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Summary 

 Proopiomelanocortin (POMC) is a precursor protein for many peptide 

hormones such as adrenocorticotropic hormone (ACTH), melanocyte-stimulating 

hormones (MSH) and β-endorphin (β-END). The major tissue that synthesizes 

POMC-derived peptides is the pituitary gland, where POMC is proteolytically 

processed by prohormone convertases (PC) 1 and 2 and by carboxypeptidase E 

(CPE) to cleave POMC to biologically active ACTH and β-END. Non-pituitary 

tissues such as immune cells can also produce β-END. Those cells migrate into 

inflamed tissue where they release opioid peptides and attenuate inflammatory 

pain by activating opioid receptors on peripheral terminals of sensory neurons. 

Overall knowledge about the regulation and production of POMC in immune cells 

is scarce, especially with respect to cells of the adaptive immune system 

(lymphocytes). Under naïve/unstimulated conditions, Pomc mRNA expression may 

be repressed in immune cells. The major questions of the present study were 

whether and how Pomc is repressed in lymphocytes under naïve conditions, which 

cell subsets can be stimulated to express Pomc and whether the post-translational 

processing involves the same proteolytic enzymes as in the pituitary. To study the 

regulatory mechanisms of POMC expression and β-END formation in lymphocytes 

and their subsets (B and T cells), we used isolated cells from lymph node (LN) 

tissue of rats with/without hind paw inflammation induced by intraplantar injection 

of complete Freund’s adjuvant (CFA). 

 The mechanism of Pomc gene repression in naïve lymphocytes was 

investigated on the transcriptional level using a DNA-methyltransferase (RG108) 

and a histone deacetylation inhibitor (trichostatin A). RG108 treatment successfully 

induced the expression of the control transcript Sfrp1 but had no effect on Pomc 

mRNA expression when applied separately or in combination with trichostatin A, 

indicating that neither demethylation nor acetylation are sufficiently derepressive 

with respect to this specific gene or that other mechanisms are involved in Pomc 

repression. Thereupon, the involvement of microRNAs (miRNAs) in Pomc 

repression was studied in naïve lymphocytes by knocking down Dicer using siRNA 

and electroporation. Dicer knockdown diminished the expression of the control 

transcript (IL-10 mRNA) but had no effect on Pomc mRNA, suggesting that 

miRNAs are not involved in the repression of Pomc. Taken together, the nature of 
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Pomc repression in naïve lymphocytes was not fully unravelled, but there is 

evidence that it is not limited to DNA-methylation and does not involve miRNA 

activity. 

 Pomc repression in lymphocytes was switched off upon proper stimulation 

in vivo by CFA-induced inflammation (after 2 h) and by in vitro stimulation with IL-4 

(2 h exposure). Unexpectedly, B cells rather than T cells expressed Pomc mRNA 

in both conditions, while T cells showed Pomc expression only after more 

prolonged exposure to IL-4 (after 24 h). IL-4 thereby activated Pomc expression in 

B cells indirectly. The present findings suggest a T cell-dependent mechanism 

leading to the liberation of one or more factors from IL-4-stimulated T cells, which 

finally drive Pomc gene expression in B cells through JAK-STAT pathway 

activation. Cytokine arrays were performed to identify this/these T cell factor(s) but 

candidate testing in in vitro stimulation assays remained without success. At this 

point the identity of the factor stimulating B cells to produce Pomc mRNA in our IL-

4 in vitro model remains an open question. 

 On the post-translational level POMC needs to be proteolytically processed 

in order to yield β-END. Based on our PCR and immunofluorescence analyses 

PC1 mRNA and protein were expressed under inflammatory conditions and after 

treatment with IL-4 plus conA but not in unstimulated lymphocytes. PC2 mRNA 

and protein expression were generally detectable in naïve/untreated as well as in 

in vivo (CFA) and in vitro stimulated cells (IL-4 plus conA). PC2 protein was 

thereby upregulated in inflammation but in contrast to PC1 showed no changes 

after in vitro stimulation with IL-4 plus conA. PC1 mRNA expression in 

inflammation could be ascribed to B- and T-helper cells, while PC2 mRNA was 

found in all cell subsets including cytotoxic T cells. CPE was undetectable on the 

mRNA and protein level. This may indicate that CPE is not involved in POMC 

processing in lymphocytes. Transcripts of two other potential POMC processing 

enzymes (cathepsin L and aminopeptidase B) were found in naïve and inflamed 

conditions. In accordance with the expression of Pomc mRNA and the presence of 

PC1 and PC2 in in vivo stimulated B cells, β-END levels increased in this cell 

subset in inflammation. Immunofluorescence experiments showed that β-END 

levels were also upregulated in LN cells treated with IL-4 plus conA, which is in 

agreement with the expression of Pomc mRNA and PC1 protein. Taken together, 

these findings suggest that PC1 is crucial for the formation of β-END in 
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lymphocytes, while PC2, cathepsin L, and aminopeptidase B may be of minor 

relevance. 

 To extend our studies to chronic inflammation, the presence of endogenous 

opioid peptides was investigated in a new mouse model of rheumatoid arthritis 

(ACIA-model). We examined Met-enkephalin and β-END in the draining LNs and 

at the site of primary inflammation (joint) using immunohistochemistry, 

radioimmunoassay (RIA), and EIA measurements. Met-enkephalin levels 

increased with increasing cell numbers in draining LN tissue during antigen 

challenges. In established chronic arthritis, however, the amount of Met-

enkephalin in the draining LNs was not different from baseline values. Opioid 

peptide release from explanted knee cells demonstrated that Met-enkephalin and 

β-END are liberated to a similar extent in chronic arthritis. This release could not 

be clearly ascribed to immune cells, pointing towards the involvement of other cell 

types in chronic inflammation. 

 In conclusion, the present studies suggest that the expression of Pomc and 

β-END production in rat lymphocytes involve additional mechanisms to DNA-

methylation, that are overcome under certain circumstances as in acute CFA-

induced inflammation and IL-4 stimulation of mixed cell cultures. Although the key 

factor triggering Pomc mRNA expression in B cells remains unknown, the event 

seems to be cytokine- and JAK/STAT-dependent. The processing of POMC into β-

END seems to be linked to PC1. These findings may help to develop strategies for 

pain therapy by boosting opioid peptide production in immune cells. This might be 

especially interesting for chronic inflammation. 
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Zusammenfassung 

 Proopiomelanocortin (POMC) ist der Vorläufer für mehrere Peptidhomone 

wie z.B. Adrenocorticotrophes Hormon (ACTH), Melanozyten-stimulierendes 

Hormon (MSH) und β-Endorphin (β-END). POMC Peptide werden hauptsächlich in 

der Hypophyse gebildet, wo POMC proteolytisch durch die Prohormonconvertasen 

(PC) 1 und 2 sowie Carboxypeptidase E (CPE) in biologisch aktives ACTH und β-

END prozessiert wird. Immunzellen können ebenfalls β-END bilden. Solche Zellen 

wandern in entzündetes Gewebe ein. Dort können sie Opioidpeptide freisetzen 

und Schmerz durch Aktivierung von Opioidrezeptoren auf peripheren sensorischen 

Neuronen reduzieren. Bisher ist das Wissen über Regulation und Produktion von 

POMC in Immunzellen begrenzt, insbesondere bezüglich Zellen des adaptiven 

Immunsystems (Lymphozyten). Unter naiven/unstimulierten Bedingungen könnte 

die Pomc mRNA Expression unterdrückt sein. Die Hauptfragestellung dieser Arbeit 

ist, ob und wie eine solche Unterdrückung stattfindet, welche Zellsubpopulationen 

zur Pomc Expression stimuliert werden können und ob an der posttranslationalen 

Prozessierung dieselben Enzyme wie in der Hypophyse beteiligt sind. 

 Wir isolierten zunächst Lymphozyten und deren Subpopulationen (B- und T-

Zellen) aus poplitealen Lymphknoten von Ratten mit (bzw. ohne) Complete 

Freund’s Adjuvant (CFA)-induzierter Hinterpfotenentzündung. Um 

Transkriptionsmechanismen zu untersuchen, wurden Inhibitoren der DNA-

Methyltransferase (RG108) und der Histondeacetylierung (Trichostatin A) 

verwendet. RG108 induzierte das Kontrolltranskript Sfrp1, hatte jedoch weder 

alleine noch in Kombination mit Trichostatin A eine Wirkung auf Pomc mRNA 

Expression. Dies weist darauf hin, dass weder Demethylierung noch Acetylierung 

eine entscheidende Rolle spielen. Wir untersuchten dann die mögliche Beteiligung 

von microRNAs (miRNAs) durch Knockdown von Dicer mittels siRNA und 

Elektroporation. Dies reduzierte die Expression des Kontrolltranskripts (IL-10 

mRNA), jedoch nicht Pomc mRNA. Letztendlich konnten wir die Mechanismen 

einer möglichen Pomc Repression in naïven Lymphozyten nicht endgültig 

aufklären, jedoch fanden wir Hinweise darauf, dass weder DNA-Methylierung noch 

miRNA entscheidend daran beteiligt sind. Hingegen fanden wir bereits nach 2 

Stunden erhöhte Pomc Expression in entzündeten Lymphknoten von Ratten mit 
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CFA-induzierter Hinterpfotenentzündung und nach in vitro Stimulation mit IL-4 (2 

Stunden). 

Unter beiden Bedingungen exprimierten vorrangig B-Zellen Pomc mRNA, während 

T-Zellen Pomc nur nach prolongierter Stimulation mit IL-4 (24 Stunden) bildeten. 

IL-4 aktivierte indirekt die Pomc Expression in B-Zellen nach JAK/STAT 

Aktivierung, vermutlich durch Faktoren, die aus IL-4-stimulierten T-Zellen 

freigesetzt werden. Diese Faktoren konnten mittels Zytokin-Arrays von uns bislang 

nicht identifiziert werden. 

 Mittels unserer PCR und Immunfluoreszenz-Analysen konnten wir zeigen, 

dass PC1 mRNA und Protein unter Entzündungsbedingungen und nach IL-4/conA 

Behandlung nicht jedoch in unstimulierten Lymphozyten exprimiert werden. PC2 

mRNA und Protein waren jedoch sowohl in naïven als auch in stimulierten Zellen 

(nach in vivo CFA oder in vitro IL-4/conA Behandlung) nachweisbar. PC2 Protein 

war infolge der Entzündung hochreguliert, blieb jedoch, im Gegensatz zu PC1, 

nach in vitro Stimulation durch IL-4/conA unverändert. PC1 mRNA Expression in 

der Entzündungssituation erfolgte in B- und T-Helferzellen, während PC2 mRNA in 

allen Subpopulationen einschliesslich zytotoxischen T-Zellen gefunden wurde. 

CPE war nicht nachweisbar und scheint daher nicht an der POMC Prozessierung 

in Lymphozyten beteiligt zu sein. Zwei weitere möglicherweise beteiligte Enzyme 

(Cathepsin L und Aminopeptidase B) konnten in naïven und Entzündungs-

assoziierten Zellen nachgewiesen werden. In Übereinstimmung mit der Expression 

von Pomc mRNA, PC1 und PC2 in in vivo-stimulierten B-Zellen, stieg auch β-END 

in diesen Zellen während der Entzündung an. Immunfluoreszenz-Experimente 

zeigten, dass β-END auch in Lymphozyten nach IL-4/conA Behandlung anstieg, in 

Übereinstimmung mit der Expression von Pomc mRNA und PC1 Protein. Daher 

scheint PC1 wichtig für die Produktion von β-END in Lymphozyten zu sein, 

während PC2, Cathepsin L und Aminopeptidase B weniger vorrangig sind. 

Schließlich untersuchten wir das Vorkommen von Opioidpeptiden auch in einem 

neuen Mausmodell für chronische rheumatoide Arthritis. Wir untersuchten Met-

Enkephalin und β-END in Lymphknoten und in entzündeten Gelenken mittels 

Immunohistochemie, Radioimmunoassay und Enzymimmunoassay. Met-

Enkephalin stieg mit steigenden Zellzahlen in Lymphknoten während der 

Antigenstimulation an. In der etablierten chronischen Arthritis war jedoch die 

Menge an Met-Enkephalin in den drainierenden Lymphknoten unverändert 
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gegenüber Ausgangswerten. Aus Zellen des Kniegelenks wurden ähnliche 

Mengen von Met-Enkephalin und β-END freigesetzt. 

 Zusammengefasst deuten unsere Ergebnisse darauf hin, dass in die 

Expression von Pomc in Lymphozyten Faktoren involviert sind, die unter 

bestimmten Umständen wie z.B. der akuten Entzündung in vivo oder der IL-4 

Stimulation von Zellkulturen in vitro aktiv werden. Obwohl der entscheidende 

Stimulationsfaktor der Pomc mRNA Expression momentan noch unbekannt ist, 

scheint diese abhängig von Zytokinen und JAK/STAT zu sein. PC1 erscheint 

notwendig für die Prozessierung von POMC in β-END. Diese Erkenntnisse 

könnten in neue Strategien zur erhöhten Opioidpeptidproduktion in Immunzellen 

einfließen und zu neuartigen Ansätzen in der Behandlung von akutem und 

chronischem Entzündungsschmerz beitragen. 
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1 Introduction 

1.1 POMC distribution and function 

 POMC is a polypeptide and precursor protein for many peptide hormones 

with diverse biological functions such as adrenocorticotropic hormone (ACTH), 

different melanocyte-stimulating hormones (MSHs), β-endorphin (β-END), etc. 

(Nakanishi et al., 1979). The major tissue that synthesizes POMC is the pituitary 

gland, POMC is produced in the corticotrophs of the pars distalis and in the 

melanotrophs of the pars intermedia (Seidah et al., 1993; Bennett et al., 1992). 

Several non-pituitary tissues also express POMC and related peptides. In the 

brain, POMC-expressing neurons are predominantly present in the arcuate 

nucleus located in the mediobasal hypothalamus (Abrams et al., 1980; Gee et al., 

1983). Moreover, tissues for reproduction such as testis, ovary (Bardin et al., 1987; 

DeBold et al., 1988a; DeBold et al., 1988b), and placenta (Rees et al., 1975; 

Grigorakis et al., 2000)  are shown to express POMC peptides. ACTH, 

β-Lipotropin (β-LPH), γ-MSH, and β-END were shown to  be expressed in adrenal 

gland, kidney, lung, thyroid gland, liver, colon, and duodenum (DeBold et al., 

1988a; DeBold et al., 1988b). POMC, β-LPH, different MSHs, and β-END are in 

skin cells like keratinocytes, melanocytes, and dermal microvascular endothelial 

cells (Schauer et al. 1994; Wintzen et al., 1996; Scholzen et al., 2000).   Immune 

tissues/cells such as spleen (Lolait et al., 1984; Mechanick et al., 1992; Lyons and 

Blalock, 1995), lymph nodes (Cabot et al., 1997; Mousa et al., 2000; Sitte et al., 

2007; Busch-Dienstfertig et al., 2012), and circulating blood leukocytes (Smith and 

Blalock 1981; Harbour et al., 1991) express POMC related peptides. 

 ACTH and the MSHs bind to the melanocortin (MC) receptors 1 to 5 

(Mountjoy et al., 2003). The receptors for β-END are opioid receptors (Li et al., 

1981; Stevens CW, 2011) and can be divided in three classes that have been 

termed mu (µ), delta (δ), and kappa (κ) (Childers, 1993). Each type of opioid 

receptor possesses distinct yet overlapping ligand-binding properties and 

functional characteristics (Corbett et al., 1993). The µ and δ receptors bind the 

opioid peptides to enkephalins and endorphins. Both are G protein-coupled 

receptors (GPCRs) with seven transmembrane domains (Wittert et al., 1996; 

Boston BA, 2000). Upon stimulation with CRH ACTH binds to melanocortin type 2 
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receptors and induces steroidgenesis. Glucocorticoids, androgenic steroids, and 

mineralocorticoids are subsequently released from the adrenal gland (Cowley et 

al., 1999). Appetite and energy expenditure are regulated by the release of α-MSH 

(Cowley et al., 1999). Knock down of melanocortin type 4 receptors  leads to 

adiposity and linear growth  due to the lack of α-MSH signaling   (Butler and Cone, 

2003). Eumelanin is produced in melanocytes by Plasma ACTH and β- or γ-LPH  

leading to a brown coloration of the skin. In the absence of these peptides or 

melanocortin type 1 receptors, pheomelanin is produced leading to red 

pigmentation (Schioth et al., 1999; Ringholm et al., 2004). 

 ACTH-, MSH-, and LPH-related effects such as regulation of body 

temperature, feeding, and emotional states are mediated via melanocortin 

receptors END bind to the opioid receptors and are involved in dampening of pain 

signals (analgesia). (Li et al., 1976). 

 Mice lacking END showed impaired endogenous antinociception  

(Rubinstein et al., 1996) and also involved in the modulation of the immune 

response. (van Epps et al.,1984)  the activity of END is not restricted to opioid 

receptors; END can also act via non-opioid receptors in the nervous and immune 

system (Wollemann et al., 2004). The facts that POMC is expressed in such a 

variety of cell types and that each tissue has its own regulatory mechanisms make 

POMC an important model system for understanding the complex interaction of 

regulatory factors and intracellular mechanisms that establishes the required level 

of gene expression. 

 

1.2 Regulation of POMC and β-endorphin expression in the pituitary gland 

 The Pomc gene expression in the pituitary is largely controlled at the 

transcriptional level, and the formation of β-END is the result of extensive 

proteolytic processing of the precursor molecule. The most important regulatory 

molecules are described in the following two sections. 

1.2.1 Transcriptional regulation 

 There is an involvement of various transcription factors and responsive 

elements in regulating Pomc gene expression in the corticotroph cell, together with 

intracellular signaling pathways acting on the transcription factors. One of the most 



                                                                                                                             Introduction 

3 
 

important transcription factors is the T-box factor TBX19 (Tpit) (Seidah et al., 1993; 

Bennett et al., 1992), which is specifically expressed in corticotroph and 

melanotroph cells (Lamolet et al., 2001). Pomc transcription control by Tpit 

requires the involvement of paired-like homeodomain transcription factor 1 (Pitx1), 

another transcription factor. Moreover, Pomc transcription is sensitive to stress 

hormones such as the corticotropin-releasing hormone (CRH) (Jinet et al., 1994). 

Studies in murine, ACTH-positive AtT-20 cells (pituitary tumor cell line) showed 

that the Pomc promoter activity can also be stimulated by inflammatory cytokines 

such as IL-1β, IL-6, and TNFα (Katahira et al., 1998). Cyclic adenosine 

monophosphate (cAMP)-responsive elements (CRE) and Ca2+-responsive 

elements (CaRE) play an important role in coordinating the degree of Pomc gene 

expression and the rate of secretion of POMC-derived peptides from corticotrophs 

and melanotrophs (Jenks et al., 2009). From the above studies we can say that 

Pomc is regulated by various factors. 

1.2.2 Post-translational regulation 

 Post-translational modifications and processing increase the functional 

diversity of the whole proteome. Post-translational processing of POMC in 

mammals is well studied (Smith et al., 1989; Castro et al., 1997). Studies on 

POMC from rodents, ox, sheep, and humans revealed that in mammals it is 

composed of three major segments: N-POMC, ACTH, and β-LPH. These 

segments are divided from each other by two or more basic amino acid residues, 

which act as cleavage signals and contain one MSH sequence. The β-END 

sequence is always located at the C-terminal end of the β-LPH segment. 

Therefore, mammalian POMC is described as the 3MSH/1END type (Takahashi et 

al., 2013). Studies of POMC in non-mammalian species such as birds (Naudé et 

al., 2006), reptiles (Kobayashi et al., 2007) and fish including teleosts, 

cartilaginous fish, lobe-finned fish, and agnathans (Takahashi et al., 2006), 

showed that the POMC structures are not always the 3MSH/1END type. It was 

also shown that different POMCs are generated in the pars distalis (PD) and pars 

intermedia (PI) of the most primitive vertebrates, the lampreys (Takahashi et al., 

1995). The adult human pituitary gland lacks the pars intermedia and is only 

composed of the anterior lobe containing the pars distalis and pars tuberalis (Asa  

et al., 1995). Here, POMC is predominantly processed into ACTH, and β-LPH 
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(Takahashi et al., 2013). Similar to the human pituitary gland, the adult avian 

pituitary gland is only composed of the pars distalis (Gorbman et al., 1983). 

Several POMC-derived peptides have been isolated from the ostrich (Struthio 

camelus), including ACTH (Li et al., 1978), β-LPH (Naudé et al., 1981), β-END 

(Naudé et al., 1981), γ-LPH (Litthauer et al., 1984), and pro-γ-MSH (Naudé et al., 

1993). The generation of a substantial amount of β-END in the ostrich pituitary 

gland is different from what was observed in the human pituitary, in which β-LPH is 

the predominant form (Holm et al., 1995). Similar to other tetrapods, the Pomc 

gene from snakes and alligators also codes for α-MSH, β-MSH, γ-MSH, and β-

END (Kobayashi  et al., 2007). Together these studies demonstrate that POMC is 

highly conserved across species. However, there seem to be differences amongst 

the POMC-derived products generated in the same tissues from different species, 

which points to the differences in prohormone cleavage. 

 

1.2.2.1 Proteolytic processing of POMC 

 Proteolytic cleavage is a post-translational process commonly employed to 

regulate the cellular proteome and the resultant cellular activity. It occurs at distinct 

amino acid side chains or peptide linkages and is most often mediated by 

enzymatic activity. Such cleavage is especially important for peptide hormones, 

which often are initially synthesized as inactive precursors (e.g. pro-insulin). The 

proteolytic processes involved can vary between different cell types. Peptide 

bonds of proteins are usually cleaved by a class of enzymes called proteases, 

which among others include the group of prohormone convertases (PC). In 

mammals, PCs participate in the formation of biologically active products from 

precursor molecules such as prohormones like pro-insulin through their 

endoproteolytic actions (Bergeron et al., 2000). In endocrine and neuronal cells, 

most peptide hormones and neuropeptides are produced through limited 

endoproteolysis at pairs of basic amino acids during their transport along the 

secretory pathway. The majority of prohormones are cleaved in a cell-specific 

manner by members of the family of calcium-dependent subtilisin-like 

endoproteases, which includes furin, PC1, PC2, PC4, PACE4, PC5/6, 

PC7/LPC/PC8, and SKI-1/S1P (Steiner et al., 1998; Seidah et al., 1999). PC1, 
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unlike furin, PC4, PACE4, PC5-B, PC7, and SKI-1, is predominantly expressed in 

neural and endocrine cells (Seidah et al., 1990; Day et al., 1992). 

 

Figure 1.1 Schematic representation of POMC process ing and POMC-cleavage sites of PC1 
and PC2 in the pituitary  A. POMC processing begins as the nascent polypeptide chain (pre-
POMC) enters the endoplasmic reticulum with the help of a signal peptide (SIG). Within the ER, the 
signal peptide is removed from the N-terminus, giving rise to a mature POMC. After binding POMC 
to the membrane-bound sorting receptor carboxy peptidase E (CPE) in the trans-Golgi network, 
POMC cleavage occurs within the secretory granules. Adapted from Melanie Busch-Dienstfertig 
(2003). B. In the anterior pituitary gland, POMC is cleaved by PC1 to generate proACTH and β-
LPH. ProACTH is further cleaved by PC1 to generate JP and ACTH. In melanotrophs of the 
intermediate lobe, hypothalamus, and skin PC2 cleaves ACTH to generate ACTH 1–17 and 
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corticotropin-like intermediate lobe peptide (CLIP). PC2 also cleaves β-LPH to generate γ-LPH and 
β-END. Adapted from Pritchard and White (2007). 

 POMC is one of the most extensively studied peptide precursors processed 

in pituitary cells (Mains et al., 1990; Loh et al., 1987). All proteolytic processing of 

human POMC occurs between either the two amino acids lysine (lys) and arginine 

(arg) or between two args. Every lys-arg and arg-arg site within the human 

precursor can be cleaved in vivo, whereas in the mouse and rat, additional arg-lys 

and lys-lys sequences at the N-termini of γ1-MSH and β-MSH respectively, appear 

to be utilized for cleaving POMC (Bicknell et al., 2008). In the pituitary and 

hypothalamus, post-translational proteolysis of POMC is mediated by PC1 and 

PC2 (Seidah et al., 1993). PC1 and PC2 were identified in the early 1990s (Hakes 

et al., 1991; Nakayama et al., 1991; Seidah et al., 1990; 1991; Smeekens et al., 

1990; 1991) and were shown to be involved in the cleavage of POMC and many 

other peptide precursors (Benjannet  et al., 1991; Korner et al., 1991; Nakayama 

et al., 1991; Thomas et al., 1991). Both enzymes are localized in secretory 

vesicles along with the neuropeptide precursors (Christie et al., 1991; Bennett et 

al., 1992). It is known that POMC cleavage begins in the trans-Golgi network 

(TGN) and continues coordinately with the maturation of secretory granules 

(Tanaka et al., 1991; 1992; Schnabel et al., 1989; Tooze et al., 1987). In addition 

to its proteolytic processing, POMC and POMC-derived peptides also undergo 

several other post-translational modifications such as acetylation, amidation, 

phosphorylation, glycosylation, and disulphide linkage formation while residing in 

the Golgi apparatus and secretory vesicles (Christie et al., 1991).  

 In the mammalian pituitary it has been shown that PC1 is expressed in both 

the anterior and the intermediate lobe and that it cleaves POMC mainly at the 

paired basic sites flanking the ACTH sequence. In contrast, PC2 is mainly 

expressed in the intermediate lobe and cleaves POMC in concert with PC1, 

yielding JP, α-MSH, and β-END (Seidah et al., 1992; 1993). Tissue-specific 

proteolytic processes to generate functional peptides have also been described by 

(Takahashi et al., 2013). In corticotrophs, larger peptides such as ACTH are the 

final products, whereas in melanotrophs smaller peptides such as α-MSH are 

predominately generated. As shown in (Fig. 1.1 A), post-translational POMC 

processing begins as the nascent polypeptide chain (pre-POMC) enters the 

endoplasmic reticulum with the help of the signal peptide (SIG) (Cool et al., 1994; 
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Loh et al., 2002). The molecular weight of pre-POMC is approximately 

32 kilodaltons (kDa). Within the ER, the SIG is removed from the N-terminus, 

giving rise to the mature POMC. After binding POMC to the membrane-bound 

sorting receptor carboxy peptidase E (CPE) in the trans-Golgi network, PC1 

cleaves POMC within the secretory granules in the anterior lobe of the pituitary 

(Tanaka et al., 1991; 1992; Cool et al., 1997). The sites Glu-Gly-Lys-Arg, Glu-Phe-

Lys-Arg, and Lys-Asp-Lys-Arg are cleaved by both, PC1 and PC2. Additionally, 

PC2 cleaves Ala-Gln-Arg-Arg and Gly-Lys-Lys-Arg motifs. Because of the limited 

proteolytic action of PC1 at POMC cleavage sites, four different major end 

products corticotropin, β-lipotropin, the joining peptide (JP), and big γ-MSH are 

generated in the anterior lobe (see Fig. 3.1 B). In the intermediate lobe of the 

pituitary, the end products are α-MSH, corticotropin-like intermediate product 

(CLIP), β-MSH, and β-END (Fig. 3.1 B). If both enzymes are present, PC1 

mediates the initial cleavage of POMC into the corticotropin-biosynthetic 

intermediate molecule and β-LPH (Benjannet et al., 1991; Seidah et al., 1999; 

Tanaka et al., 2003). Thereafter, PC2 is able to cleave β-LPH to generate β-MSH 

and β-END (Marcinkiewicz et al., 1993). In humans, β-LPH is processed to γ-LPH 

and β-END, and then γ-LPH is further cleaved by PC2 to β-MSH. After cleavage of 

POMC by PC1 and PC2, the end products have two basic pair residues at their 

C-terminal that are removed by CPE (Douglass et al., 1984; Che et al., 2001). An 

exception is β-END that does not have any C-terminal amino acid residues, since 

it is C-terminally terminated by the STOP codon. In summary the 

formation/generation of POMC-related end products is directed by the enzymatic 

machinery of a cell. 

 

1.2.2.1.1 Activation and inhibition of PC1 and PC2 

 In neuroendocrine and endocrine tissues, activation of mouse PC1 occurs 

auto-proteolytically (Fig. 1.2). When the 94 kDa pre-proPC1 mouse protein enters 

the endoplasmic reticulum, the SIG is cleaved, resulting in the 87 kDa intermediate 

form proPC1 (Lee et al., 2004). This intermediate form is then transported to the 

Golgi apparatus, where it undergoes different post-translational modifications such 

as N-glycosylation (Benjannet et al., 1993). The N-terminal pro-segment is 

processed within the trans-Golgi network and the secretory granules, generating 
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the enzymatically active 66 kDa form (Goodman et al.,1994; Seidah et al.,1999; 

Lee et al., 2004). 

 PC1 is specifically inhibited by proSAAS, an endogenous convertase-

binding protein of 26 kDa belonging to the calcium binding and acidic protein 

family of granins, which in turn belongs to a protein family of regulated secretory 

proteins (Qian et al., 2000; Fortenberry et al., 2002). ProSAAS is predominantly 

expressed in neuronal and pituitary tissues and is processed in parallel to proPC1. 

