Experimentelle Untersuchungen zu Metabolismus und diabetischem Spätsyndrom nach Transplantation mikroverkapselter Inseln
Inaugural-Dissertation zur Erlangung des Grades eines Doktors in der Medizin des Fachbereichs Humanmedizin der Justus-Liebig-Universität Gießen
vorgelegt von Kerstin Renate Kemp
aus Langen
Gießen 2001

Aus dem Medizinische Zentrum für Innere Medizin

Medizinische Klinik und Poliklinik III

Leiter: Prof. Dr. med. R. G. Bretzel

des Klinikums der Justus-Liebig-Universität Gießen

Gutachter: Prof. Dr. Zekorn

Gutachter: Prof. Dr. Geyer

Tag der Disputation: 12. April 2002

Gliederung

1.0	Einleitung	1
2.0	Material und Methoden	6
2.1	Grundlegende Methoden	6
2.1.1	Versuchstiere	6
2.1.2	Diabetesinduktion	6
2.1.3	Inselisolierung	7
2.1.4	Inselkultur	13
2.1.4.1	Kulturbedingungen	13
2.1.4.2	Anlegen der Kultur	14
2.1.4.3	Mediumwechsel	14
2.1.5	Mikroverkapselung	15
2.1.6	Transplantation	18
2.1.6.1	Intraperitoneale Transplantation	18
2.1.6.2	Transplantation unter die Nierenkapsel	19
2.1.7	Organentnahme	20
2.1.8	Histologische Methoden	21
2.1.8.1	Fixierung in Bouin	21
2.1.8.2	Einbettung	21
2.1.8.3	Anfertigen von Serienschnitten	22
2.1.8.4	Hämatoxilin-Eosin-Färbung	23
2.1.8.5	PAS-Färbung (Periodic-Acid-Schiff-Methode)	24
2.1.8.6	PAP-Färbung (Peroxidase-Antiperoxidase-Methode)	25
2.1.9	Blutzuckerbestimmung	26
2.1.10	Bestimmung des Körpergewichts	27
2.1.11	Metabolischer Status bei Versuchsende	27

2.1.11.1	Untersuchung im Stoffwechselkäfig	27
2.1.11.1.1	Bestimmung der Trinkmenge	27
2.1.11.1.2	Bestimmung von verschiedenen Parametern im Urin	27
2.1.11.2	Bestimmung von Inselhormonen im Serum	28
2.1.12	Fotodokumentation	28
2.1.13	Statistische Methoden	28
2.2	Versuchsgruppen	29
2.3	Metabolische Verlaufsparameter	29
2.3.1	Blutzucker	29
2.3.2	Körpergewicht	30
3.0	Ergebnisse	31
3.1	Diabetesinduktion	31
3.2	Isolierung der Inseln	32
3.3	Kultur Langerhansscher Inseln	32
3.4	Mikroverkapselung	33
3.5	Histologische Beurteilung	33
3.5.1	Pankreas	33
3.5.2	Histologie des Transplantats	35
3.5.3	Nephropathie	38
3.6	Versuchsgruppen	39
3.7	Metabolische Verlaufsparameter	39
3.7.1	Blutzucker	39
3.7.2	Körpergewicht	41
3.8	Metabolischer Status bei Versuchsende	43
3.8.1	Trinkmenge	43

3.8.2	Urinvolumen	44
3.8.3	Glukosurie	46
3.8.4	Albuminurie	47
3.8.5	Seruminsulinkonzentration	48
3.8.6	Serumglukagonkonzentration	49
4.0	Diskussion	51
4.1	Rattenmodell	51
4.2	Streptozotocin-induzierter Diabetes als Modell	
	für den Typ-I-Diabetes	51
4.3	Diabetische Spätschäden	52
4.3.1	Diabetische Nephropathie	52
4.4	Beeinflussung des metabolischen Verlaufs beim	
	Diabetes mellitus	55
4.4.1	Insulintherapie	55
4.4.2	Pankreastransplantation	56
4.4.3	Inselzelltransplantation	57
4.4.3.1	Bioartifizielles Pankreas	59
4.5	Histologie von Transplantat und Pankreas	61
4.6	Metabolischer Status nach Inselzelltransplantation	62
4.6.1	Trinkmenge	62
4.6.2	Urinvolumen	62
4.6.3	Glukosurie	63
4.6.4	Albuminurie	64
4.6.5	Seruminsulin, Serumglukagon	65
4.7	Transplantatversagen	67
4.8	Ausblick	69

5.0	Zusammenfassung	70
6.0	Literaturverzeichnis	73
7.0	Primärdatenteil	92

1.0 Einleitung

Weltweit gibt es zur Zeit ca. 150 Millionen Diabetiker. Alleine in Deutschland leben ca. 4 Millionen Menschen mit der Diagnose Diabetes mellitus, das entspricht einem Bevölkerungsanteil von 5 %. Die Dunkelziffer wird ebenso hoch geschätzt. Die Zahl der Erkrankten ist weiterhin steigend.

1674 beschrieb Thomas Willis den honigsüßen Urin als pathognomonisches Zeichen des Diabetes mellitus. Ab dem 19. Jahrhundert wurde die Bestimmung der Glukosurie in europäischen Laboratorien Routine. 1863 beschrieb Namias im "Giornale Veneto di Scienze Mediche" klinische und laborchemische Parameter einer Diabetespatientin. Von da an wurden chemische Analysen bei diabetischen Patienten weiterverbreitet (21).

Unter Diabetes mellitus wird eine Gruppe metabolischer Störungen zusammengefasst, die durch eine Hyperglykämie charakterisiert sind. Man unterscheidet zwischen dem insulinabhängigen Typ 1 Diabetes, dem primär insulinunabhängigen Тур 2 Diabetes, dem Gestationsdiabetes und Sonderformen (55). Patienten mit einem Typ 2 Diabetes werden zunächst diätetisch therapiert, ist auf diese Weise keine medikamentös und Normoglykämie mehr zu erzielen, so muss der Patient Insulin spritzen.

Dem insulinabhängigen Diabetes mellitus Typ 1 liegt eine T-Zell vermittelte Autoimmunreaktion gegen verschiedene Antigene zugrunde, die zum Teil genetisch determiniert ist (25, 46, 96, 97). Einige der Autoantikörper konnten bisher identifiziert werden. Zu den wichtigsten gehören Antikörper gegen die Oberfläche der Inselzellen, cytoplasmatische Inselzell-Antikörper, sowie Antikörper gegen verschiedene Inselzellproteine und das Insulin selbst (70, 77). Das Auftreten dieser Autoantikörper kann dem Auftreten der Erkrankung Monate bis Jahre vorausgehen (49, 57, 77). Diabetes mellitus muss deshalb als das Ergebnis eines lange andauernden Prozesses gesehen werden, dessen

Folge die Zerstörung der B-Zellen des Pankreas ist (98). Zum Zeitpunkt des Auftretens der Erkrankung kann in den Langerhans-Inselzellen eine Infiltration mit B- und T-Lymphozyten, Plasmazellen und Makrophagen beobachtet werden (38, 46, 48, 77).

Ergebnis der Zerstörung der B-Zellen ist ein Insulinmangel, aufgrund dessen es bei den Patienten zur Hyperglykämie kommt. Mögliche Folgeerkrankungen des Diabetes sind Nephropathie, Neuropathie, Retinopathie sowie Mikro- und Makroangiopathie (68). Für viele Jahrzehnte fehlte der Beweis, dass eine chronische Hyperglykämie zur Ausbildung diabetischer Spätschäden führt. Erst die Ergebnisse zweier großer prospektiver Studien (Diabetes Control and Complications Trial, United Kingdom Prospective Diabetes Study) belegen, dass eine Normoglykämie das Auftreten oder Fortschreiten diabetischer Spätschäden verhindern könnte (55, 91, 92, 93).

Einige aktuelle Zahlen verdeutlichen die Folgen des Diabetes mellitus Typ 1. Jährlich werden ca. 8.000 Diabetes-Patienten dialysepflichtig. Die Kosten der Dialyse belaufen sich auf 67.500 DM pro Jahr und Patient. Aufgrund von Neuropathie und Mikroangiopathie kommt es zur Ausbildung eines diabetischen Fußes. Pro Jahr und Patient betragen die Kosten für Amputationen ca. 16.500 DM. Nicht berücksichtigt ist hierbei der Verlust an Lebensqualität durch diabetische Spätschäden.

Die Therapie des Diabetes Typ 1 besteht in einer Substitution des Insulins. Dies kann durch tägliche Insulininjektionen erfolgen. Es gibt zwei verschiedene Therapieschemata: die konventionelle und die intensivierte Insulintherapie. Während der Patient bei der zuerst genannten Therapie nur ein- bis zweimal täglich Insulin spritzen muss, besteht die intensivierte Therapie aus mehrfach täglichen Blutzuckerkontrollen und Insulininjektionen, insbesondere kurzwirksamer Insuline zu den Mahlzeiten. Der Vorteil der intensivierten Insulintherapie besteht in einer deutlich besseren Stoffwechselkontrolle, dadurch wird das Auftreten diabetischer Spätschäden im Vergleich zur

konventionellen Therapie deutlich gesenkt. Die häufigen Kontrollen bedeuten jedoch für den Patienten eine Einbuße an Lebensqualität.

Eine physiologischere Insulinfreisetzung und Insulinunabhängigkeit bietet die Transplantation insulinproduzierenden Gewebes. Dazu gibt es zur Zeit drei Möglichkeiten:

- 1. Pankreastransplantation
- 2. Inselzelltransplantation
- 3. Bioartifizielles Pankreas

Der erste Bericht einer Pankreastransplantation stammt aus dem Jahr 1891. Prof. Minowski hatte einem pankreatektomierten Hund Pankreasstücke in die Bauchhöhle transplantiert und damit die Symptomatik eines Diabetes gemindert. Nur zwei Jahre später erfolgte die erste der wissenschaftlichen Welt mitgeteilte klinische Xenotransplantation von Pankreasfragmenten bei einem Diabetiker. In Unkenntnis der immunologischen Vorgänge nach einer Transplantation war dieses Vorgehen jedoch zum Scheitern verurteilt (10). Bis heute wurde die Pankreastransplantation immer weiter entwickelt. Aufgrund der notwendigen lebenslangen Immunsuppression werden heute nahezu nur Diabetiker transplantiert, die sich ebenfalls einer Nierentransplantation unterzogen haben. Bis 1997 wurden weltweit über 10.000 Pankreastransplantationen durchgeführt. 80 % der Patienten sind nach einer Nieren-Pankreas-Transplantation nach simultanen einem Jahr noch insulinunabhängig (88).

Da für die Insulinproduktion nur die B-Zellen des Pankreas erforderlich sind, wird seit den siebziger Jahren die Inselzelltransplantation immer weiter vorangetrieben. Nachdem im Tiermodell vielfach gezeigt werden konnte, dass durch die Transplantation Langerhansscher Inselzellen das Auftreten diabetischer Spätschäden verhindert oder wenigstens verzögert werden kann, wurde die Transplantation von Inselzellen auch beim Mensch angewandt (10,

29, 30). Gegenüber der Pankreastransplantation ergeben sich einige Vorteile: kleinere Operation, Möglichkeit der Vorbehandlung zur Immunalteration (UV-Bestrahlung, Kryovorbehandlung), Einrichtung einer Inselzellbank (9, 10, 20, 29, 33, 53, 83). Ein noch ungelöstes Problem ist der fehlende Marker für die Transplantatabstoßung. Sowohl der Anstieg des Blutzuckers als auch der Abfall der C-Peptidkonzentration treten verzögert ein. Daraufhin eingeleitete Maßnahmen zur Immunsuppression kommen in der Regel zu spät, eine Transplantatabstoßung kann so oft nicht mehr verhindert werden (10). Die Entwicklung neuer Marker bedarf sicher noch weiterer Untersuchungen.

Der Vorstellung einer Transplantation ohne lebenslange Immunsuppression dürfte man mit der Entwicklung des Bioartifiziellen Pankreas sicher ein Stück näher gekommen sein. Durch immunseparierende Membranen werden Transplantat und Empfänger voneinander getrennt. Diese semipermeablen Membranen lassen sowohl Glukose als auch Insulin passieren, höhermolekulare Stoffe, wie zum Beispiel Antikörper, jedoch nicht (53, 83). Mit Hilfe des Bioartifiziellen Pankreas könnten xenogene oder gentechnologisch hergestellte B-Zellen transplantiert und somit der Spendermangel behoben werden. Ferner wäre es möglich bereits kurz nach Diagnosestellung eine kausale Therapie durchzuführen. Hiervor wird zur Zeit wegen der erforderlichen Immunsuppression noch abgesehen (44).

1993 wurde erstmals eine erfolgreiche Transplantation mikroverkapselter Inselzellen beim Mensch durchgeführt. Der Patient war jedoch vorher Nierentransplantiert worden, so dass er aufgrund dessen einer immunsuppressiven Therapie bedurfte. Der größte persönliche Erfolg für diesen Patienten ist mit Sicherheit die beobachtete rasche deutliche Verbesserung seiner Neuropathie (16).

Hieraus ergibt sich auch die Aufgabenstellung für die vorliegende Arbeit.

Es sollte im syngenen Tiermodell gezeigt werden, ob die dystope Transplantation von Inselzellen in der Lage ist, das Auftreten diabetischer Spätkomplikationen zu verhindern. Dabei sollten zwei verschiedene Transplantationsverfahren miteinander verglichen werden:

- 1. Transplantation von Inselzellen unter die Nierenkapsel
- 2. Intraperitoneale Transplantation mikroverkapselter Inselzellen

Den beiden Transplantationsgruppen wurden eine gesunde, nicht diabetische und eine langzeitdiabetische Kontrollgruppe zugeteilt. Die Beobachtungszeit nach Transplantation betrug 180 Tage. Es wurden sowohl der metabolische Verlauf als auch der metabolische Status am Versuchsende ausgewertet.

Schwerpunkt der vorliegenden Arbeit war die Beurteilung der diabetischen Nephropathie. Zur Dokumentation dienten zum einen histologische Methoden und zum anderen laborchemische Parameter wie Glukosurie und Albuminurie.

2.0 Material und Methoden

2.1 Grundlegende Methoden

2.1.1 Versuchstiere

Für die Versuche wurden ausschließlich männliche Ratten des Inzuchtstammes Lewis (Lew/Crl BR) der Firma Charles River verwendet. Zur Identifikation wurden die Tiere am Schwanz mit farbigen Ringen versehen.

Die Tiere wurden im Tierstall der Medizinischen Poliklinik unter konstanten Bedingungen gehalten (Tag-Nacht-Rhythmus, Raumtemperatur, Luftfeuchtigkeit). Trinkwasser und Futter stand den Tieren ad libitum zur Verfügung.

Die Versorgung der Tiere erfolgte durch einen Tierpfleger und einen Tierarzt.

Die Tierversuche wurden durch das Regierungspräsidium Gießen genehmigt.

2.1.2 Diabetes induktion

Die Induktion des Diabetes erfolgte mit Streptozotocin, welches zu einer irreversiblen Schädigung der B-Zellen der Langerhansschen Inseln führt. Der somit herbeigeführte Insulinmangeldiabetes dient als Labormodell für den Diabetes mellitus.

Streptozotocin wurde zunächst in 0,9 %iger Kochsalzlösung in einer Konzentration von 15 mg/ml aufgelöst. Die injizierte Menge betrug 65 mg/kg Körpergewicht. Die Tiere wurden zunächst mit Äther narkotisiert und der Schwanz in ein Glas mit warmem Wasser gehalten, um die Durchblutung zu verbessern und damit das Auffinden der Schwanzvene zu erleichtern. Anschließend wurde der Schwanz gründlich mit Ethanol 70 % desinfiziert. Nun wurde die laterale Schwanzvene aufgesucht und die Streptozotocin-Lösung als

Bolus injiziert. Zur Blutstillung wurde die Einstichstelle einige Minuten mit einem Tupfer komprimiert. Die Tiere erwachten unmittelbar nach der Injektion.

Geräte und Reagenzien:

- Einmalspritze 1 ml (B. Braun, Melsungen)
- Kanüle 13 G (Terumo, Frankfurt)
- Becherglas 500 ml (Schott, Mainz)
- NaCl 0,9 % (B. Braun, Melsungen)
- Streptozotocin (Sigma, München)
- Äther zur Narkose (Nr. A 7202, ASID Bonz GmbH)

2.1.3 Inselisolierung

Die Ratten wurden zunächst durch eine intraperitoneale Injektion von 0,1 ml Pentobarbital pro 100 g Körpergewicht narkotisiert. Der Bauch der Tiere wurde gründlich rasiert und zur Desinfektion mit 80 %igem Alkohol abgerieben. Scheren, Pinzetten und ein Katheter wurden zur Desinfektion in ein Becherglas mit Alkohol gestellt. Die Tiere wurden, mit dem Schwanz zum Präparator, in Rückenlage gebracht und das Abdomen durch Mittelbauch-Flankenschnitte eröffnet. Das Xyphoid wurde mit einer kräftigen Schere entfernt. Das Herz der Tiere wurde nun zum Entbluten zerschnitten und das Blut noch im Thorax mit einer Kompresse aufgesaugt. Anschließend wurde die Ratte mit dem Kopf zum Präparator gedreht. Nun wurde eine kleine Kompresse über den Rippenbogen gelegt und, unter leichtem Druck, die Leber darüber luxiert und nach kranial hochgeklappt. In dieser Lage konnte die Leber durch Einschlagen der Kompresse fixiert werden. Unter Zuhilfenahme einer chirurgischen und einer spitzen Pinzette wurde nun vom Magen ausgehend die Einmündung des Ductus choledochus am Duodenum aufgesucht, dieser dort mit der spitzen Pinzette unterfahren und mit einem Seidenfaden ligiert. Das proximale Ende des Ductus choledochus wurde an der Leberpforte aufgesucht, das umgebende Bindegewebe entfernt und dort mit einem zweiten Faden umschlungen. Wenige Millimeter zur Leber hin wurde der Ductus nun mit einer spitzen Schere schräg angeschnitten, ein Katheter ein kleines Stück in diese Öffnung geschoben und durch Zuziehen der Fadenschlinge fixiert.

Anschließend wurden 10-12 ml 10 %ige Bovine-Serum-Albumin-Lösung (BSA-Lösung) injiziert und damit das Pankreas aufgebläht. Vom Magen ausgehend wurde das Organ zunächst mit einer spitzen Schere von der Milz getrennt und anschließend stumpf vom Duodenum bis hin zum Colon abgestreift. Zum Schluss wurde das Pankreas von der Abdominalhinterwand gelöst und grob von Fettgewebe und Lymphknoten befreit, bevor es in ein autoklaviertes Becherglas gegeben wurde. Es wurden nacheinander zwei Pankreata auf diese Weise präpariert, wobei das erste bis zur Weiterverarbeitung der Organe in einem Becherglas auf Eis aufbewahrt wurde.

Die weiteren Arbeitsschritte wurden in einer Laminar-Flow-Bench unter möglichst keimfreien Bedingungen durchgeführt. Bei den verwendeten Materialien handelte es sich entweder um steril bezogene Einwegartikel aus Kunststoff oder um autoklavierte Mehrwegartikel aus Glas bzw. Edelstahl. Es wurden immer zwei Pankreata gleichzeitig verdaut, weshalb sich die angegeben Mengen auf zwei Pankreata beziehen.

Die auf Eis gekühlten Pankreata wurden zunächst mit zwei übereinandergelegten Scheren in dem Becherglas zerkleinert. Zwischendurch wurde das Gewebe zweimal mit dem 5 %igen BSA-Puffer gewaschen, um das Fettgewebe zu entfernen. Das Pankreasgewebe musste am Ende so weit zerkleinert sein, dass die Partikel ohne Probleme durch den Luer-Konus einer 10 ml Spritze aufgezogen werden konnten. Anschließend wurde das Gewebe in 5 %igem BSA-Puffer aufgenommen (Gesamtvolumen 8 ml) und in einen Erlenmeyerkolben überführt. Nun wurden 5 ml der Kollagenasenlösung dazugegeben, alles kräftig geschüttelt und im Schüttelwasserbad (200 Zyklen/min) bei 37°C inkubiert. Die Inkubationsdauer betrug je nach verwendeter Kollagenasencharge 8-10 Minuten. Nach 3 (-4) und 6 (-7) Minuten wurde das Kölbchen für jeweils 1 Minute kräftig mit der Hand geschüttelt. Nach Abschluss der ersten Verdauungsphase wurde die Pankreas-Kollagenasenmischung in ein 50 ml Zentrifugenröhrchen überführt und zweimal mit der 5 %igen BSA-Lösung gewaschen. Dazu wurde das Röhrchen aufgefüllt

und das Gewebe in der Zentrifuge bei 300 U/min für drei Minuten sedimentiert. Für die zweite Verdauung wurden 10 ml Pankreassuspension mit 3 ml Kollagenasenlösung versetzt und wiederum im Wasserbad inkubiert. Zur Kontrolle des Verdauungsgrades wurde nach ca. 7 Minuten ein Aliquot entnommen und unter dem Invertoskop beurteilt. Haftete an den Inseln noch exokrines Gewebe, so wurde weiter verdaut. Lagen die Inseln dagegen frei und Gewebe vollständig war das exokrine nahezu zersetzt, wurde Verdauungsprozess gestoppt. Durch zweimaliges Waschen mit 0,25 %igem BSA-Puffer wurden die Kollagenase und die pankreaseigenen Enzyme entfernt. letzten Waschen wurde die Pankreassuspension auf zwei Zentrifugenröhrchen verteilt.

Nun wurde der Waschpuffer abgezogen, so dass nur noch 2,5-3 ml Pellet verblieben, und das Gewebe mit 16 ml Dextran der höchsten Dichte gut vermischt (Vortex-Mischer). Anschließend wurden je 4 ml der anderen Dextrane in absteigender Dichte vorsichtig darüber geschichtet. Die Zentrifugation erfolgte ohne Bremse für 18 Minuten bei 2200 U/min. Danach wurden die Inseln vom Gradienten abgenommen, in frische Zentrifugenröhrchen überführt und wiederum mit 0,25 %iger BSA-Lösung gewaschen. Zum Schluss wurden die Inseln per Hand (Pipettierhilfe mit Pasteurpipette) von verbliebenen Lymphknoten und Gefäßen getrennt und in Kultur gesetzt.

- Nembutal (Pentobarbital, Nr. 3317393, BGA)
- BSA 5 %, keimfrei, eisgekühlt
- BSA 0,25 %, keimfrei, eisgekühlt
- Collagenaselösung: 25 mg Collagenase (Type XI, Nr. C-7657, Sigma, München) pro zwei Pankreata in 8 ml BSA 5 % gelöst, in 10 ml Spritzen aufgezogen
- Dextranlösungen mit den Dichten 1,129 g/ml, 1,106 g/ml, 1,098 g/ml, 1,083 g/ml, 1,040 g/ml, keimfrei, gekühlt
- Kulturmedium (RPMI 1640, Nr. 041-01870 M, Gibco, Paisley / Scotland)
- 1 ml Tuberkulinspritze (B. Braun, Melsungen)
- 26 G Kanüle (Terumo, Frankfurt)

- Zellstoff, mehrlagig
- Mullkompressen aus Baumwolle (Beese)
- Becherglas (Schott, Mainz)
- 50 ml Ethanol 80 % (Klinikumsapotheke Gießen)
- Schere: groß, stumpf, gebogen (Aesculap, Tuttlingen)
- Schere: klein, spitz (Aesculap, Tuttlingen)
- Pinzette: chirurgisch (Aesculap, Tuttlingen)
- Pinzette: anatomisch, spitz (Aesculap, Tuttlingen)
- Pinzette: stumpf (Aesculap, Tuttlingen)
- chirurgische Seide
- Venenkatheter mit Luer-Anschluß, spitz zugeschnitten
- Latexhandschuhe (Ansell Medical)
- 25 ml Becherglas (Schott, Mainz), autoklaviert und auf Eis vorgekühlt
- Styroporbehälter mit Eis
- 2 Scheren: mittel, stumpf, gebogen, autoklaviert (Aesculap, Tuttlingen)
- Punktionskanüle, stumpf, Innendurchmesser 2 mm, autoklaviert
- 25 ml Erlenmeyerkolben mit Schliff (Schott, Mainz), autoklaviert und Polystopfen, mit Ethanol 80 % desinfiziert
- 50 ml Polypropylen-Zentrifugenröhrchen ohne Fuß (Greiner)
- Petri-Schalen (60 x 15 mm, Nr. 1016, Falcon, Oxnard C. A., USA)
- Pipettierhilfe mit Silikonschlauch und autoklavierter, ausgezogener Pasteurpipette
- mehrere 10 und 20 ml Spritzen (B. Braun, Melsungen)
- Kanülen (Terumo, Frankfurt)
- sterile Latexhandschuhe (Johnson & Johnson, Norderstedt)
- Mundschutz (Johnson & Johnson, Norderstedt)
- Langhaarschneider (Privileg)
- Waage (Sartorius laboratory, Göttingen), Wägelöffel und -papier
- Laminar-Flow-Bench (LaminAir, TL 2472, Heraeus, Hanau)
- Schüttelwasserbad mit Halter für 25 ml Erlenmeyerkolben (Nr. 1083, GFL)
- Tischzentrifuge (Megafuge 1.0, Heraeus, Hanau)
- Invertoskop (Labovert FS, Leitz, Wetzlar)
- Vortex-Mischer (Ika-Combimag RCH)
- Stereolupe (Wild M 38, Leitz, Wetzlar)

Herstellung der Lösungen

Krebs-Ringer-HEPES-Puffer (KRH) (25 mM)

Geräte und Reagenzien für 1 l:

- NaCl p.a. 6,93 g (Nr. 3957.1, Roth, Karlsruhe)
- KCl reinst 0,35 g (Nr.4935., Merck, Darmstadt)
- KH₂PO₄ p.a. 0,16 g (Nr. 4873., Merck, Darmstadt)
- MgSO₄ x 7 H₂O p.a. 0,29 g (Nr. 5886., Merck, Darmstadt)
- CaCl₂ x 2 H₂O reinst 0,37 g (Nr. 2381, Merck, Darmstadt)
- HEPES Lösung (1 M) 25 ml (Nr. 15630-056, Gibco, Paisley / Scotland)
- NaOH (3 M) ca. 5 ml (Klinikumsapotheke Gießen)
- Aqua destillata ca. 1 I (Pharmacia & Upjohn GmbH)
- Waage (Sartorius laboratory, Göttingen)
- Wägelöffel und -papier
- Becherglas (Schott, Mainz) mit Magnetrührstab
- Magnetrührer (Ika-Combimag RCH)
- pH-Meter (Nr. 61, Schott, Mainz)
- Messzylinder (Hirschmann)

