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Abstract

Comparisons of different cellular devices and the investigation of their
computing power can be made in terms of their capabilities to time-
construct and time-compute functions. Time-construction means that a
distinguished cell has to enter distinguished states exactly at the time steps
f(1), f(2), ..., whereas time-computation requires the distinguished cell to
enter a distinguished state firstly at time step f(n), where n is the length
of the input. Here the family of functions which are time-constructible
by a two-way unbounded cellular space (% (CS)) is characterized in terms
of functions which are time-computable by one of the simplest cellular
devices, a one-way bounded cellular automaton (¢ (OCA)). Conceptually,
time-constructible functions have to be strictly increasing. Regarding that
restriction the reverse characterization is shown, too.

Some results concerning the structure of % (CS) and ¥ (OCA) and their
relation to formal language recognition are established.

1 Introduction

In the field of computational complexity theory there is a particular interest
in infinite dense hierarchies of complexity classes defined by bounding some
resources by a function f. Most of the corresponding proofs require “well-
behaved” complexity functions. The notion “well-behaved” is usually concret-
ized in terms of the constructibility of functions with respect to the device
investigated.

If we investigate the constructibility of functions in parallel polyautomata we
are strongly concerned with the concept of signals. In a lot of works specific
pulses (or signals) are an useful tool to construct algorithms, for example prime
number generators [5] or a solution to the famous firing squad synchronization
problem [1, 11]. A general investigation of signals of its own in polyautomata
was started by Mazoyer and Terrier [8, 9]. They considered signals and the



constructibility of functions in two-way unbounded cellular automata (cellular
spaces).

Since signals can encode and propagate information through the automaton
their realizability can show the computation power and the limitations of the
model. Moreover, we can regard signals as a higher programming concept which
allows modularization techniques at algorithm design.

In the field of polyautomata theory a problem arises with the end of a compu-
tation. From the usual definition it follows that the machines will never halt. A
common way of defining final configurations is to define a predicate these con-
figurations have to fulfill. In case of language recognition this predicate mostly
requires a border cell to be in a designated final state. But what afterwards a
final configuration is reached? One can additionally require that final configu-
rations are stable in some sense, i.e. a final configuration leads always to a final
configuration. If this property is not required and a certain complexity class
is under consideration, i.e. the resulting configuration is taken by the outside
world at a time step f(n), then the ability of recognizing time step f(n) is an
ability of the outside world and not necessarily of the model. But both cases
coincide if the time step f(n) is recognizable by the automaton itself, i.e. if the
automaton can time-compute f.

The object of the present paper is to establish some results concerning the
time-constructibility in two-way bounded and unbounded cellular arrays and
the time-computability in one-way and two-way bounded cellular arrays. Some
of the proofs are done in the field of formal language recognition. As far as not
available the corresponding bridges are built.

We focus our interest on relations between the functions which are time-construc-
tible in cellular spaces and functions which are time-computable in one-way
cellular automata. On one side there are the computational universal cellular
spaces whereas on the other side we have quite simple devices, the one-way
bounded cellular automata. But nevertheless we can fully characterize one
family by the other and vice versa.

2 Definitions

We denote the integers by Z, the positive natural numbers {1,2,...} by N, the
set N U {0} by Np.

2.1 Cellular devices

A cellular space is a linear array of deterministic finite automata which is infinite
to one end. For convenience we identify the single nodes, sometimes called cells,
by natural numbers.

A cellular automaton is a (space) bounded cellular space where the number of
cells depends on the size of the input.



The state transition function is applied to all cells synchronously at discrete
time steps. It depends on the state of the cell itself and on the states of the
nodes the cell is connected to, sometimes called its neighbors.

We distinguish two different interconnection patterns that are related to one-
way and two-way information flow through the network. In the first case each
cell is connected to its right nearest neighbor only, thus transmission is from
right to left. In the second case each cell is connected to its both nearest
neighbors.

For simplicity we assume that the border node(s) are initialized especially such
that their states indicate their distinguished position.

Definition 1 A cellular space (CS) is a system (S, o, #,q), where

a) S is the finite, nonempty set of states,
b) # € S is the boundary state,
c) q € S is the quiescent state,
d) o:83% — S is the local transition function satisfying
V $1,82,83 € S:0(s1,82,83) =# <= so =#and 0(q,q,q9) =q.

The local transition function induces a global transition 7 : ST — ST accord-
ing to the following:

Let n € N be an arbitrary natural number and s1,...,s, € S
T(sl) = U(#,Sl,Q)U(Sl,q, Q)
T(s1---8n) = o(#,51,52)0(51,52,83) - 0(Sn_1,5n,9)0(5n,4,q)

In cellular spaces we are always considering two-way information flow.

