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Abstract
The paper presents a method of composing finite distributive lattices from smaller pieces
and applies this to construct the finitely generated free distributive lattices from appropriate
Boolean parts.

Keywords Free distributive lattices · Triple sum

1 Introduction

The free distributive lattice FD01(3) on three generators as drawn in Fig. 1 can be viewed
as a sort of composition of four Boolean lattices layered on top of each other, with the three
generators a, b, c serving as additional merging points. Another way of seeing this is via
the ’central’ elements 0, p, q, r , 1, where the intervals [0, p], [p, q], [q, r], [r, 1] form the
respective Boolean lattices.

In this paper we will show, that this behaviour can be found in all the finitely generated
free distributive lattices. Moreover we will give a nonrecursive construction of these lattices
from their Boolean lattice building blocks.

The original hope that this might provide a better way to compute their cardinalities did
not materialize. As in the known recursive attempts (see e.g. [2, 11]) also this approach
requires an addition of interval sizes which for larger values of n goes beyond the capacities
of current computers.

2 Lattices

In the following all lattices L are finite distributive lattices with a 0-element 0L and a 1-
element 1L. By Bn we denote the Boolean lattice with elements 0,...,2n − 1 and binary join
and meet. In particular 0Bn = 0 and 1Bn = 2n − 1, and the atoms of Bn are 1, 2, ..., 2n−1.

For elements a and b of a lattice L we denote by (a] the principal ideal (or ‘downset’)
{x|x ∈ L, x ≤ a}, by [a) the principal filter (or ’upset’) {x|x ∈ L, x ≥ a} and by [a, b] the
interval {x|x ∈ L, a ≤ x ≤ b}.
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Fig. 1 FD01(3)

We start with an easy observation belonging to the folklore of distributive lattices (see
e.g. [1, 6]):

Theorem 1 Let L be a finite distributive lattice and a ∈ L. Then

(i) [a) is a dual ideal of L.
(ii) The relation Θa defined by

xΘay =def x ∧ a = y ∧ a

is a congruence of L.
(iii) L/Θa = (a].

What is less known is the following reverse construction, which has its origin in the
general theory of ’triple sums’ originally developed in [4, 5] and later extended in [7–10].

Theorem 2 Let L, M , N be finite distributive lattices and φ : L → M be a 1-meet-
preserving mapping. Let L ⊗φ M be the set of all pairs

L ⊗φ M = {(l,m)|l ∈ L,m ∈ M,m ≤ φ(l)}.
Then

(i) The composition L ⊗φ M is a distributive lattice (as a sublattice of L × M).
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(ii) There is an element a ∈ L ⊗φ M such that (a] ∼= L and [a) ∼= M .
(iii) For each a ∈ N there exists an 1-meet-preserving mapping φ : (a] → [a) such that

N ∼= (a] ⊗φ [a).

Proof (i) is obvious. For (ii) let a = (1L, 0M). Then a ∈ L ⊗φ M and the mappings
x 	→ (x, 0M) and y 	→ (1L, y) are clearly isomorphisms from L to (a] and M to [a).

For (iii) define φ by φ(x) = a ∗ x for all x ≤ a, where ∗ denotes the relative pseudo-
complement, i.e. a ∗ x = ∨{z|z ∈ L, z ∧ a ≤ x}. Then it is well known from the theory of
pseudocomplented lattices that φ has the required properties.

Let us note that the theorem above could have also formulated using the notion of split
exact sequences (see [9, 10]).

There are three well known special cases:

(i) If φ is the ’1-mapping’, i.e. φ(x) = 1M for all x ∈ L, then L ⊗φ M is the direct
product L × M .

(ii) If φ is the ’0-mapping’, i.e. φ(x) = 0M for all x ∈ L \ {1L} and φ(1L) = 1M , then
L ⊗φ M is the ordinal sum L ⊕ M with 1L and 0M amalgamated.

(iii) And if L = M and φ is the identity mapping, then L ⊗φ L is the ’skew square’
L � L of L, which is used in the recursive construction of FD01(n) via FD01(n) ∼=
FD01(n − 1) � FD01(n − 1). (see e.g. [2])

Another use of the skew square can be seen in the following easy observation:

Theorem 3 Let Bn be the Boolean lattice of order 2n, and let C3 be the three element chain.
Then Bn � Bn

∼= Cn
3 .

Proof This is obvious for n = 1, the rest follows by an easy induction argument, enumer-
ating pairs of pairs in two different ways.

