase/transcriptase RDRP (PB1, PB2 and PA) carried with the RNPs (Figure 1.3 

and 1.6). For initiation of viral mRNA synthesis, in a process referred to as “cap 

snatching”, the viral transcriptase “steals”, by endonucleolytic cleavage, short cap 

regions (m7GpppNm) from cellular pre-mRNAs, to act as primers. Thus, this cap 

snatching process, which is later required for efficient binding of ribosomes to the 

mRNA, favours production of viral components over synthesis of cellular proteins. 
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After priming synthesis of mRNAs are terminated 17 to 22nt from the 5’ end of the 

vRNA template at a sequence of 4/5 to 7 uridines (U) [1, 5]. This stretch of uridines 

act as a polyadenylation signal [37-39] which leads to synthesis of a poly(A) tail by 

the viral RNA polymerase, by repeated copying of the U sequence, and added to the 

3’end of the viral mRNA [38, 39]. The mRNAs are then transported to the cell cytosol 

for translation to occur [1, 5]. 
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Figure 1.3: The Replication cycle of influenza virus. It begins with binding of the HA-spike to sialic-

acid containing receptors on the cell surface. The virion is then taken up into the cell through 

endocytosis. The RNPs are released into the cell cytoplasm after fusion between the viral and the 

endosomal membrane, and then transported into the nucleus, where transcription and replication of 

the viral RNA takes place. Viral mRNA is exported to the cytoplasm and translated into viral proteins. 

Some replicative proteins (i.e. NP, PB1, PB2 and PA) are transported back to the nucleus and 

continue the viral genome replication. Viral surface-glycoproteins (i.e. HA and NA) are transported to 

the cell surface. Late during virus replication cycle, vRNPs are exported out of the nucleus and packed 

and progeny virions are then released from the membrane by budding. (Adapted from Pleschka)

As mentioned above the polymerase proteins (PB1, PB2 and PA) are required for 

this process. The PB1 subunit forms the core of the complex and is responsible for 

polymerase activity, whereas the PB2 subunit is involved in generation of capped 
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RNA primers for the initiation of transcription by binding the cap structures of host 

pre-mRNA (cap snatching) prior to their endonucleolytic cleavage by PB1 [1, 2, 5]. 

The PA subunit is required for both transcription and replication, but its exact role in 

the virus replication cycle is still unclear [2, 40].

(-) sense viral RNAs (vRNA) also serve as templates for production of exact copies of 

complementary (+) sense RNA (cRNA), which in turn lead to synthesis of more vRNA 

molecules [1, 5, 41]. For synthesis of both cRNA (template) and full-length copies of 

vRNA molecules, initiation is achieved in a primer-independent manner, resulting in 

triphosphorylated 5’ ends. During cRNA synthesis, the polyadenylation signal is 

ignored [1, 5, 18, 41]. Encapsidation of cRNAs and vRNAs by the NP is a 

prerequisite for them to be recognized as templates for the viral polymerase. These 

newly formed vRNAs are later transported into the cytoplasm as vRNPs for assembly 

into new virus particles [18]. 

After translation, proteins may remain in the cytoplasm or become associated with 

the cell membrane. PB1, PB2, PA and NP proteins migrate back into the nucleus, 

where they associate with newly-synthesized vRNA to form new RNP complexes. NP 

is thought to control whether mRNA or cRNA are produced, i.e. later in infection 

when there is a high amount of NP, mRNA synthesis stops whereas cRNA synthesis 

continues. The amount of free NP is therefore important for switching between 

expression and assembly during the viral replication cycle [18]. Also, in the nucleus 

M1 and NS2/NEP bind to the RNPs and are exported through the nuclear pore 

complexes (NPCs) into the cytosol. Nuclear export of RNPs has been proposed to 

depend on several viral proteins, such as viral M1 and NEP, and on cellular factors 

CRM1 and Ran-GTP [22, 32, 42-44]. The M1 retains the RNPs in the cytoplasm for 

the further maturation [32]. Consequently RNP associates with viral membrane 

proteins and together are released by budding outwards [5].

During synthesis of viral envelope proteins HA, NA and M2 which starts in the 

cytosol, the growing polypeptide chains are transported into the endoplasmic 

reticulum (ER), where the proteins are folded and assembled into trimmers and 

tetramers. Still in the ER, glycosylation of HA and NA begins, and they are 

subsequently transported through the Golgi apparatus and the trans-Golgi network 

(TGN) to the plasma membrane. Many modifications, such as polypeptide folding

[45], trimerization [46], N-glycosylation [47], acylation [48] and proteolytic cleavage
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[49]  are introduced along this pathway, until they reach the cell surface [50]. 

Normally different proteases are able to cleave the HA0 but this seems to depend on 

the amino acid (aa) sequence at the HA0 cleavage site. It has been proposed that 

the HA cleavage site would correlate with the virulence of the virus and that virulent 

strains (e.g. H5 and H7) would contain a recognition motif of the intracellular 

protease furin, whereas the avirulent strains would contain only a single arginine 

residue used by extra-cellular proteases [5, 8, 49]. Another important function of the 

M2 protein is noticeable at this stage. It protects the HA from a premature fusion-

activating conformational change, due to the mildly acidic pH inside the TGN. M2, 

through its proton channel activity can transiently neutralize the pH within the TGN [2, 

16].

1.1.2.3. Viral assembly and Budding

In polarized epithelial cells, HA and NA are transported to the apical side of the 

plasma membrane, resulting in release of progeny viruses back into the airways and 

not into the systemic circulation [1, 50]. After budding the viral HA interacts with the 

host cell receptor, at which point the NA cleaves off this bond and enables virus 

release from the infected cell and spread to other cells [51]. Sorting of the eight 

distinct genome segments into each particle is not a purely random process [52-54].

It seems that the packaging signal of vRNA molecules already occurs in the nucleus 

or during nuclear export through the process of vRNP/cRNP discrimination [55]. In 

support of this, another study showed that only vRNA molecules and no cRNA 

molecules are found outside the nucleus in the cytoplasm [56]. Another study 

suggests that the coding regions of viral RNAs possess signal sequences that 

promote recruitment of the segments during virion assembly [57]. In support of this 

theory, recent studies showed that RNPs of influenza A virus are organized in a 

distinct pattern (seven segments of different lengths surrounding a central segment). 

The individual segments are suspended from the interior of the viral envelope at the 

distal end of the budding virion and are orientated perpendicular to the budding tip

[52].

As mentioned before the NS1 protein is the only true non-structural protein. It is 

encoded by segment 8 (which is the shortest RNA segment) of the influenza A virus 

genome and seems to be extremely important in the pathogenesis of influenza A 

virus. It performs several functions and the list keeps growing. NS1 has been shown 
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to inhibit: splicing and polyadenylation of the cellular pre-mRNAs; end-formation of 

cellular mRNAs; nucleocytoplasmic export of cellular mRNAs; and in contrast to 

stimulate translation of viral mRNAs [58-65]. Due to the development of reverse 

genetics techniques, it has been possible to study in detail the function/s of the 

influenza A virus NS1 protein (NS1 mutants or a deleted NS1 gene – delNS1) [66]. It 

was interesting to note that the delNS1 virus was unable to replicate in most cells 

unless they were deficient for an interferon (IFN/) system and in wild type (wt)

mice the virus was unable to cause disease whereas in an IFN/ system deficient 

mouse strain (STAT1-/- mouse), the mice died [66, 67]. The influenza A NS1 has 

been shown to have ssRNA and dsRNA-binding activity, and as a consequence is 

able to sequester viral dsRNA and down-regulate the activation of dsRNA-activated 

protein kinase R (PKR), NF-B, IFN regulatory factor 3 (IRF-3) and the JNK effectors 

c-Jun and ATF-2 signalling pathway [63, 68-72]. By blocking activation of NF-B, 

IRF3 and AP-1 which together lead to IFN gene induction, IFNβ transcription is 

repressed [70-72]. PKR activation leads to inhibition of eIF-2 and therefore a 

reduction in protein synthesis. By inhibiting PKR activation the virus counteracts a 

blockage of protein synthesis, thereby sustaining its own replication [63, 68, 69]. 

IFNβ is one of the most potent antiviral cytokines [69], and will be further discussed 

later (cytokine interplay).

Other interesting studies have also shown that NS1 protein can down-regulate 

apoptosis, indicating anti-apoptotic properties [73].

1.1.3. Antigenic variation of influenza virus infection

Influenza A viruses can increase their antigenic diversity in two ways. It can change 

by “antigenic drift”, which occurs through small changes (mutations) in the virus HA 

or NA that happen continually over time due to single amino acid substitutions. This 

allows the virus to adapt to selective pressure as given by circulating neutralising 

antibodies [74, 75].

New virus strains arising from antigenic drift generally only result in epidemics and 

are not as severe, since partial immunity is present in persons with cross-reacting 

antibodies induced by previous infections.

Pandemics are due to the appearance of new influenza A subtypes against which the 

population has no previous immunity. This phenomenon is known as “antigenic shift”
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[76, 77]. The HA antigen is always involved in antigenic shift as it is responsible for 

eliciting virus-neutralizing antibodies [1-3]. The neuraminidase (NA) can also be 

affected. Concerning evidence from past pandemics, there are three possibilities as 

to how antigenic shift can occur (CDC, Focus on Bird Flu, 2005): (I) Reassortment: 

where the new virus subtypes are reassortant viruses resulting from double infection, 

in which eight RNA segments of different viruses swap with each other, producing a 

new virus. As already mentioned, pigs are thought to serve as a "mixing vessel" for 

AIV and human influenza virus where genetic reassortment may occur [78-82]. (II) 

Recirculation of pre-existing subtypes: where a limited number of influenza A 

subtypes would exist and be recycled in the human population when the antibody 

status of the population has fallen to levels which would allow for a pandemic 

infection; a cycle of approximately 70 years (CDC, Focus on Bird Flu, 2005). (III) 

Gradual adaptation of animal viruses to human transmission: evidence for this 

hypothesis is the 1918 pandemic. It seems that the pandemic virus was directly 

descended from an avian ancestor [83-85].

1.1.4. Avian influenza viruses

Even though influenza is thought of as a human disease, the natural reservoir for 

influenza A viruses (IAV) are aquatic birds and wildfowl. Many different strains 

actually circulate at any given time, although most don’t cause disease in wild birds. 

As mentioned before, influenza A viruses are divided into subtypes depending on the 

antigenic nature of the HA and NA proteins. So far 16 different HA and 9 different NA 

have been described for IAVs and only a limited subset are currently circulating in 

humans and are cause for annual epidemics and disease; subtypes H1N1, H3N2 

and H1N2. As expected they all originated from avian species and adapted to 

humans following zoonotic events [3, 86, 87].

Influenza viruses that infect birds are called “avian influenza viruses” (AIV).

In wild aquatic birds influenza infection does not cause disease but they can shed 

large amounts of the virus. In contrast, domestic poultry can develop severe 

symptoms and die from influenza infections [2].

1.1.4.1. History 

Avian influenza (AI) has become an international concern which has grown over the 

past years due mainly to the highly pathogenic avian influenza subtype (H5N1). 
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Serious outbreaks have affected almost all areas in Asia and recently also Europe

[88, 89]. AI was first recorded in Italy in 1878 as described by Perroncito et al. [90, 

91]. As it was the cause of massive poultry epidemics, this disease was then known 

as the “Fowl Plague”. In 1902 the causative agent was isolated from a chicken, 

marking the first documented isolation of influenza virus. The first human influenza 

virus isolation was demonstrated in 1933 [92]. In 1955, it was determined that the 

virus causing Fowl Plague was a type A influenza virus (http://avianflu.umd.edu/). 

1.1.4.2. Current situation (epidemics and pandemics)

AIV has had a devastating impact on the poultry industry throughout the world. In 

more recent years, east and Southeast Asian countries have been the most affected 

areas [93, 94]. Destruction of millions of poultry to prevent further spread has 

resulted in grave economic loses. The first outbreak of human illness due to H5N1 

AIV occurred in 1997 in Hong Kong with a mortality of 30% [95]. It was previously 

accepted that AIV could not directly infect humans, due to the different receptors 

present on either species and due to the receptor-binding specificities of avian and 

human viruses, as already explained [89]. However, a new strain of influenza virus 

can evolve by reassortment (rearrangement and swapping of genetic material when 

co-infected in the same host) [89, 96]. If this were to happen now, it could be 

devastating to the human population [79, 96, 97].

So far, the AIV that have been transmitted to humans are of subtypes H5, H7 and H9

[97]. These subtypes of avian influenza A viruses can be further classified as either 

highly pathogenic avian influenza (HPAI) or low pathogenic avian influenza (LPAI). 

So far, all outbreaks of the HPAI have been caused either by the H7 or the H5 virus 

subtypes [89, 97]. The subtype that has attracted the most attention more recently 

has been the H5N1, due to the deaths of many human lives [79, 80]. Although the 

incidence of H5N1 in Eastern Asia greatly increases the risk that it may evolve to a 

point where transmission between people might be possible, so far, there is no 

precise evidence that this has happened [98].

In the past century there have been three severe pandemics, all spread worldwide 

within a year of being detected [97]. The worse flu pandemic across Europe, Asia, 

and North America occurred in 1918-19 and was termed the “Spanish Flu” [99-102]. 

This pandemic, (H1N1 strain), is believed to have caused the death of 20 to 50 

million people worldwide [85, 99, 100, 103]. Since then, other pandemics have 
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occurred: the “Asian Flu” (H2N2) pandemic of 1957 claimed over one million lives 

worldwide after spreading from China [97]; in 1968, the “Hong Kong Flu” an H3N2 

virus was responsible for around half a million lives. HPAIV H5N1 was isolated in 

1997 for the first time from a human patient in Hong Kong [89, 95, 97]. The virus 

infected 18 patients resulting in six deaths [89, 97, 104, 105]. Recently HPAIV H7N7 

broke out in Netherlands in March 2003 and quickly spread to Belgium and Germany

[88, 89]. The virus infected 83/89 people causing conjunctivitis, and caused the death 

of one veterinarian [105]. After 1997 and 2003, other outbreak of HPAIV subtype 

H5N1 surfaced again in Vietnam’s and Thailand’s poultry industry in the early 2004 

also accompanied with human cases [94]. In 2004 in these two countries the World 

Health Organization (WHO) confirmed 46 H5N1 infections in people, of which 32

were fatal, but no cases of person to person transmission. Within a few weeks, the 

disease had spread to ten other countries in Asia, including South Korea, Japan, 

China and Indonesia [93, 106].

Although spread of AIV from birds to humans is generally rare, it has become quite 

preoccupying due to the increase in observed frequency. The probability that the 

virus could gain a form that could pass easily from humans to humans, is a possibility 

that many scientists consider, and this would have a devastating effect worldwide. 

From a total of over 385 confirmed cases of avian (H5N1) “flu” in humans, between 

2003-2008, 243 have been fatal (WHO, 19 June, 2008). Taken together, the death 

toll associated with the 1918 influenza virus correlated to the current population could 

be between 180 million and 360 million human deaths globally [107, 108]. 

1.1.5. Clinical symptoms of influenza virus infection

Influenza A and B are the major viruses responsible for the annual flu epidemics, 

which generally occur each winter. In general flu is a self-limiting disease [109], 

which does not spread further than the respiratory tract, mostly due to the 

requirement of HA cleavage for efficient virus propagation. The protease needed for 

this purpose is restricted to the lung and airway epithelium [110, 111].

The common route of “flu” transmission is by aerosol or droplets [111]. Once inhaled, 

the virus can remain in the mucus of the airways and then be transported by ciliated 

epithelial cells to the posterior pharynx. Influenza viruses cause a lytic infection of 

airway epithelial cells [112, 113].
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Typically (clinically), influenza viruses cause acute infections characterized by the 

rapid onset (about 24 – 48h after infection) of chills and fever accompanied by aches 

and pains throughout the body, malaise, sore throat, nasal congestion and 

pulmonary complications [113, 114]. Gastrointestinal symptoms have also been 

reported, particularly vomiting, abdominal pains and diarrhoea [111, 115-117]. Other 

less common symptoms include secondary bacterial pneumonia, encephalitis and 

myocarditis. Also, possible risks of complications and death are greatly increased in 

previously unexposed young children and in the elderly (> 65 years), due to their 

reduced immune function [109, 111, 116, 117].

However, once a new strain is introduced into the population, the scenario may be 

more devastating as was the case in previous pandemics and the reported H5N1 

avian strains from recent events. In these reports of highly pathogenic influenza virus 

(HPIV) infections, progressive primary viral pneumonia was generally observed, 

although secondary bacterial pneumonia was more common in the 1918 cases than 

in H5N1 infected individuals [109, 118]. Symptoms including extensive pulmonary

oedema and acute respiratory distress syndrome (ARDS), characterized by alveolar 

haemorrhage associated with massive lung infiltration of mononuclear cells are often 

lethal [109, 119]. In very severe cases, lymphopenia and multiple organ failure with 

indications of renal and cardiac dysfunction can also occur [115, 118]. There is 

limited evidence suggesting that these high pathogenic viruses replicate in non-

respiratory organs and, therefore, multiple organ failure indicates a deregulated 

immune response. Furthermore, in the 1918 pandemic there was an unusually high 

mortality rate in healthy adults ranging from 15 to 34 years, which may reflect 

immune-mediated pathology [120]. This feature has also been observed in cases of 

human infections where the avian H5N1 viruses have been highly lethal in individuals 

of all ages [111]. Another prominent and severe manifestation seen, both in the 1918 

pandemic flu and in the more recent avian H5N1 cases, was reactive 

haemophagocytosis [115, 119, 121], a disorder of the mononuclear phagocytic 

system characterized by histiocyte proliferation and extensive phagocytosis of 

erythrocytes, leucocytes, platelets and their precursors by activated macrophages

[122, 123]. This pathology profile has been associated with the multiple organ failure 

observed in very severe cases, both in the 1918 pandemic as well as in H5N1 human 

cases [109, 115, 121]. Haemophagocytic syndrome is considered to be induced by 
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increased levels of activating cytokines, with high levels of soluble (s)IL-2r, IL-6, IFN

and TNF- associated with a poor clinical prognosis [123, 124].

Furthermore, inflammation due to cytokines (i.e. TNF-, IFN/, IL-1, IL-8 and IL-6) 

has been associated with the pathogenesis of the disease. And although they are 

important components in limiting the disease, these cytokines are mainly responsible 

for the systemic symptoms observed, like fever and myalgias [114, 115, 119, 121, 

125-127].

1.2. Mechanisms of intracellular signal transduction and influenza A viruses
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Figure 1.4: Influenza A virus-activated signalling pathways. The schematic representation depicts 

intracellular signalling pathways that are activated upon IAV infection or by treatment with viral 

components. (Adapted from Ludwig et al. [128])

Many viruses are known to activate and manipulate cellular signalling pathways

[129]. These activated mechanisms lead to expression of different genes that will 

ultimately lead to viral clearance [130, 131].

Influenza A virus infection have been shown to activate different signalling pathways 

in the host cell [12, 25, 128]. Some of these cascades are depicted in Fig.1.4. 

Different pathways seem to be activated at different time points depending on 

whether it is an early or late phase of virus infection [12, 128]. PKCII activation 



1. Introduction

16

seems to be required for virus entry by endocytosis [128]. IAV leads to activation of 

all mitogen-activated protein kinase (MAPK) family members, including the 

extracellular signal-regulated protein kinases (ERKs), the p38 MAPK and the c-Jun 

NH2-terminal kinases (JNKs) [132-134]. Activation of the Raf/MEK/ERK pathway has 

been shown to be required for efficient IAV propagation [132]. p38 MAPK activation 

has been linked to expression of RANTES and IL-8, which are chemokines 

responsible for attracting eosinophils and neutrophils to the site of infection [134, 

135]. JNK has been shown to be activated upon productive replicating virus and 

induced by accumulated RNA produced by the viral polymerase [128, 133]. Activated 

JNK leads to activation of activator-protein 1 (AP-1). AP-1 includes c-Jun and ATF-2 

transcription factors which, together with nuclear factor kappa B (NF-B) and IFN 

regulatory factor (IRF)-3/-7 are important regulators of the IFN expression, one of 

the most potent antiviral cytokine, and a hallmark in virus infections [69, 128, 136]. As 

already allured to, NF-B is activated by IAV, as is the IRF-3/-7 transcription factor

[71, 137]. NF-B seems to be important to mount an antiviral state in cells, since it 

leads to expression of many pro-inflammatory and antiviral cytokines including 

IFN/. However, in studies using pre-activated NF-B or impaired NF-B signalling, 

it has been demonstrated that this pathway is also important to support virus 

replication [138, 139].

Most of these activated cascades (mentioned above) have been mainly considered 

to be events triggered by the cell as a defence mechanism (antiviral response). 

However, what seems to be evident is that influenza A virus has acquired the 

capability to evade and manipulate these responses in benefit of its own survival 

purposes, as shown for the Raf/MEK/ERK and NF-B pathways [12, 128]. 

1.2.1. The MAPK pathway (Raf/MEK/ERK signalling cascade)

Mitogen-activated protein kinase (MAPK) cascades are important signalling 

pathways that transduce many extra- and intracellular signals converting them into 

several cellular responses that lead to: growth, differentiation, development, 

inflammation and apoptosis [131, 140, 141]. They also control numerous regulatory 

processes during development and homeostasis [142-144]. More than a dozen 

MAPKs have been identified in mammals, and are organized in at least four different 

families [140, 145]. MAPKs are activated via phosphorylation by distinct upstream 

kinases on both tyrosine and threonine residues within their catalytic domains. In 
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mammalian cells, three distinct MAPK families have been well described: the 

extracellular signal-regulated kinases (ERKs), the c-Jun NH2-terminal kinases (JNKs) 

and the p38/MAPK [140, 145]. Each cascade consists of at least three enzymes that 

are activated in series: a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) 

and a MAP kinase (MAPK). One of the best characterized MAPK signaling pathways 

is the Raf/MEK/ERK pathway [140, 141, 145] (Figure 1.5). 

