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1 Introduction

Self-assembly appears in nature in several ways. One of the simplest mechanisms is
the merging of drops of water when placed close together. The process is directed by
minimization of potential energy and, thus, an example for uncoded self-assembly.
On the other extreme in complexity protein molecules inside biological cells self-
assemble to reproduce cells each time they divide. In this example the assembly
instructions are built in the components and, therefore, it is coded self-assembly [3].
Originally, the study of self-assembly was motivated by biologists. A well-studied
example is the assembly of bacteriophages, a type of virus which infects bacterial
cells [1]. Formal investigations in this field are accompanied by the development of
corresponding computational models which are also of great interest from an engi-
neering point of view. An introduction can be found in [7] where an automaton model
of self-assembling systems is presented. The model operates on one-dimensional
strings that are assembled from a given multiset of smaller strings. The research
was motivated by the evolutionary design of mechanical conformational switches.
Classes of automata are defined depending on classes of subassembly sequences.
Then the minimal number of conformations necessary to encode subassembly se-
quences in that class is studied.

Here, in some sense, we adapt self-assembly to the theory of automata and formal
languages. Basically, the idea is to assemble an automaton during its computation.
Therefore, we provide a finite set of items, the so-called modules. The automata
are assembled from module copies on demand. The assembling rules are encoded
by the state transition function. Starting with one piece of a finite automaton
during the computation so-called assembling transitions are traversed that direct
the assembling of another copy of some item in a well-specified manner.

Each of the modules has a set of entry and a set of return states which together
are called interface states. An assembling transition specifies how the new copy
of the module fits to the already existing part of the automaton. The connection
is made by overlaying the interface states by existing states. So the result of the
self-assembly is a finite automaton, but the number of its states may depend on the
input. It will turn out that the generative capacity of such models depend on their
degree, i.e. the number of interface states of the modules.

Related to the work of the present paper are the so-called self-modifying finite au-
tomata [4, 5, 6, 8]. In this model modifications of the automaton are allowed during
transitions. The modifications include adding and deleting states and transitions. A
weak form of self-modifying automata has been shown to accept the metalinear lan-
guages as well as some other families of context-free and non-context-free languages.
Less restricted variants can accept arbitrarily hard languages, even non-recursive
ones.

Since assembling modules sounds like calling subroutines another related paper is [2],



where finite automata are considered that have a stack for storing return addresses
(states). Every time a final state is entered the computation continues in the state
at the top of the stack. Depending on the number of states which may be stored
during one transition an infinite hierarchy in between the regular and context-free
languages is shown.

Here by means of self-assembling finite automata of degree k we obtain a natural
and unified generalization of finite automata and pushdown automata. In partic-
ular, infinite hierarchies depending on the degree are shown. For degree one and
two the regular and context-free languages are characterized, respectively. More-
over, some closure properties are proved which lead to a separation result between
nondeterministic and deterministic computations.

2 Self-Assembling Finite Automata

We denote the positive integers {1,2,...} by N and the set NU{0} by Ng. The empty
word is denoted by A. For the length of w we write |w|. We use C for inclusions and
C if the inclusion is strict.

Basically, the idea is to assemble the automaton during its computation. For this
purpose we assume a finite set of basic items which can be used in the assembling
process. These items are called modules. To each module further copies of modules
(from the finite set) can be connected. A module is very similar to a (piece of a) finite
automaton. The difference is the presence of so-called assembling transitions which
direct the assembling process. Every time the computation tries to change a state
by an assembling transition a new copy of a module is connected. These connections
are done by overlaying some states. Each module has an interface consisting of entry
and exit states. The assembling rule specifies which of the states (of the already
existing part) are to be identified by the interface states.

In order to introduce the model under consideration in more detail at first we define
modules more formally:

Definition 1 Let u,v € Ny be constants. A (nondeterministic) module with u
entries and v exits (u:w-module) is a system (Q,I,0, A, 6, F), where
1. Q is the finite set of inner states,
2. I ={ry,...,ry} is the ordered set of u entry states such that I N Q = 0,
3. O ={ruyt1,--.,Tut+v} is the ordered set of v return states such that
on(QUI) =90,
4. A is the finite set of input symbols,
5. The module transition function § maps () x A to the finite subsets of
QUOU(INX QT x(QUO)™) and I x A to the subsets of Q,
6. F C QUIUO is the set of accepting (or final) states.



