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1 Introduction

It is well known that simplifying regular expressions is by no means an easy
task, since alone deciding whether a given regular expression is universal, i.e.,
describes the set of all strings, is PSPACE-complete [19]. As witnessed by
several recent studies, e.g. [6, 10–13], the descriptional complexity of regular
expressions is of great interest, so this problem cannot be simply ignored. At
least, a few different heuristics for simplifying regular expressions appear in
the literature. Since efficiency matters, these mostly deal with removing only
the most obvious redundancies, such as removing Kleene stars over stars or
superfluous occurrences of expressions denoting the empty word [5, 9, 16].

In this work, we take a quantitative viewpoint to compare such simplifica-
tions: Namely, we compare the total size of a regular expression (disregarding
parentheses) to its alphabetic width. The intuition behind this is explained as
follows: There are simplifications for regular expressions that are of an ad-hoc
nature, e.g. the rule r + r = r cannot simplify a∗ +(a+ b)∗. Also, there are rules
that are difficult to apply, e.g. if L(r) ⊆ L(s), then r + s = s. But there are also
simplifications that do not fall in either category, such as the reduction rules
suggested in [17, 5, 9, 16]. In this paper, we suggest a strong star normal form of
regular expressions, which is a slightly strengthened version of the star normal
form defined in [5]. This normal form achieves an optimal ratio when comparing
expression size to alphabetic width, and can be computed as efficiently as the
original star normal form.

For converting regular expressions into small ε-NFAs, an optimal construc-
tion was found recently in [14]. Here, optimal means that the algorithm attains
the best possible quotient of expression size and automaton size. Ilie and Yu [16]
proposed the problem of determining the optimal quotient if we replace expres-
sion size with alphabetic width; they obtained an upper bound of roughly 9. We
resolve this open problem by showing that this quotient equals 42

5 . In fact, we
prove that the construction from [14] attains this bound if the input expression
is in strong star normal form. We then move on to show that this still holds,
under very mild restrictions, also for expressions not in star normal form. Thus
our results give the impression that this construction of ε-NFAs from regular
expressions is optimal in a very robust sense.

2 Basic Notions

We give a brief account on the syntax and semantics of regular expressions
and the languages they denote. Let Σ be an alphabet. The regular expressions
over Σ and the languages they denote are defined recursively as follows:

Every symbol a with a ∈ Σ is a regular expression, and if r1 and r2 are
regular expressions, then (r1 + r2), (r1 · r2), (r1)

? and (r1)
∗ are also regular

expressions. The language denoted by a regular expression r, in symbols L(r), is
defined inductively as follows: L(a) = {a}, L(r1+r2) = L(r1)∪L(r2), L(r1 ·r2) =
L(r1)·L(r2), L(r?

1) = {ε}∪L(r1) and L(r∗1) = L(r1)
∗. A language is called regular

if it is denoted by some regular expression.
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Note that we slightly deviate from the standard that is used in most text-
books: We do not introduce special symbols for the empty set and the empty
word, but add special operator for adding the empty word to the language.
The disadvantages of our abbreviated syntax are minor—we cannot describe
the degenerate languages ∅ and {ε}, while there is a big advantage: The abbre-
viated syntax disallows a priori the construction of many kinds of unnatural
and redundant expressions, such as ε · r or ∅∗.

There are two commonly used measures for the length of a regular expression:
The alphabetic width of a regular expression r, denoted by alph(r) is defined
as the total number of occurrences of alphabetic symbols from Σ. The second
measure is the reverse polish notation length. To allow for better comparison
with previous works, e.g., [9, 16], we define the (abbreviated) reverse polish
notation length of an expression r as arpn(r) = |r|Σ + |r|+ + |r|· + |r|∗ + |r|?,
and define its unabbreviated rpn-length as rpn(r) = arpn(r) + |r|?. This comes
from the fact that replacing each subexpression of the form s? with s+ε increases
the overall length by 1 each time. The alphabetic width of a regular language L
is then defined as the minimum alphabetic width among all regular expressions
denoting L, and is denoted by alph(L). The notions rpn(L) and arpn(L) are
defined in the same vein.