In mammals the ERK module, also known as the classical mitogen cascade, consists 

of serine/threonine kinase Raf, the S/T dual-specificity kinase MEK (Mitogen-

activated protein kinase/ERK kinase) [146] and the classical MAPK ERK 

(Extracellular-signal-regulated kinases). There are two known isoforms for both MEK 

and ERK (MEK1/2 and ERK1/2), while three isoforms, A-, B- and C-Raf (or Raf-1) 

have been identified for the Raf kinase. In their protein sequence, ERKs contain a 

Thr-Glu-Tyr (TEY) motif and become strongly activated, through phosphorylation of 

the Thr and Tyr residues [131, 141]. 

The Raf/MEK/ERK cascade is strongly activated by mitogenic stimuli, growth factors 

and cytokines and transduce signals from cell surface receptors to transcription 

factors, which regulate gene expression, which in turn can effect cell cycle 

progression, apoptosis or differentiation [147]. A schematic presentation of the 

Raf/MEK/ERK cascade is represented in Figure. 1.5.

Binding of cytokines, growth factors or mitogens to their appropriate receptors, leads 

to the activation of the coupling complex Shc/Grb2/SOS. Upon stimulation by 

Shc/Grb2/SOS, the inactive Ras exchanges GDP for GTP, leading to its 

conformational change, thereby becoming active [148, 149]. Phosphorylated 

tyrosines on receptors or on receptor substrate proteins serve as docking sites for 

SH2-domain (Src homology) of adapter protein GrB2, which binds itself via its SH3-

domain to the proline rich motif of the GDP-GTP exchange factor SOS (son of 

sevenless) [141, 150]. SOS will interact with Ras and activates the exchange of GDP 

to GTP [131, 149-151]. Ras is a small GTP-binding protein, and is the common 

upstream molecule of several signalling pathways including Raf/MEK/ERK, PI3K/Akt 

and RalGEF/Ral [148, 150, 152-154]. To date four Ras proteins have been identified 

namely Ha-Ras, N-Ras, Ki-Ras 4A and Ki-Ras 4B. Ras has to be farnysilated or 

geranylgeranylated at its carboxy-terminus to become active and therefore to be 

targeted to the cell membrane [150, 154]. GTP loaded Ras leads to recruitment of 
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the cytosolic serine/threonine kinase Raf to the cell membrane, a membrane shuttle 

kinase, and to its activation [145, 155, 156]. 
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Figure 1.5: Overview of Ras/Raf/MEK/ERK pathway. The picture shows regulation of Raf/MEK/ERK 

by Ras as wells as other kinases, which serve to phosphorylate S/T and Y resides on Raf. Some 

phosphorylation (P) events enhance Raf activity (depicted in yellow background), whereas others 

serve to inhibit Raf activity (shown with dark green background). Moreover, there are phosphatases 

like PP2a, which remove phosphates on certain regulatory residues. Activation of the PI3K/PDK/AKT 

pathway is also shown, as this pathway interacts with the Raf/MEK/ERK pathway to regulate its 

activity. PI3K can be activated by two mechanisms; either the p85 PI3K subunit can bind the activated 

IL-3Rb chain or Ras. Activated ERK can enter the nucleus and phosphorylate transcription factors. 

(Adapted from Chang et al. [148])

Raf is a serine threonine (S/T) kinase and its regulation involves a complex series of 

events involving [131, 157]: (1) recruitment to the plasma membrane mediated by 

interaction with Ras [154]; (2) dimerization/oligommerization of Raf proteins [158]; (3) 

phosphorylation/dephosphorylation on different domains [152, 159, 160]; (4) 

disassociation from the Raf kinase inhibitory protein (RKIP) and (5) association with 

scaffolding complexes that join the pathway components and ensure efficiency and 

fidelity of signal transduction [141, 148, 150]. Raf activation is mediated by multiple 

kinases like Src, PKC (protein kinase C) and Pak3 (p21 (Rac/Cdc42)-activated 

protein kinase) which lead to phosphorylation and positive regulation of Raf [131, 
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157, 161-165], whereas other kinases like PKA (protein kinase A) and Akt 

downregulate Raf activity [166, 167]. Activation of Raf can be further modulated by 

chaperonin proteins including Bag1, 14-3-3 [168] and heat shock protein 90 (Hsp90)

[169]. One of the first characterized substrate of Raf isoenzymes was the dual 

specificity kinase MEK [170].

MEKs are dual specificity-kinases that are able to phosphorylate both 

serine/threonine and tyrosine residues on MAPKs [150]. The activity of MEK1 is 

positively regulated by Raf phosphorylation on S residues in the catalytic domain

[146, 150] while activation of ERK1/2, also S/T kinases, are positively regulated by 

phosphorylation mediated by MEK1 and MEK2. Once activated, MEK transduces the

signals through phosphorylation on T-E-Y-motifs in the MAP-kinases ERK1 (p44) and 

ERK2 (p42) [150] (Figure 1.7.). ERK phosphorylation increases its catalytic activity, 

mediates oligomerisation and moderates the shuttling of the kinase to the nucleus. 

ERKs are nuclear shuttle kinases and can directly phosphorylate many transcription 

factors including Elk-1, ETS-1, c-Jun and c-Myc [171-173]. ERK can also target 

proteins e.g. serine/threonine kinases like 3pK, RNA-polymerase II, phospholipase 

A2 [173-175] and phosphorylate and activate the 90kDa ribosomal S6 kinase (p90 

RSK), which then leads to the activation of the transcription factor CREB [147, 171-

174, 176]. It has also been described that MAPK/ERK activated kinase kinase

(MEKK), through an indirect mechanism, can lead to the activation of NF-B 

transcription factor, by phosphorylating and activating inhibitor kB kinase (IKK) or/and 

IB [141, 150, 177, 178]. Expression of constitutively active components of the ERK 

pathway cause cell transformation and have been identified in several cancers [150, 

153, 175]. In support to this, activated Raf/MEK/ERK cascade has been shown to 

phosphorylate caspase 9 (an important enzyme in apoptosis induction) on residue 

T125 which contributes to the inactivation of this protein [179].

Another observation from this pathway is the fact that recent studies in an allergic 

model, have shown that the Raf/MEK/ERK is also important in controlling interleukin 

8 (IL-8) expression [180] (see also Fig. 3.4.1).

1.2.1.2. Role of Raf/MEK/ERK signalling cascade in influenza A virus infection

As mentioned before, both replication and transcription of the influenza virus genome 

takes place exclusively within the nucleus of the infected cells [181] (Figure 1.6). The 

viral RNPs will be exported from the nucleus through the cytoplasm and to the cell 
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membrane to be engulfed into budding progeny virions late in the infectious cycle [5, 

132, 181, 182]. Influenza viruses interact with many different cellular functions during 

their replication, to promote efficient propagation [12, 13, 128, 183]. Activation of the 

Raf/MEK/ERK (MAPK) signalling cascade is one of the key players for the efficiency 

of virus propagation, as already mentioned. 
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Figure 1.6: Late activation of Raf/MEK/ERK pathway in influenza A virus infection. The cartoon

depicts Raf/MEK/ERK activation during late phase of virus replication leading to vRNP export and 

efficient viral assembly at the cell surface, for budding.

This pathway is activated both early and late during the influenza virus replication 

cycle and is required for an efficient nuclear RNP export [132, 181, 182]. Analysis of 

this pathway has been facilitated by the use of highly specific MEK-inhibitors [184, 

185]. It was shown for the first time that blocking of this signalling cascade by specific 

MEK inhibitors, or using dominant negative mutants of ERK or Raf, led to impaired 

IAV as well as influenza B virus replication [132, 182]. This mechanism seemed to be 

due to retention of viral RNP in the nucleus and probably due to impaired activity of 

the viral nuclear export protein (NEP or NS2) [132, 182]. In support, studies using 

cells expressing active mutants of either Raf or MEK, virus propagation was shown to 

be increased [182]. This has also been confirmed by in vivo experiments, using 

transgenic mice expressing an active Raf in lung alveolar epithelial cells [186]. Here 

virus was shown to preferentially replicate in cells expressing the mutant gene, and 

mice survival was greatly impaired in this group [186]. What was also interesting was 
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that inhibition of this pathway with a specific MEK inhibitor, the U0126, did not 

hamper viral RNA or protein synthesis [132], showed no toxicity effect on cell viability 

or in an in vivo mouse model [132, 182, 187, 188], and did not lead to emergence of 

resistant virus variants in tests with IAV as well as influenza B virus IBV [182]. 

1.2.2. The NF-B pathway 

Transcriptional regulators of the NF-B/IB family promote the expression of over 

150 target genes, most of which play an important role in the host immune response

[128, 189-192]. These proteins include many pro-inflammatory cytokines and 

chemokines (IFN, TNF-, IL-1, IL-6, RANTES and IL-8, etc.) receptors important 

for immune recognition, proteins involved in antigen presentation, acute phase 

proteins and adhesion molecules necessary for transmigration across blood vessel 

walls. Due to this vast role in immune action, NF-B is known as the central mediator 

of the immune response [193-197]. NF-B has also been associated both with 

apoptosis and anti-apoptotic mechanisms [194, 195, 198].

The NF-B pathway seems to have been developed early in evolution and has been 

identified in Drosophila and mollusc [189, 199]. The function and also the 

components of NF-B pathway have been evolutionarily conserved in mammals

[200].

Nuclear factor-B (NF-B) proteins form a group of closely related transcription 

factors, of which there are five known members in mammals: p65 (RelA or NF-B3), 

RelB, and c-Rel (Rel), p50 (NF-kB1) and p52 (NF-kB2) [189, 191, 200, 201]. 

All five members share an N-terminal NF-B/Rel homology domain (RHD) that 

mediates DNA binding, dimerization, nuclear translocation, and interaction with the 

inhibitory IB proteins [189, 191, 200-203]. 

The NF-B, p65, RelB, and c-Rel contain C-terminal trans-activation domains (TADs) 

that trigger target gene transcription. p65 is the strongest gene activator and contains 

two potent trans-activation domains within its C terminus [189, 191, 204]. p50 and 

p52, are produced as large precursor proteins (p105 and p100, respectively), where 

p50 is generated by constitutive processing of p105, and the cleavage of p100 to p52 

is a regulated event that employs phosphorylation and ubiquitination steps [201, 

205]. The p50 or p52 homodimers are also able to repress transcription [204, 206]. 
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The most abundant and fast activated and prototypical form of NF-B is a 

heterodimer between p50 and p65 (Figure 1.7), however slow activated dimmers 

such as p52/RelB can replace the activated p50/p65 heterodimers depending on the 

promoter context [207]. NF-B is generally found retained in the cytoplasm in an 

inactive form when associated with inhibitory NF-B (IB) proteins, in most cell types

[200, 202, 208]. These inhibitory proteins share a number of protein/protein 

interaction domains called ankyrin repeats and are part of a large genetic family with 

eight known mammalian members: IB, IB, IB, IB, IBNS, Bcl-3, and the 

p100 and p105 precursor proteins [189, 200]. While IB protein caps the nuclear 

localization sequences (NLSs) of both p50 and of p65, the IB only contacts the 

NLSs of p65 [200, 209, 210]. Activated NF-B also leads to increased synthesis of 

IB which can shut down NF-B-induced gene expression by mediating nuclear 

export and dissociation of DNA-binding subunits. Therefore, in this way NF-B 

activation can be regulated by a negative feedback mechanism [189, 210, 211].

There are two general major pathways mediating NF-B activation, the so-called 

canonical (classical) and non-canonical (alternate) NF-B pathways [201, 203].

One of the critical requirements of the canonical NF-B activation pathway is the 

activation of the IB kinase (IKK) complex. All NF-B pathways converge in this step 

which ultimately leads to phosphorylation of IB at serines 32 and 36 [212-216]. 

The IKK complex is composed of three core subunits: the catalytic IKK and IKK

subunits and the noncatalytic, regulatory NEMO (NF-B essential modulator, also 

known as IKK and IKKAP-1) protein [203, 212, 213, 216, 217]. The IKK and IKK

share an N-terminal kinasse domain, and a C-terminal containing leucine zipper 

(required for IKK dimerization), and putative helix-loop-helix motifs (necessary for IKK 

regulation) [215]. It is believed that activation of both IKKs depends on their ability to 

dimerize [194, 200, 215, 216]. IKK activation depends on phosphorylation (IKK or 

IKK) at two conserved serine residues within their activation loops. This 

phosphorylation may be mediated by trans-autophosphorylation induced by 

conformational changes or by upstream-acting kinases [200, 206]. Many diverse 

stimuli can induce NF-B activation through different signalling pathways that 

converge on the IKK complex. Some of these include the: NF-B-inducible kinase 

(NIK), mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 
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(MEKK1), RNA-dependent protein kinase (PKR), protein kinase C, etc. [195, 218]. 

Also, genetic targeting experiments have shown that both IKK and IKK (NEMO), 

but not IKK, are essential for NF-B activation by pro-inflammatory stimuli, 

suggesting that both kinases have different functions [191, 206]. 

Following phosphorylation of IB by IKK, a specific ubiquitin ligase, E3RSIb, 

belonging to the SCF (Skp-1/Cul/F box) family and an E2 of the UBC4/5 family, will 

lead to its subsequent polyubiquitination [201, 219]. The ubiquitin marked IB 

proteins are then rapidly degraded by the 26S proteasome, thereby releasing NF-B

[193, 212, 219]. Activated NF-B translocates to the nucleus, where it stimulates 

transcription of genes containing the consensus sequence 5’-GGGRNNYYCC-3’, and 

transcriptional activity [189, 193, 220] (Figure 1.7). 
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Figure 1.7: Overview of NF-B pathway. The picture depicts the activation/regulation of NF-B 

pathway. Intracellular expression of viral proteins, such as HA, NP and M1 and accumulation of viral 

RNA species, indirectly via PKR, TLRs or RIG-I, can activate IKK kinase, upstream of NF-B. 

Activated IKK phosphorylates of IkBa leading to it’s ubiquitination and degradation. NF-B heterodimer 

(composed p50 and p65 subunits) is therefore released and can translocate into the nucleus and 

transactivate responsive genes. (Adapted from Ludwig, [12, 128]).
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The non-canonical pathway of NF-B activation is operative mainly in B cells in 

response to stimulation of a subset of TNF-receptor (TNFR) superfamily. Stimulation 

of these receptors activates the protein kinase NIK, which in turn activates IKK. 

Subsequently IKK phosphorylates p100 at two C-terminal serine residues, leading 

to selective degradation of its IB-like domain by the proteasome. The mature p52 

subunit and its binding partner, RelB, translocate into the nucleus to regulate gene 

expression [201, 203].

1.2.2.1. Role of NF-B signalling cascade in influenza A virus infection

NF-B can be activated by an array of different stimuli, such as inflammatory 

cytokines, mitogens, stress-inducing agents and many bacterial and viral pathogens. 

This activation is a rapid and immediate event, which occurs within minutes after 

stimulation [193, 195]. As already mentioned many of its target genes, such as 

growth factors, cytokines and their receptors, and proto-oncogenes, can influence 

dramatically the host cell cycle. Probably because of this it constitutes an attractive 

target to viral pathogens since many viruses have evolved strategies to regulate this 

pathway, such as: human immunodeficiency virus-1 (HIV-1), human T-lymphotropic 

virus-1 (HTLV-1), hepatitis B and C viruses (HBV and HCV), Epstein-Barr virus (EBV)

and influenza virus [193, 195]. In a viral context NF-B modulation can promote 

several functions: sustain viral replication, host cell survival and mediate the immune 

response to the invading pathogen. Also, since NF-B has been shown to modulate 

both pro- and anti-apoptotic mechanisms [221] some viruses have been shown to 

exploit the anti-apoptotic properties of NF-B to evade the host defence mechanisms, 

which limits replication by killing infected cells, or in contrast to induce apoptosis as a 

mechanism to increase virus spread [193].

It has been shown that influenza A virus infection results in activation of the NF-B 

pathway, either by over-expression of viral proteins such as HA, M1, and NP [222, 

223] as well as double-stranded (ds) and single-stranded (ss) RNA. The sensor 

mechanisms for this can be Toll-like receptors, such as TLR-3 -7/8, and RNA 

helicase proteins, such as RIG-I and mda-5 [224-229]. Furthermore, studies on RIG-

1 and mda-5 in influenza virus infections show a significant increase in IFN

promoter activity [230] (Figure 1.7). Nevertheless, it is important to mention here that, 

in part, the levels of NF-B activation seem to be limited by the viral NS1 protein [71].
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As mentioned before NF-B controls many antiviral and pro-inflammatory cytokines, 

and along with IRF-3/7 and AP-1, forms the important regulators of IFN, one of the 

most potent antiviral cytokines of the innate immune response. Therefore, upon 

activation one would expect an anti-viral effect of this pathway. Supporting this 

notion, in A549 cells (human alveolar epithelial cell line) infected with IAV, the 

kinetics of IFN gene expression correlated with NF-B activation [231]. Also IAV 

induction of NF-B was related to increase in expression of other pro-inflammatory 

cytokines and production of high levels of IL-8 [232, 233]. In other experiments this 

was again demonstrated, using trans-dominant negative mutants of IKK or IB  

IFN promoter activity significantly decreased upon IAV infection [71].

However, in part contradicting this theory, were studies showing that in cells with a 

pre-activated NF-B, influenza viruses showed higher replication levels [139]. And 

confirming these findings impaired NF-B signalling led to a reduction in virus titres

[71]. This function was shown to be in part due to NF-B-dependent viral expression 

of pro-apoptotic factors, such as TNF-related apoptosis inducing ligand (TRAIL) or 

FasL, which enhanced virus propagation in an autocrine and paracrine fashion [128, 

138]. Also studies using specific inhibitors of this pathway showed impaired virus 

propagation, both in vitro as well as in vivo [234]. Therefore this pathway, in the 

context of an IAV infection, presents both an antiviral as well as a pro-viral effect, 

where the pro-viral seems to prevail over the antiviral effect. One can speculate 

whether these two functions are consistent for all influenza A viruses, or whether 

either effect shows different prevalence’s, depending on which virus and at what time 

point in the infection cycle NF-B is activated by one specific strain. Nevertheless, 

most reports seem to point to this pathway being important for both, host as well as 

viral regulating mechanisms. One study, however, has shown that NF-B was not 

essential for virus replication [232]. 

1.3. Immune response and cytokine interplay

Upon influenza A virus infection, the epithelial cells of the respiratory tract and 

leukocytes which are the primary targets of the virus, will induce both innate and 

adaptive immune responses [113, 235, 236]. Respiratory epithelial cells can produce 

large amounts of virus, which can further infect alveolar macrophages (AMs) [231, 

236] (Figure 1.8). Upon infection cells will undergo either apoptosis or necrosis [113, 
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237] and trigger immune responses and the production of cytokines and chemokines

[25, 236, 238]. These inflammatory mediators have been shown to be up-regulated 

both in in vitro [238-242] as well as in in vivo experimental influenza infection [120, 

243, 244].

Mutant viruses expressing the HA and NA of the 1918 influenza virus or all 8 

segments have been shown to induce significantly higher levels of IFN, TNF-,

monocytes chemotactic protein-1 (MCP-1), RANTES, IL-6, IL-8 and up-regulated 

related genes, such as NF-B, in vivo supporting the case that elevated chemokine 

and cytokine levels were a hallmark of the human disease elicited by this virus [120, 

243, 245]. Also in vitro studies have demonstrated superior induction of pro-

inflammatory cytokines in macrophages, in particular TNF- and IFN- by H5N1 

viruses compared to other human H3N2 and H1N1 viruses [126]. In another study, 

by the same group, different H5N1 viruses (A/Hong Kong/483/97, A/Vietnam/1194/04 

and A/Vietnam/3046/04) induced higher IFN inducible protein-10 (IP-10), IFN- and 

RANTES compared to H1N1 in primary human alveolar and bronchial epithelial cells

[240]. Generally, disease severity was strongly associated with cytokine levels [114, 

115, 127]. Chemokine release, including MCP-1 and RANTES, was found increased 

in adult/neonatal macrophages infected by avian H5N1 and H9N2 compared to 

human H1N1-infected cells [244].

In a study using human alveolar epithelial A549 cells, type I IFNs were shown to be 

important for the activation of antiviral response genes, such as the MxA [231].

How influenza viruses effect hypercytokinaemia is still poorly understood, but both 

epithelial cells as well as monocytes/AMs and dendritic cells can activate different 

transcription factors upon viral infection that lead to production of pro-inflammatory 

and chemotactic cytokines, such as IFN/, IL-6, IL-8, MCP-1, RANTES, TNF- and 

others [25, 128, 227, 233, 237, 246-248].

In general the most likely in vivo situation is that upon cytokine/chemokine production 

by infected epithelial cells and/or AMs, monocytes/macrophages, neutrophils and T 

cells are induced to migrate from the blood stream through the endothelial barrier into 

the site of infection [249] (Figure 1.8). The recruitment of monocytes/macrophages 

into the lung parenchyma and alveolar spaces, is a hallmark of the initial adaptive 

immune response [237, 249, 250], and although they are required for host recovery

[251-253], an increase of their presence can lead to exaggerated inflammatory and 
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immune responses, as mentioned above, which may contribute to the exacerbation 

of the disease and the high mortality observed with some highly pathogenic influenza 

viruses, such as H5N1 and the 1918 pandemic virus H1N1 [112, 114, 115, 119, 127, 

249, 254].