So, the nondeterministic transition function may map states to states in which case
we have state changes without assembling new items as usual.

In the second case § requires to assemble a new copy of a module which is identified
by an index from N. The interface states I’ and O of the new module are overlayed
by the states specified by @+ x (Q U O)T. From this point of view the restrictions
of § are convenient and natural: A return state is for exit purposes and, therefore,
¢ is not defined for states in O. Otherwise, a return state would at the same time
be an entry state. Conversely, an entry state cannot be reached from inside the
module. Otherwise it also would be a return state. Finally, after assembling a new
module the computation should enter the module for at least one time step without
assembling further modules, i.e., I X A is mapped to subsets of () only.

Since modules are the basic items from which k-self-assembling finite automata are
assembled, for their definition we need to ensure that only pieces are connected that
fit together.

Definition 2 Let kK € Ny be a constant. A nondeterministic self-assembling finite
automaton M of degree k (k-NFA) is an ordered set of modules (My,..., M)
over a common input alphabet A, where for all 0 < ¢ < m the module M; =
(Q,I,0,A,4, F)
1. has at most k interface states, i.e. |I| +|O| <k,
2. for all (s,a) € (Q x A) the assembling transition
(j, (P1y---sPu)s (Putts--- ,pu+v)) € 0(s,a) implies
(a) j <m and M; is a u:v-module,
(b) {p1,...,Putv} are different and s € {p1,...,pu},

3. My is a 0:0-module with a designated starting state s.

Condition 2b ensures that at most two states are overlayed and, moreover, an as-
sembling transition transfers the computation into the new module.

The general behavior of a k-NFA is best described by configurations and their suc-
cessor configurations.

A configuration c; of M at some time ¢t > 0 is a description of its global state which
is a set of existing states S;, transition and assembling rules given by a mapping
0; from S; X A to the finite subsets of S; U ([N X St+ X S;“ ), the currently active
state s¢, the current set of final states F; and the remaining input word w;. Thus, a
configuration is a 5-tuple ¢; = (S, 0¢, S¢, Fy, wy).

The initial configuration ¢y = (Qo, do, S0, Fo,w) at time 0 is defined by the input
word w = ag---a,_1 € A* and the components of module My = (Qq, 0,0, A, by, Fp),
where sg is the designated starting state from Q.

Successor configurations are computed according to the global transition function A:



Let ¢; = (St, 0, 8¢, Fy,at -+ -an—1) be a configuration, then for each element from
0¢(st, a¢) successor configurations (Siy1,0041,St41, Fit1, 041 an-1) € A(cy) are
defined as follows.

1. During an ordinary state transition, as usual for finite automata, only the
active state changes:

Let s € S; be an element from &;(s¢, a), then Spi1 = St, de41 = 0, St41 = 8
and Ft_|_1 = Ft.

2. During an assembling transition a copy of the new module has to be created,
the active state has to be computed and the interface states have to be over-
layed, what includes the appropriate update of the rules.

Let (4, (p1,---+Pu)s (Putts---»Putn)) € (N X S x S;) be an element from
515 (St, at) .

M; ={(Q,{F1,--,Tu}s {Fut1s---+Tutv}, 4,6, F) be a copy of M; such that all
of its states are different from states in S;.

Set S;11 = S; U Q and identify the entry states of J\ij by p1,...,py and the
return states by pyt1,.--,Putv- Accordingly Fyiq is defined to be F; U {p; |
€ F,1<i<u+v}U(F\{f1, .., utv})-

In order to define s;y; and ;41 we first observe that by definition state s; has
to belong to {p1,...,pu}, say s; = p;. Since p; overlays 7, € I and § maps
(71,a¢) to subsets of Q the new active state s;;1 is chosen from (7, a;), i.e.,
the computation enters the newly assembled module.