Another interesting observation concerning the ’skew square’ of a composition is:

Lemma 1 Let L, M be distributive lattices and let φ : L → M be a 1-meet-preserving
map. Then

(L ⊗φ M) � (L ⊗φ M) ∼= L ⊗ψ (M × L) ⊗χ M,

where the mappings ψ : L → M × L and χ : M × L → M are defined by:

ψ(x) = (φ(x), x) for all x ∈ L

χ((y, x)) = φ(x) ∧ y for all x ∈ Land y ∈ M .

Proof Obviously ψ and χ are 1-meet-preserving. Now by definition (L ⊗φ M) � (L ⊗φ

M) = {((x1, y1), (x2, y2))|y1 ≤ φ(x1), y2 ≤ φ(x2), x2 ≤ x1, y2 ≤ y1} whereas L⊗ψ (M×
L) ⊗χ M = {(x1, (y1, x2), y2)|(y1, x2) ≤ ψ(x1), y2 ≤ χ((y1, x2))} and by the definition
of ψ and χ these conditions coincide.

So far we have only considered the composition of pairs of distributive lattices. Now if
L ⊗φ M and M ⊗ψ N are two such compositions, then these give rise to two combinations,
namely (L⊗φ M)⊗ψ∗

N and L⊗φ∗
(M ⊗ψ N) where φ∗ and ψ∗ are the natural extensions

of φ and ψ defined by
φ∗(l) = (φ(l), ψ(φ(l)) f or l ∈ L

ψ∗(m, n) = ψ(m) f or (m, n) ∈ M ⊗ψ N .

161Order (2022) 39:159–169



Obviously both compositions amount to the same set, namely {(l, m, n)|l ∈ L,m ∈
M, n ∈ N,m ≤ φ(l), n ≤ ψ(m)}. Therefore it makes sense to introduce the notion of a
triple composition L ⊗φ M ⊗ψ N , and more generally that of an n-fold composition

L0 ⊗φ0 L1 ⊗φ1 ... ⊗φn−2 Ln−1.

And as such an (n+1)-fold composition we will construct FD01(n).
However, before turning to the general case we describe the construction of FD01(3) as

a quadruple

B1 ⊗φ0 B3 ⊗φ1 B3 ⊗φ2 B1,

where φ0 and φ2 are the 0-mappings and φ1 : B3 → B3 is defined by φ1(7) = 7,
φ1(6) = 4, φ1(5) = 2, φ1(3) = 1 and φ1(x) = 0 for all other x ∈ {0, 1, ..., 7}.

That this really gives FD01(3), can be seen from its diagram in the canonical numbering
as in Fig. 2 and the expression of the element numbers as 4-tuples as in Table 1, where the
correspondence is given by (c0, c1, c2, c3) 	→ c0 ∗ 20 + c1 ∗ 21 + c2 ∗ 24 + c3 ∗ 27:

For the general case of n ∈ N this suggests to use the Boolean lattices B(n
k)

corresponding

to the binomial coefficients
(
n
k

)
for k = 0, ..., n as building blocks.

Theorem 4 Let n ∈ N. For k = 0, ..., n let Lk be the Boolean lattice Lk = B(n
k)

. Then there
exist 1-meet-preserving mappings φk : Lk → Lk+1 for k = 0, .., n − 1 such that

FD01(n) ∼= L0 ⊗φ0 L1 ⊗φ1 ... ⊗φn−1 Ln.

Fig. 2 The canonical numbering of FD01(3)
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Table 1 Numbers as 4-tuples

0 1 3 5 7

(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,2,0,0) (1,3,0,0)

9 11 13 15 23

(1,4,0,0) (1,5,0,0) (1,6,0,0) (1,7,0,0) (1,3,1,0)

43 77 31 47 63

(1,5,2,0) (1,6,4,0) (1,7,1,0) (1,7,2,0) (1,7,3,0)

79 95 111 127 255

(1,7,4,0) (1,7,5,0) (1,7,6,0) (1,7,7,0) (1,7,7,1)

The key to the proof is the following generalization of Lemma 1:

Lemma 2 Let n ∈ N, let L0, L1, ..., Ln be distributive lattices and for 0 ≤ i < n let
φi : Li → Li+1 be 1-meet-preserving maps.