Ansetzen des Puffers

die abgewogenen Salze in ¾des Wassers lösen, HEPES-Lösung dazugeben, pH-Wert mit NaOH auf 7,4 einstellen, Lösung in einem Messzylinder auf 1 l auffüllen; Lagerung im Kühlschrank

Rinderserumalbumin (BSA) 5 % und 0,25 %

- Rinderserumalbumin (BSA, Nr. A-7906, Sigma, München)
- Krebs-Ringer-HEPES-Puffer (KRH)
- NaOH (3 M) (Klinikumsapotheke Gießen)
- · Waage (Sartorius laboratory, Göttingen), Wägelöffel und -papier
- Becherglas (Schott, Mainz) mit Magnetrührstab
- Magnetrührer
- pH-Meter (Nr. 61, Schott, Mainz)

- Messzylinder (Hirschmann)
- Druckfiltrationsanlage (Sartorius, Göttingen), Zylinderauslaß und Siebe steril
- Filter: Zellulose-Nitrat, Poren: 3,0 μm, 0,8 μm, 0,45 μm, 0,2 μm, Glasfiberfilter (Sartorius, Göttingen)
- sterile Flaschen

Ansetzen der Lösungen

a) 1 I BSA 5 % in KRH

50 g BSA in etwa 750 ml KRH lösen, pH-Wert bei 20-25 °C mit NaOH auf 7,5 einstellen, Lösung quantitativ in einen Messzylinder überführen, mit KRH auf 1 l auffüllen

b) 1 I BSA 0,25 % in KRH50 ml BSA 5 % in einen Messzylinder geben und auf 1 I auffüllen

Reinigung (Filtration) und Sterilfiltration

a) BSA 5 % in KRH

BSA 5 % durch einen Glasfiberfilter und Filter der Porengröße 3,0 µm, 0,8 µm, 0,45 µm filtrieren, anschließend durch einen Filter der Porengröße 0,2 µm in sterile Flaschen sterilfiltrieren, ein Aliquot (ca. 1 ml) zur Kontrolle auf Keime in die Mikrobiologie schicken; Lagerung im Kühlschrank

b) BSA 0,25 % in KRH

BSA 0,25 % durch einen Filter der Porengröße 0,45 µm filtrieren, anschließend durch einen Filter der Porengröße 0,2 µm in sterile Flaschen sterilfiltrieren, ein Aliquot (ca. 1 ml) zur Kontrolle auf Keime in die Mikrobiologie schicken; Lagerung im Kühlschrank

Dextranlayer 1,040, 1,083, 1,098, 1,106, 1,129 g/cm³

- Dextran industrial grade (Nr. D-3759, Sigma, München)
- Krebs-Ringer-HEPES-Puffer (KRH), Dichte 1,005 g/ml
- Waage (Sartorius laboratory, Göttingen), Wägelöffel
- 5 Bechergläser (Schott, Mainz) mit Magnetrührstab

- Magnetrührer (Ika-Combimag RCH)
- Densitymeter (DMA 35, Anton Paar KG)
- Druckfiltrationsanlage (Sartorius, Göttingen), Zylinderauslass und Siebe steril
- Filter: Zellulose-Nitrat, Poren: 3,0 μm, 0,8 μm, 0,45 μm, 0,2 μm, Glasfiberfilter (Sartorius, Göttingen)
- sterile Flaschen

Ansetzen der Layer und Dichtekontrolle

Dextranlayer 40: 10,2 g Dextran in 100 ml KRH lösen

Dextranlayer 83: 25,2 g Dextran in 100 ml KRH lösen

Dextranlayer 98: 31,0 g Dextran in 100 ml KRH lösen

Dextranlayer 106: 33,9 g Dextran in 100 ml KRH lösen

Dextranlayer 129: 132,0 g Dextran in 100 ml KRH lösen

die Dichten der Layer bei Raumtemperatur mit dem Densitymeter kontrollieren

Reinigung (Filtration) und Sterilfiltration

alle Dextranlayer durch einen Glasfiberfilter und Filter der Porengröße 3,0 µm, 0,8 µm, 0,45 µm filtrieren, anschließend durch einen Filter der Porengröße 0,2 µm sterilfiltrieren, je ein Aliquot zur Kontrolle auf Keime in die Mikrobiologie schicken; Lagerung im Kühlschrank

2.1.4 Inselkultur

2.1.4.1 Kulturbedingungen

Kulturmedium waren 100 ml glutaminfreies RPMI 1640, dem 10 ml fetales Kälberserum, 1 ml L-Glutamin, 1 ml Penicillin-Streptomycin, 1 ml Fungizone, 0,5 ml Ofloxacin, 0,15 ml Gentamycin und 1 ml Hepespuffer (1 M) zugesetzt wurde.

Die Inseln wurden in einem Brutschrank bei einer Temperatur von 37°C, einem CO₂-Gehalt von 5 % und einer relativen Luftfeuchtigkeit von 95 % kultiviert.

Geräte und Reagenzien:

- Kulturmedium RPMI 1640 (Nr. 041-01870 M, Gibco, Paisley / Scotland)
- fetales Kälberserum (Nr. S 0115, Seromed, Berlin)
- L-Glutamin (Nr. 16-801-46, Flow-Laboratories, UK)
- Penicillin-Streptomycin (5000 IU/ml und 5000 mcg/ml, Nr. 16-700-48, Flow Laboratories, UK)
- Fungizone (Flow-Laboratories, UK)
- Ofloxacin (Hoechst, Frankfurt)
- Gentamycin (Nr. 043-5750H, Gibco, Paisley / Scotland)
- Hepespuffer 1 M (Nr. 15630-056, Gibco, Paisley / Scotland)
- Brutschrank (B 5061 EK/CO₂, Hereaus, Hanau)

2.1.4.2 Anlegen der Kultur

Ebenso wie die Isolation der Langerhans Inseln erfolgte auch das Anlegen der Kultur unter sterilen Bedingungen unter einer Laminar-Flow-Bench. Vor dem letzten Arbeitsschritt der Isolation wurden 3-4 Petri-Schalen vorbereitet, in die je 10 ml steril filtriertes Kulturmedium gegeben wurde. In jede Petri-Schale wurden ca. 250 Inseln isoliert, mit einem Deckel abgedeckt und beschriftet in den Brutschrank gestellt.

Geräte und Reagenzien:

- Laminar-Flow-Bench (LaminAir TL 2472, Heraeus, Hanau)
- Petri-Schalen 60 x 15 mm (Nr. 1016, Falcon, Oxnard C. A., USA)
- Kulturmedium wie oben beschrieben
- sterile Handschuhe (Johnson & Johnson, Norderstedt)
- Einmalspritzen 10 ml (B. Braun, Melsungen)
- Einmalkanülen 18 G (Terumo, Frankfurt)
- Sterilfilter (Minisart NML, Sartorius, Göttingen)

2.1.4.3 Mediumwechsel

Der Mediumwechsel wurde am Tag nach der Isolation und danach alle zwei Tage durchgeführt. Unter sterilen Bedingungen wurden die Petri-Schalen aus dem Brutschrank entnommen und der Mediumwechsel unter einer Laminar-Flow-Bench vorgenommen. Zunächst wurde in neue Petri-Schalen 10 ml

Kulturmedium steril filtriert. Durch konzentrisches Kreisen der inkubierten Petri-Schale wurde nun versucht, die Inseln in der Mitte der Schale zu zentrieren. Mit einer sterilen 10 ml Spritze mit Einmalkanüle wurden die Inseln nun aufgenommen, in die vorbereitete Petri-Schale überführt, mit dem Deckel abgedeckt und in den Brutschrank zurückgestellt.

Geräte und Reagenzien:

- Laminar-Flow-Bench (LaminAir TL 2472, Heraeus, Hanau)
- sterile Handschuhe (Johnson & Johnson, Norderstedt)
- Mundschutz (Johnson & Johnson, Norderstedt)
- Einmalspritzen 10 ml (B. Braun, Melsungen)
- Einmalkanülen 18 G (Terumo, Frankfurt)
- Sterilfilter (Minisart NML, Sartorius, Göttingen)
- Petri-Schalen 60 x 15 mm (Nr. 1016, Falcon, Oxnard C. A., USA)
- Kulturmedium wie oben beschrieben

2.1.5 Mikroverkapselung

Bei der Mikroverkapselung werden einzelne Inseln von einer dünnen Alginat-Hülle umschlossen, wodurch eine die Insel umgebende Austauschfläche entsteht, die das Transplantat vor dem nicht supprimierten Immunsystem des Empfängers schützt.

Die Inseln wurden nach der Isolation mindestens einen Tag kultiviert. Sie wurden dann in ein kleines Eppendorf-Reaktionsgefäß gegeben und nach Sedimentation der Überstand des Kulturmediums mit einer sterilen Einmalspritze entfernt und durch 3 %ige Alginat-Lösung ersetzt. Durch mehrfaches Bewegen mit einer Kolbenhubpipette wurde versucht, die Inseln möglichst gleichmäßig in der Alginat-Lösung zu verteilen. Die homogene Suspension wurde in eine Pipettenspitze aufgenommen, auf eine einfache Sprühdüse (0,5 mm) aufgesetzt und langsam mit einem Druck von 2 kPa durchgedrückt. Beim Aussprühen der Inselsuspension bildeten Alginattröpfchen, in denen je eine, maximal zwei hseln eingeschlossen waren. Diese wurden in einem 250 ml Becherglas mit Bariumchlorid-Lösung, die

während des Einsprühens gerührt wurde, aufgefangen und durch Vernetzung mit Barium sofort geliert. Nach wenigen Minuten wurde das Becherglas vom Rührgerät genommen und die Bariumchlorid-Lösung dekantiert. Anschließend wurden die Gelkugeln dreimal mit je 40 ml NaCl-MOPS gewaschen. Die mikroverkapselten Inseln wurden mit einer abgeschnittenen, sterilen Pipettenspitze in eine Kulturschale überführt und mit sterilem Kulturmedium aufgeschwemmt. Bis zur Transplantation wurden die Inseln mindestens einen Tag unter Standardbedingungen kultiviert.

Herstellung der Lösungen

RPMI-Alginat-Lösung

Geräte und Reagenzien:

- RPMI 1640 + 2 mM Glutamin + 100 U/100 μg/ml Penicillin/Streptomycin (Gibco, Paisley / Scotland)
- · Chelex-Beads
- Alginat-Pulver
- Salzsäure 5 M (Merck, Darmstadt)
- Hepes-Puffer (Nr. 15630-056, Gibco, Paisley / Scotland)
- pH-Meter (Nr. 61, Schott, Mainz)
- Ultra-Turrax (KMO 2, Janke & Kunkel)

Ansetzen der Lösung

zu RPMI-Kulturmedium Chelex-Beads geben, 5 min rühren, anschließend Chelex-Beads durch Filtration abtrennen und den pH-Wert mit 5 M Salzsäure auf 7,4 einstellen, Alginat-Pulver im RPMI-Medium lösen und mit dem Ultra-Turrax homogenisieren, pH-Wert mit Hepes-Puffer auf 7,4 einstellen

Entkeimung der Alginat-Lösung

Geräte und Reagenzien:

- foetales Kälberserum (Nr. S 0115, Seromed, Berlin)
- Druckfiltrationsanlage (Sartorius, Göttingen)
- Filter: Zellulose-Nitrat, Poren: 3,0 μm, 0,8 μm, 0,45 μm, 0,2 μm (Sartorius, Göttingen)

Alginat-Lösung durch Filter der Porengröße 3,0 μ m, 0,8 μ m und 0,45 μ m filtrieren und durch einen Filter der Porengröße 0,2 μ m sterilfiltrieren, anschließend Zusetzen von 10 % foetalem Kälberserum und erneute Sterilfiltration durch einen Filter mit der Porengröße 0,2 μ m; Lagerung im Kühlschrank

BaCl₂-MOPS

Geräte und Reagenzien:

- Aqua destillata 100 ml (Pharmacia & Upjohn GmbH)
- Bariumchlorid-Dihydrat 20 mmol/l 0,49 g (Nr. 1719., Merck, Darmstadt)
- Morpholino-Propan-Sulfonsäure 10 mmol/l 0,21 g (Nr. M-6270, Sigma, München)
- Natriumchlorid 0,72 g (Nr. 3957.1, Roth, Karlsruhe)
- Natronlauge 3 M (Klinikumsapotheke Gießen)
- pH-Meter (Nr. 61, Schott, Mainz)

Ansetzen der Lösung

die abgewogenen Salze in Aqua dest. lösen und mit NaOH (3 M) den pH-Wert auf 7,4-7,5 einstellen; Lösung vor Gebrauch autoklavieren

NaCl-MOPS

Geräte und Reagenzien:

- Aqua destillata 100 ml (Pharmacia & Upjohn GmbH)
- Morpholino-Propan-Sulfonsäure 10 mmol/l 0,21 g (Nr. M-6270, Sigma, München)
- Natriumchlorid 0,90 g (Nr. 3957.1, Roth, Karlsruhe)
- Natronlauge 3 M (Klinikumsapotheke Gießen)
- pH-Meter (Nr. 61, Schott, Mainz)

Ansetzen der Lösung

abgewogene Salze in Aqua lösen und den pH-Wert mit NaOH 3 M auf 7,4-7,5 einstellen; Lösung vor Gebrauch autoklavieren

2.1.6 Transplantation

Die Transplantation der Tiere erfolgte frühestens 28 Tage nach Streptozotocin-Gabe.

Bei dieser Arbeit wurden zwei unterschiedliche Transplantationsorte gewählt. Einer Gruppe wurden mikroverkapselte Inseln intraperitoneal transplantiert, bei der anderen Gruppe erfolgte die Transplantation freier Inseln unter die Nierenkapsel.

Die Tiere wurden in Äthernarkose operiert und je nach Transplantationsort im Abdominalbereich oder im Bereich der rechten Flanke rasiert und der entsprechende Bereich anschließend mit Ethanol 70 % desinfiziert.

2.1.6.1 Intraperitoneale Transplantation

Zunächst wurden ca. 3500 mikroverkapselte Inseln steril ohne Kanüle in eine 10 ml Spritze aufgenommen. Nach dem Sedimentieren der Inseln wurde der Überstand vorsichtig dekantiert, so dass ein Restvolumen von Beads und Medium von ca. 3 ml übrigblieb.

Das Tier wurde in Rückenlage gebracht und zunächst alle Bauchwandschichten bis auf das Peritoneum in der Medianlinie mit einem ca. 3 cm langen Schnitt vorsichtig durchtrennt. Anschließend erfolgte die Eröffnung der Bauchhöhle, wobei zur späteren Naht von Peritoneum, Bauchmuskeln und Faszien mit Vicryl-Fäden drei Knoten vorgelegt wurden. Mit Hilfe von zwei Pinzetten wurde das Peritoneum offen gehalten und die Beads samt Medium in die Bauchhöhle injiziert. Die vorgelegten Knoten wurden jetzt zugezogen und das Fell mit Klammern adaptiert. Abschließend wurde die Wunde mit Sprühverband versorgt.

2.1.6.2 Transplantation unter die Nierenkapsel

Etwa 2500 Inseln wurden in ein Eppendorf-Reaktionsgefäß gegeben und das Medium möglichst vollständig abgezogen. Das verbliebene Pellet wurde nun in einen Butterfly, auf den eine 1 ml-Spritze aufgesetzt war, so aufgezogen, dass sich die Inseln im vorderen Anteil des Butterflys befanden.

Das Tier wurde in Linksseitenlage gebracht und das Abdomen durch einen Flankenschnitt unter dem rechten Rippenbogen eröffnet. Die rechte Niere wurde nun nach extraabdominell luxiert und mit einem Tupfer festgehalten. Mit dem Butterfly wurde die Niere vorsichtig polwärts durchstochen, bis unter der Kapsel die Spitze zu sehen war. Jetzt wurden die Inseln vorsichtig injiziert. Dabei war darauf zu achten, dass die Nierenkapsel nicht von der Spitze des Butterflys perforiert wurde. Nach Injektion der Inseln wurde der Butterfly behutsam entfernt und die Einstichstelle zur Blutstillung mit Hilfe einer Kompresse komprimiert. Anschließend wurde die Niere in das Abdomen zurückverlagert und die Bauchdecken mit einem Vicryl-Faden adaptiert. Das Fell wurde geklammert, die Wunde abschließend mit einem Sprühverband versorgt.

- Butterfly
- Einmalspritzen (B. Braun, Melsungen)

- Eppendorf-Reaktionsgefäß
- Ethanol 80 % (Klinikumsapotheke Gießen)
- Äther zur Narkose (Nr. A 7202, ASID Bonz GmbH)
- Nahtmaterial
- Sprühverband

2.1.7 Organentnahme

Am Ende des Beobachtungszeitraumes erfolgte die Organentnahme. Die Ratten wurden zunächst mit Ather narkotisiert, der Bauch rasiert und mit Ethanol 70 % desinfiziert. Anschließend wurden die Tiere in Rückenlage gebracht und durch Punktion des Herzens Blut gewonnen, wovon ca. 5 ml in ein Trasylol-EDTA-Plasma-Röhrchen gegeben wurden, der Rest wurde in Zentrifugen-Spitzröhrchen später zentrifugiert einem und das Serum eingefroren. Den toten Tieren wurde zunächst durch Flankenschnitte das Abdomen großzügig eröffnet und Pankreas und beide Nieren freipräpariert. Bei intraperitoneal transplantierten Tieren wurden zusätzlich eine Biopsie des Fettgewebes im Bereich von Magen und Pankreas, sowie freie, mikroverkapselte Inseln aus der Bauchhöhle entnommen.

Pankreas und Biopsie wurden in Bouin fixiert. Die Inseln wurden zunächst in Fibrin eingebettet und als "Clot" ebenfalls in Bouin gegeben. Die Nieren wurden nach Entnahme und Spülung in physiologischer Kochsalzlösung in Scheiben geschnitten. Bei Tieren, die unter die Nierenkapsel transplantiert waren, wurde wie bei allen anderen, auch die linke Niere in Bouin, die rechte Niere jedoch nicht wie bei den übrigen nur in flüssigem Stickstoff, sondern je zur Hälfte in Bouin und flüssigem Stickstoff fixiert.

- Äther zur Narkose (Nr. A 7202, ASID Bonz GmbH)
- Ethanol 70 % (Klinikumsapotheke Gießen)
- Trasylol 100 000 KIE (Nr. 48764, Bayer)
- Hepato Quick (Nr. 126543, Boehringer, Mannheim)
- Testthrombin 30 IU/ml (Boehringer, Mannheim)

- Calciumchlorid
- EDTA-Plasmaröhrchen
- Trasylol 100 000 KIE (Nr. 48764, Bayer)
- NaCl 0,9 % (B. Braun, Melsungen)
- Einmalspritzen (B. Braun, Melsungen)
- Einmalkanülen (Terumo, Frankfurt)
- Petri-Schalen 60 x 15 mm (Nr. 1016, Falcon, Oxnard C. A., USA)
- Schere: groß, stumpf, gebogen (Aesculap, Tuttlingen)
- Schere: klein, spitz (Aesculap, Tuttlingen)
- Pinzette: anatomisch, spitz (Aesculap, Tuttlingen)
- Rollrandgläser 13 ml (Sarstedt, Nümbrecht)

2.1.8 Histologische Methoden

2.1.8.1 Fixierung in Bouin

Die Bouin'sche Stammlösung besteht aus drei Teilen Pikrinsäure 1,2 % und einem Teil filtriertem Formaldehyd 37 %. Der Fixationansatz wurde immer frisch angesetzt, indem zu 25 ml der Stammlösung 1,2 ml Eisessig gegeben wurde. Diese Lösung wurde in Rollrandgläschen gefüllt und die Gewebestücke darin 24 Stunden dunkel aufbewahrt. Nach dieser Zeit wurde die Lösung verworfen und die Präparate bis zu ihrer weiteren Aufarbeitung in Ethanol 80 % aufgehoben.

Geräte und Reagenzien:

- Pikrinsäure 1,2 % (Nr. 1.00604.2500, Merck, Darmstadt)
- Formaldehyd 37 % (Nr. 1.03999, Merck, Darmstadt)
- Eisessig (Nr. 63., Merck, Darmstadt)
- Ethanol 80 % (Klinikumsapotheke Gießen)
- Rollrandgläser 13 ml mit Deckeln (Sarstedt, Nümbrecht)

2.1.8.2 Einbettung

Die in Ethanol 80 % fixierten Organstückchen wurden in kleine beschriftete Plastikkörbchen gelegt und nach folgendem Schema in Paraplast eingebettet:

Ethanol 96 % 0,5-1 h

Ethanol 99 % 0,5-1 h

EBE:99 % Ethanol (1:2) 1 h

EBE:99 % Ethanol (2:1) 1 h

reines EBE 0,5 h

reines EBE 0,5 h

Paraplast über Nacht in einem Brutschrank bei ca. 60 °C

Einbetten der Organstückchen am Tissue-Tek II Einbettautomat

Geräte und Reagenzien:

- Ethanol 96 %, 99 % (Klinikumsapotheke Gießen)
- EBE = Essigsäure-N-butylester (Nr. 1.01974, Merck, Darmstadt)
- Becherglas 500 ml (Schott, Mainz)
- Paraplast (Medim-Plast 58)
- Brutschrank
- Tissue-Tek II Einbettautomat (Vogel, Gießen)
- Tissue-Tek II Kassetten und Edelstahlrähmchen (Vogel, Gießen)

2.1.8.3 Anfertigen von Serienschnitten

An einem Serienschnittmikrotom wurden 7-8 µm dicke Schnitte angefertigt. Die Glättung der Schnitte erfolgte auf einem Wasserbad mit einer Temperatur von ca. 40°C, dem einige Tropfen Eiweißglycerin zugesetzt wurden. Pro Objektträger wurden zwei Schnitte aufgetragen und zum Trocknen für 24 Stunden in einen Wärmeschrank gestellt.

- Serienschnittmikrotom (2030 Biocut, Reichert-Jung)
- C-Messer (R 35, Feather)
- Wasserbad (Nr. 6321, Technicon)
- Eiweißglycerin (Chroma-Gesellschaft, Schmid GmbH, Stuttgart)
- Objektträger 76 x 26 mm (Nr. 011101, Menzel-Gläser, Braunschweig)
- Pinsel
- Wärmeschrank

2.1.8.4 Hämatoxilin-Eosin-Färbung

Die HE-Färbung wurde als Übersichtsfärbung bei jedem fünften Objektträger durchgeführt. Dazu wurden die Objektträger in Färbekörbchen gestellt und wie folgt behandelt:

Rotihistol 2 x 8 min

Ethanol 99 %, 96 %, 80 %, 70 %, 50 % je 2 min

Aqua destillata 2 min

Hämalaun 8 min

fließendes Leitungswasser 8 min

Aqua destillata kurz

Eosin 2 min

Ethanol 70 % 20 sec

Ethanol 80 % 30 sec

Ethanol 96 % 1 min

Ethanol 99 % 2 x 2 min

Rotihistol 2 x 8 min

Eindeckeln mit DePeX

- Färbekörbchen (Fisher)
- Färbeküvetten (Fisher)
- Rotihistol (Nr. 6640.1, C. Roth)
- Ethanol, verschiedene Konzentrationen (Klinikumsapotheke Gießen)
- Mayers Hämalaunlösung (Nr. 9249, Merck, Darmstadt)
- Eosin G (Nr. 15935, Merck, Darmstadt), 1 g Eosin in 100 ml Aqua dest. lösen und vor Gebrauch filtrieren und einige Tropfen Eisessig (Nr. 63., Merck, Darmstadt) hinzugeben
- DePeX (Nr. 361254D, BDH)
- Deckgläser 24 x 50 mm (Menzel-Gläser, Braunschweig)

2.1.8.5 PAS-Färbung

Die PAS-Färbung wurde in der vorliegenden Arbeit zur Beurteilung der diabetischen Nephropathie herangezogen. Sie erfolgte nach der modifizierten Form von A. Weiss ohne Sulfitwasser und wurde folgendermaßen durchgeführt:

Entparaffinieren und rehydrieren wie bei HE-Färbung

Aqua destillata kurz

Perjodsäure 1 % (frisch angesetzt) 5 min

fließendes Leitungswasser 5-10 min

Aqua destillata 2-3 min

Schiffsches Reagenz 20-30 min

fließendes Leitungswasser 10-20 min

Aqua destillata 10 sec

Mayers Hämalaun 7 min

fließendes Leitungswasser 10 min

Aqua destillata 1 min

Ethanol 70 %, 80 % kurz

Ethanol 96 % 2 min

Ethanol 100 % 2 x 2 min

Rotihistol 2 x 8 min

Eindeckeln mit DePeX

- Färbekörbchen (Fisher)
- Färbeküvetten (Fisher)
- Rotihistol (C. Roth, Nr. 6640.1)
- Ethanol, verschiedene Konzentrationen (Klinikumsapotheke Gießen)
- Mayers Hämalaunlösung (Nr. 9249, Merck, Darmstadt)
- Perjodsäure 1 %: 2 g Perjodsäure (Nr. 524., Merck, Darmstadt) in 200 ml Aqua destillata (Klinikumsapotheke Gießen) frisch lösen
- Schiffsches Reagenz (Nr. 1.09034., Merck, Darmstadt), darf bei Rosafärbung nicht mehr verwendet werden

- DePeX (Nr. 361254D, BDH)
- Deckgläser 24 x 50 mm (Menzel-Gläser, Braunschweig)

2.1.8.6 PAP-Färbung (Peroxidase-Antiperoxidase-Methode)

Diese Färbung dient zum Nachweis von Insulin und wurde an Paraffinschnitten von Pankreas, Nieren (nach Inseltransplantation unter die Nierenkapsel), Biopsien aus dem Peritoneum und in Fibrin eingebetteten Inseln (Clot) durchgeführt. Das Insulin wird mit einem spezifischen Antikörper nachgewiesen. Dieser ist über einen Brückenantikörper mit dem PAP-Komplex verbunden. Der Enzymkomlex reagiert mit einem passenden Substrat und führt zur Anfärbung des Gewebes.