It remains to join the mappings 6; and & to &;,1 as follows:

0i,1(s,a) = 04(s,a) for all (s,a) € (Sy x A) \ {(st,a4)}
524—1 (8t7 at) = 6t(5t7 at) \ {(]7 (p17 .. 7pu)7 (pu—l—l, e Jp’LH-U))}

So in an intermediate step 0, is defined to be dJ; except for the applied
assembling rule which is used and so will be replaced.

The next step is to take the mapping 0 of Mj and textually rename each
occurrence of an interface state 7; from I U O by its overlaying state p;. If the
result is a mapping 67, ;, then the construction is completed by

Otr1(s,a) = 0, 1(s,a) UdY, ((s,a) for all (s,a) € {p1,...,pu} x A
dt41(s,a) = 0,1 (s,a) for all (s,a) € (_St \ {p1,.--spu}) X A
di11(s,a) = Y, 1(s,a) for all (s,a) €Q x A

An input word ag - - - a1 is accepted by a k-NFA iff the set of possible configurations
at time n (i.e., after processing the whole input) is not empty and contains at least
one configuration whose active state s, belongs to the set of accepting states Fi,.

A k-NFA is deterministic (k-DFA) iff for any input all configurations have determi-
nistic mappings, i.e., & : Sy x A — S U (N x S;" x S;7) is a partial function.

The family of all languages that are acceptable by some k-NFA (k-DFA) is denoted
by £ (k-NFA) (£ (k-DFA)).



The following example illustrates self-assembling finite automata more figurative. It
becomes important for proving hierarchies in later sections.

Example 3 For any constant k > 1 let Ay, = {a1,...,ax} be an alphabet and

Ly ={al---a} | n € N}

In order to show that Ly is accepted by a k-DFA we present constructions for k = 2,3
which can easily be generalized to arbitrary k.

The following 2-DFA M = (M, My, Ms) accepts La:

MO = <{307q17Q27Q37Q4}7 ®7®7A27 57 {q37q4}> with Sta'rting state q0
d(s0,01) = q1,
0(qr,01) = q2, 6(q1,a2) = g3
(g2, a2) = (2,(g2), (q4)), d(g2,a1) = (1,(q2), (q4))

M, = <{Q1,Q2}7{T1}7{T2}7A2757@}>

5(7“1,@1) =q1
6(q1,a1) = (1,(q1), (2)), d(q1,a2) = (2,(q1), (g2))
0(q2,a2) =12
My = <{Q1}7 {Tl}v {TQ}ﬂA27 9, ®>
(5(7‘1,@2) =q1
0(q1,a2) =12

Figure 1 shows the graphical representation of a 2-DFA M = (Mj, My, M) that
accepts Ly. Assembling transitions are indicated by double arrows.

OO (=)
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a2
/la\%(z,(qz)v(qm /'q(z,(ql),(qz)) a
a2
S0 a qQ1 q2 r1 q1
AN a \J

A\ an(1(a).(a0)) a1,(1,(01),(02))

M, M, M,

Figure 1: Modules of a 2-DFA accepting L.

The assembled 2-DFA after accepting the input aja3 is depicted in Figure 2.

Observe that there are simpler 2-DFAs for Ly. But this construction has been
presented with an eye towards an easily understandable generalization.

The 3-DFA whose modules are shown in Figure 3 accepts Ls.

The assembled 3-DFA after accepting the input aja3aj is depicted in Figure 4.
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Figure 2: Structure of a 2-DFA accepting Lo after processing aja3.
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Figure 3: Modules of a 3-DFA accepting Ls.
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Figure 4: Structure of a 3-DFA accepting L3 after processing aja3as.

The self-assembling finite automata in Example 3 have an important and interesting
property, they are loop-free. Exactly this restriction of the model yields a natural
and unified generalization of finite and pushdown automata.

In particular, the generative capacity of self-assembling finite automata depends on
their degree. Later on we are going to show infinite hierarchies of properly included
language families for loop-free and unrestricted variants, but first we present the



results concerning degrees 1 and 2. We prove that loop-free 1-DFAs accept exactly
the regular and loop-free 2-NFAs exactly the context-free languages.