Whereas the innate immune response is mainly responsible for controlling virus 

replication in the early stages of infection, the adaptive immune response is 

responsible for limiting progression of the disease. Adaptive immune responses are 

generally essential to eliminate the virus completely [235, 253, 255, 256]. The innate 

immune response is also responsible for triggering adaptive immune response 

mechanisms by secretion of cytokines which will further lead to the recruitment of 

other immune cells (macrophages, neutrophils and natural killer – NK cells) to the 

site of infection [235, 255, 257]. In turn these cells will lead to further production of 

cytokines, chemokines and other anti-viral proteins [257]. NK cells which are large 

granular lymphocytes, detect and bind to virus-infected cells [255]. Upon binding NK 

cells release the contents of their granules (containing perforins and granzymes) into 

the infected cell, thereby inducing apoptosis [115, 258].

A brief overview of some of the cytokines/chemokines and their main targets and 

functions are explained later.

As mentioned above, the innate immune response slows virus replication and 

prevents spread during the first few days of infection but survival might only be 

achieved by the “adaptive immune response” [255]. Moreover, one of the important 

features of the adaptive immune response is the “immunological memory” that is 

achieved for a specific pathogen. If an individual has been previously exposed to the 

same antigen, the adaptive immune response is much faster, due to this 

“immunological memory” [259].

Adaptive immune responses rely on the activation of antigen-specific B and T 

lymphocytes and the production of antibodies. Adaptive immune responses begin

when T cells recognise viral peptides presented in the context of major 

histocompatibility complex (MHC) on antigen presenting cells (APCs), such as 

macrophages or dendritic cells [250]. Immunological memory of B cells is lifelong but 

where influenza is concerned not very efficient since it is strain specific within an HA 

subtype, whereas T cell memory can vary from months to years or longer, but can 

distinguish between types (A or B) and not between the influenza A subtypes [253, 

260, 261].  
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Antibodies produced by B cells bind and neutralize virus on the mucosal surface to 

prevent cell entry and further replication of viruses [261].

There are two main types of T lymphocytes; T helper (Th) cells – mainly CD4+, and 

cytotoxic T lymphocytes (CTLs) – mainly CD8+. Memory Th cells can be subdivided 

into Th1 or Th2 types, and these secrete specific subset of cytokines. Th1 cells 

stimulate cell-mediated CTL immune response, whereas Th2 responses lead to 

antibody production. Th1 can best deal directly with intracellular invaders [259, 262].

CTLs recognize cells expressing surface major histocompatibility complex class I 

(MHC I)-viral peptide complexes which results in production of pro-inflammatory 

cytokines such as IFN or, like NK cells, granule-mediated killing of the target cell

[261]. These granules, containing perforins and granzymes, are transported to the 

surface of activated CTLs where contact with the target cell occurs. Granzymes are 

then transported across the cell membrane into the cytoplasm of the target cell and 

lead to induced apoptosis of the same [258, 261, 263].
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Figure 1.8: Cytokine interplay. A schematic picture showing some of the key cytokines/chemokines 

and their interplay during influenza a virus infection. The cytokines highlighted in bold blue are the key 

cytokines studied in this work. Red arrows indicate the cells the virus infects, black arrows indicate the 

secreted cytokines and green arrows indicate to which cells cytokines will exert an affect. (Adapted 

from Julkunen [25]).

H5N1 viruses have also been shown to affect specific immunity. In the presence of 

H5-bearing cells, perforin expression was suppressed and the cytoxicity of CD8+ T 
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cells reduced, and this led to lymphoproliferation, overproduction of IFN and 

macrophage activation [264, 265].

Cytokines

One of the most potent anti-viral cytokines produced by the innate immune response 

is the interferon. Interferon (IFN) was discovered as an antiviral agent during studies 

with influenza virus interference.

 IFNs can stimulate cells both in an autocrine as well as in a paracrine manner. 

In general, cells can synthesize IFN in response to an external stimulus such as viral 

infection and cells can respond to IFN by establishing an antiviral state [69, 266, 267]. 

IFNs are commonly grouped into two types [69, 262]. Type I IFNs are also known as 

viral IFNs and include IFN-, IFN-. Type II IFN is also known as immune IFN (IFN-

). Interferons (IFN-/) are one of the most important cytokines in viral infections 

and have several functions: (1) they can induce an anti-viral state to neighbouring 

cells by promoting production of anti-viral proteins; (2) they lead to recruitment of 

monocytes/macrophages and T cells (including natural killer (NK) cells); (3) they 

stimulate increase production of MHC (major histocompatibility complex) class I and 

II, which will enhance antigen presentation; and (4) increase maturation of antigen-

presenting cells (APCs), thereby leading to adaptive immune responses [266, 268, 

269].

 IFN-, type II interferon, is secreted by activated T cells (Th1 cells) and NK 

cells. IFN- can stimulate macrophages, increase antigen processing and expression 

of MHC [250, 266, 267].

 IL-1 and IL-1 are produced mainly by mononuclear and epithelial cells upon 

inflammation, injury and infection. They trigger fever, induce a wide variety of acute 

phase response (APR) genes and activate lymphocytes. 

 IL-18 is a pro-inflammatory cytokine which in synergy with IL-12, enhances NK 

cell activity and promotes inflammatory Th1 cell responses [250]. 

 IL-6 is generally produced by fibroblasts, endothelial cells, macrophages and 

leukocytes and is a primary inducer of fever, hormones, acute phase proteins and T 

and B cell expansion upon injury and infection. IL-6 can also act as an anti-

inflammatory agent in some instances. 



1. Introduction

30

 IL-12 is produced by antigen presenting cells (APCs) and has 

immunoregulatory effects on NK cells and T cells. IL-12 is important in cell-mediated 

immunity by pushing the balance between Th1 cells and Th2 cells towards Th1-type 

predominance. IL-12, in synergy with TNF-, can also elicit the production of large 

amounts of IFN- by NK cells.

 TNF- is a pro-inflammatory cytokine originally identified as a tumor cell killer, 

and mainly produced by activated macrophages, NK cells and T cells (mainly Th1 

cells). TNF- plays a role in endothelial activation and lymphocyte movement and is 

one of the crucial mediators in acute and chronic inflammatory conditions [250]. 

Chemokines 

These are small secretory molecules that are produced by a variety of cells 

constitutively or in response to microbial/viral infection [250, 270]. Chemokines bind 

to specific cell surface receptors on leukocytes, which will lead to a rapid change in 

the cell shape and behaviour enabling them to migrate from the blood stream through 

the vascular endothelium into the site of inflammation [270-272].

CC group of chemokines target many different cells, such as: monocytes, T cells, 

dendritic cells, eosinophils and NK cells. These include monocyte chemotactic 

protein (MCP)-1/CCL2, macrophage inflammatory protein (MIP)-1/CCL3, MIP-

1/CCL4, regulated upon activated normal T cell expressed and secreted 

(RANTES)/CCL5 and eotaxin/CCL11 [250, 273].

The CXC group of human chemokines mostly mediates neutrophil chemotaxis and 

include: IL-8/CXCL8, monokine-induced by IFN- (MIG)/CXCL9 (nonELR), IFN-

inducible protein-10 (IP-10)/CXCL10 and stromal cell-derived factor-1 (SDF-

1)/CXCL12. 

Lastly, the sole CX3C type chemokine, namely fractalkine/CX3CL1, binds CX3CR1 

and attracts T cells and monocytes but not neutrophils [273, 274].



1. Introduction

31

Cytokine Abbreviation Cell Source Target Cells Primary Effects
Type I Interferons 
(IFN)

IFN-
IFN- All All

Antiviral, NK cell 
cytotoxicity, induction of 
class I MHC

Type II Interferons 
(IFN)

IFN- NK cells Monocytic cells, most 
others

Activation, induction of 
class II MHC, CD4 
T-cell differentiation

Tumor necrosis 
factor (TNF)

TNF- Monocytic cells, 
NK cells, others

PMN, endothelial cells, 
hypothalamus, others

Activation of adhesion, 
inflammation, fever, cell 
death, antiviral, induction 
of class I MHC

Interleukin 1 IL-1  and  Monocytic cells, 
others

Endothelial cells, 
hypothalamus, others

Inflammation, fever

Interleukin 6 IL-6 Monocytic cells, 
others

B cells, liver Growth, acute phase 
reactants, fever

Interleukin 8 IL-8 Neutrophils and T 
cells

Chemoattractant and 
activates neutrophils

Interleukin 12 IL-12 Monocytic cells, 
dendritic cells

NK and T cells IFN- production, CD4 
T-cell differentiation

Interleukin 18 IL-18 Monocytic cells, 
few others

NK and T cells Enhances IFN- production

monocyte 
chemotactic protein 
-1

MCP-1 (CCL-2) Respiratory 
epithelium and 
monocytic cells

Monocytes, T cells and 
dendritic cells

Chemoattractant 

Regulated upon 
activation normal T 
cells expressed and 
secreted 

RANTES 
(CCL-5)

Respiratory 
epithelium and T 
cells

Monocytes, T cells and 
dendritic cells

Chemoattractant and 
activates T cells

Table 1.2: List of some important cytokines and chemokines in influenza virus infection.

Adapted from La gruta, Immunology and Cell Biology, 2007 and Biron and Sen, Innate responses to 

viral infections Chp 9, Fields Virology, 5th edition.
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Figure 1.9: The two cellular pathways targeted in this study (NF-B) and (Raf/MEK/ERK). The 

cartoon shows the activation of the two pathways by IAV particles, and the specific targets of the 

inhibitors used in this study; the IKK inhibitor (Bay 11-7082) for the NF-B pathway and a MEK 

inhibitor (U0126) for the Raf/MEK/ERK pathway. Both pathways are required for (1) efficient virus 

propagation, by means of vRNP export from the nucleus, as well as (2) antiviral functions, by means of 

cytokine/chemokine expression, upon virus infection. (Adapted from Pleschka).

Influenza A viruses are segmented ssRNA viruses which mainly target the epithelial 

cells of the respiratory tract in humans and generally cause acute, self-limiting 

infections [1, 25, 109]. Possible risks of complications and death are, however, 

greatly increased in young children, the elderly [109, 111, 116, 117] or when the 

population comes into contact with new highly virulent virus strains [76, 109, 126]. 

Increase virulence and high viral loads as well as severe lung inflammation due to 

cytokines (i.e. TNF-, IFN/, IL-1, IL-8, MCP-1 and IL-6), has been linked with the 

pathogenesis of these HPIV strains. The associated hypercytokinaemia is thought to 

be responsible for the main systemic symptoms observed and the severity of the 

disease [114, 115, 119, 121, 125-127].

Therapeutics strategies in the form of antiviral drugs such as amantadine and 

rimantadine, which target the viral M2 ion channel protein as well as neuraminidase 

inhibitors, zanamivir and oseltamivir, can reduce the duration of symptoms of clinical 
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influenza, but the appearance of drug-resistant variants have already been reported 

[12, 106, 275-278]. Vaccination is also an option, but in the possible appearance of a 

pandemic situation, the appropriate vaccines would not be produced in time [279, 

280] to avoid disaster. Therefore the need for new therapeutic strategies is urgent.

Upon IAV infection cells activate many signalling pathways such as; the 

Raf/MEK/ERK, the NF-B, the p38 MAPK, the JNK, the IRF-3 and PI3K pathways. 

[12, 13, 183, 281].

Activation of the NF-B transcription factor has been shown to be important for the 

expression of many pro-inflammatory and antiviral cytokines (anti-viral function) [232, 

233] as well as important in supporting virus replication (pro-viral function) [138, 139, 

234]. The Raf/MEK/ERK (MAPK) signalling cascade, on the other hand, has 

generally been linked to efficient influenza virus propagation [132, 182, 282]. This 

pathway has, however, in other studies also been shown to be involved in cytokine 

regulation [135, 283].

Specific inhibitors that block activation of the NF-B pathway, such as Bay 11-7082 

(Bay) by selectively inhibiting TNF- inducible phosphorylation of IB

(www.calbiochem.com), or U0126 a MEK inhibitor [284] which inhibits downstream 

activation of the Raf/MEK/ERK pathway, have already been previously used in 

studies with influenza virus [132, 139, 181, 182].

The aim of this study was to modulate both virus replication as well as virus-induced 

cytokine production simultaneously, by targeting these two pathways (NF-B and 

Raf/MEK/ERK) using the specific inhibitors mentioned above (Figure 1.9). This idea 

envisioned targeting these specific cellular pathways shown to be important for virus 

replication and for virus-induced cytokine expression with the purpose of limiting the 

main factors linked to the severe disease outcome of infection with certain HPIV 

strains.

The aim also included comparison/correlation studies in cell culture experiments 

using either permanent cell lines (human alveolar epithelial cells – A549 cells) or 

primary cells (mice alveolar epithelial cells – AECs), as well as in vivo studies using 

C57BL/6 mice.
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2. Materials and Methods

2.1. Materials

2.1.1. Instruments

Abbocath-T (26Gx19mm) Hospira

Bio Imaging Analyzer (BAS 2000) Fuji Film

Cell culture incubator Heraeus; Nuaire

Cell culture microscope Hund

Confocal laser scanning microscopy (TCS SP5) Leica

Culture Hood(HB2448) Heraeus

Developing machine Optimax, Protec

Disposable Razor Med Comfort AMPri GmbH

Electrophoresis apparatus system Institute for Medical Virology

Electrophoresis power supply (EPS500/400) Pharmacia

ELISA reader (Type LP 400) Diagnostic Pasteur

FACScan Becton Dickinson, USA

Fine scale (Mettler PM460) Mettler Waagen GmbH

Heat block Jumotron

LuminexTM Reader Biorad

Magnetic stirrer IKA Labortechnik

Megafuge 1.0 R Heraeus

Microwave oven Quelle

Mini centrifuge Biofuge 13, Heraeus

Neubauer chamber Optik Labor

Omincan 50 Braun Medical

pH meter (Type 632) Metrohm

Shaker (Type 3013) MSGV GmbH

Scale (P1200) Mettler

Scanner Canonscan 9900F Canon

SDS-PAGE gel system Institute for Medical Virology

Sonicator (Type HD70) Bondelin Sonoplus

Spectrophotometer (DU-70) Beckman
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Sterile needles BD Microlance 3 BD 

Syringe (microliter, serial 700) Hamilton

Syringe 20ml single use Braun, Melsungen AG

Tissue Ruptor Qiagen

Vortex(Vibrofix VF1) IKA Labortechnik

Water bath (SW-20C) Julabo

Western-Blot chamber Institute for Medical Virology

2.1.2. Reagents and general materials

Acrylamide Bio-Rad

Ammonium persulfate (APS) Serva

Annexin V-FLUOS Roche

Aprotinin Roth

β-mercaptoethanol (MetOH) Roth

Benzamidin Sigma

Blotting papers (GB004) Scheicher & Schuell

Bradford reagent Biorad

Bromophenol blue Merck

BSA (Solution, 35%) MP Biomedicals

BSA (Powder) Roth

Chloroform Roth

Coomassie brilliant blue R 250 Merck

Cryotubes Nunc

DAB Peroxidase substrate 

(3,3’-Diaminobenzidine)

Sigma

DAPI (stock 1mg/ml) Roth

DEAE Dextran (MW: 500,000) Pharmacia Biotech

1,4-Diazabicyclo 2,2,2octane (DABCO) Merck

Dimethylsulfoxid (DMSO) Sigma

1,4-Dithiothreit (C4H10O2S2) (DTT) Roth

Cuvette Biorad

Eppendorf tube Eppendorf

Ethanol (absolute) Roth
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Ethylenediamine tetraacetic acid (EDTA) Fluka

Falcon centrifuge tube Falcon

Glycerol Sigma

Glycine Roth

Hydrochloride (HCl) Roth

Isopropanol Roth

Leupeptin Sigma

Magnesium chloride (MgCl2) Merck

Methylcellulose (methocel MC) Sigma

Microtiter plate (96 wells) Greiner

Mowiol 40 - 88 Aldrich

Methanol Roth

MTT (dimethylthiazole-diphenyl tetrazolium 

bromide)

Sigma

N-2-hydroxyethylpiperazine (HEPES) Sigma

Paraformaldehyde (PFA) Merck

Pefablock Roth

Potassium chloride (KCl) Roth

Precision Plus Protein Standards (All Blue) BioRad

Potassium dihydrogen phosphate (KH2PO4) Roth

Propidium Iodide Sigma

PVDF-Membrane Immobilon-P transfer membrane Millipore

Rainbow marker Amersham

Roti-Free, ready-to-use Stripping Buffer Roth

Scientific Imaging film BioMax MR Kodak

Sodium chloride (NaCl) Roth

Sodium dodecyl sulfate (SDS) Merck

Sodium-β-glycerophosphate Sigma

Sodium hydroxide (NaOH) Merck

Sodium hydrogen carbonate (NaHCO3) Fluka

Sodium orthovanadate Sigma

Sodium pyrophosphate Sigma

TEMED (N,N,N',N'-Tetramethyl-ethylene diamine) Serva
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Tris HCl Roth

Triton X-100 (t-Octylphenoxypolyethoxyethanol) Sigma

Tween 20 Roth

Trypan blue Gibco

Whatman 3MM Papier Schleicher & Schüll

WST-1 Cell proliferation Reagent Roche

2.1.3. Monoclonal and polyclonal antibodies

Antibody Company Dilution

Anti-P-ERK (E-4) mouse monoclonal IgG Santa Cruz 

Biotechnology

1:250

Anti-ERK2 (C-14) mouse monoclonal IgG Santa Cruz 

Biotechnology

1:500

HRP conjugated goat anti-mouse IgG Santa Cruz 

Biotechnology

1:1000

Anti-flu A NP (FPV) mouse (clone 1331) Biozol–Biodesign 

Internat.

1:6000

Anti-influenza A PR/8/34 chicken polyclonal 

IgY

Biomol – US Biological 1:50

Texas Red conjugated rabbit anti-mouse Dianova 1:200

biotinylated rat anti-mouse CD16/32 BD Pharmingen 1:?

biotinylated rat anti-mouse CD45 mAbs BD Pharmingen

2.1.4. Materials for cell culture

Dulbecco's Modified Eagle's medium (DMEM) Invitrogen/Gibco

Fetal calf serum (FCS) PAN

penicillin-streptomycin solution (100x) PAA

Trypsin-EDTA (10x) PAA

Tissue culture dish Becton Dickinson

Tissue culture flask NUNC

Bovine Albumin ICN
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2.1.5. Materials for mice experiments

Agarose low melting Sigma Aldrich

Dispase BD Biosciences

DNase Serva

HBSS PAA

Isofluorane Abbott/Baxter

MagneSphere Paramagnetic Particles Promega

Syringe (microliter, serial 700) Hamilton

Mesh filter membrane 100M and 40M Beckton Dickinson

Filter paper 20M Milipore

2.1.6. Kits

AEC staining kit Sigma

Anti-mouse IFN ELISA kit BioSource/Invitrogen

Anti-human IFN ELISA kit BioSource/Invitrogen

ECL (enhanced chemiluminescence) solution kit Amersham/GE

Multiplex human cytokine kit BioRad

Multiplex mouse cytokine kit BioSource/Invitrogen

NF-B TransAM ELISA kit AtiveMotiv

Opteia set mouse TNF- kit BD Biosciences

2.1.7. Virus strains and cell lines

A/FPV/Bratislava/79 (H7N7) Strain-collection in Giessen

A/PR/8/34 (H1N1) Strain-collection in Giessen

A549 (Human Alveoar Epithelial cells) Strain-collection in Giessen

MDCK-S  (Madin-Darby canine kidney cells) Strain-collection in Giessen

Vero (African Green Monkey) Strain-collection in Giessen

2.1.8. Inhibitors and solvent

Bay 11-7082 (IKK inhibitor) Calbiochem

U0126 (MEK inhibitor) Promega

Cremophor EL Fluka
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2.1.9. Media

Dulbecco ś Modified Eagle Medium (DMEM 10L)

1x DMEM powder high glucose

37 g/10 L bicarbonate

100 ml/10 L sodium pyruvate

100 ml/10 L 100x penicillin/streptomycin

sterile filtered

Freeze medium

90% Complete DMEM

10% DMSO

DMEM/10% FCS/antibiotics (complete DMEM 0,5L)

445 ml DMEM

50 ml FCS (heat inactivated)

5 ml 100x penicillin/streptomycin

DMEM/BA (0,5L)

492 ml DMEM

5 ml penicillin/streptomycin (100x)

3 ml Bovine Albumin (BA) (35%)

2x DMEM/BA for Plaque-Assay (0,5L)

100 ml  MEM (10x)

10 ml  penicillin/Streptomycin (100x)

20 ml NaHCO3 (7.5%)

6 ml Bovine Albumin (BA) (35%)

354 ml ddH2O, autoclaved
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2.1.10. Buffers and solutions

100x Ca2+/Mg2+ solution (100ml)

1 g MgCl2

1.32 g CaCl2

ddH2O added up to 100 ml

autoclaved, then filtered with the 0.2µm filter column

Phosphate-Buffered Saline (10x PBS) (1L)

0,137 M NaCl

0,27 mM KCl

8,1 mM Na2HPO4

1,47 mM KH2PO4

adjust total volume to 1 L with ddH2O, autoclaved

1x PBS++ buffer (0,5L)

495 ml 1x PBS (autoclaved)

5 ml Ca2+/Mg2+ solution (100x)

PBS/Ca2+/Mg2+/BA/antibiotic (200ml)

20 ml 10x PBS (see above)

174,8 ml ddH2O (sterile)

2 ml  penicillin/streptomycin (100x)

1,2 ml BSA (35%)