Durchführung:

Rotihistol 2 x 8 min

Ethanol 99 %, 96 % je 3 min

PBS-Puffer 3 min

H₂O₂ 3 % 5 min

PBS-Puffer kurz

Kaninchenserum 30 min

Insulinantikörper 60 min

PBS-Puffer 2 x 5 min

Brückenantikörper 30 min

PBS-Puffer 2 x 5 min

PAP-Komplex 30 min

Tris-Puffer 5 min

DAB-Substratlösung 5 min

Aqua destillata kurz

Hämalaun 2 min

Leitungswasser 5-10 min

Eindeckeln mit Glyceringelatine

Geräte und Reagenzien:

- Färbekörbchen (Fisher)
- Färbeküvetten (Fisher)
- Rotihistol (C. Roth, Nr. 6640.1)
- Ethanol, verschiedene Konzentrationen (Klinikumsapotheke Gießen)
- H₂O₂ 30 % (Nr. 1.08597., Merck), 1:10 in Aqua destillata (Klinikumsapotheke Gießen) verdünnt
- PBS (Nr. 3613, BAG)
- Kaninchen-Normalserum (Nr. X-0902, Dakopatts, Hamburg)
- Insulinantikörper (Nr. A-0564, Dakopatts, Hamburg)
- Brückenantikörper (Nr. Z-0108, Dakopatts, Hamburg)
- PAP-Komplex guinea pig (Nr. 623-005-025, Dianova, Hamburg)
- Tris-Puffer: 6 g Tris (Nr. 1.08382.0500, Merck, Darmstadt) in 1 l NaCl 0,9 % (B. Braun, Melsungen) lösen, mit 6 N HCl auf pH 7,6 einstellen
- DAB-Substratlösung: 6 mg 3,3 Diaminobenzidin Tetrahydrochlorid (Nr. 32750, Fluka) in 10 ml 0,05 M Tris-Puffer lösen, 0,1 ml H₂O₂ 3 % (Nr. 1.08597, Merck, Darmstadt) hinzugeben
- Mayers Hämalaunlösung (Nr. 9249, Merck, Darmstadt)
- Glyceringelatine (Nr. 9242, Merck, Darmstadt)
- Deckgläser 24 x 50 mm (Menzel-Gläser, Braunschweig)

2.1.9 Blutzuckerbestimmung

Die Bestimmung des Blutzuckerspiegels erfolgte immer postprandial. Nach Punktion der Schwanzspitze wurde Blut in eine Kapillare aufgenommen und die Blutglukosekonzentration mit dem "Glucose-Analyser 2" der Firma Beckmann bestimmt.

Das Prinzip der Glukosemessung basierte auf der Reaktion von Glukose und Sauerstoff zu Glukonsäure und Wasserstoffperoxid mit Hilfe von Wasser und des Enzyms Glukoseoxydase. Die Sauerstoffkonzentration wurde fortlaufend gemessen, wobei das Maximum der Abnahmegeschwindigkeit der Glukosekonzentration direkt proportional war.

2.1.10 Bestimmung des Körpergewichts

Die Kontrolle des Körpergewichts erfolgte bei allen Tieren im postprandialen Zustand jeweils zur gleichen Tageszeit. Dazu wurden die Tiere in eine Boxwaage (Wägebereich bis 2000 g) gesetzt und das Gewicht abgelesen.

Material:

• Boxwaage (Soehnle)

2.1.11 Metabolischer Status bei Versuchsende

2.1.11.1 Untersuchung im Stoffwechselkäfig

Die Untersuchungen im Stoffwechselkäfig wurden bei jeder Ratte vierzehn und sieben Tage vor dem Explantationsdatum für jeweils 24 Stunden vorgenommen.

Der Gitterboden der Käfige ermöglicht es, Urin und Kot getrennt zu sammeln. Futter stand den Tieren ad libitum zur Verfügung. Das Wasser wurde über eine Trinkflasche gegeben.

2.1.11.1.1 Bestimmung der Trinkmenge

Die Trinkflaschen wurden zu Beginn der Untersuchung gefüllt und gewogen und nach 24 Stunden erneut gewogen. Aus der Differenz konnte die Trinkmenge berechnet werden.

2.1.11.1.2 Bestimmung von verschiedenen Parametern im Urin

Das Urinvolumen konnte an der Skalierung des Sammelgefäßes abgelesen werden. Bis zu weiteren Untersuchungen wurde der Urin portioniert und beschriftet eingefroren.

 Mit Hilfe von Combur¹⁰-Stix sollten orientierend verschiedene Parameter, wie zum Beispiel pH-Wert, Ketonkörper, Leukozyten bestimmt werden, die Ergebnisse der Pilotversuche zeigten jedoch eine zu geringe Sensitivität des Testes für die vorliegende Fragestellung.

- Mit Hilfe der Hexokinase-Methode wurde die Glukosemenge im Sammelurin bestimmt.
- Die Bestimmung der Albuminurie erfolgte nephelometrisch durch Prof. Dr.
 Schleicher, Medizinische Klinik Abt. IV der Universität Tübingen.

Geräte und Reagenzien:

• Combur¹⁰-Test (Nr. 1203479, Boehringer, Mannheim)

2.1.11.2 Bestimmung von Inselhormonen im Serum

Die Bestimmung der Seruminsulinkonzentration erfolgte radioimmunologisch. Hierzu wurde das bei der Explantation gewonnene Blut zentrifugiert und das Serum zunächst eingefroren. Später wurde nach Aufbereitung der Proben mit Hilfe des "Rat insulin RIA kit" (Cat. # RI-13K) der Firma Linco die Seruminsulinkonzentration bestimmt.

Zur Bestimmung der Serumglukagonkonzentration wurde in ähnlicher Weise vorgegangen. Bei der Explantation wurde Blut in ein Trasylol-EDTA-Plasma-Röhrchen abgenommen und das Plasma nach Zentrifugation eingefroren. Entsprechend der Anleitung des "Glucagon RIA kit" (Cat. # GL-32K) der Firma Linco wurde die Glukagonkonzentration in den Proben bestimmt.

2.1.12 Fotodokumentation

Histologische Ergebnisse wurden mit einer Olympus BH 2-Kamera, die dem Fototubus des Mikroskops aufgeschraubt wurde, auf einen Kodak Ectachrome 64 T Film photographiert.

2.1.13 Statistische Methoden

Für alle untersuchten Parameter wurden im Rahmen der deskriptiven Statistik sowohl der arithmetische Mittelwert als auch die einfache Standardabweichung der Ergebnisse berechnet.

Der statistische Vergleich der Daten zweier Tiergruppen zur Überprüfung einer Unterschiedshypothese, das heißt die Ermittlung der Signifikanz eines

festgestellten Unterschiedes, erfolgte durch Anwendung der Varianzanalyse (ANOVA) und des Dunn-Multiple-Comparisons Tests sowie des Scheffe Tests auf einem Signifikanzniveau von p< 0,05.

Die Auswertung erfolgte unter Mitarbeit des Instituts für Medizinische Informatik der Justus-Liebig-Universität in Gießen.

2.2 Versuchsgruppen

Um Unterschiede zwischen den Lieferungen auszuschließen, wurden die Tiere innerhalb einer Lieferung nach dem Zufallsprinzip auf die Versuchsgruppen aufgeteilt.

Es gab zwei Transplantationsgruppen. Zum einen diabetische Lewis-Ratten, denen mikroverkapselte syngene Inseln intraperitoneal transplantiert wurden und zum anderen Streptozotocin-diabetische Tiere, denen Lewis-Inseln unter die Nierenkapsel transplantiert wurden.

Die drei Kontrollgruppen wurden gebildet von einer Gruppe stoffwechselgesunder Lewis-Ratten, einer Gruppe Streptozotocin-diabetischer Ratten und den Tieren, die mit Insulin behandelt wurden.

2.3 Metabolische Verlaufsparameter

2.3.1 Blutzucker

Der Blutzucker wurde bei allen Tieren nach Streptozotocin-Gabe alle 3-4 Tage bis zur Transplantation gemessen. Wurden die Tiere nicht transplantiert, sondern der diabetischen Kontrollgruppe zugeteilt, so wurde der Blutzucker bis zum Versuchsende wöchentlich kontrolliert.

Nach der Transplantation, sowohl unter die Nierenkapsel als auch intraperitoneal, wurde bei den Ratten die Blutglukose in den ersten vier Wochen alle 3-4 Tage bestimmt, danach einmal in der Woche.

Bei den gesunden Tieren erfolgten die Blutzuckerkontrollen wöchentlich.

2.3.2 Körpergewicht

Das Körpergewicht aller diabetischen Tiere wurde wöchentlich bestimmt. Wurden die Tiere der diabetischen Kontrollgruppe zugeteilt oder transplantiert so wurden die Tiere bis zum Tag 28 alle 3-4 Tage gewogen, danach einmal in der Woche.

Die Gewichtskontrolle der gesunden Tiere erfolgte wöchentlich.

3.0 Ergebnisse

3.1 Diabetesinduktion

Zur Dokumentation der diabetischen Stoffwechsellage wurden bei den Tieren nach Streptozotocin-Gabe bis zum Zeitpunkt der Transplantation einmal wöchentlich Blutzucker und Gewicht kontrolliert.

Bereits bei der ersten Messung nach Diabetesinduktion lag der Blutzucker bei $333,29 \pm 72,44$ mg/dl, mit einem Minimum von 181 mg/dl. Zwei Wochen später betrug das Minimum 264 mg/dl, das heißt alle Tiere zeigten eine deutliche diabetische Stoffwechsellage. Bis zur Transplantation konnte ein mittlerer Blutzucker von $418,24 \pm 92,89$ mg/dl gemessen werden.

Das Körpergewicht nahm nach Streptozotocin-Gabe deutlich ab. Es betrug bei der ersten Messung 262,12 \pm 23,12 g und fiel bis zur Transplantation auf 232,03 \pm 25,86 g ab.

Des weiteren änderte sich mit zunehmender Dauer des Diabetes das Aussehen der Tiere; das Fell wurde struppig und stumpf. Außerdem fiel eine verminderte Aktivität der diabetischen Ratten auf.

	Blutzucker (mg/dl)	Körpergewicht (g)
Vor STZ	66,67 ± 11,64	290,00 ± 38,10
Woche 1	$333,29 \pm 72,44$	262,12 ± 23,12
Woche 2	$377,26 \pm 77,20$	257,71 ± 20,50
Woche 3	$395,33 \pm 79,98$	$250,84 \pm 20,83$
Woche 4	402,51 ± 90,44	241,57 ± 23,02
Woche 5	$419,74 \pm 88,46$	236,61 ± 23,86
Woche 6	$418,24 \pm 92,89$	$232,03 \pm 25,86$

Abbildung 1

Verlauf von Blutzucker und Körpergewicht vor und nach Diabetesinduktion mit Streptozotocin (STZ); erfasst wurden im Mittel 26 Tiere

3.2 Isolierung von Inseln

Die Inseln befanden sich nach der Zentrifugation mit den Dextranlayern unterschiedlicher Dichte zwischen den Gradienten mit der spezifischen Dichte 1,083 g/cm³ und 1,098 g/cm³. Nach dem Abtragen dieser Schicht musste das endokrine Gewebe unter einem Lupenmikroskop von duktalem Gewebe getrennt werden.

Durchschnittlich konnten aus einem Organ etwa 400-450 Inseln gewonnen werden, die unter dem Lupenmikroskop zum größten Teil abgerundet und morphologisch intakt erschienen.

3.3 Kultur Langerhansscher Inseln

Die unter sterilen Bedingungen isolierten Langerhansschen Inseln wurden unter Standardbedingungen kultiviert.

Bei Transplantation freier Inseln unter die Nierenkapsel erfolgte die Kultur über Nacht. Sollten die Inseln mikroverkapselt und anschließend intraperitoneal transplantiert werden, so wurden sie nach der Isolation zunächst über Nacht kultiviert, dann verkapselt und erneut über Nacht kultiviert.

Sowohl nach 24stündiger als auch nach 48stündiger Kultivierung konnten viable Inseln transplantiert werden, was durch die Senkung des Blutzuckers nach der Transplantation dokumentiert wurde.

3.4 Mikroverkapselung

Einen Tag nach der Isolation wurden die Inseln mikroverkapselt, das heißt mit einer Alginat-Matrix umgeben. Zum größten Teil gelang es, die Inseln einzeln zu verkapseln, so dass sich in einem Bead eine Langerhans-Insel befand. Selten wurden zwei Inseln in einem Alginat-Bead eingeschlossen. Einige Beads enthielten keine Inseln.

Die durchschnittliche Größe eines Beads betrug 0,6-0,7 mm.

3.5 Histologische Beurteilung

3.5.1 Pankreas

Die histologische Beurteilung der Langerhans-Inselzellen erfolgte in der PAP-Anti-Insulin-Färbung.

In den Pankreata der Normalkontrolltiere färbten sich viele Inseln, bestehend aus jeweils einigen Inselzellen, als Hinweis auf die Bildung von Insulin spezifisch an. Pro Schnitt waren etwa fünf Langerhans-Inseln mit Insulin-Produktion zu sehen.

Allerdings wurden zwischen den Transplantationsgruppen und den langzeitdiabetischen Tieren keine Unterschiede festgestellt. Die Behandlung mit Streptozotocin führte nicht zu einer Zerstörung sämtlicher B-Zellen, sondern es ließen sich bei allen Tieren vereinzelte insulinspeichernde Zellen nachweisen.

Hinweise auf ein signifikantes Recruitment von Inselzellen nach Streptozotocin-Gabe konnten demnach nicht gefunden werden.

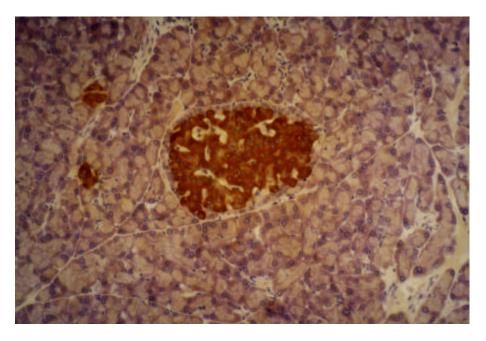


Abbildung 2
Ausschnitt aus dem Pankreas einer gesunden, nicht diabetischen Ratte; in der PAP-Anti-Insulin-Färbung spezifische Anfärbung der gesamten Langerhans-Insel; Vergrößerung 200fach

Abbildung 3

Ausschnitt aus dem Pankreas einer mit mikroverkapselten Inselzellen intraperitoneal transplantierten Ratte; von der Langerhans-Insel ist nur ein Teil in der PAP-Anti-Insulin-Färbung spezifisch angefärbt; kein Hinweis für Recruitment nach Induktion des Diabetes mit Streptozotocin; Vergrößerung 200fach

3.5.2 Histologie des Transplantats

Die Beurteilung der Transplantate erfolgte zum einen in der Hämatoxilin-Eosin-Färbung und zum anderen in der PAP-Anti-Insulin-Färbung.

Zum einen wurden in Fibrin eingebettete intraperitoneal transplantierte mikroverkapselte Inselzellen, sowie Biopsien von Fettgewebe mit adhärenten mikroverkapselten Inseln und zum anderen Nieren mit transplantierten Inseln untersucht.

Sowohl bei den mikroverkapselten Inseln in Fibrineinbettung als auch bei den Biopsien zeigten sich in beiden Färbungen ein bis zwei Langerhans-Inseln pro Bead. In der PAP-Anti-Insulin-Färbung kam es zur Anfärbung der Inselzellen als Hinweis auf eine stattfindende Insulin-Produktion. Nur wenige Inselzellen färbten sich nicht spezifisch an. Die Inselzellen erschienen insgesamt etwas kleiner als zum Zeitpunkt der Transplantation, vereinzelt konnten zentrale Nekrosen nachgewiesen werden. Einige Inselzellen zeigten auch periphere Nekrosen. Eine Gewebereaktion auf die Beads, zum Beispiel als Einscheidung, konnte nur in wenigen Fällen beobachtet werden.

Bei den transplantattragenden Nieren konnten schon in der Hämatoxilin-Eosin-Färbung die Langerhans-Inseln unter der Nierenkapsel zur Darstellung gebracht werden. Der Nachweis der Insulin-Produktion gelang mit der PAP-Anti-Insulin-Färbung, in der sich die Inselzellen spezifisch anfärbten.

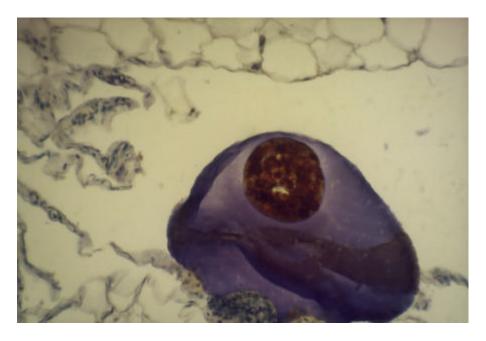


Abbildung 4
Mikroverkapselte Langerhans-Insel in einer Biopsie aus dem intraperitonealen Fettgewebe; in der PAP-Anti-Insulin-Färbung deutliche spezifische Anfärbung der Inseln; Vergrößerung 200fach

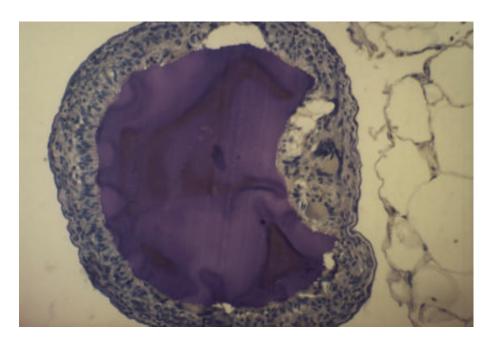
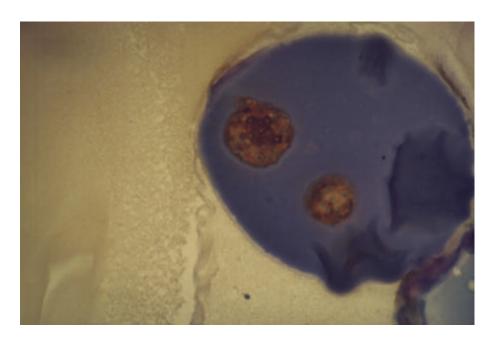



Abbildung 5
Biopsie aus dem intraperitonealen Fettgewebe einer mit mikroverkapselten Inseln intraperitoneal transplantierten Ratte; leere Kapsel (=Bead) umgeben von einem Fibrosesaum, stärkste gesehene fokale Reaktion; Vergrößerung 200fach

Abbildung 6

In Fibrin eingebettete intraperitoneal transplantierte mikroverkapselte Inselzellen (=Clot); zwei Inseln in einer Kapsel mit spezifischer Anfärbung in der PAP-Anti-Insulin-Färbung zum Nachweis der Insulinproduktion; Vergrößerung 200fach

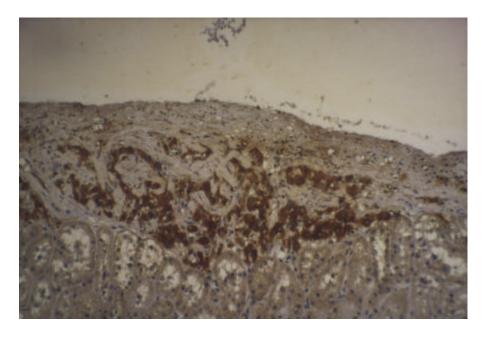


Abbildung 7 Transplantierte Inselzellen unter der Nierenkapsel; spezifische Anfärbung in

der PAP-Anti-Insulin-Färbung zum Nachweis der Insulinproduktion; Vergrößerung 100fach

3.5.3 Nephropathie

Zur Beurteilung der diabetischen Nephropathie erfolgte die Färbung mit Perjodsäure-Schiff-Reagens. Hierbei werden glykogenhaltige Bestandteile der Zellen rot angefärbt.

Bei den langzeitdiabetischen Tieren fielen tröpfchenförmige Anfärbungen innerhalb der Tubuli auf, die sich bei den erfolgreich transplantierten Tieren seltener fanden.

Es konnten jedoch weder zwischen den verschiedenen Transplantationsgruppen noch zwischen den langzeitdiabetischen Tieren und der stoffwechselgesunden Kontrollgruppe signifikante Unterschiede festgestellt werden.

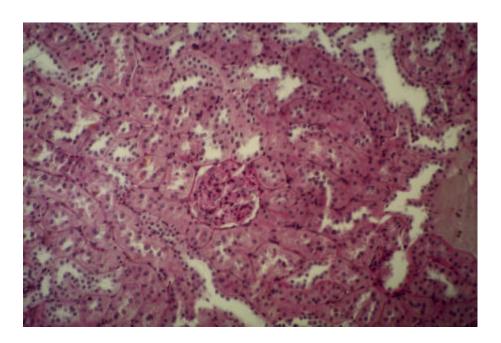


Abbildung 8

Niere eines unter die Nierenkapsel transplantierten Tieres; in der PASFärbung kaum Nachweis glykogenhaltiger Zellbestandteile der
Tubuli; Vergrößerung 200fach

3.6 Versuchsgruppen

Die Gruppe der Langzeit-Insulinbehandelten Tiere musste bereits nach wenigen Wochen Versuchsdauer aufgegeben werden.

Zum einen konnte mit der Insulintherapie nur eine Senkung des Blutzuckers von wenigen Stunden erreicht werden. Zum anderen starben die Tiere dieser Gruppe bereits nach wenigen Wochen an Infektionen, die eventuell auch durch die Insulin-Injektionen verursacht wurden.

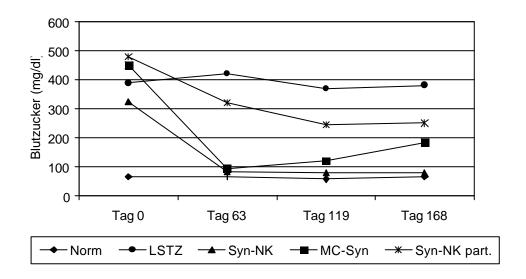
Bei den unter die Nierenkapsel transplantierten Tieren zeigte sich bereits wenige Tage nach der Transplantation eine Aufspaltung in zwei Gruppen.

Die eine Gruppe zeigte eine erfolgreiche Transplantation, die durch eine Blutzuckersenkung unter 200 mg/dl definiert, sowie durch eine Gewichtszunahme charakterisiert war. Diese Ratten wurden in die Gruppe der Transplantation unter die Nierenkapsel aufgenommen.

Konnte innerhalb von 17 Tagen nach Transplantation keine Normalisierung des Blutzuckers erreicht werden, so wurden diese Tiere der Gruppe der Partialerfolge zugeteilt. Auch im weiteren Verlauf konnte bei diesen Tieren keine Normoglykämie nachgewiesen werden, es kam jedoch zu einer Zunahme des Gewichts sowie einer deutlichen klinischen Besserung.

3.7 Metabolische Verlaufsparameter

3.7.1 Blutzucker


In der stoffwechselgesunden Kontrollgruppe blieb der Blutzucker vom Versuchsanfang bis zum Ende identisch. Am Tag 0 wurde ein Mittelwert von $66,67\pm11,64$ mg/dl gemessen, am Tag 168 betrug der Mittelwert $66,8\pm8,08$ mg/dl.

In der Gruppe der langzeitdiabetischen Tiere wurde am Tag 0 ein Blutzucker von 389,14 \pm 18,01 mg/dl gemessen, am 63. Tag 420,79 \pm 19,45 mg/dl, am 119. Tag 396,29 \pm 22,5 mg/dl und gegen Ende des Versuchszeitraumes am

Tag 168 ein Blutzucker von $381,67 \pm 41,08$ mg/dl. Der Blutzucker der langzeitdiabetischen Ratten war damit während des gesamten Versuchszeitraumes nahezu gleich hoch und etwa sechs-fach höher als in der Gruppe der Normalkontrolltiere.

Bei den mit Partialerfolg unter die Nierenkapsel transplantierten Tieren betrug der Blutzucker am Tag 0, das heißt am Tag der Transplantation, $479,25 \pm 39,08$ mg/dl. Im weiteren Verlauf fiel der Wert auf $320,50 \pm 34,59$ mg/dl am Tag 63 und auf $245,00 \pm 25,96$ am Tag 119. Der definierte Transplantationserfolg von 200 mg/dl wurde in dieser Gruppe jedoch auch bis zum Ende der Versuchsdauer nicht erreicht (Blutzucker am Tag 168 $251,25 \pm 56,36$ mg/dl).

Vergleicht man die beiden erfolgreich transplantierten Gruppen miteinander, so fällt bei den intraperitoneal transplantierten Ratten im Zeitraum kurz nach der Transplantation ein stärkerer Blutzuckerabfall auf, nämlich von $451,42\pm62,22$ mg/dl auf $94,62\pm35,61$ mg/dl am 63. Tag. Bei den Tieren, die unter die Nierenkapsel transplantiert wurden, zeigte sich ein Abfall von $324,50\pm22,69$ mg/dl auf $83,70\pm18,21$ mg/dl im gleichen Zeitraum. Mit zunehmender Versuchsdauer zeigte sich jedoch ein deutlich unterschiedlicher Blutzucker-Verlauf. Ratten mit mikroverkapselten Inseln hatten am 119. Tag nach Transplantation einen Blutzucker von $121,15\pm16,43$ mg/dl und am 168. Tag von $185,54\pm13,26$ mg/dl. Bei Tieren nach Transplantation freier Inseln unter die Nierenkapsel wurde am 119. Tag ein Blutzucker von $80,40\pm10,51$ mg/dl gemessen und am 168. Tag von $84,00\pm11,86$ mg/dl. Vergleicht man also die Blutzuckerverläufe der beiden erfolgreich transplantierten Gruppen miteinander, so findet sich ein deutlich signifikanter Unterschied (p < 0,001).

Abbildung 9

Blutzuckerverlauf von Normaltieren (Norm; n=10), langzeitdiabetischen Tieren (LSTZ; n=14), mit mikroverkapselten Inseln intraperitoneal transplantierten Tieren (MC-Syn; n=13) und mit vollem (Syn-NK; n=10) und partiellem Erfolg unter die Nierenkapsel transplantierten Ratten (Syn-NK part; n=4)

3.7.2 Körpergewicht

Das Körpergewicht der Tiere der stoffwechselgesunden Kontrollgruppe lag bei Versuchsbeginn bei 290 \pm 38,1 g und stieg gegen Versuchsende auf 458,7 \pm 23,07 g an. Das entspricht einer durchschnittlichen Gewichtszunahme von 183,5 \pm 33,49 g.

Die langzeitdiabetischen Tiere hatten vor Induktion des Diabetes mit Streptozotocin ein ähnliches Gewicht wie die Ratten der stoffwechselgesunden Kontrollgruppe, nahmen jedoch im gleichen Zeitraum bis auf 222,08 \pm 32,43 g ab.

Allen Transplantationsgruppen ist ein Gewichtsanstieg gemeinsam, der jedoch in der Gruppe der Ratten mit Transplantation freier Inseln unter die Nierenkapsel mit Partialerfolg signifikant geringer war als in den beiden anderen

Transplantationsgruppen (p < 0,05). Während bei den Tieren intraperitonealer Transplantation mikroverkapselter Inseln ein durchschnittlicher Gewichtsanstieg von 190,63 \pm 43,15 g und in der Gruppe der erfolgreich unter die Nierenkapsel transplantierten Tiere eine Gewichtszunahme von 209,5 ± 18,88 g zu verzeichnen war, betrug der Gewichtsanstieg bei den Ratten mit Partialerfolg nur 99,67 ± 70,28 g. Zwischen den beiden erfolgreichen Transplantationsgruppen ließ sich jedoch kein signifikanter Unterschied nachweisen.