Cleavage of the signal peptide results in the 23 kDa form SAAS (see Fig. 1.2). The 

inhibitory region of proSAAS comprises 8-12 amino acid residues. The inhibitory 

region of proSAAS is located C-terminally and is completely conserved in humans, 

rats, and mice (Qian et al., 2000). This motif includes a critical lys-arg sequence, 

which determines the inhibitory effect of proSAAS by mimicking substrate 

characteristics. As shown by (Qian et al., 2000), mutation of lys and arg into 

alanine (ala) abolished the inhibition of PC1 activity by proSAAS. Moreover, the 

pro-region and C-terminal region of PC1 show amino acid sequences similar to the 

inhibitory motif of proSAAS and seem to have autoinhibitory properties (Jutras et 

al., 1997; Boudreault et al., 1998). 
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Figure 1.2 Maturation of mouse PC1  Post-translational processing of proPC1 is a multi-step 
procedure that starts in the endoplasmic reticulum. The enzymatically active form of 66 kDa PC1 is 
present in the trans-Golgi network and in secretory granules. In parallel to PC1 its endogenous 
inhibitor proSAAS is processed along the secretory pathway. Modified from Tanaka (2003) and Lee 
et al., (2004). 

 PC2 is also synthesized as an inactive precursor (proPC2) that undergoes 

autocatalytic processing (Fig. 1.3). This processing depends on the presence of 

the neuroendocrine granin 7B2. The 27 kDa precursor pro7B2 specifically binds to 

proPC2 (75 kDa) within the endoplasmic reticulum (Benjannet et al., 1995; Braks 

et al., 1996; Lamango et al., 1996). This complex is then transported to the trans-

Golgi network. Here, the 27 kDa pro7B2 is cleaved into an N-terminal domain of 

21 kDa and a C-terminal domain of 6 kDa by a serine endoprotease (Paquet et al., 

1994). (Martens et al., 1994), demonstrated that the 27 kDa pro7B2 is a potent 

inhibitor of PC2 while the processed 21 kDa form has no inhibitory capacity. 

However, like its precursor, the C-terminal peptide of 7B2 potently inhibits PC2 (Li 
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et al., 2003). The N-terminal 21 kDa form of 7B2 dissociates from proPC2; the 6 

kDa C-terminal domain remains bound to it. In the trans-Golgi network, proPC2 

undergoes an autocatalytic cleavage of the N-terminal pro-domain producing the 

active PC2 of 66 kDa, and the C-terminal domain of 7B2 dissociates from it 

(Lamango et al., 1996; Zhu et al., 1996; Muller et al., 1997; 1999). (Muller et 

al.,1997) demonstrated that rather than promoting proPC2 folding, 7B2 acts as a 

helper protein involved in proPC2 transport and is required in the proPC2 

activation process. Thus, the post-translational regulation of the POMC processing 

is not limited to the presence of PC1 and PC2 but is extended to additional 

regulatory factors such as proSAAS and 7B2. 

 

 

Figure 1.3 Activation mechanism of mouse PC2  Post-translational processing of proPC2 
involves the formation of a proPC2/pro7B2 complex within the endoplasmic reticulum, which is 
transported into the trans-Golgi network where pro7B2 is cleaved. The N-terminal part of 7B2 is 
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released from this complex while the C-terminal part remains associated. In parallel to the 
autocatalytic cleavage of the N-terminal pro-domain of PC2, the C-terminal part of 7B2 also 
dissociates. The enzymatically active form of 66 kDa is released in secretory granules at pH 5. 
Modified from Lehmann (2009). 

1.3 POMC and β-endorphin expression in immune cells 

 As mentioned above, POMC is also expressed and processed in several 

non-pituitary (non-neuroendocrine) tissues such as skin, hypothalamus, testis, 

thyroid gland, placenta, pancreas, gut, kidney, adrenal gland, and liver (Smith et 

al.,1989). POMC-related peptides such as ACTH and β-END were also identified 

in immune cells (e.g. splenic macrophages, peripheral blood lymphocytes) in the 

early 1980s (Smith et al., 1981; Lolait et al., 1984). Under the conditions of painful 

inflammation, immune cells release opioid peptides such as β-END (Busch-

Dienstfertig et al., 2012; Rittner et al., 2006), which can activate opioid receptors 

on peripheral sensory neurons, resulting in the attenuation of pain. 

1.3.1 Opioid peptide containing immune cells in a m odel of painful 

inflammation 

 Animal models that mimic clinical inflammatory pain use e.g. complete 

Freund's adjuvant (CFA), a suspension of oil and heat-inactivated mycobacteria 

(M. butyricum, M. tuberculosum), to induce an inflammation of peripheral tissue. A 

local subcutaneous unilateral application of CFA into the hind paw of rats induces 

nociceptive behaviour, such as reduced locomotor activity, avoids putting weight 

on the paw, lifting the affected limb from the ground, and permanent flexion of the 

knee joint, indicating spontaneous pain at rest (Stein et al., 1988). Nociceptive 

thresholds to thermal or mechanical stimuli are decreased when heat or pressure 

is applied (thermal and mechanical hyperalgesia), leading to the withdrawal of the 

paw. In parallel, peripheral mechanisms of intrinsic opioid antinociception become 

functionally active within such injured tissues (Stein et al., 2003). Intraplantar 

inoculation with CFA leads to the migration of circulating β-END-containing 

leukocytes to the inflamed tissue (Rittner et al., 2005). Concurrently, opioid 

receptors are upregulated on peripheral endings of sensory neurons (Przewlocki et 

al., 1992; Stein et al., 1996; Mousa et al., 2001). Upon stressful stimulation such 

as a cold water swim or surgery, leukocytes locally liberate β-END to elicit potent 

and clinically relevant opioid receptor-specific analgesia (Stein et al., 1990; 1993). 
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Further analysis determined that β-END is liberated from leukocytes in the 

presence of a variety of releasing stimuli such as CRH (Schafer et al., 1994; Cabot 

et al., 1997), chemokines (Rittner et al., 2006), and catecholamines (Binder et al., 

2004; Mousa et al., 2004). Together these studies suggest that immune cells 

contribute to the endogenous pain control in inflammation by opioid peptide 

release. 

1.3.2 Regulation of POMC expression in lymphocytes 

 As mentioned earlier, POMC-related peptides such as ACTH and β-END 

had already been identified in immune cells (e.g. splenic macrophages, peripheral 

blood lymphocytes) in the early 1980s (Smith et al.,1981; Lolait et al., 1984). 

Macrophages predominantly produced unacetylated, opioid-active β-END, while 

N-acetylated β-END was present in lower amounts as seen in the pituitary (Lolait 

et al., 1986; Westly et al., 1986). At the same time other studies revealed that the 

production of β-END in human peripheral leukocytes can be induced by CRH and 

suppressed by the glucocorticoid analogue dexamethasone (Smith et al., 1986), 

suggesting that the Pomc gene may be expressed and similarly controlled in 

leukocytes and pituitary cells. 

 The Pomc gene comprises three exons that are transcribed into full-length 

Pomc mRNA. Exons 2 and 3 give rise to the pre-propeptide. In neuroendocrine 

cells, the formation of the active peptides is accomplished by entering the 

regulated secretory pathway and involves extensive proteolytic cleavage as 

described above. However, the extensive analysis of several non-pituitary tissues 

demonstrated that these tissues predominantly express shorter Pomc mRNA 

transcripts than found in the pituitary (Bardin et al., 1987). These truncated Pomc 

transcripts comprising about 800 bp of exon 3 but lacking exon 2 were detected  

by several groups in naïve lymphocytes and other immune cell subsets (Lacaze-

Masmonteil et al., 1987; DeBold et al., 1988; Oates et al., 1988; Przewlocki et al., 

1992; van Woudenberg et al., 1993; Cabot et al., 1997; Lolait et al., 1986; Westly 

et al., 1986; Mechanick et al., 1992; Lyons et al.,1997). Therefore, the regulation of 

opioid gene expression and processing in immune cells has not been further 

studied in detail. 

 On the other hand, there is evidence that full-length POMC may be 

expressed in lymphocytes under stimulated and pathological conditions. In a case 
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report of a patient with ectopic ACTH syndrome, lymphocytes in thymic 

hyperplasia were the source of high ACTH production (Ohta et al., 2000). In 

another study, (Buzzetti et al., 1989) detected full-length POMC mRNA in a CD4-

positive, HIV-infected T lymphoma cell line. This Pomc gene expression was 

accompanied by higher ACTH levels in the lymphoma cells than detected in 

normal human peripheral blood mononuclear cells not expressing the full Pomc 

mRNA transcript. Moreover, lymphocytes were shown to express full-length Pomc 

mRNA after stimulation with mitogenic substances such as concanavalin A (Lyons 

et al., 1997) or after infection with pathogens such as the Newcastle disease virus 

(Westly et al., 1986). Lymphocytes were shown to express full-length Pomc mRNA 

after stimulation with IL-4 (Busch-Dienstfertig et al., 2012). Usually, the expression 

of full-length Pomc mRNA appears to be suppressed in mature, unstimulated 

leukocytes, but it can be induced under pathological conditions such as lymphoma 

formation (Buzzetti et al., 1989 and Ohta et al., 2000) or virus infection (Westly et 

al., 1986). Moreover, Pomc transcripts containing the signal sequence necessary 

for correct routing into the regulated secretory pathway are upregulated in 

lymphocytes from rats with painful paw inflammation (Sitte et al., 2007). These 

findings raised the question of whether the lymphocytic expression of Pomc mRNA 

and the processing of its translation products may be different in normal versus 

pathological states. The ultra-structural analysis of macrophages and lymphocytes 

in inflamed paw tissue revealed that β-END was located within vesicular structures 

(Mousa et al., 2004). These findings supported the view that immune cells are 

indeed capable of expressing Pomc derivates containing the signal peptide, an 

essential missing link in the pathway leading to regulated β-END secretion. 

 The difficulties in detecting Pomc mRNA in naïve immune cells as 

described above suggest a repressive mechanism, e.g. methylation of the DNA, 

which is an epigenetic signaling tool to lock genes in the ‘off’ position. Consistently, 

methylation of the Pomc gene was shown to be absent in ACTH-secreting pituitary 

corticotroph cells but strong in non-ACTH-secreting human lymphocytes (Newell-

Price et al., 2001). Whether the methylation status of the Pomc gene defines its 

expression in rat lymphocytes has not been previously analyzed. Another 

possibility is that Pomc mRNA levels in lymphocytes are repressed by rapid mRNA 

degradation through miRNA targeting or by controlling the translation of other 

factors involved in Pomc gene expression (e.g. transcription factors). In the 
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anterior pituitary of mice the conditional knock-out of Dicer1 resulted in the loss of 

mature miRNAs without affecting Pomc mRNA levels (Righi et al., 2010). 

However, since miRNA expression in lymphocytes differs from that in the pituitary, 

a relevance of miRNA in those cells needs to be determined. 

 At present, the repressive mechanisms of Pomc expression in lymphocytes 

have not been investigated in any detail. The following two paragraphs are 

providing background information on DNA methylation, histone acetylation, and 

miRNA which may be of relevance for the negative regulation of Pomc expression. 

1.3.2.1 Transcriptional repression via DNA methylat ion and histone 

deacetylation 

 DNA methylation at cytosine residues is an important epigenetic 

mechanism that determines gene expression patterns and the stability of 

chromatin. DNA methylation patterns are inherited and tightly correlated with the 

chromatin structure. This essential mechanism regulates cellular differentiation 

during development and maintains the cellular phenotype (Doehring et al., 2011). 

The maintenance of DNA methylation is ensured by DNA (cytosine-5-)-

methyltransferase 1 (DNMT1), which predominantly methylates hemi-methylated 

DNA during replication of proliferating cells. If DNMT1 function is impaired, the 

wrong DNA methylation pattern can easily result in tumours and cancer. Other 

DNA methyltransferases (DNMT3A and DNMT3B) implement the so-called de 

novo methylation of previously unmethylated DNA regions (e.g. during cell 

differentiation). In general, DNA methylation is plastic and can be reversed by DNA 

demethylases. The consequence of DNA methylation is the inhibition of gene 

transcription by blocking transcription factors from binding to the gene and by 

attracting histone deacetylases and other chromatin-remodelling proteins that 

modify histones, resulting in inactive chromatin. Conclusively, active regions of the 

chromatin that enable gene expression are associated with hypomethylated DNA, 

whereas hypermethylated DNA is packaged in inactive chromatin. Histone protein 

modifications either impair the docking of transcription factors onto DNA via 

deacetylation or open the area of DNA to transcription factors through acetylation. 

Histone deacetylation is catalysed via histone deacetylase (HDAC) and results in 

the acetyl group being transferred to coenzyme A. Histone acetylation involves the 

addition of an acetyl group (acetyl–coenzyme A) on lys residues in the N-terminal 
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tail of the protein and on the surface of the nucleosome core, which is catalysed by 

the enzyme histone acetyltransferase (HAT). Acetylated histones and 

nucleosomes represent a type of epigenetic tag within chromatin and result in 

greater levels of gene transcription (Renthal et al., 2008). Histone acetylation is 

therefore a global marker of gene activity. Many transcription factors are regulated 

via acetylation and are specifically targeted by HDACs (Spange et al., 2009). The 

nuclear factor (NF) κB family of transcription factors in particular is dependent 

upon acetylation for full transcriptional activity, whereas deacetylation inhibits the 

transcription of NF-κB target genes. A key regulator of N-methyl-d-aspartate 

receptor (NMDAR) activity, metabotropic glutamate 2 (mGlu2) receptors, is 

transcriptionally regulated by the NF-κB pathway. Activation of (metabotropic 

glutamate receptor 2) mGlu2 receptors causes analgesia in inflammatory and 

neuropathic pain by decreasing NMDAR activity and thereby downregulating 

neurotransmitter release from primary afferent fibres in the dorsal horn of the 

spinal cord (Jones et al., 2005; Simmons et al., 2002; Yang et al., 2002; 2003). 

Selective HDAC inhibitors have been shown to upregulate the expression of 

mGlu2 receptors in the dorsal root ganglion and spinal cord in a mouse model of 

inflammatory pain, thereby causing analgesia (Chiechio et al., 2009). These 

studies suggest that HDACs may be epigenetic targets in the treatment of pain 

(Lotsch et al., 2009). The potential contributory role of epigenetic changes in the 

development of diverse pain phenotypes is particularly intriguing because these 

mechanisms have also been associated with high levels of stress (Wolkowitz et 

al., 2008), depression and aging (Huzen et al., 2008), major factors associated 

with increased pain sensitivity. For instance HDACs, which silence certain genes, 

were found to play a role in pain-signal transmission in the spinal cord (Bai et al., 

2010). Specifically, class IIa HDACs were upregulated. 

1.3.2.2 Post-transcriptional repression by miRNA 

 MiRNAs are a family of endogenously derived, non-coding RNAs that 

epigenetically regulate gene expression (He et al., 2004). Rosalind Lee et al., 

1993) discovered that the expression of the LIN-14 protein is regulated by a small 

RNA derived from the lin-4 gene in Caenorhabditis elegans. Meanwhile, miRNA 

expression has been studied in several species and cell types, and it is becoming 

apparent that they are important post-transcriptional gene regulators. Mature 
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miRNAs are formed from their immature precursors (Kim et al., 2009). miRNA 

biogenesis is therefore realized by a protein machinery that involves the class III 

endoribonuclease Dicer, which is well conserved among eukaryotes. The 

biogenesis of miRNA begins with its transcription from genomic DNA containing 

the miRNA sequences via RNA polymerase II. The transcription product was 

termed pri-miRNA, which is further processed into pre-miRNA by a nuclear protein 

complex called the microprocessor complex. Pre-miRNAs are transported from the 

nucleus to the cytoplasm by exportin-5. In the cytoplasm, the pre-miRNAs are 

loaded onto a protein complex composed of Dicer, argonaute-2, the TAR RNA 

binding protein (TRBP), and other proteins known as the RNA-induced silencing 

complex (RISC) (Koscianska et al., 2011). RISC-loaded pre-miRNAs are cleaved 

to their mature form (approximately 22 nucleotides) by Dicer. The mature miRNAs 

are capable of binding their cognate mRNA target through miRNA-mRNA 

interactions, while they are still associated with the RISC. The miRNA-mRNA 

interactions are established through complementary base pairing between a 

sequence on the miRNA called the seed region and the 3’ untranslated region on 

the target mRNA, leading to translational inhibition and/or mRNA degradation (Krol 

et al., 2010). However, miRNAs do not target specific mRNAs and do not have to 

perfectly match the sequence of their targets; Therefore, they can coordinate the 

expression of large sets of genes (Bartel et al., 2009). It is estimated that up to 

60% of the human genome may be regulated by miRNAs (Friedman et al., 2009). 

1.3.2.3 Proteolytic processing of POMC in lymphocyt es 

 POMC alone or co-localized with PC1, PC2, and CPE was detected in 

circulating leukocytes, particularly under conditions of painful inflammation in 

animals (Smith et al., 2003; Mousa et al., 2004). To date there are only a few 

studies that have investigated the presence of prohormone convertases 

specifically in lymphocytes. (Lansac et al., 2006), observed PC1 and PC2 mRNA 

expression in the spleen of rats using in situ hybridization histochemistry, 

demonstrated that macrophages and lymphocytes contained these enzymes. 

Basal expression of PC1 mRNA was seen in the macrophage-rich red 

pulp/marginal zone areas of the spleen. Moreover, PC1 and PC2 mRNA 

expression was inducible within germinal centres (B lymphocytes) after in vivo lipo-

polysaccharide-treatment. These findings point towards a differential expression of 
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the two proteolytic enzymes in different types of immune cells. (Mousa et al., 

2004), further analysed the expression of PC1, PC2, 7B2, and CPE in blood 

leukocytes at the protein level using western blotting and immunohistochemistry. 

In normal rats, the proteolytic enzymes were detectable in granulocytes and 

monocytes/macrophages but not in circulating lymphocytes. From previous 

studies, we have seen that after induction of a CFA-inflammation in the paw, the 

amount of PC1, PC2, POMC, and β-END increased in lysates of blood leukocytes, 

and proteolytic enzymes were then detectable in granulocytes, 

monocytes/macrophages, and in circulating lymphocytes. These findings raised 

the questions of whether the cells of lymph nodes draining paw tissue also express 

enzymatically active PC1 and PC2 and whether these enzymes are upregulated 

and involved in the processing of POMC under conditions of painful inflammation. 

1.4 Antigen- and collagen-induced arthritis (ACIA) models 

 Chronic disorders accompanied by inflammation are the most common 

diseases of aging and represent the greatest health threat (Tabas et al., 2013). 

Such disorders include rheumatoid arthritis (RA); Chronic joint inflammation and 

pain are the two main symptoms in patients with RA and are associated with 

significant morbidity (Firestein et al., 2005). RA is a chronic autoimmune disease 

characterized by infiltration of leukocytes into the synovial and periarticular tissues 

(Wipke et al., 2001; Liew et al., 2005; Coelho et al., 2008), which results in the 

destruction of cartilage and bone (Firestein et al., 2003). Although significant 

progress has been made regarding anti-inflammatory therapies, chronic pain is still 

an unresolved clinical problem (Perrot et al., 2013). Inflammatory mediators are 

released into the inflamed tissue in response to inflammatory stimuli that in turn 

release a cascade of cytokines such as tumour necrosis factor (TNF)-α and IL-1β 

that further drive the inflammatory reaction (Cunha et al., 2005; Verri et al., 2006). 

Therefore, cytokines such as TNF-α and IL-1β are interesting therapeutic targets 

to treat RA patients (Scott et al., 2006). Problems associated with anti-cytokine 

therapies are expensive and the need to be administered via the parenteral route. 

Additionally, many patients fail to respond to TNF-α (Moreland et al., 1997) or IL-

1β (Jiang et al., 2000) blockade. Standard analgesic treatments such as 

nonsteroidal anti-inflammatory drugs or steroids often exhibit detrimental side 

effects in the long-term use (e.g. gastrointestinal ulcers, bleeding, myocardial 
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infarction, stroke, infections) (Huscher et al., 2009; Trelle et al., 2011). Thus, there 

is an urgent need for alternative therapeutic approaches. Since opioids can 

interfere at different stages with the cascade of pro-inflammatory events in 

peripheral tissues (Stein et al., 2011; 2013), we set out to investigate endogenous 

opioids in an animal model of chronic arthritis. Antigen-collagen-induced arthritis 

(ACIA) is a new mouse model representing key features of RA such as chronicity, 

cartilage and bone erosion, and prominent autoimmune responses against 

autologous collagen II, vimentin, and ACPA (Baddack et al., 2013).  Immune cells 

infiltrating inflamed tissue can potently reduce pain by liberating opioid peptides 

such as enkephalins, endorphins, and dynorphin (Stein et al., 2011; 2013; Rittner 

et al., 2005). Such mechanisms have been predominantly investigated in animals 

and humans with acute inflammatory injuries as already mentioned above, but 

their relevance in chronic inflammation is unknown. In acute stages of ACIA, the 

cellular infiltrate is mainly composed of neutrophils, macrophages, and 

mononuclear cells (lymphocytes), while mononuclear and fibroblast-like cells are 

predominant at chronic stages (Baddack et al., 2013). This raises the question of 

whether opioid peptides are also present under chronic inflammatory conditions, 

laying the basis for opioid-mediated antinociception. 

1.5 Objectives 

 POMC processing occurs in peripheral tissues including immune cells. One 

of the end products is the opioid peptide β-END. Following its release, β-END can 

activate opioid receptors on peripheral sensory neurons in order to inhibit pain 

within inflamed tissue. However, our knowledge of the regulation of POMC 

expression and its processing in immune cells such as lymphocytes is poor to 

date. In order to provide insight into the regulatory mechanism of POMC 

expression as well as into the relevance of PC1 and PC2 for the formation of β-

endorphin in lymphocytes, the present study focused on the following specific 

aspects: 

1) Transcriptional regulation of POMC in lymphocytes. 

2) Repression and expression of POMC in native lymphocytes. 

3) POMC Processing enzymes in lymphocytes. 

4) Endorphin production in lymphocytes. 

5) Opioid peptides in mice with chronic arthritis. 



                                                                                                                             Introduction 

19 
 

 Pomc gene transcription in lymphocytes can be regulated by various 

mechanisms such as methylation, acetylation, and miRNA. Our aim was to see the 

involvement of these mechanisms in the regulation of Pomc gene expression. 

Methylation status would be investigated using bisulfite sequencing, if this strategy 

does not yield a conclusive result, we would investigate using a DNA-

methyltransferase inhibitor to see if it effects Pomc gene expression. To address 

the question of acetylation we would use a histone deacetylation inhibitor to study 

whether Pomc is deacetylated. To study the involvement of miRNA in Pomc 

repression, we intended to knock down Dicer using siRNA, as Dicer is very 

important for the maturation of miRNA. Therefore in the absence of Dicer, there 

would be no miRNA so that we could see how the absence of miRNA would have 

an effect on Pomc gene expression. 

 Pomc repression in lymphocytes was switched off upon proper stimulation 

in vivo by CFA-induced inflammation (after 2 h) and by in vitro stimulation with IL-4 

(2 h exposure). The present aim of the study was to see which subsets of 

lymphocytes would express Pomc. It is known that Pomc in lymphocytes is 

expressed upon IL-4 stimulation via JAk/STAT pathway. Our aim is to study which 

pathway is involved in the subsets of lymphocytes. Lymphocytes would be 

separated into subsets using MACS separation columns, and supernatant transfer 

experiments would be performed to see which subsets are responsible for 

expression of Pomc. If a specific subset is responsible for pomc expression, we 

would investigate the signalling pathway involved. Then using cytokine array we 

would look for the factor that stimulates the expression of Pomc. 

 In the pituitary, POMC is proteolytically cleaved by PC1, PC2, and CPE into 

β-END. Our aim was to investigate whether the same proteolytic enzymes are 

involved in the cleavage of POMC in lymphocytes. To answer this question we 

would study the expression of PC1, PC2, and CPE in both in vitro (IL-4) and in 

vivo (CFA) using PCR and immunofluorescence or western blot. Then we would 

measure β-END levels in both the in vitro (IL-4) and in vivo (CFA) studies using 

radioimmunoassay (RIA) and immunofluorescence. We would then study the 

functionality of proteolytic enzymes via knockdown using siRNA of the specific 

enzymes and also measure the β-END levels to see if they are affected by 

knocking down a particular processing enzyme. 
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 To extend our studies to chronic inflammation, the presence of endogenous 

opioid peptides would be investigated in a new mouse model of rheumatoid 

arthritis (ACIA-model). We would measure Met-enkephalin and β-END in the 

draining LNs and at the site of primary inflammation (joint) using 

immunohistochemistry, RIA and EIA measurements. 
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2 Materials and Methods  

2.1 Materials 

2.1.1 Enzymes 

Table 2.1 List of enzymes 

Name Company 

50× Advantage 2 polymerase mix Clontech Laboratories 

Avian myeloblastosis virus reverse transcriptase (AMV) Roche  

DNAse QIAGEN 

RNAse inhibitor Roche  

Fast start DNA master plus SYBR green 1 Roche 

Thermus aquaticus (Taq) polymerase Roche  

2.1.2 Radioactively labelled peptides 

Table 2.2 List of radioactively labelled peptides 

Name Company  

(125 I)rat β-endorphin Peninsula Laboratories 

(125 I) Met-enkephalin Peninsula Laboratories 

2.1.3 Antibodies 

Table 2.3 List of antibodies 

Antibody Application Company 

Anti-mouse CD8a (LY2.2) 
For in vivo 

depletion 
Leinco Technologies 

Anti-rabbit IgG, peroxidase-conjugated IHC Vector Laboratories 

Donkey anti-mouse IgG, FITC IF Vector Laboratories 

Rat IgG2b Isotype 

control for in  
Leinco Technologies 
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vivo depletion 

Goat anti-rabbit IgG, biotinylated IHC Vector Laboratories 

Goat anti-rabbit, Texas red-conjugated IF Vector Laboratories 

Mouse 3E7 (pan opioid) FC Gramsch Laboratories 

Mouse anti-rat CD3 (G4.18) PE/FITC  FC Pharmingen 

Mouse anti-rat CD4 (Ox-35) PE/FITC  FC Pharmingen 

Mouse anti-rat CD4 microbeads MACS Miltenyi Biotec 

Mouse anti-rat CD45 microbeads MACS Miltenyi Biotec 

Mouse anti-rat CD45RA  microbeads MACS Miltenyi Biotec 

Mouse anti-rat CD8 microbeads  MACS Miltenyi Biotec 

Mouse anti-rat MHC class II MACS Miltenyi Biotec 

Rabbit anti-rat beta-endorphin RIA Peninsula Laboratories 

Rabbit anti-rat beta-endorphin IgG  IF, IHC Peninsula Laboratories 

Rabbit anti-rat met-enkephalin IgG IF, IHC Peninsula Laboratories 

Prohormone convertase 1/3 IF Donald Steiner, Chicago 

Prohormone convertase  2 IF Donald Steiner, Chicago 

Dicer IF Abcam 

ProSAAS IF Abcam 

 

Abbreviations used: IF = immunofluorescence, IHC = immunohistochemistry, FITC = fluorescein 

isothiocyanate conjugate, FC = flow cytometry, MACS = magnetic cell separation, RIA = 

radioimmunoassay. 

2.1.4 siRNA 

Table 2.4 List of siRNA 

siRNA name Application  Company  

Control siRNA sc-37007 Electroporation Santa Cruz  
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Dicer(rat) sc-270275 Electroporation Santa Cruz 

PCSK1 (rat) sc-270276 Electroporation Santa Cruz 

PC2 (rat) sc-270277 Electroporation Santa Cruz 

2.1.5 Chemicals, kits 

Table 2.5 List of chemicals and kits 

Name Company 

β-mercaptoethanol C. Roth GmbH 

Agarose LE Roche  

Ampicillin E. Merck AG 

Bovine serum albumin (BSA) Sigma-Aldrich 

Bovine collagen type II MD Bioproducts, Zurich 

Bordetella pertussis toxin (PTX) Calbiochem, La Jolla, CA 

Bradford reagent Biorad 

Bromphenol blue Sigma-Aldrich 

Collagenase II Sigma-Aldrich 

Complete Freund’s adjuvant (CFA) Calbiochem 

Concanavalin A (con A) Sigma-Aldrich 

Cytokine array Ray Bio 

Deoxy-nucleotide triphosphate mix (dNTP) Roche  

Dextran 500 Amersham Pharmacia Biotech 

Dithiothreitol (DTT) Sigma-Aldrich 

Donkey serum Jacksons Immuno Research 

Laboratories 

DNA molecular weight markers (100 bp) Roche 
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Ethanol (99%) C. Roth GmbH 

Ethidium bromide Sigma-Aldrich 

EZ DNA methylation kit Zymo research 

Fast Start DNA Master SYBR Green I Kit Roche 

Fetal bovine serum (FBS) Biochrom AG 

Glycerol Sigma-Aldrich 

Glycine Sigma-Aldrich 

Goat serum Vector Laboratories 

Horse serum Biochrom 

Hyaluronidase Sigma-Aldrich 

Imidazole Sigma-Aldrich 

Interleukin (IL-2 rat, recombinant) R & D Systems 

Interleukin (IL-4 rat, recombinant) R & D Systems  

Interleukin (IL-6 rat, recombinant) R & D Systems 

Interleukin (IL-6 Rα rat, recombinant) R & D Systems 

Interleukin (IL-10 rat, recombinant) R & D Systems 

Isofluran Curamed ((1-Chlor-2,2,2-trifluorethyl) difluormethylether) Rhodia 

JAK II inhibitor Calbiochem 

Leptin Sigma-Aldrich 

Leukaemia inhibitory factor (LIF) Sigma-Aldrich 

mBSA (methylated bovine serum albumin) Sigma-Aldrich 

Methanol C. Roth GmbH 

Normal rabbit IgG Sigma-Aldrich 

pan-JAK inhibitor Calbiochem 
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Paraformaldehyde (PFA) Sigma-Aldrich 

Penicillin/streptomycin (10,000 U / 10,000 µg/ml) Biochrom 

Phosphate buffered saline (PBS, sterile, 0.1 M, pH 7.4) GIBCO Invitrogen Corporation 

Primer dT for cDNA synthesis (oligo dT) Roche 

Pyridon 6 Calbiochem 

Qiaquick gel extraction kit QIAGEN 

rat-beta-endorphin kit Peninsula Laboratories 

RB108 Calbiochem 

RNAse-free DNAse (1500 U/µl) Macherey- Nagel 

Nucleospin RNA II Macherey- Nagel 

RPMI-1640 medium (+Glutamax I) GIBCO Invitrogen Corporation 

Saponin from Quillaja bark Sigma-Aldrich 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich 

STAT-5 inhibitor Calbiochem 

Tissue-Tek compound OCT Miles 

Trishydroxymethylaminomethane (Tris) Sigma-Aldrich 

Triton X-100 (t-Octylphenoxy-poly-ethoxyethanol) Sigma-Aldrich 

Trypan blue stain (0.4%) GIBCO Invitrogen Corporation 

Trypsin/EDTA GIBCO Invitrogen Corporation 

Xylene cyanole FF Sigma-Aldrich 
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2.1.6 Oligodeoxynucleotides 

Oligonucleotides purchased from TIBMOLBIOL. Primer names, sequences, base pairs, melting 

temperature (Tm) and primer type are given. Names indicate the target gene.  