2 ml  Ca2+/Mg2+ (100x)

SDS-PAGE loading buffer (2x) (Laemmli Buffer)

100 mM Tris-HCl, pH 6.8

200 mM DTT (dithiothreitol)

4% SDS

20% glycerol

0.2% bromophenol blue
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SDS-PAGE running buffer (5x) (1L)

1 g SDS

6 g Tris HCl

28,8 g glycin

adjust total volume to 1 L with ddH2O

SDS-PAGE transfer buffer (1L)

5,8 g Tris HCl

2.9 g glycin

0.17 g SDS

200 ml methanol

adjust total volume to 1 L with ddH2O

TLB buffer

20 mM Tris HCl, pH 7.4

137 mM NaCl

10% (v/v) glycerol

1% (v/v) Triton X-100

2 mM EDTA

50 mM sodium-β-glycerophosphate

20 mM sodiumpyrophosphate

(Addition of inhibitors for lysis buffer, see below)

Lysis buffer (10ml)

10 ml TLB buffer (see TLB buffer)

10l Pefablock (200 mM)

10l Aprotinin (5 mg/ml)

10l Leupeptin (5 mg/ml)

100l Sodium orthovanadate (100 mM)

50l Benzamidine (1 M)
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Tris-Buffered Saline (10x TBS) (1L)

24.2 g Tris HCl

80 g NaCl

dissolve by adding 900 ml ddH2O

adjust pH to 7.6 and total volume to 1 L with 

ddH2O

TBS/Tween (0.05%) (1x TBS-T) (1L)

100 ml 10x TBS

900 ml ddH2O

0.5 ml Tween 20 

Blocking buffer and antibody diluting solution

5% (w/v) nonfat dry milk

in 1x TBS-T (see above)

2.1.11. Gels and other media

SDS-PAGE stacking gel

2,9 ml ddH2O

1,25 ml Tris HCl, pH 6.8 (0.5 M)

50 l SDS (10%)

750 l polyacrylamide (PAA) (30%)

50 l  APS (10%)

4 l TEMED

SDS-PAGE resolving gel (10%)

4 ml ddH2O

2,5 ml Tris HCl, pH 8.8 (1.5 M)

100 l SDS (10%)

3,3 ml polyacrylamide (PAA) (30%)

50 l APS (10%)

6 l TEMED
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Cell fixing buffer (100 ml)

95 ml PBS++

4 ml Formaldehyde (PFA)

1 ml Triton X-100 (t-Octylphenoxypolyethoxyethanol)

Methyl cellulose stock, 3% stock for Focus assay (200ml)

6 g methylcellulose

200 ml ddH2O 

heat ddH2O up to 90°C

add methylcellulose by using a sieve, mix thoroughly and autoclave

ripen it at 4°C for three days

aliquot in 50 ml and freeze at -20°C

Methyl cellulose media, 1.5% stock (100 ml) for Focus assay

50 ml methyl cellulose stock (3%)

1 ml Penicillin/Strepromycin (100x)

1 ml BA (30%)

10 ml MEM (10x)

4 ml NaHCO3 (7.5%)

1 ml DEAE Dextran (MW: 500,000) (1%)

33 ml ddH2O

mix well and store at 4°C

Mowiol DABCO

2.4 g Mowiol

6 g Glycerol

6 ml ddH2O

mixed thoroughly over night. Next day add 12 ml 0.2 M Tris-HCl (pH 8.5) and 

incubated at 50°C for 30 min. Centrifuge the viscous mixture at 12000 g (Megafuge 

1.0R, 6000 rpm) at room temperature for 15 min, and mix the supernatant with 2.5% 

DABCO.
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U0126 and Bay 11-7082 stock

U0126 M [380,5g/L] and Bay 11-7082 [207.2g/L]

Both inhibitors were prepared to a stock concentration of 100mM dissolved in DMSO. 

Aliquots were then made and stored at -20oC.

Cremophor EL [(Polyoxyethylenglyceroltriricinoleat 35 (DAC), Polyoxyl 35 Castor Oil 

(USP/NF) is a trademark of BASF, Germany] is a non-ionic solubilizer and 

emulsifier. It can convert hydrophobic drugs into aqueous solutions. Addition of 

Cremophor EL to a drug, allows for fine degree of dispersion and therefore the drug 

is more readily absorbed and its efficiency is increased.

For the dissolving U0126, we first used DMSO and then further added Cremophor EL 

in a ratio of 1:4. The above solution was then further diluted in filtered PBS (total 

volume 250l/mouse) for in vivo application.

2.2. Methods 

2.2.1. Working with cell cultures

2.2.1.1. Maintenance of cell culture

Mardin-Darby canine kidney cells (MDCK) and human Alveolar epithelial carcinoma 

cells (A549)  were maintained in Dulbecco modified Eagles medium (DMEM) 

containing phenol red as a pH-indicator, supplemented with 10% heat inactivated 

fetal calf serum (FCS) and streptomycin/penicillin. The cells were incubated at 37°C 

with 5% CO2 and 95% humidity. They were routinely cultured to 100% confluence 

and than passaged according to the needs.

2.2.1.2. Storage of cell cultures

For freezing; cells were washed with 1x PBS and 5 ml of 1x trypsin-EDTA was then 

added. They were then incubated at 37°C with 5% CO2 and 95% humidity and left 

until cell detachment, after which 5ml complete media was added. Cell suspensions 

were then centrifuged at 350 g (Megafuge 1.0R, 1000 rpm), 4°C for 5 min. The cell 

pellet was gently resuspended with 1 ml freeze medium (90% complete DMEM and 

10% DMSO) and transferred into cryotubes. These were set into a styropore box and 
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left to freeze gradually in the -80°C freezer. The DMSO prevents ice crystal formation 

and allows the cells to remain intact. After 24 hours, cells were transferred into liquid 

nitrogen where they can be kept for a longer period of time.

For thawing; cells were removed from liquid nitrogen and immediately transferred 

into a 37°C water bath for 5 min. Cells were then resuspended carefully and 

transferred into a cell culture flask filled with complete DMEM (19 ml). After 24h cells 

will have reached 100% confluency and should be passaged for further propagation.

2.2.1.3. Infection of cells

Influenza virus, avian A/FPV/Bratislava/79 (H7N7) and human A/PR/8/34 (H1N1), 

were used for infection of A549 cells. The virus inoculum was prepared by adding the 

according amount of virus stock to a certain volume of PBS/BA/P/S/Ca2+Mg2+

depending on the desired multiplicity of infection (moi) used for experiment. A549 

cells were previously (one day before) seeded on 3.5 cm dishes and grown to 

confluence. The cells were then washed with 1x PBS++ and 100 µl of virus inoculum 

was laid on top by creating bubbles in the middle of dish, to ensure a consistent virus 

distribution. The cells were further incubated at room temperature for 1 hour, after 

which the inoculum was removed by aspiration and 2 ml of DMEM/BA media was 

added with the desired treatment (DMSO, Bay 11-7082 or U0126) or untreated. Cells 

were then further incubated at 37°C with 5% CO2 for the desired time points, and 

further treated. 

The calculation of moi was done as follows:

2.2.2. Preparation of cell lysates for Western blot analysis

At a certain time point after infection and/or treatment, cells (from 3.5cm dishes) were 

washed with cold 1x PBS++. An extra 1 ml of cold 1x PBS++ was added to the cells 

with which they were scraped off and transferred into eppendorf cups. This was then 

centrifuged at 25000 g (Biofuge 13, 13000 rpm) for 1 min and the cell pellet carefully 

resuspended in 75 l lysis buffer by pipetting up and down. The lysis was performed 

by incubating cells for 25-30 min on ice and vortexing at every 5 min intervals. The 

1000 µl

Virus titer [PFU] moi x cell amount in the culture

X µl virus
=
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lysed cells were then centrifuged at 25000 g (Biofuge 13, 13000 rpm), 4°C for 15 

min. The supernatant was finally transferred into new eppendorf cup and stored at -

70°C until further requirement.

2.2.3. Cell viability (cytotoxicity) analysis

In order to determine whether the concentration of inhibitors used for experiments 

would affect cell viability, MTT-assay or WST-1-ssay was performed. Both these 

assays measure the activity of mitochondrial dehydrogenase in the living cells. 3-

(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) or (4-(3-(-

iodophenyl)-2-(4-nitrophenyl)-2H-5tetrazolio)-1,3-benzene disulfoonate) (WST-1) is 

taken up by cells and can be reduced either enzymatically (by mitochondrial 

dehydrogenase/reductase enzymes) or through direct interaction with NADH, which 

is reduced to NADPH. This reaction only takes place when enzymes are active in 

living cells and therefore conversion is directly related to number of viable cells and 

can be analyzed photometrically in an enzyme-linked immunosorbent assay (ELISA) 

reader. 

This reaction produces blue formazan crystals (MTT) or yellow formazan (WST-1) in 

living cells.

2.2.3.1. MTT-assay

A549 cells were seeded in 96well cell culture plates (150l/well) and grown in 

complete DMEM media overnight at 37°C with 5% CO2 so that they were confluent 

on the day of the experiment. After addition of the inhibitors (mixed in DMEM/BA), 

cells were incubated further for 4, 6, 8, 10, 24 and 48 hours. Cell media was then 

replaced with 150l of complete DMEM media and incubated for 1 hour to allow for 

cell proliferation. 7l of 5mg/ml MTT stock solution was diluted in 193l complete 

DMEM media (175g/ml final concentration) and added into each well after aspirating 

the old media. Cells were incubated for a further 90 min and subsequently fixed with 

4% paraformaldehyde (PFA, in 1x PBS) at room temperature for 30 min. The fixing 

solution was aspirated and the plates were dried under the hood for 10-15 min. The 

tetrazolium crystal was dissolved by adding 200l of isopropanol to each well and the 

plates left shaking for 10 min on a 96-well plate shaker. The plates were analyzed 

photometrically at 550 nm excitation in an enzyme-linked immunosorbent assay 

(ELISA) reader.
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2.2.3.2. WST-1-assay

This assay can be performed in living cells, without any need of fixing the cells.

The media was always prepared fresh (for 24 well plates – 300l/well), by diluting 

1:50 of WST-1 stock in DMEM without phenolred.

The supernatants were collected from the treated cells/samples and kept at RT for 

the duration of the WST-1 experiment (it was later added back to the cells).

The cells were washed once with PBS, after which 300l of the 1:50 prepared 

solution (see above) was added per well. The cells were then incubated for 1h at 

37°C and 5% CO2 (for A549 cells) or 7.5% CO2 (for mice primary cell culture). After 

the elapsed time 100l of supernatant was removed and placed in duplicate into a 

96-well ELISA plate. The absorbance was measured at 450nm – reference set to 

620nm – in an enzyme-linked immunosorbent assay (ELISA) reader.

Absorbance results from time point post-treatment (viral infection and/or +/-

inhibitors) and for each individual well were then correlated to initial results before 

treatment (time point zero) and given as percentage values. 

2.2.3.3. Trypan Blue dye exclusion

For the exclusion of dead cells, 10ml of cell suspension (in media) was added to 

90ml of Trypan blue. It was mixed gently up and down with a pipette and 10ml of this 

dilution was placed in a Neubauer chamber and counted. Trypan blue enters and 

stains dead cells are whereas the unstained cells are live. 

The cell number (dead/alive) was counted taking into account the dilution factor (10) 

from above and the Neubauer chamber multiplication factor 1000.

2.2.4. Raising virus stocks

T-75 flasks were seeded with MDCK-S or Vero cells one day before and allowed to 

grow to +/- 90% confluency. A preparation of the virus stock was made to infect 

bottles at a moi=0.01. The bottles were washed with 5ml PBS++ and then infected 

with 5ml of virus stock in PBS/BA/P/S/Ca2+Mg2+ for 1hour at RT. After this incubation, 

the inoculum was removed and 10ml of DMEM/BA media was added to the bottles 

and incubated at 37°C and 5% CO2 for approximately 48h or until liquid plaques were 

seen. In the case of A/PR/8/34 virus, Trypsin at 2g/ml was additionally added to the 

media for cleavage of the HA, which is necessary for efficient replication. 
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Supernatant was then removed, centrifuged at 350 g (Megafuge 1.0R, 1100 rpm), 

4°C for 5-10 min, and the clear supernatants collected from the tubes. The analysis 

of titres and HA were then calculated, as described below.

2.2.5. Analysis of infectious virus titres by immunohistochemistry

Virus dilution was prepared in a 96-well microtiter plate with U-form bottom. First 

180l of PBS/BA/P/S/Ca2+Mg2+ was pipetted into each well and 20 l of the virus 

stock was added into the well of the first row. The virus dilution (200 l) was mixed by 

pipetting up and down and 20 l of it was transferred into the well of the second row. 

The same steps were repeated up to the last row to get 10-1 to 10-8 dilution series.

MDCK cells were seeded in 96-well plates and grown over night at 37°C with 5% 

CO2 so that they were 90% confluent on the day of infection. The cells were washed 

once with 1x PBS++, then infected with 50l of virus dilution and incubated at room 

temperature for 1 hour. Virus inoculum was aspirated and 150l methylcellulose 

media was added into each well. In the case of A/PR/8/34 virus titration, Trypsin at 

2g/ml was additionally added to the methylcellulose media for the reason stated 

above (section 2.2.4.). The plate was placed at 37°C with 5% CO2 for 30 or 48 hours, 

for FPV or PR8, respectively. After time of incubation, methylcellulose media was 

removed by aspiration. Cells were washed twice with 1x PBS++ and fixed, as well as 

permeabilized, with 100l/well of 4% PFA/1% TritonX-100 in 1x PBS++ overnight at 

4°C or alternatively for 1 hour at RT. Afterwards cells were washed three times with 

1x PBS/0.05% Tween20 and incubated with 50 l of primary antibody (anti NP-mAb, 

1:6000 diluted in PBS++/3% BSA) for 45 min at room temperature. After aspirating the 

primary antibody dilution, cells were again washed three times with PBS/0.05% 

Tween20, followed by secondary antibody  incubation (Horse Radish Peroxidase 

(HRP)-conjugated anti mouse, 1:1000 diluted in PBS++/3% BSA) for 45 min at room 

temperature. Cells were washed as before and 100l DAB-substrate (first, one silver 

pill (Sigma FASTTM DAB) dissolved in 15 ml 1x PBS followed by dissolving one 

golden pill (Sigma FASTTM UREA H2O2)) or 50l of AEC staining kit solution was 

used and was added into each well and placed at room temperature for 10-15 min.

The AEC (3-Amino-9-ethylcarbazole) Staining Kit is used for staining peroxidase 

labelled compounds in immunohistochemistry or immunoblotting techniques. AEC 

produces an insoluble end product which has a red colour. Brown or red stained foci
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were observed under microscope, wells were washed with normal water to remove 

the rest of salts and air dried at room temperature. After drying, the plates were 

scanned using the Canonscan 9900F at 1600 dpi and virus foci counted. The viral 

titre was determined as follows:

FFU/ml = number of foci x volume factor x dilution factor

Volume factor: FFU (Foci forming unit) is related to 1 ml. If a dish was infected with 

50 l viral dilution solution, the factor is 20. 

One foci was considered when more than 3-5 adjacent cells were stained in one 

particular area, as opposed to single cell staining which would probably mean, that 

the cell had not produced an infectious virus.

2.2.6. Haemagglutination (HA) Assay

2.2.6.1. Preparation of red blood cells (RBCs) from chicken blood

Red blood cells should be taken from Specific Pathogen Free (SPF) chickens. If SPF 

chickens are not available, blood may be taken from normal chickens that are shown 

to be free from antibodies to avian influenza. First, about 20-30 ml fresh chicken 

blood was transferred to a 50 ml sterile Falcon centrifugation tube containing 10 ml of 

3.7% sodium citric acid. The RBCs were washed by filling the tube to 50 ml with PBS 

and centrifuged at 700 g (Megafuge 1.0R, 1100 rpm) at 4oC for 10 min. The 

supernatant above the RBC-fraction containing serum, white blood cells and fat was 

carefully removed by aspiration, then RBCs pellet was washed again with PBS and 

centrifuged as mentioned above. This washing step was repeated twice. Finally the 

pellet of RBCs was diluted to 0.5% (v/v) with PBS for haemagglutination assay.

2.2.6.2. HA assay

50 l PBS was distributed into each well of a plastic U- or V-bottomed 96-well plate. 

50 l of virus suspension (from cell culture supernatant) was placed in the first well 

and two-fold dilutions performed from well to well (left to right) in a row (12 wells), so 

that the final dilution on well no.12 was 1:4096. Subsequently 50 l of 0.5% chicken 

RBCs was added to each well and the plate gently tapped to allow for even mixing. 
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The RBCs were then allowed to settle for about 30-60 min at 4oC. The 

Haemagglutinating Units (HAU) are measured as: 2x, where X is the number of the 

last well without blood precipitated on the bottom (with a mesh of erythrocytes). 

2.2.6.3. HI assay

25 l PBS was distributed into each well of a plastic U- or V-bottomed 96-well plate. 

In the first well, 50 l of antibody dilution (Chicken anti-influenza A, Puerto Rico 8/34 

(H1N1) Pab – IgY) (1:50) (dilution previously tested) was added and then a 2-fold 

dilution was performed (25l from first well to second, etc…) until well no.12 and 

discarded 25l from this last well. To each well 25l of virus dilution was added 

(previously tested for HA – 3 wells below the last positive well dilution) (i.e. if HA=26; 

then dilute the virus to 24 = 1/16 = 100l + 1500l PBS/BA/P/S/Ca2+Mg2+) and 

incubated for 30min-1h at RT.

After the incubation 50 l of chicken erythrocytes were distributed to each well; only 

pipetted on top and not shaken. The plate was then left at 4oC for 45min-1h. 

Haemagglutination inhibition was visualized, in contrast to HA, by the wells that had 

RBC precipitated at the bottom. 

2.2.7. Confocal Laser Scanning Microscopy and Immunofluorescence Assay 

(IFA)

Confluent cells were trypsinized by 1x trypsin-EDTA, reseeded in the 3.5 cm dish 

containing sterile glass cover-slips (12 mm) and incubated at 37°C with 5% CO2. On 

the next day, the cells were confluent. After infection and treatment of cells, the 

growth medium was removed from the culture dish, and the cells were washed once 

with 1x PBS++, then the cells were fixed with 1 ml 4%PFA in 1x PBS++ over night at 

4°C. After fixation, cells were washed twice with 1x PBS++ and subsequently 

incubated with 1ml 1% Triton X-100 for 45 min. Cells were then washed 3 x with PBS 

and incubated with 20 l of the primary Anti-flu A NP (FPV) mouse (clone 1331) 

(1:200 dilution in PBS++/3% BSA) for each cover-slip for 1 hour at room temperature. 

Afterwards cells were washed three times as before, and further incubated with 20 l 

of the secondary TexasRed-labeled goat anti-mouse IgG (1:200 diluted in PBS++/3% 

BSA) for 1 hour at room temperature. The cells were then washed again three times 

and incubated with 20l DAPI stock (1:200 diluted in PBS++/3% BSA) for 5 minutes. 
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After a further three washes (as above) and an extra wash with ddH2O, the glass 

cover slip was fixed on a glass slide with Mowiol, and allowed to harden overnight. 

Fluorescence was visualized, and pictures taken the following day with a TCS NT 

confocal laser scanning microscope.

2.2.8. Western blotting (Semi-dry)

2.2.8.1. Measurement of relative protein concentration (Bio-Rad protein assay)

The Bio-Rad Protein Assay is based on the observation that the absorbency 

maximum for Coomasie Brilliant Blue G250 shifts from 450 nm to 595 nm when 

binding to protein [285]. 5 l of cell lysate (as described in section 2.2.2.) was added 

into diluted Bio-Rad Dye Reagent (1:5 dilution of Dye Reagent concentrate in 

ddH2O). This was then mixed well and after a period of 10 min, the protein content 

was determined by measuring the absorption at wavelength 595 versus reagent 

blank (containing the lysis buffer only). This was done to apply an equal amount of 

protein from all samples onto the SDS-PAGE gel. The calculation was done as 

follows: the OD value (ODref) of the sample with lowest concentration (Reference 

sample Cref) was divided by the OD values (ODx) from the other samples. This would 

give a factor value (Fx) that would be multiplied by a constant volume (i.e. 70l). The 

respective volume obtained (Vx – representative of the volume needed from each 

individual sample) would then be subtracted from the respective 70l and this would 

give the amount of lysis buffer volume (Lx) that would be needed to add to the Vx to 

obtain the same amount of protein concentration from the lowest sample 

concentration.

2.2.8.2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

The eletrophoresis apparatus was assembled according to manufacturer's (Bio-Rad) 

instruction, and the resolving gel was poured in between the two glass plates. A 

space of about 1 cm plus the length of the teeth of the comb was left uncovered. 

Isopropanol or 100% ethanol was added to the surface of the gel to apply achieve an 

even gel surface. After the resolving gel was polymerized, isopropanol was removed 

and the stacking gel was poured on top of the resolving gel. The comb was then 

inserted on the top and the gel and allowed to polymerise. 35 l of 2x Laemmli buffer, 

containing 10% β-mercaptoethanol to reduce disulphide bonds, was added to 70 l of 
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sample (after determining the protein concentration) and was incubated for 5 min at 

95oC and cooled on ice for 1 min, then shortly centrifuged and then 25l of the 

adjusted protein concentration (see section 2.2.8.1.) was loaded into the wells of the 

gel. Rainbow protein marker or Precision Plus protein standard (2 l marker + 8 l 

Laemmli buffer) was loaded as control. Electrophoresys buffer was added and the 

gels were run at about 20 V/cm gel length. The negatively charged SDS-proteins 

complexes will migrate in the direction of the anode at the bottom of the gel. Small 

proteins move rapidly through the gel to the bottom, whereas large ones move slower 

and stay on the top. Proteins that differ in mass by about 2% can be distinguished 

with this method. The electrophoretic mobility of many proteins in SDS-

polyacrylamide gels is proportional to the logarithm of their mass.