Gruppe	Körpergewicht (g)		
Gruppe	Tag 0	Tag 161	
Norm	290 ± 38,1	$458,7 \pm 23,07$	
LSTZ	229,64 ± 27,27	229,6 ± 16,11	
MC-Syn	232,75 ± 40,07	429,31 ± 22,28	
Syn-NK	220,1 ± 22,09	466,2 ± 21,15	
Syn-NK part	242,67 ± 11,93	341,25 ± 56,15	

Abbildung 10

Vergleich des Körpergewichts von Tieren mit intraperitonealer Transplantation mikroverkapselter Inseln (MC-Syn; Transplantation unter die Nierenkapsel mit vollem (Syn-NK; n=10) und mit partiellem Erfolg (Syn-NK part; n=4), im Vergleich die Gruppe der gesunden (Norm; n=10) und der langzeitdiabetischen Tiere (LSTZ; n=14); die Diabetesindukton der transplantierten und langzeitdiabetischen Tiere erfolgte Tag -42, die am Transplantation am Tag 0

3.8 Metabolischer Status bei Versuchsende

3.8.1 Trinkmenge

Die Trinkmenge wurde über 24 Stunden gemessen und das Ergebnis zum Körpergewicht der Tiere ins Verhältnis gesetzt.

Schon während des Versuchs fiel die hohe Trinkmenge der langzeitdiabetischen Tiere auf, was sich in der Auswertung bestätigte. Die langzeitdiabetischen Tiere tranken im Mittel $0,42\pm0,15$ ml pro kg Körpergewicht und Tag und unterschieden sich damit hochsignifikant von den stoffwechselgesunden Kontrolltieren (Norm $0,06\pm0,02$ ml/kg*d; p < 0,001).

Auch die unter die Nierenkapsel transplantierten Tiere (Syn-NK) unterschieden sich bezüglich der Trinkmenge hochsignifikant von den langzeitdiabetischen Kontrolltieren (Syn-NK 0.06 ± 0.02 ml/kg*d versus LSTZ 0.42 ± 0.15 ml/kg*d; p < 0.001).

Zwischen den beiden Transplantationsgruppen ließ sich ein signifikanter Unterschied nachweisen. Die Trinkmenge der intraperitoneal transplantierten Tiere (MC-Syn) betrug in 24 Stunden 0,15 \pm 0,06 ml/kg (versus Syn-NK 0,06 \pm 0,02 ml/kg*d; p < 0,05).

Die Tiere, die frei intraperitoneal mit mikroverkapselten Inselzellen transplantiert wurden, tranken trotz gutem Transplantationserfolg signifikant mehr als die Tiere der Normalkontrollgruppe (MC-Syn 0,15 \pm 0,06 ml/kg*d versus Norm 0,06 \pm 0,02 ml/kg*d, p < 0,05).

Zwischen den gesunden Tieren und den unter die Nierenkapsel transplantierten Tieren ließ sich kein signifikanter Unterschied nachweisen (Norm 0.06 ± 0.02 ml/kg*d versus Syn-NK 0.06 ± 0.02 ml/kg*d, p > 0.05).

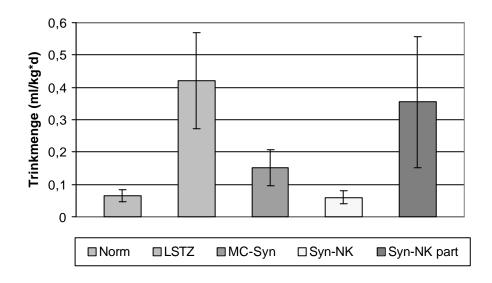
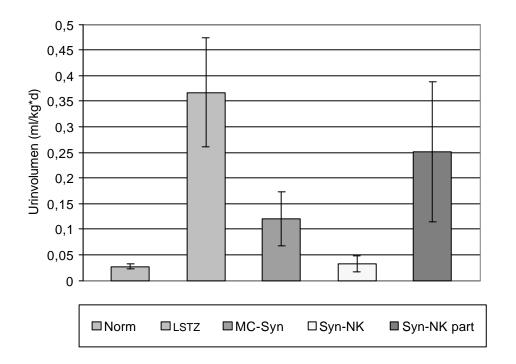


Abbildung 11

Durchschnittliche Trinkmenge in 24 Stunden von Normaltieren (Norm; n=10), langzeitdiabetischen Kontrolltieren (LSTZ; n=10), mit mikroverkapselten Inseln intraperitoneal transplantierten Tieren (MC-Syn; n=13) und mit vollem (Syn-NK; n=10) und partiellem Erfolg unter die Nierenkapsel transplantierten Ratten (Syn-NK part; n=4) am Versuchsende

3.8.2 Urinvolumen


Die Messung des Urinvolumens erfolgte über 24 Stunden im Stoffwechselkäfig. Das Ergebnis bezieht sich zum besseren Vergleich auf kg Körpergewicht.

Bei den stoffwechselgesunden Kontrolltieren wurde eine 24-Stunden-Urinmenmge von 0.03 ± 0.004 ml/kg*d gemessen. Dieser Wert unterschied sich hochsignifikant von den langzeitdiabetischen Tieren (LSTZ 0.37 ± 0.11 ml/kg*d, p < 0.001).

Auch im Vergleich von Normaltieren zu intraperitoneal transplantierten Tieren fand sich ein signifikanter Unterschied (Norm 0.03 ± 0.004 ml/kg*d versus MC-Syn 0.12 ± 0.05 ml/kg+*d, p < 0.05).

Vergleicht man die Urinmenge der Tiere, denen Inselzellen unter die Nierenkapsel transplantiert wurden, mit der der gesunden Tiere, so zeigt sich kein signifikanter Unterschied zwischen diesen beiden Gruppen (Syn-NK 0,03 \pm 0,02 ml/kg*d versus Norm 0,03 \pm 0,004 ml/kg*d, p > 0,05).

Zwischen den beiden erfolgreichen Transplantationsgruppen ist ein signifikanter Unterschied zugunsten der unter die Nierenkapsel transplantierten Tiere nachzuweisen (MC-Syn 0,12 \pm 0,05 ml/kg*d versus Syn-NK 0,03 \pm 0,02 ml/kg*d, p < 0,05).

Abbildung 12

Urinvolumen in 24 Stunden von Normaltieren (Norm; n=10), langzeitdiabetischen Kontrolltieren (LSTZ; n=10), mit mikroverkapselten Inseln intraperitoneal transplantierten Tieren (MC-Syn; n=13) und mit vollem (Syn-NK; n=10) und partiellem Erfolg unter die Nierenkapsel transplantierten Ratten (Syn-NK part; n=4) am Versuchsende

3.8.3 Glukosurie

Die Bestimmung der Glukosurie erfolgte aus dem 24-Stunden-Sammelurin.

Wie erwartet fand sich bei den gesunden Tieren kaum Glukose im Urin (0,01 \pm 0,003 mg/kg*d). Die Glukosurie der unter die Nierenkapsel transplantierten Tiere war annähernd genauso hoch, sie lag bei 0,009 \pm 0,003 mg/kg*d. Somit fand sich zwischen diesen beiden Gruppen kein signifikanter Unterschied (p > 0,005).

Die höchsten Messwerte wurden bei den langzeitdiabetischen Tieren gemessen $(31,02\pm8,97\ \text{mg/kg*d})$, wobei weder der Unterschied zu den Tieren mit partiellem Transplantationserfolg $(24,03\pm11,66\ \text{mg/kg*d})$ noch der zu den intraperitoneal transplantierten Tieren $(11,97\pm5,32\ \text{mg/kg*d})$ signifikant war.

Vergleicht man die beiden erfolgreichen Transplantationsgruppen miteinander, so wurde bei den Tieren mit intraperitoneal mikroverkapselten Inselzellen die höhere Glukosemenge im Urin gemessen (MC-Syn 11,97 \pm 5,32 mg/kg*d versus Syn-NK 0,009 \pm 0,003 mg/kg*d, p < 0,05).

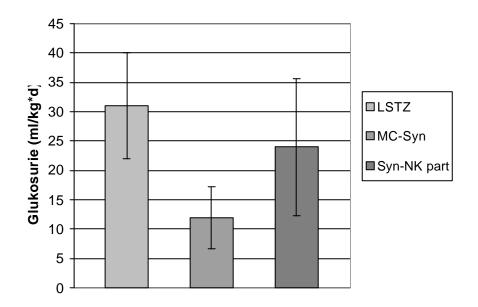


Abbildung 13

Glukosurie in 24 Stunden von langzeitdiabetischen Kontrolltieren (LSTZ; n=10), mit mikroverkapselten Inseln intraperitoneal transplantierten Tieren (MC-Syn; n=13) und mit partiellem Erfolg unter die Nierenkapsel transplantierten Ratten (Syn-NK part; n=4) am Versuchsende

3.8.4 Albuminurie

Die Albuminurie der stoffwechselgesunden Kontrolltiere lag in 24 Stunden im Mittel bei 0,28 \pm 0,26 mg/kg. Diese Menge unterschied sich nicht signifikant von den Werten, die bei den unter die Nierenkapsel transplantierten Tieren gemessen wurden (0,29 \pm 0,22 mg/kg*d, p > 0,05).

Signifikante Unterschiede zeigten sich jedoch beim Vergleich der beiden erfolgreichen Transplantationsgruppen miteinander (MC-Syn 2,47 \pm 3,43 mg/kg*d versus Syn-NK 0,29 \pm 0,22 mg/kg*d, p < 0,05).

Vergleicht man die Ergebnisse der Albuminurie der Normaltiere mit denen der intraperitoneal transplantierten Ratten, so lassen sich deutlich signifikante Unterschiede nachweisen (MC-Syn 2,47 \pm 3,43 mg/kg*d versus Norm 0,28 \pm 0,26 mg/kg*d, p < 0,01).

Zwischen den langzeitdiabetischen Tieren mit einer Albuminurie von 2,81 \pm 1,95 mg/kg*d und den Ratten der Normalkontrollgruppe (0,28 \pm 0,26 mg/kg*d) war der Unterschied hochsignifikant (p < 0,001).

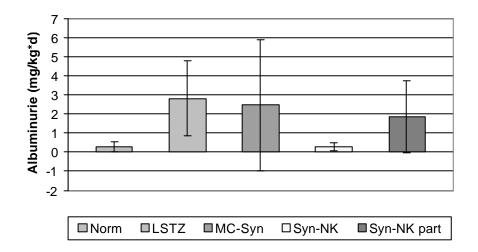


Abbildung 13

Albuminurie in 24 Stunden von Normaltieren (Norm; n=10), langzeitdiabetischen Kontrolltieren (LSTZ; n=11), mit mikroverkapselten Inseln intraperitoneal transplantierten Tieren (MC-Syn; n=11) und mit vollem (Syn-NK; n=8) und partiellem Erfolg unter die Nierenkapsel transplantierten Ratten (Syn-NK part; n=5) am Versuchsende

3.8.5 Seruminsulinkonzentration

Die Messung des Seruminsulins erfolgte radioimmunologisch zum Zeitpunkt der Explantation.

Hochsignifikante Unterschiede ergaben sich sowohl beim Vergleich der langzeitdiabetischen mit den gesunden Tieren (LSTZ 0,36 \pm 0,18 ng/ml versus Norm 4.97 \pm 3,08 ng/ml, p < 0,001) als auch zwischen langzeitdiabetischen und

unter die Nierenkapsel transplantierten Ratten (LSTZ 0,36 \pm 0,18 ng/ml versus Syn-NK 3,48 \pm 1,07 ng/ml, p < 0,001).

Zwischen den intraperitoneal transplantierten Tieren und der langzeitdiabetischen Kontrollgruppe fanden sich deutlich signifikante Unterschiede (MC-Syn 2,12 \pm 0,18 ng/ml versus LSTZ 0,36 \pm 0,18 ng/ml, p< 0,01).

Weder zwischen den Transplantationsgruppen noch zwischen den gesunden Tieren und den beiden erfolgreichen Transplantationsgruppen ließen sich signifikante Unterschiede nachweisen.

Gruppe	Seruminsulin (ng/ml)
Norm	4,97 ± 3,08
LSTZ	0,36 ± 0,18
MC-Syn	2,12 ± 1,07
Syn-NK	3,48 ± 1,6
Syn-NK part	1,35 ± 0,65

Tabelle 3

Seruminsulinkonzentration der gesunden (Norm; n=10) und langzeitdiabetischen Kontrollgruppe (LSTZ; n=12), sowie der mit mikroverkapselten Inseln intraperitoneal transplantierten Tiere (MC-Syn; n=13) und der mit vollem (Syn-NK; n=10) und partiellem Erfolg unter die Nierenkapsel transplantierten Ratten (Syn-NK part; n=4) zum Explantationszeitpunkt

3.8.6 Serumglukagonkonzentration

Die Bestimmung des Serumglukagons erfolgte ebenfalls zum Explantationszeitpunkt mittels radioimmunologischer Messungen.

Deutlich signifikante Unterschiede ließen sich lediglich zwischen der langzeitdiabetischen Kontrollgruppe und den intraperitoneal transplantierten Tieren nachweisen (LSTZ 147,48 \pm 42,84 pg/ml versus MC-Syn 85,9 \pm 11,63 pg/ml, p < 0,001).

Die Unterschiede zwischen den stoffwechselgesunden Tieren (87,02 \pm 25,45 pg/ml) und den erfolgreich unter die Nierenkapsel transplantierten Ratten (85,9 \pm 11,63 pg/ml) einerseits und den langzeitdiabetischen Tieren (147,48 \pm 42,84 pg/ml) andererseits waren signifikant (p < 0,05).

Weder zwischen den Transplantationsgruppen noch im Vergleich der transplantierten Tiere mit der stoffwechselgesunden Kontrollgruppe ließen sich signifikante Unterschiede nachweisen.

Gruppe	Serumglukagon (pg/ml)
Norm	87,02 ± 25,45
LSTZ	$147,48 \pm 42,84$
MC-Syn	80,05 ± 20,26
Syn-NK	85,9 ± 11,63
Syn-NK part	105,73 ± 36,5

Tabelle 4

Serumglukagonwerte der gesunden (Norm; n=10) und der langzeitdiabetischen Kontrollgruppe (LSTZ; n=11), sowie der mit mikroverkapselten Inseln intraperitoneal transplantierten Tiere (MC-Syn; n=11) und der mit vollem (Syn-NK; n=9) und partiellem Erfolg unter die Nierenkapsel transplantierten Ratten (Syn-NK part; n=4) zum Explantationszeitpunkt

4.0 Diskussion

Das Ziel der vorliegenden Arbeit war die Untersuchung metabolischer Parameter nach syngener, dystoper Transplantation von Langerhans-Inselzellen. Sowohl nach Transplantation von Inselzellen unter die Nierenkapsel als auch nach intraperitonealer Transplantation mikroverkapselter Inseln wurde das Transplantationsziel, das heißt ein Blutzucker unter 200 mg/dl, erreicht. Anhand verschiedener metabolischer Parameter konnte am Versuchsende gezeigt werden, dass das Auftreten diabetischer Spätschäden durch die Transplantation von Inselzellen verhindert werden kann. Es fiel auf, dass die Inselzellen die Transplantation von unter Nierenkapsel über den Beobachtungszeitraum von 180 Tagen der Transplantation mikroverkapselter Inseln in die Bauchhöhle überlegen war. Dies wurde vor allem gegen Ende der Versuchsdauer deutlich.

4.1 Das experimentelle Rattenmodell

Der metabolische Verlauf und die Spätkomplikationen des Diabetes wurden an einem Tiermodell untersucht, an dem beides standardisiert darstellbar und untersuchbar ist.

Auch für die hier im Besonderen untersuchte diabetische Nephropathie ist die Streptozotocin-diabetische Ratte ein gutes Tiermodell zur Untersuchung der Pathogenese der Spätkomplikationen (14, 19).

4.2 Der Streptozotocin-induzierte Diabetes als Modell für den Typ-I-Diabetes

Zur Induktion eines Diabetes bei den verwendeten Lewis-Ratten wurde Streptozotocin in einer Dosierung von 65 mg/kg Körpergewicht verwendet.

Nach Injektion von Streptozotocin kommt es innerhalb von 24 Stunden zu einer deutlichen Reduktion der Insulin-Freisetzung nach Applikation von Glukose. Morphologisch zeigt sich eine Zerstörung nahezu aller B-Zellen des Pankreas (71).

Entsprechend zeigten alle unsere Versuchstiere Symptome der manifesten Hyperglykämie. Durch die Katabolie mit vermehrter Proteolyse und Lipolyse kommt es bei den Tieren zu einem erheblichen Gewichtverlust (36, 62, 84, 106). Dieser ließ sich auch bei unseren Tieren nachvollziehen.

In der Literatur wird bereits nach Injektion von 50 mg Streptozotocin pro kg Körpergewicht eine persistierende Hyperglykämie beschrieben (36).

Nach einigen Monaten beobachtet man Adenome der Nierenrinde, sowie ein gehäuftes Auftreten mesenchymaler Tumore (107).

Der Streptozotocin-induzierte Diabetes der Ratte entspricht metabolisch dem Typ I Diabetes des Menschen und hat somit auch im Hinblick auf die Spätkomplikationen Modellcharakter für den insulinabhängigen Diabetes des Menschen (8).

4.3 Diabetische Spätschäden

Seit der Einführung von Insulin in die Therapie des Diabetes mellitus wird die Prognose der Erkrankung nicht mehr durch Akutkomplikationen bestimmt, sondern durch Spätkomplikationen wie Nephropathie, Mikro- und Makroangiopathie, Retinopathie und Neuropathie.

4.3.1 Nephropathie

Es soll im folgenden vor allem auf die diabetische Nephropathie eingegangen werden, da diese im wesentlichen Ziel unserer Untersuchungen war. Ungefähr 30 % aller Typ I Diabetiker entwickeln eine diabetische Nephropathie. Dies zeigt

sich zunächst in der Frühform einer Mikroalbuminurie; hat sich diese etabliert, so entwickeln 80 % dieser Patienten eine diabetische Nephropathie (13, 103). In der Gruppe der dialysepflichtigen Patienten stellen Diabetiker 30 % (79). Die steigende Mortalität der Patienten mit diabetischer Nephropathie erklärt sich zum einen durch die sich entwickelnde Urämie, zum anderen durch die in diesem Krankheitsstadium auch häufig bestehende Makroangiopathie mit allen ihren Komplikationen (87).

Die Entwicklung der Nephropathie ist, sowohl beim Mensch als auch bei der Ratte, multifaktoriell bedingt. Ursachen sind zum einen die Hyperglykämie, zum anderen genetische Determinanten bezüglich der Polymorphie der Enzyme, die in den Metabolismus der extrazellulären Matrixproteine miteinbezogen sind (12, 67, 78).

Man unterscheidet frühe, noch reversible Veränderungen, und irreversible Veränderungen der Niere. Zunächst kommt es zu einer Größenzunahme der gesamten Niere und der einzelnen Glomeruli ohne strukturelle Veränderungen (12, 87). Sowohl zum Zeitpunkt der Transplantation diabetischer Tiere als auch bei der Explantation der langzeitdiabetischen Ratten fielen die deutlich vergrößerten Nieren der Tiere auf. Eine Messung des Nierengewichts erfolgte in unserem Versuch jedoch nicht.

Bereits nach kurzzeitiger Hyperglykämie lässt sich ein erhöhter Blutfluss und ein ansteigender Druck im renalen Gefäßsystem nachweisen. Beides normalisiert sich unter strikter Blutzuckerkontrolle wieder.

Entweder unabhängig davon oder induziert durch diese frühen Veränderungen führt eine weiterhin bestehende Hyperglykämie zu irreversiblen Veränderungen (78). Die Reihenfolge der nun aufgeführten Veränderungen ist willkürlich, da die genaue Abfolge bisher nicht bekannt ist (79).

Die glomeruläre Basalmembran bildet eine Filtrationsbarriere und besteht unter anderem aus einem Kollagen-IV-Geflecht. Unter dem Einfluss einer

Hyperglykämie kommt es zunächst zu einer geringen Zunahme Bestandteile (41, 72). Im weiteren Verlauf sind sowohl in der Basalmembran als auch in der mesangialen Matrix vermehrt Kollagen IV, Laminin und Fibronectin nachzuweisen. Ш Das Auftreten von Kollagen bei später Glomerulosklerose ist als Zeichen der irreversiblen Veränderungen der Glomerula zu sehen (67, 80). Bei zunehmender nodulärer Glomerulosklerose ist die glomeruläre Filtrationsrate durch Abnahme der Kapillaroberfläche verringert (69).

In unserem Versuch ließen sich weder zwischen den verschiedenen Transplantationsgruppen noch zwischen langzeitdiabetischen Tieren und stoffwechselgesunden Ratten lichtmikroskopisch signifikante Unterschiede bei der Beurteilung der Nieren nachweisen. Auch Brown hatte nach einer Diabetesdauer von 30 Wochen lichtmikroskopisch keine Veränderungen an den Nieren nachweisen können, jedoch mit Hilfe der Immunfluoreszenz (12). Ähnliche Ergebnisse beschreibt auch Rasch, der nach einer Diabetes-Dauer von sechs Monaten keine lichtmikroskopischen Veränderungen im Sinne einer Nephropathie hat zeigen können (75). In weiteren Versuchen müsste anhand unserer Präparate mit Hilfe immunhistologischer Methoden der Nachweis ultrastruktureller Veränderungen noch erbracht werden.

Das klinische Korrelat der oben genannten morphologischen Veränderungen sind Proteinurie und Albuminurie (50, 62, 63, 67). Auf die Ergebnisse unserer Versuchsreihe in Bezug auf diese Parameter wird unter 4.6.4 näher eingegangen. Der Mikroalbuminurie kommt dabei eine besondere Bedeutung zu, da sie als prädiktiver Wert für die spätere Entwicklung einer diabetischen Nephropathie gewertet werden kann (87, 101). Im Hinblick hierauf sollte die Screening-Untersuchung für Mikroalbuminurie Bestandteil jeder jährlichen Untersuchung eines Diabetespatienten sein (104).

In zahlreichen Studien wurde bisher belegt, dass durch eine gute Stoffwechseleinstellung das Auftreten diabetischer Spätkomplikationen

verhindert bzw. frühe Stadien auch rückgängig gemacht werden können (18, 26, 41, 63, 64, 76, 87).

4.4 Beeinflussung des metabolischen Verlaufs

4.4.1 Insulintherapie

Bei der Insulintherapie unterscheidet man die konventionelle von der intensivierten Therapie. Bei der konventionellen Methode erfolgt die Insulingabe ein- bis zweimal täglich. Ist ein Diabetiker mit der intensivierten Therapie eingestellt, so erfordert das mehrfache tägliche Blutzuckerkontrollen und Insulininjektionen.

Um die Insulintherapie mit der Inselzelltransplantation im Hinblick auf die Ausbildung einer diabetischen Nephropathie zu vergleichen, wurden in unserem Versuch diabetische Ratten mit Ultratard-Insulin, einem Verzögerungsinsulin, therapiert. Nach Bestimmung des Nüchtern-Blutzuckers erfolgte die subcutane Injektion der entsprechenden Menge Insulin. Die Ratten nahmen unter dieser Therapie deutlich an Gewicht zu, es konnten jedoch jeweils nur kurzfristige Blutzuckersenkungen erreicht werden. Die Tiere starben vor dem Ende der Versuchsdauer an Infektionen, die mutmaßlich durch die häufigen Injektionen verursacht wurden. Haughton hatte über einen Versuchszeitraum von zehn Tagen diabetische Ratten mit verschiedenen Insulinen therapiert. Er konnte ebenso eine Gewichtzunahme der Tiere beobachten. Es waren jedoch deutliche Unterschiede zwischen den verschiedenen Insulinen im Hinblick auf das Erreichen der Normoglykämie zu verzeichnen. Protamin-Zink Insulin erwies sich als beste Therapiemöglichkeit, da mit einer Gabe pro Tag eine Normalisierung des Blutzuckers erreicht werden konnte. Man muss also zu dem Schluss kommen, dass nicht jedes Insulin zum Erreichen der Normoglykämie bei Ratten geeignet ist (42).

Bei diabetischen Patienten wurden mittlerweile verschiedene Studien zum Vergleich der konventionellen mit der intensivierten Insulintherapie

durchgeführt. In der Oslo-Studie konnte bei den Patienten zwischen den beiden Therapieschemata kein signifikanter Unterschied bezüglich der Albuminurie nachgewiesen werden (27). Ursache dieses Studienergebnisses könnte die kurze Studiendauer sein, da nachgewiesen wurde, dass ein Unterschied zwischen beiden Therapieschemata erst nach einer Therapiedauer von mindestens fünf Jahren beurteilt werden kann, so dass die Studiendauer der Oslo-Studie als zu kurz bewertet werden muss (92).

Die bisher größte Studie zur Untersuchung diabetischer Spätschäden bei Patienten mit Diabetes mellitus Typ I war die Diabetes Control and Complications Trial. In ihr wurden die konventionelle und die intensivierte Insulintherapie einander gegenübergestellt (91). Die Auswertung ergab signifikante Unterschiede zwischen beiden Therapiegruppen. So konnte mit der intensivierten Therapie das Auftreten einer Albuminurie, Mikroangiopathie und Neuropathie deutlich reduziert werden. Insgesamt verzögert die intensivierte Therapie das Auftreten diabetischer Spätkomplikationen oder verlangsamt deren Fortschreiten. Nachteile gegenüber der konventionelle Therapie sind die erhöhte zweibis dreifach Hypoglykämierate, mit einem erhöhten Verletzungsrisiko und der Gefahr der cerebralen Schädigung, sowie die schlechtere Lebensqualität durch häufige Selbstkontrollen und Injektionen (26, 32, 61, 92, 93).

Doch auch die intensivierte Insulintherapie vermag nicht die physiologische Sekretion der Langerhans-Zellen des Pankreas nachzuahmen. Als kausale Therapie des insulinabhängigen Diabetes mellitus muss die Transplantation insulinproduzierenden Gewebes angesehen werden (83, 105).

4.4.2 Pankreastransplantation

Schon 1891 gab es die erste Veröffentlichung über eine extraabdominelle Transplantation von Pankreasstücken, die bei Hunden kurzfristig die Symptome des Diabetes nach Pankreatektomie verhindern konnte. Seitdem wurde die Transplantation des Pankreas immer weiter entwickelt.

Positiv ist mit Sicherheit die steigende Lebensqualität durch den Wegfall der täglichen Insulininjektionen zu beurteilen (9, 10, 85). Ferner zeigen neuere Untersuchungen, dass bei funktionierendem Transplantat das Fortschreiten der diabetischen 53). Spätschäden vermindert wird (9, 10, Die Pankreastransplantation ist auch heute noch eine komplexe Operation mit großem Risiko. Ein weiterhin ungelöstes Problem ist die lebenslange Immunsuppression, weshalb zur Zeit nur Patienten nach Nierentransplantation (entweder simultan oder Pankreas- nach Nierentransplantation) transplantiert werden (20, 58, 83). Wurden beide Organe gleichzeitig transplantiert, so sind 80 % der Patienten nach einem Jahr noch insulinunabhängig (52, 88).