Table 2.6 List of oligodeoxynucleotide sequences  

Name Sequence (5`- to -3`) bp Tm (°C) Primer 
type 

POMC2ex2se TGGCCCTCCTGCTTCAGAC 19 63.8 Se 

3POMCex3as CTCACTGGCCCTTCTTGTGC 20 63.2 As 

rat-RPL19b-as TGCTCCATGAGAATCCGCTTG 21 65.8 As 

ratRPL19b-se AATCGCCAATGCCAACTCTCG 21 66.7 Se 

Rat GAPDH-se ACAGTCAAGGCTGAAAATGG 20 54.5 Se 

Rat GAPDH as CATGAGCCCTTCTACAATGC 20 54.5 As 

PC2 primer se GAGAGGAGACCTGAACATCA 20 50.4 Se 

PC2 primer as GCAAGCCCTTCTGTGGTGCA 20 63.5 As 

7B2 se AATCCAGCATTCGCTTATAG 20 50.7 Se 

7B2 as TAGGAATATTGTCGCCAGTC 20 50.9 As 

PC1/3 se AATCCTGTAGGCACCTGGAC 20 55.8 Se 

PC1/3 as GGAGTTTTTGGGTACCAGGA 20 55.6 As 

PC2 FW (new) GGGCCCACAGACAACGGGA 20 66 Se 

PC2 RV (new) GCCGTCGTTGATGGCCGAGT 20 68 As 

Rat Dicer FW GTGGCGCTGAGACCGCAACT 20 65.3 Se 

Rat Dicer RV AGGGTCCCAGGACGACCAGC 20 65.0 As 

Rat proSAAS FW GGCCGGGGGCGTAGGCCTTT 20 71.1 Se 

Rat proSAAS RV CGCCAGCTCCTGCACCGCAC 20 70.9 As 

Rat Ctsl1 FW 

(cathepsin L) 

TGTGGCTAACGACACAGGGT 20 61.4 Se 
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Rat Ctsl1 RV 

(cathepsin L) 

GCAGTGGTTGTTCCGGTCTT 20 60.8 As 

Ap-B (RNPEP) FW 

(aminopeptidase B) 

GGCCATTGGAGATCTGGCTT 20 60.11 Se 

Ap-B (RNPEP) RV 

(aminopeptidase B) 

TTGGCATTGGTGACCAGGTT 20 60.11 As 

IL-10 F1 TGGCTCAGCACTGCTATGTT 20 59.67 Se 

IL-10 R1 (rat) GGCTTGGCAACCCAAGTAAC 20 59.68 As 

2.1.7 Other materials 

Table 2.7 List of instruments used 

Instruments Company  

Cell counting chamber Glaswarenfabrik Karl Hecht 

Cell scraper Sigma-Aldrich 

Cell strainer (70 µm mesh) BD Biosciences Discovery Labware 

Cryostat (Microm HM560) MICROM 

Electrophoresis apparatus (Power Pac 300) Bio-Rad Laboratories 

Flow cytometry apparatus (FACS Calibur) Becton-Dickinson 

Fluorescence microscope Carl Zeiss Mikroskope 

Gamma-Counter, Wallac Wizard 1470 Wallac 

Heraeus incubator Kendro 

Kryo tubes Nunc  

Laminar flow (Hera Safe) Kendro 

Microscope (Axiovert 25) Carl Zeiss Mikroskope 

Photometer (Gene Quant II RNA/DNA calculator) Pharmacia Biotech 

pH meter Mettler Toledo 

Separation columns (mean size) Miltenyi Biotec 
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Separator (VarioMACS™) Miltenyi Biotec 

Sterile filters Millipore  

Real time PCR Eppendorf 

Thermocycler (Mastercycler personal) Eppendorf 

Tubes (15 and 50 ml) Falcon 

Twin tech real time PCR plates 96 well Eppendorf 

Ultrapure Water Systems (Direct-Q™ 5) Millipore  

UV-Light (Macro Vue UV=25) Hoefer 

2.2 Methods 

2.2.1 Animals and animal housing 

 Experiments were carried out using male WISTAR rats (Janvier, France), 

(200-250)g and female Balb/c mice (Janvier, France 10–14 weeks of age). They 

were housed in cages lined with ground corncob bedding. Standard laboratory 

rodent chow and tap water were available ad libitum. Room temperature was 

maintained at 22°C and a relative humidity between 40% and 60% was 

maintained. A 12/12 hr (7 a.m. / 7 p.m.) light/dark cycle was used. Experiments 

were approved by the animal care committee of the State of Berlin and strictly 

followed the guidelines of the International Association for the Study of Pain 

(Zimmermann 1983). 

2.2.2 Animal models 

2.2.2.1 CFA-induced inflammation 

Rats received an intraplantar (i.pl.) injection of 0.15 ml complete Freund’s 

adjuvant (CFA) into the right hind paw under brief isoflurane anaesthesia. This 

inflammatory model is routinely used in our own as well as in other research 

groups (Stein et al., 1988; Barber et al., 1992). From 2-96 hours after CFA 

injection, there is a swelling of the paw tissue, hyperaemia and hyperalgesia 

(animals showing an increased sensitivity to pain). During the observation period 
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the inflammation remained confined to the right paw and no significant changes 

were observed in feeding behaviour, body weight, body temperature, and general 

activity range compared to untreated animals (Stein et al., 1988). Control animals 

remained untreated. 

2.2.3 Rat cell and tissue preparation 

Using an overdose of inhalation anaesthesia (isoflurane), rats were killed, 

then decapitated and then the skull and brain overlying the pituitary were 

dissected. Care was taken to cut the pituitary stalk, and the pituitary with the 

remaining stalk were then dissected free of the sella turcica on the base of the 

skull. The pituitary gland was taken and immediately stored at –80°C; cDNA was 

prepared as described in (2.3.10.3). Popliteal lymph nodes (LNs) draining the 

CFA-treated rat hind paw or in case of untreated animals, popliteal and inguinal 

LNs from both sides were dissected. Embedded fat tissue around the LN was 

thoroughly removed using scalpels. The tissue was homogenized using sterile 

plastic pestles and blades. Cells were dissociated from homogenates using 70 µm 

and 40 µm mesh cell strainers and suspended in sterile-filtered 1x phosphate 

buffered saline (PBS) or RPMI-1640 medium. In parallel to cell counting, the cell 

viability was examined via the trypan blue exclusion method using Fuchs-

Rosenthal cell counting chambers. Finally, cell suspensions were used for various 

experimental procedures such as magnetic cell sorting (MACS), flow cytometry, 

immunohistochemistry, immunofluorescence, electroporation, RNA-isolation, ex 

vivo stimulation and radioimmunoassay (RIA) or the cells were pelleted for storage 

at –20°C for subsequent RIA or PCR analysis. 

2.2.4 Magnetic cell sorting (MACS) 

Freshly isolated rat and mouse cells as described in (2.3.3.) were centrifuged 

for 10 min at 450 × g at room temperature and then resuspended in 1 ml of RPMI 

medium-1640 medium (+Glutamax I). Then 20 µl/107 cells of (1) anti-rat CD8, (2) 

anti-rat CD45RA, (3) anti-rat CD4, (4) anti-mouse CD45, or (5) anti-rat MHC class 

II (OX6) microbeads were added to isolate cell subsets from the cell suspensions. 

Samples were incubated for 15 min at 6 °C sitting on a slow rotor socket. 

Thereafter, cells were washed twice in RPMI medium to remove unbound beads. 
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Labelled cell suspensions were loaded onto separation columns placed in a 

magnetic field according to the manufacturers' instructions. Unlabelled cells 

passing the magnetic field were collected as negative fractions (e.g. CD8-, 

CD45RA- etc.). To collect the labelled cells, the columns were removed from the 

magnetic field and rinsed with RPMI medium under high pressure. The labelled 

cells were collected as positive fractions (e.g. CD8+ or CD45RA+). Fractions were 

then centrifuged for 5 min at 4 °C and 350 × g. Supernatants were removed and 

cell pellets were resuspended in PBS for cell counting. Separated cells were 

subjected to release or cell stimulation experiments or they were used for 

gene/protein expression analysis (PCR, RIA, immunohistochemistry). 

2.2.5 Rat LN cell experiments 

2.2.5.1 Stimulation of total LN cells 

Unseparated LN cells (1 - 2 x 107 cells/well) were loaded on 6-well plates and 

serum-free RPMI-1640 medium supplemented with 1% penicillin/streptomycin was 

added to a final volume of 3 ml/well. IL-2 (20 ng/ml), IL-4 (10 ng/ml), IL-5 (25 

ng/ml), IL-6 (10 ng/ml), IL6-Rα (100 ng/ml), IL-10 (50 ng/ml), Leptin (10 ng/ml), 

and leukaemia inhibitory factor (LIF, 10 ng/ml) and/or the mitogen concanavalin A 

(ConA, 1 µg/ml) were added to the culture medium. Cells were subsequently 

incubated for 2 - 24 h at 37°C and 5% CO2. Control cells were incubated without 

stimulating agent. 

2.2.5.1.1 Treatment with methyltransferase and hist one deacetylase 

inhibitors 

A DNA methyltransferase inhibitor was used to study the effect of methylation 

on POMC  gene expression, based on (Brueckner et al., 2005).  2-(1,3-Dioxo-1,3-

dihydro-2H-isoindol-2-yl)-3-(1H-indol-3-yl)propionic acid (RG108) is a small 

molecule that effectively blocked DNA methyltransferases in vitro in human cancer 

cell lines (B cells: NALM-6, colon: HCT116). We supplemented media with 10% 

fetal bovine serum and RG108 to a final concentration of 10 µM, and primary 

naïve LN-derived cells were harvested after 7, 10, and 15 days followed by RNA 

isolation, cDNA synthesis and qRT-PCR analysis for POMC gene expression. The 

serum-containing medium and RG108 were refreshed every 5 days. 
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The histone deacetylase inhibitor trichostatin A interferes with deacetylation and 

produces an accumulation of acetylated histones, which is expected to enhance 

transcription. A final concentration of 1 µM trichostatin A was applied for 24 to 120 

h followed by RNA isolation, cDNA synthesis and qRT-PCR analysis for Pomc 

gene expression. 

2.2.5.2 Stimulation of LN cell subsets and T cell s upernatant transfer 

experiments 

Magnetically separated T and B cells (1 - 2 x 107 cells/well) were loaded onto 

different 6-well plates and serum-free RPMI-1640 medium supplemented with 1% 

penicillin/streptomycin was added to a final volume of 3 ml/well. Different cytokines 

and/or inhibitors were added to the culture medium RPMI. 

2.2.5.2.1 Cytokine stimulation and inhibitor treatm ent of lymphocytes 

Naïve lymphocytes were incubated with microbeads (CD45RA, MHC class II 

from Miltenyi Biotech) and separated into T and B cells using MACS separation 

columns. B cells were unstimulated; T cells were pre-treated with cell-permeable 

small molecule inhibitors (Calbiochem, EMD Chemicals Inc., Darmstadt, Germany) 

prior to the addition of IL-4. Pyridon 6 (a pan-JAK inhibitor) and STAT-5 inhibitor 

were added at concentrations of  0.3, 0.6 and 1 µM for 30 min. 2 h after the 

addition of IL-4 (10 ng/ml), the supernatants from T cells were collected and 

transferred to untouched B cells. After B cell stimulation for 2 h at 37 °C, cells were 

collected on ice, centrifuged and pellets were stored at −80 °C. (Fig. 2.1) depicts a 

scheme of the experimental procedure. 

 

Figure 2.1  Primary naïve T and B cells were separated from dissociated LN cells using anti-

CD45RA microbeads and MACS columns. T cells were pre-treated for 30 min with/without 

inhibitors prior to the addition of IL-4. Controls were left untreated. After 2 h of IL-4 stimulation, the 
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supernatant from T cells was collected and transferred to untouched B cells. B cells were exposed 

to the T cell supernatants for 2h.  

In a second series of experiments, B cells were pre-treated with cell-

permeable small molecule inhibitors (Calbiochem, EMD Chemicals Inc., 

Darmstadt, Germany). Pyridon 6 and STAT-5 inhibitor were added at final 

concentrations of 0.3, 0.6, and 1 µM each and incubated for 30 min at 37 °C. 

Meanwhile, T cells were stimulated with IL-4 for 2h, and then the supernatant from 

the T cells was collected and transferred to pre-treated B cells. After 2 h of B cell 

stimulation at 37 °C, cells were collected on ice, centrifuged and pellets were 

stored at −80°C. (Fig. 2.2) depicts a scheme of the experimental procedure. 

 

Figure 2.2  Primary naïve T and B cells were separated from dissociated LN cells using anti-

CD45RA microbeads and MACS columns. B cells were pre-treated for 30 min with inhibitors, 

controls were left untouched. T cells were stimulated with IL-4 but not with inhibitors; After 2 h the 

supernatant was transferred to the pre-treated B cells. B cells were exposed to the T cell 

supernatant for 2 h. 

2.2.5.3 Electroporation of rat LN cells for siRNA d elivery 

Lymphocytes were isolated from rat LNs as described in (2.3.3), and vital 

cells were treated with hypotonic solution. We chose to deliver siRNA using two 

different electrical devices: one system was developed by a research group at the 

Charité Campus Benjamin Franklin (Thorsten Stroh of the AG Siegmund); the 

other is a commercially available Multiporator system from Eppendorf. The AG 

Siegmund setup can produce high voltage/low duration and low voltage/long 

duration pulses, which can be used as single pulses or can be combined as 

double pulses. The application of a double pulse (1st pulse: 400-500 volts for 100 

microseconds, 2nd pulse: 200 volts for 10 milliseconds) delivered a FITC-tagged 

control siRNA (BLOCKiT, Invitrogen) most efficiently after 24 to 48 h (75% uptake, 
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approx. 50% viability) as monitored using flow cytometry analysis with the help of 

Dr. Rainer Glauben (AG Siegmund, Department of Internal Medicine with 

Gastroenterology and Nephrology, Charité Universitätsmedizin Berlin, Campus 

Benjamin Franklin). The cell number was 2-3 million per sample. The pulse profile 

of the Eppendorf Multiporator does not offer a similar double pulse condition. This 

system instead runs a profile of an exponential voltage drop every 5 microseconds 

(soft pulse technology) in combination with a hypoosmolar electroporation buffer. A 

starting pulse of 600 volt and a time constant of 25 microseconds produced similar 

uptake and viability rates to those obtained with the AG Siegmund setup. The 

electroporated cells were suspended in a medium containing penicillin, 

streptavidin, and FBS (fetal bovine serum) and incubated for different time periods 

ranging from 1 to 7 days. The cells were spun down, and the pellet was used for 

either real-time PCR or western blot. When used for real-time PCR, the samples 

were prepared as described in section (2.2.10) to analyse the mRNA expression. 

2.2.6 Preparation of knee joint cells from ACIA mic e and release experiments 

The knees that had received the intraarticular (i.a.) mBSA-injections were 

dissected; the knee capsule was cut into halves. The knees were digested in 3 ml 

RPMI-1640 medium containing 9 mg hyaluronidase and 3 mg collagenase II per 

ml for 45 min at room temperature. The soft tissue surrounding the bones was 

thoroughly removed and ground. The homogenate was transferred into new tubes 

via 70 micron and later through 40 micron sieves and rinsed with enzyme-free 

medium. After spinning for 10 min at 450 x g at room temperature, the supernatant 

was discarded and the cells were resuspended in 1 ml culture medium and 

incubated with 25 µl anti-mouse CD45 micro beads for 15 min at 4 ºC in a rotor. 

Samples were spun down again at 2,000 rpm for 10 min at 4 ºC to remove 

unbound beads. The supernatant was discarded, and the pellets were 

resuspended in 1 ml medium. Cells were counted and resuspended in 250 µl pure 

medium and kept for 2 h at 37 ºC under agitation (350 rpm). Later the tubes were 

spun down (2,000 rpm for 10 min) at 4 ºC and supernatants and pellets were 

stored at –80ºC for further analysis of opioid peptide release and cellular content, 

respectively, using RIA. 
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2.2.7 Radioimmunoassay (RIA), enzyme immunoassay (E IA) and cytokine 

array 

Immunoreactive Met-enkephalin (ir-MENK) was determined using a RIA kit. 

All substances were dissolved in 1 × RIA buffer. Mouse knee cells were isolated as 

described in 2.2.6. Whole cell lysates were prepared from frozen cell pellets via 

freeze-and-thaw lysis in 200 µl RIA buffer. Freezing and thawing was repeated five 

times: first, samples were kept for 5 min in liquid nitrogen; they were then quickly 

thawed in a water bath (22 °C) and briefly vortexed. After a final incubation of 10 

min on ice, the samples were centrifuged for 10 min at 27,000 × g and 4 °C to 

remove debris. Clear cell lysates (100 µl each) were used for measurements 

thereafter. Supernatants (100 µl each) from release experiments as detailed above 

(2.2.6), were directly used for RIA measurements without further processing steps. 

All samples were prepared in duplicate. Serial diluted MENK standards containing 

1-1,280 pg MENK / 100 µl RIA lysis buffer were prepared in parallel using a 

standard peptide supplied by the company. Then, antiserum (100 µl) was added to 

all tubes except the total count, non-specific binding, and total binding tubes. 

According to the manufacturers' specifications, the rabbit anti-MENK does not 

cross-react with other agents such as Dynorphin, β-Endorphin, or ACTH. Tubes 

were incubated for 16-24 h at 4 °C. Then 100 µl 125I-labeled MENK with 11,000-

15,000 counts per minute (CPM) was added to each tube, and tubes were left for 

another 16-24 h at 4 °C. Thereafter, 100 µl each of goat anti-rabbit IgG and normal 

rabbit serum were added to all samples in order to precipitate antibody-protein 

complexes. The reaction was stopped after 90-120 min at room temperature by 

adding 0.5 ml RIA buffer. Finally, tubes were spun at 3,000 rpm for 20 min at 4 °C. 

Supernatants were aspirated of all except total count tubes, and the radioactivity in 

the pellets was counted as CPM in a gamma-counter. To determine specific 

binding, the mean CPM of non-specific binding samples was subtracted from all 

other samples. The CPM thereby decreases with an increasing peptide 

concentration of the unknown samples or standard peptide. The amount of ir-

MENK was calculated in pg/well. 

 The β-endorphin-immunoreactivity (ir-END) was determined using an END 

enzyme immunoassay (EIA). The remaining supernatants (approximately 50 µl 

each) from release experiments as described in (2.2.6), were directly used for EIA 
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measurements without further processing steps. The release of END was 

determined in cell supernatants using a human/rat-fluorescent EIA kit according to 

the manufacturers' instructions (Phoenix Peptides Inc.). Wells of EIA plates were 

loaded with 25 µl of the supernatants per well and incubated overnight at 4 ºC. 

Then 25 µl of biotinylated peptide was added and incubated at room temperature 

for 1.5 h, and the plates were washed with the buffer three times before adding 

100 µl SA-HRP (streptavidin-horseradish peroxidise) solution for 1 h. The plate 

was washed three times and incubated with 100 µl substrate solution at room 

temperature for 20 min. The reaction was terminated by stop solution. The 

fluorescence intensity was measured with a plate reader. The amount of ir-END 

was assessed in duplicate and calculated in pg/well from the standard curve. 

 Cytokine release was analysed using RayBio Rat Cytokine Antibody Array 2 

kits (RayBiotech, Inc., Norcross, GA, USA) following the manufacturers’ 

instructions. Array membranes carrying antibodies for the detection of 34 cytokines 

and anti-rat IgG (loading control) were incubated with T cell supernatants for 2 h. 

After washing, the membranes were incubated for 2 h with a mixture of biotin-

conjugated antibodies, followed by peroxidase-conjugated streptavidin. 

Immunoreactive dots were subsequently visualized using an enhanced 

chemiluminescence (ECL) system, and membranes were exposed to 

autoradiograph hyperfilms for 10 to 40 seconds. Films were scanned and pictures 

were analysed using Image J. After inverting the pictures, the background signal 

was measured at the negative control spots of the blot using an area of fixed size. 

This background signal was subtracted from all other measurements. The signal of 

each antibody spot was determined and recorded as ‘intensity’.  

2.2.8 Cytospins 

Cells were counted using Fuchs-Rosenthal cell counting chambers and cell 

viability was examined with the trypan blue exclusion method. 1.5 million cells 

were taken for cytospin in a volume of 100-200 µl of PBS. Before plating the cells, 

slides were cleaned to remove any greasy stains. A filter paper and a cuvette were 

placed on the slide. To the cuvette 300 µl of 1 x phosphate-buffered saline (PBS) 

were added before spinning at 300 rpm so that the filter paper was wet and did not 

absorb the cells. Next, 100 to 200 µl of cell suspension containing approximately 

1.5 million cells were loaded into the cuvette followed by another spinning at 
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300rpm to gently plate the cells onto the slide. Once the cells were plated, the 

slides were used for immunofluorescence stainings. 

2.2.9 Immunofluorescence stainings 

Cells that were plated on slides were dried and then fixed with 4% PFA and 

4% sucrose for 30 min at room temperature and washed three times with PBS for 

10 min each. Non-specific binding was prevented by incubating the slides for 30 

min at room temperature or overnight at 4 °C in blocking buffer (0.1 M PBS, 0.3% 

Triton X-100, 1% BSA, 4% goat or donkey serum). The slides were then incubated 

overnight at 4 °C or for 2 h at 37 °C with primary antibodies (anti-PC1, anti-PC2, 

anti-END, anti-MENK, anti-Dicer). Unbound antibody was removed by washing 

three times with PBS for 10 min each. Incubation with the secondary antibody was 

performed for 1 h at 37 °C followed by three washes with PBS. The slides were 

dried, and the cover slips were sealed with 10 µl of Mowiol. After the Mowiol 

hardened, the slides were imaged using a fluorescence microscope system and 

the AxioVision program (Zeiss Axioskop 2). Image analysis was performed using 

Image J (Version 1.47 developed by the NIH) as follows: 

 At first, fluorescence intensity was measured for the sample incubated with 

the secondary antibody only to determine the background threshold. This 

threshold was subtracted from the fluorescence of all other images. Then the 

number of particles above threshold, their area, and the mean fluorescence was 

determined using the option ‘analyse particles’ in Image J. The size of single cells 

was measured using the circle tool and values of 30 cells were used to obtain a 

mean area. This mean was used to calculate the cell numbers from the total area 

above the threshold determined with the particle analyser. The mean fluorescence 

and cell numbers above threshold were plotted on graphs.  

2.2.10 Gene expression analysis 

2.2.10.1 Total RNA preparations 

Total RNA was prepared using the Total RNA Isolation NucleoSpin RNA II kit 

(Macherey and Nagel) following the manufacturers' protocol. Fresh or frozen cells 

or tissues (pituitary and LN) were homogenized in 4 M guanidine thiocyanate 

buffer containing 10 µl β-mercaptoethanol per ml. Homogenates were loaded onto 
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shredder columns to remove cell debris by spinning samples for 1 min at 11,000 

rpm at room temperature. After adding 70% ethanol to the flow-through, samples 

were immediately mixed and then transferred to silica membranes to bind DNA 

and RNA. The membranes were desalted using membrane desalting buffer 

(MDB). To remove DNA, membranes were treated with RNase-free DNase for 15 

min. Subsequently, membranes were washed with wash buffers provided by the 

kit. Total RNA was eluted in 30-40 µl RNase free ddH2O and stored at –80°C. RNA 

was isolated from LN or pituitary tissue on separate days to avoid contamination. 

2.2.10.2 RNA/DNA quantification and quality 

The amount of single-stranded RNA or double-stranded DNA was measured 

photometrically at a wavelength of λ = 260 nm. An A260 nm = 1 corresponds to a 

concentration of 40 µg RNA/ml or 50 µg DNA/ml. The quality of RNA and purity of 

DNA was verified by A260 nm/A280 nm ratios. This ratio lies between 1.5 and 1.9 for 

intact RNA and between 1.75 and 2.0 for DNA. 

2.2.10.3 First-strand synthesis and negative contro ls  

Total RNA (1 - 2.5 µg/15.6 µl) was reverse-transcribed in 26 µl reaction 

mixture containing 0.2 µg/ml primer oligo dT, heated for 3 min at 63 °C and 

subsequently chilled on ice. Then the following reagents were added to a final 

volume of 30 - 40 µl: 1 × RT reaction buffer (50 mM Tris HCl, pH 8.3; 75 mM KCl, 

3 mM MgCl2), 10 µM dithiothreitol (DTT), 1 µM deoxynucleotide triphosphate mix 

(dNTP), 1 U RNAse inhibitor and 6 U AMV reverse transcriptase (RT). For 

negative controls, RT was replaced by RNase-free H2O (RT-). Mixtures were 

incubated for 120 min at 42 °C. cDNA was stored at –20°C thereafter. 

 

2.2.10.4 PCR primers 

 

 Oligodeoxynucleotides were designed by applying the OLIGO Primer 

Analysis Software Version 5.0 for Windows (Wojciech Rychlik, National 

Biosciences, Inc., Plymouth, MN) and were purchased from TIBMOLBIOL (Berlin, 

Germany). Primer pairs designed for the amplification of β-actin, PC1, PC2, 
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Cathepsin-L, Aminopeptidase B, Pomc, Sfrp1, Dicer, and IL-10,   were exon-intron 

spanning.  

2.2.10.5 Real-time quantitative reverse-transcripti on PCR (qRT-PCR) analysis 

Quantitative real-time PCR was performed using the FastStart DNA Master 

PLUS SYBR Green 1 kit according to the manufacturers' instructions (Roche). 

Real-time PCR was performed using the Mastercycler ep realplex (Eppendorf). 

The final reaction volume of 20 µl contained 25 pM antisense primer, 25 pM sense 

primer, 1 × PCR buffer with 2.0 mM MgCl2, 0.8 mM dNTPs, 1U AMV polymerase 

and either 2 µl template or RT- control. Positive controls contained 2 µl pituitary (P) 

or placenta (PL) cDNA; negative controls (NC) were supplemented with 2 µl 

ddH2O. Each assay started with an initial denaturation cycle of 10 min at 95 °C, 

followed by 40-45 amplification cycles (8 sec/95 °C denaturation, 8 sec/55-68 °C 

annealing, and 8-20 sec/72 °C for extension). Detailed PCR conditions for Pomc, 

Dicer, PC1, PC2, Sfrp1, and β-actin mRNA are listed in table 2.8. 

Table 2.8 RT-PCR conditions for different gene tran scripts 

 

Gene AT (annealing 
temperature) ºC / sec 

Elongation  TM (melting 
temperature) 

Fragment 
size 

β-Actin 68 72 ºC / 10 85 191 

POMC 63 72 ºC / 27 89 668 

PC1 55 72 ºC / 10 82 254 

PC2 69 72 ºC / 10 87 207 

Cathepsin L 62 72 ºC / 13 83 312 

Aminopeptidase B 62 72 ºC / 13 85 312 

Dicer 67 72 ºC / 11 82 251 

IL-10 60 72 ºC / 10 86 241 

Sfrp1 60 72 ºC / 20 91 492 

Data were analysed using the master cycler software (Eppendorf, Hamburg, 

Germany). The excess of background emission by specific amplification was 

automatically determined as a crossing point (CP). The relative expression of 

target mRNAs was evaluated in treated vs. control conditions and relative to the 
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expression of β-Actin as housekeeping gene by applying the delta-delta CP 

method previously described by PE Applied Biosystems (Perkin Elmer, Foster 

City, CA). Samples were always analysed as a set that was amplified together in 

the same qRT-PCR run. The 'relative expression ratio' of target mRNAs was 

calculated following the equations previously described by de Longueville and 

colleagues (2003): 

∆CP = CPPOMC – CPActin 

∆∆CP = ∆CP treated - ∆CP control 

Relative expression ratio = 2 –∆∆CP 

2.2.10.6 Melting curve analysis 

Subsequent to amplification, qRT-PCR products were heated from 65 °C to 

95-99 °C using a temperature transition rate of 0.1 °C / sec following the 

manufacturers' instructions. The level of fluorescence (F) was measured 

continuously during heating, changing relative to (1) the presence or absence of 

PCR products and (2) to the temperature (T). Melting curves – providing 

information about product specificity – were automatically calculated by the 

Eppendorf system and plotted as the ratio of changes of fluorescence to 

temperature changes [-∆F1/ ∆T] over temperature. Curves obtained from pituitary 

material were used as a positive control to evaluate LN-derived qRT-PCR products 

with the exception of Sfrp1 expression, which is not expressed in the pituitary. 

Control cDNA was used from placenta instead. Products were cooled down to 4 °C 

thereafter. 

