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Summary

In this thesis new slowing down and charge-state measurements will be presented in the
energy range of (60 - 200) MeV/u. These measurements were done using the Fragment
Separator (FRS) facility at GSI in Darmstadt. The presented data were taken during
two experimental runs.

The experiments were divided into two parts. In the first part a 200 MeV/u Ni27+

beam was used. The evolution of charge states as a function of the target thickness
was investigated covering both the non-equilibrium and equilibrium region. This was
done with various mono-atomic materials (Z2 = 6, 7, 10, 13, 18, 22) and compound
materials (ethylene, polyethylene and polypropylene). From the measured charge-
state distributions the one-electron ionization and capture cross sections have been
extracted. A 40 % gas-solid difference is observed in the ionization cross sections for
the mono-atomic materials. In the compound materials a 30 % difference is observed
between ethylene and the polymers.

The experimental cross sections for the mono-atomic materials have been compared
with theoretical calculations [1, 2]. The theoretical ionization cross sections agree quite
well with the corresponding experimental ionization cross sections. In the gaseous
targets the agreement between experiment and theory is better than 3 %. For the
capture cross sections the agreement between experiment and theory is also very good
for the lighter target materials (Z2 ≤ 7). For the heavier targets large deviations up
to one order of magnitude are observed. These deviations are due to the increasing
importance of the non-radiative capture channel in heavier target materials which is
quite difficult to calculate accurately. The results motivate for further refinement of
the theory in this energy region.

In the second part 3 different uranium beams were used with initial energies of 61
MeV/u (U86+ incident), 85 MeV/u (U73+ incoming) and 200 MeV/u (U81+ incident)
to measure the evolution of the charge states again and the energy loss as a function of
the target thickness in the same materials as used in the first part plus some additional
mono-atomic materials Z2 = 29, 36, 47, 54. From the measured charge-state distri-
butions and energy losses the mean charges and stopping forces have been extracted.
At 61 MeV/u we observe a gas-solid difference in the mean charge of up to 4 charge
states for the mono-atomic materials. The corresponding stopping powers (forces) at
the same specific energy only show a gas-solid difference for light materials (Z2 ≤ 7).
The stopping forces are compared with calculations done with the PASS code [3, 4],
ATIMA code [5] and the Hubert et al. tables [6]. The agreement is quite good be-
tween experiment and theory. The PASS code predicts by using the experimental mean
charges a gas-solid difference in the stopping force for the heavier target materials. In
the data at 200 MeV/u there is a gas-solid difference in the ionization rate for U81+
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ions similar to the Ni27+ results.



Zusammenfassung

In dieser Dissertation werden neue Ladungsverteilungen und Energieverlustmessungen
präsentiert. Diese Messungen wurden am Fragment Separator (FRS) bei der GSI
in Darmstadt durchgeführt. Die Daten, die hier vorgestellt werden, wurden in zwei
Experimenten aufgenommen.

Die Experimente bestanden aus zwei Teilen. Im ersten Teil wurde mit einem
200 MeV/u Ni27+ Strahl gemessen. Ziel dieser Messung war die Entwicklung der
Ladungsverteilung als Funktion der Targetdicke vom Nichtgleichgewicht bis Gleich-
gewicht zu untersuchen. Dies wurde mit verschiedenen Targets gemacht (Z2 = 6, 7, 10,
13, 18, 22, Äthylen, Polyäthylen und Polypropylen). Von den gemessenen Ladungsver-
teilung konnten die Umladungsquerrschnitte für Elektroneneinfang und -verlust ex-
trahiert werden. Ein Gas-Festkörper Effekt von 40 % wurde im Ionizationsquerrschnitt
für die monoatomaren (reinen Elemente) Targets gemessen. Im Äthylen und den Poly-
meren (Polyäthylen und Polypropylen) war ein Effekt von 30 % zu sehen.

Die experimentellen Umladungsquerrschnitte für die monoatomaren Targets wur-
den mit theoretischen Rechnungen von A. Surzhykov und S. Fritzsche [1] und V. P.
Shevelko [2] verglichen. In der Ionization stimmen die theoretischen Rechnungen mit
den experimentellen Werten gut überein. In den Gastargets ist die Übereinstimmung
besser als 3 %. Im Elektroneneinfang gibt es gute Übereinstimmung zwischen Exper-
iment und Theorie bei den leichten Targets (Z2 ≤ 7), bei den schweren Targets gibt
es grosse Abweichungen bis zu einer Grössenordnung. Diese Abweichung kommt zus-
tande, weil der nicht-radiative Querrschnitt einen grösseren Anteil hat bei den schweren
Targets und dieser Teil sehr schwer theoretisch zu rechnen ist. Die Ergebnisse sind eine
Motivation für Verbesserungen in der Theorie im diesen Energiebereich.

Im zweiten Teil wurde ein Uranstrahl bei drei verschiedenen Energien benutzt,
diese waren 61 MeV/u mit 86+ als Eingangsladungszustand, 85 MeV/u mit 73+ als
Eingangsladungszustand und 200 MeV/u mit 81+ als Eingangsladungszustand. Ziel
dieser Messung war es wiederum, die Entwicklung der Ladungsverteilung zu unter-
suchen und auch Energieverluste zu messen. Dieselben Targets wurden benutzt und
zusätzlich wurden folgende Targets vermessen Z2 = 29, 36, 47, 54. Von den gemesse-
nen Ladungsverteilungen und Energieverlusten wurde die mittlere Ladung und das
Bremsvermögen bestimmt. Bei 61 MeV/u ist ein Gas-Festkörper Effekt in der mit-
tleren Ladung bei den monoatomaren Targets zu sehen. Der Effekt hat eine Grösse von
fast 4 Ladungen. Das dazu gehörige Bremsvermögen zeigt nur einen Gas-Festkörper
Effekt bei den leichteren Targets (Z2 ≤ 7). Die experimentellen Werte wurden mit dem
PASS Programm [3, 4], dem ATIMA Programm [5] und den Hubert et al. Tabellen
[6] verglichen. Die theoretischen Rechnungen von den Programmen stimmen mit den
experimentellen Werten gut überein. PASS sagt einen Gas-Festkörper Effekt bei den

iii



iv

schwereren Targets voraus, weil experimentelle Ladungen als Eingangsparameter be-
nutzt wurden. Bei der 200 MeV/u Messung wurde ein Gas-Festkörper Unterschied in
der Ionizationsrate in der Entwicklung des U81+ Ladungszustand beobachtet, ähnlich
wie in der Ni27+ Messung.
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Chapter 1

Introduction

1.1 Ion Penetration Through Matter

It has been a longstanding tradition at GSI to measure energy loss of heavy ions. The
initial work started in the end of 1970’s using the newly build (at that time) UNILAC
accelerator. In the early 1980’s the systematic studies led to the discovery of the gas-
solid effect in the stopping force [7], three decades after the effect was discovered in
the mean charge by Lassen [8]. These studies covered an projectile energy range from
0.1 - 10 MeV/u. The discovery of the gas-solid effect in the stopping force led to even
more studies of the effect at even higher energies which were done in the late 1980’s
and early 1990’s [9] at the GANIL facility in France.

With the advent of the Heavy-Ion Synchrotron (SIS) and Fragment Separator (FRS)
in the early 1990’s at GSI it became possible to measure energy losses at beam energies
up to 1 GeV/u. New studies done at these high energies showed that the Bethe-
Bloch formula [10, 11] is insufficient to describe the stopping force of heavy ions. This
discovery led to the development of the Lindhard-Sørensen theory [12] in 1996. Since
then more systematic studies have been done covering the energy range 100 - 1000
MeV/u for various heavy projectiles and targets [13, 14, 15]. Figure 1.1 displays the
experimental stopping forces that have been measured at GSI and GANIL over the last
3 decades plotted versus the projectile atomic number. The high energy region (above
100 - 200 MeV/u) has been well covered and similar is seen for energies below 50 - 100
MeV/u. But measurements with heavy projectiles such as uranium in the energy region
50 - 200 MeV/u are missing. This is the main motivation of this thesis to measure
energy losses of heavy ions in that region. The red dots display the new experimental
stopping forces which have been obtained. The last extensive investigation of the
gas-solid effect in the stopping force was done at roughly 20 MeV/u in the case of
uranium ions by Bimbot and coworkers [9]. With the Fragment Separator it is possible
to measure both charge state distribution and energy loss at the same time. This can
help in understanding the gas-solid effect in the stopping force in more detail plus it
allows testing of the scaling properties of the stopping force.

Measuring the evolution of charge state distributions can give information about
a more basic quantity namely the charge-exchange cross sections. If there is gas-solid
effect in the charge state distribution then there is a gas-solid effect in the charge-
exchange cross sections. In order to extract the cross sections from charge state mea-
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Experimental stopping forces measured at the UNILAC and with the FRS
facility at GSI in Darmstadt and at GANIL in France versus the projectile atomic
number. The red dots display the experimental stopping forces presented in this thesis.

surements one has to measure the whole distribution from the non-equilibrium to the
equilibrium region. Measurement of the non-equilibrium is very difficult because very
thin foils are needed (in the case of solids) depending on the projectile energy and
target material. Woods and coworkers [16] did investigations in different compound
materials with a 36 MeV carbon beam and they observed a gas-solid difference in the
cross sections derived from the charge state measurements.

The goal of this thesis is to extend the gas-solid effect measurements in the stopping
force done by Geissel et al. [7] and Bimbot et al. [9] to higher energies plus to do charge
state measurements in order to investigate the charge-exchange cross sections in this
energy region.



Chapter 2

Theory

2.1 Slowing Down Theory

2.1.1 Definition

In the following discussion [17] we assume that the penetrating particle is always moving
with a velocity greater than the Bohr velocity v0. The term stopping force will be used
throughout the thesis for describing the energy loss per unit length dE/dx. Consider
a homogeneous stopping medium with a thickness x. Let a projectile penetrate the
medium with an energy E. We wish to determine the energy loss ∆E of the projectile
when it has penetrated a layer of thickness ∆x. Assuming that the projectile loses
energy in discrete bits Tj, with j = 1, 2, . . . and Tj ≪ E, the energy loss can then be
written as

∆E =
∑

j

njTj, (2.1)

where nj is the number of collisions of type j, each leading to an energy loss of Tj.
The above argument considered only one projectile. Let us now consider multiple

projectiles. The average energy loss 〈∆E〉 is then given by

〈∆E〉 =
∑

j

〈nj〉Tj. (2.2)

Then the average number of events is given by

〈nj〉 = N∆xσj, (2.3)

N is the density of the medium and σj is the ‘energy loss cross section’. Combining
(2.2) and (2.3) yields

〈∆E〉 = N∆x
∑

j

Tjσj. (2.4)

Now we define the stopping cross section S as

S =
∑

j

Tjσj, (2.5)

3



4 CHAPTER 2. THEORY

the stopping force is then

〈∆E〉

∆x
= N

∑

j

Tjσj. (2.6)

Going over to the case of continuous energy loss in individual encounters, we may
replace

σj =
dσ(T )

dT
∆Tj. (2.7)

Letting the size of ∆Tj be sufficiently small, the sum in (2.6) can be replaced by an
integral (continuous slowing down approximation) and one arrives at

−
dE

dx
= N

∫

Tdσ (2.8)

= NS.

The added minus sign signals that the projectile energy decreases.
The energy loss of the projectile can be deposited either in the target electrons or

nucleus. This means that we can write the stopping cross section as

S = Se + Sn. (2.9)

Se is the electronic stopping cross section and Sn is the elastic stopping cross section.
Elastic stopping becomes important when v < v0. For that reason we neglect this
contribution to the nucleus.