Da für eine optimale Einstellung des Blutzuckers jedoch nur die B-Zellen des Pankreas von Bedeutung sind, liegt der Schluss nahe auch nur diese Zellen zu transplantieren. Zum einen bieten isolierte Inselzellen mehrere Möglichkeiten zur Entwicklung von Strategien gegen eine Abstoßungsreaktion, was eine verminderte oder gar keine Immunsuppression zur Folge haben könnte. Zum anderen ist die Transplantation weniger invasiv (9, 53, 83).

4.4.3 Inselzelltransplantation

Auch für die Transplantation von Inselzellen wurde bisher in mehreren Versuchen im Tiermodell nachgewiesen, dass ein funktionierendes Transplantat das Auftreten diabetischer Spätschäden verhindern bzw. verzögern kann (10, 29, 30). Gegenüber der Pankreastransplantation ergeben sich jedoch einige Vorteile.

Zum einen ist die Inseltransplantation weniger invasiv (10, 20, 33), sie kann zum Beispiel mittels Punktion und Applikation über einen Katheter in das Portalvenenbett der Leber erfolgen (10, 30, 53). Trotz heterotoper Lage zeigen syngen transplantierte Inselzellen die gleiche Reaktion bezüglich der Insulinsekretion wie das endokrine Pankreas (37). Zum anderen bieten isolierte Inselzellen Möglichkeiten zur Entwicklung von Strategien gegen eine Abstoßungsreaktion (9, 29, 53, 83). Bei in vitro Versuchen konnte durch Kultur der Inselzellen bei 24 °C eine Reduktion der Immunogenität allogener Inseln

und somit ein verlängertes Transplantatüberleben bei Nagetieren erreicht werden (33).

Nach intraportaler Transplantation syngener Inselzellen konnte bei Ratten mit einem Streptozotocin-induzierten Diabetes eine lebenslange Normoglykämie erreicht werden (29, 33). Auch bei den Streptozotocin-diabetischen Ratten unserer Versuche kam es nach Transplantation von Inselzellen unter die Nierenkapsel zu einer langfristigen Senkung des Blutzuckers. Bis zum Ende des Beobachtungszeitraums, der eine Zeitspanne von 180 Tagen nach Transplantation umfasste, differierten die gemessenen Werte nicht von denen Normalkontrollgruppe. Ferner konnte eine deutliche Zunahme Körpergewichts nachgewiesen werden; das Körpergewicht der transplantierten Tiere war zum Versuchsende vergleichbar mit dem der Normalkontrollgruppe. Bei einem Teil der Tiere blieb der Blutzuckerabfall unter Werte von 200 mg/dl nach Transplantation jedoch aus. Eine Gewichtzunahme und eine klinische Besserung der Tiere war jedoch trotzdem zu beobachten. Möglicherweise sind technische Fehler die Ursache für das Ausbleiben des Transplantationserfolgs. Denkbar wäre eine Verletzung der Nierenkapsel bei der Transplantation und in der Folge ein Ausschwemmen in die freie Bauchhöhle.

Für die Inselzelltransplantation beim Menschen bleibt auch heute nur die Möglichkeit der Immunsuppression zur Verlängerung des Transplantatüberlebens (33, 83). Deshalb erfolgt die Transplantation von Inselzellen bisher nur simultan oder nach einer Nierentransplantation (9,83). Trotzdem liegt die Rate der insulinunabhängigen Patienten ein Jahr nach Transplantation nur bei ca. 8 % (20, 30). Eine mögliche Erklärung hierfür könnte der schädigende Effekt der Immunsuppression auf die transplantierten Inselzellen sein (2, 94). Doch auch andere Ursachen sind denkbar. Möglicherweise ist die Zahl der transplantierten Inseln zu niedrig. Bereits im Tierversuch konnte der Zusammenhang zwischen Zahl der transplantierten Inselzellen und dem Transplantationserfolg gezeigt werden. Weiterhin scheint die Ischämiezeit der Inseln vor der Transplantation zu lange zu sein (31).

Weitere Probleme der Inselzelltransplantation sind die bisher wenig standardisierte Isolierung und der Mangel an humanen Spenderorganen (81, 83, 111). Diese Probleme wären durch die Transplantation von Inselzellen in immunseparierenden Membranen zu lösen.

4.4.3.1 Das Bioartifizielle Pankreas

Das Prinzip des Bioartifiziellen Pankreas besteht in einer räumlichen Trennung von Transplantat und Empfängerorganismus. Immunseparierende Membranen erlauben die Diffusion von Stoffen mit niedrigem Molekulargewicht, wie zum Beispiel Glukose und Insulin, und verhindern die von Stoffen mit höherem Molekulargewicht (z.B. Immunglobuline).

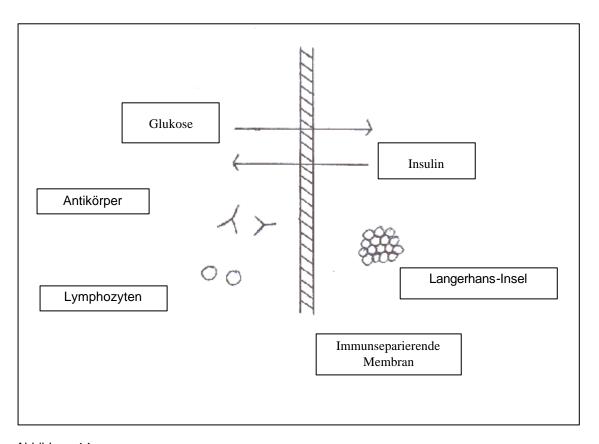


Abbildung 14

Modell des Bioartifiziellen Pankreas; die Langerhans-Insel wird durch eine immunseparierende

Membran vor einer Abstoßungsreaktion geschützt

Bei der Makroverkapselung werden eine Vielzahl von Inseln in ein von einer Membran umgebenes Kompartiment eingebracht. Bei der Mikroverkapselung, die auch bei unseren Versuchen Anwendung fand, werden einzelne Inseln von einer Hydrogel-Membran oder Matrix aus meist komplexiertem Alginat umgeben.

Es wurde in vitro und in vivo nachgewiesen, dass die Insulinsekretion mikroverkapselter Inseln der freier Inseln entspricht (2, 90, 112). Sowohl nach allogener als auch nach xenogener intraperitonealer Transplantation freier Inselzellen konnte von mehreren Versuchsgruppen eine Transplantatabstoßung beobachtet werden. Nach Transplantation mikroverkapselter Inseln wurde hingegen ein längeres Transplantatüberleben beschrieben (28, 90, 110).

Ohgawara beschreibt nach intraperitonealer Transplantation von 3000 mikroverkapselten Inseln bei Streptozotocin-diabetischen Ratten das Erreichen einer Normoglykämie für 6 Monate, sowie einen Anstieg des Körpergewichts (66). In unseren Versuchsreihen ließ sich dieses Ergebnis nur annähernd nachvollziehen. Zwar wurden alle intraperitoneal transplantierten Tiere normoglykämisch, gegen Ende der Versuchsdauer stiegen die gemessenen Blutzuckerwerte jedoch kontinuierlich an und lagen ab dem 119. Tag nach Transplantation bei einigen Tieren über dem definierten Transplantationserfolg von 200 mg/dl. Die möglichen Ursachen hierfür werden unter 4.7 noch diskutiert. Der Anstieg des Körpergewichts unterschied sich nicht signifikant von den unter die Nierenkapsel transplantierten Tieren, deren Blutzucker während des gesamten Beobachtungszeitraumes nach Transplantation konstant blieb.

Die Transplantation mikroverkapselter Inseln induziert verschiedene morphologische Reaktionen des Empfängers auf das Transplantat. Die Ausprägung dieser Reaktion ist im wesentlichen abhängig von der Biokompatibilität, die sich aus der Reaktion der Inselzellen auf das Material der Kapsel und des Empfängers auf einerseits die Kapsel und andererseits das verkapselte Material ergibt (83, 108). In der vorliegenden Arbeit wurde zum

Ausschluss eventueller immunologischer Interaktionen syngen transplantiert. Nach allogener und insbesondere nach xenogener Transplantation war in anderen Arbeiten außerdem eine deutlich vermehrte peritoneale Reaktion beobachtet worden. Morphologische Studien zur Reaktion auf verkapselte syngene, allogene und xenogene Inselzellen konnten zeigen, dass die Reaktion zunimmt je größer der Unterschied des transplantierten Gewebes ist (81). Die Fremdkörperreaktion auf das Kapselmaterial könnte durch Verwendung körpereigenen Materials, wie zum Beispiel Chondrozyten, vermindert werden (73). Dies müsste in weiteren Untersuchungen noch evaluiert werden.

Auch wenn 1993 die erste erfolgreiche Transplantation mikroverkapselter Inselzellen beim Mensch durchgeführt wurde, so stehen der verbreiteten klinischen Anwendung dieser Methode noch einige Hindernisse im Weg: zum einen die technische Herstellung kleiner Kapseln in ausreichend hoher Menge und die noch notwendige Erforschung chemischer und mechanischer Eigenschaften der Kapseln, zum anderen die Verlängerung der Überlebenszeit der Kapseln (24).

4.5 Histologie von Transplantat und Pankreas

Explantiert man transplantierte, mikroverkapselte Inselzellen wieder, so zeigen sich zum einen intakte Kapseln und viable B-Zellen, zum anderen lässt sich nachweisen, dass die Tiere nach der Explantation hyperglykämisch werden und das Körpergewicht abnimmt (66, 89). Auch in unserem Versuch waren die mikroverkapselten Inseln nach Explantation noch intakt, es konnte in der PAP-Anti-Insulin-Färbung eine spezifische Anfärbung gezeigt werden. Eine die Kapsel umgebende Fibrose konnte nur in ganz wenigen Fällen nachgewiesen werden, ebensowenig Nekrosen der Inselzellen. Kuhtreiber beschrieb bis zu 20 Monate nach xenogener Transplantation verkapselter Inselzellen noch viable Inseln (54).

Auch die Inselzellen, die unter die Nierenkapsel transplantiert wurden wiesen in der Anti-Insulin-Färbung eine spezifische Anfärbung als Hinweis für eine Insulinproduktion auf.

Der Beweis dafür, dass der Transplantationserfolg auf die Transplantate zurückzuführen ist, wurde mit der Histologie des Pankreas erbracht. Wie auch bei den langzeitdiabetischen Tieren fand sich bei den transplantierten Ratten kein Recruitment der Inselzellen des Pankreas.

4.6 Metabolischer Status nach Inselzelltransplantation

4.6.1 Trinkmenge

Es konnte gezeigt werden, dass die langzeitdiabetischen Tiere in 24 Stunden signifikant mehr getrunken haben als die Ratten der Normalkontrollgruppe. Nach erfolgreicher Inselzelltransplantation reduziert sich die Trinkmenge wieder auf ein normales Maß. Dies wurde sowohl durch andere Gruppen belegt als auch durch unsere Beobachtungen (1, 103).

Ist der Blutzucker hochnormal oder knapp über 200 mg/dl, wie gegen Ende der Versuchsdauer bei den Tieren nach intraperitonealer Transplantation mikroverkapselter Inseln, so spiegelt sich dies bereits in einer erhöhten Trinkmenge wieder (Norm 0.06 ± 0.02 ml/kg*d versus MC-Syn 0.15 ± 0.06 ml/kg*d).

4.6.2 Urinvolumen

Nach Diabetesinduktion mittels Streptozotocin kommt es innerhalb von 24 Stunden zu einer deutlichen Zunahme des Urinvolumens (106). Das entspricht den Ergebnissen unserer Untersuchungen, in denen vor allem ein hohes Urinvolumen der langzeitdiabetischen Kontrollgruppe auffiel (0,37 \pm 0,11 ml/kg*d). Ähnliche Beobachtungen wurden auch von anderen Gruppen gemacht (75, 62). Die Polyurie ist vermutlich auch Ursache für den

aufgehobenen cirkadianen Rhythmus der Tiere im Hinblick auf die Urinausscheidung (100).

Zwischen den gesunden Tieren und den Ratten nach Transplantation von Inselzellen unter die Nierenkapsel ließen sich bezüglich der Urinmenge keine signifikanten Unterschiede feststellen. Es konnte somit belegt werden, dass eine gute Blutzuckereinstellung zu einer Normalisierung der Urinmenge führt. Gleiche Ergebnisse wurden auch von anderen Gruppen nach Insulintherapie, intraportaler Inselzelltransplantation oder Transplantation von Inselzellen unter die Nierenkapsel beschrieben (1, 28, 34, 43, 75, 99, 103). Die Normalisierung der Urinmenge ist also unabhängig von der Methode, aber abhängig von der Qualität der Blutzuckereinstellung.

4.6.3 Glukosurie

Durch Überschreiten der Nierenschwelle für Glukose kommt es zur Glukosurie. Rasch konnte zeigen, dass gesunde Ratten keine Glukose im Urin haben während es bei diabetischen Tieren zur Glukosurie kommt. Für die Höhe der Glukosemenge im Urin, eine normale glomeruläre Filtrationsrate vorausgesetzt, besteht ein direkter Zusammenhang zur Höhe des Serumblutzuckers (75).

Zu gleichen Ergebnissen kamen auch wir in unseren Untersuchungen. Während bei den gesunden Kontrolltieren und den mit Erfolg unter die Nierenkapsel transplantierten Ratten kaum Glukose im Urin nachweisbar war (Norm 0.01 ± 0.003 mg/kg*d, Syn-NK 0.009 ± 0.003 mg/kg*d), lagen die Messwerte der mit mikroverkapselten Inselzellen transplantierten Tiere, die gegen Ende der Beobachtungszeit höhere Blutzuckerwerte hatten, signifikant höher (11,97 \pm 5,32 mg/kg*d). Die höchsten Werte wurden jedoch bei den langzeitdiabetischen Tieren gemessen.

Auch andere Gruppen konnten eine Normalisierung der Glukosurie nach Regulierung der Blutglukosewerte beschreiben (35, 43, 65, 99, 103).

Es zeigt sich somit, dass die Glukosurie ein sehr geeigneter Parameter zur Beurteilung der Glukosehomöostase ist.

4.6.4 Albuminurie

Bei diabetischen Patienten ist die Albuminurie der wichtigste laborchemische Parameter für die drohende Entwicklung einer Nephropathie.

Es konnte in unseren Versuchen gezeigt werden, dass sowohl nach Transplantation von Inselzellen unter die Nierenkapsel als auch nach Transplantation mikroverkapselter Inselzellen intraperitoneal die Werte für Albuminurie deutlich unter denen der langzeitdiabetischen Kontrolltiere lagen. Vergleicht man die Albuminurie der Normalkontrollgruppe mit der der intraperitoneal transplantierten Ratten, so ist der Unterschied zwischen diesen beiden Gruppen signifikant. Möglicherweise liegt die Ursache für dieses Ergebnis im Blutzuckerverlauf dieser Transplantationsgruppe. Wie bereits schon erwähnt, kam es gegen Ende des Beobachtungszeitraumes zum Blutzuckeranstieg, so dass sich unter dieser Hyperglykämie Schäden an der Niere im Sinne einer diabetischen Nephropathie ausgebildet haben könnten. In mehreren Veröffentlichungen wurde der Zusammenhang mangelhafter Blutzuckereinstellung und Ausbildung diabetischer Spätschäden beschrieben (63, 64, 67, 72, 75, 76, 79, 86, 87, 92).

Die Messwerte der unter die Nierenkapsel transplantierten Tiere sind mit denen der Normaltiere vergleichbar, was als Hinweis für die Prävention der diabetischen Nephropathie durch eine gute Einstellung des Blutzuckers gewertet werden kann. Ähnliche Ergebnisse wurden auch von anderen Forschungsgruppen beschrieben (12, 47, 60, 102). Ar'Rajab konnte eine Normalisierung der Albuminurie nach Transplantation von Inselzellen unter die Nierenkapsel nachweisen, die Versuchsdauer betrug jedoch nur drei Monate (1).

Wichtig für den Erfolg einer Inselzelltransplantation bezüglich der Nephropathie ist der Transplantationszeitpunkt. Besteht der Diabetes bereits seit längerer Zeit und hat schon zur Entwicklung einer generalisierten Mikroangiopathie und zur Ausbildung irreversibler morphologischer Veränderungen der Niere geführt, so lässt sich eine Albuminurie nicht mehr rückgängig machen (4, 74, 78). Da die Tiere in unserem Versuch ca. fünf Wochen nach Diabetesinduktion transplantiert wurden, ist davon auszugehen, dass es noch nicht zu irreversiblen Veränderungen gekommen war. Sogar vier Monate nach Diabetesinduktion lässt sich eine Albuminurie durch Inselzelltransplantation noch rückgängig machen (74).

4.6.5 Seruminsulin, Serumglukagon

Eine wesentliche Aussagekraft zur Beurteilung der Transplantatfunktion hat der Seruminsulinwert, vorrausgesetzt ein Recruitment der Langerhanszellen im Pankreas wurde ausgeschlossen.

Der Seruminsulinwert der langzeitdiabetischen Tiere war mit 0.36 ± 0.18 ng/ml der niedrigste aller Gruppen. Anhand dieses Wertes kann auch die Schädigung der B-Zellen durch Streptozotocin belegt werden. Auch Thulesen wies bei Streptozotocin-diabetischen Ratten signifikant niedrigere Insulin-Konzentrationen als bei gesunden Tieren nach. Bei Ratten, die mit Insulin behandelt wurden, waren jedoch sowohl im Plasma als auch im Gewebe deutlich höhere Insulinspiegel gemessen worden, so dass der diabetogene Effekt von Streptozotocin durch eine Insulin-Therapie möglicherweise verhindert werden kann (95).

Soon-Shiong konnte nach Transplantation mikroverkapselter Inselzellen bei einer diabetischen Patientin bereits nach 24 Stunden eine Insulinsekretion nachweisen, die für 58 Monate anhielt (85).

Trotz der erhöhten Blutzuckerwerte der intraperitoneal transplantierten Ratten zeigte sich am Ende der Versuchsdauer kein signifikanter Unterschied

zwischen den Seruminsulinwerten dieser Tiere und der Normalkontrollgruppe bzw. den unter die Nierenkapsel transplantierten Tiere, die bis zum Versuchsende normoglykämisch waren. Die gemessenen Werte der beiden zuletzt genannten Gruppen lagen jedoch über denen der mit mikroverkapselten Inseln transplantierten Ratten. Diese Ergebnisse entsprechen den von Houwing beschriebenen, wonach es nach einer erfolgreichen Transplantation bei einem Blutzuckeranstieg vorher normoglykämischer Tiere zu einem Abfall des Seruminsulins kommt (45). Andere Gruppen beschrieben sowohl nach Transplantation mikroverkapselter Inseln als auch nach Transplantation unter die Nierenkapsel eine Normalisierung des Plasmainsulins bzw. eine gesteigerte Sekretion nach Stimulation mit Glukose (5, 7, 15, 86).

Die Messungen des Serumglukagons ergab für die beiden Transplantationsgruppen und die Normalkontrolltiere annähernd gleiche Werte. Im Vergleich dazu waren die Messwerte der langzeitdiabetischen Ratten signifikant erhöht. Die Transplantation von Inselzellen und mikroverkapselten Inselzellen kann also langfristig eine Hyperglukagonämie bei streptozotocindiabetischen Ratten korrigieren. Ar'Rajab konnte zehn Tage nach erfolgreicher Transplantation von Inselzellen unter die Nierenkapsel eine nahezu normale Glukagonsekretion nachweisen (5). Bretzel zeigte in seinen Versuchen mit Streptozotocin-diabetischen Ratten, dass eine Hyperglukagonämie auch noch kurz nach der Transplantation von Inselzellen besteht und sich diese erst im Verlauf normalisiert (8).

Nach erfolgreicher Inselzelltransplantation diabtetischer Ratten entsprechen sowohl die Insulinsekretion als auch die Glukagonsekretion der gesunder Tiere.

4.7 Transplantatversagen

Eine mögliche Ursache für ein Transplantatversagen ist die Abstoßungsreaktion. Da es sich jedoch bei unserem Versuch um eine syngene Inselzelltransplantation handelt, kann eine Abstoßungsreaktion als Usache für den Blutzuckeranstieg der mit mikroverkapselten Inselzellen intraperitoneal transplantierten Tiere ausgeschlossen werden.

Es ist jedoch nachgewiesen worden, dass zwischen Transplantationserfolg und Anzahl der transplantierten Inselzellen ein enger Zusammenhang besteht. Mit steigender Anzahl der transplantierten Inseln kann eine bessere Regulierung des Blutzuckers erreicht werden (3, 6, 43, 51). Ist die gewählte Anzahl wesentlich zu niedrig, so wird zu keinem Zeitpunkt eine Normoglykämie erzielt (59). Transplantiert man ca. 1500 mikroverkapselte Inselzellen intraperitoneal, so tritt für ungefähr drei Wochen eine Normalisierung des Blutzuckers ein (2). intraperitonealer Ar'Rajab beschreibt nach Transplantation von mikroverkapselten Inseln das Erreichen eines normwertigen Blutzuckers für sechs Monate. Bei unseren Versuchstieren, denen ca. 3500 Inseln intraperitoneal, allerdings nach Mikroverkapselung transplantiert wurden, ließ sich dieses Ergebnis nicht nachvollziehen. Es kam gegen Ende der Versuchsdauer bei einigen Ratten zu einem Anstieg des Blutzuckers über 200 mg/dl. Die Ursache hierfür liegt möglicherweise im Gewichtanstieg der Tiere, der $190 \pm 43,15$ g betrug.

Für die Transplantation von Inselzellen unter die Nierenkapsel konnte gezeigt werden, dass mit 2500 transplantierten Inseln eine Normalisierung des Blutzuckers für den gesamten Beobachtungszeitraum erzielt werden konnte. Eine ähnliche Anzahl, nämlich 3000 Inseln, beschreibt auch Leow (56). Siebers et al konnten nach Transplantation von 1200-1500 Inselzellen unter die Nierenkapsel bereits das Erreichen der Normoglykämie nachweisen (82).

Unabhängig von der Zahl der transplantierten Inselzellen werden für die mikroverkapselten Inseln noch andere Ursachen für das Transplantatversagen diskutiert. Auf die Biokompatibilität der Kapseln wurde unter 4.4.3.1 schon eingegangen. Wichtig ist in diesem Zusammenhang die Reinigung das Alginats. Je unreiner das Alginat, desto häufiger wird eine die Kapsel umgebende Fibrose beschrieben (17). Bei gereinigtem Alginat liegt der Anteil der mit einer Fibrose umgebenen Kapseln bei ca. 10 %, dies wird durch mechanische Faktoren erklärt, wie zum Beispiel unzureichende Verkapselung einzelner Inselzellen (22, 98).

Doch selbst bei Verwendung von gereinigtem Alginat ist das Überleben des Transplantats limitiert. Das große Volumen der mikroverkapselten Inselzellen erlaubt bisher nur die intraperitoneale Transplantation (22, 82). Es konnte nachgewiesen werden, dass größere Kapseln sich frei in der Bauchhöhle bewegen während kleinere Kapseln an Organen adhärent werden (22). Sind die Kapseln jedoch in der freien Bauchhöhle, so kann es aufgrund der fehlenden Inseldurchblutung nach Mikroverkapselung zu einer Mangelversorgung kommen, die sich an zentralen Nekrosen der Inselzellen erkennen lässt (23, 98). Transplantiert man kleinere Kapseln intraperitoneal, so ist durch den direkten Kontakt zu den Organen die Wahrscheinlichkeit für eine Infiltration durch Zellen des Immunsystems größer, was eine Abstoßungs- und eine Fremdkörperreaktion zur Folge hat (22).

Mit der Entwicklung kleinerer Kapseln würde auch die Transplantation an andere Orte mit einem besseren Kontakt zum Blutstrom ermöglicht. Dadurch könnte das Auftreten zentraler Nekrosen möglicherweise vermindert werden. Das Problem bei der Herstellung kleinerer Kapseln liegt in einem höheren Risiko für partiell verkapselte Inseln (109). De Vos et al (22) konnten bei einer Reduzierung des Kapseldurchmessers um 300 µm einen vierfach höheren Prozentsatz der nur teilweise verkapselten Inseln nachweisen.

4.8 Klinischer Ausblick

Es konnte im syngenen Tiermodell gezeigt werden, dass mit Hilfe der Inselzelltransplantation das Auftreten diabetischer Spätschäden verhindert werden kann.

Die klinische Inseltransplantation ist bisher weniger erfolgreich. Nur 8 % der transplantierten Patienten sind nach einem Jahr noch insulinunabhängig. Ein großes Problem ist die lebenslange Immunsuppression. Das Auftreten diabetischer Spätkomplikationen kann nur verhindert werden, wenn bereits zu Beginn der Erkrankung eine optimale Blutzuckerregulation erzielt wird. Diese erfolgt idealerweise durch Transplantation insulinproduzierenden Gewebes. Zur Zeit rechtfertigt jedoch das potentielle Auftreten der Spätschäden nicht eine lebenslange Immunsuppression bei jungen Menschen mit allen ihren Nebenwirkungen und Komplikationen.

Die mögliche Lösung für diese und andere Probleme könnte im Bioartifiziellen Pankreas lieaen. Durch die immunseparierende Membran zwischen Transplantat und Empfängerorganismus wäre keine Immunsuppression mehr erforderlich. Um das Problem des Spendermangels zu lösen, könnten somit auch xenogene oder gentechnisch hergestellte Inselzellen transplantiert werden. Es wäre auf diese Art möglich, alle Diabetiker bereits im frühen Krankheitsstadium transplantieren zu und das Auftreten diabetischer Spätschäden zu verhindern.

Eine weitere Therapiemöglichkeit mit Hilfe immunseparierender Membranen besteht bei anderen Erkrankungen mit endokriner Insuffizienz, zum Beispiel nach Ovarektomie oder Parathyreoidektomie (39, 40). Diese Methode müsste jedoch in weiteren Versuchen erst noch etabliert werden.

5.0 Zusammenfassung

In einer Langzeitstudie über 180 Tage sollte am experimentellen Rattenmodell die metabolische Funktion dystop transplantierter, syngener Inselzellen und die Auswirkung auf diabetische Spätkomplikationen untersucht werden.

Zunächst erfolgte die Diabetesinduktion mittels Streptozotcin-Injektion (65 mg/kg) sowohl bei den später zu transplantierenden Ratten als auch bei der langzeitdiabetischen Kontrollgruppe. Nach Manifestation des Diabetes (Hyperglykämie, mangelnde Gewichtzunahme) wurden einem Teil der Ratten mikroverkapselte Inselzellen intraperitoneal transplantiert. Bei der zweiten Transplantationsgruppe erfolgte die Transplantation der Inselzellen unter die Nierenkapsel. Diesen beiden Gruppen wurde eine langzeitdiabetische und eine gesunde, nichtdiabetische Kontrollgruppe zugeteilt.