We will also need a few notions from term rewriting; a thorough introduction
is given in [2]. Let S be a set, and let → be a relation on S. Let →∗ denote the
transitive closure of →. Two elements b and c from S are called joinable, if there
exists an element d ∈ S such that both b →∗ d and c → d. If furthermore d itself
has no successors e with d → e, then d is a (joint) normal form for b and for c.

The relation → is confluent, if for all a, b, c ∈ S with a →∗ b and a →∗ c,
the elements b and c are joinable. It is locally confluent, if for all a, b, c ∈ S with
a → b and a → c, the elements b and c are joinable. The relation is terminating,
if there is no infinite descending chain a1 → a2 → · · · .

It is easy to prove that if → is confluent and terminating, then each element
has a unique normal form, see e.g. [2, Thm. 2.1.9]. Indeed for unique normal
forms, we only need to establish local confluence instead of confluence: New-
man’s Lemma states that if a terminating relation is locally confluent, then it
is confluent ([18], see also [2, Lem. 2.7.2]).

3 Alphabetic Width Versus Reverse Polish Notation Length

Although the authors originally devised a different simplification algorithm, they
noticed their algorithm sharing some features with the star normal form pro-
posed by Brueggemann-Klein [5]. Therefore the authors decided to merge the
two notions into a single simplification algorithm, and it turned out that the
star normal form indeed “almost does it”. As in the original definition of star
normal form from [5], the definition below is based on the use of two operators
on regular expressions.

Definition 1. The operators ◦ and • on regular expressions are inductively de-
fined as follows: For the first operator, let a◦ = a, for a ∈ Σ, (r + s)◦ = r◦ + s◦,
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r?◦ = r◦, r∗◦ = r◦, and

(rs)◦ =

{

rs, if ε /∈ L(rs)

r◦ + s◦ else
.

The second operator is given by: a• = a, for a ∈ Σ, (r + s)• = r• + s•, (rs)• =
r•s•, r∗• = r•◦∗, and

r?• =

{

r• , if ε ∈ L(r)

r•? otherwise
.

The strong star normal form of a regular expression r is then defined as the
expression r•.

We note that, for instance, the expression (∅+a)∗ + ε · b+∅ · c · (d+ ε+ ε) in
unabbreviated syntax is in star normal form, so the relative advantage of strong
star normal form should be obvious. The difference to star normal form merely
consists in using abbreviated syntax and in the addition of a nontrivial rule for
computing r?•, which in the original definition equals r•?. We note that all the
statements [5, Thm. 3.1, Lem. 3.5, 3.6, 3.7] regarding the operators ◦ and • carry
over for the variation defined above.

Observe that the concept of strong star normal form also appears, in less
explicit form, in [7]. Those authors had a slightly different but related goal in
mind, namely to compare different constructions of ε-free NFAs from regular
expressions.

We now compare the reverse polish notation length and alphabetic width
of regular expressions in strong star normal form. To this end, for a regular
expression r in abbreviated syntax, define ω(r) = |r|? + |r|∗, that is, the func-
tion ω counts the total number of occurrences of unary operators in r. The
following statement is immediate from the definition of the operators • and ◦,
and a similar statement concerning rpn-length is found in [5].

Lemma 2. Let r be a regular expression. Then ω(r•), ω(r◦) ≤ ω(r), and ω(r∗◦) ≤
ω(r∗) − 1. ⊓⊔

Lemma 3. Let r be a regular expression, and let r• denote its star normal
form as given by Definition 1. Then ω(r•) ≤ alph(r•), if ε ∈ L(s), and ω(r•) ≤
alph(r•) − 1 otherwise.

Proof. We prove the Lemma by lexicographic induction on the pair (n, h), where
n is the alphabetic width of r•, and h the height of its parse. The base case of
the induction is (1, 1). There we have r• ∈ Σ, and the statement clearly holds.