2.2.10.7 Agarose gel electrophoresis 

Electrophoresis was run at 110 volts constantly for 40 min in 1 x TBE buffer 

(100 mM Tris base, 100 mM boric acid, 2.5 mM EDTA). Therefore, 20-25 µl PCR 

products were mixed with 4-5 µl agarose gel sample buffer (0.25% bromphenol 

blue, 50 mM Tris pH 7.6, 60% glycerol, H2O) and transferred to 1% agarose gels 

(1 x TBE, 1% agarose, 1 µl Midori green or 4 µl Midori green advanced/100ml). 
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 A 100 bp DNA ladder (Roche, Germany) was run in parallel to estimate sizes 

of PCR products. PCR products were imaged with a Biorad documentation 

system. 

2.2.11 Bisulfite sequencing 

2.2.11.1 Bisulfite modification 

Bisulfite modification of DNA occurs in three steps including sulphonation, 

deamination and desulphonation (Hayatsu et al., 1976; Shapiro et al., 1973; 

Shapiro et al., 1970). After these processes all unmethylated cytosine bases are 

converted into uracil, while methylated cytosine bases do not change. During PCR 

amplification uracil bases are replaced by thymine (Roux et al., 1995). This allows 

methylated cytosines to be distinguished from unmethylated cytosines during 

downstream analysis. 

2.2.11.2 Process of bisufite modification 

An EZ DNA methylation kit was used for bisulphite modification. The protocol 

used followed the manufacturers' instructions without modifications. According to 

this protocol, 5 µl of M-dilution buffer was added to genomic DNA (1 µg). The total 

reaction volume was 50 µl in each tube with nanopure water. Solutions were 

mixed by pipetting up and down. Sample tubes were incubated at 37 ˚C for 15 min 

in a PCR thermal cycler. After incubation, 100 µl freshly prepared CT conversion 

reagent was added to each tube and mixed well. These sample tubes were kept in 

a PCR machine and 20 PCR cycles were programmed. Each cycle consisted of 

95˚C for 30 seconds and 50 ˚C for 15 min. Following cycling, the samples were 

cooled to 6 ˚C. They were then added to 400 µl of M-binding buffer in Zymo-

Spin™ IC columns and these columns were placed into collection tubes. The 

solutions were mixed by gently pipetting up and down. The columns with collection 

tubes were centrifuged at >10,000 x g for 1 min. Flow-through was discarded after 

every centrifuge step unless otherwise stated. 200 µl M-wash buffer was added to 

each column and centrifuged at full speed for 1 minute. 200 µl M-desulphonation 

buffer was added to the columns and left at room temperature (20 ˚C to 30 ˚C) for 

15 min in the dark. The columns were centrifuged at full speed for 1 min. 200 µl M-

wash buffer was added and centrifuged at full speed for 1 min. This step was 
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repeated, followed by another centrifugation for 2 min. Then the columns were 

placed into 1.5 ml microcentrifuge tubes and 10 µl dH2O was added. The tubes 

were centrifuged for 1 min at full speed, and bisulphite-modified DNA was eluted. 

Bisulphite-modified DNA is not stable and has to be stored at –80 °C. 

2.2.11.3 PCR conditions 

Usually we used 35 to 45 cycles for successful PCR amplification of bisulfite-

converted DNA. The protocol includes 5-10 cycles for priming, followed by 35 to 40 

amplification cycles. Annealing temperatures were 50-70°C. UTR primers were 

designed for the untranslated regions of the sequence. C-free primers were 

designed to bind to both the untranslated and bisulfite-converted sequences, as 

they are independent of cytosine residues. Bisulfite-specific primers (BSP) were 

designed to amplify converted DNA. Different BSP primers were designed to 

amplify regions with different product sizes and nested BSP primers were also 

designed. Methylation-specific primers (MSP) bind specifically to methylated sites 

that could virtually appear at any CpG sites in a CpG island, but those primers 

were also based on the converted DNA sequence. We designed such primers to 

distinguish methylated from unmethylated sites of the Pomc locus, taking 

advantage of the sequence differences resulting from bisulphite modification. MSP 

primers were designed using the methyl primer express design tool from Applied 

Biosystems. 

Table 2.9 List of UTR and C-free primers – sequence s, length and PCR conditions are given 

Name Sequence (5`- to -3`) bp  Tm (°C) 5 

cycles / 

40 cycles 

Primer type 

UTRrPOMCse1(234) CTGCCTTGGGCTGCCATGATTCT 23 65/70 sense 

UTRrPOMCse2 (235) CTCTGTCCAGTCCTGAGTGGAG 22 65/70 sense 

UTRrPOMCas (236) GGTTAAGGAGCAGTGACTAAGAGAGGC 27 65/70 antisense 

C-free POMC FW TTGGAATAAGTATTGGGGATGGAGA 25 55/65 sense 

C-free POMC RV1 GGAGGAGAAAAGAGGTTAAGGAG 23 55/65 antisense 

C-free POMC RV2 AGGTATAAAAGAAGAGAGAAGAGTGA 26 55/65 antisense 
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Table 2.10 List of BSP primers – sequences, length,  and PCR conditions are given 

Name Sequence (5`- to -3`) bp Tm (°C) 5 

cycles / 

40 cycles 

Primer type 

BSP (FW) 116 TTGTTTTGGGTTGTTATGATTTT 23 55/65 sense 

BSP (FW) 118 AGGTAGTTTGTTTTGGGTTGTT 22 55/65 sense 

BSP (FW) 120 TTTTGTTTAGTTTTGAGTGGAG 22 55/65 sense 

BSP (RV) 117, 119, 

121 

GGTTAAGGAGTAGTGATTAAGAGAGGT 27 55/65 antisense 

 

Table 2.11 List of MSP primers – sequences, length,  and PCR conditions are given  

Name Sequence (5`- to -3`) bp Tm (°C) 5 cycles 

/ 40 cycles 

Primer type 

MSP_1_FW 261 TAATATTGGGGAAATTTGATGT 22 50/62 sense 

MSP_1_RV 801 AACCAAAACACCCTTACCTATC 22 50/62 antisense 

MSP_2_FW 199 TGTTGTTTTTTTTTTTGAAAT 21 50/62 sense 

MSP_2_RV 621 CCTTCCTAACAACACTTCTAC 21 50/62 antisense 

MSP_3_FW 261 TATTGGGGAAATTTGATGC 19 50/62 sense 

MSP_3_RV 801 AACCGAAACACCCTTACCTA 20 50/62 antisense 

MSP_4_FW 199 GTTGTTTTTTTTTTCGAAAC 20 50/62 sense 

MSP_4_RV 621 CTTCCTAACAACGCTTCTAC 20 50/62 antisense 

2.2.11.4 Purification of PCR products via gel extra ction 

After electrophoretic separation, PCR product bands were cut out, and DNA 

was extracted from the gel by using the QIAGEN gel extraction kit according to the 

manufacturers' instructions. DNA was eluted in 30-40 µl H2O and was sent for 

sequence analysis to LGC Genomics GmbH (Berlin, Germany). 

2.2.12 Immunohistochemistry (IHC) of arthritic mous e knees 

Animals were killed and both knee joints were fixed in 4% buffered 

formaldehyde, decalcified with EDTA, and embedded in paraffin. Serial sections 

(4–5 µm thick) were cut and stained with haematoxylin eosin (HE) for microscopic 

evaluation. Dr. Uta Baddack scored the knee sections in a blinded manner, 

examining three sections per knee joint. A three parameter scoring system was 
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used, where individual scores comprise the following: acute score (exudate: 1–3 

points, granulocytes infiltrating the synovial membrane: 1–3 points, fibrin exudates: 

1 point), chronic score (synovial hyperplasia: 1–3 points, mononuclear cells 

infiltrating the synovial membrane: 1–3 points, fibrosis: 1–3 points), cartilage and 

bone destruction (1–3 points). 

For immunohistochemistry, paraffin sections were deparaffinised using xylol 

acetone and unmasked by heat. For staining, the following primary antibodies 

were used: anti-CD3e (goat, Santa Cruz Biotechnology, Santa Cruz, CA), anti-β-

endorphin (Bachem Group, Peninsula Laboratories, UK). For detection, 

biotinylated donkey anti-goat, donkey anti-rat or peroxidase-coupled donkey anti-

goat antibodies were added, followed by streptavidin-conjugated alkaline 

phosphatase (all from Jackson ImmunoResearch, Newmarket, UK). Enzyme 

reactions were developed with AECþSubstrate Kit (DAKO) or Fast Blue substrate 

(Sigma-Aldrich). 

2.2.13 Statistical analysis 

All data were processed using Microsoft Excel 2003 for Windows (Microsoft 

Corporation) and GraphPad Prism Version 5.01 for Windows (GraphPad Software, 

Inc.). GraphPad Prism was used for the statistical analysis. Data were analysed for 

equal variance and for normal distribution using the D'Agostino & Pearson 

omnibus normality test. Normally distributed data were analysed by Student t-test 

and nonparametric data by Mann-Whitney-U-Test if two independent groups were 

compared. In case of dependent data, the paired t-test and the Wilcoxon signed 

rank test were used to analyse normally distributed and non-parametric data, 

respectively. Multiple measurements of normally distributed, independent data 

were analysed with the One-Way ANOVA test or the Kruskal-Wallis test in case of 

not normally distributed data. Dependent data were analysed using the One-Way 

Repeated Measurers ANOVA or the Friedman test to compare more than two 

groups with a normal or non-parametric distribution, respectively. Post hoc 

comparisons were performed with Dunnett’s multiple comparison test for normally 

distributed data and with Dunn’s method for not normally distributed data. For all 

tests, statistical significance was considered if P < 0.05. Data represent the mean 

± the standard error of the mean (SEM). 



                                                                                                                                     Results 

44 
 

3 Results 

3.1 Regulation of pro-opiomelanocortin ( Pomc) mRNA expression  

 Full-length Pomc mRNA is difficult to detect in naïve lymphocytes. Therefore 

we hypothesized that it may be repressed under unstimulated conditions. We studied 

different mechanisms that may either interfere with Pomc gene expression or 

strengthen the degradation of Pomc mRNA. 

3.1.1 Possible repressive mechanisms regulating Pomc mRNA expression in 
lymphocytes 

3.1.1.1 Repression by methylation or acetylation 

 To investigate the possible role of DNA methylation in the expression of Pomc, 

primary naïve LN cells were treated in vitro with IL-4 in order to stimulate Pomc 

expression as previously described (Busch-Dienstfertig et al, 2012) or were left 

untreated (see section 2.2.5.1), and genomic DNA was isolated from separated T 

and B cells thereafter. DNA strands were subjected to bisulfite treatment (see section 

2.2.11), which normally results in the conversion of unmethylated cytosines (C) into 

uracils (U) while methylated cytosines remain unaffected. A sequence of 

approximately 700 bp in total, comprising the 5`-upstream untranslated region (UTR) 

and exon 1 of the Pomc gene, was amplified using RT-PCR and different primer 

combinations (see section 2.2.11.3). Before bisulfite conversion, the DNA strands 

were amplified using UTR primers to test the integrity of the Pomc locus and were 

inspected electrophoretically. The PCR products generated from bisulfite converted 

DNA strands were also separated via agarose gel electrophoresis (see section 

2.2.10.7), selected by size, and directly sequenced to screen for cytosine 

replacements by uracil. Sequence analyses after bisulfite treatment showed no clear 

peaks, which indicates that either nucleotides were unreadable or nucleotides were 

not successfully converted and were identical to unconverted genomic DNA. 

Therefore, the results were inconclusive. 

 Next, we tried to address the question about DNA methylation by using DNA 

methyltransferase inhibitors based on the paper by Brueckner and colleagues (2005). 

The authors used 2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)-3-(1H-indol-3-

yl)propionic acid (RG108), a small molecule that was shown to effectively block DNA 

methyltransferases in vitro in human cancer cell lines. We supplemented media with 
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RG108 and kept primary LN-derived cells from healthy animals in culture. The 

inhibitor was added at a final concentration of 10 µM, and cells were harvested after 

5, 10, and 15 days followed by RT-PCR analysis (see section 2.2.10.5). β-Actin 

levels confirming the quality of cDNA and RT PCR are given in (Fig. 3.1 A). As a 

positive control, we amplified Sfrp1 mRNA. The Sfrp1 gene is known to be 

suppressed by methylation and upregulated upon RG108 treatment in HCT116 cells 

(HCT 116 Cell Line human colon carcinoma). Sfrp1 mRNA was not expressed in 

untreated LN cells but was detectable in RG108-treated LN cells after 15 days (Fig. 

3.1 B). No Pomc mRNA expression was detected in untreated or RG108-treated cells 

at the time points investigated (Fig. 3.1 C). Together, these results suggest that 

Pomc mRNA is not expressed after DNA demethylation in these cells. 

 

Figure 3.1 Effect of RG108 on Pomc and Sfrp1 gene expression in lymphocytes  Unseparated 
primary, naïve LN-derived cells were treated with 10 µM RG108, harvested after 15 days, and 
followed by RNA isolation, cDNA synthesis, and PCR. Number of independent experiments: n = 6.  A 
shows the expression of β-actin; pituitary cDNA served as positive control. B shows Sfrp1 mRNA 
expression; placenta cDNA served as positive control. C shows Pomc gene expression (Pomc mRNA 
transcripts); pituitary cDNA served as positive control. All PCR products were electrophoretically 
separated by size by using agarose gel electrophoresis. A DNA marker (M) was run in parallel to 
estimate the product size. NC = water control. Control = untreated cells kept under otherwise identical 
conditions.  
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 A reduced transcriptional activity can also be related to the deacetylation of 

histones, which increases the affinity of histone proteins to DNA. The histone 

deacetylase inhibitor trichostatin A produces an accumulation of acetylated histones, 

which is expected to enhance transcription by decreasing the histones’ affinity to 

DNA. However, treatment of lymph node cells with 1 µM trichostatin A for 24 h did 

not increase Pomc gene expression (Fig. 3.2 A). β-Actin was used as an internal 

control (housekeeping gene) to confirm cDNA quality and RT-PCR efficacy. 

 

Figure 3.2 Effect of trichostatin A on Pomc gene expression in lymphocytes  Unseparated 

primary, naïve LN-derived cells were treated with 1 µM of trichostatin A, harvested after 24 h, followed 

by RNA isolation, cDNA synthesis, and PCR. Number of independently performed experiments: n = 4. 

PCR products were electrophoretically separated by size using agarose gel electrophoresis. A: Pomc 

gene expression (Pomc mRNA transcripts). B: β-actin expression. Pituitary cDNA served as positive 

control. M = DNA marker. Control = untreated cells kept under otherwise identical conditions. 

 Finally, cells were treated with both 10 µM RG108 and 1 µM trichostatin A. 

The cells were incubated in the presence of RG108 for 5, 10, and 15 days as in the 

previous experiments, and trichostatin A was added on the 4th, 9th, and 14th day (24 h 

before harvesting the cells). Sfrp1 expression was observed only in the cells treated 

with RG108 and trichostatin A (Fig. 3.3 A), confirming that Sfrp1 expression is 

suppressed by DNA methylation. β-Actin expression attested to the RT efficiency and 

cDNA quality of the samples (Fig. 3.3 B). No increase in Pomc gene expression was 

detectable in treated versus untreated cells (Fig. 3.3 C). Together these results 

indicate that Pomc gene repression in lymphocytes is not diminished by 

demethylation or increased acetylation. 
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Figure 3.3 Effect of combined RG108 and trichostati n A treatment on Pomc and Sfrp1 gene 
expression in lymphocytes  Unseparated primary, naïve LN-derived cells were treated with 10 µM of 
RG108, harvested after 5, 10, and 15 days. Only the 15 day treatment is shown. Moreover, cells were 
treated with 1 µM trichostatin A for 24 h prior to harvesting, followed by RNA isolation, cDNA 
synthesis, and PCR. Number of independent experiments: n = 6. A: Sfrp1 mRNA expression; placenta 
cDNA served as positive control. B: β-actin mRNA amplicons. C: Pomc mRNA transcripts; pituitary 
cDNA served as positive control. Treated = RG108 + trichostatin A. Control = untreated cells kept 
under otherwise identical conditions. M = DNA marker. NC = water control. 

3.1.1.2 Repression by miRNAs 

 Many genes are post-transcriptionally regulated by miRNAs. To assess the 

relevance of miRNAs for Pomc regulation in lymphocytes, primary naïve LN cells 

were transfected with Dicer siRNAs in vitro and Dicer knockdown was investigated 

using qRT-PCR. We tested different methods of chemical siRNA transfer 

(Lipofectamine 2000, Fugene, etc.) using a fluorescent control siRNA. The uptake 

was investigated using flow cytometry, but no conclusive results were obtained. We 

therefore used electroporation (see section 2.2.5.3), although this approach can be 

accompanied by massive cell death. We chose to deliver siRNA using two different 

electrical devices as described in (section 2.2.5.3). The conditions were optimized for 

the uptake of approximately 80% of the fluorescent control siRNA and for at least 

40% cell viability as determined by flow cytometry using the apoptotic marker 

propidium iodide. A significant Dicer mRNA knockdown was observed after 48 h of 

electroporation using the double-pulse strategy when compared to electroporation 

with non-target (scrambled) siRNA (Fig. 3.4 A). Non-electroporated cells of the same 

animal were always investigated in parallel to determine baseline gene expression. 

As a positive control, we amplified IL10 mRNA, which is known to be regulated upon 

knockdown of Dicer (Sharma et al., 2009). IL-10 mRNA was detectable in non-
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electroporated and scrambled siRNA-pulsed cells but was undetectable in Dicer 

siRNA-pulsed cells (Fig. 3.4 C). Dicer knockdown had no effect on Pomc mRNA 

expression (Fig. 3.4 B). 

 

Figure 3.4  Dicer knockdown using electroporation A : Primary, naïve LN cells were treated with 
100 µl of transfection buffer and 100 µM Dicer or non-target siRNA. Cells were harvested after 24 or 
48 h followed by qRT-PCR analysis. Data were calculated using the delta-delta CP method and 
represent the mean ± SEM fold change in Dicer mRNA levels in relation to treatment with scrambled 
siRNA (these levels were set to 1). Statistical analysis was performed using the Kruskal-Wallis test 
and Dunn’s multiple comparison test. ** P < 0.01 (n = 6). Gel electrophoresis of Pomc mRNA (B) and 
IL-10 mRNA (C) transcripts in electroporated and non-electroporated samples after 48 h. Control = 
unpulsed/non-electroporated cells kept under otherwise identical conditions. 
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 To further examine the effect of Dicer knockdown on Pomc mRNA expression, 

we used soft pulse technology as described (in section 2.2.5.3) and harvested the 

cells after 5, 6, and 7 days of electroporation for analysis via PCR and 

immunocytochemistry. Only the results after 5 d of electroporation are shown (Fig. 

3.5), since cell viability at 6 and 7 days was strongly impaired. (Fig. 3.5 A) shows that 

none of the treatments had any effect on Pomc mRNA expression.(Fig. 3.5 B) shows 

successful knockdown of Dicer mRNA in Dicer siRNA-pulsed cells. (Fig. 3.5 C) 

shows β-actin levels confirming the quality of cDNA and PCR. Control experiments 

showed a loss of IL-10 mRNA expression in Dicer siRNA-pulsed cells (Fig. 3.5 D). 

The knockdown of Dicer protein at day 5 post electroporation is shown in (Fig. 3.6). 

The mean fluorescence intensity per cell was significantly decreased in Dicer siRNA 

electroporated cells as compared to basal levels determined in cells electroporated 

with scrambled siRNA (Fig. 3.6). Together, these results indicate no definite 

relevance of miRNA in the regulation of Pomc mRNA. 

 

Figure 3.5  Effects of Dicer siRNA on mRNA expression of β-actin, Pomc, Dicer, and IL-10 using 
soft pulse technology  Primary, naïve LN cells were treated with 100 µl of transfection buffer and 100 
µM Dicer or non-target siRNA. Cells were harvested after 5 days, followed by PCR. A: Pomc mRNA 
transcripts, pituitary cDNA served as positive control. B: Dicer mRNA; pituitary cDNA served as 
positive control. C: β-actin mRNA. D: IL-10 mRNA. A DNA marker was run in parallel to estimate the 
product size. Number of independent experiments n=6 per group. 
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Figure 3.6  Dicer siRNA-induced Dicer protein knockdown using electr oporation  Primary, naïve 
LN cells were treated with 100 µl transfection buffer and 100 µM Dicer or non-target siRNA. Cells were 
harvested after 5 days. Isolated cells were transferred to object trays after centrifugation for 
immunofluorescence analysis. A: representative anti-Dicer stainings of cytospin preparations after 
treatment with Dicer siRNA and scrambled siRNA. B: mean fluorescence intensity per cell after 
treatment with Dicer siRNA and scrambled siRNA (n = 6 animals per group). Statistical analyses were 
performed using the Wilcoxon signed rank test. * P < 0.05. 

 3.1.2 Expression of Pomc mRNA after cytokine stimulation in subsets of T an d 
B lymphocytes . 

 Previous studies indicated that Pomc is not expressed in naïve lymphocytes 

but is expressed upon stimulation. It was shown that Pomc gene expression is 

stimulated by IL-4 in vitro (Busch-Dienstfertig et al., 2012) and is upregulated in the 

draining LN after induction of  complete Freund's adjuvant (CFA) paw inflammation in 

vivo (Sitte et al., 2007). Here we investigated Pomc mRNA expression in separated T 

and B cells of dissociated popliteal LNs dissected 2-4 h after injection of CFA into the 

rat hind paw. (Fig. 3.7), Pomc mRNA transcripts were present in B (CD45RA+) but 

not in T cells (CD45RA-). In vitro IL-4 treatment for 2 h increased Pomc mRNA 

expression in B cells only (data not shown), while both cell populations derived from 

naïve LNs expressed pomc mRNA after 24 h of cytokine stimulation. After 24 h 

exposure to IL-4, B cells showed a significantly stronger relative elevation than T 

cells (Fig. 3.8). 
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Figure 3.7 In vivo expression of Pomc mRNA in T and B cells from rat lymph nodes Popliteal 
LNs were dissected and separated using anti-CD45RA microbeads into T (CD45RA-) and B cells 
(CD45RA+) 2h after induction of hind paw inflammation by an i.pl. CFA injection. Pomc mRNA 
transcripts were analyzed using PCR (n = 6 nodes). β-Actin mRNA transcripts, pituitary cDNA served 
as positive control.  pomc mRNA transcripts, pituitary cDNA served as positive control.  

 

 

Figure 3.8 In vitro expression of Pomc mRNA in IL-4-treated T and B cells Primary, naïve LN cells 
were stimulated in vitro with IL-4 for 24 h and subsequently separated using anti-CD45RA microbeads 
into T (CD45RA-) and B cells (CD45RA+); the target gene expression was normalised to β-actin gene 
expression. Number of independently performed experiments: n = 7. Data were calculated using the 
delta-delta CP method and represent the mean ± SEM fold change. Pairwise comparison was 
performed using the Wilcoxon signed rank test, *p < 0.05. 

3.1.2.1 Signaling pathways and interactions between  T and B cells in vitro 

 Previous studies showed that IL-4 induces Pomc mRNA expression in 

lymphocytes, which is partially mediated via the JAK/STAT pathway involving 

tyrosine-phosphorylated STATs 1 and 3 but not STAT 6 or MAP kinases such as 

ERK 2 or p38 (Busch-Dienstfertig et al., 2012). As described in the previous 

paragraph, an upregulation of Pomc mRNA expression was detected in B cells, when 

T and B cells were incubated together for 2 h in the presence of IL-4. However, when 

T and B cells were incubated separately with IL-4, no elevation of Pomc mRNA 

expression was observed (in either T or B cells, data not shown), indicating that 



                                                                                                                                       Results 

52 
 

interaction between the two cell types is required. Since in vivo activation of LN cells 

following paw inflammation also resulted in Pomc gene expression in B but not in T 

cells (Fig. 3.7), more attention was hereupon directed to B cells. When the 

supernatant of IL-4-treated T cells was transferred to purified B cells, an upregulation 

of Pomc mRNA expression was detectable (Fig. 3.9). Together, these results show 

that B cells express Pomc mRNA in a T cell-dependent manner, which is contrary to 

our initial hypothesis. 

   

Figure 3.9 IL-4–stimulated Pomc mRNA expression in B cells Primary, naïve T and B cells were 
separated from dissociated LN cells using anti-CD45RA microbeads and MACS columns. T cells were 
untreated or pre-treated with IL-4. After 2 h, the supernatant (SN) from T cells was collected and 
transferred to untreated B cells. Number of independently performed experiments: n = 5. B cells were 
harvested 2 h after SN transfer and pellets were processed for the analysis of Pomc mRNA levels. 
Data were calculated using the delta CP method and represent the mean ±SEM Pomc-β-actin mRNA 
levels. Statistical analysis was performed to compare delta CP values determined in untreated B cells 
exposed to the SN of unstimulated versus IL-4-treated T cells using Mann Whitney test. **P < 0.01. 
Lower delta CP values indicate higher Pomc mRNA expression. 

 

 Next we used cell permeable inhibitors to interfere with the JAK/STAT 

pathway activated by IL-4. Pyridon 6 is a pan-JAK inhibitor, whereas JAKII and 

STAT-5 inhibitors are selective. The experiments shown in (Fig. 3.10) demonstrate 

that previously untreated B cells express Pomc mRNA when stimulated with the 

supernatant of IL-4-treated T cells. This effect was inhibited by pre-treatment of T 

cells with pyridon 6 and with STAT-5 inhibitor (Fig. 3.10 A); the JAKII inhibitor had no 

significant effect. Pre-treatment of B cells with pyridon 6 and STAT-5 inhibitor 

resulted in significantly decreased Pomc mRNA levels after adding supernatants 

from T cells treated with IL-4 (Fig. 3.10 B), while pre-treatment of B cells with JAK II 

inhibitor seemed to increase this gene expression.  
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Figure 3.10 Effect of JAK/STAT inhibitors on IL-4–s timulated Pomc mRNA expression in B cells 
Naïve T and B cells were separated from dissociated LN cells using anti-CD45RA microbeads and 
MACS columns. A: T cells were pre-treated for 30 min with/without inhibitors prior to the addition of IL-
4. Controls were left untreated. After 2 h, the supernatant (SN) from the T cells was transferred to 
untreated B cells. Number of independent experiments: n = 5. B: B cells were pre-treated for 30 min 
with inhibitors, controls were left untreated. T cells were stimulated with IL-4 and after 2 h the SN was 
transferred to the pre-treated B cells. Number of independent experiments: n = 5. In both setups B 
cells were harvested 2 h after SN transfer, and pellets were processed for the analysis of Pomc mRNA 
levels. Data were calculated using the delta-delta CP method and represent the mean ± SEM fold 
change of Pomc mRNA expression over levels determined in untreated B cells exposed to the 
supernatant of IL-4-treated T cells that were set to 1. Statistical analysis was performed using 
Friedman test and Dunn’s multiple comparison test. *P < 0.05; **P < 0.01; *** P < 0.001. Inhibitors: P6 
= pyridon 6, JAKII inhibitor, STAT-5 inhibitor. 
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 These findings indicated that IL-4, via JAK/STAT activation, leads to the 

release of a factor from T cells, which in turn mediates Pomc gene expression in B 

cells. The results in (Fig. 3.10 B), indicate that the JAK/STAT pathway mediates this 

Pomc mRNA expression in B cells. To find this factor, cytokine array analyses were 

performed with supernatants of in vivo and in vitro activated T cells. Of 34 analysed 

cytokines, almost all were significantly upregulated in the supernatants of T cells 

derived from inflamed LNs in comparison to naïve T cells from non-inflamed LNs. In 

the supernatants of in vitro IL-4-stimulated T cells, IL-2, IL-4, IL-6, IL-10, ciliary 

neurotrophic factor (CTNF), IL-1β, and IFN-gamma were significantly elevated over 

untreated controls (Fig. 3.11).  
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Figure 3.11 (previous and present page) Cytokine se cretion changes in stimulated T cells Naïve 
T and B cells were separated from dissociated LNs using anti-CD45RA microbeads and MACS 
columns. B cells were discarded, and T cells were treated with/without IL-4 for 2 h, harvested, and the 
supernatant was analyzed by cytokine array. Similarly, T and B cells were separated by draining LNs 
of i.pl. CFA-treated animals were isolated (2 h after CFA injection). B cells were discarded and T cells 
were kept in the medium for 2 h at 37 ºC, harvested, and the supernatant was analyzed via cytokine 
array. Control (unstimulated) cells were kept under similar conditions. Number of independent 
experiments: n = 6 per group. Densitometry analyses of the array blots were done. Data represent 
mean ± SEM fold change over levels determined in unstimulated controls. Statistical analyses were 
performed using Kruskal-Wallis test and Dunn’s multiple comparison test. *P < 0.05; **P < 0.01. 

 

 Naïve B cells were then treated for 2 h with the upregulated cytokines as 

identified by the cytokine array and with various combinations of cytokines (IL-2, IL-6, 

IL-6Rα IL-10), but no upregulation of Pomc mRNA expression was observed (Fig. 

3.12). At this point it is still an open question as to what the factor is that is released 

from T cells and stimulates B cells to produce Pomc. 
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Figure 3.12 Effect of cytokine treatments on Pomc mRNA expression in naïve B cells B cells 
were stimulated with IL-2, IL-2 + IL-6 + IL-6Rα, IL-2 + IL-10 and with IL-2 + IL-6 + IL-6Rα + IL-10. After 
2 h cells were centrifuged and pellets were processed for the analysis of Pomc mRNA levels using 
PCR. Number of independently performed experiments: n = 6 per group. 

3.2 POMC-processing enzymes  

3.2.1 Prohormone convertase 1 (PC1) in lymph node c ells 

 Next we addressed the post-translational regulation of Pomc by examining the 

presence of PC1 mRNA and protein in popliteal LN cells from rats with and without 

CFA-induced hind paw inflammation. In unseparated cells, PC1 mRNA was 

upregulated within 6 h after i.pl. CFA injection vs. control values (Fig. 3.13).  

