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The defective processing elements (cells) that cause the misoperations are assumed

to behave as follows. Dependent on the result of a self-diagnosis they store their

working state locally such that it becomes visible to the neighbors. A non-working

(defective) cell cannot modify information but is able to transmit it unchanged with

unit speed. Arrays with static defects run the self-diagnosis once before the actual

computation. Subsequently no more defects may occur. In case of dynamic defects

cells may fail during the computation.

We center our attention to patterns that are recognizable very fast, i.e. in real-

time, but almost all results can be generalized to arbitrary recognition times in a

straightforward manner. It is shown that fault tolerant recognition capabilities of

two-way arrays with static defects are characterizable by intact one-way arrays and

that one-way arrays are fault tolerant per se.

For arrays with dynamic defects it is proved that the failures can be compensated as

long as the number of adjacent defective cells is bounded. Arbitrary large defective

regions (and thus fault tolerant computations) lead to a dramatically decrease of

computing power. The recognizable patterns are those of a single processing element,

the regular ones.
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1 Introduction

Nowadays it becomes possible to build massively parallel computing systems

that consist of hundred thousands of processing elements. Each single com-

ponent is subject to failure such that the probability of misoperations and loss

of function of the whole system increases with the number of its elements. It

was von Neumann [10] who �rst stated the problem of building reliable systems

out of unreliable components. Biological systems may serve as good examples.

Due to the necessity to function normally even in case of certain failures of

their components the nature developed mechanisms which invalids the errors,

they are working in some sense fault tolerant. Error detecting and correcting

components should not be global to the whole system because they themselves

are subject to failure. Therefore the fault tolerance has to be a design feature

of the single elements.

A model for massively parallel, homogenously structured computers are the cel-

lular arrays. Such devices of interconnected parallel acting �nite state machines

have been studied from various points of view. Fault tolerant computations have

been investigated, e.g. in [1, 7] where encodings are established that allow the

correction of so-called K-separated misoperations, in [3, 4, 9, 11] where the

famous �ring squad synchronization problem is considered in defective cellular

arrays, and in terms of interacting automata with nonuniform delay in [2, 5]

where the synchronization of the networks is the main object also.

Here we are interested in more general computations. In terms of pattern re-

cognition the general capabilities of fault tolerant computations are considered.

Since cellular arrays have intensively been investigated from a language theor-

etic point of view, pattern recognition (or language acceptance) establishes the

connection to the known results and, thus, inheres the possibility to compare

the fault tolerant capabilities to the non fault tolerant ones.

In the sequel we distinguish two di�erent types of defects.

Static defects are the main object of Section 3. It is assumed that each cell

has a self-diagnosis circuit which is run once before the actual computation.

The results are stored locally in the cells and subsequently no new defects may

occur. Otherwise the whole computation would become invalid. A defective cell

cannot modify information but is able to transmit it with unit speed. Otherwise

the parallel computation would be broken into two non interacting parts and,

therefore, would become impossible at all.

In section 4 the defects are generalized. In cellular arrays with dynamic defects

it may happen that a cell becomes defective at any time. The formalization of

the corresponding arrays includes also the possibility to repair a cell dynamic-

ally.

In the following section we de�ne the basic notions and recall the underlying

intact cellular arrays and their mode of pattern recognition.
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2 Basic notions

We denote the integers by Z, the positive integers f1; 2; � � �g by N and the

set N [ f0g by N0. X1 � � � � � Xd denotes the Cartesian product of the sets

X1; : : : ;Xd. If X1 = � � � = Xd we use the notion X
d
1 alternatively. We use � for

inclusions and � if the inclusion is strict. Let M be some set and f : M !M

be a function, then we denote the i-fold composition of f by f
[i], i 2 N.

A two-way resp. one-way cellular array is a linear array of identical �nite state

machines, sometimes called cells, which are connected to their both nearest

neighbors resp. to their nearest neighbor to the right. The array is bounded by

cells in a distinguished so-called boundary state. For convenience we identify

the cells by positive integers. The state transition depends on the current state

of each cell and the current state(s) of its neighbor(s). The transition function

is applied to all cells synchronously at discrete time steps. Formally:

De�nition 1 A two-way cellular array (CA) is a system hS; �; #; Ai, where

1. S is the �nite, nonempty set of cell states,

2. # =2 S is the boundary state,

3. A � S is the set of input symbols,

4. � : (S [ f#g)3 ! S is the local transition function.

If the 
ow of information is restricted to one-way (i.e. from right to left) the

resulting device is a one-way cellular array (OCA) and the local transition

function maps from (S [ f#g)2 to S.

A con�guration of a cellular array at some time t � 0 is a description of its

global state, which is actually a mapping ct : [1; : : : ; n]! S for n 2 N.