2.1.2 Slowing Down in a Coulomb Field

Assume an electron initially at rest and a projectile (Z1 > 2) moving with a velocity v.
From classical scattering theory one can derive an expression for the energy transferred
to the electron (for v ≪ c)

T = 2mev
2 sin2

(

Θ

2

)

, (2.10)

Θ is the scattering angle in the center-of-mass frame and me is the mass of the electron.
For Θ = π we have a maximum energy transfer of 2mev

2. The scattering angle and the
impact parameter p (perpendicular distance between projectile and target, see Figure
2.1) are related to each other through the following equation [17]

tan
(

Θ

2

)

=
b

2p
, (2.11)

where b = 2 |Z1| e
2/mev

2 is the distance of closest approach (collision diameter), Z1 is
the projectile atomic number. Figure 2.1 below demonstrates the connection between
the differential cross section and the impact parameter. Because of the azimuthal
symmetry we get

dσ = 2πpdp (2.12)

=

∣

∣

∣

∣

∣

d(πp2)

dT

∣

∣

∣

∣

∣

dT (2.13)
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Figure 2.1: Definition of differential cross section dσ and impact parameter p [17].

Inserting (2.11) into (2.10) gives Thomson’s formula [18]

Tfree =
2mev

2

1 + (2p/b)2
. (2.14)

The differential cross section is found by inverting and differentiating equation (2.14)
and using (2.13). The result is

dσR =
2πZ2

1e
4

mev2

dT

T 2
. (2.15)

The above formula is Rutherford’s scattering law (though not in standard notation)
and the stopping cross section is then

Se =
2πZ2

1e
4

mev2

∫ 2mev2

0

dT

T
. (2.16)

Equation (2.14) has a singularity that arises from ignoring the binding of the electron.
A simple solution suggested by Thomson [18] was to introduce a cutoff and setting
that equal to the lowest ionization energy. This suggestion leads to a stopping force
that is a factor 2 too small. It was Bohr [19] who later solved this problem. Bohr used
the classical harmonic oscillator to describe the binding of the electron to the nucleus.
This led Bohr to divide the interaction into close collisions (large momentum transfer)
and distant collisions (small momentum transfer).

When an external force F acts on an oscillator during a limited time period τ , the
exchange of momentum depends essentially on the magnitude of τ compared to the
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oscillation period 2π/ω, where ω is the resonance frequency of the oscillator. When
τ ≪ 2π/ω, the oscillator takes up a momentum of F · τ as if it were a free particle,
thereby making equation (2.13) valid. For τ ≫ 2π/ω, the oscillator will respond
adiabatically to the external force and it will calm down as the disturbance vanishes.
Thus, the takeup of momentum will be much smaller than that experienced by a free
particle. The collision time for free Coulomb scattering is roughly τ ∼ 2p/v. The
adiabatic cutoff will occur at an impact parameter where 2p/v ≪ 2π/ω, i.e.

aad ∼
v

ω
. (2.17)

This quantity is known as Bohr’s adiabatic radius.

2.1.3 Energy Loss due to Bound Electrons

As mentioned above Bohr used the harmonic oscillator in an electric field to investigate
the energy transfer for distant collisions. The electric field is given by

E(r, t) = −∇Φ(r, t) (2.18)

where Φ is the Coulomb potential, i.e.

Φ(r, t) =
Z1e

|r − R(t)|
. (2.19)

R(t) is the trajectory of the projectile

R(t) = p + vt, (2.20)

where p is the impact parameter (vector). For a classical electron bound by a force
−kr = −meω

2r the classical equation of motion is given by

d2r

dt2
+ ω2r = −

e

me

E(r, t), (2.21)

the energy transfer to a classical harmonic oscillator is the sum of the kinetic energy
and potential energy which is given by

Toscillator = Tkin + Tpot

=
1

2
mev

2 +
1

2
meω

2r2

=
e2

2me

∣

∣

∣

∣

∫ ∞

−∞
dtE(t)eiωt

∣

∣

∣

∣

2

=
2π2e2

me

|E(ω)|2 . (2.22)

The above equation still contains the unknown function r(t) (solution to equation
(2.21)). We are interested in the energy transfer by the harmonic oscillator for distant
collisions (weak interaction). The simplest approximation is to ignore all displace-
ments, i.e. assuming that the electric field only depends on time and not displacement
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Figure 2.2: Energy transfer functions Tfree (2.14) for ξ = 0.1 up to ξ = 10 and Tbound

(2.24) versus the ratio ωp/v [22]. For large ξ Tfree and Tbound can be smoothly connected.

E(r(t), t) ≃ E(t). By using the Fourier transform of the Coulomb potential (2.19) and
equation (2.18) one finds in the case of weak interaction the Fourier component of the
electric field to be

E(ω) = −
Z1ω

πv2

(

iK0

(

ωp

v

)

, K1

(

ωp

v

)

, 0
)

, (2.23)

K0 and K1 are modified Bessel functions [20]. From the electric field we get the energy
transfer

Tbound =
2Z1e

4

mev2p2

(

[

ωp

v
K0

(

ωp

v

)]2

+
[

ωp

v
K1

(

ωp

v

)]2
)

. (2.24)

For large impact parameters Tbound goes towards zero in accordance with Bohr’s adia-
batic limit (2.17). Now we just need to carry out the remaining integral over all impact
parameters, i.e.

S =
∫

2πp dpT (p). (2.25)

In figure 2.2 [22] we have plotted Tfree and Tbound versus ratio ωp/v. The function
(mev

2p2/2Z2
1e

4)Tbound is an universal function of ωp/v, while (mev
2p2/2Z2

1e
4)Tfree de-

pends on ξ = mev
3/Z1e

2ω. The figure suggests to split the integration into two parts
at the intersection p0, where Tfree(p0) = Tbound(p0). For sufficient large ξ the result
must be independent of p0 since both functions are ∼ 1 over a comfortable interval. So
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we get for the close collisions

Sfree =
∫ p0

0
2πp dp Tfree(p)

=
2πZ2

1e
4

mev2
ln

(

1 +
4p2

0

b2

)

, (2.26)

for distant collisions one finds with the help of partial integration and that K1(x) =
−dK0(x)/dx [20]

Sbound =
∫ ∞

p0

2πp dp Tbound(p)

=
4πZ2

1e
4

mev2

(

ωp0

v

)

K0

(

ωp0

v

)

K1

(

ωp0

v

)

. (2.27)

Combining the two results and assuming that we are dealing with swift ions (v ≫ v0),
we can use the asymptotic relations of the Bessel functions [20] for small arguments
and then find Bohr’s stopping formula

S =
4πZ2

1e
4

mev2
ln

(

Cmev
3

|Z1| e2ω

)

, (2.28)

where C = 2e−2γ = 1.1229. To determine the stopping force for an ion interacting with
a target atom we need to sum over all target electrons (frequencies) weighted with their
dipole oscillator strength fj (quantum mechanical contribution) [21]

−
dE

dx
=

4πZ2
1e

4

mev2
Z2N

∑

j

fj ln

(

Cmev
3

|Z1| e2ωj

)

(2.29)

Z2N is the electron density of the target medium and the oscillator strengths are
normalized to

∑

j fj = 1. The above equation is Bohr’s stopping formula in modern
notation.

2.2 Binary Theory

The main problem of dividing into close and distant collisions is that these two re-
gions do not join smoothly for all values of ωp/v. For values ωp/v < 1 (see figure
2.2) it is risky to interpolate and will most likely lead to significant errors. This has
caused serious problems in the classical theory of the Barkas-Andersen effect [23]. The
Barkas-Andersen effect is the difference in the stopping force between a particle and
its antiparticle (will be discussed in detail later). Initial theoretical treatments [24, 25]
of this effect neglected the close-collision regime. Lindhard derived a result for the
close-collision regime [26] using dimensional arguments. A recent reinvestigation of
the Barkas-Andersen effect [27] showed that without proper interpolation the Barkas-
Andersen effect may grow as large as the leading terms in the stopping force. This
indicates that an alternative approach is needed to describe the Barkas-Andersen effect
correctly.
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One alternative is a binary collision picture with an effective Coulomb potential
[3]. The argument for using such an approach is quite simple. In the Bohr model
the projectile-target interaction is described by Rutherford’s law, truncated at impact
parameters beyond the adiabatic radius aad. A mathematical interpretation of this
could be an effective potential of the form

Veff(r) = −
Z1e

2

r
e−r/aad . (2.30)

The choice of a Yukawa potential was justified by Lindhard [26] in the case of an electron
gas. The potential corresponds to a dynamical screening by the electron gas extended
over an area of aad. A remarkable feature of this potential is that one can reproduce the
second part of the Bohr result for distant collisions Tbound (2.24). In a binary collision
the momentum transfer is given by P⊥(p, v) = mevθ(p, v) (perpendicular to the beam)
in the small-angle approximation. The c.m.s. scattering angle θ, with the effective
potential given above, is [28]

θ(p, v) = −
2Z1e

2

aadmev
K1

(

p

aad

)

. (2.31)

From this follows directly the energy transfer

T⊥(p, v) =
2Z2

1e
4ω2

mev4

[

K1

(

p

aad

)]2

, (2.32)

which is identical to the second part of equation (2.24). The first part of eq. (2.24) has
no direct analogue in binary scattering, but it represents the energy transfer T‖(p, v)
along the beam. Nevertheless we wish to determine its magnitude, for this we need
to return to the physical origin of that term. Figure 2.3 shows the electron trajectory
following a distant collision. Due to the two Bessel functions entering in equation
(2.24) the asymptotic orbit will be elliptical. Since the potential is harmonic T‖(p, v)
may alternatively be expressed as the potential (1/2)mω2r0(p, v)

2 at a distance

r0(p, v) =
2Z1e

2

mev2
K1

(

ωp

v

)

(2.33)

from the origin. Note that the electron has received an angular momentum of

J(p, v) = r0(p, v)P⊥(p, v). (2.34)

Now in figure 2.4 the same process is illustrated in the binary-scattering picture
(not limited to the small-angle approximation). The electron has received momentum
2mev sin (θ(p, v)/2) and angular momentum

J(p, v) = 2mereff(p, v)v sin

(

θ(p, v)

2

)

, (2.35)

where reff(p, v) is the asymptotic impact parameter in the laboratory frame. Sigmund
[3] has shown that reff(p, v) is given by

reff(p, v) = 2τ(p, v) cos

(

θ(p, v)

2

)

− 2p sin

(

θ(p, v)

2

)

, (2.36)
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Figure 2.3: Orbit of an excited target electron in the Bohr model [3].

where τ(p, v) is the time integral [29, 30] given by

τ(p, v) =
√

r2
m − p2 −

∫ ∞

rm

dr

×





1
√

1 − 2Veff(r)/mev2 − p2/r2
−

1
√

1 − p2/r2



 , (2.37)

with rm defined as the root of 1 − 2Veff(r)/mev
2 − p2/r2 = 0. Within first-order

perturbation theory Sigmund [3] has shown that equation (2.36) reduces to (2.33).
Thus the screened Coulomb potential reproduces the predictions of Bohr for distant
collisions for T⊥(p, v) and J(p, v) through reff(p, v). This defines a procedure to specify
the potential energy transfer in the binary collision picture by adding the extra term

W0(p, v) =
1

2
meω

2reff(p, v)2 (2.38)

to the kinetic-energy transfer. The above term reduces to T‖(p, v) in the limit of distant
collisions. So the total energy transfer is given by

T (p, v) = 2mev
2 sin2

(

θ(p, v)

2

)

+
1

2
meω

2reff(p, v)2. (2.39)

In the limit of close collisions (large momentum transfer) the above equation reduces
to the Rutherford result (T = 2mev

2). This can be seen by setting p = 0 ⇒ θ = π,
this yields by insertion into equation (2.38) reff(0, v) = 0 and hence the potential-
energy term vanishes. A small correction needs to be added, for intermediate impact
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Figure 2.4: Orbit of an excited target electron in the binary-scattering model [3].

parameters the potential-energy transfer W0(p, v) can exceed the ionization energy.
This unphysical behavior can be removed by the ansatz

1

W (p, v)
=

1

W0(p, v)
+

1

U
, (2.40)

where U is the ionization energy. Then the total energy transfer becomes

T (p, v) = 2mev
2 sin2

(

θ(p, v)

2

)

+W (p, v). (2.41)

Now we have an equation (no perturbation expansion employed so higher order terms in
Z1 are taken into account) for determining the energy transfer that smoothly connects
close and distant interactions by the use of an effective potential. In both limits the
Bohr results are derived.