Definition 4 Let k > 1 be a constant. A computation of a self-assembling finite
automaton M of degree k is loop-free if M enters each of its existing states at most
once. An automaton M is loop-free if all of its computations are loop-free.

In order to distinguish loop-free languages we denote the family of all languages that
are acceptable by some loop-free k-NFA (k-DFA) by £ (k-NFA) (£} (k-DFA)).

Theorem 5 Every context-free language is accepted by some loop-free 2-NFA.

Proof. It is well known that for every context-free language not containing A
there exists a grammar in Greibach normal form. I.e., every production is of the
form X — a7y, where X is a variable, a a terminal and = a possibly empty word of
variables. In the following a loop-free 2-NFA is constructed that computes leftmost
derivations of such a grammar G. Subsequently, the empty word can be included
simply by making the starting state final.

For each production X — aYi---Y, in G whose right-hand side has at least one
variable a module My;...y;, is constructed as follows:

Q:{Yla"'vyn}a I:{T’l}, O:{TQ}a FZ@a

d(r1,a) = {Y1}
For all x € A:
Yiy1 € §(Y;, x) iff there exists the production V; - z in G,1 <i<n—1,
re € 6(Yy,x) iff there exists the production Y, — z in G,
(7, (Y3), (Yiq1)) € 6(Y;, ) iff there exists a production Y; — zZ; --- Z; in G and

Mj = MZ1---Z1
(7, (Yn), (r2)) € §(Y,,,z) iff there exists a production Y, — xZ; --- Z; in G and
M = Mg,..z,

Therefore, with input symbol z, the computation process assembles a module M,
iff a leftmost derivation step of G generates 2. The process returns from M, iff the
variables v have been completely replaced by terminals.

In order to complete the construction module M is defined as the others, with the
exception that r; is omitted, 9 is now an inner state, the axiom of G is the second
inner state, F' = {ra} and the starting state is the axiom.

Altogether, the 2-NFA starts in a state that corresponds to the axiom of G, simulates
leftmost derivations and returns to the unique final state only if all variables that
appear during the derivation of the input could be replaced. An example for the
mirror language {w | w € {a,b}*,w = w®} with the productions (S — aSX | bSY |
aX |bY |a|b), (X — a) and (Y — b) is depicted in Figure 5. O

In order to complete the characterization we now prove the converse of Theorem 5.
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Figure 5: Modules of a loop-free 2-NFA accepting the mirror language.

Theorem 6 Every loop-free 2-NFA language is context-free.

Proof. For a given loop-free 2-NFA M we may assume without loss of generality
that each module (except M) has at least one entry state. Otherwise, the module
could not be assembled and, thus, could be omitted.

A nondeterministic pushdown automaton A can be designed in such a way that the
finite control can simulate each of the modules of M. Every time step a new module
is assembled, A pushes the parameters of the assembling transition together with
the index of the predecessor module onto its stack and starts the simulation of the
new module in the appropriate entry state.

If the new module is a 2:0-module, this is all since the computation cannot return.
In fact, in this case the stack content up to that time is not accessed any more.

If, on the other hand, the new module is a 1:1-module, then the process may return
from it. In this case the information for the predecessor module is popped from the
stack and the simulation continues appropriately.

The basic fact why this simulation works fine is the limitation of the degree and the
loop-freeness. Every time a module is popped from the stack the instance of the
module from which the process returns is forgotten. But this causes no restrictions
since both interface states have been passed through and, thus, this instance of the
module will never be entered again. m|

Corollary 7 The family .Z);(2-NFA) is equivalent to the context-free languages.
Now we climb down the Chomsky-hierarchy and consider regular languages.

Theorem 8 Every 1-NFA language is regular.



Proof. Since when assembling a new module the computation process has to enter
it, 0:1- or 0:0-modules are unreachable. So without loss of generality we may assume
a 1-NFA has only 1:0-modules.

Since once a 1:0-module has been entered, the computation can never return and the
sequence of assembled modules need not to be remembered. So in order to construct
a nondeterministic finite automaton A with A-moves from a given 1-NFA M one
copy of each module is sufficient. These copies can be reused when a certain module
is assembled more than once.