The data on which the cellular arrays operate are patterns built from input

symbols. Since here we are studying one-dimensional arrays only the input

data are �nite strings (or words). The set of strings of length n built from

symbols from a set A is denoted by A
n, the set of all such �nite strings by A

�.

We denote the empty string by " and the reversal of a string w by w
R. For its

length we write jwj. A+ is de�ned to be A� n f"g.

In the sequel we are interested in the subsets of strings that are recognizable by

cellular arrays. In order to establish the connection to formal language theory

we call such a subset a formal language. Moreover, sets L and L
0 are considered

to be equal if they di�er at most by the empty word, i.e. L n f"g = L
0 n f"g.

Now we are prepared to describe the computations of (O)CAs. The operation

starts in the so-called initial con�guration c0;w at time 0 where one symbol

of the input string w = x1 � � � xn is fed to one cell, respectively: c0;w(i) = xi,

1 � i � n. During a computation the (O)CA steps through a sequence of

con�gurations whereby successor con�gurations are computed according to the

global transition function �: Let ct, t � 0, be a con�guration, then its successor
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con�guration is as follows:

ct+1 = �(ct) ()

ct+1(1) = �

�
#; ct(1); ct(2)

�

ct+1(i) = �

�
ct(i� 1); ct(i); ct(i+ 1)

�
; i 2 f2; : : : ; n� 1g

ct+1(n) = �

�
ct(n� 1); ct(n); #

�

for CAs and

ct+1 = �(ct) ()

ct+1(i) = �

�
ct(i); ct(i+ 1)

�
; i 2 f1; : : : ; n� 1g

ct+1(n) = �

�
ct(n); #

�

for OCAs. Thus, � is induced by �.

An input string w is recognized by an (O)CA if at some time i during its course

of computation the leftmost cell enters a �nal state from the set of �nal states

F � S.

De�nition 2 Let M = hS; �; #; Ai be an (O)CA and F � S be a set of �nal

states.

1. An input w 2 A
� is recognized by M if it is the empty string or if there

exists a time step i 2 N such that ci(1) 2 F holds for the con�guration

ci = �[i](c0;w).

2. L(M) = fw 2 A
� j w is recognized by Mg is the set of strings (language)

recognized by M.

3. Let t : N! N, t(n) � n, be a mapping and iw be the minimal time step

at whichM recognizes w 2 L(M). If all w 2 L(M) are recognized within

iw � t(jwj) time steps, then L is said to be of time complexity t.

The family of all sets which are recognizable by some CA (OCA) with time

complexity t is denoted by Lt(CA) (Lt(OCA)). If t equals the identity function

id(n) = n recognition is said to be in real-time, and if t is equal to k � id for an

arbitrary rational number k � 1 then recognition is carried out in linear-time.

Correspondingly, we write Lrt((O)CA) and Llt((O)CA). In the sequel we will

use corresponding notations for other types of recognizers.

3 Static defects

Now we are going to explore some general recognition capabilities of CAs that

contain some defective cells. The defects are in some sense static [9]: It is

assumed that each cell has a self-diagnosis circuit which is run before the actual

computation. The result of that diagnosis is stored in a special register of each

cell such that intact cells can detect defective neighbors. Moreover (and this

is the static part), it is assumed that during the actual computation no new

defects may occur. Otherwise the whole computation would become invalid.

What is the e�ect of a defective cell? It is reasonable to require that a defective
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cell cannot modify information. On the other hand, it must be able to transmit

information in order to avoid the parallel computation being broken into two

not interacting lines and, thus, being impossible at all.

The speed of information transmission is one cell per time step. Another point

of view on such devices is to de�ne a transmission delay between every two ad-

jacent cells and to allow nonuniform delays [2, 5]. Now the number of defective

cells between two intact ones determine the corresponding delay.

Since the self-diagnosis is run before the actual computation we may assume

that defective cells do not fetch an input symbol. Nevertheless, real-time is the

minimal possible time needed for non-trivial computations and, consequently,

is de�ned to be the number of all cells in the array. In order to obtain a

computation result here we require the leftmost cell to be not defective. Later

on we can omit this assumption.

Formally we denote CAs with static defects by SD-CA and the corresponding

language families by Lt(SD-CA).

Considering the general real-time recognition capabilities of SD-CAs the best

case is trivial. It occurs when all the cells are intact: The capabilities are those

of CAs. On the other hand, fault tolerant computations are concerned with

the worst case (with respect to our assumptions on the model). The next two

results show that in such cases the capabilities can be characterized by intact

OCAs from what follows that the bidirectionality of the information 
ow gets

lost.

Theorem 3 If a set is fault tolerant real-time recognizable by a SD-CA then

it is real-time recognizable by an OCA.

Proof. Let D be a SD-CA and let k 2 N be an arbitrary positive integer.