2.2.1 Screening

So far we have been dealing with fully stripped ions. In most experiments the projectile
ions are not fully stripped. This requires taking projectile screening into account. Bohr
showed in his famous monograph [31] that screening is important when v ≤ Z

2/3
1 v0. In

the extended Bohr theory developed by Sigmund [32] the following interaction potential
was employed

V (r) = −
q1e

2

r
−

(Z1 − q1)e
2

r
e−r/as , (2.42)

where q1e is the ion charge and as is the screening radius. The above potential was
originally proposed by Brandt and Kitagawa [33]. The following screening radius is
used (differs from [33])

as =
(

1 −
q1
Z1

)r

aTF (2.43)

with the Thomas-Fermi radius aTF = 0.8853a0/Z
1/3
1 of a neutral projectile atom, r is

a numerical coefficient often set equal to 1 [32].
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Using the above potential (2.42) within the binary theory yields the following ef-
fective potential

Veff(r) = −
q1e

2

r
e−r/aad −

(Z1 − q1)e
2

r
e−r/a (2.44)

with

1

a2
=

1

a2
ad

+
1

a2
s

. (2.45)

The qualitative grounds for such an ansatz were argued by Schinner and Sigmund
[3, 4].

Mean Equilibrium Charge

Ions interacting with matter do not have one fixed charge when exiting the matter, they
form a charge state distribution. A simple way to include the charge state distribution
into the stopping force calculations is to replace replace q1 with the mean equilibrium
charge 〈q1〉. Several models/fit functions exist for 〈q1〉, the simplest being the Thomas-
Fermi formula

〈q1〉 = Z1

(

1 − e−v/Z
2/3

1
v0

)

. (2.46)

For light projectiles the formula has proven to be very useful [3, 4].

2.2.2 Shell Corrections

When the velocity of the projectile becomes sufficiently small one has to consider the
motion of the target electron during the collision. The effect becomes important when
v < Z

2/3
2 v0. Sigmund [34] has shown that for binary collisions, shell corrections can be

included by performing the following integration

Sj(v) =
∫

d 3vefj(ve)
v · (v − ve)

v|v − ve|
S0j(|v − ve|), (2.47)

where S0j(v) is the stopping cross section for a stationary target electron in the jth
shell or subshell, fj(ve) is the velocity distribution of the electrons in the jth shell or
subshell. The above equation states that the only knowledge needed to incorporate
shell corrections is the velocity distribution of target electrons. These can be obtained
from Fourier transformation of the wave functions. Shell corrections in the Bethe and
Bohr model have been derived by Walske [35, 36] and Sigmund [37], respectively using
higher-order perturbation theory.

2.2.3 Barkas-Andersen Effect

As previously mentioned the Barkas-Andersen effect is the difference in the stopping
force of a projectile ion its corresponding anti-ion. Within the basic Bethe [21] and Bohr
(2.28) theory this difference is not accounted for because of the strict proportionality
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Figure 2.5: Theoretical stopping force of uranium ions in aluminum (solid curve) cal-
culated with the PASS code. The colored curves show the contributions from shell,
Barkas-Andersen and relativity corrections, respectively. The dashed and dotted curves
are contributions from the LS [12] and inverse-Bloch [22] corrections, respectively.

to the square of the projectile charge in the stopping force. The effect was discovered
by Smith and coworkers [23] for mesons and subsequent work by the same qroup
which demonstrated deviations from this strict proportionality to the square of the
charge. The phenomenon was ascribed to higher-order perturbations and quantified
by a contribution proportional to the third power of the charge of the penetrating
particle. This contribution was later verified by Andersen et al. [38] for protons,
alpha particles and lithium ions. Theoretical calculations of the Barkas-Andersen effect
(classical and quantum mechanical [24, 39, 40]) have been based on extensions of the
perturbation approaches by Bethe and Bohr in order to include terms proportional
to Z3

1 . It was believed that the effect arised because of the relaxation of the target
electron during the interaction with the projectile ion. Hence, the effect must mainly
come from distant collisions where binding is important. For close collisions, where the
binding can safely be ignored, the Barkas-Andersen must vanish. It was long discussed
how to accurately determine the Barkas-Andersen effect for close collisions [24, 26].
Lindhard’s suggestion [26] viewing the Barkas effect as an deviation from free-Coloumb
scattering provided a key to quantitatively determine effect independent of the impact
parameter. The binary theory does not involve an expansion in Z1, neither is the
term close and distant interaction used because the binding of the target electron has
been replaced by screening. Hence the Barkas-Andersen effect is well approximated for
all impact parameters. Application of the binary theory has shown that the Barkas-
Andersen effect is larger for protons than heavier ions [41]. The magnitude of the
Barkas-Andersen effect is shown in figure 2.5 for the case of uranium ions penetrating
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aluminum.

2.2.4 PASS Code

The PASS code has been developed by Schinner and Sigmund and is the numerical im-
plementation of the binary theory plus shell corrections [34], Bethe relativity correction
[42], LS correction [12] and the inverse-Bloch correction [22] which is by given

−∆

(

dE

dx

)

=
4πZ2

1Z2e
4

mev2
N
∑

j

fj

[

ln

(

|Z1| e
2ωj

h̄v

)

−ℜψ

(

1 + i
Z1e

2

h̄v

)]

(2.48)

where ψ(ζ) = d ln Γ(ζ)/dζ logarithmic derivative of the gamma function [20]. The code
evaluates the stopping number L as a function of the Bohr variable ξ = mev

3/|Z1|e
2ω.

Shell corrections are calculated as given by (2.47). An efficient procedure was developed
to economize the computation of the shell corrections (see [4] for further details). There
are two different types of wave functions available in the PASS code, hydrogen-like or
Hartree-Fock [43, 44]. The following corrections are available as options in PASS, the
inverse-Bloch correction [22] which extends the binary theory into the Bethe region, the
relativity correction [42] and finally the LS correction [12] (only for pointlike nuclei).
The magnitude of these effects is illustrated above in figure 2.5. Projectile excitation
is treated as explained by Sigmund [32], two different schemes are available (see [4] for
details). The mean equilibrium charge is calculated by the Thomas-Fermi formula. As
a second option a modified Thomas-Fermi formula is included

〈q1〉 = Z1

(

1 − e−Av/Z0.45
1

v0

)C
(2.49)

with parameters A and C that can be adjusted to each projectile-target combination.
Frozen charge can also be chosen. Capture and loss contributions are also added
according to [45]. One can add the capture or loss contributions as a separate option
or together as one option.

The PASS code has been written in FORTRAN 77, CPU time is roughly 70 seconds
per shell for 100 data points for the energy of the projectile ion on a 1.7 GHz PC. The
computation times are governed mainly by the number of target and projectile shells
to be treated.

Input

For each projectile-target combination a database is set up that holds the information
for fj, ωj and U for each shell or subshell. The pairs of (fj, ωj) are extracted from
various tables [46, 47, 48, 49]. Reference [46] is an electronic database (CD-ROM) of
measured complex refractive indexes n(ω) + i k(ω) (ω is the excitation frequency) for
a large number of solids in the periodic table plus a small collection compounds. The
database covers roughly excitation energies E = h̄ω from 0.01 eV up to 10 keV.

In general the sum of dipole oscillator strengths fj appearing in the Bohr (2.29)
and Bethe formula [21] is replaced by an integral over a continuous spectrum of dipole
oscillator strengths f ′(ω) which is related to the dielectric function ε(ω)

f ′(ω) = −
2ǫ0m

πnee2
ωℑ

1

ε(ω)
, (2.50)
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Figure 2.6: Oscillator strength spectrum as a function of the excitation energy E = h̄ω
for aluminum. The peak at 15 eV represents the plasma frequency ωp.

where ℑ denotes the imaginary part,

∫ ∞

0
dωf ′(ω) = 1, (2.51)

and ne = nZ2 is the number of electrons per volume. Since ε(ω) can be expressed by
the complex refractive index n(ω) + i k(ω), the oscillator strength spectrum may be
written in the form

f(h̄ω) = 1.5331 · 10−3A2

ρ

h̄ωnk

(n2 + k
2)2

(2.52)

where ρ is the density in g/cm3; h̄ω is in eV; f(h̄ω) is in eV−1 with the normalization

∫ ∞

0
d(h̄ω)f(h̄ω) = Z2. (2.53)

The function f differs only from f ′ by the normalization. With the database from Palik
[46] and equation (2.52) one can then construct the oscillator strength spectrum, such
a spectrum is shown above in the case of aluminum. Since reference [46] only covers
the excitation spectrum up to 10 keV other sources need to be considered. Henke et al.

[47] have published a large database of complex atomic scattering factors f = f1 + if2

for 94 elements covering excitation frequencies from 30 eV up to 30 keV. The atomic
scattering factor is defined by

E = Ee(f1 + if2) (2.54)

where E is the amplitude scattered by the atom and Ee is the amplitude that would
be scattered if the atom were replaced by a single, free Thomsonian electron. The
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atomic scattering factors are derived from quantum dispersion relations from photo-
absorption data (see [47]). The complex refractive index and atomic scattering factor
are connected in the following way

n(ω) + i k(ω) = (1 − δ) − iβ

= 1 −
r0
2π
λ2N(f1 + if2), (2.55)

where λ is the wavelength, N is the number of atoms per volume and r0 is the classical
K-shell radius e2/mc2; f1 and f2 are the real and imaginary part of the atomic scattering
factor. Similarly one can derive the oscillator strength spectrum

f(h̄ω) =
2f2(0)

πh̄ω

1 − εf1

((1 − εf1)2 + ε2f 2
2 )2

, (2.56)

where

ε = 415.07
ρ

A2(h̄ω)2
. (2.57)

The Electronic Handbook of Optical Constants of Solids [46] can calculate the complex
refractive indexes based on a simple model for energies above 30 keV, these are quite
good and can be implemented into the spectrum in similar manner as the experimental
data. The oscillator strength spectrum shown in figure 2.6 for aluminum is generated
from combining these three different ways in calculating the oscillator strengths. Equa-
tion (2.53) is used as a criteria to check validity of the spectrum, i.e. must be fulfilled as
close as possible. Shown below is the database that has been constructed for aluminum
from the spectrum in figure 2.6 where n and l are the principal and angular quantum
numbers.