Then
(L0 ⊗φ0 ... ⊗φn−1 Ln) � (L0 ⊗φ0 ... ⊗φn−1 Ln) ∼=

L0 ⊗ψ0 (L1 × L0) ⊗ψ1 (L2 × L1) ⊗ψ2 ... ⊗ψn−1 (Ln × Ln−1) ⊗ψn Ln,

where the mappings ψ1 : L0 → L1×L0, ψi : (Li×Li−1) → (Li+1×Li) for i = 1, , , n−1
and ψn : (Ln × Ln−1) → Ln) are defined by:

ψ0(x0) = (φ0(x0), x0) for all x0 ∈ L0

ψi((yi−1, xi)) = (φi(xi), xi ∧ φi−1(yi−1)) for all xi ∈ Li, yi−1 ∈ Li−1, 0 < i < n

ψn((yn−1, xn)) = xn ∧ φn−1(yn−1) for all xn ∈ Ln, yn−1 ∈ Ln−1.

To prove this, obviously a similar argument as in Lemma 1 shows that the condi-
tions for the elements ((x0, ..., xn), (y0, ..., yn)) on the left hand side and ((x0, (y0, x1), ...,
(yn−1,xn), yn)) on the right hand side coincide:

Proof of Theorem 4 The result is immediate for n = 1 with FD0,1(1) ∼= C3 ∼= B1 ⊗φ0 B1,
where φ0 is the 0-map. Now assume that the result holds for n ≥ 1. As in Example (iii) on
page 3 we have that FD01(n+ 1) ∼= FD01(n)�FD01(n). By the induction hypothesis and
Lemma 2 we get FD01(n + 1) ∼= B(n

0)
⊗ψ0 (B(n

1)
× B(n

0)
) ⊗ψ1 (B(n

2)
× B(n

1)
) ⊗ψ2 ... ⊗ψn−1

(B(n
n)

×B( n
n−1)

)⊗ψn B(n
n)

Now the fact that Bi ×Bj
∼= Bi+j for all i, j ∈ N and the addition

rules for the binomial coefficients show that the statement of the theorem holds also for
n + 1.

In this proof the crucial mappings ψ0, ..., ψn are defined recursively. It is, however,
possible to give a direct definition. We defer this to the next section.

3 Posets

An element x of a lattice L is called meet irreducible, if it cannot be expressed as a meet
of greater elements, i.e. x = y ∧ z implies x = z or x = y. In particular, 1L is not meet
irreducible. The poset of meet irreducible elements of L is denoted by M (L).
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Fig. 3 Sum of two antichains

A subset I of a poset P is called an ideal, if it it “downward closed”, i.e. p ∈ I and
q ≤ p implies q ∈ I . In particular, ∅ and P are ideals of P . By I (P ) we denote the set
(lattice) of ideals of P .

We start this section with the poset counterpart of the triple construction for lattices:

Theorem 5 Let P , Q be finite posets and α : Q → I (P ) be an order preserving mapping.
Then the set

P ⊕α Q = P ∪̇ Q

equipped with the relation ≤ defined by

x ≤ y =def

⎧
⎨

⎩

x ≤ y if x,y ∈ P
x ≤ y if x,y ∈ Q

x ∈ α(y) if x ∈ P and y ∈ Q

is a poset.

Proof Clearly ≤ is reflexive and antisymmetric. To show that it is transitive too, it suffices
to consider three elements x, y, z with x ≤ y and y ≤ z and the two nontrivial cases (i)
x ∈ P, y ∈ Q, z ∈ Q and (ii) x ∈ P, y ∈ P, z ∈ Q. Now for (i) transitivity comes from the
fact that α is order preserving, and for (ii) from the fact that α(z) is an ideal.

To illustrate this consider two 3-element antichains P = {a, b, c}, Q = {d, e, f } and
define the mapping α : Q → I (P ) by α(d) = {a, b}, α(e) = {a, c}, α(e) = {b, c}. Then
the poset P ⊕α Q has the diagram of Figure 3:

The following Lemma, taken from [8] paves the way for the next result connecting the
triple constructions for lattices and posets:

Lemma 3 Let L, M be finite distributive lattices and φ : L → M be 1-meet-preserving.
Then (x, y) ∈ L ⊗φ M is meet irreducible if and only if either x is meet irreducible in L

and y = φ(x) or x = 1 and y is meet irreducible in M .