For the induction step, assume the statement holds for all regular expressions
with alphabetic width at most n− 1 and for all expressions of alphabetic width
n and height at most k − 1. The only interesting cases for the induction step
are r = s? and r = s∗. In the first case, we have r• = s• if ε ∈ L(s). Since the
induction hypothesis is applicable for s•, we must have

alph(r•) = alph(s•) ≥ ω(s•) = ω(r•).
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If ε /∈ L(s), we have r• = s•?, and again the induction hypothesis applies for s.
This time, we obtain

alph(r•) = alph(s•) ≥ ω(s•) + 1 = ω(r•).

The other interesting case is where the topmost operator in r is the Kleene star.
Here we distinguish several cases. The easy cases are r = s?∗ and r = s∗∗: it is
easy to see that in these cases r• = s∗• and the claim holds by induction. For
the case r = (s + t)∗, expansion of the definition gives

r• = (s∗•◦ + t∗•◦)∗.

Since both s∗• and t∗• must1 have alphabetic width strictly less than n, and
since both describe the empty word, we can apply the induction hypothesis and
obtain

alph(r•) = alph(s∗•) + alph(t∗•) ≥ ω(s∗•) + ω(t∗•).

Now since ω(s∗•◦) ≤ ω(s∗•)−1, and similar for t∗•◦, we can deduce that ω(r•) ≤
alph(r•) − 2, and this completes the induction step for this case.

For the case where r = (st)∗, we have r• = (s•t•)◦∗ and the induction goes
through if at least one of s and t does not describe the empty word. If however
ε ∈ L(s)∩L(t), then it is easy to prove under this condition that r• = (s+ t)∗•,
a case we already dealt with a few lines above in this proof. ⊓⊔

Theorem 4. Let L be a regular language. Then arpn(L) ≤ 3 alph(L) − 1 and
rpn(L) ≤ 4 alph(L) − 1.

Proof. Let r be a regular expression, in abbreviated syntax, of minimum al-
phabetic width denoting L. Then the parse tree of r• has alph(r) many leaves.
Disregarding unary operators, this is a binary tree with alph(r) − 1 internal
vertices that correspond to occurrences of binary operators in r. Since there
are furthermore at most alph(r) many occurrences of unary operators, we have
arpn(r•) ≤ 3 alph(L) − 1 and rpn(r•) ≤ arpn(r•) + ω(r•) ≤ 4 alph(L) − 1. ⊓⊔

Thus size and alphabetic width can differ at most by a factor of 4 in un-
abbreviated syntax. Previous bounds, which were based on other simplification
paradigms, by Ilie and Yu [16] and by Ellul et al. [9] only achieved factors of 6
and 7, respectively, in place of 4. For abbreviated syntax, we will later show that
the bound of the form 3n− 1 is best possible. Also note that strong star normal
form subsumes all of the previous simplification heuristics from [5, 9, 16].

4 Constructing ε-NFAs from Regular Expressions, Revisited

In this section, we show that the construction given by Gulan and Fernau [14]
has a desirable feature: Under mild restrictions, it subsumes the conversion of
the input expression into strong star normal form. We briefly recapitulate the
construction. It is essentially a replacement system on digraphs, arc-labeled

1 This is just another advantage of using abbreviated syntax.
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by regular expressions or occurrences of the symbol ε. Such objects are called
extended finite automata (EFAs), as they generalize (conventional) finite au-
tomata; consult e.g. Wood [22] for a proper introduction. A replacement step
within an EFA will also be called conversion. Conversions come in two flavors:

– A transition labeled by a regular expression may be replaced wrt. the labels
root. These conversions, called expansions, are depicted in Fig. 1.