Aluminium : 1s22s22p63s23p1 5 shells

Z2 = 13 A = 26.98154 u Itabel = 166 ± 2 eV ρtabel = 2.699 g/cm3

n l f(n,l) I(n,l) (eV) U(n,l) (eV)
1 0 1.623 2701.0 1564.1
2 0 2.147 476.5 121.46
2 1 6.259 150.42 76.753
3 0 2.006 18.20 10.62
3 1 0.965 14.46 5.9858

The oscillator strengths f(n,l) are found by integration of the above spectrum

f(n,l) =
∫

shell
d(h̄ω)f(h̄ω). (2.58)

Determining the contribution to theK- and L-shells is simple because of the absorption
edges. When dividing into subshells as in the case of the L-shell the nominal occupation
numbers are used as a guideline. Similar approach is used for the valence electron.
The mean excitation energy In,l for each individual shell is found by constructing a
spectrum showing f(E) ln(E) versus E, then integrating over the same regions as for
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the oscillator strengths f(n,l). With the definition of I from Bethe theory [21] we can
write the mean excitation energy for an individual shell as

ln(I(n,l)) =

∫

shell d(h̄ω)f(h̄ω) ln(h̄ω)
∫

shell d(h̄ω)f(h̄ω)
. (2.59)

For the inner electrons, division into principal shells is sufficient. In the case of valence
electrons dividing into subshells is important. Binding energies U(n,l) are taken from
[50].

2.3 Charge-exchange Theory

Another interesting quantity to study during atomic collisions are the cross sections
for capture and loss. In this section we will focus on single charge-exchange cross
sections, i.e. capture and ionization. Capturing of an electron can happen through
two channels. The first one is direct capture into an electronic state, this is frequently
called non-radiative electron capture (NRC, conservation of energy and momentum).
The other channel is by capturing an electron and then releasing a photon (radiative
electron capture, REC).

2.3.1 Radiative Electron Capture

Radiative electron capture can be described as the radiative recombination of a free
electron when the target electrons are weakly bound. Radiative recombination of a
free electron is the inverse process of the photoelectric effect. Stobbe [51] has solved
this problem long ago within the non-relativistic dipole approximation. The result is
for a (n, l) state of a fully ionized ion

σRR =
π2

3
α2a2

0

(

ν3
n

1 + ν2
n

)2
[

(l + 1)(C l+1
nl (νn))2 + l(C l−1

nl (νn))2
]

, (2.60)

where νn = αZ1/(nv/c). The C l±1
nl matrix elements describe the probability for the

dipole transition with an angular momentum l ± 1. The REC cross section is derived
by convolution with the momentum distribution ρ(q) of the target atom in the center-
of-mass system, i.e.

σREC =
∫

d3q σRR(q)ρ(q)δ(h̄ω + Ef − Ei). (2.61)

For low Z2 targets the momentum distribution can be neglected because of the low
binding energy in that case σREC = ZqfσRR, where Zqf are the number of quasi-free
electrons. An electron is considered to be quasi free when its orbital velocity is much
smaller than the projectile velocity. Ichihara et al. [52] have extended the Stobbe
formula to the relativistic regime. For swift ions the number of quasi-free electrons can
be set equal to the target atomic number Z2. REC is the dominant channel for capture
in high-energy collisions of high-Z1 projectiles with low-Z2 targets.
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2.3.2 Non-radiative Electron Capture

Calculation of REC cross sections is fairly simple since the process can be coupled to
the photoelectric effect. This is not the case for NRC cross sections. NRC becomes the
dominating channel when the nuclear charge of the target becomes sufficiently large.
A precise theoretical description of the NRC process is difficult because the Coulomb
field of the projectile leads to distortions of the atomic wave functions in the target
even at infinite distances.

A classical approach to calculate capture cross sections is the classical trajectory
Monte Carlo (CTMC) method. This method was developed by Abrines and Percival
[53, 54]. One has a three-body system consisting of the projectile, the electron being
transferred and the target particle. From this one sets up Hamilton’s equation of motion
(12 coupled equation). These are then solved for numerous trajectories where the
impact parameter of the projectile, momentum and orientation of the target+electron
is randomly selected by the Monte Carlo method. One then averages over all these
trajectories and calculates the cross sections. The method applies also to calculate
ionization cross sections.

A semi-classical approach to calculate NRC cross sections has been developed
by Shevelko [55]. Shevelko uses the relation between the quasi-classical a(p, v) and
quantum-mechanical f(k, v) exchange amplitudes which is given by

a(p, v) =
1

4π2v

∫

P
d 2k f(k, v)eik·p, (2.62)

where the integral goes over the plane P is given by

k · v − ω01 −
v2

2
= 0, (2.63)

where ω01 is the difference in the binding energies of the captured electron in the initial
(0) and and final state (1) and v is the relative velocity. The quasi-classical amplitude
a(p, v) is given by

a(p, v) =
∫ ∞

0
dt e−iωif t

∫

d 3rφ∗
1(r2)V (r1)φ0(r1)e

iv·r (2.64)

where r = (r1 + r2)/2 and quantum-mechanical amplitude f(k, v) is given by

f(k, v) =
∫

d 3rV (r)φ0(r)e
−ik·r

∫

d 3r′φ∗
1(r

′)eik·r′ . (2.65)

The capture cross section is given by

σNRC(v) = 2π
∫ ∞

0
d 2pW (p, v), (2.66)

with W (p, v) = |a(p, v)|2 as the exchange probability, this is then normalized to all
electron capture channels (using the method of multichannel normalization), i.e.

W (N)
n (p, v) =

Wn(p, v)

1 +
∑

n′ Wn′(p, v)
, (2.67)
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so equation (2.66) turns into

σNRC(v) = 2π
∫ ∞

0
d 2pW (N)

n (p, v). (2.68)

An accurate way to calculate NRC cross sections quantum mechanically is the con-
tinuum distorted wave (CDW) approximation developed by Belkić et al. [56] where
distorted wave functions are applied in the initial and final states. Since such a theory
requires large computation time a approximate method might be useful. Meyerhof et

al. [57] have developed the eikonal approximation (relativistic) which for 1s1/2-1s1/2

transitions (summed over all spin states) can be written in a closed form. In the eikonal
approximation the transition amplitude from an initial state to a final state is calcu-
lated within the impact-parameter approach. The capture cross section is found by
taking the square of the amplitude and integrating over all impact parameters as in
equation (2.66). The approximation requires that the collision time is small compared
to the transition time between initial and final electronic states. Their formula reads
[57]

σeik
1s−1s =

28πZ5
1Z

5
2

5v2(Z2
2 + p2

−)5

γ + 1

2γ2

πηZ ′
2

sinh(πηZ ′
2)
e−2ηZ′

2
tan−1(−p−/Z2)

×(Seik + Smagn + Sorb), (2.69)

Seik = 1 +
5

4
η
Z ′

2

Z2

p− +
5

12
η2 (Z ′

2)
2

Z2
2

p2
− +

1

6
η2(Z ′

2)
2,

Smagn = −δ2 +
5

16
δ4 +

5

8
δ2 γ

γ + 1

Z ′
2

Z2

+
1

4
δ2η2(Z ′

2)
2 +

5

48
δ4η2(Z ′

2)
2,

Sorb =
5π

18
δα(Z1 + Z2) −

5π

36
δ3α(Z1 + Z2) −

5

8
δαZ2ηZ

′
2

(

1 −
1

2
δ2
)

−
5π

18
δ

γ

γ + 1
αZ1

Z ′
2

Z2

+
5π

28
δ

(

γ

γ + 1

)2

αZ1
(Z ′

2)
2

Z2

−
5π

28
δ

γ

γ + 1
α(Z1 + Z2 − δ2Z1)

Z ′
2

Z2

,

where η = 1/v, δ = [(γ−1)/(γ+1)]1/2 and p− = η(Ef/γ−Ei) with Ei,f as the energies of
the initial and final states, setting Z ′

2 = 0 gives the first-order Born approximation and
Z ′

2 = Z2 gives the one electron eikonal approximation. Meyerhof et al. [57] have shown
that the cross section scales approximately with Z/n where n is the principal quantum
number. This allows them to extend the above formula to transitions over different
states by replacing Z1 with Z1/n and Z2 with Z2/n. Seik is the exact eikonal cross
section for relativistic kinematics but with non-relativistic wave functions. Smagn is the
magnetic contribution to the capture and Sorb describes the relativistic modification of
the electronic orbitals. The NRC cross section scales roughly with (Z5

2) [57] whereas
REC has a much weaker scaling (Z2).

2.3.3 Ionization Cross Sections

Ionization/excitation cross sections can be calculated within the first-order Born ap-
proximation. Let us assume that we have two colliding partners each carrying one
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electron, then the scattering-matrix1 element (in general) can be written simply as

S = −i
∫ ∞

−∞
dt
∫

d 3x̺I(x, t)ϕA(x, t), (2.70)

̺I(x, t) is the transition charge density created by the projectile and ϕA(x, t) is the
transition scalar potential generated by the target atom. The indices A and I symbolize
the target and projectile respectively. The scalar potential is a solution to the Poisson
equation

2ϕA(x, t) = −4π̺A(x, t), (2.71)

where ̺A(x, t) is the transition charge density of the target atom. The charge densities
are given by

̺I(x, t) =
∫

d3RId
3rΨ∗

I,f (RI , r, t)[Z1δ(x − RI)

− δ(x − r)]ΨI,i(RI , r, t), (2.72)

̺A(x, t) =
∫

d3RAd
3ρΨ∗

A,f (RA, r, t)[Z1δ(x − RA)

− δ(ρ − x)]ΨA,i(RA, r, t). (2.73)

RI and r are the coordinates of the nucleus and electron (respect to the nucleus)
in the projectile vice versa for the target (RA and ρ). Within the first-order Born
approximation the Ψi and Ψf wave functions are set equal to the unperturbed initial
and final states. These states are well known since they can be written as product
of a plane wave (motion of the projectile-ion) and a function describing the internal
motion of the electron in the projectile. The excitation cross section for transition of
the projectile and target electrons can then easily be found

σ0→m
0→n =

4

v2

∫

d 2q⊥
|F I

0n(q)FA
0m(−q)|2

q4
(2.74)

Here q = (q⊥, qmin) is momentum transfer to the projectile and qmin is minimum
momentum transfer

qmin =
εn − ε0 + ǫm − ǫ0

v
, (2.75)

where εn0 and ǫm0 is the energy difference in the initial and final states of the projectile
and target, respectively. The form factors in the above equation are given by

F I
0n(q) = Z1δn0 −

∫

d 3r ψ∗
n(r) exp(iq · r)ψ0(r), (2.76)

FA
0m(q) = Z2δm0 −

∫

d 3ρ u∗n(ρ) exp(iq · ρ)u0(ρ), (2.77)

where ψ and u are the states for projectile and target. Equation (2.74) can be split
into two parts, one being the screening part and the other is the anti-screening part.

1The S-matrix is the transition amplitude for finding a system at t = +∞ in a state Ψf if it was

known to have been in a state Ψi at t = −∞.
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The screening part is given by (summing over all final target states)

σs
0→n =

4

v2

∫

d 2q⊥(Z2 − 〈u0| exp(iq0 · ρ)|u0〉)
2

×
|〈ψn| exp(iq0 · r)|ψ0〉|

2

q4
, (2.78)

where q0 = (q⊥, εn0/v) and we define the effective charge Z2,eff (q0) = Z2−〈u0| exp(iq0·
ρ)|u0〉. The physical meaning of the above excitation cross section is the following, it
is the contribution to the cross section when the target electron remains in its initial
state. The effective charge Z2,eff (q0) is charge ‘seen’ by the projectile electron. The
second part named the anti-screening part is given by

σa
0→n =

4

v2

∑

m6=0

∫

d 2q⊥

×
|〈um| exp(−iq · ρ)|u0〉〈ψn| exp(iq · r)|ψ0〉|

2

q4
, (2.79)

in this term the target electron also makes a transition. This then increases the cross
section where as in screening part the cross section is lowered due to the screening
hence the name anti-screening. For collisions with large momentum transfer one can
ignore the contribution from the electrons, i.e. Z2,eff ≈ Z2 and

σa
0→n ≃

4

v2

∫

d 2q⊥
|〈ψn| exp(iq · r)|ψ0〉|

2

q4
0

, (2.80)

then the total cross section is given by

σ0→n ≈ (Z2
2 + 1)σpr

0→n, (2.81)

where σpr
0→n is the excitation cross section for a projectile electron interacting with

point-like unit charge. When the projectile has several electrons Z2 then (Z2
2 + 1)

should be replaced with (Z2
2 + Z2). The ionization cross section is derived when the

transition goes into the continuum (loss of electron). Like for capture cross sections
a semi-classical approach can be applied based on the impact parameter p using the
time-dependent Schödinger equation and expanding the wave function in a complete
set of the initial wave function for the projectile-target system, then we have

σ0→m
0→n =

∫

d 2p|a0→m
0→n (p)|2, (2.82)

where a0→m
0→n (p) are the time-dependent coefficients of the initial wave function.