Theorem 6 Let L, M be finite distributive lattices and φ : L → M be 1-meet-preserving
and let P = M (L) and Q = M (M) be their posets of meet irreducible elements. Then the
mapping α : Q → I (P ) defined by

α(y) = {x|x ∈ P, φ(x) ≤ y} y ∈ Q

is order preserving and
M (L ⊗φ M) ∼= P ⊕α Q.

Proof Obviously α(y) is an ideal for each y ∈ Q. Moreover the fact that φ preserves order
immediately implies that α is order preserving too. Now by Lemma 3 we conclude that
M (L⊗φ M) = {(1, y)|y ∈ M (M)}∪{(x, φ(x))|x ∈ M (L)}. Clearly the union is disjoint,
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so it remains to show that (x, φ(x)) ≤ (1, y) if and only if φ(x) ∈ α(y), but this is just the
definition of α.

Theorem 7 Let P , Q be finite posets and α : Q → I (P ) be an order preserving map.
Then the mapping φ : I (P ) → I (Q) defined by

φ(X) = {q|q ∈ Q, α(q) ⊆ X}
is 1-meet-preserving and

I (P ⊕α Q) ∼= I (P ) ⊗φ I (Q).

Proof Clearly φ(X) is an ideal of Q for every X ∈ I (P ), so φ is a mapping. It is 1-meet-
preserving as well. We now observe that for any (X, Y ) ∈ I (P ) ⊗φ I (Q) the set X∪̇Y is
an ideal of P ⊕α Q. In fact let y ∈ X∪̇Y and x ≤ y. In order to show that x ∈ X∪̇Y too,
is suffices to consider the case x ∈ P and y ∈ Q. But then we have x ∈ α(y) and hence
x ∈ X.

This implies we can define a mapping χ : I (P ) ⊗φ I (Q) → I (P ⊕α Q) by
χ(X, Y ) = X∪̇Y . Its inverse is given by Z 	→ (Z ∩ P)∪̇(Z ∩ Q) and since both are order
preserving they are lattice isomorphisms too.

As already indicated, we will apply this result to obtain a nonrecursive definition of
the composition mappings φk of Theorem 2. In order to facilitate this we introduce some
notation:

For n ∈ N let
Pn = P({0, 1, ..., n − 1})

be the (Boolean) poset of all subsets of {0, 1, ..., n− 1} with set inclusion as ordering. More
generally, for any set X let

Pn(X) = {Y |Y ⊆ X, |Y | = n}
be the set of all n-element subsets of X.

For n ∈ N and k = 0, ..., n let

Sn,k = Pk({0, 1, ..., n − 1})
be the set of all k-element subsets of Pn. Then Pn can be decomposed into antichain layers as

Pn = Sn,0 ∪̇ Sn,1 ∪̇ ... ∪̇ Sn,n.

With the mappings αk : Sn,k+1 → I (Sn,k) defined by

αk(X) = {Y |Y ∈ Sn,k, Y ⊆ X}
we can even generalize the composition to

Pn = Sn,0 ⊕α0 Sn,1 ⊕α1 ... ⊕αn−1 Sn,n,

where we tacitly extend the poset triple sum to an n-fold sum.
Repeatedly applying Theorem 4 we arrive at:

Theorem 8 For n ∈ N

FD01(n) ∼= P(Sn,0) ⊗φn,0 P(Sn,1) ⊗φn,1 ... ⊗φn,n−1 P(Sn,n),

where for k = 0, ..., n − 1 the 1-meet-preserving mappings φn,k : P(Sn,k) → P(Sn,k+1)

are defined by
φn,k(X) = {Y |Y ∈ Sn,k+1,Pk(Y ) ⊆ X}.
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Proof It is well known that FD01(n) ∼= I (Pn) (see e.g. [3]). Moreover, as Sn,k is an
antichain, it is clear that I (Sn,k) = P(Sn,k). So the only thing that remains to be shown,
is that the formula given for φn,k is equivalent to the one obtained from Theorem 7 - but that
is obvious too.

To illustrate the definition of φn,k we list some values for n = 4 in Table 2, where we
restrict ourselves to list the mapping values for the topmost elements, i.e. the 1-element and
the dual atoms:

4 Computations

Even though Theorem 8 gives a direct, nonrecursive construction, its application to deter-
mine the cardinalities for larger values of n fails with respect to the slowness of computing
the ‘downsets’ of the partial compositions.

To see this in some more detail let us recall that the definition of the composition L⊗φ M

implies that for any (x, y) ∈ L ⊗φ M we have

|((x, φ(x))]| =
∑

a∈L,a≤x

|(φ(a)]|

and in particular

|L ⊗φ M| = |[(1L, φ(1L))]| =
∑

x∈L

|(φ(x)]|.