2.2.8.3. Transfer to membrane in a "Semi-dry" electroblotter 

After the cell extracts were subjected to SDS-PAGE, the proteins were transferred 

onto a PVDF-membrane by electroblotting. The membrane had been previously 

incubated in 100% methanol for 1-2 min, washed for 5 min in ddH2O, and further 

equilibrated for 5 min in transfer buffer. A sandwich of two blotting papers, the PVDF-

Membrane, the polyacrylamide gel and again 2 blotting papers (without any bubbles), 

was laid in a "Semi-dry" Electroblotter. The current was set to 0.8 mA/cm2 for 90 min, 

for protein transfer. The negatively charged proteins will migrate from the gel on top 

in the direction of the anode at the bottom and transfer onto the PVDF-membrane 

placed underneath the gel. 

2.2.8.4. Immunodetection of proteins

After transferring the proteins, the PVDF-membrane was washed for 5 min in 1x T-

TBS buffer, and then blocked in blocking buffer for 1 hour at room temperature or 

overnight at 4°C. The membrane was then washed for 5 min in 1x T-TBS buffer and 

incubated with the primary antibody (e.g.: P-ERK, 1:200 in blocking buffer) for 1 hour 

at room temperature or overnight at 4°C. After washing three times (5 min each) in 1x 

T-TBS buffer, the membrane was incubated with the secondary antibody solution 

(e.g.: HRP-conjugated anti-mouse monoclonal antibody, 1:1000 diluted in blocking 

buffer) for 1 hour at room temperature.
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2.2.8.5. Enhanced Chemiluminescence (ECL) reaction

The membrane was washed three times, as before (5 min each) in 1x T-TBS buffer 

and once in 1x TBS, then incubated for 1 min in ECL (enhanced chemiluminescence 

ECL) solution which was prepared according to the manufacturer’s instructions. After 

1 min, the membrane was laid between a glass plate and a clear plastic membrane, 

into a photo cassette. A light sensitive film was then placed on top of the membrane 

and exposed for 1-5 min or longer. The film was then developed in a developing 

machine.

In order to detect the ERK2 protein (as a loading control), the previously attached 

antibody was stripped from the membrane by placing it in with 20ml stripping solution 

(Roti-Free, ready-to-use Stripping Buffer, Roth) and incubating for 60 min at 37°C. 

After washing with 1x T-TBS buffer for 5 min, the membrane was incubated in 

blocking buffer for 1 hour at room temperature. After a 5 min wash in 1x T-TBS buffer 

the membrane was incubated with anti ERK2 monoclonal antibody (1:500 diluted in 

blocking buffer) solution for 1 hour at room temperature or overnight at 4°C. After 

three times (5 min/each) washing with T-TBS, the membrane was incubated with the 

secondary antibody solution (e.g.: HRP-conjugated anti-mouse monoclonal antibody, 

1:1000 diluted in blocking buffer) for 1 hour at room temperature. Subsequently the 

membrane was washed as before three times in 1x T-TBS buffer and one more time 

in 1x TBS, and incubated for 1 min in ECL solution and further analysed as before.

2.2.8.6. Quantification of protein bands

Protein bands exposed on the film were scanned at 800 dpi and the picture was 

saved in grey scale as a TIFF file. The intensity of protein bands was 

densitometrically determined by means of PC-BAS software. Both P-ERK and ERK2 

bands were analysed. For normalisation, the lowest band value measured for ERK2 

(loading control) was set to one and divided by all other band values of ERK2. This 

gave a ratio (factor) value for each band to which each corresponding P-ERK band 

value was multiplied. This calculation was calculated to normalize the amount of P-

ERK by the amount of ERK-protein loaded for each sample. 

2.2.9. NF-B analysis

NF-B activity was measured by commercially available kit (TransAM from 

ActiveMotif). This kit uses an ELISA based high-throughput screening system in 
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which 96-well plates are covered with immobilized oligonucleotides containing an NF-

B (5’-GGACTTTCC-3’) consensus binding sequence. Only the active form of NF-B 

will bind to this site. Also, the primary antibodies used then to detect NF-B will 

recognise an epitope on p65 that will only be accessible when NF-B is active and 

bound to the target DNA. A secondary HRP-conjugated antibody is then used for 

colorimetric analysis via spectrophotometry. The sample can be either analysed from 

whole-cell or nuclear extracts. The detection limit for this assay is < 0.5g of cell 

extract or < 0.4ng of recombinant p65 protein/well.

For our study lysates were prepared from infected and treated A549 cells, as 

mentioned before (2.2.1.3.), and collected for further analysis. Assay was performed 

according to manufacturer’s protocol and analysed by ELISA reader at 450nm 

wavelength.

2.2.10. Cytokine analysis

Suspension protein arrays (multiplex bead immunoassay) are designed in a 

capture solid sandwich immunoassay format and permit high throughput of multiple 

markers in individual samples. The system employs colour-coded beads as the solid 

support, each of which is conjugated (covalently bound) with capture antibodies. 

These antibodies will react with the specific analyte (cytokine) of interest from the 

unknown sample or standard. After a series of washing steps to remove unbound 

protein, detector antibodies (biotinylated) are allowed to react with the beads, 

followed by addition of streptavidin-phycoerythrin (streptavidin-PE) – (Biorad) or an 

R-Phycoerytherin (RPE) – (Biosource), which binds to the biotinylated detection 

antibodies. The spectral properties of each bead are then monitored with the 

Luminex 100TM instrument. The constituent of each well is drawn up into the flow-

based instrument which measures each specific reaction based on bead colour and 

fluorescence. Results are calculated by interpolation from the standard curves.

Supernatants from infected and control samples were collected at the respective 

times and analyzed for cytokine expression. Human IL-8, IL-6, MCP-1 and RANTES 

were analysed by a multiplex cytokine array kit (Biorad), mouse KC (mouse analogue 

of human IL-8), IL-6, MCP-1 and RANTES were analysed by a multiplex cytokine 

array kit (Biosource, Invitrogen). Both were performed according to manufacturer’s 
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instructions. For human and mouse IFN analysis, the supernatants were measured 

with commercially available ELISA kits (Biosource, Invitrogen), according to 

manufacturer’s instructions. 

2.2.11. Mice 

C57BL/6 mice (weight of 18-21g) were purchased from Charles River Laboratories 

(Sulzfeld, Germay). Mice were bred under specific pathogen-free (SPF) conditions. 

All experiments were approved by the local government committee of Giessen.

2.2.12. Mice primary cell isolation

Briefly, mice primary alveolar epithelial cells (AECs) were isolated as previously 

described (Corti et al., Am J Respir Cell Mol Biol, 1996) but with some modifications. 

C57BL/6 mice were euthanised by an overdose of isoflurane and exsanguinated by 

cutting the inferior vena cava. Lungs were then perfused with 20 ml of sterile HBSS 

via the right ventricle until they were clean of blood. A shortened 21-gauge cannula 

was then firmly fixed to the exposed trachea through a small incision performed on 

the trachea. 1.5 ml of sterile dispase (enzyme used for digestion) was then applied 

through the needle into the lungs followed by 500l of sterile 1% low melting agarose 

in PBS (37oC). After 2 min of incubation, the lungs were removed into a 15ml tube 

containing 2ml of dispase and allowed to incubate for a further 40 min at RT. The 

lungs were then placed in a culture dish containing DMEM/2.5% HEPES 

buffer/0.01% DNase (also enzyme used for digestion), and the tissue was carefully 

dissected from the airways and large vessels. The cell suspension was successively 

filtered (first through a 100M then through 40M mesh filter membranes and finally 

through a 20M filter paper) to obtain a single cell suspension and resuspended in 

10ml of complete DMEM media. The cells were then incubated with biotinylated rat 

anti-mouse CD16/32 and rat anti-mouse CD45 mAbs (specific leukocyte antibodies) 

for 30 min at 37oC. After this period, cells were washed and incubated with 

streptavidin-linked MagneSphere Paramagnetic Particles for 30 min at RT with gentle 

rocking, followed by magnetic separation of contaminating leukocytes for 15 min. The 

purity of freshly isolated mice primary alveolar epithelial cells (AECs) in the 

supernatant was always >90% (assessed by trypan blue dye exclusion – see section 

2.2.3.2.). Cells were then seeded on 24-well cell culture plates at a density of 4 x 105
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cells/well and grown to 90% confluence for 2 days with complete DMEM media. On 

day 2 cells were washed and serum starved with 0.2% FCS and left until day 3, upon 

which they were submitted to virus infection, as described above.

2.2.13. in vivo mice experiments

Mice were either infected intra-tracheally with 500PFU of influenza virus A/Puerto-

Rico/8/34 (H1N1; PR8) diluted in sterile PBS in a total volume of 70l or with 70l 

sterile PBS (mock controls). Mice were treated intra-peritoneally with inhibitors (Bay 

or U0126) or solvent controls (DMSO, DMSO/Cremophor EL – see below) every 24h 

until day of sacrifice, starting at 24h before infection. Mice were sacrificed on day 2 or 

5 by an overdose of isofluorane. After opening the abdominal cavity the peritoneum 

was cut open and blood was taken from the vena cava inferior (+/- 400l). For the 

bronchoalveolar lavage (BAL) fluid, the trachea was exposed, and a small incision 

was made to insert a 21-gauge cannula which was then firmly fixed, the lungs were 

then washed with 1ml (4 x 250l PBS) collected and analysed for virus titres and 

cytokines. All samples were kept at -80oC, until further analysis.

2.2.14. Statistical analysis

Each point corresponds to the mean +/- S.D. of the indicated experiments. The 

statistical significance of differences between the indicated groups was tested using 

the unpaired Student’s t test with a threshold of p: significant * < 0.5; very significant 

** <0.01; and very very significant *** < 0.001.
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3. Results

Human alveolar epithelial cell line (A549 cells)

Since activation of both the NF-B and the Raf/MEK/ERK pathway seem to be 

important for virus survival as well as immune regulation, I wanted to analyse the 

effect of inhibiting these pathways in human alveolar epithelial cells, in order to 

reduce both virus replication and cytokine induction, simultaneously, in an attempt for 

an anti-viral therapy.

For this purpose I chose a specific IKK inhibitor, Bay 11-7082, and a highly specific

MEK inhibitor, U0126. Bay 11-7082 (Bay) blocks activation of the NF-B pathway by 

selectively inhibiting TNF- inducible phosphorylation of IB

(www.calbiochem.com), whereas U0126 is a selective inhibitor of MEK [284] and 

therefore inhibits downstream activation of the Raf/MEK/ERK pathway.

3.1. Viability of A549 cells upon treatment with specific inhibitors

To ensure that treatment with these inhibitors would not affect cell viability, an MTT 

assay was performed. This assay measures cellular proliferation by a colorimetric 

technique which correlates to mitochondrial enzyme activity (reductases). (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; MTT) is taken up by cells and 

can be reduced either enzymatically (by mitochondrial dehydrogenase/reductase 

enzymes) or through direct interaction with NADH, which is reduced to NADPH. This 

reaction only takes place when enzymes are active in living cells and therefore 

conversion is directly related to number of viable cells and can be analyzed 

photometrically in an enzyme-linked immunosorbent assay (ELISA) reader. 

In order to investigate pulmonary epithelial cells which are the primary targets of IAV 

infection in humans [110, 111], the human alveolar epithelial cell line (A549) was

treated for different time points with the respective inhibitors at the concentrations of 

25M (Bay) or 50M (U0126) and a control (untreated) or solvent (DMSO) in the 

according amount. 

Results show that the percentage of viable cells (Figure 3.1), was not affected by 

treatment with the inhibitors tested at concentrations of 25M (Bay) or 50M 

(U0126), demonstrating that these concentrations were not toxic for the cells. Cell 

viability was maintained for up to 48h post treatment.
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Figure 3.1: Viability test on A549 cells. A549 cells were treated with the respective inhibitor 

concentrations (A) Bay at 25µM and (B) U0126 at 50µM, incubated for 6, 8, 10, 24 and 48h at 

37°C/5%CO2 and tested for viability by MTT assay. All groups were assayed with a sample number of 

at least 16.

3.2. Virus infection induces the NF-B signal cascade in A549 cells and Bay 11-

7082 can inhibit this activation as well as decrease virus titres

Infection of cells with IAV has been reported to lead to activation of NF-B pathway 

[222, 223]. Also IAV induction of NF-B has been correlated to increase in 

expression of pro-inflammatory factors [232, 233]. Contradicting this alluded anti-viral 

effect of NF-B activation in IAV infection, other studies have shown that the 

activation of this pathway is extremely important for efficient viral propagation [138, 

139, 234] representing thus a pro-viral function. Since the aim of this study was to 

modulate both virus replication as well as virus-induced cytokine production 

simultaneously, this pathway seemed a perfect target.
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3.2.1. Virus-induced NF-B activation can be inhibited by Bay 11-7082

In order to investigate whether A/FPV/Bratislava/79, H7N7, (FPV) and A/PR/8/34, 

H1N1, (PR8) could also induce the NF-B signalling cascade in A549 cells, cells 

were infected with either FPV or PR8 at a moi=1, and lysates were obtained. Activity 

was monitored at 6 and 8h post infection (p.i.) via an ELISA oligonucleotide based 

method. 
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Figure 3.2.1: Virus-induced NF-�B activity can be reduced by Bay. A549 cells were infected with 

FPV (A) or PR8 (B) (moi=1), and incubated for different time points at 37°C/5%CO2 with DMSO or 

with Bay 11-7082 (25µM). Cell lysates were then used to analyse NF-B activity by an ELISA based 

oligonucleotide method. The results are representative of three independent experiments. p values (* 

< 0.5; ** <0.01; *** < 0.001) are given in comparison to infected cells without inhibitor treatment.

Both viruses led to NF-B activation, and activity was shown to be decreased upon 

incubation with the specific IKK inhibitor, Bay 11-7082 (25M), for both FPV by 70% 

(Figure 3.2.1(A)) and PR8 by 80% (Figure 3.2.1(B)).
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3.2.2. Virus titres can be inhibited by Bay 11-7082

As I also wanted to affect virus propagation in this setting by blocking this pathway, 

analysis was performed on the supernatants from infected A549 cells, at different 

time points (4, 6, 8 and 10h p.i.) treated or untreated with Bay inhibitor, for virus 

titres. 
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Figure 3.2.2: Virus titres can be reduced by Bay. A549 cells were infected with FPV (A) or PR8 

(B)(moi=1), and incubated for different time points at 37°C/5%CO2 with DMSO or with Bay 11-7082 

(25µM). Virus titres were analysed from supernatants of the according sample by FFU assay. The 

results are representative of three independent experiments. p values (* < 0.5; ** <0.01; *** < 0.001) 

are given in comparison to cells infected without inhibitor treatment.

As depicted in Figure 3.2.2, a significant decrease was observed in virus titres upon 

treatment, using the specific IKK inhibitor (Bay at 25M). This was true for both the 

avian (FPV) by 70-50% and human viruses (PR8) by 65-80% analysed in these 

experiments. 
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3.3. Virus infection induces the Raf/MEK/ERK signal cascade in A549 cells and 

U0126 can inhibit this activation as well as decrease virus titres

Influenza virus infection of cultured cells has been shown to lead to the activation of 

the classical Raf/MEK/ERK (MAPK) signalling cascade. As also previously 

demonstrated activation of this pathway has mainly been linked to efficient influenza 

virus propagation [132, 182, 186].

3.3.1. Virus-induced Raf/MEK/ERK can be reduced by U0126
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Figure 3.3.1.A: FPV-induced ERK activity can be reduce by U0126. A549 cells were infected with 

FPV (moi=1) and incubated for different time points at 37°C/5%CO2 with DMSO or with U0126 

(50µM). At the respective time points (4, 6, 8, and 10h) cell lysates were prepared and later analysed 

by Western blot analysis, using a specific anti-P-ERK monoclonal mouse antibody for the detection of 

activated ERK. Respective bands of three independent experiments were quantified and relative ERK 

activation was calculated and normalized to the loading control (ERK2).  p values (* < 0.5; ** <0.01; *** 

< 0.001) are given in comparison to infected cells without inhibitor treatment.

In order to determine whether FPV and PR8 also have the capacity to induce activity 

of the Raf/MEK/ERK signalling cascade in A549, cells were infected with either virus 
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at a moi=1, and activity was monitored at 4, 6, 8 and 10h p.i. via western blot 

analysis. 

As demonstrated, both viruses were able to lead to ERK activation, with a gradual 

increase over time. This activity was shown to be dramatically decreased upon 

incubation with the specific MEK inhibitor, U0126, for both FPV by 60-80% and PR8 

by 85-95% viruses (Figure 3.3.1.A and 3.3.1.B).
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Figure 3.3.1.B: PR8-induced ERK activity can be reduce by U0126. A549 cells were infected with 

PR8 (moi=1). At the respective time points (4, 6, 8, and 10h) cell lysates were prepared and later 

analysed by Western blot analysis, using a specific anti-P-ERK monoclonal mouse antibody for the 

detection of activated ERK. Respective bands of three independent experiments were quantified and 

relative ERK activation was calculated and normalized to the loading control (ERK2). ERK activation 

from mock-infected cells was accordingly set to 1. p values (* < 0.5; ** <0.01; *** < 0.001) are given in 

comparison to infected cells without inhibitor treatment.

3.3.2. Virus titres can be inhibited by U0126

Now, to identify if the inhibition induced by U0126 on ERK activity, could lead to 

reduced virus replication in A549 cells, supernatants were analysed for virus titres 
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(by FFU assay) from FPV or PR8 (moi=1) infected A549 cells, at different time points 

(4, 6, 8 and 10h p.i.). In agreement with previous results [132], I was able to 

demonstrate that inhibition of ERK activity, using the specific MEK inhibitor U0126 (at 

50M), effectively reduced FPV by 75-60% and PR8 by 65% virus titres in human 

alveolar epithelial (A549) cells (Figure 3.3.2).
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Figure 3.3.2: Virus titres are decreased by U0126 treatment. A549 cells were infected with avian 

FPV (A) or human PR8 (B) (moi = 1), and treated with solvent (DMSO) or U0126 (50M) for different 

time points (4, 6, 8 and 10h). The supernatants were collected at the different time points and later 

analysed for virus titres by FFU assay. All groups were assayed in triplicate. p values (* < 0.5; ** 

<0.01; *** < 0.001) are given in comparison to infected cells without inhibitor treatment.
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3.4. Bay 11-7082 and U0126 can decrease influenza A virus-induced cytokine 

production in A549 cells

Since I could show that in the A549 cell system, both pathways could be activated by 

either virus (FPV and PR8), and that I could efficiently reduce both activation of the 

respective pathways as well as virus titres with specific inhibitors (Bay – IKK inhibitor 

and U0126 – MEK inhibitor), I now wanted to investigate the effect of these inhibitors 

in virus induced cytokine secretion in A549 cells. 
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Figure 3.4.1: Virus-induced cytokine release is decrease upon inhibitor treatment. A549 cells 

were infected with either FPV or PR8 (moi=1), for 1h RT, then incubated for 10h at 37°C. 

Supernatants were analysed for cytokines/chemokines IL-8 (A) and MCP-1 (B), expression by 

Multiplex assay. All groups were assayed in triplicate. p values (* < 0.5; ** <0.01; *** < 0.001) are 

given in comparison to mock vs. infected or infected (–) inh. vs infected (+) inh. treatment.
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To this end A549 cells were infected, as previously described, with FPV, PR8 and 

delNS1 (see below) (moi=1), and supernatants collected at 10h p.i.. The samples 

were always kept at -70oC until further analysis. Cytokine analysis was performed 

using specific immunoarray kits (see methods). 

In these cytokine/chemokine studies the delNS1 virus (a PR8 virus with a deleted 

NS1 segment) was used as a positive control, since the NS1 protein of influenza 

virus, as previously explained, has been linked to down-regulation of host immune 

responses, mainly to the attenuation of IFN production [66, 67]. 
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Figure 3.4.1: Virus-induced cytokine release is decrease upon inhibitor treatment. A549 cells 

were infected with either FPV or PR8 (moi=1), for 1h RT, then incubated for 10h at 37°C. 

Supernatants were analysed for cytokine/chemokine IL-6 (C) and RANTES (D) expression by 

Multiplex assay. All groups were assayed in triplicate. p values (* < 0.5; ** <0.01; *** < 0.001) are 

given in comparison to mock vs. infected or infected (–) inh vs. infected (+) inh treatment.
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Expression profiles of cytokines/chemokines varied depending on the virus used 

(Figure 3.4.1). FPV had no effect on IL-8 (A), MCP-1(B) and IL-6 (C), but lead to an 

increase in RANTES (D) production, whereas PR8 was able to induce IL-8 and IL-6, 

and reduce MCP-1 and RANTES expression. What was consistent for all results 

though was that both inhibitors were able to reduce cytokine/chemokine production. 

In the case of IL-8, the U0126 was a better inhibitor than Bay 11-7082.

The delNS1 virus was also found to increase IL-6 production, but had no effect on 

the other cytokines tested (IL-8, MCP-1 and RANTES) at 10h p.i. 