2.4 Charge-State Distribution (CSD)

When the charge changing cross sections are known one can then determine the charge-
state distribution. Let us assume that we have an ion penetrating a material with a
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thickness x. The penetrating ion has the initial charge state i. The rate equation
[58, 59] describing the change in fraction of the charge states is given by

1

Nt

dFi

dx
(x) =

∑

j,j 6=i

[Fj(x)σji − σijFi(x)] , (2.83)

Fi denotes the fraction of ions in the charge state i (
∑

i Fi(x) = 1), Nt is the density of
the target (atoms/cm3) and x is the penetration depth (cm). So one has to solve a set
coupled differential equations in order to determine the thickness dependence of each
charge state. The above equation can also be used to determine the cross sections if the
thickness dependence of the charge-state distribution is known. In the case of 2 charge
states the above equation can be solved analytically. Assume we have an ion carrying
one electron penetrating a material (gas or solid) also we assume that the ionization
process dominates, this means that the resulting charge-state distribution will consist
of H-like (carrying one electron) ions and fully stripped (carrying zero electrons). The
rate equation for H-like ions is then given by

1

Nt

dF1

dx
(x) = F0(x)σc − σlF1(x), (2.84)

F0 and F1 are the fractions of naked and H-like ions, σc and σl are the capture (from
0 → 1) and loss (from 1 → 0) cross sections. The solution with the initial condition
F1(0) = 1 is then

F1(x) = e−Nt(σc+σl)x +
σc

σc + σl

(

1 − e−Nt(σc+σl)x
)

. (2.85)

The above equation shows us that the capture and loss cross sections can be determined
from the slope and equilibrium of the curve if the charge state distribution has been
measured as function of the thickness. For the initial condition F0(0) = 1 one derives
for F1(x)

F1(x) =
σc

σc + σl

(

1 − e−Nt(σc+σl)x
)

. (2.86)

In the case of three charge states Allison [59] has derived an analytical solution long
ago. When dealing with more charge states than three analytical solutions are available
from Sigmund [60].

In the next section we will discuss the density effect in stopping forces, charge-
changing cross sections and charge-state distributions.

2.5 Density Dependence in Slowing Down

The gas-solid effect was first experimentally observed in the mean charge of fission
fragments penetrating different gases and solids. This work was performed by Lassen [8]
in the early 1950s. Bohr and Lindhard made a simple model in 1954 [61] to explain the
higher mean charge in the solid. In a solid the collision frequency becomes comparable
to the lifetimes of the excited states of the projectile. This then leads to an enhanced
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ionization cross section and thereby a higher mean charge. In a gas excited states that
are created in the initial collision are de-excited before the next collision. For capture
cross sections the situation is the opposite. Because of the high collision frequency in
the solids the captured electron will more likely be ionized in the next collision before
it can de-excite. This leads to a smaller capture cross section compared to the gas
where the captured electron is more likely to reach the ground state before the next
collision.

It was long believed that stopping force scales with the charge of the ion to the
square, this then suggests that gas-solid difference in the mean charge should be even
larger in the stopping force. Initial investigations of the stopping force in various gases
and solids did not observe this difference. This then led Betz and Grodzin [62] to
propose a different model. They suggest that the mean charge in a gas and solid are
closely the same. The high collision frequency in the solid leads to an accumulation of
excited states. After the ions exit the matter the excited electrons are released through
Auger cascades.

The reason why it took nearly 30 years to observe the gas-solid difference in the
stopping force [7] was the presence of Z2-oscillations at lower velocities. At lower
velocities the stopping force is very sensitive to the outer (incomplete) target shells.
Screening lowers the effect, this suggest that the Z2-oscillations are larger for anti-
protons than for heavier ions [63]. The effect disappears when the projectile energy
becomes sufficiently large. Which was verified with the UNILAC at GSI hence, were
available that the gas-solid difference could be observed.

In the following chapter I will explain the experimental setup of the Fragment
Separator at GSI Darmstadt, how the experiment was performed and how the data
was analyzed.
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Chapter 3

Experimental Setup

3.1 The Fragment Separator

The Heavy Ion Synchrotron (SIS) [64] in combination with the linear accelerator UNI-
LAC at GSI provides projectile beams of all elements up to uranium with a maximum
magnetic ridgity (Bρ) of 18 Tm corresponding to 1.9 GeV/u for ions with a mass-to-
charge ratio of two. The accelerator system and the experimental areas are schemati-
cally plooted in figure 3.1. The UNILAC injects the ions into the SIS at an energy 11.4
MeV/u after passing two stripper stages. The energy of the beam in the SIS can be
determined by Schottky frequency measurements. The projectiles have a momentum
spread of a few 10−4 and a transverse emittance of about 1π mm mrad when the beam
is cooled. The ions can then be extracted over a period of several seconds and directed
onto a target. Such a target station exists in front of the Fragment Separator (FRS)
[65]. With the FRS one can separate the ions coming from the SIS according to their
charge and mass. At the same time the FRS can be used as a high-resolution magnetic
spectrometer. Figure 3.2 displays the setup of the FRS. The FRS consists of 4 parts
each with a dipole magnet with a sector angle of 30o and a bending radius of 11.25
m. The length of each magnet is about 6 m. Focusing of the ion beam is done with
quadrupole magnets, these are placed before and after each dipole magnet (20 in total).
Before and after each dipole there is a hexapole (8 in total) for correcting image aber-
rations. The dispersive focal planes F1 to F4 after each dipole stage are equipped with
position-sensitive detectors to measure the momentum with magnetic rigidity analysis.
At the entrance of the FRS a charge-exchange target was placed in order to select
different charge states for the incoming ion beam before it hits the atomic collision
target which was placed at F2. The selection of the incoming charge state is done at
F1 with the slits. After interacting with the target at F2 the beam is transported to F3

where the resulting CSD is measured with a position-sensitive multi-wire proportional
counter (MWPC).

3.1.1 FRS as a Spectrometer for Atomic-Collision Studies

The bending of an ion in a dispersive magnetic field is determined by its magnetic
rigidity (Bρ), where ρ is the radius of the trajectory. The ion is deflected perpendicular
to the magnetic field B. The magnetic rigidity depends on the momentum p of the ion

25
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Figure 3.1: Overview of the accelerators and experimental facilities at GSI in Darm-
stadt.

in the laboratory frame and its charge q, i.e.

Bρ =
p

q
(3.1)

=
mγv

q
(3.2)

=
mc2

Qe

√

γ2 − 1 (3.3)

A beam of particles is described, in ion optics, in ion optical coordinates [66] which
are defined as deviation from the absolute coordinates of a reference ion moving on
the optical axis in the z-direction. Perpendicular to z we have the horizontal (x) and
vertical (y) direction and the corresponding angles which are defined as the ratio of
the transverse momentum and the momentum of the reference ion (a = px/pref , b =
py/pref ). The longitudinal momentum of an ion is given by the relative width of the
momentum (δ = p/pref − 1). These five coordinates are fully sufficient to describe the
motion of an ion in the FRS. There are no time-dependent fields in the FRS.

One of the most important characteristics of a spectrometer is the resolution. This
tells us how well the spectrometer can separate ions of different momenta without
overlap in the spacial distribution. The width of the image is ∆x. The resolution is
defined as

R =
(x, δ)

2∆x
, (3.4)
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Figure 3.2: Setup of the FRS for the present experiment. The beam, coming from
the SIS, interacts first with a charge-exchange target (5.2 mg/cm2 Al foil) at F0 to
produce the desired charge state which is selected at the focal plane F1. At the central
focal plane F2 the collision target is placed (solid foil or gas cell). The charge-state
distribution f(q) is measured at the third focal plane F3 with a position sensitive
detector (MWPC).

where (x, δ) is the dispersion coefficient. The width of the beam at an arbitrary plane
is determined by the initial spacial distribution and the angle (neglecting the dispersion
for now). This can very well be described by an ellipse where all positions and angles
of the particles are included. The width of the beam is then given in first order by [66]:

∆x =
√

[(x, x)∆x0]2 + [(x, a)∆a0]2, (3.5)

∆y =
√

[(y, y)∆y0]2 + [(y, b)∆b0]2. (3.6)

Along the path of the ions (z), ∆x and ∆y describe the envelope of all possible beams.
Planes where the envelope has its maximum or minimum diameter are named the
“waist” of the beam. The plane where the image of the initial position is generated, is
characterized in the transfer matrix by (x, a) = 0. The width is then ∆x = (x, x)∆x0.

The ion optical setup used for the FRS was calculated with the ion optical code
GICO [67]. The ions are centered at F2 and are separated in space at F3. The dispersion
curve for such a situation is shown in figure 3.3. In that way the broadening of the
momentum done by a target at F2 can be measured, independently from the momentum
width from the SIS and from the momentum distribution created by the target at F0.
The momentum acceptance of the FRS is approximately ±1 % after F4.

3.1.2 Equipment & Detectors

Figure 3.4 below displays an illustration of the constructed gas cell equipped with 6 µm
polypropylene foils in thickness and 5 mm in diameter as windows. These foils were
put under several pressure tests in order to determine the maximum pressure they
could withstand. The tests concluded that they could handle pressures up to 7 bar.
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Figure 3.3: Upper part: Trajectories of ions emerging from the focal plane F2 in
different charge states up to F4. Lower part: Dispersion coefficient (x, δ) from F2 to
F4.

During the actual measurements the gas cell was never run at pressure higher than 2
bar. Simultaneously the magnitude of the bending of the windows was investigated.
These tests showed that the interaction length of the gas cell is increased by 3.2×10−4

when the gas cell is run at its maximum of 2 bar. Hence during the experiment the
bending of the windows could be ignored.

The gas cell was controlled by a gas controlling system. From there one could control
the flow and pressure of the gas and exchange gases. In front of the gas cell a 1 mm
collimator made of stainless steel was placed to insure the beam correctly penetrated
the gas cell with a small beam spot. Using the collimator causes background in the
recorded spectra coming from edge scattered ions that experience additional energy
loss. In figure 3.5 a schematic illustration of the constructed gas handling system is
presented. The system was placed outside the target area of the FRS.

The gas handling system, shown in figure 3.5, was based on flow control, which
required a gas reservoir at vacuum provided by the pump. Two differential pumps
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Figure 3.4: Schematic drawing of the gas cell with an interaction length of ℓgas−cell =
31.2 cm equipped with windows of 6 µm polypropylene foils in thickness and 5 mm in
diameter. A 1 mm stainless steel collimator was placed in front of the entrance window.

were used in the measurements; one for the flammable gases and one for the inert
gases. The test line VTL was used to insure save operation of the gas flow. Setting
the pressure in the gas cell was done by first setting the pressure of Pcont with the
HP3245A to a desired value, e.g. 10 V corresponded roughly to 2 bar. Then the C1in
valve is opened and the VTL valve is closed. Once the manometers reach the desired
value the measurement can begin. The voltage outputs from the manometers were
calibrated. This was done stepwise by varying the voltage of the HP3245A from 0 V
to 10 V in steps of 0.1 from 0 V to 1 V and from thereon 0.25 V steps were used.