Set the number of cells of D to n = 2k � 1. For the mapping f : Z ! Z,

f(z) = n� 2z + 2 holds: 8 z 2 f1; : : : ; kg : f(z) 2 f1; : : : ; ng.

Now assume the cells at the positions f(i), 1 � i � k, are intact ones and all the

other cells are defective (see Figure 1). In between the cells f(i) and f(i+ 1),

1 � i � k� 1, there are f(i)� f(i+1)� 1 = (n� 2i+2)� (n� 2i+1+2)� 1 =

2i+1 � 2i � 1 = 2i � 1 defective ones.

During a real-time computation the states of a cell f(i) at time t � 2i cannot

in
uence the overall computation result (see Figure 1). The states would reach

the leftmost cell after another f(i)�1 = (n�2i+2)�1 = 2k�1�2i+1 = 2k�2i

time steps. This gives the arrival time 2i+2k�2i = 2k = n+1, which is greater

than real-time.

Conversely, the cell f(i) computes all its states up to time t � 2i � 1 inde-

pendently on the states of its intact neighbors to the left: The nearest intact

neighbor to the left is cell f(i+1) and there are 2i�1 defective cells in between

f(i+ 1) and f(i).

Up to now we have shown that the information 
ow in D is one-way. But

compared to OCAs the cells in D are performing more state changes. It remains

to show that this does not lead to stronger capabilities.
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Let i be some intact cell of D. As long as it operates independently on its

intact neighbors it runs through state cycles provided that the adjacent defect-

ive regions are long enough. Let s0s1 � � � sjsj+1 � � � sj+ksj � � � be such a cycle.

Now one can always enlarge the lengths of the defective regions such that they

correspond to j + p � (k + 1), p 2 N0.

Therefore, during their isolated computations the cells run through complete

cycles. Obviously, such a behavior can be simulated by the cells of an OCA

since the cycle lengths are bounded by the number of states of D. 2
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Figure 1: One-way information 
ow in SD-CAs.

In order to obtain the characterization of real-time SD-CAs by real-time OCAs

we need the converse of Theorem 3.

Theorem 4 If a set is real-time recognizable by anOCA then it is fault tolerant

real-time recognizable by a SD-CA.

Proof. The idea of the simulation is depicted in Figure 2. Each cell of a

SD-CA that simulates a given OCA waits for the �rst information from its

right intact neighbor. The waiting period is signaled to its left intact neighbor

by signals labeled �. This information leads to a waiting period of the left
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Figure 2: OCA simulation by SD-CAs.

intact neighbor. Each intact cell performs a simulation step when it receives a

non-waiting signal.

It follows that a cell sends exactly as many waiting signals to the left as are

defective cells located to its right. Therefore, the leftmost cell needs exactly

one simulation step for each intact cell and one waiting step for each defective

cell and, thus, computes the result in real-time. 2

The following corollary formalizes the characterization:

Corollary 5 Lrt(SD-CA) = Lrt(OCA)

From the previous results follows the interesting fact that OCAs are per se fault

tolerant. Additional defective cells do not decrease the recognition capabilities.

Corollary 6 Lrt(SD-OCA) = Lrt(OCA)

It is often useful to have examples for string sets not recognizable by a certain

device.

Example 7 Neither the set of duplicated strings fww j w 2 A
�g nor the set

of strings whose lengths are a power of 2 fw j w 2 A
� and jwj = 2i; i 2 Ng are

fault tolerant real-time recognizable by SD-CAs.
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(It has been shown in [6] resp. [8] that they do not belong to the family

Lrt(OCA).)

The previous results imply another natural question. Is it possible to regain

the recognition power of two-way CAs in fault tolerant SD-CA computations

by increasing the computation time? How much additional time would be

necessary?

Without proof we present a piece of good news. Only one additional time step

for each intact cell is necessary in order to regain the computation power in a

fault tolerant manner.

Theorem 8 If a set is real-time recognizable by a CA then it is fault tolerant

recognizable by a SD-CA in time real-time+m, where m denotes the number

of intact cells.

One assumption on our model has been an intact leftmost cell. Due to Co-

rollary 5 we can omit this requirement. Now the overall computation result is

indicated by the leftmost intact cell of the one-way array which operates per se

independently on its defective left neighbors.

4 Dynamic defects

In the following cellular arrays with dynamic defects (DD-CA) are introduced.

Dynamic defects can be seen as generalization of static defects. Now it becomes

possible that cells fail at any time during the computation. Afterwards they

behave as in the case of static defects.

In order to de�ne DD-CAs more formally it is helpful to suppose that the

state of a defective cell is a pair of states of an intact one. One component

represents the information that is transmitted to the left and the other one the

information that is transmitted to the right. By this formalization we obtain

the type indication of the cells (defective or not) for free: Defective cells are

always in states from S
2 and intact ones in states from S. A possible failure

implies a weak kind of nondeterminism for the local transition function.