The state set of A is the disjoint union of all states of all modules of M. Correspond-
ingly, the state transition is the union of all module transition functions, where each
assembling transition d(s,a) = (4, (s), ) is replaced by a A-transition from state s
to the unique entry state of M;.

It is easy to verify that A and M are equivalent. O

Conversely, every regular language can be accepted by some 1-DFA, since every
deterministic finite automaton is a 0:0-module without assembling transitions. But
using the idea of Theorem 5 a stronger result can be shown:

Theorem 9 Every regular language is accepted by some loop-free 1-DFA.

Proof. Let the regular language be given by a right-linear grammar. So the
productions are of the form X — aY, where a is a terminal and Y is empty or a
variable. It is well known that we may assume that this grammar is deterministic,
i.e, at every derivation step at most one production is applicable.

Now we can adapt the construction of Theorem 5. The difference is that in the
regular case no return state is available. But here we do not need to return from an
assembled module since at any time there exists at most one variable. Therefore, it
suffices to provide and to connect to an inner final state instead of the return state.

Again, the empty word can be accepted in addition simply by making the starting
state final. O

Corollary 10 The families .Z(1-NFA), £ (1-NFA), -Z(1-DFA) and Zjs(1-DFA)
are equivalent to the regular languages.

These results immediately raise the question for the power and limitations of loop-
freeness in connection with self-assembling finite automata. There is no difference
for automata with degree one. Are all loop-free automata with a given degree
equivalent to unrestricted automata with the same degree? Quite the contrary,
there is a difference for all k¥ > 2. The next example proves the claim for £ = 2. In
the next section it is extended to arbitrary degrees.

10



Example 11 The 2-DFA whose modules are depicted in Figure 6 accepts the lan-
guage

L= {a"lbm---anjb”jamc |7 €N,n; >2for 1 <i<jandm< max{nl,...,nj}}

Since L is not context-free it does not belong to £ (2-NFA).

OwO
b

b

q
a \ " Jaan (@)

X ()
* )@\ Jama@n ¢

Mo M,

Figure 6: Modules of a 2-DFA accepting L of Example 11.
The example yields the following proper inclusions.
Corollary 12 .7} (2-DFA) C Z(2-DFA) and £ (2-NFA) C .Z(2-NFA).

In order to determine where the generative power of k-NFAs ends up here we state
that for any k& € N the family Z(k-NFA) is a proper subfamily of the context-
sensitive languages.

Since during a computation on input of length n at most n (copies of) modules are
assembled, a linearly space bounded nondeterministic Turing machine can store these
modules together with the parameters of the corresponding assembling transitions
on its tape and simulate the computation process of the k-NFA. It is only a technical
challenge to arrange the modules on the tape such that the simulation is able to find
adjacent ones. This proves the inclusion. The properness will be shown later.

Theorem 13 Let k € N be a constant, then the family .Z(k-NFA) is a proper
subfamily of the context-sensitive languages.

3 Hierarchies

Now we are going to explore the relative computation power of self-assembling finite
automata. In particular, we compare nondeterministic and deterministic computa-
tions and investigate the relationships between degrees k and (k + 1). It turns out
that there are infinite hierarchies depending on k. In order to separate language fam-
ilies we need a tool for proving negative results. Since we consider generalizations of
well-known language families it is near at hand to generalize their pumping lemmas
as well. It will turn out (Lemma 17) that for this purpose we have to restrict the

11



automata to loop-free computations. But nevertheless the lemma yields the desired
results for unrestricted automata, too.

The following pumping lemma is in some sense weaker than others, since it contains
no statement about the usual ordering in which the repeated subwords appear.

Lemma 14 Let £ € N be a constant and M be a loop-free k-NFA accepting a
language L. Then there exists a constant n € N such that every w € L with |w| > n
may be written as zoyi11y2 - - - YpTk, where |y1| + |y2| + --- + |yk| > 1, and for all
1 € N there exists a word w' € L such that w' is in some order a concatenation of
the (sub)words xy, ..., zy and i times y; for each 1 < j < k.