The solid targets were positioned on the three target ladders that are available at
F2. These ladders, placed in close distance, can hold up to 20 different targets and
they are moved in and out by a remotely controlled step motor. With this setup it is
possible to stack targets and thereby reach different thicknesses.

The multiwire proportional counter [68] used to measure the charge-state distri-
bution consists of equally spaced anode wires centered between two cathode planes.
The wire spacing is 2 mm with an anode-cathode gap of 7 or 8 mm. The signal from
one of the cathode planes gives information on the first coordinate (x) of the ionizing
event. Using a second detector where the cathode wires are oriented perpendicularly
to the first gives information on the second coordinate (y). The chamber is filled with
gas consisting of Ar (75 %), isobutane (24.5 %) and freon-13B1 (0.5 %), where the
proportions refer to the volume [68]. The maximum count rate of the MWPC is about
10 kHz. Below this value the detector has an efficiency for heavy ions of almost 100
%. During the experiment the maximum number of particles hitting the detector was
roughly 8000 events/spill, where 1 spill corresponds to 8 to 10 seconds.

The second detector used at F3 right behind the MWPC was a plastic scintillator
(SC see figure 3.3). A scintillator consists of a scintillating material which is optically
coupled to a photomultiplier either directly or via a light guide. As radiation passes
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Figure 3.5: Schematic view of the gas handling system at F2.

through the scintillator, it excites the molecules causing the light emission. The scintil-
lation light in these compounds arises from transitions made by free valence electrons
(π-electrons) of the molecule. The light is transmitted to the photomultiplier where
it is converted into a weak current of photoelectrons which is then further amplified
by an electron-multiplier system. The resulting current signal is then analyzed by a
electronics system. These types of detectors have almost 100 % efficiency for heavy
ions therefore they can be used to calibrate the efficiency.

3.1.3 Targets

In the nickel run the following solid targets were used C, Al, Ti, polypropylene (C3H6)n

and polyethylene (C2H4)n. The thicknesses of the targets covered the whole non-
equilibrium region of the charge-state distribution and reached well into the equilib-
rium region. Gaseous targets were N2, Ne and ethylene (C2H4). The purpose of the
compound materials was to allow a direct comparison of the charge-exchange cross
sections in gases and solids because ethylene, polyethylene and polypropylene have
the same carbon-to-hydrogen ratio and to investigate the material dependence of the
charge-exchange cross sections. The same thickness range was covered with the gases.
The list of the target thicknesses used is given the Appendix A.1.

In the uranium run the target list for solids includes Be and C at 85.0 MeV/u
and Be, C, Al, Ti, Cu, Ag, Au and polypropylene for the 61.3 MeV/u measurement.
The used thicknesses cover both the non-equilibrium and equilibrium region. At 200.6
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MeV/u only Al, Ti and polypropylene were measured. For gases N2, Ne, Ar, Kr, Xe
and ethylene were measured at 61.3 MeV/u and at 200.6 MeV/u Ne, Ar and ethylene
were measured. The list of target thicknesses used is given the Appendix C.1.

The thickness of the foils was determined by weighing and measurement of the area.
For some of the very thin foils the thickness could only be determined once by a direct
thickness measurement with a mechanical sensor which is less accurate.

From the pressures p and temperatures T measured in the gas cell, the density ̺
of the gas was determined by using the Van der Waals gas law.

RT = (p+ a̺2)(1/̺− b), (3.7)

where R = 0.0831 l · bar/(mol · K) is the gas constant and a and b are the Van der
Waals coefficients given in the table below for the measured gases [69].

Van der Waals Coefficients

Material a [l2 · bar/mol2] b [l/mol]
N2 1.3700 0.0387
Ne 0.2080 0.0167
Ar 1.3550 0.0320
Kr 5.1930 0.0106
Xe 4.1920 0.0516

C2H4 4.6120 0.0582

Once the gas density has been derived the gas thickness can easily be determined by
multiplying the gas density ̺ with the interaction length of the gas cell (31.2 cm)

xgas = ̺gas · ℓgas−cell. (3.8)

3.2 Energy Loss Measurement

The energy loss of 238U at the three different energies was determined by the changes
in the magnetic rigidity. The incident energies at F2 were 60.23, 85.00 and 199.99
MeV/u after passing through the charge-exchange target. The different thicknesses of
the various materials caused an energy loss of up to 15 % of the incident energy. A list
of the measured energy losses can be found in Appendix C.1.

3.2.1 Principle

The energy loss of the individual ions was determined from the settings of the magnetic
fields, position of the beam at F3 and the determined dispersion (see Figure 3.6). Since
the energy loss was fairly small, the change was in most cases determined by the change
in the beam position at the position detector only. The relation between the position
change and the magnetic rigidity is given by

(Bρ) − (Bρ)0

(Bρ)0

=
x− x0

(x, δ)
, (3.9)
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Figure 3.6: Measured dispersion coefficients (x, δ) from peaks of neighboring charge
states within ±20 mm in the center of the MWPC at F3.

where (Bρ)0 is magnetic rigidity of the beam without a target. Several of these blank
measurements were done before and after the change in energy, in order to check if the
beam was centered on the detector. The dispersion coefficient (x, δ) was determined
from spectra with multiple charge states plus with the assumption that the projectile
with different charge states emerged from the same targets has experienced the same
energy loss. This assumption has shown to be valid for neighboring peaks within an
accuracy of 10−3. In the analysis of the data it was seen that the dispersion could
vary up to a few percent depending on the position of the peaks. In order to include
this position dependence of the dispersion, all the determined dispersions for all spectra
where the peaks are within ±20 mm were fitted to a polynomial (see figure 3.6). Outside
this region the mean value of 2470 mm was used.

3.2.2 Charge-State Distribution (CSD)

The charge-state distribution was measured by position determination with the MWPC
detector. In the uranium measurement 10 to 12 charge states could be observed in the
distribution. This was too wide for the active detector area which could show only 6 to
7 charge states at once. In order to measure the complete distribution the parts were
then combined in the offline analysis. The different parts of distribution were obtained
by scaling the B-field. The field was changed to shift the spectrum by 3 charge states
each time in order to cover the complete distribution. The principle of this scaling is
the following, in order to achieve that the beam has the same position after the change
in magnetic rigidity one can describe the deflection angle Φ by the integral of the dipole
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fields along the optical axis, i.e.

Φ =

∫ L
0 dl B(l)

Bρ
, (3.10)

instead of writing the full integral it is common to replace the geometrical length L of
the dipole magnet with an effective length Leff , so that the following holds

BLeff =
∫ L

0
dl B(l). (3.11)

The B-field is adjusted such that Φ remains constant for a new value of Bρ. A small
correction is caused due to the fact that the bending radius ρ is proportional to B and
the effective length can vary up to a few centimeters. This can lead to a small shift of
the beam after scaling of only 0.01 mm because the beam is focused again at the focal
plane.
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Figure 3.7: Scaling principle for CSD measurement. LEFT : measurement of the charge
state distribution with a magnetic rigidity Bρ0. RIGHT : Same measurement but now
the magnetic rigidity has been scaled to Bρ1 resulting in a shift of the charge state
distribution.

3.2.3 Determination of Bρ

The Bρ of the beam in the FRS can be derived in two different ways. The first method
determines the B-fields by measurements with calibrated Hall probes (UH). The other
method makes use of the set of measured current-B-field values. All these values were
written into log files before and after each single measurement. The relation between
the currents, voltages and the Bρ is the following

(Bρ)

(Bρ)0

=
(BLeff )(I)

(BLeff )(I0)
, (3.12)

or

(Bρ)

(Bρ)0

=
UH

UH,0

. (3.13)

The analysis showed that the difference between the 2 methods of deriving the magnetic
rigidity corresponds to an uncertainty for the energy determination of 5 · 10−4.
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3.2.4 Nickel Measurement

The purpose of this experiment was to measure the evolution of charge-state distri-
butions as a function of the target thickness covering both the non-equilibrium and
equilibrium region. From this evolution the capture and ionization cross sections can
be extracted. An incident 200 MeV/u Ni27+ beam was chosen. At this energy the
ionization channel dominates both for gases and solids. Hence only the charge states
27+ and 28+ of nickel will be populated during the interaction with the target material
(26+ can be neglected because FNi26+/FNi27+ ≃ 0.04 according to charge state calcu-
lations with the GLOBAL code [70]). The cross sections can by extracted by fitting
equation (2.85) to the experimental data.

There is a 4.5 mg/cm2 Ti foil placed between the FRS and the SIS in order to
separate the two vacua. For a 200 MeV/u Ni27+ beam more than 95 % would be
ionized to Ni28+ after penetration of the Ti foil. In order to have the better experimental
conditions for selecting the desired charge state the titanium window was replaced with
a thin carbon window with a thickness of 0.035 mg/cm2.

3.2.5 Uranium Measurement

In this experiment the goal was to measure charge state distributions and energy losses
of uranium ions in gases and solids at 3 different energies as a function of the target
thickness. The chosen incident energies were 61.3, 85.0 and 200.6 MeV/u. The incident
charge state from the SIS was 73+ for all energies. For the energies 61.3 and 200.6
MeV/u an additional charge-exchange target was used to select higher charge states.
For the 61.3 MeV/u measurement 86+ was the incident charge state at F2 and in the
200 MeV/u measurement 81+ was the incident charge state.

3.3 Analysis

3.3.1 Identification of the Charge States

In order to determine the energy loss and charge exchange cross sections for the ura-
nium and nickel projectiles, the charge states in each recorded spectrum need to be
identified. Roughly 600 spectra where recorded during the runs. From the FRS status
files the B-field were known from these values the Bρ at the center follows. With
the help of the ATIMA code [5] which has been implemented into the LISE++ pro-
gram [71], the energy loss and Bρ was calculated for the applied target. The incoming
charge is identified by comparing the calculated Bρ with the experimental value. The
calculation with the best agreement identifies the charge state. Once the first charge
state is identified in a spectrum the rest follows directly. For nickel measurements the
identification was very simple since only 2 charge states were observed as shown in
figure 3.8.



3.3. ANALYSIS 35

-100 -50 0 50 100

1

10

210

310

410

510 q=28

q=27

In
te

n
s

it
y

 (
C

o
u

n
ts

)

X [mm]

Figure 3.8: Charge-state distribution of an incident Ni27+ beam at 200 MeV/u after
penetration of a 32 mg/cm2 carbon foil. Ni28+ is the dominating charge state.

3.3.2 Charge-State Distribution (CSD)

Once the charge states in each spectrum have been identified the charge-state distribu-
tion can be found. This is done by integration of the peaks. For each peak a gaussian
was fitted and then the integral was calculated as shown in figure 3.9. The integral
over the gaussian gave the number of ions in the particular charge state. The 1 mm
collimator in front of the gas cell produced background due to the particles that were
scattered on the edge of the collimator resulting in additional energy loss. The back-
ground was subtracted by fitting a polynomial of 4th order to it and then subtracting
the area below the peaks from the gaussian peaks. The different parts of the charge-
state distributions were combined by normalizing the area of the overlapping peaks.