Zur Beurteilung des metabolischen Verlaufs wurden einmal wöchentlich Blutzucker und Körpergewicht bei jedem Tier bestimmt. Zur Dokumentation des metabolischen Status bei Versuchsende wurden die Trinkmenge, das Urinvolumen, die Glukosurie und die Albuminurie gemessen, sowie Insulin und Glukagon im Serum bestimmt. Zur histologischen Beurteilung wurden die Nieren und das Pankreas explantiert, sowie bei intraperitoneal transplantierten Tieren Biopsien von intraperitonealem Fettgewebe und mikroverkapselte Inseln entnommen.

Sowohl intraperitonealer Inselzelltransplantation nach als auch nach Transplantation unter die Nierenkapsel konnte eine Senkung des Blutzuckers auf weniger als 200 mg/dl erreicht werden. Bei einem Teil der unter die Nierenkapsel transplantierten Tiere kam es nicht zu diesem Transplantationserfolg, sie nahmen jedoch an Gewicht zu und besserten sich in ihrem klinischen Zustand, so dass sie zur Gruppe der mit partiellem Erfolg unter die Nierenkapsel transplantierten Tiere zusammengefasst wurden. Bei den

Ratten mit intraperitonealer Transplantation mikroverkapselter Inselzellen zeichnete sich gegen Ende der Versuchsdauer ein sukzessiver Blutzuckeranstieg ab, so dass am Tag 168 ein mittlerer Blutzucker von 185,54 ± 13,26 mg/dl gemessen wurde. Im Gegensatz dazu blieb bei den erfolgreich unter die Nierenkapsel transplantierten Tieren der Blutzucker über den gesamten Versuchszeitraum relativ konstant; am Tag 168 betrug der mittlere Blutzucker 84,00 ± 11,86 mg/dl. Der Gewichtsanstieg war in diesen beiden Transplantationsgruppen annähernd gleich. Die Ergebnisse für Trinkmenge, Urinvolumen, Glukosurie und Albuminurie waren in der Gruppe der unter die Nierenkapsel transplantierten Tiere annähernd gleich den Werten der stoffwechselgesunden Kontrollgruppe. Bei den intraperitoneal transplantierten Ratten wurden jeweils gegenüber den gesunden Tieren leicht erhöhte Werte gemessen, die sich jedoch deutlich signifikant von der langzeitdiabetischen Kontrollgruppe unterschieden.

Die Messung von Seruminsulin und Serumglukagon ergab keine signifikanten Unterschiede zwischen den erfolgreich transplantierten Tieren und der stoffwechselgesunden Kontrollgruppe.

In der Auswertung der Histologie der Nieren im Hinblick auf die diabetische Nephropathie konnten mit den durchgeführten Methoden keine signifikanten Unterschiede zwischen den Gruppen gezeigt werden.

Durch histologische Aufarbeitung der Pankreata konnte ein Recruitment der Inselzellen bei den transplantierten Tieren nicht gezeigt werden. Sowohl die unter die Nierenkapsel transplantierten Inselzellen als auch die mikroverkapselten Langerhans-Inselzellen wiesen in der PAP-Anti-Insulin-Färbung eine deutliche spezifische Anfärbung auf.

Im experimentellen Streptozotocin-diabetischen Rattenmodell konnte gezeigt werden, dass durch die dystope, syngene Transplantation von Inselzellen eine langfristige Normalisierung des Blutzuckers erreicht werden kann und das Auftreten diabetischer Spätschäden somit vermindert wird.

6.0 Literaturverzeichnis

1) Ar'Rajab A, Ahren B, Alumets J, Logdberg L, Bengmark S

Islet transplantation to the renal subcapsular space improves late complications in streptozotocin-diabetic rats

Eur Surg Res 1990; 22(5): 270-8

2) Ar'Rajab A, Bengmark S, Ahren B

Insulin secretion in streptozotocin-diabetic rats transplanted with immunoisolated islets

Transplantation 1991 Mar; 51(3): 570-4

3) Ar'Rajab A, Dawidson IJ, Harris RB, Sentementes JT

Effect of the number of islets on the outcome after transplantation in streptozotocin-diabetic rats

Horm Metab Res 1994 Aug; 26(8): 355-9

4) Ar´Rajab A, Harris RB, Sentementes JT, Dawidson IJ

The effect of preexisting long-term diabetes on the outcome after islet transplantation in rats

Pancreas 1996 Nov; 13(4): 372-80

5) Ar'Rajab A, Ahren B, Bengmark S

Insulin and Glukagon secretion in streptozotocin-diabetic rats: influences of islets transplanted to the renal subcapsular space

Diabetes Res 1989 Sep; 12(1): 37-41

6) Beattie GM, Hayek A

Islet cell mass and the longevity of islet grafts in diabetic rats

Cell Transplant 1993 Mar-Apr; 2(2): 119-22

7) Bell RC, Finegood DT

Insulin levels increase during glycemic normalization following transplantation of syngeneic islets in diabetic rats

Can J Physiol Pharmacol 1997 Aug; 75(8): 952-8

8) Bretzel RG

Inseltransplantation
Pflaum Verlag, München (1984)

9) Bretzel RG

Islet cell and pancreas transplantation in diabetes: status 1996 Ther Umsch 1996 Dec; 53(12): 889-901

10) Bretzel RG, Browatzki CC, Schultz A, Brandhorst H, Klitscher D, Bollen CC, Raptis G, Friemann S, Ernst W, Rau WS, Hering BJ Klinische Inseltransplantation bei Diabetes mellitus Diab Stoffw 1993; 2: 378-90

11) Brooks-Worrell BM, Peterson KP, Peterson CM, Palmer JP, Jovanovic L Reactivation of type 1 diabetes in patients receiving human fetal pancreatic tissue transplants without immunosuppression Transplantation May 2000; 69(9): 1824-9

12) Brown DM, Steffes MW, Thibert P, Azar S, Mauer SM Glomerular manifestations of diabetes in the BB rat Metabolism 1983 Jul; 32(7 Suppl 1): 131-5

13) Caramori ML, Fioretto P, Mauer M

The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient?

Diabetes 2000 Sep; 49(9): 1399-408

14) Carney SL, Wong NL, Dirks JH

Acute effects of streptozotocin diabetes on rat renal function J Lab Clin Med 1979 Jun; 93(6): 950-61

15) Chick WL, Perna JJ, Lauris V, Low D, Galletti PM, Panol G, Whittemore AD, Like AA, Colton CK, Lysaght MJ

Artificial pancreas using living beta-cells: effects on glucose homeostasis in diabetic rats

Science 1977 Aug; 197(4305): 780-2

16) Clark WL

Closing in on a dream: The bioartificial pancreas JDF International Countdown; 49-54

17) Clayton HA, James RF, London NJ

Islet microencapsulation: a review Acta Diabetol 1993; 30(4):181-9

18) Cohen AJ, McGill PD, Rossetti RG, Guberski DL, Lika AA Glomerulopathy in spontaneously diabetic rat: Impact of glycemic control Diabetes 1987 Aug; 36(8): 944-51

19) Cohen MP, Klein CV

Glomerulopahty in rats with streptozotocin diabetes. Accumulation of glomerular basement membrane analogous to human diabetic nephropathy.

J Exp Med 1979 Mar; 149(3): 623-31

20) Cretin N, B-hler L, Fournier B, Caulfield A, Oberholzer J, Mentha G, Morel P

Human islet allotransplantation: world experience and current status Dig Surg 1998; 15(6): 656-62

21) Dall'Olio G, Dorizzi RM

Diagnosis of diabetes mellitus at the hospital of Venice in 1863 Clin Chim Acta 2000 Jul; 279(1-2): 17-27

22) De Vos P, De Haan B, Pater J, Van Schilfgaarde R

Association between capsule diameter, adequacy of encaspulation, and survival of microencapsulated rat islet allografts

Transplanation 1996 Oct; 62(7): 893-9

23) De Vos P, Van Straaten JF, Nieuwenhuizen AG, De Groot M, De Haan BJ, Van Schilfgaarde R

Why do microencapslutated islet grafts fail in the absence of fibrotic overgrowth?

Diabetes 1999 Jul; 48(7): 1381-8

24) De Vos P, Wolters GH, Fritschy WM, Van Schilfgaarde R Obstacles in the application of microencapsulation in islet transplanation Int J Artif Organs 1993 Apr; 16(4): 205-12

25) Durinovic-Bello I

Autoimmune diabetes: the role of T cells, MHC molecules and autoantigens

Autoimmunity 1998; 27(3): 159-77

26) Duron F

Intensive insulin therapy in insulin-dependent diabetes mellitus, the results of the diabetes control and complications trial

Biomed Pharmacother 1995; 49(6): 278-82

27) Eli A, Friedmann MD

Toward a hybrid artificial pancreas

Diabetes Care 1989 June; 12: 415-20

28) Fan MY, Lum ZP, Fu XW, Levesque L, Tai IT, Sun AM

Reversal of diabetes in BB rats by transplantation of encapsulated pancreatic islets

Diabetes 1990 Apr; 39(4): 519-22

Federlin K, Bretzel RG, Hering BJ

Pancreatic islet transplantation in diabetes

The International Journal of Artificial Organs 1991; 14(2): 74-7

30) Federlin K, Bretzel RG, Hering BJ

Recent achievments in experimental and clinical islet transplantation

Diabetic Medicine 1991; 8: 5-12

31) Federlin K, Hering BJ, Bretzel RG

Islet transplantation: clinical and experimental

Horm Metab Res Suppl 1992; 26: 148-51

32) Federlin K, Pozza G

Indications for clinical islet transplantation today and in the foreseeable future- the diabetologist's point of view

J Mol Med 1999 Jan; 77(1): 148-52

33) Federlin KF

Islet transplantation. The connection of experiment and clinic exemplified by the transplantation of islets of Langerhans

Exp Clin Endocrinol 1993; 101(6): 334-45

34) Finegood DT

Dynamics of glycemic normalization following transplantation of incremental islet masses in streptozotocin-diabetic rats

Transplantation 1992 May; 53(5): 1033-7

35) Friedmann MI, Ramirez I

Food intake in diabetic rats: relationship to metabolic effects of insulin treatment

Physiol Behav 1994 Aug; 56(2): 373-8

36) Gajdoisik A, Gajdoisikova A, Stefek M, Navarova J, Hozova R Streptozotocin-induced experimental diabetes in male Wistar rats Gen Physiol Biophys 1999 Oct; 18: 54-62

37) Hahn HJ, Kuttler B

The syngeneic islet transplantation to study physiology and pathophysiology of pancreatic beta-cells

Advances in experimental medicine and biology; 426: 411-19

38) Hanafusa T, Miyazaki A, Miyagawa J, Tamura S, Inada M, Yamada K, Shinji Y, Katsura H, Yamgata K, Itoh N, et al

Examination of islets in the pancreas biopsy specimens from newly diagnosed type 1 (insulin-dependent) diabetic patients

Diabetologia 1990 Feb; 33(2): 105-11

39) Hasse C, Bohrer T, Barth P, Stinner B, Cohen R, Cramer H, Zimmermann U, Rothmund M

Parathyroid xenotransplantation without immunosuppression in experimental hypoparathyroidism: long-term in vivo function following microencapsulation with a clinically suitable alginate

World J Surg 2000 Nov; 24(11): 1361-6

40) Hasse C, Klock G, Schlosser A, Zimmermann U, Rothmund M Parathyroid allotransplantation without immunosuppression Lancet 1997 Nov; 350(9087): 1296-7

41) Hasslacher C, Wahl P

Influence of diabetes control on synthesis of protein and basement membrane collagen in isolated glomeruli of diabetic rats

Res Exp Med 1980; 176(3): 247-53

42) Haughton CL, Dillehay DL, Phillips LS

Insulin replacement therapy for the rat model of streptozotocin-induced diabetes mellitus

Lab Anim Sci 1999 Dec; 49(6): 639-44

43) Henriksson C, Bergmark J, Claes G

Metabolic response to isologous transplantation of small numbers of isolated islets of Langerhans in the rat

Eur Surg Res 1977; 9(6): 411-8

44) Hering BJ, Bretzel RG, Federlin K

Current status of clinical islet transplantation

Horm Metabol Res 1988; 20:537-45

45) Houwing H, Hilbrands LG, Van Suylichem PT, Bruggink JE, Steffens AB, Strubbe JH

Control of insulin secretion and glucose homeostasis in exercising diabetic rats with intrasplenic or kidney subcapsular islet grafts

Cell Transplant 1997 Jul-Aug; 6(4): 413-22

46) Hummel M, Durinivic-Bello I, Ziegler AG

Relation between cellular and humoral immunity to islet cell antigens in type 1 diabetes

J Autoimmun 1996 Jun; 9(3): 427-30

47) Isogai S, Mogami K, Shiina N, Yoshino G

Initial ultrastructural changes in pore size and anionic sites of the glomerular basement membrane in streptozotocin-induced diabetic rats and their prevention by insulin treatment

Nephron 1999 Sep; 83(1): 53-8

48) Iwahashi H, Itoh N, Yamagata K, Imagawa A, Nakjima H, Tomita K,
Moriwaki M, Waguri M, Yamamoto K, Miyagawa J, Namba M, Hanafusa T,
Matsuzawa Y

Molecular mechanisms of pancreatic beta-cell destruction in autoimmune diabetes: potential targets for preventive therapy

Cytokines Cell Mol Ther 1998 Mar; 4(1): 45-51

49) Jaeger C, Brendel MD, Eckhard M, Bretzel RG

Islet autoantibodies as potential markers for disease recurrence in clinical islet transplantation

Exp Clin Endocrinol Diabetes 2000; 108(5): 328-33

50) Kaneda K, Iwao J, Sakata N, Takebayashi S

Correlation between mitochondrial enlargement in renal proximal tubules and microalbuminuria in rats with early streptozotocin-induced diabetes Acta Pathol Jpn 1992 Dec; 42(12): 855-60

51) Keymeulen B, Teng H, Vetri M, Gorus F, In't P, Pipeleers DG

Effect of donor islet mass on metabolic normalization in streptozotocindiabetic rats

Diabetologia 1992 Aug; 35(8): 719-24

52) Klempnauer J, Lück R, Hiller WFA, Bektas H, Meier P, Pichlmayr R Pankreastransplantation - zwischen Experiment und klinischer Methode Internist 1996; 37:289-94

53) Korbutt GS, Warlock GL, Rajotte RV

Islet transplantation

Advances in experimental medicine and biology, 426: 397-410

54) Kuhtreiber WM, Lanza RP, Chick WL

Secretory function of biohybrid pancreas devices containing isolated porcine islets

ASAIO J 1994 Jul-Sep; 40(3): 789-92

55) Lehmann R, Spinas GA

Screening, diagnosis and management of diabetes mellitus and diabetic complications

Ther Umsch 2000 Jan; 57(1): 12-21

56) Leow CK, Gray DW, Morris PJ

The long-term metabolic function of intraportal and renal subcapsular islets isografts and the effect on glomerular basement membrane thickness in rats

Diabetologia 1995 Sep; 38(9): 1014-24

57) Lipton R, LaPorte RE

Epidemiology of islet cell antibodies

Epidemiol Rev 1989, 11: 182-203

58) Manske CL

Risks and benefits of kidney and pancreas transplantation for diabetic patients

Diabetes Care 1999 Mar; 22 (Suppl 2): 114-20

59) Mendola J, Seanz A, Sarri Y, Usac EF, Fernandez J, Gomis R, Fernandez-Cruz L

Pancreatic islet transplantation in streptozotocin-diabetic rats Transplantation Proceedings 1992 Feb; 24(1): 14-15

60) Molitch ME

The relationship between glucose control and the development of diabetic nephropathy in type 1 diabetes

Semin Nephrol 1997 Mar; 17(2): 101-13

61) Molitch ME, Steffes MW, Cleary PA, Nathan DM

Baseline analysis of renal function in the Diabetes Control and Complications Trial. The Diabetes Control and Complications Trial Research Group.

Kidney Int 1993 Mar; 43(3): 668-74

62) Morano S, D'Erme M, Sensi M, De Rossi MG, Medici F, Gialliccia F, Andreani D, Di Mario U

Characteristics of proteinuria in experimental diabetes mellitus Biochem Med Metab Biol 1994 Dec; 53(2): 92-7

63) Moriya T, Nakazawa K, Itoh N, Shigematsu H, Okada N, Aizawa T, Yamada T, Yajima Y

Loss of glomerular anionic sites and the development of albuminuria in rats with streptozotocin-induced diabetes

Nephron 1993, 65(3): 444-8

64) Moriya T, Ohno S, Tanaka K, Fujii Y, Yajima Y

Effects of early insulin treatment on ultrastructural changes of glomeruli in diabetic rats revealed by quick-freezing and deep-etching method Diabetologia 1996 Jun; 39(6): 632-40

65) Nakagawara G, Kojima Y, Mizukami T, Ono S, Miyazaki I

Transplantation of cryopreserved pancreatic islets into the portal vein

Transplant Proc 1981 Jun; 13(2): 1503-7

66) Ohgawara H, Hirotani S, Miyazaki J, Teraoka S

Membrane immunoisolation of a diffusion chamber for bioartificial pancreas

Artif Organs 1998 Sep; 22(9): 788-94

67) Olgemoller B, Schleicher E

Alterations of glomerular matrix proteins in the pathogenesis of diabetic nephropathy

Clin Investig 1993; 71(5 Suppl): 13-9

68) Osborne DL, Payne SC, Russ RD, Tobin B

Comparison of therapeutic regimens in the amelioration of alterations in rat gastrointestinal mucosal DNA, RNA and protein induced by streptozotocin diabetes mellitus

Life Sci 2000 May; 66(24): 2405-17

69) Osterby R, Parving HH, Hommel E, Jorgensen HE, Lokkegaard H

Glomerular structure and function in diabetic nephropathy

.

Diabetes 1990 Sep; 39: 1057-63

70) Panczel P, Kulkey O, Luczay A, Bornemisza B, Illyes G, Halmos T, Baranti E, Blatniczky L, Meszaros J, Kerenyi Z, Gero L, Tamas G, Hosszufalusi N,

Horvath L, Madacsy L, Romics L

Detection of antibodies against pancreatic islet cells in clinical practice

Orv Hetil 1999 Nov; 140(48): 695-701

71) Peschke E, Ebelt H, Brömme HJ, Peschke D

Classical and new diabetogens – comparison of their effects on isolated rat pancreatic islets in vitro

Cell Mol Life Sci 2000 Jan; 57(1): 158-64

72) Phillips A, Janssen U, Floege J

Progression of diabetic nephropathy. Insights from cell culture studies and animal models

Kidney Blood Press Res 1999; 22(1-2): 81-97

73) Pollok JM, Ibarra C, Broelsch CE, Vacanti JP

Immuno-isolation of xenogenic islands of Langerhans in a tissue engineerd autologous cartilage capsule

Zentralbl Chir 1988; 123(7): 830-3

74) Pugliese G, Pricci F, Pesce C, Romeo G, Lenti E, Caltabiano V, Vetri M, Purrello F, Di Mario U

Early, but not advanced glomerulopathy is reversed by pancreatic islet transplants in experimental diabetic rats: correlation with glomerular extracellular matrix mRNA levels

Diabetes 1997 Jul; 46(7): 1198-206

75) Rasch R

Prevention of diabetic glomerulopahty in streptozotocin diabetic rats by insulin treatment. Albumin excretion

Diabetologia 1980 May; 18(5): 413-6

76) Reddi AS

Metabolism of glomerular basement membrane in short- and long-term streptozotocin diabetic rats

Arch Int Physiol Biochim 1986 Sep; 94(3): 205-18

77) Scherbaum WA

Etiology and pathogenesis of type 1 diabetes Horm Meatb Res Suppl 1992; 26: 111-6

78) Schleicher E, Kolm V, Ceol M, Nerlich A

Structural and functional changes in diabetic glomerulopathy Kidney Blood Press Res 1996; 19(5): 305-15

79) Schleicher E, Nerlich A

The role of hyperglycemia in the development of diabetic complications Horm Metab Res 1996 Aug, 28(8): 367-73

80) Schleicher E, Olgemoller B

Glomerular changes in diabetes mellitus Eur J Clin Chem Clin Biochenm 1992 Oct; 30(10): 635-40 81) Siebers U, Horcher A, Bretzel RG, Federlin K, Zekorn T Alginate-based microcapsules for immunoprotected islet transplantation Ann N Y Acad Sci 1997 Dec; 831:304-12

82) Siebers U, Horcher A, Bretzel RG, Klock G, Zimmermann U, Federlin K, Zekorn T

Transplantation of free and microencapsulated islets in rats: evidence for the requirement of an increased islet mass for transplantation into the peritoneal site

Int J Artif Organs 1993 Feb; 16(2): 96-9

83) Siebers U, Horcher A, Bretzel RG, Zekorn T

Immunologische Aspekte des bioartifiziellen Pnakreas

Medwelt 1994; 45: 77-9

84) Sima AAF, Zhang WX, Tze WJ, Tai J, Nathaniel V

Diabetic neuropathy in streptozotocin-induced diabetic rat and effect of allogeneic islet transplantation

Diabetes 1988 Aug; 37:1129-36

85) Soon-Shiong P

Treatment of type 1 diabetes using encapsulated islets
Advanced Drug Delivery Reviews 1999 Feb; 35(2-3): 259-70

86) Steffes MW, Brown DM, Mauer SM

The development, enhancement, and reversal of secondary complications of diabetes mellitus

Hum Pathol 1979 May; 10(3): 293-9

87) Steffes MW, Osterby R, Chavers B, Mauer SM

Mesangium expansion as a central mechanism for loss of kidney function in diabetic patients

Diabetes 1989 Sep; 38: 1077-81

88) Stratta RJ

Immunosuppression in pancreas transplantation: progress, problems and perspective

Transpl Immunol 1998 Jun; 6(2): 69-77

89) Sun AM, Goosen MF, O'Shea G

Microencapsulated cells as hormone delivery systems Crit Rev Ther Drug Carrier Syst 1987; 4(1): 1-12

90) Tatarkiewicz K, Sitarek E, Sabat M, Orlowski T

Reversal of hyperglycemia in streptozotocin-diabetic mice by xenotransplantation of microencapsulated rat islets

Ann Transplant 1997; 2(2): 20-3

91) The Diabetes Control and Complications Trial Research Group

Diabetes Control and Complications Trial. Update

Diabetes Care 1990 Apr; 13(4): 427-33

92) The Diabetes Control and Complications Trial Research Group

Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial Kidney Int 1995 Jun; 47(6): 1703-20

93) The Diabetes Control and Complications Trial Research Group

The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus

N Engl J Med 1993; 329: 977-86

94) Thomas FT, Ricordi C, Contreras JL, Hubbard WJ, Jiang XL, Eckhoff DE, Cartner S, Bilbao G, Neville DM Jr, Thomas JM

Reversal of naturally occouring diabetes in primates by unmodified islet xenograft without chronic immunosuppression

Transplantation 1999 Mar; 67(6): 846-54

95) Thulesen J, Orskov C, Holst JJ, Poulsen SS

Short-term insulin treatment prevents the diabetogenic action of streptozotocin in rats

Endocrinology 1997 Jan; 138(1): 62-8

96) Timsit J, Boitard C, Bach JF

Type 1 diabetes mellitus, autoimmune disease: physiopathologic aspects and practical applications

Ann Biol Clin 1991; 49(3): 149-53

97) Tree TI, O'Byrne D, Tremble JM, MacFarlane WM, Haskins K, James RF, Docherty K, Hutton JC, Banga JP

Evidence for recognition of novel islet T cell antigens by granulespecific T cell lines from new onset of type 1 diabetic patients

Clin Exp Immunol 2000 Jul; 121(1): 100-5

98) Van Schilfgaarde R, De Vos P

Factors influencing the properties and performance of microcapsules for immunoprotection of pancreatic islets

J Mol Med 1999 Jan; 77(1): 893-9

99) Vanderweele DA

Insulin and satiety from feeding in pancreatic-normal and diabetic rats Physiol Behav 1993 Sep; 54(3): 477-85

100) Velasco Plaza A, G-Granada T, Cachero MT

Circadian rhythms of food and water intake and urine excretion in diabetic rats

Physiol Behav 1993 Oct, 54(4): 665-70

101) Vora JP, Ibrahim HA, Bakris GL

Responding to the challenge of diabetic nephropathy: the historic evolution of detection, prevention and management

J Hum Hypertens 2000 Oct-Nov; 14(10-11): 667-85

102) Voros P, Farkas G

Albuminuria after fetal pancreatic islet transplantation: a 10-Year followup

Nephrol Dial Transplant 1998 Nov; 13(11): 2899-904

103) Weber C, Zatrigi A,

Pancreatic islet isografts, allografts, and xenografts: comparison of morphology and function

Surgery 1976 Feb; 79(2): 144-51

104) Weekers L, Scheen AJ, Lefebvre PJ

How I evaluate...diabetic nephropathy. First part: micro- and macroalbuminuria

Rev Med Liege 1998 Aug; 53(8): 494-8

105) Weir GC, Bonner-Weir S

Islet transplantation as a treatment for diabetes

J Am Optom Assoc 1998 Nov; 69(11): 727-32

106) Wong KK, Tzeng ES

Appearance of different diabetic symptoms after streptozotocin administration: a comparison study

Biochem Mol Biol Int 1993 Aug; 30(6): 1035-41

107) Yong LC, Bleasel AF

Pathological changes in streptozotocin-induced diabetes mellitus in the rat

Exp Pathol 1986; 30(2): 97-107

108) Zekorn T, Horcher A, Mellert J, Siebers U, Altug T, Emre A, Hahn HJ, Federlin K

Biocompatibility and immunology in the encapsulation of islets of Langerhans (bioartificial pancreas)

Int J Artif Organs 1996 Apr; 19(4): 251-7

109) Zekorn T, Horcher A, Siebers U, Bretzel RG

Transplantation Langerhansscher Inseln in immunseparierenden Membranen als Therapieprinzip für endokrine Insuffizienz

Medwelt 1994; 45: 80-3

110) Zekorn T, Horcher A, Siebers U, Federlin K, Bretzel RG

Synergistic effect of microencapsulation and immunoalteration on islet allograft survival in bioartificial pancreas

J Mol Med 1999 Jan; 77(1): 193-8

111) Zekorn T, Siebers U, Horcher A, Schnettler R, Klöck G, Bretzel RG, Zimmermann U, Federlin K

Barium-alginate beads for immunoisolated transplantation of islets of Langerhans

Transplantation Proceedings 1992 Jun; 24(3): 937-39

112) Zekorn T, Siebers U, Horcher A, Schnettler R, Zimmermann U, Bretzel RG, Federlin K