 Immunofluorescence analysis of PC1 protein is shown in (Fig. 3.14). The 

mean fluorescence intensity per cell and the number of cells above threshold were 

determined and calculated using Image J as described in (2.2.9). PC1 protein was 

significantly increased within 24 h after the onset of CFA-induced paw inflammation 

when compared to basal levels determined in LNs from healthy rats (Figs. 3.14 B and 

C). No significant differences in comparison to control levels were found at 96 and 

120 h (Fig. 3.14 A-C). To verify antibody specificity, preabsorption experiments with 

recombinant PC1 and PC2 peptides were performed (Figs. 3.14 D-E). Staining the 

LN cells with anti-PC1 after 24 h of paw inflammation demonstrated a significant 
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reduction inmean fluorescence intensity per cell after preabsorption with recombinant 

PC1 but not with PC2 (Fig. 3.14 E).  

  

Figure 3.13 In vivo PC1 mRNA expression in lymph nodes  Rats received an i.pl. CFA injection and 
popliteal LNs were harvested after 6, 24, and 96 h and from untreated control rats (0 h). PC1 
transcripts were amplified by qRT-PCR. Data were calculated using the delta-delta CP method and 
represent mean ± SEM fold change of PC1 mRNA over levels determined in cells from naïve LNs 
relative to β-actin expression. Statistical analysis was performed using the Kruskal-Wallis test and 
Dunn’s multiple comparison test. *P < 0.05, n = 12 per group.  
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Figure 3.14 In vivo PC1 expression in lymph node cells  Rats received an i.pl. CFA injection and 
popliteal LNs were harvested after 24, 96, and 120 h; control nodes were taken from untreated rats. A 
(previous page) : Representative anti-PC1 staining of cytospin preparations at the indicated time 
points (n=6 animals per time point). In B (previous page)  the number of PC1-positive cells is 
represented in mean ± SEM. C (previous page) : Mean fluorescence intensity per cell ± SEM (n = 6 
per group). D: Preabsorption with PC1 but not with PC2 peptide diminished the staining of anti-PC1. 
E: Mean fluorescence intensity per cell ± SEM (n = 4 per group). Statistical analyses were performed 
using the Kruskal-Wallis test and Dunn’s multiple comparison test (compared to PC1 staining without 
preabsorption). *P < 0.05; **P < 0.01; *** P < 0.001. 

 

 To study the expression of PC1 in the subsets of lymphocytes, popliteal LNs 

were dissected and separated using anti-CD45RA microbeads into T (CD45RA-) and 

B cells (CD45RA+) 24 h after the induction of hind paw inflammation. PC1 mRNA 

transcripts were analysed using PCR. β-Actin transcripts confirming the quality of 

cDNA and RT-PCR are shown in (Fig. 3.15 A). (Fig. 3.15 B) shows that PC1 mRNA 

was below detection limit in separated B and T cells from normal LNs. At 24 h of 

CFA-induced paw inflammation, PC1 transcripts were observed in CD45RA+ (B cells) 

and CD45RA- (T cells) of the draining LNs (Fig. 3.15 B). 
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Figure 3.15 In vivo PC1 mRNA expression in B and T cells  Rats received an i.pl. CFA injection; 
popliteal LNs were harvested after 24 h and separated into CD45RA- (T cells) and CD45RA+ (B cells) 
using anti-CD45RA microbeads followed by PCR. A: β-Actin mRNA transcripts, pituitary cDNA served 
as positive control.  B: PC1 mRNA transcripts, pituitary cDNA served as positive control. Nodes from 
healthy rats served as controls (0 h). A DNA marker was run in parallel to estimate the product size in 
bp. Number of independent experiments: n = 6 per group, n = 4 are represented.  

 

 Dissociated LN cells were also separated into CD8+ (cytotoxic T cells) and 

CD8- (mixed B and T helper cells) using anti-CD8a microbeads. β-Actin transcripts 

confirming the quality of cDNA and RT-PCR are shown in (Fig. 3.16 A). At 24 h after 

i.pl. CFA, PC1 mRNA was detected in all CD8-, but not in CD8+ cells from inflamed 

LNs (Fig. 3.16 B). PC1 mRNA was undetectable in CD8+ and CD8- fractions of non-

inflamed LNs.  

  

Figure 3.16 In vivo PC1 mRNA expression in cytotoxic T cells and mixed B a nd T helper cell 
fractions Rats received an i.pl. CFA injection; popliteal LNs were harvested after 24 h and separated 
into CD8+ (cytotoxic T cells) and CD8- (mix of B- and T-helper cells) fractions using anti-CD8 
microbeads followed by PCR. A: β-Actin mRNA transcripts, pituitary cDNA served as positive control. 
B: PC1 mRNA transcripts, pituitary cDNA served as positive control. Lymph nodes from healthy rats 
served as controls (0 h). A DNA marker was run in parallel to estimate the product size in bp. Number 
of independent experiments: n = 6 per group, n = 4 are represented. 
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3.2.2 Prohormone convertase  2 (PC2) in lymph node cells 

 PC2 mRNA was significantly upregulated in unseparated LN cells at 96 h after 

i.pl. CFA injection in comparison to 6 h (Fig. 3.17).  

  

Figure 3.17  In vivo PC2 mRNA expression in lymph node cells  Rats received an i.pl. CFA injection 
and popliteal LNs were harvested after 6, 24, and 96 h and from untreated control rats (0 h). PC2 
transcripts were amplified by qRT-PCR. Data were calculated using the delta-delta CP method and 
represent mean ± SEM fold change of PC2 mRNA over levels determined in cells from naïve LNs 
relative to β-actin mRNA expression. Statistical analysis was performed using the Kruskal-Wallis test 
and Dunn’s multiple comparison test. *P < 0.05, n = 8-10 per group. 

 

 Immunofluorescence analysis of PC2 protein is shown in (Fig. 3.18 A). The 

mean fluorescence intensity per cell and the number of cells above threshold were 

determined and calculated using Image J as described in (section 2.2.9). PC2 protein 

was significantly increased within 24 h after the onset of CFA-induced paw 

inflammation when compared to basal levels determined in LNs from healthy rats. No 

significant differences in comparison to control levels were found at 96 and 120 h 

(Fig. 3.18 B).  
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Figure 3.18 In vivo PC2 expression in lymph node cells draining healthi ly and CFA-inflamed 
hind paws of rats Rats received an i.pl. CFA injection and popliteal LNs were harvested after 24, 96, 
and 120 h; control nodes were dissected from untreated rats. A: Representative anti-PC2 stainings of 
LN cells. B: Mean number of cells above threshold ± SEM (left) and mean fluorescence intensity ± 
SEM (right) of anti-PC2 stained cells are shown. Number of independently performed experiments: n = 
6 per group. Statistical analysis was performed using the Kruskal-Wallis test and Dunn’s multiple 
comparison test (comparison against basal levels). *P < 0.05. 
 

 To verify antibody specificity, the PC2 antibody was preabsorbed with 

recombinant PC1 and PC2 peptides. Staining LN cells at 24 h after CFA injection 

demonstrated a significant reduction of the mean fluorescence intensity per cell in the 

presence of PC2 but not of PC1 peptide in comparison to controls (Fig. 3.19). 
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Figure 3.19 Preabsorption experiments with anti-PC2   A: preabsorption with PC2 peptide 
diminished the staining of anti-PC2; staining was unaffected by preabsorption with PC1 peptide. B: 
Mean fluorescence intensity per cell represented in ± SEM. n = 6. Statistical analyses were performed 
using the Kruskal-Wallis test and Dunn’s multiple comparison test. *P < 0.05. 

 

 To study the expression of PC2 in the subsets of lymphocytes, popliteal LNs 

were dissected and separated using anti-CD45RA microbeads into T (CD45RA-) and 

B cells (CD45RA+) at 24 h after induction of hind paw inflammation. PC2 mRNA 

transcripts were analysed using PCR. β-Actin transcripts confirming the quality of 

cDNA and RT-PCR are shown in (Fig. 3.20 A). PC2 mRNA was seen in CD45RA+ (B 

cells) and CD45RA- fractions (T cells), both in naïve and inflamed LNs (Fig. 3.20 B). 
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Figure 3.20  In vivo PC2 mRNA expression in B and T cells . Rats received an i.pl. CFA injection; 
popliteal LNs were harvested after 24 h and separated into CD45RA- (T cells) and CD45RA+ (B cells) 
using anti-CD45RA microbeads followed by PCR. A: β-Actin mRNA transcripts, pituitary cDNA served 
as positive control. B: PC2 mRNA transcripts, pituitary cDNA served as positive control. Nodes from 
healthy rats served as controls. A DNA marker was run in parallel to estimate the product size in bp. 
Number of independent experiments: n = 6 per group, n = 4 are represented. 

  

 Dissociated LN cells were also separated into CD8+ (cytotoxic T cells) and 

CD8- (mixed B and T helper cells) using anti-CD8a microbeads. PC2 mRNA was 

detected in both CD8- and CD8+ cells from non-inflamed and inflamed LNs (Fig. 3.21 

A). β-Actin transcripts confirming the quality of cDNA and RT-PCR are shown in (Fig. 

3.21 B). 
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Figure 3.21 (bottom previous page) In vivo PC2 mRNA expression in cytotoxic T cells and 
mixed B and T helper cell fractions Rats received an i.pl. CFA injection; popliteal LNs were 
harvested after 24 h and separated into CD8+ (cytotoxic T cells) and CD8- (mix of B and T helper cells) 
fractions using anti-CD8 microbeads followed by PCR. A: PC2 mRNA transcripts, pituitary cDNA 
served as positive control.  Nodes from healthy rats served as controls (0 h).  B: β-Actin mRNA 
transcripts, pituitary cDNA served as positive control.  A DNA marker was run in parallel to estimate 
the product size in bp. Number of independent experiments: n = 6 per group, n = 4 are represented. 
 

3.2.3 Cathepsin L and  aminopeptidase B mRNA in lymph node cells  

 

 Several studies demonstrated an additional protease pathway for the 

conversion of POMC into ACTH, β-END, and α-MSH mediated by cathepsin L and 

aminopeptidase B in secretory vesicles (Yasothornsrikul et al., 2003; Funkelstein et 

al., 2008). We observed that cathepsin L mRNA was downregulated in unseparated 

LN cells at 24 h after i.pl. CFA injection in comparison to non-inflamed node cells (0 

h) and was upregulated at 96 h after i.pl. CFA injection (Fig. 3.22). Aminopeptidase B 

mRNA was upregulated at 96 h after i.pl. CFA injection in comparison to 0, 6, and 24 

h (Fig. 3.23).  

  

Figure 3.22 In vivo cathepsin L mRNA expression in lymph nodes Rats received an i.pl. CFA 
injection and popliteal LNs were harvested after 6, 24, and 96 h and from untreated control rats (0 h). 
Cathepsin L transcripts were amplified by qRT-PCR. Data were calculated using the delta-delta CP 
method and represent the mean ± SEM fold change of cathepsin L mRNA levels after CFA injection 
over levels determined in cells from naïve LNs relative to the β-actin levels. Statistical analysis was 
performed using the Kruskal-Wallis test and Dunn’s multiple comparison test. *P < 0.05, n = 8-10 per 
group.  
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Figure 3.23  In vivo aminopeptidase B mRNA expression in lymph nodes  Rats received an i.pl. 
CFA injection and popliteal LNs were harvested after 6, 24, and 96 h and from untreated control rats 
(0 h). Aminopeptidase B transcripts were amplified by qRT-PCR. Data were calculated using the delta-
delta CP method and represent the mean ± SEM fold change of aminopeptidase B mRNA levels after 
CFA injection over levels measured in cells from naïve LNs relative to the β-actin levels. Statistical 
analysis was performed using the Kruskal-Wallis test and Dunn’s multiple comparison test. *P < 0.05, 
n = 8-10 per group. 

 

3.2.4 In vitro PC1 and PC2 protein in lymph node cells 

 LN cells were stimulated with IL-4, conA, and IL-4 plus conA separately. 

Immunofluorescence analysis of PC1 and PC2 protein is shown in Fig. 3.24. The 

mean fluorescence intensity per cell in anti-PC1 stained preparations was 

significantly increased within 24 h after stimulation with IL-4 plus conA as compared 

to basal levels in LN cells from healthy rats (n = 6). In anti-PC2-stained preparations 

no significant differences were observed between stimulated and unstimulated LN 

cells. 
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Figure 3.24 In vitro PC1 and PC2 expression in IL-4 and mitogen treated LN cells  Primary, naïve 
LN cells were stimulated in vitro with IL-4 and conA for 24 h, and LNs were subsequently harvested. 
Control cells were processed identically but were left without treatment. A+B : Representative anti-PC1 
and PC2 stainings of untreated and stimulated LN cells. C+D: Mean fluorescence intensities ± SEM of 
anti-PC1 and anti-PC2 stained cells are shown. Number of independently performed experiments: n = 
6 per group. Statistical analyses were performed using the Kruskal-Wallis test and Dunn’s multiple 
comparison test. ***P < 0.001. 

 
3.3 Measurement of β-endorphin ( β-END) 

 The detection of β-END was established using immunofluorescence (see 

section 2.2.9). The mean β-END fluorescence intensity per cell increased 

significantly over control levels in LN cells treated with conA and conA plus IL-4 (n = 

6, Fig. 3.25 C). IL-4 treatment alone had no effect. The mean number of  β-END-

positive cells above threshold intensities increased significantly over control levels 

after treatment with conA and conA plus IL-4 (n = 6, Fig. 3.25 D), while IL-4 alone 

had no significant effect. In cells treated with conA plus IL-4 the mean number of β-

END-positive cells was significantly higher than in cells treated only with conA (n = 6, 

Fig. 3.25 D). To verify antibody specificity, the β-END antibody was preabsorbed with 
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recombinant Met-enkephalin (MENK) and β-END peptides. Anti-β-END staining of LN 

cells at 24 h after CFA demonstrated a significant reduction of the mean fluorescence 

intensity per cell in the presence of β-END but not of MENK peptide in comparison to 

cells treated with the antibody only (Fig. 3.26). 

 

Figure 3.25 In vitro stimulation  of β-endorphin in naïve lymph node cells LNs from healthy rats 
were dissected and cells were incubated with IL-4, conA, and IL-4+conA for 24 h. A: Representative 
anti- β-END staining of stimulated and unstimulated LN cells. B+C:  Mean fluorescence intensity ± 
SEM (left) and mean number of cells above threshold ± SEM (right) (n = 6 per group). Statistical 
analysis was performed using the Kruskal-Wallis test and Dunn’s multiple comparison test. **P < 0.01 
and ***P < 0.001: treatments in comparison to untreated control; #P < 0.05: conA compared to 
conA+IL-4. 
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Figure 3.26 Preabsorption experiments of anti- β-END A: Preabsorption with β-END diminished the 
staining of anti-β-END, while the staining was unaffected by preabsorption with MENK. B: Mean 
fluorescence intensity per cell ± SEM; n = 4 per group. Statistical analysis was performed using the 
Kruskal-Wallis test and Dunn’s multiple comparison test. **P < 0.01.  

 

 Next, cellular β-END amounts were determined in B and T cells. We found 

that the amount of β-END in B cells was more than in T cells. These new data extend 

previous findings showing increased cellular β-END levels in lymph node cells 

stimulated in vivo (CFA) and in vitro (IL-4/ConA) (Sitte et al., 2007 and Busch-

Dienstfertig et al., 2012). 
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Figure 3.27  In vivo stimulation  of β-END production in lymph node cell subsets by CFA 
injection.  Rats received an i.pl. CFA injection, popliteal LNs were harvested after 24 and 96 h and 
separated into CD45RA- (T cells) and CD45RA+ (B cells) using anti-CD45RA microbeads. Nodes from 
healthy rats served as controls (0 h). In cell lysates the β-END-immunoreactivity was determined by 
RIA. Values are given as mean pg END per 107 cells ± SEM. Statistical analyses were performed 
using the Kruskal-Wallis test and Dunn’s multiple comparison test. *P < 0.05; n = 6-8 nodes per time 
point. 
 

3.4 Opioid peptides in mice with chronic arthritis  

 In order to extend our studies to chronic inflammation, the presence of 

endogenous opioid peptides was investigated in a new mouse model of rheumatoid 

arthritis (ACIA-model) (Baddack et al., 2013). Similar to our previous studies in 

inflamed paws (Stein et al., 1990), immunocytes; (Przewlocki et al., 1992), we first 

examined opioid peptide production at the site of primary inflammation (joint), and 

then in the draining LNs. (Fig. 3.28 A), gives an overview of a representative arthritic 

knee joint and the surrounding tissues. The severity of chronic inflammation and joint 

destruction was evaluated by semi-quantitatively scoring hematoxylin and eosin 

(HE)-stained paraffin sections of the inflamed (left) knee joint. The score for chronic 

inflammation reflects synovial hyperplasia, infiltration of the synovium by 

mononuclear cells, and fibrosis. Joint destruction scores were based on pannus 

formation and cartilage and bone erosion. 

 Anti-β-END and anti-CD3 staining was first done on paraffin sections to 

examine opioid peptides in periarticular and popliteal LNs and to investigate the 

localization of β-END. Since the stainings were inconsistent, we subsequently 

studied opioid peptides using RIA.  
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Figure 3.28  HE-staining of the arthritic mouse knee  Chronic arthritis was induced by unilateral 
intraarticular injection of methylated bovine serum albumin (mBSA) in Balb/c mice immunized against 
antigen (mBSA) and collagen (bovine collagen II). Ipsilateral knees were collected 64 days after 
induction. Paraffin sections were stained with HE yielding red coloration of soft tissues (muscles, 
tendon, connective tissue, cartilage) and blue staining of cell nuclei. A: Knee joint with popliteal and 
periarticular LNs. B: Magnification of the knee joint with upper triangular and lower triangular region of 
the synovial space. C: Magnification of upper triangular region. D: Magnification of lower triangular 
region. Red arrows in B-D point to sites of dense nuclear staining caused by cellular infiltration. 

 

 

Figure 3.29  HE-staining of healthy knee joint  Paraffin sections were prepared from healthy knees 
and those stained with HE. A: Section of the knee joint with upper triangular and lower triangular 
region of the synovial space. B: Magnification of upper triangular region. C: Magnification of lower 
triangular region.  
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 Cell subsets of the LNs draining the arthritic knee were analysed in analogy to 

our investigations of popliteal LNs draining CFA-inflamed rat hind paws. The 

numbers of CD4+ T cells, CD8+ cells, and CD8- cells started to increase after the 

second immunization step, followed by a stronger expansion of all subsets after 

intraarticular (i.a.) injection of mBSA. In the chronic phase, however, cell numbers 

dropped back to the values determined before arthritis induction by i.a. mBSA. Next, 

immunoreactive Met-enkephalin (ir-MENK) levels were determined in cell subsets of 

the draining LNs.  The total amount of ir-MENK showed an elevation over baseline 

levels within 24 h after induction of arthritis by i.a. mBSA in all cell fractions analysed 

(CD4+ T cells, CD4- cells, CD8+ T cells, and CD8- cells). When ir-MENK levels were 

calculated per cell, no substantial changes were observed for the different subsets 

comparing the different time points of ACIA. The baseline values detected per cell in 

CD8+ and CD8- cells were higher than those in CD4+ T cells and CD4- cells.   

 Furthermore, we used RIA and EIA measurements to study opioid peptide 

liberation from the cellular infiltrate of arthritic knee joints. The knee cells were 

explanted and prepared as described (in section 2.2.6). (Fig. 3.30), shows the 

amount of peptides released per knee. The amounts of MENK and β-END peptides 

released into the supernatant were similar as determined by both RIA and EIA. The 

release of Met-enkephalin was not correlated to the cell numbers explanted from 

arthritic knees. The release of β-END was strongly correlated with the cell numbers 

explanted from arthritic knees but showed no correlation with numbers of CD45+ 

cells. 



                                                                                                                                       Results 

72 
 

   

 

Figure 3.30 MENK and β-END liberated from arthritic knee cells  Knees were collected 64 days 
after induction of arthritis, and the cellular infiltrate was isolated after tissue digestion. Single cell 
suspensions were kept for 1.5 h at 37 °C and supernatants were harvested to determine the opioid 
peptide release thereafter (MENK with RIA, β-END with EIA). Cells were counted and some animals 
were pooled in case the cell numbers were below 3.0E+06. From the pg-amount of ir-MENK and ir-β-
END determined in RIA and EIA, respectively, the number of biologically active particles was 
calculated based on their molecular mass and on the Avogadro number. The Wilcoxon signed rank 
test was used for a pairwise comparison of ir-β-END released vs. ir-MENK released. The level of 
significance was P < 0.05. 

 

Table 3.1 Correlations between opioid peptide relea se and cell numbers of explanted knee cells  
Analyses were performed using Spearman correlation; Spearman r is given. *P < 0.05, **P < 0.01. 

Opioid 
peptide 

Number of 
explanted  
knee cells 

Number of 
CD45- knee 
cells in 
explants 

Number of 
CD45+ knee 
cells in 
explants 

ir-MENK 
released 

0.3 0.46 0.15 

ir-β-END 
released 

0.69* 0.76* 0.24 
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4 Discussion 

 

The major findings of this study are the following: 

1. Pomc mRNA expression in naïve lymphocytes seems to be regulated exclusively 

by neither DNA methylation and acetylation nor by miRNA. 

2. Signal sequence-encoding Pomc mRNA is selectively expressed in B cells from 

LNs draining inflamed paws as early as 2 h after inflammation onset. This is 

mimicked by an in vitro cell stimulation model using IL-4. 

3. IL-4 stimulated T cells release a factor that stimulates B cells to express Pomc 

mRNA in a JAK/STAT-mediated manner. 

4. T helper and B cells express PC1 mRNA during inflammation; PC2 mRNA is 

expressed in all cell subsets in inflamed and non-inflamed LN cells. Both processing 

enzymes are upregulated on the protein level in inflammation, while only the PC1 

protein level increases after combined IL-4 plus conA treatment in vitro. 

5. β-END synthesis is elevated in LN cells during paw inflammation in vivo and also 

after combined IL-4 plus conA treatment in vitro.  

 

4.1 Repressive mechanisms 

 

 The human pomc promoter was previously found to be methylated in 

non-POMC-expressing tissues and tumours as well as in normal lymphocytes 

(Newell-Price et al., 2001). However, POMC-expressing tissues and tumours showed 

less or no Pomc gene methylation. Taken together, these findings indicate a 

regulatory role of DNA methylation in Pomc gene expression. To elucidate a possible 

suppression of Pomc expression in naïve rat lymphocytes, we started looking at DNA 

methylation in naïve and stimulated cells from LNs draining rat paws. This question 

was addressed using bisulfite conversion by applying a commercial kit. However, 

according to our sequencing data, the conversion was not efficient. One cause might 

have been the instability of the chemical modification. However, the same or similar 

kits were used with success by others (Hansmann T et al., 2012; Lisanti S et al. 

2013). Another possibility could be a loss of information due to the conversion (by 

erasing all non-methylated cytosines and their replacement by uracil). This could 

have decreased the specificity of PCR primers, even though special methylation 

primer design software was used. Moreover, the PCR products generated 
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simultaneously from different cell types most probably represented amplicons from 

DNAs with different methylation statuses. (Lisanti et al.,2013), used four different 

surrogate assays for global DNA methylation analysis (LUMA Alu, LINE 1, and 

HPLC). In the LUMA assay, DNA samples were digested in parallel with the 

isoschizomer restriction enzymes MspI (unaffected by methylation) and HpaII 

(methylation sensitive). Both recognize the same sequence (CCGG) but cut 

differentially according to the methylation state of the internal cytosine residue. The 

digestion ratio of HpaII/MspI can be determined by pyrosequencing, and the resulting 

ratio is inversely proportional to the methylation content of the sample. In the Alu and 

LINE1 assays, the methylation status of specific cytosine residues in bisulfite-

converted DNA is also quantified by pyrosequencing. Hansmann and colleagues 

(2012) cloned the bisulphite-converted DNA into a vector followed by 

pyrosequencing. Menschikowski and colleagues (2012) used bisulphite conversion 

followed by sequencing and also quantified the methylation status using methylation-

sensitive high-resolution melting analysis. This is a relatively new post-PCR analysis 

used to identify variations in nucleic acid sequences. The method is based on 

detecting small differences in PCR melting (dissociation) curves. The success of 

these studies suggests that it is of advantage not only to directly sequence PCR 

products, but to include further steps, such as cloning and single colony sequencing 

to obtain reliable results. However, in the time frame of the present thesis and for 

financial reasons it was not possible to go for such costly and time consuming 

approaches.  

 Due to the limitations of bisulfite conversion, alternative strategies to study the 

effects of DNA methylation on Pomc gene expression were sought. Menschikowski 

and colleagues (2012) have shown that under control conditions no PLA2R1-mRNA 

(Secretory phospholipase A2 receptor) was detectable after qRT-PCR and agarose 

gel electrophoresis in Jurkat cells (immortalized line of human T lymphocytes) and 

U937 cells. Furthermore, no amplification occurred while using real-time qRT-PCR. 

After exposure of the cells to 5-aza-2´-deoxycytidine(5-aza-dC), which inhibits DNA 

methyltransferase activity and results in DNA demethylation (hypomethylation) and 

gene activation by ‘opening’ chromatin, significant PLA2R1 transcript levels were 

detectable Brueckner and colleagues (2005) investigated the expression of Secreted 

frizzled-related protein 1 (Sfrp1), a gene that is known to be regulated by methylation, 

in human colon carcinoma cells (HCT 116) and human leukaemic pre-B cells (NALM-
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6) using the DNA methyltransferase inhibitor 2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-

yl)-3-(1H-indol-3-yl) propionic acid (RG108). In our study RG108 was used to 

investigate the Pomc methylation status because it specifically inhibits CpG 

methylases and is not cytotoxic. In LN cells RG108 failed to elevate Pomc 

expression, but the control gene Sfrp1 was elevated after 15 d of treatment with this 

inhibitor. Besides Sfrp1 there are several genes under control of DNA methylation. 

Another example is the extracellular matrix protein SPARC (secreted protein, acidic, 

rich in cysteine), which showed decreased expression levels in intervertebral discs in 

correlation with increased levels of DNA methylation of the SPARC promoter 

(Tajerian et al., 2011). Brueckner and colleagues (2005) also showed that RG108 

treatment resulted in the demethylation of the tissue inhibitor of metalloproteinases 

(TIMP)-3 gene and the cyclin-dependent kinase inhibitor 2A multiple tumour 

suppressor 1 (P16) gene in HCT 116 cells. Timp-3 mRNA was constitutively 

expressed in LN cells, which indicates that this gene is unmethylated in this cell 

system. Therefore, the Timp-3 gene was not suitable as a control in our experiments, 

and P16 was not tested. Together, our findings suggest that the expression of POMC 

mRNA cannot be induced by interfering with the methylation of the gene, but further 

studies should be undertaken using alternative approaches. 

 Moreover, the mechanism affecting gene expression via histone acetylation 

and deacetylation was investigated. This mechanism relates to the condensation of 

chromatin, which modulates the accessibility of the DNA for transcription factors, etc. 

The histone deacetylase inhibitor trichostatin A was used to treat the LN cells, 

resulting in no upregulation of Pomc mRNA expression. Studies showed that the 

DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine and the histone deacetylase 

inhibitor trichostatin A synergistically upregulate the expression of Maspin in human 

breast cancer cells (MCF-7) (Liao et al., 2014). To rule out that histone deacetylation 

and DNA methylation might act synergistically in the inhibition of Pomc gene 

expression, LN cells were treated with both RG108 and trichostatin A. Nevertheless, 

Pomc mRNA expression in naïve lymphocytes was unaffected by the combined 

treatment, which is similar to the single inhibitor treatments. These findings lead to 

the conclusion that the suppression of the Pomc gene expression in naïve 

lymphocytes cannot be overcome by interfering with the DNA methylation and 

histone acetylation status, indicating that other mechanisms seem to be involved.  
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To study the possible relevance of miRNA in the repression of Pomc mRNA 

expression, knockdown of Dicer was performed using siRNA. Dicer is an important 

endoribonuclease for the processing of most miRNAs. Several transfection reagents 

such as Lipofectamin 2000 and Fugene were tested, but none resulted in a reliable 

uptake of a fluorescent control siRNA (scrambled) by LN cells (data not shown). 

Others demonstrated that the majority of cationic liposome-delivered siRNAs enter 

cells via endocytosis (Lu et al., 2009). In immune cells, the endosomal detention of 

siRNA can result in immune responses via toll-like receptor activation (Sioud et al., 

2005; Yoo et al., 2006). Therefore, immune cells are considered especially hard to 

transfect. Moreover, primary and suspension cells such as our LN cells are generally 

difficult to transfect. An alternative approach to introduce siRNA into cells is the use 

of electroporation. The application of an external electrical field temporarily increases 

cell membrane permeability (Neumann et al., 1982) and delivers siRNA directly into 

the cell cytoplasm. Thus, electroporation can resolve some of the cell-specific 

limitations associated with liposome-based transfection, like the immune response 

induced by siRNA (Sioud et al., 2005). This technique has successfully been used to 

introduce siRNA into primary murine bone marrow-derived macrophages, resulting in 

a target gene knockdown (Wiese et al., 2010). Therefore, the electroporation of 

primary LN cells to knock down Dicer expression using siRNA was established. 