3.3.3 Energy Loss

Fitting a Gaussian to a peak determines at the same time its mean value. Once the
position of a peak is known the corresponding Bρ can be derived from equation (3.9).
Then the γ factor can be determined with equation (3.3) and from that the exit energy
can be found

Eexit = mc2(γ − 1), (3.14)

and the energy loss is then

∆E = Eentrance − Eexit. (3.15)

When all the energy losses for one material have been extracted from the data the
stopping force can be derived by plotting the energy loss versus the target thickness
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Figure 3.9: Charge-state distribution of an incident U86+ beam at 60.23 MeV/u after
penetration of 11 mg/cm2 ethylene (C2H4) gas.

of the material. For small energy losses a good assumption for the stopping force is
simply

∆E =
dE

dx
∆x. (3.16)

This means that the stopping force can be found from the slope of a linear fit through
the energy loss data. In figure 3.10 this is shown for the case of uranium projectiles in
aluminum. The data follow very well a straight line.

The stopping force is a function of the projectile energy, but in the assumption
above the derived stopping force is independent of the energy (within the range of
measured energy losses). This requires some convention to define at what energy the
stopping force has been derived. In the analysis the stopping force has been derived at
the mean energy given by

〈E〉 = Eentrance − ∆E/2. (3.17)

In the case of the gas targets the energy loss in the windows must be subtracted

∆Egas = ∆Egas−cell − ∆Ewindow. (3.18)
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Figure 3.10: Measured energy loss vs. target thickness of an incident U86+ beam at
60.23 MeV/u penetrating aluminum foils of various thicknesses. The data are fitted
with a straight line.

3.3.4 Experimental Errors for Energy Loss

Several experimental uncertainties characterize these experiments. In this subsection
I will give a list of the most important ones. The energy of SIS can be determined
with a precision of ∆E/E = 1.5×10−4. The variation in the dispersion has an error of
2.5 %. The most important error in the analysis of the energy loss is the error in the
target thickness (see Appendix B). Determining the center of the peaks has an error
of 1 × 10−5 in ∆E/E, hence it can safely be ignored.

Since the determined stopping forces in this energy range from energy losses from
the non-equilibrium region to the equilibrium, this causes a problem for the comparison
with other equilibrium stopping force data. For the gases the presence of the windows
increase the mean charge because the polypropylene foils are good strippers. This adds
an additional error to the mean charge that has to be estimated. With the GLOBAL
code the effect of the windows1 was calculated. For ethylene gas the mean charge is
shifted by 0.1 and for xenon gas the mean charge is shifted by 1.0. Since this is a rough
estimate of the effect 50 % of the correction for the mean charge has been added to
the statistical error.

1Closest material to polypropylene available in GLOBAL is carbon.



38 CHAPTER 3. EXPERIMENTAL SETUP



Chapter 4

Experimental Results

4.1 Results for Nickel Projectiles

4.1.1 Evolution of Nickel Charge States
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Figure 4.1: Evolution of the fraction of Ni27+ ions after interaction with ethylene
(C2H4, Eth.) and polypropylene ((C3H6)n, PP) targets of various thicknesses with a
200 MeV/u Ni27+ and a Ni28+ incident beam. N(Ni27+) and N(Ni28+) are the measured
numbers of Ni27+ and Ni28+, respectively. The lines represent the least square fits to
the data, normalized to CH2. The errors of experimental data are within the symbols.

In figure 4.1 and 4.2 the evolution of Ni27+ passing through the compound targets
polypropylene (solid), polyethylene (solid) and ethylene (gas) is shown. In the two
figures there are two regions characterizing the data of the projectile at incident charge

39
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Figure 4.2: Evolution of the fraction of Ni27+ ions after interaction with polyethylene
((C2H4)n, PE) and polypropylene ((C3H6)n, PP) targets of various thicknesses with
a 200 MeV/u Ni27+ and a Ni28+ incident beam. The lines represent the least square
fits to the data, normalized to CH2. The errors of experimental data are within the
symbols.

of 27+ and 28+. The data showing an exponential decay (full and open squares) were
measured for an incident 200 MeV/u Ni27+ beam. The data displaying an exponential
increase (full and open circles) were measured for a 200 MeV/u Ni28+ beam. The
measurements with the gas cell yield charge state distributions where the interaction
with the window foils is included. The charge state distribution caused by the pure gas
can be extracted from these measurements. Sigmund [60] has derived a general matrix
formalism for the charge state distribution and the evolution of the charge states.
With this formalism the charge state distribution after the gas cell can be written as
the product of the matrices for window, gas and window, i.e.

Fexp(xW,out + xG + xW,in) = FW (xW,out)F
G(xG)FW (xW,in), (4.1)

where xG and xW,in = xW,out are the thicknesses of the gas and the window foils. The
left side of equation (4.1) is a 2x2 matrix (only a 2x2 matrix is needed because only
two charge states are observed in the measurement)

Fexp =

(

F exp
00 F exp

10

F exp
01 F exp

11

)

. (4.2)

This describes the charge distribution of the complete gas cell, i.e. the actual measured
distributions. In the first column the charge state distribution resulting from a Ni28+
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Figure 4.3: Evolution of the fraction of Ni27+ ions after interaction with carbon (C),
aluminum (Al) and titanium (Ti) targets of various thicknesses. The lines represent the
least square fits to the data. The errors of experimental data are within the symbols.

beam is shown and in the second column the charge state distribution resulting from a
Ni27+ beam is shown. The matrices for the window foils and gas are given in the same
manner. Equation (4.1) holds the assumption that the charge-exchange cross sections
in the first and second window are equal, i.e. that the energy loss is negligible. At 200
MeV/u this is a good approximation. From equation (4.1) we derive the charge state
distribution of the pure gas by inversion of the matrices of the windows, i.e.

FG = [FW ]−1Fexp[FW ]−1. (4.3)

The above equation states in order to know the charge state distribution caused by
the pure gas the charge state distribution of the gas cell and the window foil need to
be measured separately. This has to be done both with a Ni27+ and Ni28+ beam. This
matrix analysis has been performed and the resulting data for the ethylene gas is shown
in figure 4.1. The curves shown in the figures 4.1 and 4.2 are the least squares fits to
the data. Equation (2.85) was used for the data measured with the Ni27+ beam and for
the data taken with the Ni28+ beam equation (2.86) was used. The fits agree quite well
with the experimental data. The separate measurements with Ni27+ and Ni28+ allow
for independent consistency checks of the data, i.e. it is the same equilibrium value
reached for both beams with the same target. Figure 4.2 also confirms that the chemical
difference between polyethylene and polypropylene does not affect the evolution of the
charge state distribution of nickel ions in solids at this energy. In the following figure
4.3 the evolution of the Ni27+ fraction in the different solid mono-atomic targets is
shown along with the least square fits.
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Figure 4.4: Evolution of the fraction of Ni27+ ions after interaction with nitrogen (N2)
and neon (Ne) targets of various thicknesses. The lines represent the least square
fits to the data. The least square fit to N2 has been normalized to N. The errors of
experimental data are within the symbols.

Figure 4.4 displays the measured evolution of Ni27+ in the mono-atomic gases.
These are the raw data that have been observed with the gas cell windows included.
The charge-exchange cross sections for the pure gases can still be extracted. By using
equation (4.1) the matrix element F exp

11 can be found. Doing the matrix multiplications
yields

F exp
11 = FW

10 (FG
00F

W
01 + FG

01F
W
11 ) + FW

11 (FG
10F

W
01 + FG

11F
W
11 ). (4.4)

The Fij represent the solutions to equation (2.84) for H-like and bare nickel incoming
and H-like and bare nickel outgoing. For completeness the solutions are listed below

F00 = e−Nt(σc+σl)x +
σl

σc + σl

(

1 − e−Nt(σc+σl)x
)

F01 =
σc

σc + σl

(

1 − e−Nt(σc+σl)x
)

F10 =
σl

σc + σl

(

1 − e−Nt(σc+σl)x
)

(4.5)

F11 = e−Nt(σc+σl)x +
σc

σc + σl

(

1 − e−Nt(σc+σl)x
)

.

All the matrix elements for FW
ij are already known since the cross sections have been

determined from figure 4.1 and 4.2. Then the FG
ij matrix elements are the only unknown

in the above equation, hence by least square fitting equation (4.4) to the data the
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capture and loss cross sections for the pure gas can be extracted. A detailed list of the
measured fractions of Ni27+ in all target materials can be found in Appendix A.2.

Figure 4.5: Experimental electron loss cross sections σl (upper panel) and electron
capture cross sections σc (lower panel) for Ni27+ impinging on different target materials
at 200 MeV/u. The experimental error bars are within the symbols.
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Figure 4.6: The fractions of U81+, U82+ and U83+ ions for a U81+ incident beam at 200
MeV/u passing through ethylene gas and solid polypropylene as a function of target
thickness. For better presentation the curves for U82+ and U83+ are shifted by 10 and
20 mg/cm2, respectively. The value at the origin for gases are shifted by the influence
of the windows of the gas cell.

4.1.2 Charge-Exchange Cross Sections

The capture and ionization cross sections are determined from the least square fits
performed to the data. The ionization cross sections are determined from the slope of
the fits and the capture cross sections are determined from the equilibrium value at
large thicknesses. The extracted cross sections are listed in Appendix A.3 and A.4 for
all measured materials. In figure 4.5 the capture and loss cross sections are plotted
versus the target atomic number Z2. The ionization cross sections per CH2 group
(dividing σl by 3 for polypropylene and by 2 for ethylene and polyethylene) show a
clear gas-solid difference of 30 % which was already indicated by the different slopes of
the charge state evolution in figure 4.1. The cross sections per CH2 (both capture and
loss) for polyethylene and polypropylene are identical within the experimental error,
confirming that the chemical difference plays small role in the collisions between the
nickel ions and the solid compounds. The mono-atomic materials also show a gas-
solid difference. The gases (nitrogen and neon) clearly lie below the solids though the
Z2-dependence of the ionization cross sections masks the effect. How to remove this
Z2-dependence from the data will be discussed in the next chapter when the cross
sections are compared with theoretical calculations.

The observed gas-solid difference in the ionization cross sections is not found in the
capture cross sections shown in the same figure (lower graph). Again one has to take
into account that the Z2-dependence might mask a difference if present.
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Figure 4.7: Mean charge states of U86+ ions passing through gases and solids as function
of the target atomic number (Z2). The mean charge states have been interpolated to
the common exit energy 55.5 MeV/u. The large error bars for the gas targets are
caused by charge-changing collisions in the windows. Note that not in all materials
equilibrium was reached.

4.2 Results for Uranium Projectiles

4.2.1 Uranium CSD in Ethylene and Polypropylene

In figure 4.9 the measured charge-state distribution of U81+ at 200 MeV/u penetrat-
ing ethylene and polypropylene is shown as a function of the target thickness. The
measurements were restricted to charge state below 89 due to background.

In figure 4.6 only the evolution of the charges 81+, 82+ and 83+ is shown. In gases
the values are shifted due to the stripping in the windows of the gas cell. Decoupling
of the gas cell windows with the matrix formalism wasn’t done since it would require
measurements of the charge-state distribution with 10 or more incoming charge states
of uranium in order to construct the complete matrix for the windows. Therefore the
curves for U82+ and U83+ do not start at 1. The charge 81 corresponds to sodium-
like uranium. This is somewhat similar to H-like nickel, since the K- and L-shells are
completely filled and are harder to ionize. We observe that the slope of the evolution
of the 81+ charge state is smaller in ethylene compared to polypropylene. This means
that the ionization rate is smaller in the gas than in the solid. Hence the ‘effective’
ionization cross section is smaller in ethylene than in polypropylene and thereby we have
a gas-solid effect present as in the case of H-like nickel projectile. Similar conclusions
are found for the charge states 82+ and 83+ (see figure 4.6). Which partial ionization
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Figure 4.8: Non-equilibrium stopping cross sections per target electron of uranium ions
(qin = 86+) in gases and solids. The stopping cross sections have been interpolated
to the mean energy 〈E〉 = 58.70 MeV/u in order to compare the results at the same
velocity (see Appendix C.2).

cross sections display the gas-solid effect is not possible to determine because of the
multitude of charge states present.