# S1 52 S3 S4 q q

Figure 1: A cellular space.

If the number of cells is bounded, the resulting device is a two-way cellular
automaton (CA for short). Now we have the local transition function length
preserving:

T(s1) = o(#,s1,#)
T(Sl"'sn) = U(#a31732)0(31732753)"'U(Sn—l,sn,#)

# S1 59 53 S4 S5 #

Figure 2: A two-way cellular automaton.

If we restrict the flow of information to one-way, we obtain a quite simple device,
a one-way cellular automaton (OCA for short).



The local transition function now maps from S? to S and satisfies o(sy, s2) =
# < so =#and 0(q,q) = ¢. It induces the following global transition:

T(s1) == o(s1,#)
T(s1-+8n) = 0(81,82) - 0(Sn,#)

S1 S2 53 S4 S5 #

Figure 3: A one-way cellular automaton.

2.2 Computations

The following sections are devoted to the investigation and comparison of three
types of computations in the previously described models.

A function f which maps the natural numbers to the natural numbers is said
to be time-computed by cellular automata if the input of n identical items
leads to a computation such that the configuration at time step f(n) is distin-
guished. The distinction is done by means of a set of final states into which
the leftmost cell of the network has to switch. The input item is the quiescent
state q. mi(s1---sp) := s; selects the ith component of sy ---s, and 7 ; is an
abbreviation for m;(7;).

Definition 2 A function f : N — N is (0O)CA-time-computable iff there exist
an (O)CA M = (S,0,#,q) and a set of final states F' C S\ {¢} such that f(n)
is the smallest natural number ¢ for which 71 (7%(¢")) € F.

We denote the family of OCA-time-computable resp. CA-time-computable func-
tions by €(OCA) resp. €(CA).

For time-computation an array has to compute the time step which corresponds
to the value of the function on the length of input. Another computation, the
time-constructibility of functions, requires the array to compute all values of
the function up to the input length. For that we need to restrict to strictly
increasing functions.

Definition 3 A strictly increasing function f : N — N is time-constructible
by a cellular space (CS-time-constructible) resp. by a cellular automaton (CA-
time-constructible) iff there exist a CS resp. CA M = (S, 0,#,q) and a set of
final states F' C S such that for all ¢ € N resp. t € {1,..., f(n)}:
m (T4 (q)) € F < FieN:t= f(i) resp.
m(THq") € F <= te U {f(i)}

The family of CS-time-constructible resp. CA-time-constructible functions is
denoted by % (CS) resp. .#(CA).



Our third type of computation is the most classical one when comparisons
between different models are made: the formal language processing. Although
in principle the family of languages acceptable by a specific array may be con-
sidered of its own it is usual to bound some resource e.g. the time.

Definition 4

a) A word w = w; ---w, € AT is accepted by a(n) (O)CA with state set S iff
A C S and there exists a set of final states F' C .S with the property that
a cell once entered a final state remains in a final state and ng € N such
that no is the smallest integer for which m (7™ (w; - wy)) € F holds.
The word is said to be accepted in ng time steps.

b) A formal language L is accepted by a(n) (O)CA M with time complexity
t:N—N <= L= {w]| wis accepted by M in at most ¢(|w|) time

steps}.

The family of all languages which can be accepted by a CA resp. OCA with time
complexity ¢(n) is denoted by Z,,)(CA) resp. Z(;;)(OCA). In this connection
the identity id is denoted real-time and aliased to rt.

3 One-way bounded time-computability versus two-
way unbounded time-constructibility

In the sequel f always denotes a strictly increasing mapping from N to N.

Our first result in this section deals with the direct comparison of €(OCA) and
F(CS).
On one hand a function seems to be easier time-computed than time-constructed,

but on the other hand the construction is to be done in a two-way unbounded
array against the computation in a one-way bounded array.

In the following we will incorporate some results from the fundamental work
of Mazoyer and Terrier [8]. They have shown that the family .#(CS) is closed
under addition and in some sense under multiplication with positive rational
coefficients (f € Z#(CS) <= c¢-f € F(CS), c € N). At first a useful
lemma concerning the substraction of id from functions belonging to % (CS) is
established.

Lemma 5 f+id € #(CS) = f € .Z(CS)

Proof. In [8] it has been shown that if g and h are belonging to .#(CS) and
g > h and for a b € Ny the function (b + 1)g — bh is strictly increasing, then it
belongs to #(CS), too. Obviously, the identity is CS-time-constructible.

Let g := f 4+ id and h := 2id. From the closure under multiplication with
rational coefficients it follows h € #(CS). Since f is strictly increasing it holds
f > id and, hence, g = f +id > id + id > 2id = h.