 In the beginning an electroporation system designed and constructed by 

Thorsten Stroh from the group of Prof. Sigmund (Department of Gastroenterology, 

Charité, Berlin) was used, but as this system was not accessible in the long term, the 

experiments were transferred to the Eppendorf Multiporator system with a different 

pulse profile. Similar results were obtained using the two systems. A reliable 

knockdown of Dicer mRNA was achieved after 48 h of electroporation using the 

Eppendorf Multiporator system, 1 µM siRNA, and a pulse of 600 V/25 µs. Studies 

have shown that despite the high efficiency of nucleic acid transfer, electroporation 

can induce high cell mortality (Tsong et al., 1991) Therefore, the number of 

transfected cells was increased from 1 to 10 million, which improved the survival rate 

and the uptake of siRNA. These experimental conditions were comparable to the 

conditions used in other studies (Jensen et al., 2014). Dicer protein knockdown was 

achieved after 5 d using the Eppendorf Multiporator system. At later time points the 

cells were less vital (as determined from microscopic observation of cell shape and 

via the trypan blue exclusion method), and β-actin mRNA levels were decreased (6 
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and 7-day experiments). Thus, the cells might have gone into apoptosis. However, 

knockdown of Dicer at the mRNA and protein level did not result in an upregulation of 

Pomc mRNA levels. As a positive control IL-10 mRNA was investigated, as its 

expression has been shown to be regulated by miRNA. In macrophages for example, 

innate IL-10 expression is promoted by miR-145 through targeting the epigenetic IL-

10 gene silencer histone deacetylase 11 (Lin et al., 2013). In this work, IL-10 mRNA 

levels were undetectable in electroporated LN cells upon Dicer knockdown, while 

untreated and scrambled siRNA-electroporated cells displayed basal IL-10 mRNA 

expression. On the other hand, there are several miRNAs that downregulate IL-10 

expression. For example, the IL-10 level was shown to be inversely correlated with 

the level of Egr 1 (ETS-related gene, an oncogene) induced by has-miR-106a 

expression in Jurkat (immortalized line of human T lymphocytes) and Raji cells 

(lymphoblast-like cells) (Sharma et al., 2009). In CD4+ T cells, IL-10 mRNA levels are 

reduced by let-7 miRNA (Swaminathan et al., 2012). These findings indicate a 

complex regulation of IL-10 mRNA by diverse miRNAs. Pomc mRNA, however, does 

not seem to be affected by this post-transcriptional regulatory mechanism. These 

results lead to the conclusion that miRNA does not play a suppressive role in naïve 

lymphocytes in our setup.  

 

4.2 Expression of POMC 

 

Next, we investigated the transcriptional inducers of Pomc expression. It was 

previously shown that under inflammatory conditions there was an upregulation of 

Pomc mRNA in LN cells (Sitte et al., 2007). In addition, treatment of naïve mixed LN 

cells with IL-4 also resulted in an upregulation of Pomc mRNA levels and this effect 

seemed to be mediated by STAT3 (Busch-Dienstfertig et al., 2012). Moreover, 

STAT3 was also found to be upregulated in a mixed population of LN cells draining 

inflamed paw tissue. Based on these findings, we postulated that cytokines are 

important activators of Pomc mRNA expression in lymphocytes and that the JAK-

STAT pathway is the critical signalling cascade mediating this effect. As these earlier 

studies were performed in a mixed population of LN cells, the present study aimed to 

investigate the effect of cytokine stimulation in subsets of LN cells.  
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 To identify the LN cell subsets expressing Pomc mRNA after CFA-induced 

paw inflammation in vivo or after IL-4 exposure in vitro, the mixed LN cell cultures 

were subsequently separated into B and T cells using MACS columns. Two time 

points were investigated (2 h and 24 h). Both treatments induced Pomc mRNA 

expression in B cells after 2 h, while T cells were found to transcribe the Pomc gene 

only after 24 h post IL-4 exposure and not at all after paw inflammation. These 

findings were in contrast to our hypothesis of a predominant Pomc mRNA expression 

in effector T cells. The analysis of peripheral blood leukocytes from healthy donors by 

Anderson and co-workers showed highest Pomc mRNA levels in T helper (Th) cells, 

while cytotoxic T cells, B cells, natural killer cells, monocytes, and granulocytes 

expressed lower levels (Andersen et al., 2005). In contrast to the present study, 

Anderson and colleagues did not measure Pomc exon 2-3 spanning primers but 

determined the level of exon 3 transcripts only. This not only holds the risk of 

amplifying DNA traces instead of mRNA but also touches a long-standing discussion 

on Pomc transcription in non-pituitary tissues. Several previous studies detected so-

called truncated Pomc transcripts in naïve lymphocytes (Buzzetti et al., 1989; Cabot 

et al., 1997; DeBold et al., 1988; Lacaze-Masmonteil et al., 1987; Oates et al., 1988; 

Przewlocki et al., 1992). Others argued that the translation products of truncated 

Pomc transcripts lacking the signal sequence encoded by exon 2 are not processed 

to authentic peptides (Clark et al., 1990; Rees et al., 2002). In the present study, all 

PCR measurements focused on the amplification of exons 2-3. There are not many 

appropriate studies to compare to our findings. (Lansac et al., 2006), investigated 

proenkephalin mRNA expression in the spleen of LPS-treated rats and found an 

elevation in the marginal zone, which harbours B cells, macrophages, and dendritic 

cells. However, no detailed analysis of the proenkephalin mRNA-expressing cell 

subsets in the marginal zone was performed. β-END is expressed by peripheral 

blood B cells after culture with corticotropin-releasing factor and arginine vasopressin 

(Kavelaars  et al., 1989). These findings indicate that full-length Pomc mRNA was 

expressed in B cells, which is in line with our data. This is also supported by the 

findings that a mouse B cell line produced and secreted ACTH (Weigentet al., 1987) 

and that the production of ACTH and β-END in B cells is stimulated with 

corticotropin-releasing factor and lipopolysaccharide (Harbour et al., 1987; 1991). 

However, these studies did not show Pomc gene expression. 
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After we identified B cells as the main Pomc-expressing LN cell subset, they 

were isolated again and directly stimulated with IL-4. However, in the absence of T 

cells no elevation of Pomc mRNA was observed. To detect if this lack of response to 

IL-4 was due to the missing cell-cell contact of B and T cells, T cells were stimulated 

with IL-4, and the supernatant was then added to B cells. These supernatant transfer 

experiments resulted in the expression of Pomc mRNA in B cells, indicating that a 

soluble T cell-derived factor was mediating this gene expression in B cells. In order to 

identify which cytokines were elevated in CFA and IL-4-stimulated T cells and which 

could be responsible for B cell activation, cytokine arrays were performed. The 

cytokines that were elevated in both cases (IL-2, IL-6, and IL-10) were then used to 

stimulate isolated B cells individually and in various combinations, but no Pomc 

mRNA expression was observed. In line with these findings, IL-2 also did not elevate 

Pomc mRNA in AtT-20 cells (a mouse corticotroph cell line) (Katahira et al., 1998; 

Fukata et al., 1989) and had no effect on mixed LN cell cultures (Busch-Dienstfertig 

et al., 2012). In T cell clones, however, Stephanou and colleagues (Stephanou et al., 

1991) found an IL-2-induced elevation of Pomc mRNA expression after 18-24 h, 

which resembles the time span of the IL-4-induced Pomc mRNA expression in LN-

derived T cells shown here. In contrast to our findings in B cells, a combination of LIF 

and IL-6 has been shown to increase the Pomc precursor in corticotroph cells (Li  et 

al., 1999). In summary, we found that IL-4 induces Pomc mRNA expression in B cells 

indirectly in a T cell-dependent manner. However, we could not identify the factor 

released by T cells that stimulated B cells to induce Pomc mRNA. 

 

4.2.1 Pathway and transcription factors 

 

To identify the relevant signalling pathway and active transcription factors 

involved in the IL4-induced, T cell-mediated Pomc mRNA expression in B cells, we 

used cell permeable inhibitors of the JAK-STAT pathway. The IL-4 effect was 

substantially blocked by pyridon 6, a Janus kinase blocker, and by a STAT5 inhibitor, 

but it was not affected using a JAK II inhibitor. These findings indicate that Pomc 

exon 2–3 mRNA upregulation by IL-4 is largely mediated via the JAK-STAT pathway 

involving STAT5, JAK 1, and JAK 3. There are several studies showing that the JAK-

STAT pathway is also involved in regulating pituitary Pomc gene expression. In 

pituitary corticotrophs, LIF induced Pomc gene expression by binding phosphorylated 
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STAT1 and -3 homo- and heterodimers to the promoter (Mynard et al., 2002). LIF 

was found to stimulate Pomc promoter activity through STAT1 and STAT3 

transcription factors (Ray et al., 1996; Bousquet et al., 1997). Li and coworkers (Li et 

al., 1999) demonstrated coordinated regulation of both Pomc and PC1 by LIF and IL-

6. Mouse AtT-20 cells have also been reported to display LIF-induced enhancements 

in ACTH secretion and Pomc transcription (Ray et al., 1996). It was also shown that 

LIF induced Pomc transcription in the placenta of pregnant rats. When differentiated 

rat choriocarcinoma cells (Rcho-1) were treated with LIF or IL-6, they also increased 

the expression of Pomc (Simamura et al., 2010). Besides JAK-STAT, IL-4 also 

activates the phosphoinositide 3-kinase / protein kinase B (Akt) pathway (Keegan et 

al., 1994). This pathway was not addressed in the present study, since it mainly 

regulates translational activity, cell growth, proliferation, differentiation, motility, and 

survival, while transcriptional regulation is not amongst its principal functions. 

Previous studies indicated that the MAPK pathway, which is activated by theAkt 

pathway, is not essential for IL-4-induced Pomc gene expression in lymphocytes 

(Busch-Dienstfertig et al., 2012). This resembles the findings of others in AtT-20 cells 

(Bousquet et al., 1999). 

In the present study, STAT5 as a transcription factor in B cells was found to be 

important for Pomc gene expression after supernatant transfer from IL-4 stimulated T 

cells. In our previous study the role of STATs was also investigated but with another 

approach (Busch-Dienstfertig et al., 2012). By competing with STAT1/3 and STAT5 

binding using decoy oligonucleotides, the IL-4-induced Pomc gene expression was 

reduced, but only STAT1/3 decoy oligonucleotides produced a significant effect. 

STAT5, in addition to STAT6, becomes directly activated by IL-4 in human B (Rolling 

et al., 1996) and murine pro-B cells (Friedrich et al., 1999). This suggests that the 

STAT5 activation in our experiments was not related to the unidentified T cell factor 

but was induced by IL-4. This raises the question of why direct IL-4 stimulation of B 

cells was insufficient for inducing Pomc gene expression if STAT5 is the key 

transcription factor. It seems that STAT5 is not the only critical factor determining 

Pomc transcription. Other factors, including STAT3, may play a concomitant role.  

At this point the exact mechanism or factor that suppresses Pomc expression in 

naïve lymphocytes is unclear. For LN cells stimulated in vitro by IL-4 or in vivo by 

paw inflammation, the current and previous data suggest that STAT3 and -5 have the 

potential to enhance Pomc gene expression in lymphocytes. However, the identity of 
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the regulatory factor inducing Pomc mRNA expression in B cells remains to be 

determined. The present study excluded IL-2, IL-6, and IL-10. However, various 

cytokines were upregulated after CFA and IL-4 treatments, leaving several 

candidates to be investigated. The current findings demonstrated the importance of 

the JAK-STAT pathway for the expression of Pomc mRNA in lymphocytes, which is 

supported by the fact that this is also a crucial pathway in the pituitary and 

hypothalamus.  

 

4.3 POMC-processing enzymes 

 

Another aim of the present study was to demonstrate that lymphocytes express 

the POMC-processing enzymes PC1 and PC2. We hypothesized that their 

expression is upregulated during hind paw inflammation. PC1 mRNA transcripts and 

protein were detectable in LNs draining inflamed paws in vivo. In the in vitro 

experiments, protein expression in IL-4 plus conA-treated cells, but not in non-

inflamed LNs, was observed. Cell subsets expressing PC1 mRNA under 

inflammatory conditions were B and T helper cells, while cytotoxic T cells did not 

express such transcripts. PC2 transcripts were expressed in non-inflamed and 

inflamed LNs, and its protein was significantly upregulated in cells from inflamed LNs, 

although PC2 mRNA expression levels decreased after the induction of inflammation. 

PC2 was expressed with or without IL-4 plus conA treatment, while PC1 was 

expressed only when LN cells were treated. The present findings extend previous 

findings of a co-expression of PC1 and PC2 protein with POMC and β-END in 

circulating leukocytes and inflammatory paw cells (Mousa et al., 2004). Differential 

expression of PC1 and PC2 mRNA was also shown in human pituitary tumours 

(Tateno et al., 2007). In general, basal PC1 and PC2 expression seems to be more 

common in other immune cells than lymphocytes. (LaMendola  et al., 1997) detected 

PC1 mRNA in differentiated macrophages derived from human blood cells. (Vindrola 

et al., 1994), found PC1 protein in alveolar macrophages and in splenic mononuclear 

cells, and PC2 protein was present in polymorphonuclear leukocytes. The present 

findings of an expression of the two PCs in lymphocytes under inflammatory 

conditions are largely in line with findings shown by (Lansac et al., 2006), who 

investigated PC1 and PC2 mRNA expression in rat spleens after LPS treatment. 

They found basal PC1 mRNA expression only in macrophage-rich regions such as 
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the splenic red pulp and the dense paracortical regions of LN tissue. Basal PC2 

mRNA was observed in LN follicles containing densely packed lymphoblasts and B-

lymphocytes but was absent in normal spleen tissue. PC1 and PC2 mRNAs were 

induced after LPS-injection in the germinal centres of spleens, while we found PC1 

mRNA induction but PC2 mRNA downregulation in the LNs draining paw 

inflammation. (Nakashima et al., 2001), investigated the expression of PCs in the 

spleen of diabetic rats. Their analysis showed basal PC1 in both the white (T 

lymphocytes) and red (monocytes and macrophages) pulps and demonstrated an 

increase after streptozotocin-induced diabetes in the white pulp, which is similar to 

the observations of this study.  

As has been shown by others, the expression of PC1 and PC2 in corticotroph 

cells is strongly associated with JAK/STAT pathway activation and can be induced by 

different cytokines. However, IL-4 treatment of naïve LN cells did not result in an 

upregulation of PC1 and PC2 in our experiments. This may be because IL-4 mainly 

activates STAT6. On the other hand, we observed PC1 protein expression after conA 

treatment of LN cells, which was amplified by combined IL-4 plus conA treatment. 

PC2 protein expression remained unaffected by all in vitro treatments. The question 

of whether conA induces PC1 expression via STAT3 activation was not addressed 

but may be of interest in future studies. In summary, the present study demonstrated 

Pomc gene expression and the presence of processing enzymes in LN-derived B 

cells under stimulated conditions, which strongly suggests that such cells are a 

source of bioactive peptides in inflammation. 

Other extracellular signals may explain the downregulation of PC2 mRNA levels 

under inflammatory conditions (Espinosa et al., 2008). For example, in the 

hypothalamus PC2 promoter activity can be regulated by a cAMP response element 

(Espinosa et al., 2008). These authors demonstrated that, by binding to inhibitory G-

protein coupled receptors, morphine induced a decrease in cAMP, resulting in the 

downregulation of PC2 mRNA. A potential inflammatory cytokine that binds to the 

inhibitory G-protein-coupled receptor CCR6 is the chemokine CCL20 (Yang et al., 

2005; Tanaka et al., 1999; Dieu-Nosjean et al., 2000).  

In the present study the mRNA expression of PC1 but not of PC2 coincided with 

the respective protein expression. Others showed that both PC1 and PC2 mRNA and 

protein levels coincided in primary hypothalamic neuronal cultures stimulated with 

leptin (Sanchez et al., 2004). There are several reasons for the poor correlations. 
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First, there are many post-transcriptional mechanisms involved in turning mRNA into 

protein that are not yet sufficiently defined; second, proteins may differ in their in vivo 

half-lives; third, there is a significant amount of noise in both protein and mRNA 

experiments (Baldi et al., 2001; Szallasi et al., 1999). Protein turnover can vary 

significantly depending on a number of different conditions (Glickman et al., 2002). A 

cell can control the rates of degradation or synthesis for a given protein, and there is 

significant heterogeneity, even within proteins that have similar functions (Pratt et al., 

2002; Anderson et al.,1997; Orntoft et al., 2002) found significant correlations. 

However, (Lichtinghagen et al., 2002) found no significant relationship between 

mRNA and protein levels. The discrepancy between PC2 mRNA and protein 

expression may as well suggest that translation is repressed. Such repression has 

previously been reported for the PC2 chaperone 7B2 (Tadros et al., 2011). Moreover, 

the discrepancy between mRNA and protein expression could also be due to false 

positive results. Here, the specificity of PCR products was confirmed via melting 

curve analysis and agarose gel electrophoresis, using pituitary cDNA as a positive 

control. The melting peaks of LN-derived amplicons were identical to those obtained 

from pituitary transcripts. Furthermore, electrophoretic separation of PCR products 

revealed that PC1 and PC2 amplicons detected in LNs matched the expected length 

of the nucleotide sequences and were equal in size to pituitary transcripts. These 

qualitative controls strongly suggest that our PCR products were valid. Although the 

antibody (PC1 and PC2) specificity/sensitivity was previously verified by the provider 

using transfected cells (Ugleholdt et al., 2006), we verified their specificity for our 

method and our cell type using preabsorption assays. Anti-PC1 staining was reduced 

by preabsorbing the antibody with PC1 peptide, but the staining was unaffected by 

preabsorption with PC2 peptide. Similarly, anti-PC2 staining was reduced by 

preabsorbing the antibody with PC2 peptide, while preabsorption with PC1 peptide 

had no effect. Additionally, we also performed specificity tests using western blot 

analysis of the pituitary lysates of PC1 and PC2 knockouts (data not shown).  

In addition to PC1 and PC2, there are other enzymes of importance for POMC 

processing. One of them is carboxypeptidase E (CPE), which functions as a 

regulated secretory pathway sorting receptor for several prohormones, including 

proopiomelanocortin, proenkephalin, and proinsulin. (Zhang et al., 2003) showed by 

mutational studies that full length CPE C-terminal residues are required for the 

regulated secretory pathway. They also showed that sorting CPE to the regulated 
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secretory pathway in endocrine cells is mediated by lipid rafts and that the four C-

terminal residues of CPE, i.e. Thr(431) to Leu-Asn-Phe(434), are required for raft 

association and sorting. In the present study, CPE mRNA and protein expression 

was undetectable in non-inflamed and inflamed LNs as well as in IL-4-stimulated LN 

cells. Since neither CPE mRNA nor protein was detected, we assume that full-length 

CPE is absent in rat LN cells. How lymphocytes compensate for the lack of CPE 

function remains to be determined. 

Other studies demonstrated an additional protease pathway for converting 

prohormones into active peptides mediated by cathepsin L in secretory vesicles 

(Yasothornsrikul et al., 2003) and Arg/Lys aminopeptidase (Yasothornsrikul et al., 

1998). Cathepsin L cleaves proteins at the NH2-terminal side of dibasic sites or 

between the dibasic residues (Yasothornsrikul et al., 1998). In contrast, PC1 and 

PC2 cleave proteins at the COOH-terminal side of dibasic sites, which then requires 

carboxypeptidase E/H (CPE/H) in order to remove COOH-terminal basic residues 

(Azaryan et al.,1994; Zhou et al., 1999; Seidah et al., 2002; Fugère et al., 2005). 

Different aminopeptidases such as cathepsin H (Lu et al., 2012) and aminopeptidase 

B (Yasothornsrikul et al., 2003; Hwang et al., 2007b) have been shown to remove the 

N-terminal basic residues Arg and Lys from peptide intermediates. The investigation 

of cathepsin L knockout mice revealed that cathepsin L is involved in processing 

POMC to produce ACTH, β-END, and α-MSH (Funkelstein et al., 2008). Cathepsin L 

knockout mice have decreases in pituitary ACTH, β-END, and α-MSH, while levels of 

POMC increased. Others showed a co-localization of cathepsin L with β-END, α-

MSH, and ACTH in pituitary secretory vesicles (Hook et al., 2012). We found 

cathepsin L and aminopeptidase B mRNA expression in LNs from healthy rats and 

from animals with paw inflammation. Future studies will have to examine cathepsin L 

and aminopeptidase B proteins. Together these findings indicate that cathepsin L 

and aminopeptidase B may also be involved in POMC cleavage in lymphocytes.  

 

4.4. Measurement of β-endorphin ( β-END) 
 

 To match the processing of POMC with the presence of PC1 and PC2 in 

lymphocytes we analysed whether our in vivo and in vitro stimulation models resulted 

in enhanced cellular β-END contents. Immunofluorescence experiments with 

antibodies to β-END showed no elevation of β-END when naïve LN cells were 
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treated with IL-4 alone. To obtain significant opioid peptide levels and cell numbers 

expressing β-END in vitro, we had to prime naïve cells with the mitogen conA, similar 

to others (Hermanussen et al., 2004). An elevation of β-END was observed under the 

same conditions that produced upregulation of PC1 protein expression. These results 

extend our previous findings where increased β-END levels of LN cells were 

measured after in vitro stimulation with IL-4 plus conA (Busch-Dienstfertig et al., 

2012). Then we set out to investigate β-END production in cell subsets of the 

draining LNs of rats with paw inflammation. We found a strong upregulation in B cells 

of inflamed nodes, while the amount of β-END in T cells only slightly increased. 

These data extend our previous findings showing increased cellular β-END levels in 

mixed LN cells in vivo (Sitte et al., 2007) and indicate that B cells are the 

predominant Pomc gene expressing subtype in inflammation. Since these cells were 

found to express PC1 and PC2 alike, it is consistent that β-END elevation was 

determined in B but not in T cells. Nevertheless, these findings were unexpected. 

Previous double-staining experiments with antibodies to β-END and different cell 

phenotypes demonstrated that β-END is mostly present in memory T cells (Cabot et 

al., 1997). However, in line with our findings, others investigated the cleavage 

products of POMC in B cells (Harbour et al., 1991; 1987). These authors found that 

stimulating B cells with corticotropin-releasing hormones or viruses produced ACTH 

1-39 and β-END, while in LPS-stimulated cells cleavage products of ACTH 1-39 

(ACTH 1-22 to 1-26) and β-END (gamma-END) predominated. LPS activated an 

additional processing enzyme with an activity pH of 5, which resembles the optimal 

pH of PC2 (Li et al., 2003). Together, these findings suggest that B cells are a source 

of β-END production, and they support that Pomc gene expression and precursor 

processing are independently regulated in lymphocytes. 

 

4.5 Opioid peptides in arthritis 

 
In order to compare the above findings to a different model of inflammation 

(ACIA), the expression of opioid peptides in explanted cells of arthritic knees was 

investigated. As expected, the amount of β-END determined in the supernatant of 

such cells was generally related to the cell number, but it surprisingly did not 

correlate with the number of immune cells in the preparation. This is in contrast to 

previous findings obtained in acutely inflamed hind paws (Rittner et al., 2001; Brack 
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et al., 2004). It is possible that β-END may be expressed in other cells under chronic 

conditions than in acute inflammation. Mousa and colleagues have shown that, 

besides macrophages and T cells, fibroblast-like synoviocytes also stained positive 

for β-END in tissue biopsies from patients with chronic rheumatoid arthritis. In some 

biopsies, fibroblast-like synoviocytes and plasma cells represented the predominant 

β-END-containing cell populations (Mousa et al., 2007). Our data suggest that in 

ACIA the expression of β-END also occurs in non-immune cells. 

The cellular levels of met-enkephalin correlated significantly with cell numbers 

from explanted knee cells. Correlations with the number of CD45+ cells were also 

strong but not statistically significant; the strongest correlation was found for the 

number of non-immune cells. Overall, the presence of this opioid peptide in immune 

and non-immune cells is in agreement with previous findings of met-enkephalin-

positive lymphocytes, macrophages, and plasma cells in tissue biopsies from 

rheumatoid arthritis patients and with met-enkephalin-positive fibroblasts in tissue 

biopsies from osteoarthritis patients (Mousa et al., 2007). The liberation of met-

enkephalin, however, did not correlate with cell numbers of explanted knee cells. It is 

possible that the extent of met-enkephalin release differs between the cell subsets 

(lymphocytes, macrophages, plasma cells, and fibroblasts). However, relative to the 

molecular mass of the two peptides (571.65 Da for met-enkephalin and 3466.07 Da 

for β-END), the net amount of biologically active peptides determined here was 

similar.  

Finally, we compared opioid peptides in explanted cells of arthritic knees and 

LNs. In knee cells we found that the amount of Met-enkephalin increased after 

induction of arthritis but decreased at later stages. This is in contrast to LN cells, 

where no substantial changes were observed between early and later stages. This 

may indicate that opioid peptides in the knee joint are stimulated by different 

mechanisms in comparison to LNs. Previous studies from (Baddack et al., 2013) 

showed the formation of a new LN in close proximity to the knee joint in this model. 

Therefore, we investigated opioid peptides in the synovial space, popliteal LNs, and 

periarticular LNs. The tissue slices were deparaffinised for antigen retrieval. Various 

parameters were altered, but the results were inconsistent. There could be various 

reasons for this. Proteolytic digestion of fixed paraffin sections can increase the 

stainability chances of cytoplasmic antigens (Nemes et al., 1983; Tanaka et al., 

1984) demonstrated that pre-treatment with hyaluronidase was necessary for 
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staining surface antigens of lymphocytes, whereas (Sato et al., 1986) demonstrated 

that pre-treatment with the enzyme was not necessary. The staining also largely 

depends on the fixation procedure (Fisher et al., 1994). Some reports suggest that 

antigen retrieval immunohistochemistry gives good results (Shi et al., 1997) but 

standardization is required for this method (Taylor et al., 1994, 2006; Shi et al., 

2013). For example, standardization of temperature, duration of heating, and pH 

value of the buffer are major factors that influence the effectiveness of staining (Shi 

et al., 2007). Future experiments will have to be performed to optimize these 

conditions. 

 

4.6 Conclusion 

 

 From the present studies we can conclude that the regulation of Pomc in 

lymphocytes differs from the pituitary. Pomc in lymphocytes is expressed only in B 

cells under conditions such as paw inflammation and in vitro stimulation of LN cells 

with IL-4. Our experiments suggest that neither DNA methylation, acetylation, nor 

miRNA are involved in the repression of the Pomc gene in naïve cells. Although the 

key factor triggering Pomc mRNA expression in B cells remains unknown, there is an 

indication that it is a cytokine acting through the JAK/STAT pathway. Both in vitro and 

in vivo experiments show that the proteolytic processing of POMC into β-END in 

lymphocytes involves PC1, PC2, cathepsin L, and aminopeptidase B. However, 

unlike in the pituitary, it does not show involvement of CPE. We found that both β-

END and POMC are produced in B cells. These findings may help develop novel 

strategies for pain therapy in inflammatory diseases by boosting the innate opioid 

peptide production in immune cells. 

 

4.7 Future experiments 

  

 Future experiments will have to address remaining questions regarding the 

exact mechanism that suppresses Pomc gene expression in naïve lymphocytes, the 

factor released by T cells that stimulates B cell production of Pomc mRNA, the role of 

cathepsin L and aminopeptidase B in POMC cleavage in lymphocytes, the lack of 

CPE in lymphocytes, the cellular expression of β-END in chronic arthritis, and the 

differential production and release of β-END and Met-enkephalin. 



                                                                                                                                 References 

88 
 

5 References 
 
Abrams GM, Nilaver G, Hoffman D, Zimmerman EA, Ferin M, Krieger DT, Liotta AS 
(1980). Immunocytochemical distribution of corticotropin (ACTH) in monkey brain. 
Neurology 30(10):1106-10. 
  
Anderson L, Seilhamer J (1998). A comparison of selected mRNA and protein 
abundances in human liver. Electrophoresis 18:533-537. 
 
Asa S, Kovacs K, Melmed S (1995). The hypothalamic-pituitary function. In: Melmed 
S, ed. The Pituitary. Cambridge, MA: Blackwell Science; p. 3. 
 
Azaryan AV and Hook VYH. (1994) Unique cleavage specificity of prohormone thiol 
protease’ related to proenkephalin processing. FEBS Lett 341:197-202. 
 
Baddack U, Hartmann S, Bang H, Grobe J, Loddenkemper C, Lipp M, and Muller G. 
(2013). A chronic model of arthritis supported by a strain-specific periarticular lymph 
node in BALB/c mice. Nat Commun 4:1644. 
 
Bai G, Wei D, Zou S, Ren K, Dubner R (2010). Inhibition of class II histone 
deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 7:6-
51. 
 
Baldi P, Long AD (2001). A Bayesian framework for the analysis of microarray 
expression data: regularized t-test and statistical inferences of gene changes. 
Bioinformatics 17:509-519. 
 
Barber A, Gottschlich R (1992). Opioid agonists and antagonists: an evaluation of 
their peripheral actions in inflammation. Med Res Rev 12(5):525-62. 
 
Bardin CW, Chen CL, Morris PL, Gerendai I, Boitani C, Liotta AS, Margioris A, 
Krieger (1987). Proopiomelanocortin-derived peptides in testis, ovary, and tissues of 
reproduction. Recent Prog Horm Res 43:1-28. 
 
Benjannet S, Rondeau N, Day R, Chretien M, Seidah NG (1991). PC1 and PC2 are 
proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of 
basic residues. Proc Natl Acad Sci U S A 88(9):3564-3568. 
 
Benjannet S, Rondeau N, Paquet L, Boudreault A, Lazure C, Chretien M, Seidah NG 
(1993). Comparative biosynthesis, covalent post-translational modifications and 
efficiency of prosegment cleavage of the prohormone convertases PC1 and PC2: 
glycosylation, sulphation and identification of the intracellular site of prosegment 
cleavage of PC1 and PC2. Biochem J 294(Pt 3):735-743. 
 
Benjannet S, Savaria D, Chretien M, Seidah NG (1995). 7B2 is a specific intracellular 
binding protein of the prohormone convertase PC2. J Neurochem 64(5):2303-2311. 
 