– A substructure defined by ε-transitions may be replaced by a smaller equiva-
lent. These conversions are also called eliminations, they are shown in Fig. 2.

sst t⇒
•

(a) product

ss+t

t
⇒+

(b) sum

ε

s

s∗ ⇒
∗2

(c) ∗2 : p
+

>1, q
− =1

ε

s

s∗ ⇒
∗3

(d) ∗3 : p
+ =1, q

−

>1

s

s∗ ⇒
∗1

(e) ∗1 : p
+ = 1, q

− = 1;
merge p and q

εε

s

s∗ ⇒
∗4

(f) ∗4 : p
+

> 1, q
−

> 1; introduce a new
state

Fig. 1: Expanding transitions (p, r, q) for nontrivial r. If r=s∗, the out-degree p+

of p and the in-degree q− of q need to be considered.

ε
q

r1r1

rnrn

⇒Y [q]

(a) Y-elimination, re-
quires q

− = 1

ε

ε

ε

ε
ε
ε

ε ε

q ⇒X[q]

(b) X-elimination, re-
quires q

− = q
+ = 2

ε

ε

ε
r1

r1 s1
s1

s2
s2

⇒

(c) O-elimination

Fig. 2: Eliminating substructures with ε-labeled transitions. Reverting all tran-
sitions in (a), and demanding that q+ = 1 yields a further Y -rule.

Since ε-transitions are allowed in EFAs, we treat r? implicitly as r+ε. We call
the lhs of i-expansion or i-elimination an i-anchor, and write E ⇒i E′ if E′ is
derived from replacing an i-anchor in E with its according rhs. If the particular
type of conversion is irrelevant, we write E ⇒ E′, an denote a (possibly empty)
series of conversions from E to E′ with E ⇒∗ E′. A regular expression r over Σ is
identified with the trivial EFA A0

r := ({q0, qf}, Σ, {(q0, r, qf )}, q0, qf ). On input
r, the construction is initialized with A0

r , which is successively and exhaustively
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converted to an ε-NFA, denoted Ar. We slightly restrict the applicability of
conversions by two rules:

(R1) As long as any conversion other than ⇒X is possible, X-elimination must
not be applied.

(R2) If two X-anchors share ε-transitions the one from which they are leaving is
to be eliminated.

Other than that, conversions may be applied in any order. Note that the
restriction (R2) is sound: there can be no cyclic elimination preference amongst
X-anchors, since this would imply an ε-cycle, which would be O-eliminated
first, due to (R1). The conversion process is split into a sequence of conversions
without X-eliminations followed by one with X-eliminations only. This is due
to

Proposition 5. Let E ⇒X E′ be a conversion respecting (R1). Then E and E′

contain X-anchors only.

Proof. Obviously, no complex labels and no cycles, particularly no O-anchors,
are introduced upon X-elimination. Assume E ⇒X[q] E′ ⇒Y [p] E′′ is a valid
conversion sequence, then p and q are adjacent in E, since the Y -anchor in E′

must result from the preceding X-elimination. Let the transition connecting p
and q in E be (p, ε, q), then in E′, p+ = 2, hence p− = 1. But the in-degree of p
is not changed by this X-elimination, so p− = 1 in E, too. Therefore E contains
an Y -anchor centered in p, contradicting the assumption that the conversion
respects (R1). Since by this assumption, all anchors in E are X-anchors, so are
all anchors in E′.

To designate the transition between the two phases, let Ak
r be the first EFA

in the sequence A0
r ⇒ A1

r ⇒ · · · ⇒ Ar, s.t. no conversion other than possibly
X-elimination is applicable to Ak

r , we denote this automaton Xr. Of course, if
X-elimination does not occur at all upon full conversion, then Xr = Ar.

We show that Xr is unique by proving that the replacement system consist-
ing of conversions other than X-elimination is locally confluent on the class of
EFAs. To this end, we write E1

∼= E2, if E1 and E2 can be converted to the same
EFA, while respecting (R1) and (R2). Since no infinite conversion sequences are
possible, uniqueness of Xr follows by applying Newman’s Lemma ([18]).