Choose b = 1, then (b+ 1)g —bh = 29 — h = 2f + 2id — 2id = 2f is strictly
increasing and thus belongs to % (CS). Again from the closure under multipli-
cation with rational coefficients we obtain f € .#(CS).

O

Now we are prepared to prove that every strictly increasing OCA-time-comput-
able function is also CS-time-constructible.

Theorem 6 f € ¥(OCA) = f € Z#(CS)

Proof. Due to lemma 5 it suffices to show f € ¥(OCA) = f +id € F(CS).

Let M be an OCA that time-computes f. By definition the flow of information
in OCAs is from right to left. By reversing the arguments of the local transition
we obtain an OCA M’ that has an information flow from left to right. Obviously,
in M’ cell i becomes final at time step f(i) at the first.

A cellular space which time-constructs f has to perform two tasks in parallel:
One is to simulate M’'. Additionally, every cell ¢ sends a signal to the left at
exactly that time step it becomes final for the first time, i.e. f(7). This signal
will arrive at the leftmost cell at time step f(i) 4+ ¢ which is the ith value of
f +id. Since f is strictly increasing the signals will not interfere. O

The converse of the theorem is not true: There are superexponential functions in
Z(CS) [8] which cannot belong to € (OCA) [2]. On the other hand it should be
mentioned that there are functions in ¥(OCA) that are not strictly increasing
[2] and therefore are not CS-time-constructible.

The aim of the present section is to characterize the family .#(CS) in terms
of OCA-time-computability. To step around the problem concerning the su-
perexponential functions we walk on another string. The idea is to use the
corresponding complement functions.

Definition 7 Let f : N — N be a strictly increasing function. The complement
function of f is defined by
f7H N = N, f7(m) = max({n € N| f(n) <m} U {0}).

The following lemma gives one direction of the characterization.

Lemma 8 f € F(CS) = f~! +2id € €(OCA)

Proof. In [8] it has been shown that the unary language Ly := {af( | n € N}
belongs to Z:(CA) iff f belongs to .#(CS). In [4] it has been shown that
L belongs to Z:(CA) iff LT belongs to %;4(OCA). (L% denotes the mirror
image of L.)

Since for unary languages we have I = L% and by the assertion f € .#(CS)
the language Ly belongs to £;a(OCA). We are going to construct an OCA M’



that time-computes f~! + 2id from a given OCA M that accepts L with time
complexity 2id.

Due to one-way information flow a cell is not influenced by cells located to its
left. Therefore and since 2id € €(OCA) we may assume that each cell i of M
becomes final at time 2(n — i + 1) at the earliest.

M' has to perform two tasks in parallel. The first one is to simulate M. The
second one is to generate and delay a signal s as follows. s is generated at the
right border at the beginning of the computation. It moves with speed 1/2 to
the left.

When it enters a new cell i (i.e. at time 2(n—i+1) or later) this one has finished
its decision whether the word a"~*! to its right belongs to L; (i.e. whether
there exists a m such that f(m) =mn —i+ 1). If it belongs to, then the signal
is delayed for one time step.

Altogether the signal is delayed for [{m € N | f(m) < n}| time steps and
arrives at time [{m € N | f(m) < n}|+ 2n at the left border. Since f is strictly
increasing |[{m € N | f(m) < n}| = f~!(n) holds. Thus, s may cause the left
border to enter a final state and M’ time-computes f ! + 2id. O

In order to proof the converse of the lemma, which would complete our charac-
terization, we will show a relationship to formal language recognition.

Lemma 9 Let ¢ € N be a natural number.
fl+cid e €(0OCA) = Ly = {a/™ | n € N} € Z11)ia(OCA)

Proof. Let M be an OCA that time-computes f~! + c¢-id. We are going to
construct a language acceptor M’ for Ly. M’ performs two tasks in parallel.

The first one is to simulate M on its whole input of length n.

The second one is to simulate M on an input of length n — 1. The second
simulation has to start ¢ time steps delayed. This can easily be achieved by
initializing cell n as pseudo border cell during the first time step. Delaying the
start by ¢ time steps can be done by each cell of its own.

The tasks would cause the leftmost cell to become final at time step f~1(n)+cn
resp. f{n—1)+c¢(n—1)+c= f~'(n—1)+cn. Dependend on whether there
exists a m € N such that f(m) = n or not, f1(n) = f1(n—1)+1 or
f7Hn) = fH(n-1).

Thus, if both tasks would cause the leftmost cell to become final exactly at
the same time step, then f !(n) = f '(n — 1) and a” does not belong to L.
Otherwise it does.

Since f~! < id the time complexity of the acceptor is at most (¢ + 1)id. |

Now we are prepared to prove our main result.