Proof. M consists of finitely many modules each having finitely many interface
states. For long enough words from L there exists an accepting computation such
that a module is assembled at least twice whereby the ordering of passed through
interface states is identical. (For a module there exist only finitely many such or-
derings.)

Obviously, the necessary input length can be calculated. It depends on M only and
defines the constant n.

Now let w be an accepted input with |w| > n. We denote the first instance of the
module by M and the second one by M. The input symbols consumed until M
is assembled define the subword zy. Thus, after processing zy an interface state
of M and M appears for the first time. Next we consider the sequence of input
symbols until the next interface state (of M or M ) is entered and define it to be y;.
We continue as follows (cf Figure 7): Input sequences connecting return states of
M with entry states of M or entry states of M with return states of M form the
subwords z;. Input sequences connecting each other pair of interface states from M
or M form the subwords y;- The input sequence after entering an interface state for
the last time forms the subword x.

Since there must exist at least one path from an entry state of M to an entry state
of M (otherwise M would not have been assembled), at least one subword y; is not
empty. On the other hand, since M is loop-free and its modules have at most k
interface states, there exist at most k paths defining subwords y;.

From the given accepting computation we derive another one by usmg a third copy
M of the module and placing it in between the paths connecting M and M. The
idea is as follows:

Since the interface states appearing in the same ordering M behaves like M when
the computation enters one of its entry states. Thus, the connections between M
and M are identical to the connections between M and M.

On the other hand, M behaves like M when the computation enters one of its return
states. Thus, the connections between M and M are identical to the connections
between M and M.

12



But the connections are exactly the subwords y;. We conclude that the new accept-

ing computation is for an input that is a concatenation of zg,...,z; and 2 times
y; for each 1 < j < k. Trivially, we can insert : copies of M what completes the
proof. |
" — 5 ” [— — Is
T3 5 Ys 5 z3 5 Ys 5 ys 5
Ya — Ya — Ya —
4 4 T4 4 4 4 Ty
:\ vs \ :\ vs \\ vs \
Iy 3 3 Iy 3 3 3
[ Y2 [ Y2 D Y2
2 2 T 2 2 2 T
ool T I
1 17— 1 1 1 -
L M ,,,,,,,,,,,,,,,,, . M-
L e L

Figure 7: Accepting computations for zoy121y222ysx3yszayszs (left) and
TOY1T1Y2Y1Y3T3Y4Y2T2Y3Y5Y4T4Y575 (right).

We apply the pumping lemma to the language Ly = {a7 - - - af | n € N} of Example 3.
Lemma 15 Let k € N be a constant, then Ly, does not belong to £ (k-NFA).

Proof. Assume Lj; belongs to Zjs(k-NFA). Let n be the constant of Lemma 14
and consider the word w = af ---ay ;. Since we may pump at most k portions of
w the result would not belong to Lj1. |

Since the constructions in Example 3 are deterministic and loop-free, as an imme-
diate corollary we obtain hierarchies of loop-free self-assembling automata.

Corollary 16 Let k € N be a constant, then £ (k-DFA) C £ ((k + 1)-DFA) and
Ly (k-NFA) C Z((k +1)-NFA).

Now we return to the question concerning the limitations of loop-freeness. The
answer has been given for the cases K = 1,2. For k > 2 the question is answered by
the next result. It proves also that the pumping lemma does not hold for unrestricted
self-assembling finite automata.

Lemma 17 Let k € N be a constant. There exists a language L € £ (3-DFA) which
does not belong to Zjs(k-NFA).

Proof. The witness for the assertion is the language L = {a}(a3a})* | n € N}.

A 3-DFA accepting L is a simple modification of the 3-DFA accepting the language
L3 given in Example 3. Simply insert a transition §(gs,a2) = g3 in module My and
a transition (g2, a2) = ¢1 in module My.
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By using the pumping lemma it is easy to see that L cannot be accepted by any
loop-free k-NFA for any k € N. O

Corollary 18 Let £ > 2 be a constant, then .Zj(k-DFA) C Z(k-DFA) and
Ly (k-NFA) C £(k-NFA).

The hierarchy result for loop-free self-assembling finite automata can be adapted
to the unrestricted case. Though the pumping argument requires loop-freeness,
the acceptors for the languages Lj may not contain any useful loop even in the
unrestricted case.