Theorem 6. The replacement-system consisting of ⇒+, ⇒
•
, ⇒∗i, ⇒Y and ⇒O

is locally confluent on the class of EFAs.

Proof. We need to show that whenever E ⇒i E1 and E ⇒j E2 for i, j ∈
{+, •, ∗1, ∗2, ∗3, ∗4, Y, O}, then E1

∼= E2. This is trivial if the conversions occur
in different regions of E, so assume the i- and j-anchors share at least a state.
We assume that at least one of i, j is Y or O, the remaining cases already have
been considered in [14, Lem. 6]. We distinguish by the type of i:
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– i = Y [p]: Let (o, ε, p) be the ε-transition to eliminate and assume ⇒j is an
expansion, i.e., one of the labels rk as in Fig. 2(a) is a product, a sum or
a starred expression. In the case of a sum or product, it is easy to see that
the order of ⇒i and ⇒j is interchangeable. We sketch the cases involving
∗-expansion in Fig. 3. The cases arising when ⇒j is Y -elimination, too, are
illustrated in Fig. 4.

εε

εε

ε
o

o

o

o

p

p

q

q

n

n m

s∗

s∗
s

s

⇒Y [p]

⇒
∗

⇒
∗

=

(a) Degenerate case where p
− = p

+ = 1; the particular
type of ∗-expansion is determined by o

+ and q
−

ε
ε

ε
ε

o

o

oo

p

p

q

q

n

n
s∗

s∗

s

s

s1

s1

s1

s1

sn

sn

sn

sn

⇒Y [p]

⇒Y [p]

⇒
∗

⇒
∗

(b) General case

Fig. 3: Local confluence of cases involving Y -elimination and ∗-expansion.
The state denoted n is either q or a newly introduced state, according to q−.
Note that reverting all transitions in the figures yields further valid cases.

ε
ε

o p

q
r1

rms1

sn

(a)

ε

ε

ε
o p

q
r1

rm

s1

sn

(b)

ε
p q

r1

rm

s1

sn

(c)

Fig. 4: Elimination-conflicts between overlapping Y -anchors centered in p
and q. In (a) and (b), the resulting EFA is invariant under the order of
removal. In (c) only one anchor may be eliminated, however, the resulting
EFAs are isomorphic.

– i = O: O-elimination can be considered as removing the ε-transitions of the
cycle, followed by merging all its states into a selected one among them,
called the merge-state. If ⇒j is the expansion of t = (p, s, q), assume p
lies on the cycle, while q does not. Choose p as the merge-state, then t
remains unaffected from O-elimination, hence expansion introduces the same
elements before and after O-elimination. If q is part of the cycle but not p,
or p = q, choose q as the merge-state. If both p and q lie on the cycle and
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p 6= q, the case of j = ∗4 is detailed in Fig. 5, the remaining cases where j
is an expansion are easily dealt with in the same spirit.

εε

ε
ε

ε
ε

ε

ε
ε

ε
ε

ε
ε

ε

r∗

r∗

r

r

r1

r1

r1

r1

r2

r2

r2

r2

s1

s1

s1

s1

s2

s2

s2

s2

⇒
O

⇒
O ⇒∗4

⇒∗4

Fig. 5: Conflict between cycle-elimination and expanding a transition con-
necting two distinct states of the cycle.

Next consider the case that ⇒j is Y [q]-elimination, for some state q, and
where q is part of the ε-cycle relevant for O-elimination—the case where q
is not on the ε-cycle in question would be again easy. By definition of Y -
elimination, we must have q− = 1 (resp. q+ = 1 in the case of reverse
Y -elimination), and there must be exactly one ε-transition entering (resp.
leaving) the state q. Since q− = 1 (resp. q+ = 1), this transition is necessarily
part of the ε-cycle in question. Hence, if O-elimination is applied first, it
subsumes Y -elimination, otherwise, Y -elimination may be considererd as
the first merging step of O-elimination, followed by merging a smaller cycle.
Finally, if ⇒j also denotes O-elimination, there is at least one common state c
to both cycles, which we chose as the merge-state. Regardless of the order,
both cycles may be merged into c, thus yielding the same EFA. ⊓⊔

We omit proving that the conversion from Xr to Ar is also locally confluent,
which is due to restriction (R2). It follows that Ar is unique, too.