De�nition 9 A two-way cellular array with dynamic defects (DD-CA) is a

system hS; �; #; Ai, where

1. S is the �nite, nonempty set of cell states which satis�es S \ S
2 = ;,

2. # =2 S is the boundary state,

3. A � S is the set of input symbols,

4. � : (S [ f#g [ S
2)3 ! ffa; (b; c)g j a; b; c 2 Sg is the local transition

function which satis�es

�(s1; s2; s3) = fs; (sl; sr)g with s 2 S, (s1 = sl 2 S _ s1 = (sl; s
0

r) 2

S
2); (s3 = sr 2 S _ s3 = (s0l; sr) 2 S

2)

If a cell works �ne the local transition function maps to a state from S. Oth-

erwise it maps to a pair from S
2 indicating that the cell is now defective. The
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de�nition includes the possibility to repair a cell during the computation. In

this case � would map from a pair to a state from S. Note that the nondeter-

minism in a real computation is a determinism since the failure or repair of a

cell is in some sense under the control of the outside world.

We assume that initially all cells are intact and as in the static case that the

leftmost cell remains intact.

In the sequel we call an adjacent subarray of defective cells a defective region.

The next results show that dynamic defects can be compensated as long as the

lengths of defective regions are bounded.

Theorem 10 If a set is real-time recognizable by a CA then it its real-time

recognizable by a DD-CA if the lengths of its defective regions are bounded by

some k 2 N0.

Proof. Assume for a moment that the lengths of the defective regions are

exactly k. A DD-CA D that simulates a given CA hS; �; #; Ai has the state set

S
0 = S

4k+1.

The general idea of the proof is depicted in Figure 3. As long as a cell does

not detect a defective neighbor it stores the states of its neighbors and its own

state in some of its additional registers as shown in the �gure.

At time t the state of cell i might be as follows:

(: : : ; ct�1(i� 1); ct�1(i); ct(i)|{z}
center

; ct�1(i); ct�1(i+ 1); : : :)

Assume now that the right neighbor of cell i becomes defective. Due to our

assumption we know that there must exist a defective region of length k at the

right of cell i. During the next k time steps cell i stores the received states and

computes missing states from its register contents as shown in Figure 3.

Subsequently its state might be as follows

(: : : ; ct+k(i)| {z }
center

; ct+k�1(i); ct+k�1(i+ 1); : : : ; ct+1(i+ k � 2); ct(i+ k � 1); ct(i+ k))

From now on cell i receives the states that the intact cell i + k + 1 has been

in at time t; t+ 1; : : : and is able to compute the necessary intermediate states

from its register contents.

A crucial point is that the lenghts of defective regions are �xed to k. Due to

that assumption a cell i knows when it receives the valid states from its next

intact neighbor i+k+1 or i�k�1. We can relax the assumption as required to

lengths of at most k cells by the following extension of the simulation. Each cell

is equipped with a modulo k counter. Since the current value of the counter is

part of the cell state it is also part of the transmitted information. A cell that

stores received information in its additional registers stores also the received

counter value. Now it can decide whether it receives the valid state from its

next intact neighbor by comparing the received counter value to the latest

stored counter value. If they are equal then the received information is from a

defective cell, otherwise it is valid and the cell uses no more additional registers.
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Figure 3: Compensation of k = 4 defects.

New failures in subsequent time steps can be detected by the same method. If

the received counter value is equal to the latest stored counter value then addi-

tional cells have become defective. In such cases the cell uses correspondingly
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more additional registers in order to compensate the new defects.

It remains to explain what happens if two defective regions are joint by failure of

a single connecting intact cell. Up to now we have used the transmitted contents

of the main registers only. But actually the whole state, i.e. all register contents,

are transmitted. In the case in question the next intact cells to the left and

right of the joint defective region can �ll additional registers as desired. 2

Corollary 11 If a set is real-time recognizable by an OCA then it is real-time

recognizable by a DD-OCA if the lengths of its defective regions are bounded

by some k 2 N0.

In order to provide evidence for general fault tolerant DD-CA computations we

have to relax the assumption of bounded defective region lengths. We are again

concerned with the worst case. The hardest scenario is as follows. Initially all

cells are intact and thus fetching an input symbol. During the �rst time step

all but the leftmost cell fail. (Needless to say, if the leftmost cell becomes also

defective then nobody would expect a reasonable computation result.)

It is easy to see that in such cases the recognition capabilities of DD-CAs are

those of a single cell, a �nite state machine (see Figure 4).

Lemma 12 If a set is fault tolerant recognizable by a DD-CA then it is recog-

nizable by a �nite state machine and thus regular.
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Figure 4: Worst case DD-CA computation.

Corollary 13 If a set is fault tolerant recognizable by a DD-OCA then it is

recognizable by a �nite state machine and thus regular.
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