Lemma 19 Let k,k' € N be two constants and M be a k'-NFA accepting the
language L. Then during all accepting computations M does not enter any existing
state more than once.

Proof. If some accepting computation would run through a loop, then trivially the
corresponding portion of the input could be repeated. In this case either an input
with forbidden ordering of the symbols aq, ..., a; or an input with different numbers
for at least two input symbols would be accepted, too. O

This observation suffices to apply the proof of the pumping lemma in order to show
that L cannot be accepted by any A-NFA. On the other hand, the loops of rejecting
computations could be replaced by non-accepting 1:0-modules and, thus, the result
would be loop-free automata to which the pumping lemma can be applied directly.

Corollary 20 Let k € N be a constant, then Ly, ¢ £ (k-NFA) and, therefore,
Z(k-NFA) C Z((k + 1)-NFA) and .Z(k-DFA) C Z((k + 1)-DFA).

So we have shown infinite hierarchies for the four types of self-assembling finite
automata in question.

In the next section deterministic computations are compared with nondeterministic
computations by means of closure properties.

4 Closure Properties under Boolean Operations

Some closure properties of language families defined by self-assembling finite au-
tomata are investigated. It turns out that the loop-free k-DFA languages are prop-
erly contained in the loop-free k-NFA languages. Thus, nondeterministic and deter-
ministic language families are separated by different closure properties.

We start the investigation by showing that none of the families is closed under
intersection.
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Theorem 21 Let k > 2 be a constant. Then exist languages L,L' € Zj(k-DFA)
such that L N L' ¢ £(k-NFA). In particular, none of the families Zj;(k-DFA),
Ly (k-NFA), Z(k-DFA) and .Z(k-NFA) is closed under intersection.

Proof. Let L = {af---ajaf’ ;| m,n € N} and L' = {aT"a} ---a}; | m,n € N}.
In order to construct a loop-free k-DFA for L and L' we only need minor modifica-

tions of the loop-free k-DFAs given in Example 3. But LN L' = {a}---a} | n €
N} = Lgy1 which by Corollary 20 cannot be accepted by any k-NFA. O

The goal is to prove different properties for nondeterministic and deterministic au-
tomata. In order to disprove the nondeterministic closure under complement we
prove the closure under union. The following technical lemma prepares for the
construction.

Lemma 22 Let k € N be a constant. For any (loop-free) k-NFA M there exists an
equivalent (loop-free) k-NFA M’ such that there is no assembling transition from
the starting state.

Proof. The first idea might be simply to resolve all assembling transitions from
the starting state by assembling a copy of the required modules in advance. But
this construction may fail if the modules have more than one entry state. In such
case the behavior of module M may differ. For example, in the original automaton
a state s may be reached which will be overlayed by a module entry state. Now the
possible transitions from s depend on whether or not the module has been assembled
before.

Therefore, in order to resolve an assembling transition from the starting state, we
need a complete copy of module My together with the already assembled module.
Those copies are necessary for all assembling transitions from the starting state. In
addition, a new starting state is needed. How fit all these copies together? Simply
by connecting the new starting state to existing successors of the starting states of
all copies. This construction yields a new module My and, obviously, preserves the
loop-freeness. O

Theorem 23 Let k > 2 be a constant, then £} (k-NFA) and .2 (k-NFA) are closed

under union.

Proof. Let L and L' be two k-NFA-languages. As usual for nondeterministic
devices the construction for L U L’ relies on the idea that an acceptor can initially
guess whether the input belongs to L or L'

The technical constraints are as follows. We have to provide a new initial state
to deal with the case that one of the automata may reach its initial state again.
Modules have to be renamed and, thus, the references in the assembling transitions.
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Due to Lemma 22 we may assume that the acceptors M and M’ for L and L' have
no assembling transitions from their initial states. The acceptor M” for L U L’
consists of all modules My, ..., My, of M and all modules Mj,..., M/ of M' with
appropriately renamed assembling transitions.