We add an almost trivial preprocessing step on the input expression, called
mild simplification: Every occurrence of s? in r, s.t. ε∈L(s) is replaced with s.
The expression such built from r is denoted simp(r) 2. Without proof, we men-
tion that computing the strong star normal form subsumes mild simplification:

Lemma 7. Let r be a regular expression, then simp(r)• = simp(r•) = r•

On input r, we mildly simplify it first and then compute A0
simp(r). Mild

simplification is a reasonable first step in order to get smaller ε-NFAs:

Lemma 8. For any regular expression r, |Asimp(r)| ≤ |Ar|

Proof. Let E1 be an EFA with transition t = (p, s?, q), and let E2 be the EFA
obtained from E1 by replacing t with (p, s, q). Expanding t in E1 yields another
EFA E′

1; the sole difference between E′

1 and E2 is the additional transition

2 simp(r) can be computed in linear time on the parse of r in a bottom-up manner
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(p, ε, q) in E′

1. Now p+ and q− are bigger in E′

1 than in E2 — if s= t∗, expanding
(p, s, q) in E′

1 introduces at least as many elements in E2. On the other hand,
removal of p or q in E′

1 may result from X- or cycle-elimination, then however,
Y - or cycle-elimination would be applicable in E2. In short, converting E′

1 may
never lead to an ε-NFA which is smaller than the one reached by converting
E2. Since mildly simplifying a regular expression boils down to replacing some
occurrences of s? with s (in labels), the statement follows. ⊓⊔

The remaining part of this section deals with invariant cases of the construc-
tion under ◦ and •. To this end, for a transition t = (p, r, q) let t◦ := (p, r◦, q)
and t• := (p, r•, q). Note that since the conversions are locally confluent when
respecting (R1) and (R2), ∼= is an equivalence relation on the class of EFAs.

Lemma 9. Let E1 be an EFA with looping transition l = (q, r, q), and let E2

be the EFA obtained from E1 by replacing l with l◦. Then E1
∼=E2.

Proof. Structural induction on r: If r ∈ Σ then r = r◦, satisfying the claim. Let
E1 and E2 be as above and assume the claim is true for loops labeled s or t.
Let r be

– s+t: l is replaced by (q, s, q), (q, t, q), while l◦ is replaced by (q, s◦, q), (q, t◦, q).
By assumption, the pairs are interchangable, hence so are l and l◦

– s?: l is replaced by loops (q, ε, q), (q, s, q), the first of which is an ε-cycle,
hence eliminated, while the second may by assumption be replaced with
(q, s◦, q) = (q, s?◦, q) = l◦.

– s∗: ∗4-expansion is applied, introducing an ε-cycle {(q, ε, q′), (q′, ε, q)} and
a loop (q′, s, q′). Eliminating the cycle identifies q and q′, yielding (q, s, q)
which may by assumption be replaced with (q, s◦, q) = l◦

– st: If ε /∈ L(st), then (st)◦ = st and nothing needs to be proven. So assume
ε ∈ L(st), implying ε ∈ L(s) and ε ∈ L(t). Let E′

1 be the EFA after fully
expanding r, without intermediate elimination steps. The first expansion-
step replaces tl with {(q, s, q′), (q′, t, q)} — both q and q′ are still present
in E′

1, where they lie on an ε-cycle. Consider cycle-elimination in ’slow-
motion’: in a first step, only q and q′ are merged, resulting in a volatile
intermediate which happens to be isomorphic to the EFA constructed from
fully expanding l◦ = (q, s◦+t◦, q) in E2. A second step merges the remaining
states, which is equivalent to two cycle-eliminations.