IFN secretion was measured by use of a specific human ELISA kit. I was unable to 

detect IFN, both in FPV as well as PR8 virus infection and also at different time 

points tested (10 and 24h p.i.) (Figure 3.4.2). But, as expected, the delNS1 virus was 

able to efficiently induce secretion of this cytokine. 
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Figure 3.4.2: IFN induction in A549 cells. A549 cells were infected with either FPV, PR8 or delNS1 

(a NS1 deletion mutant of PR8 – used as a positive control) (moi=1), then incubated for 10 and 24h at 

37°C/5%CO2. Supernatants were collected and IFN analysed by commercial available human IFN

ELISA kit. All groups were assayed in triplicate.

3.5. FPV and PR8-induced nuclear RNP export is efficiently blocked by Bay 11-

7082 and U0126 in A549 cells.

As both NF-B and ERK pathway activation have been associated with efficient viral 

nuclear RNP export [132, 181, 234], I decided to confirm these findings in the A549 

system. A549 cells were infected with either FPV or PR8 viruses and treated with 

either inhibitor (Bay or U0126) for different time points (6, 8 and 10h p.i.). At each 

selected time point cells were fixed until further analysis. Evaluation of the 
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intracellular RNP localization was analysed at the different time points by means of 

immunofluorescence with a confocal microscope. 
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Figure 3.5.1: vRNP nuclear export in A549 cells. A549 cells were infected with FPV (moi=1), and 

incubated for 10h p.i. at 37°C/5%CO2 with normal media or treated with DMSO, Bay 11-7082 (25µM) 

or U0126 (50M). Cells were fixed and analysed by immunofluorescence with a confocal microscope.

Representative pictures of three independent experiments are shown.
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Figure 3.5.2: vRNP nuclear export in A549 cells. A549 cells were infected with PR8 (moi=1), and 

incubated for 10h p.i. at 37°C/5%CO2 with normal media or treated with DMSO, Bay 11-7082 (25µM) 

or U0126 (50M). Cells were fixed and analysed by immunofluorescence with a confocal microscope. 

Representative pictures of three independent experiments are shown.

Results demonstrate that in A549 cells both avian (FPV) as well as human (PR8) 

influenza virus show nuclear RNP export, however, upon inhibitor treatment (with 

Bay or U0126), the RNP export was significantly affected as seen at 10h p.i. (Figure 

3.5.1 and 3.5.2). The results confirm that the activation of both NF-B as well as 

Raf/MEK/ERK pathways is necessary for efficient viral nuclear RNP export.
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Primary mice alveolar epithelial cells (AECs)

The findings so far had demonstrated that both inhibitors (Bay and U0126) tested  for 

the two pathways, NF-B and ERK,  were efficient at decreasing virus titres as well 

as simultaneously reducing virus-induced cytokine release in A549 cells, thus, I 

decided to test this theory in a system closer to the in vivo situation. For this I chose

to analyse mice primary alveolar epithelial cells (AECs) upon influenza virus infection 

and treatment with the previously selected inhibitors. 

Isolation of type II AECs are characterized by pro-SPC accumulation in the cells 

visualized by antibody staining. By day 3 or 4 (day of infection), the main type of 

AECs present are of type I, characterized by loss of pro-SPC staining and an 

abundance/increase of presence of T1 staining (specific marker antibody for type I 

alveolar epithelial cells).

At this point it is important to mention that all the work concerning primary cell 

isolation was kindly performed by Lidija Cakarova (PhD student) from Prof. Juergen 

Lohmeyer’s laboratory in Medical Clinic II, in Giessen. 

Mice were bred under specifc pathogen-free (SPF) conditions. All mice experiments 

were approved by the local government committee of Giessen.

3.6. Viability of mice primary alveolar epithelial cells upon treatment with 

specific inhibitors

To determine the optimal inhibitor concentration for experiments in AECs, a 

concentration curve was drawn for the inhibitors Bay 11-7-82 and U0126. Due to the 

obvious difficulty and ethical reasons in obtaining primary cells, an alternative assay 

for cell viability was chosen instead of the traditional MTT assay. WST-1 assay 

permits cell viability analysis during the course of the experiment (see methods), and 

given the amount of AEC cells available, was the most reasonable choice for these 

tests. 

Previous initial results had proven that the inhibitor concentrations (Bay – 25M and 

U0126 – 50M) used in A549 cells were toxic for these AECs. Therefore, AECs were 

treated for different time points with the respective inhibitors at different decreasing 

concentrations of Bay (15; 10; 7.5; and 5M) or U0126 (40; 30; 20 and 10M) and a 

control (PBS) or solvent (DMSO). Cell viability was tested for up to 30h post 

treatment. 
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Results (Figure 3.6) demonstrate that none of the concentrations tested here, from 

both inhibitors (Bay or U0126), had any compromising effect on AEC viability, 

demonstrating that these concentrations were not toxic for the cells. I therefore used 

in the following experiments the highest non-toxic concentration for both inhibitors, 

namely Bay – 15M and U0126 – 40M.
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Figure 3.6: Viability test on mice primary alveolar epithelial cells. Primary mice AECs were 

treated with Bay (A) or U0126 (B) inhibitor at indicated concentrations, further incubated for 10, 24 

and 30h at 37°C/7.5%CO2 and tested at the indicated time points for viability by WST-1 method. All 

groups were assayed in triplicate.

3.7. Viability of mice primary alveolar epithelial cells upon treatment with 

specific inhibitors during the course of infection

As mentioned above, one can analyse cell viability during the experimental 

procedure, when using the WST-1 method. I therefore decided to evaluate the 

viability of AECs during the course of a viral infection. A zero hour (before infection) 
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WST-1 test performed, and then continued, as explained earlier, by infecting for 1 

hour at RT. Following this one hour incubation, inoculum was aspirated and media 

with solvent or inhibitors was added to wells, for different time points (10, 24 and 32h 

p.i.). At each time point the media was removed and kept separately at RT while 

performing the WST-1 assay. After the one hour incubation of the cells with the WST-

1 media, the original media was returned to the wells and the experiment continued 

until the 32 h time point.
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Figure 3.7: Viability test on mice primary alveolar epithelial cells during infection. Primary mice 

AECs were infected with either FPV (moi=0.1) or PR8 (moi=0.01) and incubated for 10, 24 and 32h at 

37°C/7.5%CO2. At each time point cells were analysed for viability according to WST-1 protocol (refer 

to Methods). Results show for FPV (A) and PR8 (B) with Bay at 15M. All groups were assayed in 

triplicate.

Figure 3.7 confirms previous findings, showing no toxic effect of the inhibitors during 

the course of the infection, as seen by the mock treated AECs. It was interesting to 
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observe that upon infection and treatment, the Bay inhibitor could actually increase 

cell survival of infected and Bay treated cells compared to infected and solvent 

(DMSO) treated cells. This was observed with both FPV (A) and PR8 (B) viruses at 

24 and 32h p.i., although more apparent and significant at 24h p.i. This effect was not 

observed in the cells treated with the U0126 inhibitor.
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Figure 3.7: Viability test on mice primary alveolar epithelial cells during infection. Primary mice 

AECs were infected with either FPV (moi=0.1) or PR8 (moi=0.01) and incubated for 10, 24 and 32h at 

37°C/7.5%CO2. At each time point cells were analysed for viability according to WST-1 protocol (refer 

to Methods). Results show for (C) FPV and (D) PR8 with U0126 at 40M. All groups were assayed in 

triplicate.

3.8. Both Bay 11-7082 nd U0126 can decrease virus titres in mice primary AECs

In earlier experiments I could demonstrate that both inhibitors (Bay and U0126) were 

capable of inhibiting virus replication in A549 cells. The aim now was to test this 

effect on primary cells, and specifically in mice primary alveolar epithelial cells. 
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To this end, AECs were infected with FPV (moi = 0.1) or PR8 (moi = 0.01) and 

treated with DMSO, Bay (15M) or U0126 (40M) for different time points (10, 24 

and 32h p.i.). Supernatants were collected at each time point, and analysed for virus 

titres (by FFU assay).
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Figure 3.8: Virus titres in mice primary alveolar epithelial cells upon treatment. Primary mice 

AEC‘s were infected with either FPV (moi=0.1) (A) or PR8 (moi=0.01) (B), and treated with DMSO 

(solvent), Bay (15M) or U0126 (40M) and incubated for 24 and 32h at 37°C/7.5%CO2. 

Supernatants were collected and analysed for virus titre by FFU assay. All groups were assayed in 

triplicate. p values (* < 0.5; ** <0.01; *** < 0.001) are given in comparison to cells infected (–) inh. vs. 

infected (+) inh. treatment.

Confirming earlier A549 results, both the IKK inhibitor (Bay 11-7082) and the MEK 

inhibitor (U0126), were able to efficiently and significantly decrease virus titres in 

AECs (Figure 3.8). Virus titres were reduced with Bay by 60-40% in FPV and 75-85% 

in PR8, while U0126 reduced FPV titres by 60% and PR8 by 85%. This 
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demonstrated that activity of both NF-B as well as Raf/MEK/ERK pathway is also 

important for viral propagation in mice primary alveolar epithelial cells.

3.9. Bay 11-7082 and U0126 can decrease influenza A virus-induced cytokine 

production in mice primary AECs
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Figure 3.9.1 (A and B): Cytokine induction in primary alveolar epithelial cells. Primary mice 

AECs were infected with either FPV (moi=0.1), PR8 (moi=0.01) or delNS1 (moi=0.1) and treated with 

either solvent (DMSO), Bay (15M) or U0126 (40M) for 10h at 37°C/7,5%CO2. Supernatants were 

collected and analysed for KC (mouse analogue for human IL-8) (A) or MCP-1 (B) by specific 

multiplex assay kits. All groups were assayed in triplicate. p values (* < 0.5; ** <0.01; *** < 0.001) are 

given in comparison to mock vs. infected or infected (–) inh. vs. infected (+) inh. treatment.

I was now able to demonstrate that inhibiting NF-B and Raf/MEK/ERK pathways by 

use of specific inhibitors led to reduction of virus titres in A549 as well as in mice 
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primary alveolar epithelial cells (AECs). I could also show that in A549 cells, inhibition 

of these pathways could reduce virus-induced cytokine production. I now wanted to 

prove whether this effect would still hold true for AECs. 

For this purpose AECs were infected as before with either FPV (moi = 0.1) or PR8 

(moi = 0.01) and treated with solvent (DMSO) or the specific inhibitors (Bay or 

U0126) and analysed cytokine/chemokine secretion from supernatants at 10h p.i..
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Figure 3.9.1 (C and D): Cytokine induction in primary alveolar epithelial cells. Primary mice 

AECs were infected with either FPV (m.o.i.=0.1), PR8 (m.o.i.=0.01) or delNS1 (m.o.i.=0.1) and treated 

with either solvent (DMSO), Bay (15M) or U0126 (40M) for 10h at 37°C/7,5%CO2. Supernatants 

were collected and analysed for IL-6 (C) or RANTES (D) by specific multiplex assay kits. All groups 

were assayed in triplicate. p values (* < 0.5; ** <0.01; *** < 0.001) are given as compared to mock vs. 

infected or infected (–) inh. vs. infected (+) inh. treatment.

As depicted in Figures 3.9.1, FPV was unable to induce KC (the human IL-8 

analogue in mice) (A), MCP-1 (B) or IL-6 (C) secretion whereas it slightly increased 
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RANTES (D) production at 10h p.i.  However PR8 led to a reduction in KC whereas 

MCP-1 was only slightly increased. PR8 was, however, able to significantly induce IL-

6, but had no effect on RANTES induction as compared to mock at 10hp.i.. Both 

inhibitors were, in any case, able to efficiently reduce cytokine production for both 

viruses. The delNS1 was also able to induce increase in MCP-1 and IL-6 in mice 

primary alveolar epithelial cells (AEC), but had no effect on KC and RANTES.
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Figure 3.9.2: IFN induction in primary alveolar epithelial cells. Primary mice AECs were infected 

with either FPV (moi=0.1), PR8 (moi=0.01) or delNS1 (moi=0,1) and treated with either solvent 

(DMSO), Bay (15M) or U0126 (40M) for 10h at 37°C/7,5%CO2. Supernatants were collected and 

analysed for IFN by ELISA. All groups were assayed in triplicate. p values (* < 0.5; ** <0.01; *** < 

0.001) are given as compared to mock vs. infected or infected (–) inh. vs. infected (+) inh. treatment.

IFN evaluation was accomplished by analyzing supernatants using a specific mouse 

ELISA kit. As shown in Figure 3.9.2 FPV was able to induce significant IFN

production whereas PR8 lead to a slight increase in this cytokine. As seen before in 

A549 cells delNS1 virus was capable of inducing very high IFN secretion 

(2867pg/ml), again demonstrating the importance of the NS1 protein in viral defence.

3.10. FPV and PR8 induced nuclear RNP export is efficiently blocked by Bay 11-

7082 and U0126 in AECs.

As both NF-B and ERK pathway inhibitors, Bay and U0126 respectively, had been 

previously shown to lead to nuclear RNP retention in A549 cells, and to exclude that 

this effect was exceptional to established permanent cell lines, as also previously 
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observed by others [132, 181, 234], I decided to confirm these findings in mice 

primary alveolar epithelial cells. AECs were therefore infected with either FPV or PR8 

viruses (moi = 0.02) and treated with either DMSO (solvent), Bay (15M) or U0126 

(40M) for 10h p.i.. At the selected time point cells were fixed and further analysed 

for the intracellular RNP localization by means of immunofluorescence with a 

confocal microscope. 
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Figure 3.10.1: vRNP nuclear export in mice primary alveolar epithelial cells. AECs were infected 

with FPV (moi=0.02), and incubated for 10h p.i. at 37°C/7.5%CO2 with normal media or treated with 

DMSO, Bay 11-7082 (15µM) or U0126 (40M). Cells were fixed and later analysed by 

immunofluorescence with a confocal microscope. Representative pictures of three independent 

experiments are shown.
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Figure 3.10.2: vRNP nuclear export in mice primary alveolar epithelial cells. AECs were infected 

with PR8 (moi=0.02), and incubated for 10h p.i. at 37°C/7.5%CO2 with normal media or treated with 

DMSO, Bay 11-7082 (15µM) or U0126 (40M). Cells were fixed and later analysed by 

immunofluorescence with a confocal microscope. Representative pictures of three independent 

experiments are shown.

Results demonstrate that in AECs, influenza virus induced-nuclear RNP export at 

10h p.i. was impaired upon inhibitor treatment (with Bay or U0126) (Figure 3.10.1 

and 3.10.2). Taken together the results demonstrate that the effect of blocking RNP 

nuclear export by inhibiting NF-B or Raf/MEK/ERK pathways, till now only shown in 

permanent cell lines, could be reproduced in mice primary alveolar epithelial cells.
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Cocktail treatment

Since both inhibitor systems had proven to inhibit virus-induced cytokine induction as 

well as virus propagation, simultaneously, both in human alveolar epithelial cell lines

(A549) as well as in mice primary alveolar epithelial cells (AECs), I wished to 

determine whether the combination of both inhibitors used in lower concentration in a 

“cocktail” could further enhance this effect. The aim was to reduce single inhibitor 

treatment by a combined therapy, therefore lower inhibitor concentration were tested 

in combination. 

3.11. Cell viability in A549 cells with combination treatment (Bay and U0126). 

To test this hypothesis, evaluation of combination treatment concentrations that 

would not compromise cell viability had to be analysed. So as not to sacrifice mice 

unnecessarily, A549 cells were first analysed. Again an MTT assay was performed 

on A549 cells, as before, treated with different combinations of lower inhibitor 

concentrations for different time points.
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Figure 3.11: Viability of A549 cells with combination treatment (Bay + U0126). A549 cells were 

treated with the respective inhibitor cocktail concentration (Bay/U0126, B/U-1:15M/30M; B/U-

2:10M/30M; B/U-3:10M/25M; B/U-4:7.5M/25M) , incubated for 10, 24 and 48h at 37°C/5%CO2 

and tested for cell viability by MTT assay. Mean and standard deviation is representative of sample 

number of 16.

Results demonstrate that all the concentrations tested up to 24h p.i. had no toxic 

effect on the cells, and only had adverse effects at 48hp.i. on cell viability (Figure 

3.11). Therefore I decided to perform further tests with two of the highest 

concentration.
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3.12. Virus titres treated with combination treatment (Bay and U0126).

To evaluate whether a combination of the inhibitors could further decrease virus 

propagation, I infected A549 cells with either FPV or PR8 (moi =1) and treated them 

with DMSO or the two previously selected inhibitor “cocktails” (Bay-15M/U0126-

30M and Bay-10M/U0126-30M) (see section 3.11.).
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Figure 3.12: Virus titres with combined inhibitors on A549 cells. A549 cells were infected with 

FPV (A) or PR8 (B) (moi=1) and treated with the respective inhibitor cocktail concentration (Bay-

25M; U0126-50M; Bay/U0126, B/U-1:15M/30M; B/U-2:10M/30M) and incubated for 8 and 10h 

at 37°C/5%CO2 and virus titres were analysed from supernatants by FFU assay. All groups were 

assayed in triplicate.

As seen in Figure: 3.12, there was no significant enhanced decrease using the lower 

combination treatment (Bay-15M/U0126-30M and Bay-10M/U0126-30M) in the 
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observed virus titre when comparing to results with single inhibitor treatment (Bay –

25M or U0126 – 50M).

3.13. Cell viability in AECs with combination treatment (Bay and U0126). 

Not wanting to abandon this hypothesis entirely in regard to combination treatment, 

although the observed results in A549 cells were not promising, I decided to evaluate 

this effect in primary alveolar epithelial cells, since previous results from cytokine 

analysis had demonstrated that the effects seen in A549 cells not always 

corresponded to AEC results. 

For this reason viability tests with several combination treatments were performed on 

AECs and cell toxicity analysed with the WST-1 method.
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Figure 3.13: Mice primary alveolar epithelial cells viability test (WST assay) with combination 

treatment. Primary mice AECs were treated with the respective inhibitor cocktail concentrations 

(Bay/U0126, B/U-1:15M/30M; B/U-2:10M/30M; B/U-3:10M/25M; B/U-4:7.5M/25M) and 

incubated for 10, 24 and 32h at 37°C/7.5%CO2. Supernatants were then collected and cells were then 

washed once and 300µl of WST-1 media was added for 1h and incubated at 37°C/7.5%CO2, and 

further analysed according to WST-1 protocol. All groups were assayed in triplicate.

As shown in Figure: 3.13 (above), all the inhibitor “cocktails” tested (even the lowest 

concentrations) had very toxic effects on cells as early as 10h after treatment. For 

this reason, and the fact that in A549 cells the results with the combined treatment 

were also not alluring, I decided to abandon this investigation.
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in vivo mice experiments

All the results so far suggested that the hypothesis to decrease both virus titres and

virus-induced cytokine secretion was valid in my experimental cell culture setup. This 

idea is thought to be meaningful in “real life” situations specially when considering the 

reports on HPAIV, such as the H5N1. These reports associate pathology and 

symptoms with increase inflammatory responses as well as high viral loads [110, 

111, 115, 126]. Since the opportunity to analyse these effects in an in vivo mouse 

model arose I decided to take this approach to study a closer to “real-life” situation. 

Previous studies using mice in vivo experiments have shown that the A/PR/8/34 virus 

induces cytokine/chemokine expression and is lethal in mice [242, 286, 287]. For this 

reason and the one stated above, the next step was to study the effect of the specific 

IKK and MEK inhibitors (Bay and U0126, respectively) in an in vivo mouse model, 

using this A/PR/8/34 virus strain as a “proof of principle”.

Again, in this situation, it is important to mention, that most of the mice handling was 

performed by either Katrin Hoegner or Susanne Herold, from the laboratory of Prof. 

Joergen Lohmeyer, in Medical Clinic II, Giessen.

Mice were bred under specific pathogen-free (SPF) conditions. All mice experiments 

were approved by the local government committee of Giessen.

3.14. C57BL/6 mice 

To determine whether the results observed for A549 as well as primary alveolar 

epithelial cells (AECs) could be reproduced in an in vivo model, in vivo experiments 

were conducted in C57BL/6 mice. 

Previous reports from Susanne Herold (unpublished data) had given some idea on 

viral as well as cytokine kinetics after intratracheal inoculation of C57BL/6 mice with 

the PR8 virus. For this reason the same protocol was maintained, so as not to waste 

unnecessary mice to build up a new kinetics curve. 

Also, previous studies performed by Oliver Planz’s group (Tuebingen, Germany) on 

an appropriate solvent for U0126, gave us a head start as to a means of minimizing 

DMSO solvent application in in vivo experiments. Cremophor EL (CremEL) is a non-

ionic solubilizer and emulsifier and can convert hydrophobic drugs into aqueous 

solutions allowing the drug to be more readily absorbed. By using this oil, we could 

minimize DMSO solvent administration.
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Report on U0126 intraperitoneal application in mice had been shown earlier by Duan 

et al. [288] in a mouse asthma model. I decided to use the same concentration of 

inhibitor in this model therefore a dose of 30mg/kg mouse was selected and applied, 

dissolved in DMSO/CremEL (see methods, section 2.2.13) via intraperitoneal 

injection to mice every 24h, starting 24h before infection.

For the IKK inhibitor, Bay 11-7082, I decided to administer a concentration based on 

the same molarity ratio used in our previous A549 cell culture experiments. Therefore 

a concentration of 8.2g/kg mouse was used. The amount of DMSO solvent 

necessary for the Bay inhibitor application (7.89l/mouse) was in the range of the 

DMSO present in the U0126 DMSO/CremEL solvent (6l/mouse), and therefore, was 

considered minimal. Bay inhibitor was also administered to mice every 24h starting 

24h before infection.

3.14.1 Bay 11-7082 and U0126 can decrease virus titres in in C57BL/6 mice 

Earlier tests in both A549 as well as AECs demonstrate that both inhibitors (Bay and 

U0126) were capable of inhibiting virus replication in vitro. The aim now was to test 

this effect in an in vivo mouse model. 