The modules My and M| are joined as follows: The new module M of M" contains
disjoint copies of My and M| and a new initial state so. The transition functions
of My and M| are joined unchanged (except eventually renaming). In addition, sg
is appropriately connected to the successors of the starting states of My and M]. If
either L or L' contains the empty word the new initial state is made final.

Since the presented construction preserves loop-freeness the theorem follows. O

Corollary 24 Let k > 2 be a constant, then Zj;(k-NFA) and £ (k-NFA) are not
closed under complement.

Proof. Since the families are closed under union by L U Ly = L N Ly the clo-
sure under complement would imply the closure under intersection what contradicts
Theorem 21. O

Now we consider deterministic devices. One might expect their closure under com-
plement by exchanging final and non-final states. But to this end the transition
functions need to be total mappings.

In order to make them total we have to cope with the situation that states will even-
tually be overlayed by entry states of successor modules. Therefore, in general more
than one transition function must be considered. On the other hand, some com-
putations may enter these states without assembling the successor modules which
implies that only one transition function must be total. The problem can be solved
for loop-free k-DFAs.

Lemma 25 Let kK € N be a constant and M be a loop-free k-DFA. Then there
exists an equivalent loop-free k-DFA M’ such that for any state in any reachable
configuration the local transition function is totally defined.

Proof. For states that neither have assembling transitions nor will overlay entry
states of successor modules the transition function J can be extended. If ¢ is not
defined for some (s,a), we provide a non-accepting 1:0-module which is assembled
for (s,a) and which recursively assembles itself for any further input.

Now we consider states with assembling transitions. If state s with input a assembles
a module M’, then the entry state s’ of M’ which overlays s may have transitions
for several input symbols. But since the k-DFA is loop-free, state s (and thus s') is
passed through at most once. Since the assembling consumes input symbol a, the
other transitions from s’ can safely be omitted. Subsequently, § is made total for
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state s by assembling the non-accepting 1:0-module for all input symbols having no
transition from s or s'.

For states which eventually overlay input states of successor modules without as-
sembling them (for modules with more than one input state) the problem is more
complicated to solve. Suppose module M’ is assembled by a transition from state s
in module M and one of its entry states r is overlayed by state p in M. Then the
computation in state p can depend on whether M’ was assembled or not. Therefore,
we take two copies of module M and join them to form a new module M as follows.
The first copy behaves like the old module M. From the second copy state s and
all transitions to state s are removed. Finally, the assembling transition in question
is modified such that all interface states of M’ are overlayed by the corresponding
states of the second copy.

Now it is obvious that states of the second copy are only reachable via module M’.
So M’ must have been assembled before and it is known which transitions exist for
the state p.

On the other hand, states of the first copy cannot be reached after assembling M’
since state s is the single connection state between the copies. But s has been passed
through before. This is also the reason why s can safely be deleted from the second
copy.

This construction step has successively to be performed for all assembling transitions
in M. Subsequently, it is known for all states s and input symbols a whether the
transition is defined when the computation enters s. If not, then the non-accepting
1:0-module is assembled in order to make the transition function total. O

Theorem 26 Let k € N be a constant, then £} (k-DFA) is closed under comple-
ment.

Proof. By Lemma 25 we may assume that the transition function is total. It
suffices to change final and non-final states to prove the theorem. O

Since Zj(k-DFA) has been shown not to be closed under intersection but to be
closed under complement we obtain immediately:

Corollary 27 Let k > 2 be a constant, then £ (k-DFA) is not closed under union.

From the different closure properties and for structural reasons the separation of
nondeterministic and deterministic loop-free languages follows.

Theorem 28 Let k > 2 be a constant, then Zj;(k-DFA) C Zjs (k-NFA).

For deterministic unrestricted k-DFAs, k > 2, the closures under complement and
union remain open. From the shown non-closure under complement follows that the
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language cannot be closed under both operations. Since for deterministic devices the
closure under complement is most likely, our conjecture is that they are not closed
under union. The positive closure under complement would also imply a separation
of unrestricted nondeterministic and deterministic language families.

Another partially open question concerns the comparison between unrestricted de-
terministic computations and loop-free nondeterministic computations, thus, loop-
freeness versus nondeterminism.
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