Theorem 10 f~! +2id € ¥(0OCA) < f € Z(CS)

Proof. By lemma 8 it suffices to show f~! + 2id € ¥(OCA) = f € F(CS).
If we choose ¢ = 2 then from lemma 9 it follows that Ly := {a/™ | n €
N} belongs to Z3;¢(OCA). In [6] it has been shown that it then belongs to
Z5;4(OCA) and by a result in [4] L? belongs to Z;(CA). Since Ly = L? we
obtain Ly € .%+(CA) and by the result in [8] cited above f € #(CS). O

Example 11 The function exp* : N — N is defined according to exp*(1) = 21,
exp*(n+1) = 252" (") Tts complement function is denoted by log*. It holds for
log(0) = 0: log™(m) = min{n € Ny | log"(m) = 1}.

Tt is known that I = {a®P (™) | n € N} belongs to .%,+(CA) [7]. Thus exp* is
CS-time-constructible and by theorem 10 the function exp*_1 +2id = log™ +2id
is OCA-time-computable.

Since in €(OCA) there is a gap between id and id+log [2] that example becomes
important to the search for other gaps in ¥ (OCA).

4 Two-way bounded time-computability versus two-
way unbounded time-constructibility

In the present section we are interested in obtaining similar results for two-way
bounded time computers as for OCAs in the previous section.

Unfortunately, we can only prove one direction. The other one is directly related
to the longstanding open problem whether .%,,(CA) is identical to .£};(CA) or
not.

Fortunately, we can prove a stronger version of that one direction.

Once the following theorem is proved we can derive another one with € (CA)
at the right side since in [3] has been shown that the family .#(CA) is properly
contained in ¥ (CA).

Theorem 12 f € Z(CS) = f ! +id € F(CA)

Proof. Since f belongs to .#(CS) it does 2f [8]. We are going to prove that
2(f 1 +id) is CS-time-constructible. Applying the result in [8] again shows the
CS-time-constructibility of f~1+4d. Since f~!+id < 2id the function f~! +id
is linearly bounded and, thus, can be constructed by a (space) bounded CA.
It remains to show 2f € #(CS) = 2(f~! +id) € F(CS).

The rest of the proof is divided in two sections. At first a bundle of signals is
introduced which set up a CS time constructor M’ for 2(f~!+id). Subsequently
we will verify that M’ does what it should do. For the following cf. figure 4.

Let M be a CS time constructor for 2f.
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Figure 4: Example to theorem 12.

Basically, M’ simulates M. At every time step 2f(n), n € N, the leftmost cell
gets marked by the simulated constructor M. At these time steps right moving
signals ¢ with speed 1 are generated by the leftmost cell.

Additionally, at time step 2 a right moving signal s with speed 1 is generated.
At each cell passed through by s two left moving signals [ and d with speed 1
are transmitted. A signal [ is delayed for two time steps when it collides with
a signal c.

The signals d are moving without any delay to the leftmost cell and are bounced
there.

If two signals d and I meet again, they are dropped and a left moving signal z
with speed 1 is transmitted instead. If the meeting takes place together with a
meeting of a signal ¢ then the signal z is delayed for two time steps before it is
transmitted to the left.

Each arrival of a signal « in the leftmost cell happens at a time step 2(f~*(m)+
m), m € N, and vice versa.

Now we turn to the question why the signals « do their job well.

Let us consider the signals d and ! which are transmitted at time step m + 1,
m > 1, by the signal s. d arrives at cell 1 at time m+1+m —1 = 2m.
Subsequently, it is bounced and determines the area in space-time in which [



may be delayed. But [ is delayed only if there exist some signals ¢ that have to
be transmitted at time steps 2f(n), where 2f(n) < 2m, thus f(n) < m.

On the other hand we have {n € N | f(n) < m} = {1,2,...,f (n)} and
therefore f1(m) = [{n € N | f(n) < m}|. Tt follows that the signal [ is delayed
for 2f~1(m) time steps. Since the signal x transmitted at the meeting of d
and [ moves leftward with speed 1 this delay corresponds exactly to the time
between the arrival of the signals d and x at the leftmost cell. Hence, = arrives
in cell 1 exactly at time 2f~(m) + 2m = 2(f~*(m) + m).

It remains to clarify that the cells can check whether meeting d and [ signals are
partners, i.e. they are generated at the same time. But it can easily be verified
that the first (bounced) signal d that meets [ is its partner, which proves the
theorem. O

Corollary 13 f € Z#(CS) = f~! +id € €(CA)

The proof of the following lemma is analogous to the proof of lemma 9. If at
least for unary languages it would hold .£;(CA) = Z,+(CA) then it would prove
the converse of theorem 12.

Lemma 14 Let ¢ € N be a natural number.
f 4 id e €(CA) = {2/ | n € N} € Z11)ia(CA)
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