This covers all possible cases, and the proof is complete. ⊓⊔

A more general result can be established for mildly simplified expressions:

Lemma 10. Let r be mildly simplified and assume A0
r ⇒∗ E1. Let t = (p, r, q)

be any transition in E1, and let E2 be as E1 except that t is replaced with t•.
Then E1

∼=E2.

Proof. The statement is true for r∈Σ. Assume it is true for transitions labeled
s or t, and let E1 and E2 be as above. Let r be

10



– s?: expansion replaces t with {(p, s, q), (p, ε, q)}, the first of which may by
assumption be replaced with (p, s•, q). Since r is mildly simplified, ε /∈L(s)
therefore r• = s?• = s•?; this implies that (p, r•, q) is expanded into (p, s•, q)
and (p, ε, q) as well.

– s∗: expanding t yields a looping transition l = (p′, s, p′), which may by as-
sumption be replaced with l• and by Lemma 9 with l•◦. Clearly, expanding
t•=(q, s•◦∗, q′) results in l•◦, too.

The remaining cases are straightforward. ⊓⊔

Theorem 11. Let r be mildly simplified, then the ε-NFA constructed from r
is isomorphic to the one constructed from its strong star normal form, that is,
Ar

∼= Ar• .

Proof. Lemma 10 implies A0
r
∼= A0

r• . ⊓⊔

Together with Lemma 7, this shows that the construction is invariant un-
der taking strong star normal form. Put differently, strong star normal form is
implicity computed upon conversion of mildly simplified regular expressions.

5 Alphabetic Width and the Size of ε-NFAs

This section is devoted to the resolution of the a research question regarding the
size of ε-NFAs posed by Ilie and Yu. In the following, the size of an ε-NFA A is
defined as the number of states plus the number of transitions in A.

Problem 12. Given a regular expression of alphabetic width n, what is the op-
timal bound on the size of an equivalent ε-NFA in terms of n?

Ilie and Yu state that their construction gives a bound of 9n − 1
2 , and they

remark that this does not appear to be close to optimal. In Section 4, we dis-
cussed an improved construction due to Gulan and Fernau [14]. In their original
paper they gave the following bound in terms of rpn-length on the size of the
constructed ε-NFA:

Theorem 13. Let r be a regular expression of unabbreviated rpn-length n. Then
the constructed ε-NFA Ar has size at most 22/15(n+1)+1. Furthermore, there
are infinitely many regular languages for which this bound is tight.

That paper does not consider the abbreviated syntax for regular expressions.
Fortunately, subexpressions of the form r+ε do not contribute to the hardness of
the conversion problem. Moreover, converting expressions that reach this bound
does not involve X-elimination, so the resultinf NFA is certainly unique. The
following bound, in terms of abbreviated rpn-length and thus slightly stronger,
can be obtained along the same lines:

Theorem 14. Let r be a regular expression of abbreviated rpn-length n. Then
the constructed ε-NFA Ar has size at most 22/15(n+1)+1. Furthermore, there
are infinitely many regular languages for which this bound is tight.

11



Proof. The analysis is the same as given in [14], except for obvious modifications
to the proof of [14, Thm. 10], which is the only place where we take the use of
abbreviated syntax into account. The fact that this bound is tight for infinitely
many regular languages trivially carries over. ⊓⊔

Together with Theorem 4 and Theorem 11, we obtain the following upper
bound in terms of alphabetic width:

Theorem 15. Let r be a regular expression of alphabetic width n. If r is mildly
simplified, then the constructed ε-NFA Ar has size at most 42

5n+1. Furthermore,
there are infinitely many regular languages for which this bound is tight.

Proof. Assume r is mildly simplified. Then Theorem 11 implies that the automa-
ton Ar constructed from r is the same as the automaton Ar• constructed from
its strong star normal form. By Theorem 4, we know that arpn(r•) ≤ 3n − 1.
Plugging this into the statement of Theorem 14, it follows that the ε-NFA Ar•

constructed from r• has size at most 22/15(3n − 1 + 1) + 1 = 42
5n + 1.