Applying this repeatedly to the formula of Thereom 2 we end up with

|FD01(n)| =
∑

i0∈L0

∑

i1∈L1,i1≤φ(i0)

...
∑

in∈Ln

2in

Table 2 Mappings for n = 4

S4,0 {∅}
S4,1 {{0}, {1}, {2}, {3}}
S4,2 {{0, 1}, {0, 2}, {1, 2}, {0, 3}, {1, 3}, {2, 3}}
S4,3 {{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}}
S4,4 {{0, 1, 2, 3}}
φ0 S4,0 S4,1

φ1 S4,1 S4,2

{{0}, {1}, {2}} {{0, 1}, {0, 2}, {1, 2}}
{{0}, {1}, {3}} {{0, 1}, {0, 3}, {1, 3}}
{{0}, {2}, {3}} {{0, 2}, {0, 3}, {2, 3}}
{{1}, {2}, {3}} {{1, 2}, {1, 3}, {2, 3}}

φ2 S4,2 S4,3

{{0, 1}, {0, 2}, {1, 2}, {0, 3}, {1, 3}} {{0, 1, 2}, {0, 1, 3}}
{{0, 1}, {0, 2}, {1, 2}, {0, 3}, {2, 3}} {{0, 1, 2}, {0, 2, 3}}
{{0, 1}, {0, 2}, {1, 2}, {1, 3}, {2, 3}} {{0, 1, 2}, {1, 2, 3}}
{{0, 1}, {0, 2}, {0, 3}, {1, 3}, {2, 3}} {{0, 1, 3}, {0, 2, 3}}
{{0, 1}, {1, 2}, {0, 3}, {1, 3}, {2, 3}} {{0, 1, 3}, {1, 2, 3}}
{{0, 2}, {1, 2}, {0, 3}, {1, 3}, {2, 3}} {{0, 2, 3}, {1, 2, 3}}

φ3 S4,3 S4,4
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Table 3 φ4,k, k = 0, ..., 3

φ4,0 φ4,1 φ4,2 φ4,3

1 15 15 63 63 15 46 4 15 1

14 52 62 12 43 4

13 42 61 10 42 4

12 32 60 8 39 1

11 25 59 6 31 3

10 16 58 4 29 2

9 8 57 2 27 2

7 7 55 9 25 2

6 4 54 8 23 1

5 2 53 8 15 1

3 1 52 8 7 1

47 5

(since Ln = B1 and therefore in has only the two choices in = 0 and in = 1).
Taking into account the number of necessary summations, which alone for the largest

component is 2( n
n/2), it is clear that this computation can be carried out only up to n = 6

using currently available computers.
But to be more precise:
We define for each n ∈ N a sequence of functions c0 : L0 → N, ..., cn : Ln → N

recursively by:

cn(0) = 1, cn(1) = 2

ck−1(x) =
∑

y∈Lk−1,y≤x

ck(φk−1(y)) f or k = n, ..., 1

and the the formulas above finally yield

c0(1) = |FD01(n)|.

Table 4 c-values for n = 4

B1 B4 B6 B4 B1

1 168 1 15 167 1 63 114 1 15 17 1 1 2 1

0 1 1 7 19 4 31 41 6 7 8 4 0 1 1

3 5 6 15 18 12 3 4 6

1 2 4 30 16 3 1 2 4

0 1 1 7 9 4 0 1 1

11 8 16

3 4 15

1 2 6

0 1 1

2 16 64 16 2
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We have carried out a computer calculation of these sequences up to n = 6. Tables 3
and 4 list the values of the mappings φn,k and the respective c-values for n = 4. Note that in
Table 3 the columns contain the nonzero function values and in Table 4 the three columns for
each of the Boolean lattices contain representative elements, their c-value and the number
of elements with the same value.

Concluding remarks It might be worthwhile to try to use some insight into the known
structure of the Boolean lattices L0,..., Ln to speed up the computation.

An easy result in that direction is that

cn−1(2
n−1) = 2n+1

cn−1(x) = 2bitsize(x) f or x = 0, ..., 2n−1 − 1,

which is simply due to the fact that φn−1 is the 0-mapping.
Another speedup approach would be the use of the induced action of the symmetric group

Sn on the lattices L1, ...Ln−1, as this was successfully done in [11].
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