Bennett DL, Bailyes EM, Nielsen E, Guest PC, Rutherford NG, Arden SD, Hutton JC 
(1992). Identification of the type 2 proinsulin processing endopeptidase as PC2, a 
member of the eukaryote subtilisin family. J Biol Chem 267(21): 15229-15236. 
 



                                                                                                                                 References 

89 
 

Bergeron F, Leduc R, Day R (2000). Subtilase-like pro-protein convertases: from 
molecular specificity to therapeutic applications. J Mol Endocrinol 24(1): 1-22. 
 
Bicknell AB (2008). The tissue-specific processing of pro-opiomelanocortin. Journal 
of Neuroendocrinology 20:692–699. 
 
Binder W, Mousa SA, Sitte N, Kaiser M, Stein C, Schafer M. (2004). Sympathetic 
activation triggers endogenous opioid release and analgesia within peripheral 
inflamed tissue. Eur J Neurosci 20(1):92-100. 
 
Bost KL, Smith EM, Wear LB, Blalock JE (1987). Presence of ACTH and its receptor 
on a B lymphocytic cell line: a possible autocrine function for a neuroendocrine 
hormone. J Biol Regul Homeost Agents 1(1):23-7. 
 
Boston BA. (2002).Peripheral effects of melanocortins. In: Cone RD editor. The 
Melanocortin Receptors. Totowa, NJ: Human Press. p. 143–69.Boudreault, A,  

Gauthier D and Lazure C (1998). Proprotein convertase PC1/3-related peptides are 
potent slow tight-binding inhibitors of murine PC1/3 and Hfurin. J Biol Chem 273(47): 
31574-31580. 

Boué J, Blanpied C, Brousset P, Vergnolle N, and Dietrich G. (2011). Endogenous 
opioid-mediated analgesia is dependent on adaptive T cell response in mice. J 
Immunol 186:5078-5084. 
 
Bousquet C, Melmed S. (1999). Critical role for STAT3 in murine pituitary 
adrenocorticotropin hormone leukemia inhibitory factor signaling. J Biol Chem. 
274:10723–10730. 
 
Brack A, Rittner HL, Machelska H, Shaqura M, Mousa SA, Labuz D, Zöllner C, 
Schäfer M, Stein C (2004). Endogenous peripheral antinociception in early 
inflammation is not limited by the number of opioid-containing leukocytes but by 
opioid receptor expression. Pain 108(1-2):67-75. 
 
Braks JA, Van Horssen AM, Martens GJ. (1996). Dissociation of the complex 
between the neuroendocrine chaperone 7B2 and prohormone convertase PC2 is not 
associated with proPC2 maturation. Eur J Biochem 238(2):505-10. 
 
Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai 
S, Wiessler  M, Lyko F.(2005). Epigenetic reactivation of tumor suppressor genes by 
a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 
65(14):6305-11. 
 
Busch-Dienstfertig M, Labuz D, Wolfram T, Vogel NN, Stein C. (2012).  JAK-
STAT1/3-induced expression of signal sequence-encoding proopiomelanocortin 
mRNA in lymphocytes reduces inflammatory pain in rats. Mol Pain. 13;8:83. 
 
Butler AA, Cone RD. (2003). Knockout studies defining different roles for 
melanocortin receptors in energy homeostasis. Ann N Y Acad Sci ;994:240-5. 
 



                                                                                                                                 References 

90 
 

Buzzetti R, McLoughlin L Lavender PM, Clark AJ and Rees LH. (1989). Expression 
of pro-opiomelanocortin gene and quantification of adrenocorticotropic hormone-like 
immunoreactivity in human normal peripheral mononuclear cells and lymphoid and 
myeloid malignancies. J Clin Invest 83(2): 733-737. 
 
Cabot, PJ Carter L, Gaiddon C,  Zhang Q, Schäfer M, Loeffler JP and Stein C. 
(1997). Immune cell-derived beta-endorphin. Production, release, and control of 
inflammatory pain in rats. J Clin Invest 100(1): 142-148. 
 
Castro M, Gusovsky GF and Loh YP. (1989). Transmembrane signals mediating 
adrenocorticotropin release from mouse anterior pituitary cells. Mol Cell Endocrinol 
65(1-2): 165-173. 
 
Castro MG, Morrison E. (1997). Post-translational processing of proopiomelanocortin 
in the pituitary and in the brain. Crit Rev Neurobiol.11:35–57. 
 
Che FY, Yan L, Li H, Mzhavia N, Devi LA and Fricker LD. (2001). Identification of 
peptides from brain and pituitary of Cpe(fat)/Cpe(fat) mice. Proc Natl Acad Sci U S A 
98(17): 9971-9976. 
 
Chen CL, Chang CC, Krieger DT and Bardin CW (1986). Expression and regulation 
of proopiomelanocortin-like gene in the ovary and placenta: comparison with the 
testis. Endocrinology 118(6): 2382-2389. 
 
Chiechio S, Zammataro M, Morales ME, Busceti CL, Drago F, Gereau RW, Copani 
A, Nicoletti F. (2009). Epigenetic modulation of mGlu2 receptors by histone 
deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol. 
75(5):1014-20. 
 
Childers SR (1993). Opioids I. In Herz A, ed. Handbook of Experimental 
Pharmacology, Vol. 104. Berlin: Springer Verlag; pp. 189–216. 
 
Christie DL Batchelor DC and Palmer DJ. (1991). Identification of kex2-related 
proteases in chromaffin granules by partial amino acid sequence analysis. J Biol 
Chem 266(24): 15679-15683. 
 
Clark AJ Lavender PM, Coates P, Johnson MR and Rees LH. (1990). In vitro and in 
vivo analysis of the processing and fate of the peptide products of the short 
proopiomelanocortin mRNA. Mol Endocrinol 4(11): 1737-1743. 
 
Coelho FM, Pinho V, Amaral FA, Sachs D, Costa V, Rodrigues D. (2008). The 
chemokine receptors CXCR1/2 modulate antigen-induced arthritis by regulating 
adhesion of neutrophils to the synovial microvasculature. Arthritis Rheum 58: 1329–
2337. 
 
Cool DR and Loh YP. (1994). Identification of a sorting signal for the regulated 
secretory pathway at the N-terminus of pro-opiomelanocortin. Biochimie 76(3-4): 
265-270. 
 



                                                                                                                                 References 

91 
 

Cool DR Normant E, Shen F, Chen HC, Pannell L, Zhang Y and Loh YP. (1997). 
Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic 
obliteration leads to endocrine disorders in Cpe(fat) mice. Cell 88(1): 73-83. 
 
Corbett AD, Paterson SJ, and Kosterlitz HW. (1993) in Handbook of Experimental 
Pharmacology: Opioids I (A.Herz, Ed.), Vol. 104, pp. 645–679, Springer Verlag, 
Berlin. 
 
Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD.(1999). 
Integration of NPY, AGRP, and melanocortin signals in the hypothalamic 
paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron. 1:155-
63. 

Cunha TM, Verri WA Jr, Silva JS, Poole S, Cuha FQ, Ferreira SH (2005). A cascade 
of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl 
Acad Sci U S A 102: 1755–1760. 
 
Day R, Schafer MK, Watson SJ, Chretien M and Seidah NG. (1992). Distribution and 
regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol 
Endocrinol 6(3): 485-497. 
 
DeBold CR, Menefee JK, Nicholson WE and Orth DN. (1988). Proopiomelanocortin 
gene is expressed in many normal human tissues and in tumors not associated with 
ectopic adrenocorticotropin syndrome. Mol Endocrinol. 2(9): 862-870. 
 
DeBold CR, Nicholson WE and Orth DN. (1988). Immunoreactive 
proopiomelanocortin (POMC) peptides and POMC-like messenger ribonucleic acid 
are present in many rat nonpituitary tissues. Endocrinology 122(6): 2648-2657. 
 
Dieu-Nosjean  MC, Massacrier C, Homey B, Vanbervliet B, Pin JJ, Vicari A, 
Lebecque S, Dezutter-Dambuyant C, Schmitt D, Zlotnik A, Caux C.(2000). 
Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces 
and is the most potent chemokine known in attracting Langerhans cell precursors. J 
Exp Med. 4;192(5):705-18. 
 
Doehring A, Geisslinger G, Lötsch J. (2011). Epigenetics in pain and analgesia: an 
imminent research field. Eur J Pain. 15(1):11-6. 
 
Douglass J Civelli O and Herbert E. (1984). Polyprotein gene expression: generation 
of diversity of neuroendocrine peptides. Annu Rev Biochem 53: 665-715. 
 
Espinosa VP, Liu Y, Ferrini M, Anghel A, Nie Y, Tripathi PV, Porche R, Jansen E, 
Stuart RC, Nillni EA, Lutfy K, Friedman TC. (2008). Differential regulation of 
prohormone convertase 1/3, prohormone convertase 2 and phosphorylated cyclic-
AMP-response element binding protein by short-term and long-term morphine 
treatment: implications for understanding the "switch" to opiate addiction. 
Neuroscience. 15;156(3):788-99. 
 
Firestein GS. (2003). Evolving concepts of rheumatoid arthritis. Nature 423:356-361. 
 



                                                                                                                                 References 

92 
 

Firestein GS. (2005). Immunologic mechanisms in the pathogenesis of rheumatoid 
arthritis. J Clin Rheumatol 11: S39–S44. 
 
Fisher CJ, Gillett CE, Vojtĕsek B, Barnes DM, Millis RR.(1994).Problems with p53 
immunohistochemical staining: the effect of fixation and variation in the methods of 
evaluation.  J Cancer. (1):26-31. 
 
Fortenberry Y, Hwang JR, Apletalina EV and Lindberg I. (2002). Functional 
characterization of ProSAAS: similarities and differences with 7B2. J Biol Chem 
277(7): 5175-5186. 
 
Friedrich K, Kammer W, Erhardt I, Brändlein S, Sebald W, Moriggl R.(1999). 
Activation of STAT5 by IL-4 relies on Janus kinase function but not on receptor 
tyrosine phosphorylation, and can contribute to both cell proliferation and gene 
regulation. Int Immunol.11(8):1283-94. 
 
Fukata J, Usui T, Naitoh Y, Nakai Y, Imura H. (1989). Effects of recombinant human 
interleukin-1 alpha, -1 beta, 2 and 6 on ACTH synthesis and release in the mouse 
pituitary tumour cell line AtT-20. J Endocrinol.122:33–39. 
 
Funkelstein L, Toneff T, Hwang SR, Reinheckel T, Peters C, Hook V.(2008). 
Cathepsin L participates in the production of neuropeptide Y in secretory vesicles, 
demonstrated by protease gene knockout and expression. J Neurochem. 106(1):384-
91. 
 
Funkelstein L . Toneff SR, Hwang F, Beuschlein UD, LichtenauerT, Reinheckel C, 
Peters, Hook VYH.. (2008). Major role of cathepsin L for producing the peptide 
hormones ACTH, β-endorphin, and α-MSH, illustrated by protease gene knockout 
and expression, J. Biol. Chem. (83)35652–35659. 
 
Fuge`re M and Day R. (2005) Cutting back on pro-protein convertases: the latest 
approaches to pharmacological inhibition. Trends Pharmacol. Sci. 26, 294–301. 
 
Gee CE, Chen CL, Roberts JL, Thompson R, Watson SJ.(1983). Identification of 
proopiomelanocortin neurones in rat hypothalamus by in situ cDNA-mRNA 
hybridization. Nature. 306(5941):374-6. 
 
Glickman MH, Ciechanover A. (2002). The ubiquitin-proteasome proteolytic pathway: 
destruction for the sake of construction. Physiol Rev. 82:373-428. 
 
Goetz CA, Harmon IR, O'Neil JJ, Burchill MA, Johanns TM, Farrar MA. (2005). 
Restricted STAT5 activation dictates appropriate thymic B versus T cell lineage 
commitment. J. Immunol. 174, 7753–7763. 
 
Goodman LJ  and Gorman CM.(1994). Autoproteolytic activation of the mouse 
prohormone convertase mPC1. Biochem Biophys Res Commun 201(2): 795-804. 
 
Gorbman A, Dickhoff WW, Vigna SR, Clark NB, Ralph CL.(1983). Comparative 
Endocrinology. New York: John Wiley and Sons. 



                                                                                                                                 References 

93 
 

Greenbaum D, Colangelo C, Williams K, Gerstein M.(2003). Comparing protein 
abundance and mRNA expression levels on a genomic scale. Genome Biol.4(9):117. 
 
Grigorakis SI, Anastasiou E, Dai K, Souvatzoglou A, Alevizaki M. (2000). Three 
mRNA transcripts of the proopiomelanocortin gene in human placenta at term. Eur J 
Endocrinol. 142(5):533-6. 
 
Hakes DJ, Birch NP, Mezey A, Dixon JE. (1991). Isolation of two complementary 
deoxyribonucleic acid clones from a rat insulinoma cell line based on similarities to 
Kex2 and furin sequences and the specific localization of each transcript to endocrine 
and neuroendocrine tissues in rats. Endocrinology.129(6):3053-63. 
 
Hansmann T, Pliushch G, Leubner M, Kroll P, Endt D, Gehrig A, Preisler-Adams S, 
Wieacker P, Haaf T. (2012).Constitutive promoter methylation of BRCA1 and 
RAD51C in patients with familial ovarian cancer and early-onset sporadic breast 
cancer. Hum Mol Genet. 21(21):4669-79. 
 
Harbour DV, Galin FS, Hughes TK, Smith EM, Blalock JE. (1991). Role of leukocyte-
derived pro-opiomelanocortin peptides in endotoxic shock. Circ Shock. 35(3):181-91. 
 
Harbour DV, Smith EM, Blalock JE. (1987). Novel processing pathway for 
proopiomelanocortin in lymphocytes: endotoxin induction of a new prohormone-
cleaving enzyme. J Neurosci Res. 18(1):95-101. 
 
Harbour DV, Smith EM, Blalock JE. (1987). Splenic lymphocyte production of an 
endorphin during endotoxic shock. Brain Behav Immun. (2):123-33. 
 
Hayatsu H. (1976). Bisulfite modification of nucleic acids and their constituents. Prog 
Nucleic Acid Res Mol Biol.16:75-124. 
 
He L, Hannon GJ. (2004). MicroRNAs: small RNAs with a big role in gene regulation. 
Nat Rev Genet. (7):522-31. 
 
Hermanussen S, Do M and Cabot PJ. (2004). Reduction of beta-endorphin-
containing immune cells in inflamed paw tissue corresponds with a reduction in 
immune-derived antinociception: reversible by donor activated lymphocytes. Anesth 
Analg. 98:723-729. 
 
Holm IA, Majzoub JA. Adrenocorticotropin. (1995). In: Melmed S editor. The Pituitary. 
Cambridge, MA: Blackwell Science 45 p. 
 
Huscher D, Thiele K, Gromnica-Ihle E, Hein G, Demary W, Dreher R, Zink A and 
Buttgereit, F. (2009). Dose-related patterns of glucocorticoid-induced side effects. 
Ann Rheum Dis 68:1119-1124. 
 
Huzen J, van Veldhuisen DJ, van Gilst WH, van der Harst P. (2008).Telomeres and 
biological ageing in cardiovascular disease. Ned Tijdschr Geneeskd.152(22):1265-
70. 
 



                                                                                                                                 References 

94 
 

Jenks BG. (2009). Regulation of proopiomelanocortin gene expression: an overview 
of the signaling cascades, transcription factors, and responsive elements involved. 
Ann N Y Acad Sci.1163:17-30. 
 
Jensen K, Anderson JA, Glass EJ. (2014). Comparison of small interfering RNA 
(siRNA) delivery into bovine monocyte-derived macrophages by transfection and 
electroporation. Vet Immunol Immunopathol.158(3-4):224-32. 
 
Jiang Y, Genant HK, Watt I, Cobby M, Bresnihan B, Aitchison R. (2000). A 
multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of 
recombinant human interleukin-1 receptor antagonist in patients with rheumatoid 
arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis 
Rheum 43: 1001–1009. 
 
Jin WD, Boutillier AL, Glucksman MJ, Salton SR, Loeffler JP and Roberts JL. (1994). 
Characterization of a corticotropin-releasing hormone-responsive element in the rat 
proopiomelanocortin gene promoter and molecular cloning of its binding protein. Mol 
Endocrinol 8(10): 1377-1388. 
 
Jones CK, Eberle EL, Peters SC, Monn JA, Shannon HE. (2005).Analgesic effects of 
the selective group II (mGlu2/3) metabotropic glutamate receptor agonists LY379268 
and LY389795 in persistent and inflammatory pain models after acute and repeated 
dosing. Neuropharmacology. 49 Suppl 1:206-18. 
 
Jutras I, Seidah NG, Reudelhuber TL and Brechler V. (1997). Two activation states 
of the prohormone convertase PC1 in the secretory pathway. J Biol Chem 272(24): 
15184-15188. 
 
Katahira M Iwasaki Y, Aoki Y, Oiso Y and Saito H. (1998). Cytokine regulation of the 
rat proopiomelanocortin gene expression in AtT-20 cells. Endocrinology 139(5): 
2414-2422. 
 
Kavelaars A, Ballieux RE, Heijnen CJ. (1989). The role of IL-1 in the corticotropin-
releasing factor and arginine- vasopressin-induced secretion of immunoreactive beta-
endorphin by human peripheral blood mononuclear cells. J Immunol. ;142(7):2338-
42. 

Kavelaars A, Ballieux RE, Heijnen CJ.(1990). Differential effects of beta-endorphin 
on cAMP levels in human peripheral blood mononuclear cells. Brain Behav 
Immun.;4(3):171-9. 

Keegan AD, Nelms K, Wang LM, Pierce JH, Paul WE.(1994). Interleukin 4 receptor: 
signaling mechanisms. Immunol Today;15(9):423-32. 

Kim J, Bartel DP. (2009). Allelic imbalance sequencing reveals that single-nucleotide 
polymorphisms frequently alter microRNA-directed repression. Nat Biotechnol. 
27(5):472-7. 
 
Kobayashi Y, Sakamoto T, Iguchi K, Imai Y, Hoshino M, Lance VA. (2007). cDNA 
cloning of proopiomelanocortin (POMC) and mass spectrometric identification of 
POMC-derived peptides from snake and alligator pituitaries. Gen Comp Endocrinol 
152:73–81. 



                                                                                                                                 References 

95 
 

 
Korner J, Chun J, O'Bryan L, and Axel R. (1991). Prohormone processing in 
Xenopus oocytes: characterization of cleavage signals and cleavage enzymes. Proc 
Natl Acad Sci U S A 88(24): 11393-11397. 
 
Koscianska E, Starega-Roslan J, Krzyzosiak WJ. (2001).The role of Dicer protein 
partners in the processing of microRNA precursors. PLoS One. 6(12):e28548 
 
Kroot EJ, de Jong BA, van Leeuwen MA, Swinkels H, van den Hoogen FH, van't Hof 
M,van de Putte LB, van Rijswijk MH, van Venrooij WJand van Riel PL. (2000). The 
prognostic value of anti-cyclic citrullinated peptide antibody in patients with recent-
onset rheumatoid arthritis. Arthritis Rheum 43:1831-1835. 
 
Labuz D, Schreiter A, Schmidt Y, Brack Aand Machelska H. (2010). T lymphocytes 
containing beta-endorphin ameliorate mechanical hypersensitivity following nerve 
injury. Brain Behav Immun 24:1045-1053. 
 
Lacaze-Masmonteil T, de Keyzer Y, Luton JP, Kahn A and Bertagna X. (1987). 
Characterization of proopiomelanocortin transcripts in human nonpituitary tissues. 
Proc Natl Acad Sci U S A 84(20): 7261-7265. 
 
Lamango NS Zhu X and Lindberg I. (1996). Purification and enzymatic 
characterization of recombinant prohormone convertase 2: stabilization of activity by 
21 kDa 7B2. Arch Biochem Biophys 330(2): 238-250. 
 
LaMendola J, Martin SK, Steiner DF.(1997).Expression of PC3, carboxypeptidase E 
and enkephalin in human monocyte-derived macrophages as a tool for genetic 
studies. FEBS Lett;404(1):19-22. 

Lamolet B, Pulichino AM, Lamonerie T, Gauthier Y, Brue T,  Enjalbert A and Drouin 
J.(2001). A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in 
cooperation with Pitx homeoproteins. Cell 104(6): 849-859. 
 
Lamonerie T, Tremblay JJ, Lanctot C, Therrien M, Gauthier Y and Drouin J.(1996). 
Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the 
pro-opiomelanocortin gene. Genes Dev 10(10): 1284-1295. 
 
Lansac G, Dong W, Dubois CM, Benlarbi N,  Afonso C, Fournier I, Salzet M and Day 
R. (2006). Lipopolysaccharide mediated regulation of neuroendocrine associated 
proprotein convertases and neuropeptide precursor processing in the rat spleen. J 
Neuroimmunol 171(1-2): 57-71. 
 
Lee RC, Feinbaum RL, Ambros V.(1993). The C. elegans heterochronic gene lin-4 
encodes small RNAs with antisense complementarity to lin-14. Cell.75(5):843-54. 
 
Lee SN Prodhomme E and Lindberg I. (2004). Prohormone convertase 1 (PC1) 
processing and sorting: effect of PC1 propeptide and proSAAS. J Endocrinol 182(2): 
353-364. 
 



                                                                                                                                 References 

96 
 

Li CH, Chung D, Doneen BA.(1976). Isolation, characterization and opiate activity of 
beta-endorphin from human pituitary glands. Biochem Biophys Res Commun. 
;72(4):1542-7. 

Li CH, Chung D, Oelofsen W, Naudé RJ (1978). Adrenocorticotropin 53. The amino 
acid sequence of the hormone from the ostrich pituitary gland. Biochem Biophys Res 
Commun 81:900–6. 
 
Li CH. (1981).β-Endorphin: synthetic analogs and structure-activity relationships. In: 
Li CH editor. Hormonal Proteins and Peptides. New York, NY: Academic Press. p. 2–
34. 

Li QL, Jansen E, Friedman TC (1999). Regulation of prohormone convertase 1 (PC1) 
by gp130-related cytokines. Mol Cell Endocrinol 158(1-2):143-52. 
 
Li QL, Naqvi S, Shen X, Liu YJ, Lindberg I, Friedman TC (2003). Prohormone 
convertase 2 enzymatic activity and its regulation in neuro-endocrine cells and 
tissues. Regul Pept 110(3):197-205. 
 
Liao XH, Li YQ, Wang N, Zheng L, Xing WJ, Zhao DW, Yan TB, Wang Y, Liu LY, 
Sun XG, Hu P, Zhou H, Zhang TC (2014). Re-expression and epigenetic modification 
of maspin induced apoptosis in MCF-7 cells mediated by myocardin. Cell Signal 
26(6):1335-46. 
 
Lian Z, Kluger Y, Greenbaum DS, Tuck D, Gerstein M, Berliner N, Weissman SM, 
Newburger PE. (2002). Genomic and proteomic analysis of the myeloid 
differentiation program: global analysis of gene expression during induced 
differentiation in the MPRO cell line. Blood.100:3209-3220. 
 
Lichtinghagen R, Musholt PB, Lein M, Romer A, Rudolph B, Kristiansen G, 
Hauptmann S, Schnorr D, Loening SA, Jung K. (2002). Different mRNA and protein 
expression of matrix metallo proteinases 2 and 9 and tissue inhibitor of 
metalloproteinases 1 in benign and malignant prostate tissue. Eur Urol .42:398- 406. 
 
Liew FY, McInnes IB (2005). A fork in the pathway to inflammation and arthritis. Nat 
Med 11: 601–602. 
 
Lisanti S, Omar WA, Tomaszewski B, De Prins S, Jacobs G, Koppen G, Mathers JC, 
Langie SA.(2013). Comparison of methods for quantification of global DNA 
methylation in human cells and tissues. PLoS One. 18;8(11) 
 
Litthauer D, Naudé RJ, Oelofsen W. (1984). Isolation, characterization and primary 
structure of two β-LPH variants from ostrich pituitary glands. Int J Pept Protein Res. 
24:309–15. 
 
Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D and  Darnell JE. (2001). 
Molekulare Zellbiology: Prozessierung von mRNA bei Eukaryoten. Spectrum 
Akademischer Verlag GmbH Heidelberg - Berlin 4th ed: 447-459. 
 
Loh YP. (1987).Peptide precursor processing enzymes within secretory vesicles. Ann 
N Y Acad Sci. 493:292-307. 



                                                                                                                                 References 

97 
 

 
Loh YP, Maldonado A, Zhang C, Tam WH and Cawley N. (2002). Mechanism of 
sorting proopiomelanocortin and proenkephalin to the regulated secretory pathway of 
neuroendocrine cells. Ann N Y Acad Sci 971: 416-425. 
 
Lolait SJ, Clements JA,  Markwick AJ, Cheng C, McNally M, Smith AI and  Funder 
JW. (1986). Pro-opiomelanocortin messenger ribonucleic acid and posttranslational 
processing of beta endorphin in spleen macrophages. J Clin Invest 77(6): 1776-1779. 
 
Lolait SJ,  Lim AT, Toh BH and Funder JW.(1984). Immunoreactive beta-endorphin 
in a subpopulation of mouse spleen macrophages. J Clin Invest. 73(1): 277-280. 
 
Lorincz A, Nusser Z. (2008). Specificity of immunoreactions: the importance of 
testing specificity in each method. J Neurosci. 28(37):9083-6. 
 
Lötsch J, Geisslinger G, Tegeder I.(2009). Genetic modulation of the 
pharmacological treatment of pain. Pharmacol Ther.124(2):168-84. 
 
Lu WD, Funkelstein L, Toneff T, Reinheckel T, Peters C, Hook V. (2012). Cathepsin 
H functions as an aminopeptidase in secretory vesicles for production of enkephalin 
and galanin peptide neurotransmitters. J Neurochem. 122(3):512-22. 
 
Lyons PDand Blalock JE. (1995). The kinetics of ACTH expression in rat leukocyte 
subpopulations. J Neuroimmunol. 63(2): 103-12. 
 
Lyons PD and Blalock JE. (1997). Pro-opiomelanocortin gene expression and protein 
processing in rat mononuclear leukocytes. J Neuroimmunol 78(1-2): 47-56. 
 
Maier CC and Blalock JE. (1994). PCR-based cloning, sequencing, and exon 
mapping of lymphocyte-derived neuroendocrine peptides. Immunomethods 5(1): 3-7. 
 
Mains RE, Eipper BA. (1990).The tissue-specific processing of Pro-ACTH/Endorphin 
recent advances and unsolved problems. Trends Endocrinol Metab. 1(8):388-94. 
 
Marcinkiewicz M, Day R, Seidah NG and Chretien M (1993). Ontogeny of the 
prohormone convertases PC1 and PC2 in the mouse hypophysis and their 
colocalization with corticotropin and alpha-melanotropin. Proc Natl Acad Sci U S A 
90(11): 4922-4926. 
 
Martens GJ, Braks JA, Eib DW, Zhou Y and Lindberg I. (1994). The neuroendocrine 
polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc 
Natl Acad Sci U S A 91(13): 5784-5787. 
 
Mechanick JI, Levin N, Roberts JL and Autelitano DJ. (1992). Proopiomelanocortin 
gene expression in a distinct population of rat spleen and lung leukocytes. 
Endocrinology 131(1): 518-525. 
 
Menschikowski M, Platzbecker U, Hagelgans A, Vogel M, Thiede C, Schönefeldt C, 
Lehnert R, Eisenhofer G, Siegert G. (2012). Aberrant methylation of the M-type 
phospholipase A(2) receptor gene in leukemic cells. BMC Cancer. 5;12:576. 
 



                                                                                                                                 References 

98 
 

Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL 
. (1997). Treatment of rheumatoid arthritis with a recombinant human tumor necrosis 
factor receptor (p75)-Fc fusion protein. N Engl J Med 337: 141–147. 
 
Mountjoy KG, Wu CS, Cornish J, Callon KE. (2003). Alpha-MSH and desacetyl-
alpha-MSH signaling through melanocortin receptors. Ann N Y Acad Sci. 994:58-65. 
 
Mousa SA, Schäfer M, Mitchell WM, Hassan AH and Stein C. (1996). Local 
upregulation of corticotropin-releasing hormone and interleukin-1 receptors in rats 
with painful hindlimb inflammation. Eur J Pharmacol 311(2-3): 221-231. 
 
Mousa SA, Machelska H, Schäfer M, Stein C. (2000). Co-expression of beta-
endorphin with adhesion molecules in a model of inflammatory pain. J 
Neuroimmunol. 108(1-2):160-70. 
 
Mousa SA, Zhang Q, Sitte N, Ji R, Stein C. (2001). beta-Endorphin-containing 
memory-cells and mu-opioid receptors undergo transport to peripheral inflamed 
tissue. J Neuroimmunol.115(1-2):71-8. 
 
Mousa SA,Shakibaei M, Sitte N, Schafer M and Stein C. (2004). Subcellular 
pathways of beta-endorphin synthesis, processing, and release from immunocytes in 
inflammatory pain. Endocrinology. 145(3): 1331-1341. 
 
Mousa SA, Straub RH, Schäfer M, Stein C. (2007). Beta-endorphin, Met-enkephalin 
and corresponding opioid receptors within synovium of patients with joint trauma, 
osteoarthritis and rheumatoid arthritis. Ann Rheum Dis.66(7):871-9. 
 
Muller L and Lindberg I (1999). The cell biology of the prohormone convertases PC1 
and PC2. Prog Nucleic Acid Res Mol Biol 63: 69-108. 
 
Mynard V, Guignat L, Devin-Leclerc J, Bertagna X, Catelli MG. (2012). Different 
mechanisms for leukemia inhibitory factor-dependent activation of two 
proopiomelanocortin promoter regions. Endocrinology.143:3916–3924. 
 