Titres from infected solvent treated (DMSO or CremEL/DMSO) mice versus infected 

and inhibitor treated (Bay or U0126) mice, both at day 2 and day 5 p.i., from 

bronchoalveolar lavage fluids (BAL) showed a significant decrease in virus titres 

observed at both time points (as analysed by FFU assay) when administering the 

individual inhibitors (Figure: 3.14). PR8 was effectively reduced by 60% at both time 

points (day 2 and 5) with Bay and by 95% (day 2) and 50% (day 5) with the U0126. 

This demonstrated that activity of both NF-B as well as Raf/MEK/ERK pathway is 

also important for viral propagation in mice. During the course of the treatment there 

no differences were observed in the behaviour and appearance of mice from the 

individual groups.

One can speculate that it could be possible that, by using another route of 

administration as well as further optimized concentrations of the inhibitors, better 

results would be achieved in further decreasing virus titres.
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Figure 3.14: Virus titres in mice treated with inhibitors. Mice were infected intratracheally with 500 

PFU of PR8 in 70µl in PBS (filtered) or mock infected with 70l PBS. Solvent (DMSO or 

DMSO/CremEL), Bay or U0126 were administered intraperitoneally, daily starting at -24h (before 

infection). Mice were sacrificed on day 2 (A) or day 5 (B) p.i., and BAL performed. Virus titres were 

assayed by FFU assay. p values (* < 0.5; ** <0.01; *** < 0.001) of treated mice are given in 

comparison to mock (solvent) treated mice. All groups were assayed in quadruplicate (day 2) or 

triplicate (day 5).

3.14.2 Bay 11-7082 and U0126 can decrease virus induced cytokines in 

C57BL/6 mice

The next step was then to compare the different cytokine/chemokine levels in BAL 

from mock infected versus PR8 infected mice, treated with solvents or with inhibitors.  

TNF- is mainly produced by macrophages and monocytes and it has been 

previously cited to be an important cytokine induced in IAV infections [126, 248, 289], 

for this reason I wanted to include this cytokine analysis in the mice experiments. 
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Both TNF- and IFN were assayed by commercial available specific mouse ELISA 

kits and the KC, MCP-1, IL-6 and RANTES with cytokine immunoarray kits.
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Figure 3.15: TNF- results in mice treated with inhibitors. Mice were infected intratracheally with 

500 PFU of PR8 in 70µl in PBS (filtered) or mock infected with 70l PBS. Solvent (DMSO or 

DMSO/CremEL), Bay or U0126 were administered intraperitoneally, daily starting at -24h (before 

infection). Mice sacrificed on day 2 (A) or day 5 (B) p.i. and BAL performed. TNF- was measured 

using a commercial available ELISA kit. p values (* < 0.5; ** <0.01; *** < 0.001) are given in 

comparison to mock vs. infected or infected (–) inh. vs. infected (+) inh. treatment. All groups have a 

number of 3 mice with exception to mock groups of day 5, which were 2 mice per group.

As depicted above (Figure 3.15) at day 2 there was an observed increase in TNF-in 

infected, solvent treated mice as compared to mock infected, although more 

apparent in the solvent (DMSO/CremEL) than in the DMSO group. Both inhibitors 

however were able to decrease TNF- production, but the U0126 seemed to be more 
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effective than the Bay, and reduced TNF- to almost baseline levels. There was no 

significant increase or decrease observed when comparing the groups at day 5.

Results from IFN analysis (Figure 3.16) both at day 2 and day 5, show a significant 

increase in infected, solvent treated mice as compared to mock infected.

0

20

40

60

80

100

120 **

*
*

DMSO DMSO Bay solv solv U0126

mock PR8 mock PR8

p
g

/m
l

A

0

20

40

60

80

100

120 **

*
*

DMSO DMSO Bay solv solv U0126

mock PR8 mock PR8

DMSO DMSO Bay solv solv U0126

mock PR8 mock PR8

p
g

/m
l

A

0
25

50
75

100
125

150
175

*
*

DMSO DMSO Bay solv solv U0126

mock PR8 mock PR8

p
g

/m
l

B

0
25

50
75

100
125

150
175

*
*

DMSO DMSO Bay solv solv U0126

mock PR8 mock PR8

DMSO DMSO Bay solv solv U0126

mock PR8 mock PR8

p
g

/m
l

B

Figure 3.16: IFN results in mice treated with inhibitors. Mice were infected intratracheally with 

500 PFU of PR8 in 70µl in PBS (filtered) or mock infected with 70l PBS. Solvent (DMSO or 

DMSO/CremEL), Bay or U0126 were administered intraperitoneally, daily starting at -24h (before 

infection). Mice were sacrificed on day 2 (A) or day 5 (B) p.i. and BAL performed. IFN was measured 

using a commercial available ELISA kit. p values (* < 0.5; ** <0.01; *** < 0.001) are given in 

comparison to mock vs. infected or infected (–) inh. vs. infected (+) inh. treatment. All groups have a 

number of 3 mice with exception to mock groups of day 5, which were 2 mice per group.

Only the Bay inhibitor treated mice, however, had significantly lower induction 

amounts of this cytokine. This “protective” effect of Bay, although not significant was 
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still able to reduce IFN mean values almost to background levels at day 5. The 

standard deviations were sometimes pretty high due to the relative amount of mice 

numbers per group, but the tendency of Bay to reduce IAV-induced IFN was noted. 

There was no significant difference between the solvent (DMSO/CremEL) group and 

the U0126 at both day 2 and 5, nevertheless a tendency was evident.
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Figure 3.17: KC (A) and MCP-1 (B) results in mice treated with inhibitors. Mice were infected 

intratracheally with 500 PFU of PR8 in 70µl in PBS (filtered) or mock infected with 70l PBS. Solvent 

(DMSO or DMSO/CremEL), Bay or U0126 were administered intraperitoneally, daily starting at -24h 

(before infection). Mice were sacrificed on day 5 days p.i., and BAL performed. Cytokines were 

measured using the multiplex bead immunoassay. p values (* < 0.5; ** <0.01; *** < 0.001) are given in 

comparison to mock vs. infected or infected (–) inh. vs. infected (+) inh. treatment. All groups have a 

number of 3 mice with exception to mock groups of day 5, which were 2 mice per group.

KC analysis (Figure 3.17 (A)) from day 5, showed a significant increase in infected, 

solvent (DMSO/CremEL) treated mice as compared to mock infected, whereas the 
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DMSO group only showed a slight tendency for increase. Although there was no 

apparent significant decrease upon inhibitor treatment in both groups (Bay and 

U0126) the tendency for reduction was also noted.

For MCP-1 (Figure 3.17 (B)) the infected groups showed a significant increase in 

production of this cytokine as compared to mock groups. Bay inhibitor treatment also 

seemed to effectively reduce this induction, as compared to the infected DMSO 

treated group. For the U0126 a tendency was also noted here.
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Figure 3.18: IL-6 (C) and RANTES (D) results in mice treated with inhibitors. Mice were infected 

intratracheally with 500 PFU of PR8 in 70µl in PBS (filtered) or mock infected with 70l PBS. Solvent 

(DMSO or CremEL/DMSO), Bay or U0126 were administered intraperitoneally, daily starting at -24h 

(before infection). Mice sacrificed on day 5 days p.i., and BAL performed. Cytokines were measured 

using the multiplex bead immunoassay. p values (* < 0.5; ** <0.01; *** < 0.001) are given in 

comparison to mock vs. infected or infected (–) inh. vs. infected (+) inh. treatment. All groups have a 

number of 3 mice with exception to mock groups of day 5, which were 2 mice per group.
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Both IL-6 (C) and RANTES (D) (Figure 3.18) were up-regulated on day 5 in infected 

mice as compared to mock controls. However, whereas in the case of IL-6 (C), only 

the Bay group showed a significant decrease in production of this cytokine compared 

to the DMSO infected group, in the case of RANTES (D) both inhibitors (Bay and 

U0126) demonstrated a significant effect on reducing this cytokine induction. 

Generally both inhibitors showed a tendency for reducing IAV-induced cytokine 

production in C57BL/6 mice. In the case of Bay treatment it was effective for 

attenuation of most cytokines, although less effective on TNF-. U0126 on the other 

hand was more significant at decreasing TNF-, but always showed a tendency at 

reducing all other cytokines tested (see table of results 3.1).  

Both inhibitors were also similarly effective at reducing virus titres in vitro and in vivo, 

with U0126 being slightly better than Bay.

Taken together both pathways have been demonstrated at being important for both 

virus replication as well as host cell virus-induced defence mechanisms (in the form 

of induced cytokine expression), and treatment with specific NF-B as well as 

Raf/MEK/ERK inhibitors (Bay and U0126, respectively) were shown to be effective at 

simultaneously reducing virus titres and virus-induced cytokine production (see table 

of results 3.1.).

Systems Inhibitors IL-8/KC MCP-1 IL-6 RANTES IFN TNF-
Bay + ++ ++ +++A549 

cells U0126 +++ ++ ++ ++
Bay + ++ +++ + +primary 

AECs U0126 + + +++ - +
Bay ~ ++ + + + ~Mice 

C57BL/6 U0126 ~ ~ ~ + ~ +

Table 3.1.: Summary of reduction of cytokine/chemokine by the specific inhibitors

+++ extremely effective; ++ very effective; + effective; ~ tendency; - no effect 
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4. Discussion

Influenza A viruses are highly contagious RNA viruses and in humans the main 

targets are the epithelial cells of the respiratory tract [25]. In general influenza viruses 

cause acute infections which generally lead to a self-limiting disease [109], and do 

not spread further than the respiratory tract [110, 111]. Symptoms such as chills, 

fever, aches, malaise, sore throat, nasal congestion and pulmonary complications 

are common [113, 114]. However, other possible risks of complications and death 

are greatly increased in young children and older people [109, 111, 116, 117].

Reports of highly pathogenic influenza virus (HPIV) infections however, have shown 

more severe symptoms including progressive primary or secondary viral pneumonia 

[109, 118], extensive pulmonary oedema, acute respiratory distress syndrome 

(ARDS), alveolar haemorrhage, lymphopenia and multiple organ failure [109, 119]. 

Severe lung inflammation due to cytokines (i.e. TNF-, IFN/, IL-1, IL-8 and IL-6), 

has been associated with the pathogenesis of the disease and are mainly 

responsible for the systemic symptoms observed, like fever and myalgias [114, 115, 

119, 121, 125-127, 286].

Despite large immunisation programs, influenza A virus is still a considerable cause 

of morbidity and mortality worldwide and responsible for major epidemic outbreaks of 

influenza every year [290]. They have been responsible for the most devastating 

pandemic outbreaks of the last century, in 1918, 1957 and 1968, costing millions of 

human lives [3, 126, 291]. Avian Influenza virus (AIV) has also had a severe impact 

on the poultry industry worldwide which has resulted in serious economic loses.

Although it was previously accepted that AIV could not directly infect humans the 

emergence of HPAIV of the H5 and H7 subtype and specially outbreaks of the 

subtype (H5N1), which have crossed the species barrier into humans with high case 

fatality rates, has brought about deep concerns and the need of more readily 

available and effective anti-viral therapies [126, 290, 292-296].

Antiviral drugs amantadine and rimantadine, M2 ion channel protein inhibitors, 

reduce the duration of symptoms of clinical influenza, but the rapid appearance of 

drug-resistant variants coupled to major side effects have been reported [12, 277, 

278, 297]. Innovative sialic acid analogues, neuraminidase inhibitors, zanamivir and 

oseltamivir, have shown prophylactic and therapeutic effects, however due to the 

extremely high mutation rate of influenza viruses, inevitable virus resistance will 
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appear as has already been reported [106, 275]. Vaccination is yet another option, 

but again, due to constant changes in viral proteins this calls for annual adaptation 

and in the possible surging of a pandemic situation, the appropriate vaccines would 

not be produced in time [232, 279] to avoid a major disaster.

In view of these alarming reports, an understanding of the molecular mechanisms 

responsible for virus-induced inflammatory responses and viral replication in the lung 

could provide new approaches for therapeutic targeting during an influenza virus 

infection [12, 232]. 

As previously mentioned, influenza A virus (IAV) is capable of inducing activation of 

many different signalling pathways, in infected cells such as the MAPK family 

members [133, 134], including the classical Raf/MEK/ERK (MAPK) signalling 

cascade, the NF-B, the Jun N-terminal kinase (JNK) and the p38 [128]. Also other 

pathways have recently been found to also be activated by IAV such as PI3K and 

IRF3/7 [281]. Most of these pathways have been reported to act as antiviral 

mechanisms by promoting host immune responses (i.e. JNK, NF-B, IRF3/7, etc) 

[133, 232] whereas others are mainly/also linked in support of efficient virus 

replication (Raf/MEK/ERK and also NF-B) [128, 132, 138, 182, 186, 234].

Taking all this into account, the present work aimed to deal with these known facts 

and propose to modulate two pathways, the NF-B and the Raf/MEK/ERK, essential 

for virus replication and cytokine expression, by using specific inhibitors, with the 

intent of simultaneously reducing virus titres and virus-induced cytokines. The 

purpose was to broaden the available knowledge on therapeutic strategies to control 

and cure influenza virus-induced disease.

4.1. Bay 11-7082 can inhibit virus-induced NF-B activation in A549

Infection of cells with IAV has been reported to lead to activation of NF-B pathway 

either by over-expression of viral proteins such as the viral haemagglutinin (HA), 

nucleoprotein (NP) or M1 proteins [222, 223] or by the virus itself [232]. Also, studies 

using influenza virus-induced NF-B promoter-luciferase-reporter gene assays 

showed decrease in activity in cells co-expressing trans-dominant negative mutants 

of IKK2 or IB, upstream activators of NF-B [138]. Many reports on influenza-

induced activation of NF-B have been correlated to increase in expression of pro-

inflammatory factors, either by over-expression of chemokines such as IL-8 and 
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RANTES [135, 232] or in another study by enhanced NF-B binding to NF-B 

elements of the promoters of IFN and IL-29 genes [233], or by virus-induced IFN

promoter studies [71, 138]. Since many antiviral and pro-inflammatory cytokines are 

known to be controlled by the NF-B transcription factor [128, 189-192, 222] this 

pathway seems to play a role in the immune response, in the context of influenza 

virus infection. However, recent studies have shown that pre-activated NF-B in cells 

led to enhanced influenza virus replication, whereas in cells where NF-B was 

impaired, virus titres were significantly lower, demonstrating that the activation of this 

pathway is also somewhat important for efficient viral propagation [138, 139, 234]. 

In view of this I set out to modulate this pathway with the aim of reducing both virus 

replication as well as virus-induced cytokine production simultaneously.

Having ensured that treatment with Bay 11-7082 (25M) inhibitors did not affect 

A549 cell viability (Figure 3.1), tests on the NF-B activity, using a specific 

oligonucleotide ELISA based method, demonstrated that both FPV (Figure 3.2.1(A)) 

and PR8 (Figure 3.2.1(B)) infection lead to NF-B activation in these cells and that 

this up-regulation could be effectively reduced by the specific IKK-inhibitor (Bay)

(70% reduction in FPV and 80% in PR8 infected cells). This stood in agreement with 

the published articles mentioned above. 

4.2. Bay 11-7082 can inhibit virus titres in in vitro cell cultures as well as in vivo

Although there is consensus in that, infection of cells with IAV virus leads to NF-B 

activity, even though the virus NS1 protein can limit this activation [71], the same 

does not apply to the effects of this activity on virus replication. There have been 

contradictory reports on the importance/necessity of NF-B activity for efficient 

influenza virus propagation [138, 139, 232]. 

Using the A549 system, in the current study, with the specific IKK inhibitor (Bay at 

25M) (Figure 3.2.2) it was clear that the inhibition of this pathway greatly attenuated 

virus replication. This was true for both the avian (FPV – 50% reduction) and human 

(PR8 – 80% reduction) viruses analysed in these experiments.

Some of the reports already mentioned above have also dealt with NF-B inhibitors 

in their systems. Nimmerjahn et al. (2004) has previously shown by using another 

NF-B inhibitor (Bay 11-7085), that A/FPV/Bratislava virus titres are greatly reduced 

in A549 cells. Bernasconni et al. (2005), on the other hand, using the A/WSN/33 
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influenza virus and an alternative NF-B inhibitor, a cyclopentenone prostanoid 

(delta12-PGJ2), the drug was unable to show a decline in virus titres. Mazur et al.

(2007), very recently has also demonstrated using the acetylsalicylic acid (ASA) and 

Bay 11-7085, as NF-B inhibitors, in A549 cells and different influenza viruses that 

this pathway is required for efficient viral propagation.

A549 cells are human alveolar epithelial carcinoma cells, and are generally 

considered an artificial system. Therefore I decided to analyse mice primary alveolar 

epithelial cells (AECs) to get a closer look into a more natural system and also to 

analyse the correlation between these two in vitro systems (A549 and AECs). 

After performing viability tests on AECs to determine the non toxic concentration for 

Bay (15M) (Figure 3.6) further analysis were conducted by infection and treatment. 

The tests on AECs infected with FPV or PR8 treated with the Bay inhibitor (15M) 

confirmed the earlier results in A549 cells. Analysis of the virus (FPV and PR8) titres 

from supernatants demonstrated significant reduction (FPV ~ 40% reduction and 

PR8 ~ 85% reduction) at both 24 and 32h p.i. upon inhibitor treatment, compared to 

DSMO (solvent) treated cells (Figure 3.8 (A) and (B)). 

The idea that inhibition of the NF-B pathway could also possibly lead to reduction of 

virus titres in vivo, prompted me to study this model further using C57BL/6 mice. The 

results clearly demonstrate a significant drop in virus titre (~60%) at day 2 and day 5 

p.i. in C57BL/6 mice, treated daily with the Bay inhibitor, when compared to DMSO 

mock treated (Figure 3.14).

The use of specific NF-B inhibitors in reducing influenza A virus titres in vivo has 

also just recently been shown by Mazur et al. (2007), using acetylsalicylic acid (ASA). 

Although in this study I used a different NF-B inhibitor, Bay 11-7082, the data 

observed here confirm these newly published results. 

Many viruses have been reported to induce NF-B activation through different 

mechanisms [129, 193]. Some viruses, such as HTLV can lead to constitutively 

activated IKK complex and therefore NF-B activity, shown in chronically HTLV-1-

infected myeloid cells [298]. Other viruses, have recognized specific proteins like the 

LMP-1 oncoprotein of EBV (human  herpesvirus) and the HBx polypeptide of HBV 

(hepatitis B virus), which mediate NF-B activation through IB phosphorylation and 

degradation [299, 300] leading to the clear translocation of NF-B complexes thereby 
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trans-activating responsive NF-B genes. These effects have also been shown to 

have a supportive effect in the virus replication strategies.

This current report clearly demonstrates, by testing different in vitro cell systems as 

well as in vivo mice data that blocking the NF-B pathway can effectively be used to 

reduce influenza A virus propagation. 

4.3. U0126 can inhibit virus-induced the Raf/MEK/ERK activity in A549 cells

All known MAPK family members have been shown to be activated by influenza virus 

infection of cultured cells [132-134], amongst these the classical Raf/MEK/ERK 

(MAPK) signalling cascade, which is of interest to this work. As previously 

demonstrated activation of this pathway has mainly been linked to efficient influenza 

virus propagation [132, 182, 186].

In agreement with these earlier findings, the studies here (Figure 3.3.1.A and 3.3.1.B) 

demonstrate that both avian (FPV) as well as human (PR8) viruses were able to lead 

to ERK activation in human alveolar epithelial (A549) cells, showing a gradual 

increase over time, whereas this activity was dramatically decreased (~80%) when 

administering the specific MEK inhibitor, U0126 (50M). Previous tests on A549 cell 

viability (by MTT assay) had demonstrated no toxic effect of treatment with U0126 at 

50M (Figure 3.1).

4.4. U0126 can inhibit virus titres in in vitro cell cultures as well as in vivo

Previous reports using different cell lines (MDCK and 293T) and different influenza 

viruses (WSN and FPV), subjected to U0126 MEK inhibitor treatment have 

demonstrated the importance of this pathway for efficient virus propagation [132]. 

Also others have shown (in cell lines) through the modulation of this pathway, by 

using dominant-negative mutants of ERK and Raf, that both influenza A and B 

replication can be greatly reduced [182]. In contrast cells expressing active mutants 

of Raf led to enhanced virus production [182, 186]. 

From the current work it was also evident that inhibition of ERK activity in A549 cells, 

using the specific MEK inhibitor U0126 (at 50M), effectively reduced virus titres 

(FPV and PR8 by ~ 60%) (Figure 3.3.2), as seen in a time course analysis. Results 

from infected (FPV and PR8) mice primary alveolar epithelial cell (AEC) experiments 

treated with U0126 (40M) analysed up to 32h p.i. (Figure 3.8), still stand in 
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agreement (FPV by ~ 60% and PR8 by ~ 85%) with the effect observed in A549 

cells. To add credibility to the notion that the observed effect was not yet another 

artificial in vitro system approach. PR8 infected C57BL/6 mice showed similar 

reduction in virus titres both at 2 (~ 95%) and 5 day p.i. (50%), when treated daily 

with U0126 via intraperitoneal injection, compared to mock treated mice.

Previous in vivo work with U0126 in a mouse asthma model has reported that this 

inhibitor reduced ovalbumin (OVA)-induced phosphorylation of ERK and that it could 

have therapeutic potential for the treatment of airway inflammation [288]. Other 

studies in mice have also used the U0126 to successfully attenuate the behaviour 

response to high dose intrathecal morphine [301].