Alginate coating of islets of Langerhans: in vitro studies on a new method for microencapsulation for immuno-isolated transplantation

Acta Diabetol 1992; 29(1): 41-5

7.0 Primärdatenteil

Blutzucker spontan; stoffwechselgesunde Kontrollgruppe

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
Norm 1						
Norm 2						
Norm 3						
Norm 4						
Norm 5						
Norm 6						
Norm 7						
Norm 8						
Norm 9						
Norm 10						
Cc						
n:	0	0	0	0	0	0
x:	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
s:	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
SEM:	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

Tier-Nr.	Tag 0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
Norm 1	79		83		65	
Norm 2	77		57		63	
Norm 3	74		46		85	
Norm 4	55		70		82	
Norm 5	52		84		45	
Norm 6	63		48		54	
Norm 7		72		68		37
Norm 8		78		35		52
Norm 9		85		76		76
Norm 10		75		80		74
Сс						
n:	6	4	6	4	6	4
x:	66,7	77,5	64,7	64,8	65,7	59,8
s:	11,6	5,6	16,9	20,5	15,6	18,7
SEM:	4,8	2,8	6,9	10,2	6,4	9,3

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag 42	Tag 49
Norm 1	88		55	67	78	55
Norm 2	80		51	70	71	53
Norm 3	90		84	57	86	41
Norm 4	63		82	57	73	60
Norm 5	51		66	41	71	81
Norm 6	64		41	74	80	39
Norm 7		50		74	55	50
Norm 8		59		62	70	54
Norm 9		60		71	56	69
Norm 10		61		75	61	59
СС						
n:	6	4	6	10	10	10
x:	72,7	57,5	63,2	64,8	70,1	56,1
s:	15,7	5,1	17,3	10,7	10,2	12,4
SEM:	6,4	2,5	7,1	3,4	3,2	3,9

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
Norm 1	57	62	52	84	70	55
Norm 2	59	61	54	88	73	54
Norm 3	56	60	40	24	79	65
Norm 4	49	67	104	72	17	70
Norm 5	35	68	75	53	66	56
Norm 6	68	84	70	70	55	59
Norm 7	69	62	48	78	69	68
Norm 8	54	68	63	54	106	73
Norm 9	73	66	43	47	59	63
Norm 10	75	71	66	50	67	76
cc						
n:	10	10	10	10	10	10
x:	59,5	66,9	61,5	62,0	66,1	63,9
s:	12,2	7,0	18,9	19,8	22,1	7,8
SEM:	3,9	2,2	6,0	6,3	7,0	2,5

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
Norm 1	65	59	21	28	72	70
Norm 2	60	56	17	35	72	86
Norm 3	74	52	65	79	51	67
Norm 4	52	80	72	59	82	74
Norm 5	59	75	90	60	77	71
Norm 6	79	58	64	79	79	70
Norm 7	116	60	72	50	69	65
Norm 8	75	77	62	69	58	71
Norm 9	70	65	36	60	65	78
Norm 10	69	71	70	67	56	69
Сс						
n:	10	10	10	10	10	10
x:	71,9	65,3	56,9	58,6	68,1	72,1
s:	17,6	9,8	24,0	16,9	10,4	6,0
SEM:	5,6	3,1	7,6	5,4	3,3	1,9

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168	Tag 175
Norm 1	70	66	58	56	63	70
Norm 2	78	57	50	62	72	69
Norm 3	111	70	73	66	69	76
Norm 4	65	76	64	65	73	68
Norm 5	69	73	75	66	55	51
Norm 6	72	67	64	88	82	74
Norm 7	60	53	63	51	70	49
Norm 8	65	66	63	63	62	57
Norm 9	69	55	61	55	57	42
Norm 10	74	63	60	61	65	65
Сс						
n:	10	10	10	10	10	10
x:	73,3	64,6	63,1	63,3	66,8	62,1
s:	14,2	7,6	7,1	10,0	8,1	11,6
SEM:	4,5	2,4	2,2	3,2	2,6	3,7

Tier-Nr.	Tag 180	Tag 187	Tag 194	Tag 201	Tag 208	Tag 215
Norm 1	64	80	69	79		
Norm 2	71	66	60	77	57	73
Norm 3	68	73	69	44	64	
Norm 4		73	70	68	67	84
Norm 5	63	57	74	57	71	78
Norm 6	78	78	73	43	82	
Norm 7	55	73	67	41	73	48
Norm 8	72	79	64	61	77	48
Norm 9	62	59	71	63	51	47
Norm 10	61	61	67	79	52	49
Сс						
n:	9	10	10	10	9	7
x:	66,0	69,9	68,4	61,2	66,0	61,0
s:	6,9	8,6	4,2	14,9	10,9	16,5
SEM:	2,3	2,7	1,3	4,7	3,6	6,2

Körpergewicht; stoffwechselgesunde Kontrollgruppe

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
Norm 1						
Norm 2						
Norm 3						
Norm 4						
Norm 5						
Norm 6						
Norm 7						
Norm 8						
Norm 9						
Norm 10						
Сс						
n:	0	0	0	0	0	0
x:	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
s:	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
SEM:	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

Tier-Nr.	Tag 0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
Norm 1	278	293	303	313	319	338
Norm 2	270	274	288	303	310	325
Norm 3	338	344	344	366	366	376
Norm 4	231		261		280	
Norm 5	310		324		344	
Norm 6	313		332		362	
Norm 7		316		338		344
Norm 8		320		336		346
Norm 9		349		360		370
Norm 10		352		370		378
Сс						
n:	6	7	6	7	6	7
x:	290,0	321,1	308,7	340,9	330,2	353,9
s:	38,1	29,7	30,9	26,1	33,3	20,7
SEM:	15,6	11,2	12,6	9,9	13,6	7,8

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag 42	Tag 49
Norm 1	342	354	366	373	380	397
Norm 2	336	348	356	369	375	388
Norm 3	388	390	400	405	412	421
Norm 4	292		322	336	352	366
Norm 5	364		376	385	388	400
Norm 6	376		378	388	404	410
Norm 7		352		354	368	370
Norm 8		352		354	366	376
Norm 9		364		374	382	388
Norm 10		388		388	394	400
cc						
n:	6	7	6	10	10	10
x:	349,7	364,0	366,3	372,6	382,1	391,6
s:	34,5	17,8	26,2	20,3	18,2	17,5
SEM:	14,1	6,7	10,7	6,4	5,7	5,5

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
Norm 1	393	403	404	420	435	438
Norm 2	393	402	409	421	438	449
Norm 3	444	450	452	456	462	470
Norm 4	373	388	390	400	410	404
Norm 5	404	406	416	428	428	432
Norm 6	406	422	430	430	433	438
Norm 7	376	382	386	394	402	402
Norm 8	376	384	390	384	392	398
Norm 9	398	382	410	408	410	416
Norm 10	410	392	418	420	428	438
СС						
n:	10	10	10	10	10	10
x:	397,3	401,1	410,5	416,1	423,8	428,5
s:	21,1	21,4	20,2	20,6	20,5	23,1
SEM:	6,7	6,8	6,4	6,5	6,5	7,3

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
Norm 1	448	446	452	456	461	457
Norm 2	458	463	465	462	470	470
Norm 3	462	466	474	470	470	464
Norm 4	410	416	420	430	436	438
Norm 5	432	440	448	448	456	466
Norm 6	436	449	447	462	474	474
Norm 7	400	406	408	410	416	414
Norm 8	408	404	406	406	414	416
Norm 9	422	424	428	432	436	440
Norm 10	436	438	438	446	448	458
СС						
n:	10	10	10	10	10	10
x:	431,2	435,2	438,6	442,2	448,1	449,7
s:	21,2	22,1	23,0	22,1	22,0	21,7
SEM:	6,7	7,0	7,3	7,0	6,9	6,9

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168	Tag 175
Norm 1	460	464	469	473	474	474
Norm 2	473	478	485	482	484	485
Norm 3	468	468	466	470	474	484
Norm 4	446	442	452	454	454	456
Norm 5	474	478	472	474	478	474
Norm 6	474	482	492	488	490	504
Norm 7	418	422	420	418	426	426
Norm 8	420	428	428	432	430	444
Norm 9	438	438	444	438	438	450
Norm 10	458	462	462	458	468	476
сс						
n:	10	10	10	10	10	10
x:	452,9	456,2	459,0	458,7	461,6	467,3
s:	21,5	22,0	23,2	23,1	23,1	23,0
SEM:	6,8	7,0	7,3	7,3	7,3	7,3

Tier-Nr.	Tag 180	Tag 187	Tag 194	Tag 201	Tag 208	Tag 215
Norm 1	483	486	488	496		
Norm 2	488	494	490	504	518	500
Norm 3	482	478	486	506	510	
Norm 4		468	472	488	490	486
Norm 5	486	484	488	492	495	502
Norm 6	506	503	498	502		
Norm 7	436	434	436	450	452	452
Norm 8	438	440	438	450	456	458
Norm 9	446	448	440	460	462	468
Norm 10	476	476	472	494	486	490
Сс						
n:	9	10	10	10	8	7
x:	471,2	471,1	470,8	484,2	483,6	479,4
s:	24,9	23,3	24,0	22,2	24,7	20,1
SEM:	8,3	7,4	7,6	7,0	8,7	7,6

Stoffwechselgesunde Kontrollgruppe

24 h - Urin	Explantation -2 Wochen							
24 11 - 01111	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>					
Tier-Nr.								
Norm 1	14	3,22	23					
Norm 2	10,5	4,51	24					
Norm 3	14	5,74	79					
Norm 4	15	4,2	29					
Norm 5	13	4,94	30					
Norm 6	9,5	3,8	32					
Norm 7	12	3,6	29					
Norm 8	16	3,2	30					
Norm 9	12	2,4	26					
Norm 10	14	1,4	30					

24 h - Urin	Explantation -1 Woche							
24 II - UIIII	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>					
Tier-Nr.								
Norm 1	9	4,59	21					
Norm 2	12	4,08	17					
Norm 3	14	3,36	28					
Norm 4	13	5,59	24					
Norm 5	12	3,24	26					
Norm 6	9,5	3,8	32					
Norm 7	12	3,6	28					
Norm 8	12	3,6	23					
Norm 9	10	3	26					
Norm 10	10	3	25					

Blutzucker spontan; diabetische Kontrollgruppe

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
LSTZ - 1	340	448	449	445	351	364
LSTZ - 2		336	492	348	294	645
LSTZ - 3		369	450	719	325	373
LSTZ - 5	348	361	394	364	414	360
LSTZ - 7	245	399	314		339	359
LSTZ - 8	380	340	361		462	349
LSTZ - 9		357	508		428	475
LSTZ - 10	421	439	264	454		311
LSTZ - 11	418	337	454	384	455	306
LSTZ - 12	291	405	477	322	480	410
LSTZ - 13	181	365	331	329	344	418
LSTZ - 15		374	650	297	392	352
LSTZ - 16	348	191	337	340	464	291
LSTZ - 17	350	301	311	428	515	256
СС						
n·	10	14	14	11	13	14
n:	332,2	358,7	413,7		404,8	
X:			103,0	·		
S: SEM:	75,0	62,9			69,2	
SEM:	23,7	16,8	27,5	35,3	19,2	25,4

Tier-Nr.	Tag 0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
LSTZ - 1	421		495		330	
LSTZ - 2	461		530		491	
LSTZ - 3	359		388		320	
LSTZ - 5	442	457	438		443	
LSTZ - 7	360	376	290		304	
LSTZ - 8	360	354	220		414	
LSTZ - 9	470	365	416		455	
LSTZ - 10	418		616		394	
LSTZ - 11	243	412	378		467	
LSTZ - 12	469	497	448		407	
LSTZ - 13	444	367	561		485	
LSTZ - 15	336		431		437	
LSTZ - 16	325		155		476	
LSTZ - 17	340		416		354	
сс						
n:	14	7	14	0	14	0
x:	389,1	404,0	413,0	#DIV/0!	412,6	#DIV/0!
s:	67,4	54,3	126,0	#DIV/0!	63,7	#DIV/0!
SEM:	18,0	20,5	33,7	#DIV/0!	17,0	#DIV/0!

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag42	Tag 49
LSTZ - 1	375		510	393	455	443
LSTZ - 2	666		524	541	492	474
LSTZ - 3	453		442	432	461	435
LSTZ - 5	419		488	326	448	458
LSTZ - 7	254		360	355	249	409
LSTZ - 8	338		299	456	480	
LSTZ - 9	382		409	542	392	492
LSTZ - 10	340		364	437	509	436
LSTZ - 11	468		317	538	390	338
LSTZ - 12	417		414	289	587	331
LSTZ - 13	300		350	317	403	215
LSTZ - 15	231		359	352	317	281
LSTZ - 16	578		401	393	422	442
LSTZ - 17	339		353	386	397	461
Сс						
n:	14	0	14	14	14	13
x:	397,1	#DIV/0!	399,3	411,2	428,7	401,2
s:	118,5	#DIV/0!	70,0	84,2	83,0	83,8
SEM:	31,7	#DIV/0!	18,7	22,5	22,2	23,2

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
LSTZ - 1	368	281	414		320	339
LSTZ - 2	435	528	492	367	545	456
LSTZ - 3	445	416	397	271	375	461
LSTZ - 5	500	455	359	468	411	372
LSTZ - 7	377	481	348	212	416	422
LSTZ - 8	422	421	363	401	318	421
LSTZ - 9	471	493	479	485	390	474
LSTZ - 10	325	510	350	453	350	261
LSTZ - 11	361	444	415	306	287	314
LSTZ - 12	371	368	470	383	444	370
LSTZ - 13	274	318	248	179	315	387
LSTZ - 15	501	414	485	422	421	464
LSTZ - 16	429	418	460	475	456	609
LSTZ - 17	387	344	268	267	366	463
Сс						
n:	14	14	14	13	14	14
x:	404,7	420,8	396,3	360,7	386,7	415,2
s:	65,1	72,8				85,1
SEM:	17,4	19,5	20,9			

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
LSTZ - 1	411	547	341	338		235
LSTZ - 2	458	602	516	319	543	255
LSTZ - 3	475	530	539	536	429	359
LSTZ - 5	377	354	339	387	406	416
LSTZ - 7	284	584	402	410	406	305
LSTZ - 8	314	420	494	514	439	439
LSTZ - 9	483		528	364	413	453
LSTZ - 10	252	402	306	290	483	432
LSTZ - 11	257	467	430	326	457	581
LSTZ - 12	216	257	351	418	309	310
LSTZ - 13	219	235	270	369	334	245
LSTZ - 15	442	352	316	333	396	554
LSTZ - 16	381	487	417	559	390	
LSTZ - 17	362	427	332	385	521	430
Сс						
n:	14	13	14	14	13	13
x:	352,2	435,7	398,6	396,3	425,1	385,7
s:	95,3	116,2	90,4	84,2	66,1	112,3
SEM:	25,5	32,2	24,2	22,5	18,3	31,2

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168
LSTZ - 1	182				
LSTZ - 2	448	373	452	529	
LSTZ - 3		358	444	562	
LSTZ - 5		513	312	396	
LSTZ - 7	421	393	383	267	
LSTZ - 8	326		453	342	
LSTZ - 9	513	541	570	355	
LSTZ - 10	300				
LSTZ - 11	413	371	503	465	450
LSTZ - 12	296	273	303		
LSTZ - 13	153				
LSTZ - 15	381	345	440	464	387
LSTZ - 16					
LSTZ - 17	442	332	407	352	308
Сс					
n:	11	9	10	9	3
x:	352,3	388,8	426,7	414,7	381,7
s:	112,9	85,6			
SEM:	34,1	28,5	25,6		41,1

Körpergewicht; diabetische Kontrollgruppe

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
LSTZ - 1	279	225	250	243	241	235
LSTZ - 2		242	229	224	230	220
LSTZ - 3		261	248	241	233	220
LSTZ - 5	271	264	250	251	254	251
LSTZ - 7	258	259	245	261	272	272
LSTZ - 8	279	270	269	272	260	264
LSTZ - 9	295	287	271	272	263	
LSTZ - 10	280	272	251	233	243	
LSTZ - 11	277	258	241	226	222	217
LSTZ - 12	259	260	266	254	256	255
LSTZ - 13	225	217	216	209	192	188
LSTZ - 15	274	262	254	238	234	241
LSTZ - 16	262	262	237	239	237	237
LSTZ - 17	270	254	240	232	217	218
СС						
n:	12	14	14	14	14	12
x:	269,1	256,6	247,6		239,6	234,8
s:	17,3	18,1	15,1	18,1	21,1	23,7
SEM:	5,0	4,8	4,0		5,6	6,8

Tier-Nr.	Tag0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
LSTZ - 1	228	223	229	224	238	219
LSTZ - 2	217	213	206	196	204	210
LSTZ - 3	232	234	231	220	225	222
LSTZ - 5	263	260	262	264	256	262
LSTZ - 7	273	271	270	267	268	269
LSTZ - 8	261	242	250	235	233	242
LSTZ - 9	252	250	236	255	247	245
LSTZ - 10	216	202		200	206	198
LSTZ - 11	202	205	194	199	196	182
LSTZ - 12	245	260	261	265	230	247
LSTZ - 13	171	184	195	190	170	178
LSTZ - 15	216	201	201	202	220	221
LSTZ - 16	221	207	212	213	222	218
LSTZ - 17	218	202	200	202	217	207
cc						
n:	14	14	13	14	14	14
x:	229,6	225,3	226,7	223,7	223,7	222,9
s:	27,3	27,4	27,5	28,4	25,3	27,5
SEM:	7,3	7,3	7,6	7,6	6,8	7,4

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag 42	Tag 49
LSTZ - 1	195	210	204	195	202	226
LSTZ - 2	202	186	193	200	198	197
LSTZ - 3	217	200	207	224	227	220
LSTZ - 5	262	255	252	264	237	247
LSTZ - 7	270	264	257	241	253	250
LSTZ - 8	238	247	252	234	234	229
LSTZ - 9	236	228	231	232	213	221
LSTZ - 10	187	194	181	177	187	190
LSTZ - 11	209	208	213	216	216	192
LSTZ - 12	256	260	245	256	275	273
LSTZ - 13	181	184	188	194	210	220
LSTZ - 15	227	217	211	218	198	213
LSTZ - 16	218	232	215	226	221	230
LSTZ - 17	208	212	208	222	227	227
					1	
cc						
n:	14	14	14	14	14	14
x:	221,9	221,2	218,4	221,4	221,3	223,9
s:	27,7	27,1	25,0	24,2	23,6	22,8
SEM:	7,4	7,2	6,7	6,5	6,3	6,1

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
LSTZ - 1	231	230	240	243	244	230
LSTZ - 2	189	192	196	202	199	188
LSTZ - 3	225	228	228	235	235	216
LSTZ - 5	238	240	236	240	237	227
LSTZ - 7	234	247	235	240	223	210
LSTZ - 8	221	220	218	239	241	237
LSTZ - 9	212	195	201	209	214	194
LSTZ - 10	180	174	171	192	206	196
LSTZ - 11	204	210	202	210	204	203
LSTZ - 12	257	272	273	279	265	269
LSTZ - 13	203	206	217	227	206	198
LSTZ - 15	196	189	199	212	210	195
LSTZ - 16	210	204	235	214	214	216
LSTZ - 17	212	211	226	217	205	209
cc						
n:	14	14	14	14	14	14
x:	215,1	215,6	219,8	225,6	221,6	
s:	20,8	26,1	25,0	22,3	19,6	
SEM:	5,6	7,0	6,7	5,9	5,2	5,8

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
LSTZ - 1	247	250	236	241	253	244
LSTZ - 2	177	221	191	194	183	186
LSTZ - 3	209	221	218	206	201	
LSTZ - 5	229	229	244	234	251	227
LSTZ - 7	259	261	261	241	244	276
LSTZ - 8	219	231	242	228	211	224
LSTZ - 9	189	222	217	207	214	201
LSTZ - 10	200	190	203	184	183	212
LSTZ - 11	191	187	195	189	188	183
LSTZ - 12	270	286	280	286	288	272
LSTZ - 13	193	186	179	170	174	180
LSTZ - 15	221	206	190	210	209	216
LSTZ - 16	242	231	220	225	214	
LSTZ - 17	243	223	213	214	228	244
Cc						
n:	14	14	14	14	14	12
x:	220,6	224,6	220,6	216,4	217,2	222,1
s:	28,7	28,2	29,1	29,4	32,5	32,4
SEM:	7,7	7,5	7,8	7,9	8,7	9,4

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168
LSTZ - 1					
LSTZ - 2	195	189	197	221	
LSTZ - 3		213	232	236	
LSTZ - 5	220	244	240	221	
LSTZ - 7	263	240	268	265	
LSTZ - 8	217	222	220	236	
LSTZ - 9	207	208	196	220	
LSTZ - 10	192				
LSTZ - 11	201	221	228	232	216
LSTZ - 12	275	271	271	240	278
LSTZ - 13	150	153			
LSTZ - 15	203	191	198	207	195
LSTZ - 16					
LSTZ - 17	207	212	219	218	216
сс					
n:	11	11	10	10	4
x:	211,8	214,9	226,9	229,6	
s:	33,8	31,4	27,1	16,1	35,9
SEM:	10,2	9,5	8,6	5,1	17,9

Diabetische Kontrollgruppe

24 h - Urin		Explantation -2 Wochen						
24 11 - 01111	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>					
Tier-Nr.								
LSTZ - 1								
LSTZ - 2	88	6538,4	99					
LSTZ - 3	99	8533,8	114					
LSTZ - 5	102	8843,4	119					
LSTZ - 7	45	3631,5	42					
LSTZ - 8	102	8251,8	124					
LSTZ - 9	34	2349,4	4					
LSTZ - 10								
LSTZ - 11	71	6745	83					
LSTZ - 12	25	4075	1					
LSTZ - 13								
LSTZ - 15	93	6621,6	101					
LSTZ - 16								
LSTZ - 17	79	7821	90					

24 h - Urin	Explantation -1Woche						
24 II - UIIII	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>				
Tier-Nr.							
LSTZ - 1							
LSTZ - 2	100	8760	120				
LSTZ - 3	97	8662,1	121				
LSTZ - 5	67	5514,1	75				
LSTZ - 7	82	7166,8	108				
LSTZ - 8	85	8321,5	103				
LSTZ - 9	59	2749,4	73				
LSTZ - 10							
LSTZ - 11	91	7098	111				
LSTZ - 12	88	10208	76				
LSTZ - 13							
LSTZ - 15	121	9087,1	143				
LSTZ - 16							
LSTZ - 17	129	10552	151				

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
R 206	448				321	421
R 207	298			316	449	525
R 209			338	522	420	576
R 211			358	285	443	435
R 214			433	346	539	418
R 218		429		342	460	622
R 219			292	379	399	476
R 220			287	328	514	514
R 221					467	428
R 222			443	514	589	433
R 225			340	409	286	501
R 227			329	366	523	442
R 228			306	316	388	374
СС						
n:	2	1	9	11	13	13
x:	373,0	429,0	347,3		446,0	474,2
s:	106,1	#DIV/0!	56,4	78,3	85,5	70,4
SEM:	75,0	#DIV/0!	18,8		23,7	19,5

Tier-Nr.	Tag 0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
R 206	377	90	73	48	58	47
R 207	394	53	62	52	43	47
R 209		135	101	120	93	92
R 211	500	184	232	133	99	129
R 214	441	195	248	201	250	167
R 218	467	171	201	59	62	107
R 219	563	142	103	136	133	112
R 220	437	173	161	168	110	156
R 221	516	219	119	117	121	67
R 222	477	161	288	241	113	139
R 225	361	143	166	126	82	99
R 227	391	168	106	74	122	34
R 228	493	100	114	175	135	119
СС						
n:	12	13	13	13	13	13
x:	451,4	148,8	151,8	126,9	109,3	
s:	62,2	45,8	71,2	59,2	51,4	42,5
SEM:	18,0	12,7	19,7	16,4	14,3	11,8

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag 42	Tag 49
R 206	75	42	57	114	49	65
R 207	74	94	87	61	91	56
R 209	59		54	67	70	159
R 211	109		55	135	49	144
R 214	121	86	112	68	137	133
R 218	48	94	38	73	87	125
R 219	207	76	28	97	40	56
R 220	10	108	82	165	88	91
R 221	87	123	72	79	76	108
R 222	141	58	114	105	90	132
R 225	159	161	114	61	115	190
R 227	107	44	49	61	114	67
R 228	112		82	56	88	88
CC						
n:	13	10	13	13	13	13
x:	100,7	88,6	72,6	87,8	84,2	108,8
s:	51,1	36,7	28,9	33,6	28,1	42,6
SEM:	14,2	11,6	8,0	9,3	7,8	11,8

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
R 206	52	92	59	111	54	103
R 207	95	158	50	90	187	96
R 209	125	117	167	136	140	148
R 211	68	109	140	129	108	84
R 214	130	147	153	95	104	128
R 218	101	56	43	60	62	
R 219	83			80	97	
R 220	114					
R 221	86					
R 222	65					
R 225	139	108	92	137	172	
R 227	75			178	92	
R 228	52					
СС						
n:	13	13	13	13	13	13
x:	91,2					
s:	29,2					
SEM:	8,1					

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
R 206	131	85	126	37	120	79
R 207	86	121	84	100	101	134
R 209	162	101	141	192	143	112
R 211	118	177	167	52	134	145
R 214	113	150	129	118	164	121
R 218	132	124	95	133	144	119
R 219	84	81	146	74	169	97
R 220	117	136	163	128	134	188
R 221	166	127	103	94	176	159
R 222	131	210	172	140	180	206
R 225	187	220	164	178	196	191
R 227	117	152	227	249	125	228
R 228	124	156	168	80	163	157
cc						
n:	13	13	13	13	13	13
x:	128,3	141,5	145,0	121,2	149,9	148,9
s:	29,4	42,8	38,5	59,2	27,3	44,6
SEM:	8,2	11,9	10,7	16,4	7,6	12,4

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168	Tag 175
R 206	87	101	102	159	172	165
R 207	135	189	150	166	174	147
R 209	69	145	179	188	253	173
R 211	157	180	205	164	183	306
R 214	187	185	216	246	270	350
R 218	131	140	148	73	181	174
R 219	104	74	80	164	135	151
R 220	93	285	190	123	239	189
R 221	75	201	153	93	135	221
R 222	138	228	177	150	234	141
R 225	220	205	245	282	133	313
R 227	64	155	124	577	155	139
R 228	184	156	266	193	148	250
	, ,	ı			1	
cc						
n:	13	13	13	13	13	13
x:	126,5	172,6	171,9	198,3	185,5	209,2
s:	49,9	54,2	53,8	126,7	47,8	72,8
SEM:	13,8	15,0	14,9	35,1	13,3	20,2