Nakanishi S, Inoue A, Kita T, Nakamura M, Chang ACY, Cohen SN.(1979) 
Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor. 
Nature 278:423–7. 

Naudé RJ, Chung D, Li CH, Oelofsen W. (1981). β-Endorphin: primary structure of 
the hormone from the ostrich pituitary gland. Biochem Biophys Res Commun. 
98:108–14. 
 
Naudé RJ, Chung D, Li CH, Oelofsen W. (1981).β-Lipotropin: primary structure of the 
hormone from the ostrich pituitary gland. Int J Pept Protein Res. 18:138–47. 
 
Naudé RJ, Litthauer D, Oelofsen W, Chrétien M, Lazure C.(1993). The production of 
the ostrich NH2-terminal POMC fragment requires cleavage at a unique signal 
peptidase site. Peptides.14:519–29. 
 



                                                                                                                                 References 

99 
 

Naudé R, Oelofsen W, Takahashi A, Amano M, Kawauchi H. (2006). Molecular 
cloning and characterization of preproopiomelanocortin (prePOMC) cDNA from the 
ostrich (Struthio camelus). Gen Comp Endocrinol 146:310–7. 
 
Nemes Z, Thomazy V, Szeifelt G. (1983). Demonstration of light chain monotypia in 
B cell non-Hodgkin's lymphomas using unfixed freeze-dried and formalin-fixed 
sections. J Clin Pathol.36:883-893 
 
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. (1982). Gene transfer 
into mouse lyoma cells by electroporation in high electric fields. EMBO J.1(7):841-5. 
 
Newell-Price J, King P and Clark AJ. (2001). The CpG island promoter of the human 
proopiomelanocortin gene is methylated in nonexpressing normal tissue and tumors 
and represses expression. Mol Endocrinol 15(2): 338-348. 
 
Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-
Bruinsma IE, de Koning MH, Habibuw MR, Vandenbroucke JP and Dijkmans BA. 
(2004). Specific autoantibodies precede the symptoms of rheumatoid arthritis: a 
study of serial measurements in blood donors. Arthritis Rheum 50:380-386. 
 
Nie L, Wu G, Zhang W. (2006). Correlation of mRNA expression and protein 
abundance affected by multiple sequence features related to translational efficiency 
in Desulfovibrio vulgaris: a quantitative analysis. Genetics. 174(4):2229-43. 
 
Oates, E. L., G. P. Allaway, G. R. Armstrong, R. A. Boyajian, J. H. Kehrl and B. S. 
Prabhakar (1988). Human lymphocytes produce pro-opiomelanocortin gene-related 
transcripts. Effects of lymphotropic viruses. J Biol Chem 263(21): 10041-10044. 
 
Ohta K, Shichiri M, Kameya T, Matsubara O, Imai T, Marumo F and Hirata Y.(2000). 
Thymic hyperplasia as a source of ectopic ACTH production. Endocr J 47(4): 487-
492. 
 
Orntoft TF, Thykjaer T, Waldman FM, Wolf H, Celis JE. (2002). Genomewide study of 
gene copy numbers, transcripts, and protein levels in pairs of non-invasive and 
invasive human transitional cell carcinomas. Mol Cell Proteomics.1:37-45. 
 
Paquet L, Bergeron F, Boudreault A, Seidah NG, Chretien M,  Mbikay  M and Lazure 
C. (1994). The neuroendocrine precursor 7B2 is a sulfated protein proteolytically 
processed by a ubiquitous furin-like convertase. J Biol Chem 269(30): 19279-19285. 
  
Perrot S, Dieudé P, Pérocheau D, Allanore Y. (2013).Comparison of pain, pain 
burden, coping strategies, and attitudes between patients with systemic sclerosis and 
patients with rheumatoid arthritis: a cross-sectional study. Pain Med ;14(11):1776-85. 

Pratt JM, Petty J, Riba-Garcia I, Robertson DH, Gaskell SJ, Oliver SG, Beynon 
RJ.(2002). Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell 
Proteomics. 1(8):579-91. 
 
Pritchard LEand White A. (2007). Neuropeptide processing and its impact on 
melanocortin pathways. Endocrinology 148(9): 4201-7. 
 



                                                                                                                                 References 

100 
 

Przewlocki R, Hassan AH, Lason W, Epplen C, Herz A and Stein C. (1992). Gene 
expression and localization of opioid peptides in immune cells of inflamed tissue: 
functional role in antinociception. Neuroscience 48(2): 491-500. 
 
Qian Y, Devi LA, Mzhavia N, Munzer S, Seidah  NG and  Fricker LD.(2000). The C-
terminal region of proSAAS is a potent inhibitor of prohormone convertase 1. J Biol 
Chem 275(31): 23596-23601. 
 
Qiao-Ling Li, Erik Jansen ,Theodore C. (1999). Friedman Regulation of prohormone 
convertase 1 (PC1) by gp130-related cytokines Molecular and Cellular Endocrinology 
158:143–152 
 
Rantapaa-Dahlqvist S, de Jong BA, Berglin E., Hallmans G, Wadell G, Stenlund H, 
Sundin U and van Venrooij WJ. (2003). Antibodies against cyclic citrullinated peptide 
and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis 
Rheum 48:2741-2749. 
 
Ray DW, Ren SG, Melmed S. (1996). Leukemia inhibitory factor (LIF) stimulates 
proopiomelanocortin (POMC) expression in a corticotroph cell line. Role of STAT 
pathway. J Clin Invest. 97(8):1852-9. 
 
Rees DA, Hepburn PJ, McNicol AM, Francis K, Jasani B, Lewis MD, Farrell WE, 
Lewis BM, Scanlon MF, Ham J. (2002). Loss of ACTH expression in cultured human 
corticotroph macroadenoma cells is consistent with loss of the POMC gene signal 
sequence. Mol Cell Endocrinol. 189(1-2):51-7. 
 
Rees LH, Burke CW, Chard T, Evans SW, Letchworth AT.(1975).Possible placental 
origin of ACTH in normal human pregnancy. Nature. 254(5501):620-2. 
 
Renthal W, Nestler EJ. (2008). Epigenetic mechanisms in drug addiction. Trends Mol 
Med.14(8):341-50. 
 
Righi A, Jin L, Zhang S, Stilling G, Scheithauer BW, Kovacs K  and Lloyd RV. 
(2010).Identification and consequences of galectin-3 expression in pituitary tumors. 
Mol Cell Endocrinol 326(1-2): 8-14. 
 
Ringholm A, Klovins J, Rudzish R, Phillips S, Rees JL, Schiöth HB.(2004). 
Pharmacological characterization of loss of function mutations of the human 
melanocortin 1 receptor that are associated with red hair. J Invest Dermatol. 
123(5):917-23. 

Rittner HL, Brack A, Machelska H, Mousa SA, Bauer M, Schäfer M, Stein C. (2001). 
Opioid peptide-expressing leukocytes: identification, recruitment, and simultaneously 
increasing inhibition of inflammatory pain. Anesthesiology. 95(2):500-8. 
 
Rittner HL., Labuz D, Schaefer M, Mousa SA, Schulz S,  Schäfer M, Stein C and 
Brack A. (2006). Pain control by CXCR2 ligands through Ca2+-regulated release of 
opioid peptides from polymorphonuclear cells. Faseb J 20(14): 2627-2629. 
 
Rittner, H.L., Machelska, H., and Stein, C. (2005). Leukocytes in the regulation of 
pain and analgesia. J Leukoc Biol. 78:1215-1222. 



                                                                                                                                 References 

101 
 

 
Rolling C, Treton D, Pellegrini S, Galanaud P, Richard Y. (1996). IL4 and IL13 
receptors share the gamma c chain and activate STAT6, STAT3 and STAT5 proteins 
in normal human B cells. FEBS Lett. 393(1):53-6 
 
Rogers, J. and R. Wall (1980). A mechanism for RNA splicing. Proc Natl Acad Sci U 
S A 77(4): 1877-1879. 
 
Rubinstein M, Mogil JS, Japón M, Chan EC, Allen RG, Low MJ.(1996). Absence of 
opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed 
mutagenesis. Proc Natl Acad Sci U S A.;93(9):3995-4000. 

Sanchez VC, Goldstein J, Stuart RC, Hovanesian V, Huo L, Munzberg H, Friedman 
TC, Bjorbaek C, Nillni EA. (2004). Regulation of hypothalamic prohormone 
convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone. 
J Clin Invest. 114(3):357-69. 
 
Sato Y, Sugie R, Tsuchiya B, Kameya T, Natori M, Mukai K. (2001).Comparison of 
the DNA extraction methods for polymerase chain reaction amplification from 
formalin-fixed and paraffin-embedded tissues. Diagn Mol Pathol. 10(4):265-71. 
 
Schauer E, Trautinger F, Köck A, Schwarz A, Bhardwaj R, Simon M, Ansel JC, 
Schwarz T, Luger TA. (1994). Proopiomelanocortin-derived peptides are synthesized 
and released by human keratinocytes. J Clin Invest. 93(5):2258-62. 
 
Schäfer M, Carter L and Stein C. (1994). Interleukin 1 beta and corticotropin-
releasing factor inhibit pain by releasing opioids from immune cells in inflamed tissue. 
Proc Natl Acad Sci U S A 91(10): 4219-4223. 
 
Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM, Breedveld 
FC, and van Venrooij WJ. (2000). The diagnostic properties of rheumatoid arthritis 
antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 43:155-163. 
 
Schiöth HB, Phillips SR, Rudzish R, Birch-Machin MA, Wikberg JE & Rees JL. 
(1999).Loss of function mutations of the human melanocortin 1 receptor are common 
and are associated with red hair. Biochem Biophys Res Commun 260: 488–491. 

Schnabel E, Mains RE, Farquhar MG. (1989). Proteolytic processing of pro-
ACTH/endorphin begins in the Golgi complex of pituitary corticotropes and AtT-20 
cells. Mol Endocrinol. 3(8):1223-35. 
 
Scholzen TE, Kalden DH, Brzoska T, Fisbeck T, Fastrich M, Schiller M, Böhm M, 
Schwarz T, Armstrong CA, Ansel JC, Luger TA. (2000). Expression of 
proopiomelanocortin peptides in human dermal microvascular endothelial cells: 
evidence for a regulation by ultraviolet light and interleukin-1. J Invest Dermatol. 
115(6):1021-8. 
 
Scott DL, Kingsley GH (2006). Tumor necrosis factor inhibitors for rheumatoid 
arthritis. N Engl J Med 355: 704–712. 
 



                                                                                                                                 References 

102 
 

Seidah NG, Gaspar L, Mion P, Marcinkiewicz M, Mbikay M, Chretien M. (1990). 
cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene 
products: tissue-specific mRNAs encoding candidates for pro-hormone processing 
proteinases. DNA 9:415–424. 
 
Seidah NG, Chrétien M. (1992). Proprotein and prohormone convertases of the 
subtilisin family Recent developments and future perspectives. Trends Endocrinol 
Metab. 3(4):133-40. 

Seidah NG, Benjannet S, Hamelin J, Mamarbachi AM, Basak A, Marcinkiewicz J, 
Mbikay M, Chretien M and Marcinkiewicz M.(1999). The subtilisin/kexin family of 
precursor convertases. Emphasis on PC1, PC2/7B2, POMC and the novel enzyme 
SKI-1. Ann N Y Acad Sci. 885: 57-74. 
 
Seidah NG, Day R,  Marcinkiewicz M and Chretien M.(1993). Mammalian paired 
basic amino acid convertases of prohormones and proproteins. Ann N Y Acad Sci 
680: 135-146. 
 
Seidah NG, Marcinkiewicz M, Benjannet S, Gaspar L, Beaubien G, Mattei MG, 
Lazure C, Mbikay M and Chretien M. (1991). Cloning and primary sequence of a 
mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: 
distinct chromosomal localization and messenger RNA distribution in brain and 
pituitary compared to PC2. Mol Endocrinol 5(1): 111-122. 
 
Seidah NG and Prat A. (2002). Precursor convertases in the secretory pathway, 
cytosol andextracellular milieu, Essays Biochem. (38)79–94. 
 
Sharma A, Kumar M, Aich J, Hariharan M, Brahmachari SK, Agrawal A, Ghosh B. 
(2009). Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. 
Proc Natl Acad Sci U S A.106(14):5761-6. 
 
Shi SR, Cote RJ, Taylor CR (1997) Antigen retrieval immunohistochemistry: past, 
present, and future. J Histochem Cytochem 45:327–343. 
 
Shi SR, Liu C, Taylor CR. (2007). Standardization of immunohistochemistry for 
formalin-fixed, paraffin-embedded tissue sections based on the antigen-retrieval 
technique: from experiments to hypothesis. J Histochem Cytochem. 55(2):105-9. 
 
Shi SR, Taylor CR, Fowler CB, Mason JT. (2013). Complete solubilization of 
formalin-fixed, paraffin-embedded tissue may improve proteomic studies. Proteomics 
Clin Appl.7(3-4):264-72. 
 
Simmons RM, Webster AA, Kalra AB, Iyengar S. (2002). Group II mGluR receptor 
agonists are effective in persistent and neuropathic pain models in rats. Pharmacol 
Biochem Behav. 73(2):419-27. 
 
Simamura E, Shimada H, Higashi N, Uchishiba M, Otani H, Hatta T. (2010). Maternal 
leukemia inhibitory factor (LIF) promotes fetal neurogenesis via a LIF-ACTH-LIF 
signaling relay pathway. Endocrinology. 151(4):1853-62. 
 



                                                                                                                                 References 

103 
 

Sioud M. (2005). Induction of inflammatory cytokines and interferon responses by 
double-stranded and single-stranded siRNAs is sequence-dependent and requires 
endosomal localization. J Mol Biol.;348(5):1079-90.  

Sitte N, Busch M, Mousa SA, Labuz D, Rittner H, Gore C,  Krause H, Stein C and 
Schäfer M. (2007). Lymphocytes upregulate signal sequence-encoding 
proopiomelanocortin mRNA and beta-endorphin during painful inflammation in vivo. J 
Neuroimmunol 183(1-2): 133-145. 
 
Smeekens SP and Steiner DF. (1990). Identification of a human insulinoma cDNA 
encoding a novel mammalian protein structurally related to the yeast dibasic 
processing protease Kex2. J Biol Chem 265(6): 2997-3000. 
 
Smeekens SP, Steiner DF. (1991). Processing of peptide precursors. Identification of 
a new family of mammalian proteases. Cell Biophys. 19(1-3):45-55. 
 
Smith AI, Funder JW. (1989). Proopiomelanocortin processing in the pituitary, central 
nervous system, and peripheral tissues. Endocr Rev.9:159–79. 
 
Smith EM. (2003). Opioid peptides in immune cells. Adv Exp Med Biol 521: 51-68. 
 
Smith EM and Blalock JE. (1981). Human lymphocyte production of corticotropin and 
endorphin-like substances: association with leukocyte interferon. Proc Natl Acad Sci 
U S A 78(12): 7530-7534. 
 
Smith EM, Morrill AC, Meyer WJ and Blalock JE. (1986). Corticotropin releasing 
factor induction of leukocyte-derived immunoreactive ACTH and endorphins. Nature 
321(6073): 881-882. 
 
Spange S, Wagner T, Heinzel T, Krämer OH. (2009). Acetylation of non-histone 
proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 
41(1):185-98. 
 
Stein C, Gramsch C and Herz A. (1990). Intrinsic mechanisms of antinociception in 
inflammation: local opioid receptors and beta-endorphin. J Neurosci 10(4): 1292-8. 
 
Stein C, Hassan AH,  Lehrberger K, Giefing J and Yassouridis A. (1993). Local 
analgesic effect of endogenous opioid peptides. Lancet 342(8867): 321-4. 
 
Stein C, Pflüger M, Yassouridis A, Hoelzl J, Lehrberger K, Welte C, Hassan AH. 
(1996). No tolerance to peripheral morphine analgesia in presence of opioid 
expression in inflamed synovia. J Clin Invest. 98(3):793-9. 
 
Stein C, Millan MJ, Yassouridis A, Herz A. (1998). Antinociceptive effects of mu- and 
kappa-agonists in inflammation are enhanced by a peripheral opioid receptor-specific 
mechanism. Eur J Pharmacol.155(3):255-64. 
 
Stein C, Schafer M and Machelska H. (2003). Attacking pain at its source: new 
perspectives on opioids. Nat Med 9(8): 1003-1008. 
 



                                                                                                                                 References 

104 
 

Stein C, and Machelska H. (2011). Modulation of peripheral sensory neurons by the 
immune system: implications for pain therapy. Pharmacol Rev 63:860-881. 
 
Stein C, and Küchler S. (2013). Targeting inflammation and wound healing by 
opioids. Trends Pharmacol Sci 34:303-312. 
 
Steiner DF. (1998).The proprotein convertases. Curr Opin Chem Biol. 2(1):31-9. 
 
Stephanou A, Fitzharris P, Knight RA and Lightman SL. (1991). Characteristics and 
kinetics of proopiomelanocortin mRNA expression by human leucocytes. Brain 
Behav Immun 5(4): 319-327. 
 
Stevens CW.(2011). The evolution of opioid receptors. Front Biosci 14:1247–69. 

 
Swaminathan S, Suzuki K, Seddiki N, Kaplan W, Cowley MJ, Hood CL, Clancy JL, 
Murray DD, Méndez C, Gelgor L, Anderson B, Roth N, Cooper DA, Kelleher 
AD.(2012). Differential regulation of the Let-7 family of microRNAs in CD4+ T cells 
alters IL-10 expression. J Immunol. 188(12):6238-46. 
 
Szallasi Z. (1999). Genetic network analysis in light of massively parallel biological 
data acquisition. Pac Symp Biocomput. 5-16. 
 
Tabas I, and Glass CK. (2013). Anti-inflammatory therapy in chronic disease: 
challenges and opportunities. Science 339:166-172. 
 
Tadros H, Schmidt G, Sirois F, Mbikay M. (2011). Regulation of 7B2 mRNA 
translation: dissecting the role of its 5'-untranslated region. Methods Mol Biol. 
768:217-30. 
 
Takahashi A, Amemiya Y, Sarashi M, Sower SA, Kawauchi H. (1995). Melanotropin 
and corticotropin are encoded on two distinct genes in the lamprey, the earliest 
evolved extant vertebrate. Biochem Biophys Res Commun 213:490–8. 
 
Takahashi A, Kawauchi H. (2006). Evolution of melanocortin systems in fish. Gen 
Comp Endocrinol148:85–94. 
 
Takahashi A, Mizusawa K. (2013). Posttranslational modifications of 
proopiomelanocortin in vertebrates and their biological significance. Front Endocrinol 
(Lausanne). 4:143. 
 
Tajerian M, Alvarado S, Millecamps M, Dashwood T, Anderson KM, Haglund L, 
Ouellet J, Szyf M, Stone LS.(2011). DNA methylation of SPARC and chronic low 
back pain. Mol Pain.7-65. 
 
Tanaka M, Tanaka H, Ishikawa E. (1984). Immunohistochemical demonstration of 
surface antigen of human lymphocytes with monoclonal antibody in acetone-fixed 
paraffinembedded sections. J Histochem Cytochem. 32:452-454. 
 



                                                                                                                                 References 

105 
 

Tanaka, S. (2003). Comparative aspects of intracellular proteolytic processing of 
peptide hormone precursors: studies of proopiomelanocortin processing. Zoolog Sci. 
20(10): 1183-1198. 
 
Tanaka S. and Kurosumi K. (1992). A certain step of proteolytic processing of 
proopiomelanocortin occurs during the transition between two distinct stages of 
secretory granule maturation in rat anterior pituitary corticotrophs. Endocrinology 
131(2): 779-786. 
 
Tanaka S, Nomizu M and  Kurosumi K. (1991). Intracellular sites of proteolytic 
processing of pro-opiomelanocortin in melanotrophs and corticotrophs in rat pituitary. 
J Histochem Cytochem 39(6): 809-821. 
 
Tanaka Y, Imai T, Baba M, Ishikawa I, Uehira M, Nomiyama H, Yoshie O.(1999). 
Selective expression of liver and activation-regulated chemokine (LARC) in intestinal 
epithelium in mice and humans. Eur J Immunol. 29(2):633-42. 
 
Tateno T, Izumiyama H, Doi M, Yoshimoto T, Shichiri M, Inoshita N, Oyama K, 
Yamada S, Hirata Y.(2007). Differential gene expression in ACTH -secreting and 
non-functioning pituitary tumors. Eur J Endocrinol. 157(6):717-24. 
 
Taylor CR.(1994). An exaltation of experts: concerted efforts in the standardization of 
immunohistochemistry. Hum Pathol 25: 2–11. 
 
Taylor CR. (2006).Standardization in immunohistochemistry: the role of antigen 
retrieval in molecular morphology. Biotech Histochem.81(1):3-12. 
 
Thomas L, Leduc R, Thorne BA, Smeekens SP, Steiner DF, Thomas G. (1991). 
Kex2-like endoproteases PC2 and PC3 accurately cleave a model prohormone in 
mammalian cells: evidence for a common core of neuroendocrine processing 
enzymes. Proc Natl Acad Sci U S A. 88(12):5297-301. 
 
Tooze J and Burke B. (1987). Accumulation of adrenocorticotropin secretory 
granules in the midbody of telophase AtT20 cells: evidence that secretory granules 
move anterogradely along microtubules. J Cell Biol. 104(4):1047-57. 
 
Trelle S, Reichenbach S, Wandel S, Hildebrand P, Tschannen B, Villiger PM, Egger 
M, and Juni P. (2011). Cardiovascular safety of non-steroidal anti-inflammatory 
drugs: network meta-analysis. BMJ 342:c7086. 
 
Tsong TY.(1991) Electroporation of cell membranes. Biophys J.60(2):297-306. 
 
Ugleholdt R, Poulsen ML, Holst PJ, Irminger JC, Orskov C, Pedersen J, Rosenkilde 
MM, Zhu X, Steiner DF, Holst JJ. (2006).Prohormone convertase 1/3 is essential for 
processing of the glucose-dependent insulinotropic polypeptide precursor. J Biol 
Chem;281(16):11050-7.  

Vanesa C. Sanchez, Jorge Goldstein, Ronald C. Stuart, irginia Hovanesian, Lihong 
Huo, Heike Munzberg, Theodore C. Friedman, Christian Bjorbaek, and Eduardo A. 
Nillni. (2004). Regulation of hypothalamic prohormone convertases 1 and 2 and 



                                                                                                                                 References 

106 
 

effects on processing of prothyrotropin releasing hormone J. Clin. Invest.114:357–
369. 
 
Van Epps DE, Saland L. (1984). Beta-endorphin and met-enkephalin stimulate 
human peripheral blood mononuclear cell chemotaxis. J Immunol;132(6):3046-53. 

van Gaalen FA, Linn-Rasker SP, van Venrooij WJ, de Jong BA, Breedveld FC, 
Verweij CL, Toes RE, and Huizinga TW. (2004). Autoantibodies to cyclic citrullinated 
peptides predict progression to rheumatoid arthritis in patients with undifferentiated 
arthritis: a prospective cohort study. Arthritis Rheum 50:709-715. 
 
van Gaalen FA, van Aken J, Huizinga TW, Schreuder GM, Breedveld FC, Zanelli E, 
van Venrooij WJ, Verweij CL, Toes RE and de Vries RR. (2004). Association 
between HLA class II genes and autoantibodies to cyclic citrullinated peptides 
(CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheum 50:2113-2121. 
 
Van Woudenberg AD, Metzelaar MJ, van der Kleij AA, de Wied D, Burbach JP and 
Wiegant VM. (1993). Analysis of proopiomelanocortin (POMC) messenger 
ribonucleic acid and POMC-derived peptides in human peripheral blood mononuclear 
cells: no evidence for a lymphocyte-derived POMC system. Endocrinology 133(5): 
1922-1933. 
 
Verma-Gandhu M, Bercik P, Motomura Y, Verdu EF, Khan WI, Blennerhassett PA, 
Wang L, El-Sharkawy RT, and Collins SM. (2006). CD4(+) T-Cell Modulation of 
Visceral Nociception in Mice. Gastroenterology 130:1721-1728. 
 
Verri JWA, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH (2006). 
Hypernociceptive role of cytokines and chemokines: targets for analgesic drug 
development? Pharmacol Ther 112: 116–138. 
 
Vindrola O, Mayer AM, Citera G, Spitzer JA, Espinoza LR.(1994). Prohormone 
convertases PC2 and PC3 in rat neutrophils and macrophages. Parallel changes with 
proenkephalin-derived peptides induced by LPS in vivo. Neuropeptides. 27(4):235-
44. 
 
Vivian Hook Funkelstein L, Lu WD, Bark S, Wegrzyn J, Hwang SR. (2008). 
Proteases for processing proneuropeptides into peptide neurotransmitters and 
hormones, Annu. Rev. Pharmacol. Toxicol. 48:393–423. 
 
Vivian Hook, Lydiane Funkelstein, Jill Wegrzyn, Steven Bark, Mark Kindy, Gregory 
Hook. (2012). Cysteine Cathepsins in the secretory vesicle produce active peptides: 
Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-
amyloid of Alzheimer's disease. Biochimica et Biophysica Acta 1824:89–104. 
 
Weigent DA, Blalock JE. (1987). Interactions between the neuroendocrine and 
immune systems: common hormones and receptors. Immunol Rev;100:79-108. 

Westly HJ, Kleiss AJ, Kelley KW, Wong PK and Yuen PH. (1986). Newcastle disease 
virus-infected splenocytes express the proopiomelanocortin gene. J Exp Med. 
163(6): 1589-1594. 
 



                                                                                                                                 References 

107 
 

Wiese M, Castiglione K, Hensel M, Schleicher U, Bogdan C, Jantsch J. (2010). Small 
interfering RNA (siRNA) delivery into murine bone marrow-derived macrophages by 
electroporation. J Immunol Methods. 353(1-2):102-10. 
 
Wojdacz TK, Dobrovic A.(2007).Methylation-sensitive high resolution melting (MS-
HRM): a new approach for sensitive and high-throughput assessment of methylation. 
Nucleic Acids Res. ;35(6):e41 

Wintzen M, Yaar M, Burbach JP, Gilchrest BA. (1996). Proopiomelanocortin gene 
product regulation in keratinocytes. J Invest Dermatol.106(4):673-8. 
 
Wipke BT, Allen PM (2001). Essential role of neutrophils in the initiation and 
progression of a murine model of rheumatoid arthritis. J Immunol 167: 1601–1608. 
 
Wittert G, Hope P, Pyle D (1996). Tissue distribution of opioid receptor gene 
expression in the rat. Biochem Biophys Res Commun 218(3):877-81. 
 
Wolkowitz OM, Epel ES, Mellon S. (2008). When blue turns to grey: do stress and 
depression accelerate cell aging? World J Biol Psychiatry.9(1):2-5. 
 
Wollemann M, Benyhe S.(2004) Non-opioid actions of opioid peptides. Life 
Sci;75(3):257-70. 
 
Yang CC, Ogawa H, Dwinell MB, McCole DF, Eckmann L, Kagnoff MF.(2005). 
Chemokine receptor CCR6 transduces signals that activate p130Cas and alter 
cAMP-stimulated ion transport in human intestinal epithelial cells. Am J Physiol Cell 
Physiol. 288(2):C321-8. 
 
Yang D, Gereau RW 4th. (2002). Peripheral group II metabotropic glutamate 
receptors (mGluR2/3) regulate prostaglandin E2-mediated sensitization of capsaicin 
responses and thermal nociception. J Neurosci. 22(15):6388-93. 
 
Yang D, Gereau RW 4th. (2003).Peripheral group II metabotropic glutamate 
receptors mediate endogenous anti-allodynia in inflammation. Pain. 106(3):411-7. 
 
Yasothornsrikul S, Greenbaum KF, Medzihradszky T, Toneff R, Bundey R, Miller B, 
Schilling I, Petermann J, Dehnert A, Logvinova P, Goldsmith JM, Neveu WS, Lane B, 
Gibson T, Reinheckel C, Peters M. Bogyo V.Y.H Hook. (2003). Cathepsin L in 
secretory vesicles functions as a prohormone-processing enzyme for production of 
the enkephalin peptide neurotransmitter, Proc. Natl.Acad. Sci. U. S. A. 100; 9590–
9595. 
 
Yasothornsrikul. S. Toneff, S.R. Hwang, V.Y.H. Hook. (1998). Arginine and lysine 
aminopeptidase ctivities in chromaffin granules of bovine adrenal medulla: relevance 
to prohormone processing, J. Neurochem. 70;153–163. 
 
Zhang CF, Dhanvantari S, Lou H, Loh YP. (2003). Sorting of carboxypeptidase E to 
the regulated secretory pathway requires interaction of its transmembrane domain 
with lipid rafts. Biochem J. 369(Pt 3):453-60. 
 



                                                                                                                                 References 

108 
 

Zhou A, Bloomquist BT and Mains RE. (1993). The prohormone convertases PC1 
and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during 
proopiomelanocortin biosynthetic processing. J Biol Chem 268(3): 1763-1769. 
 
Zhou A, Webb G, Zhu X and Steiner DF. (1999) Proteolytic processing in the 
secretory pathway. J. Biol. Chem. 274, 20 745– 20 748. 
 
Zhu X, Rouille Y, Lamango NS, Steiner DF and Lindberg I. (1996). Internal cleavage 
of the inhibitory 7B2 carboxyl-terminal peptide by PC2: a potential mechanism for its 
inactivation. Proc Natl Acad Sci U S A 93(10): 4919-4924. 
 
Zhou Y and Lindberg I. (1993). Purification and characterization of the prohormone 
convertase PC1(PC3). J Biol Chem 268(8): 5615-5623. 
 
Zimmermann M.(1983). Ethical guidelines for investigations of experimental pain in 
conscious animals. Pain. (2):109-10. 