Dependency of virus propagation on the Raf/MEK/ERK pathway has also recently 

been shown in influenza virus infections in vivo using transgenic mice with a 

constitutively active form of Raf in the alveolar epithelial cells. It was apparent that 

influenza viruses almost exclusively replicated in cells carrying the transgene as 

opposed to the wild type animals where influenza viruses replicated mostly in the 

bronchial epithelial cells [186].

These observed effects are not unique for influenza viruses other viruses have also 

demonstrated dependency on this pathway for efficient propagation [302]. In a 

murine coronavirus mouse hepatitis virus (MHV) it was shown that the MEK inhibitor 

U0126 could reduce virus progeny production in different cells tested [303]. In 

another study using a different ERK/MAPK inhibitor, PD98059, it was also 

demonstrated the importance of this pathway for efficient Visna virus replication [302, 

304].

In view of these results I could ascertain that the aim of targeting influenza A virus 

reduction in vivo by inhibiting the Raf/MEK/ERK pathway was therefore successfully 

achieved. 

4.5. Bay 11-7082 and U0126 can decrease influenza A virus-induced cytokine 

production in in vitro cell cultures as well as in vivo

It has been previously shown that influenza A virus can induce cytokine expression 

both in vitro as well as in vivo [120, 238-244, 305]. It has also been postulated that in 

case of HPAI viruses the increased in observed pathogenesis of the disease could 

be due to increase and/or deregulated immune responses leading to 

hypercytokinaemia [111, 114, 115, 119, 120]. It is known that the expression of many 
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cytokines, including IFN, is modulated by NF-B activation [128, 189-192]. Although 

the Raf/MEK/ERK pathway in the context of IAV replication is generally linked to pro-

viral mechanisms [132, 181], it has been shown in another study that this pathway 

can also modulate IL-8 cytokine production [180]. We and others have shown that 

influenza viruses are able to activate both NF-B as well as Raf/MEK/ERK pathways 

[132, 139, 181, 231], therefore the aim now was to analyse expression of important 

cytokines and chemokines linked to immune regulation upon influenza virus infection 

(IL-8, MCP-1, IL-6, RANTES and IFN) and to determine whether these virus-

induced cytokine/chemokines could be decreased by application of the specific 

inhibitors.

Expression profiles of cytokines/chemokines varied depending on the virus used. In 

A549 cells, FPV had no effect on IL-8, IL-6 and MCP-1, but lead to an increase in 

RANTES production (Figure: 3.3.1.) whereas PR8 was able to induce IL-8 and IL-6, 

and suppressed RANTES and MCP-1 expression. What was consistent in all results 

was that both inhibitors (Bay and U0126) were able to successfully reduce 

cytokine/chemokine production. Also, in agreement with the report from Kuderer et 

al. [180], it was evident that IL-8 was mainly dependent on the Raf/MEK/ERK 

pathway since the U0126 was a better inhibitor than Bay 11-7082.

The results observed in A549 cells are in agreement with previous cell culture studies 

on BEAS-2B or BEC NCI-H292 (bronchial epithelial cell line) or A549 cells, where IL-

8 has been shown to be induced by H3N2 viruses [135, 232, 241]. Also IL-8, MCP-1 

and RANTES production have been described upon IVA (H3N2 or H1N1) infection 

[306-308]. Another study using human middle ear epithelial cells also identified IL-8, 

MCP-1, RANTES and TNF- as up-regulated in an influenza virus infection [309].

Still in A549 cells I was unable to detect any measurable amounts of IFN upon FPV 

or PR8 infection. In contrast, the delNS1 virus (a mutant PR8 with deleted NS1 

segment), used as a positive control here, was able to significantly induce secretion 

of IFN (Figure 3.4.2). This is in agreement with several reports demonstrating that 

the IAV NS1 protein has been associated with down-regulation or limited production 

of IFN [66, 67, 137, 230, 246, 310], which at least in part, might be due to limiting 

NF-B activation [71].
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In primary mice cell (AEC) experiments (Figure 3.9.1) FPV was shown to suppress 

KC (the mouse analogue for human IL-8), had no effect on MCP-1 or IL-6 secretion 

but led to a slight increase in RANTES production at 10h p.i.. These results were 

somehow in agreement with the results see in the A549 tests.  PR8, however, was 

able to increase MCP-1, IL-6, had no effect on RANTES, and decreased KC as 

compared to mock at 10hp.i.. In the case of PR8 in AECs it was evident that some 

cytokines were differentially regulated compared to A549 cells where IL-8 was 

induced and MCP-1 suppressed. Again what was visible in AECs, was that both Bay 

(IKK inhibitor) as well as U0126 (MEK inhibitor) were able to significantly reduce 

cytokine production to background levels for both viruses tested, with exception to 

RANTES. In the case of RANTES, the values identified were almost below the 

detection limit, proving it difficult to observe any statistical differences. 

IFN evaluation (Figure 3.9.2) of infected AECs showed that FPV was able to induce 

significant IFN production whereas PR8 lead to a very slight increase. As seen 

before in A549 cells the delNS1 virus was capable of inducing very high IFN

secretion (2867pg/ml), again demonstrating the importance of the NS1 protein in viral 

defence. In this study the Bay inhibitor was the main down-regulator of the viral-

induced IFN expression, as would be expected, since IFN production seems to be 

regulated by NF-B, IRF3/7 and AP-1 transcription factors [69, 128, 136].

It is also important to point out that the observed increase in IFN in AECs upon viral 

infection was not in accordance with the results observed in A549 cells, even though 

the FPV- and PR8-induced cytokine production was relatively low compared to the 

delNS1 virus control. This alerts to the fact that one should take care to correlate 

results from “artificial” cell culture experiments to what can actually occur in a natural 

infection.

In a study, comparing different cell systems (epithelial cells/macrophages) with IAV 

infection, it was demonstrated that macrophages, in this case, were able to 

significantly increase IFN production as compared to epithelial cells [231]. Other 

reports comparing H5N1 versus H1N1 in human primary alveolar epithelial cells were 

able to show very significant increases of IFN production from H1N1-infected cells, 

even though in comparison the H5N1 viruses all led to much higher induction than 

the H1N1 [240]. Also previous data from Matikainen et al. [246] show that pre-

stimulation of A549 cells with IFN- or TNF- can induce increase of IAV-induced 
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IFN as well as other cytokines, leading one to acknowledge the idea that in an in 

vivo situation where the environment includes a complex of different cell types and 

signalling events, the outcome could probably be very different to what one observes 

in a simple cell culture system, and that extrapolating concluding remarks is very 

risky. 

For this reason in vivo studies were conducted in this work to analyse possible 

differences from cell culture experiments (A549/AECs) and to approach a more “real” 

situation. 

Results from the in vivo infection (with PR8 at LD50) showed that, TNF- (Figure 

3.15) at day 2 p.i. was significantly increased in PR8-infected versus mock-infected 

C57BL/6 mice, whereas there were no significant differences observed at day 5. 

IFN was shown to be significantly increased for both DMSO and solvent treated and

infected groups compared to DMSO and solvent treated mock-infected mice, 

respectively, at day 2 and 5 p.i. (Figure 3.16). All other cytokines tested (KC, MCP-1, 

IL-6 and RANTES) (Figure 3.17 and 3.18) were found significantly increased in PR8-

infected versus mock infected mice at day 5 p.i., with exception to KC in the infected 

and DMSO treated group, although the tendency to increase was present. 

It has to be mentioned that the number of mice used for these experiments was 

indeed very low (n=3), and in some cases (for day 5 experiments) the control 

uninfected mice numbers were actually only 2. Due to the obvious ethical reasons, 

and the fact that these experiments were just to demonstrate a proof of principle, 

minimal mice amounts were used. For this reason also, the observed standard 

deviations were pretty high, and as a consequence the statistical analysis of the p-

value was sometimes not significant/relevant.

Regarding the inhibitor effects in the in vivo study, Bay was able to significantly 

decrease IFN expression, at day 2 p.i., and the tendency at day 5 was still there. It 

was also able to significantly decrease MCP-1, IL-6, and RANTES at day 5 p.i., and 

although the decrease for KC was not significant, the trend to decrease was noted. 

The U0126, on the other hand, showed a significant inhibition on PR8-induced TNF-

release, observed at day 2 p.i., but this effect was lost at day 5, whereas RANTES 

was significantly reduced at day 5 p.i.. U0126 also demonstrated a tendency for 

decreasing virus-induced cytokine production for most of the other cytokines 
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(IFNKC, MCP-1 and IL-6), but due to the limited number of samples analysed, the 

standard deviations only permit speculation.

One can also speculate on the correlation between virus titres and cytokine

induction. In general U0126 seems to reduce virus titres better than Bay, whereas 

Bay seems to be better at cytokine reduction. This might reflect that most cytokines 

are NF-B-dependent, and that the weaker cytokine reduction by U0126 is maybe 

mostly due actually to the reduction of virus titre.

Reports on influenza A virus induced cytokines are very heterogeneous depending 

on viruses used, whether the study was conducted using cell lines, primary cells or in 

vivo experiments. Studies from primary cells experiments, whether macrophages, 

monocytes or epithelial cells have shown all these cytokines/chemokines to be 

induced by, one influenza virus or another [237-240, 289, 311]. in vivo experiments,

using different virus strains, have also confirmed induction of all the cytokines studied 

in this report (IL-8/KC, MCP-1, IL-6, RANTES IFN and TNF-) [242, 254, 312-314].

In my study I have compared different in vitro and in vivo systems with the same 

viruses and treatments. 

It was interesting to observe different cytokine induction from the different systems 

(A549/AECs) in this study. For example the IL-8 was found to be up-regulated in 

PR8-infected A549 cells, whereas in AECs the virus suppressed this cytokine, 

compared to mock infected cells. Curiously the same effect was observed in other 

studies where IL-8 was shown to be induced in H3N2 virus-infected A549 cells, [241]

and BEAS-2B cells [135], whereas Sprenger et al. [238] and Hofmann et al. [237], 

showed decrease in IL-8 in human primary monocytes or macrophages, respectively, 

when using the PR8 virus. In a study conducted in mice Wareing et al. [242] also saw 

the same suppression or no effect in KC induction upon influenza virus infection.

Studies on the different pathways linked to induction of different 

cytokine/chemokines, have also shown some interesting data. Production of IFN, 

RANTES, IL-8, IL-6 and TNF- has been shown to be NF-B-dependent by different

authors using different systems [71, 196, 232, 315]. Whereas IL-8, MCP-1, IL-6 and 

also TNF- in other reports, have been linked to the activity of the Raf/MEK/ERK 

pathway [135, 283]. Still other pathways are also found to be implicated in the 

production of these cytokines, such as the p38 MAPK in IAV-induced production of 

RANTES, IL-8 and TNF- [134, 135, 289, 308]; and the AP-1/JNK pathway in IAV-
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induced production of RANTES as well [134, 308] or even specifically the PI3K 

activation pathway on the influence of RANTES and IL-8 production [135].

In this study, as was expected, the NF-B pathway was implicated in all the 

cytokine/chemokines tested, as seen by applying the inhibitor Bay 11-7082 to in vitro

infected cell cultures (A549/AECs) or in vivo (C57BL/6 mice). Generally the Bay 

inhibitor always demonstrated a stronger effect at decreasing cytokine/chemokine 

production compared to the U0126 inhibitor, with exception to IL-8 in A549 cells and 

TNF- in in vivo mice experiments. It was evident that the Raf/MEK/ERK was highly 

implicated in IL-8 production especially in A549 cells where the U0126 treatment of 

infected cells led to a very significant reduction of this chemokine. This effect was still 

apparent in AECs and in vivo experiments although not as spectacular. In fact all the 

cytokines tested in this work were able to be suppressed by inhibiting this pathway 

(Raf/MEK/ERK). This is the first time that this pathway, Raf/MEK/ERK, has been 

implicated in cytokine/chemokine production in the context of influenza A virus 

infection with exception to IL-8 production which had been shown by Guillot et al.

[135]. This discovery was also evident in the in vitro (A549/AECs) as well as the in 

vivo experiments (C57BL/6 mice).

Altogether, I was able to demonstrate that cytokines/chemokine (KC, MCP-1, IL-6, 

RANTES, IFN and TNF-) were induced by influenza A virus infection (FPV and 

PR8) in in vitro (A549/AECs) as well as in vivo (with PR8) and that this induction 

could be reduced by the specific IKK- (Bay 11-7082 for NF-B) or/and MEK-inhibitor 

(U0126 for Raf/MEK/ERK), in many cases to background levels, in all systems 

tested. It was also apparent that different systems lead to differential induction of

cytokines/chemokines, as seen mainly by IL-8, MCP-1 and IFN in A549 cells versus 

AECs and in vivo studies, and in the case of RANTES between in vitro PR8-infection 

and in vivo results. 

4.6. Both FPV and PR8-induced nuclear RNP export is efficiently blocked by 

Bay 11-7082 and U0126 in A549 and AECs.

Influenza A virus genome is composed of 8 segments of ssRNAs of negative polarity 

which are associated to viral polymerases (PA, PB1 and PB2) and nucleoprotein 

(NP) forming thus the ribonucleoprotein (RNPs). The virus is replicated in the nucleus 

of the infected cell and late in the replication cycle the viral genome forms the RNP 
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complexes which have to be efficiently exported from the nucleus into the cytoplasm 

to be able to be packaged into progeny virions at the cell surface (ref). This step is of 

course very important in influenza virus replication. As both, NF-B and ERK

pathway activation have been associated with efficient viral nuclear RNP export [132, 

181, 234], I decided to confirm these findings in our A549 system, by making use of 

our specific IKK and MEK inhibitors. Results demonstrate that in A549 cells both 

avian (FPV) as well as human (PR8) influenza virus showed nuclear RNP export 

whereas upon inhibitor treatment (with either Bay or U0126), the RNP export was 

significantly impaired as seen at 10h p.i. (Figure 3.5.1 and 3.5.2). These results add 

to the already published data, confirming that the activation of both NF-B as well as 

Raf/MEK/ERK pathway is necessary for efficient viral nuclear RNP export. 

In AECs both FPV and PR8 also showed nuclear RNP export at 10h p.i. but upon 

inhibitor treatment (with Bay or U0126), the viral RNP was mainly blocked in the 

nucleus (Figure 3.5.1 and 3.5.2). This excludes the idea that the observed effect in 

could be an artefact only seen in established cell lines, even though confirmed by 

others in other cell lines [132, 181, 234]. Since AECs are primary cells one can 

speculate that this effect reflects the in vivo situation.

The mechanism for this effect has been suggested to be partially dependent on the 

activity of viral nuclear export protein NEP/NS2 [44, 132]. Other findings suggest that 

this might be dependent on viral induction of the pro-apoptotic factors, such as 

Caspase 3 [316] and NF-B-dependent tumour necrosis factor-related apoptosis-

inducing ligand (TRAIL) and FasL [138]. In support of this NF-B dependency, Mazur 

et al. (2007) also just recently showed that ASA (an NF-B inhibitor) was able to also 

block virus-induced RNP export from the nucleus of A549 cells.

Although the aim of this study was not concerned with explaining the molecular 

mechanisms of this effect, it was interesting to observe that during AEC infection 

studies, cell viability was increased in infected cells treated with the IKK inhibitor 

(Bay) compared to the infected DMSO treated cells (Figure 3.7 (A) and (B)). This was 

observed for both viruses (FPV and PR8), which would agree with the above 

suggestion, that virus-induced NF-B activity leads to induction of apoptosis, and that 

by specifically inhibiting this pathway, one can down-regulate NF-B-dependent virus 

replication and thereby virus-induced cell destruction.
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4.7. Combination treatment does not enhance individual inhibitor-induced 

decrease in virus titres

With the aim of further reducing virus propagation with combination treatment and 

thereby possibly reducing the concentration necessary of the individual inhibitors for 

this effect, studies were conducted in A549 cells and AECs. The idea was that by 

reducing the amount of inhibitor treatment needed, one would reduce possible 

intolerance of the drugs or side effects that could later be observed in vivo while at 

the same time still producing the same (or better) effect (reducing virus 

titres/cytokines). Results from selected non-toxic inhibitor “cocktails” (Bay-

15M/U0126-30M and Bay-10M/U0126-30M) showed no significantly enhanced 

decrease of virus titres when comparing to results with single inhibitor treatment in 

A549 cells (Figure: 3.12). This idea was then completely abandoned after results 

from viability assays in AECs demonstrated a significant toxic effect even when 

applying low concentrations of both inhibitors (Figure: 3.13).
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5. Conclusions

In the present work I show that influenza A virus infection can strongly induce NF-B 

as well as Raf/MEK/ERK pathway activity, in human alveolar epithelial A549 cells. 

The different viruses used in our study avian FPV as well as human PR8 led to 

different kinetics as well as different activity intensities of these pathways. Inhibition 

of these pathways using a specific IKK-inhibitor (for the NF-B pathway) or MEK 

inhibitor (for the Raf/MEK/ERK pathway) could efficiently reduce this virus-induced 

activity in A549 cells. 

Infection studies using the specific inhibitors Bay and U0126, demonstrated for the 

first time that these pathways (NF-B and Raf/MEK/ERK, respectively) are required 

for efficient virus propagation, not only in human alveolar epithelial A549 cells but 

also in mice primary alveolar epithelial cells (AECs) and in vivo in C57BL/6 mice, as 

determined in titration by FFU assay.

The role of NF-B pathway in influenza A virus infection has been a little 

controversial. In general NF-B activation is associated with the cellular antiviral 

response to influenza infection. Aside from this accepted view, it has also been 

recently considered as a requirement for virus infectivity [138, 139, 234]. Other 

studies have indicated that viral replication is independent from the ability of the virus 

to activate NF-B in infected cells [232].

My data clearly indicates and supports the former idea, that influenza A virus 

infection not only activates NF-B transcription factor, but also that this activity 

promotes efficient virus replication.

As to the Raf/MEK/ERK pathway, studies in influenza A virus infections point to a 

requirement of activity of this pathway for efficient virus propagation [132, 181, 182, 

186], whereas in this study for the first time it becomes evident that this pathway also 

affects host cell defence mechanisms, and that by inhibiting this pathway it is 

possible to reduce virus-induced cytokines as well as the predicted virus propagation.

In agreement also with previous studies I could demonstrate that upon virus infection 

cells will secrete different cytokines and that some of these cytokines can be NF-B 

dependently induced (IL-8, KC, MCP-1, IL-6, RANTES and IFN) as seen by using 

the Bay (IKK inhibitor) and/or Raf/MEK/ERK-dependent (IL-8, KC, MCP-1, IL-6, 



5. Conclusions

104

RANTES and TNF-). This was apparent in all the models tested here, in the in vitro

cell cultures and in the mice in vivo experiments.

Influenza viruses follow a nuclear replication strategy and therefore late in their 

replication cycle the viral genome RNP has to be exported from the nucleus into the 

cytoplasm. Here it was shown for the first time in primary cells, using mice alveolar 

epithelial cells (AECs), that the viral-induced RNP export from the nucleus was 

significantly impaired upon treatment with either IKK or MEK inhibitors. Previous 

studies performed in different cell lines [132, 181, 234] have shown the same effect 

that was observed here in human alveolar epithelial cells (A549) and in mice primary 

cells (AECs).

The aim of this study was to modulate these two pathways with the purpose of 

decreasing virus replication as well as simultaneously decreasing virus-induced 

cytokine production. It can be safely said that this aim was achieved with success. 

It has to be added, however, that the final aim would be to target these pathways for 

antiviral therapy strategies. Studies conducted with HPIV have shown, in humans, 

primates and mice, that high viral loads as well as elevated pro-inflammatory factors 

are central to the pathogenesis observed in these infections [115, 119, 120, 254] and 

in a H5N1 study in pigs it was demonstrated that this virus was resistant to the effects 

of interferons and TNF- [294]. However, a recent report has highlighted the concern 

of targeting an essential mechanism of the organism in combating the disease, by 

showing that glucocorticoid (steroids, which show among other functions,

suppression of cytokines) treatment (given in the drinking water) of mice infected with 

HPAIV (H5N1) did not protect against death [317]. 

In the current report it is apparent that many pathways lead to redundant effects. The 

idea to target a specific pathway, which is necessary for virus replication as well as 

for immune regulation, seems logical in view of all the reported studies with HPIV 

infections. In the in vivo context, it is also evident that affecting a specific pathway will 

not totally block its overall effect on immune response mechanisms, but might be 

able to attenuate the “cytokine storm” seen with these HPIV strains. The aim here 

was not to deplete the natural/necessary immune response, but to diminish the virus-

induced hyper-induction of the inflammatory response which is a cause of the gravity 
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of this disease. Further studies could be extremely valuable for fine-tuning the effects 

of these drugs.

Although targeting a cellular factor brings about concerns as to the possible side 

effects raised from drug usage, local administration could probably be more, well 

tolerated [12]. Drugs targeting these pathways are already in current use, such as 

NF-B inhibitors like the common aspirin [203, 234, 318], and as for the 

Raf/MEK/ERK pathway, since chronic activation of this pathway is linked to several 

cancers [147, 148] there are many drugs under clinical trial for application in cancer 

therapy [148, 302].

Prospective studies

Many extra experiments could still be done to add to the available data so far 

achieved in this report, such as: (1) further studies with infected mice using the Bay 

and U0126 inhibitors, to study survival curves with these inhibitors; (2) attempting 

other viral strains for infection to compare pathology and cytokine induction in 

inhibitor treated versus untreated; (3) to analyse lung histology and cell population 

profiles in infected mice untreated compared to inhibitor treated mice.

Due to the time available further studies will have to be postponed. But the future 

prospects would be recommended, since the current report shows potential for 

aiming at influenza virus therapy.
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