Tier-Nr.	Tag 180
R 206	204
R 207	158
R 209	217
R 211	175
R 214	255
R 218	156
R 219	116
R 220	324
R 221	206
R 222	265
R 225	249
R 227	275
R 228	177
cc	
n: x: s:	13
x:	213,6
	58,1
SEM:	16,1

Körpergewicht, Ratten mit intraperitonealer Transplantation mikroverkapselter Inselzellen

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
R 206	216		214		216	211
R 207				280	287	283
R 209			280	230	247	244
R 211			272	262	246	230
R 214				193	175	166
R 218		247	230	224	221	214
R 219			246	232	228	218
R 220			273	279	276	268
R 221				242	249	244
R 222			261	255	244	219
R 225			278	264	258	266
R 227			275	255	262	260
R 228			290	273	262	254
сс						
n:	1	1	10	12	13	13
x:	216,0	247,0	261,9	249,1	243,9	236,7
s:	#DIV/0!	#DIV/0!	24,4	25,9	29,0	31,4
SEM:	#DIV/0!	#DIV/0!	7,7	7,5	8,0	8,7

Tier-Nr.	Tag 0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
R 206		247	258	280	287	272
R 207	294	309	328	342	354	360
R 209		269	285	300	320	328
R 211	230	269	279	295	314	319
R 214	159	193	231	257	280	310
R 218	220	246	271	294	312	318
R 219	217	256	284	295	316	324
R 220		296	302	326	330	342
R 221		285	293	309	332	330
R 222	222	244	277	300	318	324
R 225	264	282	302	311	328	338
R 227	256	290	309	320	336	352
R 228		277	302	313	332	332
СС						
n:	8	13	13	13	13	13
x:	232,8	266,4	286,2	303,2	319,9	326,8
s:	40,1	29,9	24,6	21,2	19,7	21,5
SEM:	14,2	8,3	6,8		5,5	

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag 42	Tag 49
R 206	302	309	317	332	342	350
R 207	358	362	372	384	384	400
R 209	328	342	342	350	368	374
R 211	326	340	342	358	366	386
R 214	328	334	338	344	360	374
R 218	328	328	342	344	348	360
R 219	334	334	344	348	360	376
R 220	344	352	354	376	388	398
R 221	340	344	352	358	366	364
R 222	338	340	344	384	352	360
R 225	350	360	360	360	368	382
R 227	352	356	366	370	378	398
R 228	352	352	356	370	374	378
СС						
n:	13	13	13	13	13	13
x:	336,9	342,5	348,4	359,8	365,7	376,9
s:	15,0	14,6	14,0	16,2	13,5	15,8
SEM:	4,2	4,0	3,9	4,5	3,7	4,4

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
R 206	360	380	380	392	398	376
R 207	402	392	400	420	418	436
R 209	376	394	402	404	410	416
R 211	394	404	404	410	422	414
R 214	380	386	394	390	396	398
R 218	366	370	374	374	384	380
R 219	378	380	384	396	400	414
R 220	410	414	414	424	440	438
R 221	364	354	362	374	386	394
R 222	368	362	364	370	370	386
R 225	392	398	404	402	406	416
R 227	414	418	424	434	412	430
R 228	390	392	398	410	408	414
cc						
n:	13	13	13	13	13	13
x:	384,2	388,0	392,6	400,0	403,8	408,6
s:	17,7	18,9	18,7	20,0	18,1	20,4
SEM:	4,9	5,2	5,2	5,5	5,0	5,7

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
R 206	390	402	408	416	426	428
R 207	436	442	440	444	450	450
R 209	412	414	416	418	430	420
R 211	420	428	430	422	416	426
R 214	402	406	408	406	410	414
R 218	390	394	400	400	404	404
R 219	418	430	430	430	438	434
R 220	448	462	462	446	466	464
R 221	400	400	394	396	408	410
R 222	384	384	388	396	395	400
R 225	420	416	418	416	404	416
R 227	434	434	444	450	436	440
R 228	414	424	426	424	426	426
СС						
n:	13	13	13	13	13	13
x:	412,9	418,2	420,3	420,3	423,8	425,5
s:	19,4	21,5	21,2	18,4	20,4	18,2
SEM:	5,4	6,0	5,9	5,1	5,7	5,0

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168	Tag 175
		_	_	_	_	_
R 206	428	424	428	432	432	432
R 207	442	435	438	446	448	448
R 209	422	430	426	430	432	434
R 211	432	434	436	430	436	434
R 214	408	408	410	414	410	418
R 218	406	418	424	416	422	434
R 219	444	444	450	456	468	466
R 220	464	462	464	468	454	458
R 221	418	416	416	424	418	416
R 222	402	404	398	399	386	348
R 225	408	404	408	386	400	396
R 227	440	426	436	440	440	438
R 228	430	430	432	440	430	424
СС						
n:	13	13	13	13	13	13
x:	426,5	425,8	428,2	429,3	428,9	426,6
s:	18,2	16,5	17,8	22,3	22,2	29,8
SEM:	5,0	4,6	4,9	6,2	6,2	8,3

Tier-Nr.	Tag 180
R 206	434
R 207	450
R 209	430
R 211	432
R 214	404
R 218	434
R 219	466
R 220	462
R 221	414
R 222	388
R 225	396
R 227	436
R 228	422
cc	
n:	13
x: s:	428,3
s:	23,6
SEM:	6,5

Ratten mit intraperitonealer Transplantation mikroverkapselter Inselzellen

24 h - Urin	Explantation -2 Wochen							
24 11 - 01111	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>					
Tier-Nr.								
R 206	23	2415	44					
R 207	35	4305	50					
R 209	42,5	5482,5	55					
R 211	41	4756	55					
R 214	80	5968	89					
R 218	50	5600	56					
R 219	22	336,6	30					
R 220	92	9549,6	124					
R 221	48	4233,6	52					
R 222	80	9488	90					
R 225	43	5787,8	49					
R 227	31	3348	81					
R 228	19	2337	39					

24 h - Urin	Explantation -1 Woche						
24 11 - 01111	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>				
Tier-Nr.							
R 206	33	3168	48				
R 207	41	3831	46				
R 209	52,5	5302,5	66				
R 211	47	5640	56				
R 214	101	8403,2	113				
R 218	53	5724	63				
R 219	32	1148,8	41				
R 220	107	8142,7	118				
R 221	52	4014,4	70				
R 222	73	7270,8	87				
R 225	43	5177,2	42				
R 227	68	7004	77				
R 228	40	4040	48				

Blutzucker spontan; Ratten mit Transplantation von Inselzellen unter die Nierenkapsel

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
R 213		482	433	414	458	500
R 216	320	631	366	598		559
R 223		441	340	500	460	513
R 224		374	454	399	475	428
R 231		397	401	432	577	313
R 232		343	364		235	363
R 233		327	393	441	354	421
R 235		274	359	411	292	285
R 236		358	446	368	240	269
R 237		340	475	462	477	320
		1			1	
CC						
n:	1	10	10	9	9	10
x:	320,0	396,7	403,1	447,2	396,4	397,1
s:	#DIV/0!	101,2	46,5	68,0	120,6	102,7
SEM:	#DIV/0!	32,0	14,7	22,7	40,2	32,5

Tier-Nr.	Tag 0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
R 213		99	123	67	100	91
R 216		249	230	149	109	104
R 223	442	258	168	120	84	85
R 224	363	255	148	114	73	91
R 231	346	253	216	174	107	138
R 232	243	226	297	267	239	162
R 233	311	226	120	76	86	89
R 235	278	176	63	95	102	97
R 236	348	265	152	161	101	98
R 237	265	78	144	97	97	65
сс						
n:	8	10	10	10	10	10
	324,5	208,5	166,1	132,0	109,8	
x: s:	64,2	68,4	66,1	59,2	46,8	
SEM:	22,7	21,6	20,9	18,7	14,8	

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag 42	Tag 49
R 213	58	72	113	81	53	64
R 216	84	88	60	98	81	77
R 223	123	83	84	68	64	73
R 224	163	92	77	77	67	72
R 231	107	113	62	122	91	110
R 232	94	119	120	122	166	156
R 233	93	85	91	94	82	91
R 235	88	90	75	75	87	67
R 236	79	78	99	50	99	81
R 237	80	82	105	79	79	87
cc						
n:	10	10	10	10	10	10
x:	96,9	90,2	88,6	86,6	86,9	87,8
s:	28,9	14,8	20,6	22,8	30,9	27,5
SEM:	9,2	4,7	6,5	7,2	9,8	8,7

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
R 213	45	57	26	35	72	79
R 216	90	59	62	73	58	72
R 223	79	84	79	98	73	80
R 224	96	92	83	81	81	89
R 231	152	83	107	93	77	80
R 232	125	122	125	121	88	157
R 233	71	90	56	86	81	85
R 235	88	83	90	50	81	90
R 236	82	77	81	92	92	81
R 237	83	90	70	77	81	77
cc						
n:	10	10	10	10	10	10
x:	91,1	83,7	77,9	80,6	78,4	89,0
s:	29,3	18,2	27,4	24,3	9,4	24,5
SEM:	9,3	5,8	8,7	7,7	3,0	7,7

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
R 213	87	83	57	91	65	75
R 216	73	68	80	74	71	68
R 223	68	73	82	97	87	76
R 224	80	88	92	93	84	87
R 231	89	81	87	77	81	68
R 232	128	124	140	85	95	80
R 233	82	79	76	79	68	71
R 235	83	83	78	68	78	63
R 236	78	64	70	71	79	51
R 237	72	66	103	69	69	71
cc						
n:	10	10	10	10	10	10
x:	84,0	80,9	86,5		77,7	71,0
s:	16,8	17,2	22,5			
SEM:	5,3	5,4				

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168	Tag 175
R 213	74	84	83	77	85	77
R 216	85	77	80	85	72	179
R 223	82	77	88	82	87	70
R 224	83	82	83	83	70	64
R 231	75	99	85	78	72	74
R 232	74	93	90	130	82	139
R 233	50	81	80	63	108	75
R 235	83	79	75	72	78	100
R 236	87	87	58	84	78	84
R 237	72	57	72	86	67	69
cc						
n:	10	10	10	10	10	10
x:	76,5	81,6	79,4	84,0	79,9	93,1
s:	10,7	11,2	9,3	17,6	11,9	37,3
SEM:	3,4	3,5				

Tier-Nr.	Tag 180
R 213	73
R 216	42
R 223	73
R 224	64
R 231	
R 232	103
R 233	46
R 235	86
R 236	95
R 237	85
cc	
n:	9
x: s:	74,1
s:	20,8
SEM:	6,9

Körpergewicht; Ratten mit Transplantation von Inselzellen unter die Nierenkapsel

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
R 213		277	271	255	240	250
R 216	240	229	212	195	213	212
R 223	279	272	257	236	230	227
R 224		248	248	241	226	227
R 231		266	242	217	220	228
R 232	221	196	197	194	186	181
R 233		272	257	254	235	225
R 235		278	256	246	235	250
R 236		261	231	223	207	195
R 237		268	252	231	217	206
СС						
n:	3	10	10	10	10	10
x:	246,7	256,7	242,3	229,2	220,9	220,1
s:	29,6	26,0	22,8	22,0	16,2	22,1
SEM:	17,1	8,2	7,2	7,0	5,1	7,0

Tier-Nr.	Tag 0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
R 213		255	295	315	336	340
R 216		231	253	277	307	312
R 223	266	278	295	317	324	336
R 224	267	282	296	309	323	334
R 231	241	263	283	306	324	338
R 232	209	221	235	262	269	288
R 233	263	281	299	314	316	328
R 235	278	298	315	334	342	346
R 236	248	254	283	303	320	336
R 237	256	277	300	307	320	334
cc						
n:	8	10	10	10	10	10
x:	253,5	264,0	285,4	304,4	318,1	329,2
s:	21,4	24,2	24,0	20,6	19,8	17,0
SEM:	7,6	7,6	7,6	6,5	6,3	5,4

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag 42	Tag 49
R 213	346	356	362	378	394	412
R 216	328	340	346	356	356	372
R 223	349	352	362	378	384	388
R 224	350	352	366	372	382	394
R 231	344	360	372	364	384	400
R 232	303	315	326	334	348	356
R 233	332	340	346	364	378	380
R 235	358	358	370	368	382	388
R 236	344	354	380	374	394	398
R 237	338	346	364	370	372	384
СС						
n:	10	10	10	10	10	10
x:	339,2	347,3	359,4	365,8	377,4	387,2
s:	15,4	13,3	15,8	13,1	15,0	15,7
SEM:	4,9	4,2	5,0		4,8	

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
R 213	418	428	424	454	452	452
R 216	386	388	396	394	406	404
R 223	398	404	412	422	432	434
R 224	406	412	416	432	442	448
R 231	406	400	416	422	424	430
R 232	372	380	386	390	390	390
R 233	386	392	398	402	406	424
R 235	400	394	408	408	414	422
R 236	410	416	424	432	434	440
R 237	384	394	398	402	402	410
cc						
n:	10	10	10	10	10	10
x:	396,6	400,8	407,8	415,8	420,2	425,4
s:	14,2	14,4	12,8	20,1	19,8	19,7
SEM:	4,5	4,6	4,1	6,4	6,2	6,2

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
R 213	430	454	462	468	472	484
R 216	416	424	432	438	442	446
R 223	434	444	460	466	472	476
R 224	420	436	460	474	478	488
R 231	438	448	436	440	442	448
R 232	396	410	410	400	414	412
R 233	428	428	434	434	440	440
R 235	432	434	440	448	452	456
R 236	452	456	460	460	464	464
R 237	412	412	420	422	428	426
cc						
n:	10	10	10	10	10	10
x:	425,8	434,6	441,4	445,0	450,4	454,0
s:	15,5	16,2	18,5	23,1	21,0	24,7
SEM:	4,9	5,1	5,9	7,3	6,6	7,8

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168	Tag 175
R 213	486	492	490	488	482	490
R 216	448	458	464	470	466	448
R 223	472	476	486	480	494	496
R 224	480	494	498	496	502	494
R 231	454	452	450	464	468	470
R 232	414	420	424	426	428	424
R 233	442	448	454	452	460	472
R 235	456	460	466	464	474	480
R 236	478	484	480	478	498	498
R 237	436	442	440	444	444	456
СС						
n:	10	10	10	10	10	10
x:	456,6	462,6	465,2	466,2	471,6	472,8
s:	22,7	23,8	23,6	21,2	23,8	24,2
SEM:	7,2	7,5	7,5	6,7	7,5	

Tier-Nr.	Tag 180
R 213	500
R 216	398
R 223	492
R 224	496
R 231	466
R 232	434
R 233	472
R 235	488
R 236	494
R 237	454
cc	
	1
n:	10
x: s:	469,4
s:	32,9
SEM:	10,4

Ratten mit Transplantation von Inselzellen unter die Nierenkapsel

24 h - Urin	Explantation -2 Wochen							
24 11 - 01111	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>					
Tier-Nr.								
R 213	10	4,9	1					
R 216	9	4,23	27					
R 223	10	4,3	24					
R 224	9	4,95	29					
R 231	28	5,32	43					
R 232	14,5	842,45	35					
R 233	12	5,04	31					
R 235	15	4,65	27					
R 236	14	3,64	30					
R 237	13	3,77	27					

24 h - Urin		Explantation -1 Woche	
24 11 - 01111	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>
Tier-Nr.			
R 213	9	5,04	24
R 216	9	4,14	27
R 223	10	0,2	15
R 224	8	4,24	11
R 231	37	7,77	50
R 232	24	612	35
R 233	17	3,57	28
R 235	19	6,84	28
R 236	19	8,17	23
R 237	18	8,28	27

Blutzucker spontan; Ratten mit Transplantation von Inselzellen unter die Nierenkapsel und Partialerfolg

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
R 215		378	399	413	469	436
R 217				276	360	410
R 226			369	409	492	428
R 230	278	390	515	412		469
СС						
СС						
		_1	-	.1	_1	
n:	1	2	3	4	3	4
x:	278,0	384,0	427,7	377,5	440,3	435,8
s:	#DIV/0!	8,5	77,1	67,7	70,5	24,7
SEM:	#DIV/0!	6,0	44,5	33,8	40,7	12,3

Tier-Nr.	Tag 0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
R 215	586	399	353	424	467	358
R 217	426	403	405	405	511	400
R 226	489	388	364	469	326	322
R 230	416	345	428	411	335	355
cc						
n:	4	4	4	4	4	4
x:	479,3	383,8	387,5	427,3	409,8	358,8
s:	78,2	26,6	35,1	28,9	93,3	32,0
SEM:	39,1	13,3	17,5	14,5	46,7	16,0

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag 42	Tag 49
R 215	327	285	312	338	281	351
R 217	364	435	371	419	359	320
R 226	219	249	185	136	207	68
R 230	185		222	283	277	391
CC						
сс						
		ما	<u></u>	<u></u>	<u></u>	
n:	4	3	4	4	4	4
x:	273,8	323,0	272,5	294,0	281,0	282,5
s:	85,4	98,7	84,6	119,2	62,1	145,9
SEM:	42,7	57,0	42,3	59,6	31,1	73,0

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
R 215	394	367	342	392	351	327
R 217	438	377	351	345	435	377
R 226	155	226	221	163	181	202
R 230	274	312	301	329	312	314
	1			T		
СС						
n:	4	4	4	4	4	4
x:	315,3	320,5	303,8	307,3	319,8	305,0
s:	127,3	69,2	59,3	99,8	105,8	73,8
SEM:	63,7	34,6	29,7	49,9	52,9	36,9

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
R 215	226	245	340	272	271	292
R 217	351	349	355	290	274	333
R 226	232	195	284	172	197	194
R 230	341	264	278	246	303	300
	1					
cc						
n:	4	4	4	4	4	
x:	287,5	263,3	314,3	245,0	261,3	279,8
s:	67,7	64,1	39,0		45,2	59,9
SEM:	33,9	32,1	19,5		22,6	29,9

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168	Tag 175
R 215	157	262	351	360	284	316
R 217	359	234	362	303	395	436
R 226	183	233	160	190	143	212
R 230	249	244	275	223	183	342
	1				-	
СС						
	1 .1					
n:	4	4	4	4	4	4
x:	237,0	243,3	287,0	269,0	251,3	326,5
s:	90,1	13,5	93,1	77,0	112,7	92,1
SEM:	45,0	6,7	46,5	38,5	56,4	46,1

Tier-Nr.	Tag 180
R 215	267
R 217	
R 226	134
R 230	204
cc	
n:	3
n: x: s: SEM:	201,7
s:	66,5
SEM:	38,4

Körpergewicht; Ratten mit Transplantation von Inselzellen unter die Nierenkapsel und Partialerfolg

Tier-Nr.	Tag -42	Tag -35	Tag -28	Tag -21	Tag -14	Tag -7
R 215		263	248	221	220	221
R 217				268	267	258
R 226		286	274	274	245	251
R 230	271	260	250	224	235	223
cc			1			
СС						
	1		T	•	•	
n:	1	3	3	4	4	4
x:	271,0	269,7	257,3	246,8	241,8	238,3
s:	#DIV/0!	14,2	14,5	28,1	19,7	19,0
SEM:	#DIV/0!	8,2	8,4	14,1	9,9	9,5

Tier-Nr.	Tag 0	Tag 3	Tag 7	Tag 10	Tag 14	Tag 17
R 215		242	261	271	278	29 ⁻
R 217	251	267	283	290	293	290
R 226	248	276	290	296	312	309
R 230	229	260	283	293	302	31 ⁻
cc						
сс						
n:	3	4	4	4	4	4
x:	242,7	261,3	279,3	287,5	296,3	300,
s:	11,9	14,4	12,6	11,3	14,4	11,
SEM:	6,9	7,2	6,3	5,6	7,2	5,0

Tier-Nr.	Tag 21	Tag 24	Tag 28	Tag 35	Tag 42	Tag 49
R 215	298	302	304	311	315	312
R 217	288	283	288	290	288	291
R 226	319	326	326	326	342	350
R 230	319	322	314	322	324	334
cc						
		,				
n:	4	4	4	4	4	4
x:	306,0	308,3	308,0	312,3	317,3	321,8
s:	15,6	19,8	16,1	16,1	22,5	25,7
SEM:	7,8	9,9	8,0	8,1	11,3	12,9

Tier-Nr.	Tag 56	Tag 63	Tag 70	Tag 77	Tag 84	Tag 91
R 215	302	315	316	317	314	324
R 217	291	276	272	284	274	288
R 226	356	354	372	384	390	394
R 230	336	334	332	350	344	324
СС						
				•	•	•
n:	4	4	4	4	4	4
X:	321,3	319,8	323,0	333,8	330,5	332,5
s:	30,1	33,2	41,4	43,0	48,9	111
	00,1	00,2	, .	,.	, .	44,4

Tier-Nr.	Tag 98	Tag 105	Tag 112	Tag 119	Tag 126	Tag 133
R 215	320	322	320	332	330	332
R 217	290	279	290	263	285	275
R 226	398	400	412	400	402	406
R 230	340	338	352	339	346	350
СС						
n:	4	4	4	4	4	4
x:	337,0	334,8	343,5	333,5	340,8	340,8
s:	45,6	50,1	52,2	56,1	48,3	54,0
SEM:	22,8	25,1	26,1	28,0	24,2	27,0

Tier-Nr.	Tag 140	Tag 147	Tag 153	Tag 161	Tag 168	Tag 175
R 215	330	334	342	338	344	352
R 217	282	282	287	277	310	308
R 226	406	414	410	414	412	412
R 230	338	332	330	336	342	346
		-		-		
cc						
n:	4	4	4	4	4	4
x:	339,0	340,5	342,3	341,3	352,0	354,5
s:	51,1	54,6	51,0	56,2	42,9	43,0
SEM:	25,5	27,3	25,5	28,1	21,5	21,5

Tier-Nr.	Tag 180
R 215	355
R 217	312
R 226	396
R 230	338
cc	
n:	4
n: x: s: SEM:	350,3
s:	35,3
SEM:	17,6

Ratten mit Transplantation von Inselzellen unter die Nierenkapsel und Partialerfolg

24 h - Urin	Explantation -2 Wochen					
24 11 - 01111	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>			
Tier-Nr.						
R 215	94	8920	165			
R 217	88	8500,8	109			
R 226	38	4560	42			
R 230	56	5040	68			

24 h - Urin	Explantation -1 Woche						
24 11 - 01111	Urinvolumen <ml></ml>	Glucose im Urin <mg 24="" h=""></mg>	Trinkmenge <ml></ml>				
Tier-Nr.							
R 215	132	12830	161				
R 217	136	11179,2	185				
R 226	41	4797	50				
R 230	63	6463,8	83				

Serumglukagon (pg/ml)

Column Title	Norm	LSTZ	MC-Syn	Syn-NK	Syn-NK part
1	106,3	238,9	116,8	92,6	147
2	136,3	157,7	71,2		120,7
3	52,7	96,7	69,4	65	93,2
4	63,9	158	84,9	88	62
5	82,9	133,1	87,2	92	
6	80,1	120,7	54,5	80,7	
7	107,6	127,09	52,9	105	
8	59,1	134,9	74,4	85,9	
9	87,4	92,8	80,3	73,7	
10	93,9	164,6	112,5	90,2	
11		197	76,4		

Seruminsulin (ng/ml)

Column Title	Norm	LSTZ	MC-Syn	Syn-NK	Syn-NK part
1	2,9	0,3	2,4	2,5	1,9
2	12,6	0,3	3,2	2,4	0,5
3	4,9	0,3	3,3	2,6	1,2
4	5,8	0,9	1,9	3,7	1,8
5	2	0,4	1,4	4,1	
6	6,5	0,3	4,1	7,3	
7	5,6	0,3	2,7	4,6	
8	2,6	0,3	0,8	3,3	
9	3,7	0,3	1,5	1,8	
10	3,1	0,4	1	2,5	
11		0,2	0,9		
12		0,3	1,3		
13			3		

Albuminurie (g/kgKG x d)

Column Title	Norm	LSTZ	MC-Syn	Syn-NK	Syn-NK part
1	0,2	1	1,4	0,1	1,4
2	0,1	1,9	0,4	0,1	4,9
3	0,2	2	1,3	0,1	0,4
4	0,5	3	12,5	0,6	2,3
5	0,4	3,3	1,4	0,4	0,3
6	0,1	1,8	1,2	0,6	
7	0,9	0,4	2,8	0,2	
8	0,1	1	2,4	0,2	
9	0,1	4,6	2,6		
10	0,2	6	0,8		
11		5,9	0,4		

Norm	Normalkontrollgruppe
LSTZ	Langzeitdiabetische Kontrollgruppe
MC-Syn	Mit mikroverkapselten Inseln intraperitoneal transplantierte Tiere
Syn-NK	Mit vollem Erfolg unter die Nierenkapsel transplantierte Ratten
Syn-NK part	Mit nartiellem Erfolg unter die Nierenkansel transplantierte Ratten

Danksagung

An dieser Stelle möchte ich mich bei meinem Doktorvater, Herrn Prof. Dr. med. Zekorn, für die Überlassung des Themas dieser Arbeit, sowie die gute Betreuung während dieser Zeit bedanken.

Dankend erwähnen möchte ich auch Frau Dr. med. Siebers, die meine Arbeit in der Anfangszeit unterstützt hat.

Weiterhin möchte ich mich bei Herrn Prof. Dr. med. R. G. Bretzel bedanken, in dessen Labors diese Arbeit durchgeführt wurde.

Besonderer Dank gilt auch Herrn Dr. med. Schleicher und Herrn PD Dr. med. Gardemann für die Bearbeitung der Urinproben, sowie Herrn Prof. Dr. med. Altmannsberger für die unkomplizierte Unterstützung bei der Erstellung der histologischen Fotos.

Bedanken möchte ich mich auch bei den medizinisch-technischen Assistentinnen Frau Claudia Fett und Frau Uta Röhm, die mir jederzeit mit Rat und Tat zur Seite standen.

Frau Sandra Jost danke ich für die Kooperation und die Teilung der Proben.

Lebenslauf

Persönliche Daten

Name Kemp Vorname Kerstin

Geburtsdatum/-ort 09.07.1974, Langen

Anschrift Römerstrasse 9, 63538 Großkrotzenburg

Familienstand ledig

Schulbildung

1980 - 1984 Geschwister-Scholl-Schule, Großkrotzenburg

1984 - 1993 Franziskaner-Gymnasium Kreuzburg, Großkrotzenburg

Beruflicher Werdegang

1993 - 1998
 Studium der Humanmedizin, Universität Gießen 1998 1999
 Praktisches Jahr, Kreiskrankenhaus Bad Hersfeld

23.11.1999 3. Abschnitt der Ärztlichen Prüfung seit 1.1.2000 Tätigkeit als Ärztin im Praktikum in der

Chirurgischen Klinik des Krankenhauses Nordwest

in Frankfurt