Gulan and Fernau [14] also give an infinite family of regular expressions rn

showing that the bound 22/15(m − 1) + 1 on the size of an ε-NFA equivalent
to a regular expression of rpn-length m is optimal: For k ≥ 1, they define the
regular expression

rk =

k
∏

i=1

(a∗i + b∗i ) · (c
∗

i + d∗i + e∗i )

of rpn-length m = 15k − 1 and prove that every equivalent ε-NFA has size at
least 22k + 1 = 22/15(m + 1) + 1. Since the alphabetic width of rk is ℓ = 5k,
this shows that the bound of 22k + 1 = 42

5ℓ + 1 stated in the theorem is tight
for infinitely many regular languages. ⊓⊔

The examples from the last proof in turn can be used to prove that the
bound from Theorem 4 for relating rpn-length and alphabetic width is tight, at
least in the abbreviated case:

Theorem 16. There exists an infinite family Ln of regular languages such that
alph(Ln) ≤ n, whereas arpn(Ln) ≥ 3n − 1.

Proof. Consider the language Ln described by the regular expression

rk =
k

∏

i=1

(a∗i + b∗i )(c
∗

i + d∗i + e∗i ).

For n = 5k and Ln = L(r5k), we have alph(Ln) = 5k = n. But the existence of
a regular expression of abbreviated rpn-length less than 3n− 1 = 15k− 1 would
imply with Theorem 14 that there exists an ε-NFA of size less than 22k + 1
accepting Ln, which clearly contradicts the lower bound obtained by Gulan and
Fernau. ⊓⊔
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6 Conclusion and Further Research

The equivalence of regular expressions being PSPACE-complete [19] and not
being finitely axiomatizable [1, 8], a proper normal form for regular expressions,
in the strong sense that every regular language should have a single normal
form, might be difficult to obtain. Also, ideally we would like to have a normal
form that realizes minimum alphabetic width and minimum rpn-length, and we
would like to have an efficient algorithm for computing such a normal form, two
criteria that would apparently contradict the above negative theoretical results.

In this paper, we have suggested a robust notion of reduced regular expres-
sions, the strong star normal form. This notion satisfies at least the latter two
criteria, in the sense that for each regular language, there is a (i.e. at least one)
regular expression expression in star normal form of minium rpn-length and of
minimum alphabetic width, and that it can be computed in linear time. Our
notion subsumes various previous attempts at defining such a notion [5, 9, 16]

Furthermore, we showed that the strong star normal form proves useful in
various contexts: Apart from a prior application in the context of the construc-
tion of ε-free NFAs [7], we gave two further applications.

The first concerns the relation between different complexity measures for reg-
ular expressions, namely alphabetic width and (abbreviated) rpn-length. With
the aid of strong star normal form, we were able to determine the optimal bound,
witnessing superiority of this concept over previous attempts at defining such a
notion of irreducibility, which yield only loose bounds [9, 16].

The second application concerns the comparison of descriptional complexity
measures across different representations, namely alphabetic width on the one
hand, and the minimum size of equivalent ε-NFAs on the other hand. Here we
seized the power of a finite automaton construction proposed recently by Gulan
and Fernau [14]: Under a mild additional assumption, this construction already
incorporates all simplifications offered by strong star normal form. While this
alone adds to the impression of robustness of the construction, we also proved
an optimal bound on the relation betweeen alphabetic width and the size of
finite automata, and we showed that this bound is attained by the mentioned
construction.

We believe that there are various further applications in the spirit of the
above results, and not only theoretical ones. For instance, the fastest known
algorithm [4] for regular expression matching is still based on the classical con-
struction due to Thompson [21]. While better constructions for ε-NFAs may not
improve the asymptotic worst-case running time, we hope that these can still
lead to noticeably better practical performance of NFA-based regular expression
engines.
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