4.2.2 Mean Charge and Stopping Force

In figure 4.7 the experimental mean charges are shown for 55.50 MeV/u. The incoming
charge state was 86+. The mean charges have been interpolated to a common energy
of 55.50 MeV/u in order to compare the results in different materials. This was done
by plotting the mean charge of uranium for each target material as function of the
thickness and performing a linear fit to the data. A detailed list of the measured
targets and mean charges can be found in Appendix B.1. The effect of the windows
have been subtracted in figure 4.6 in the same manner as explained in chapter 3. There
is a clear gas-solid effect of roughly 4.7 % for targets with Z2 > 13. Below Z2 ≤ 13 the
effect is reduced. This could partially be due to a lower total number of charge states
involved and still being closer to the initial charge state.

The energy loss obtained from the analysis of the magnetic rigidity of the beam was
plotted as a function of target thickness and could be well approximated by a straight
line as already discussed in chapter 3. The final charge states varied from one target to
another but were always close to the mean charge. This influence due to the uncertainty
of the magnetic rigidity measurement and the error of the target thickness determine
the error of the stopping cross section for uranium ions. The maximum energy loss
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was 15 % of the incident energy. Our experimental results, shown in figure 4.8, are
given at an intermediate energy of 〈E〉 = 58.70 MeV/u. Here, we see a gas-solid effect
for the lighter materials and no effect for the heavier. This is in contradicts with [9]
where the opposite effect was observed, i.e. a gas-solid effect for the heavier targets
and no effect for the lighter ones. The initial measurements by Geissel and coworkers
[7] display on the other hand a gas-solid effect similar to ours. Currently this difference
is not understood. In the next chapter we will give a short argument for how large
the gas-solid effect should be according to theory. A detailed list of the experimental
stopping forces can be found in Appendix C.2 and C.3.

One has to note that the experimental stopping cross sections are non-equilibrium
stopping cross sections. Our targets were so thin that we only covered the non-
equilibrium region, only for the very heavy targets the equilibrium region was reached
(see Appendix B.1). The incident charge state is the same in all materials and can
partially explain the lower difference in energy loss. The absolute values of the stopping
cross sections are quite accurate.
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Figure 4.9: Experimental charge-state distribution for 200 MeV/u U81+ ions after pen-
etration of ethylene (upper panel) and polypropylene (lower panel) qin is the incident
charge state. The data are connected with lines in order to guide the eye.



Chapter 5

Experimental Results Compared
With Theory

5.1 Nickel Data

In the previous chapter we presented our experimental capture and ionization cross
sections for a 200 MeV/u Ni27+,28+ beams penetrating various materials. In order to
make theoretical calculations of the capture and loss cross sections we need to determine
what excited states contribute to the capture and ionization process, respectively. This
requires first of all computation of the lifetimes of the excited states in Ni27+. These
have been calculated within the relativistic theory of Dirac for the 2s1/2, 2p1/2,3/2, 3s1/2

and 3p1/2,3/2 states and are shown in the table below [72]. The third column in table 5.1

Excited State τ [s] γ · τ [s]
2s1/2 1.29 · 10−9 1.57 · 10−9

2p1/2 2.58 · 10−15 3.14 · 10−15

2p3/2 2.62 · 10−15 3.18 · 10−15

3s1/2 2.37 · 10−13 2.88 · 10−13

3p1/2 8.59 · 10−15 1.04 · 10−14

3p3/2 8.62 · 10−15 1.05 · 10−14

Table 5.1: Lifetimes of excited states τ in Ni27+ [72], γ is the relativistic Lorentz factor.

shows the relativistic corrected lifetime at 200 MeV/u. The lifetimes must be compared
with the collision time for charge-changing. From this comparison we can determine
what states most likely will contribute to the capture and loss cross section. From the
experimental cross sections we can easily get the mean free path length [13]

λi(E) =
1

Nt
∑

j σij(E)
, (5.1)

where E is the projectile energy and Nt is the target density. The collision time can
be found by dividing the projectile velocity with the free mean path length. The travel
time for a 200 MeV/u Ni27+ ion through a 32 mg/cm2 carbon foil is roughly 8 · 10−13

s. A list of the mean free paths lengths λi in the different target materials can be

49



50 CHAPTER 5. EXPERIMENTAL RESULTS COMPARED WITH THEORY

found in Appendix A.4 for capture, loss and excitation. Comparison yields that for
the solids both the 2s and 3s contribute but in the gases only the 2s state supersedes
the collision time. Anholt [75] has formulated a theory for single electron capture and
loss involving four states. Following Anholt, we consider four different low-lying states
of nickel projectiles. The states we consider have either no electron (with a relative
probability F0), or just one electron in the 1s state (F1s), 2s state (F2s), or in the 2p
states (F2p). The electron can be captured into 1s, 2s or 2p and later again be ionized
from these states. For H-like ions the 1s electron can undergo a monopole excitation to
the 2s state or a dipole excitation to the 2p state, while the 2s electron can be excited
into the 2p state. In addition to the excitations one-electron states may also decay to
some lower level either by radiative decay or collision de-excitation. All these processes
must be taken into account in order to determine the capture and loss cross sections.
Within this model, the population dynamics of the 1s, 2s and 2p states is described by
the system of rate equations [75]

1

Nt

dF0

dx
(x) = −(σcap

1s + σcap
2s + σcap

2s )F0(x) + σion
1s F1s(x) + σion

2s F2s(x)

+σion
2p F2p(x)

1

Nt

dF1s

dx
(x) = σcap

1s F0(x) − (σion
1s + σexc

1s→2s + σexc
1s→2p)F1s(x) + σdec

2s→1sF2s(x)

+σdec
2p→1sF2p(x)

1

Nt

dF2s

dx
(x) = σcap

2s F0(x) + σexc
1s→2sF1s(x) − (σion

2s + σexc
2s→2p + σdec

2s→1s)F2s(x)

+σdec
2p→2sF2p(x)

1

Nt

dF2p

dx
(x) = σcap

2p F0(x) + σexc
1s→2pF1s(x) + σexc

2s→2pF2s(x)

−(σion
2p + σdec

2p→1s + σdec
2p→2s)F2p(x), (5.2)

where x denotes the thickness of the target, Nt the target atom density, and where
F0(x) + F1s(x) + F2s(x) + F2p(x) = 1. The σdec

i→j and σexc
i→j are the decay and excitation

cross sections, respectively. As mentioned above, the excited one-electron states may
decay both, by the radiative decay as well as due to a collisional de-excitation. The
(electron) decay cross sections are therefore given in terms of the radiative transition
rates Γi→j and the excitation cross sections σexc

j→i [75]

σdec
2s→1s =

Γ2s→1s

Nβcγ
+ σexc

1s→2s

σdec
2p→1s =

Γ2p→1s

Nβcγ
+

1

3
σexc

1s→2p (5.3)

σdec
2p→2s =

Γ2p→2s

Nβcγ
+

1

3
σexc

2s→2p.

With our experimental setup we could only distinguish between bare ions (with
probability G0 = F0) and ions with just one electron (G1 = F1s + F2s + F2p) after
passing through the target. The rate equation for such a system can be found from
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the above equations and one finds

1

Nt

dG0

dx
(x) = −σcG0(x) + σlG1(x)

1

Nt

dG1

dx
(x) = σcG0(x) − σlG1(x), (5.4)

where σc and σl are the ‘effective’ capture and loss cross sections. These are given by
[13]

σc = σcap
1s + σcap

2s + σcap
2s , (5.5)

and

σl =
σion

1s F1s(x) + σion
2s F2s(x) + σion

2p F2p(x)

F1s(x) + F2s(x) + F2p(x)
. (5.6)

As can be seen from the above equations. The capture cross section is just the sum
of the capture cross sections into the three states. The ionization cross section on the
other hand depends on the relative population of the excited states F1s(x), F2s(x) and
F2p(x), respectively and more importantly the target thickness. The relative popula-
tions are obtained by integrating the system (5.2). As discussed by Anholt [75], such
an integration can be performed analytically if the 2s → 2p excitation cross section
(σexc

2s→2p) is assumed to be very large compared to all other cross sections and hence,
the relative population of the 2s and 2p levels equilibrates according to the level mul-
tiplicity F2p/F2s = 3. Then the four-state model reduces to a three-state model which
can be solved exactly [59]. Using the equilibrium ratio Anholt derives an analytical
expression for the ionization cross section

σl = σc

[ 3
4
σdec

2p→1sσc + σ̃ion
2 σcap

1s
3
4
σdec

2p→1sσ
ion
1s + (σion

1s + σexc
1s→2s + σexc

1s→2p)σ̃
ion
2

×

(

1 +
σexc

1s→2s + σexc
1s→2p

3
4
σdec

2p→1s + σ̃ion
2

)

+
σcap

2s + σcap
2p

3
4
σdec

2p→1s + σ̃ion
2

]−1

, (5.7)

where the notation σ̃ion
2 = (σion

2s +3σion
2p )/4 for the effective ionization cross section from

the n = 2 levels has been introduced.

5.1.1 Numerical Calculations

In this section we discuss the numerical calculations that have been performed in order
to evaluate equation (5.7). The numbers for the individual cross sections (decay, exci-
tation etc.) are given in appendix D. The numerical work for the excitation, ionization
and REC cross sections have been provided by Surzhykov and Fritzsche [1]. NRC cross
sections were kindly provided by Shevelko [2].

The ionization cross sections have been calculated within the framework of the
plane-wave Born approximation including the proper screening corrections as discussed
by Voitkiv in [76]. Similar to the ionization, the excitation cross sections have been
calculated within the framework of the relativistic plane-wave Born approximation
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inducting the screening corrections. The decay cross sections are evaluated as given in
equation (5.3). The radiative decay rates Γi→f have been calculated within the Dirac’s
relativistic theory; they take the values

Γ2s→1s = ΓM1
2s→1s + ΓE1E1

2s→1s = 4.73 × 109 s−1

Γ2p→1s = ΓE1
2p→1s = 3.82 × 1014 s−1 (5.8)

Γ2p→2s = ΓE1
2p→2s = 2.80 × 109 s−1.

In general, the radiative 2s→ 1s and 2p→ 1s decay rates are negligible when compared
with the collisional de-excitation cross sections in (5.3). For the 2p levels, in contrast,
the 2p → 1s radiative decay and the de-excitation cross section σexc

1s→2p/3 are of the
same size.

Two basic electron capture processes may occur in ion-atom collisions: (i) the non-
radiative electron capture (NRC), where the energy and momentum transfer in the
collision is shared between the projectile, target and the captured electron and (ii) the
radiative electron capture (REC), where the electron transfer is accompanied by the
simultaneous emission of a photon, carrying away the excess energy and momentum.
Therefore, both, NRC and REC charge transfer processes have to be taken into account
to calculate the electron capture cross sections

σcap
i = σREC

i + σNREC
i . (5.9)

The computation of the radiative recombination cross sections σREC
i within the frame-

work of Dirac’s relativistic theory has been discussed previously [73]. It requires the
evaluation of the free-bound transition matrix elements for the electron-photon interac-
tion. These matrix elements and all the recombination cross sections are calculated by
using the DIRAC program [74] which has been developed by the theory group in Kassel
for studying the properties and dynamical behavior of hydrogen-like ions. As seen from
appendix D, the theoretical REC capture cross section scales with the nuclear charge
of the target as

σREC
i (Z2) = Z2 · σ

REC
i (Z2 = 1) (5.10)

and agrees with the discussion in chapter 2. The NRC scales with Z5
2 , and becomes

rapidly important as the target atomic number Z2 is increased. The NRC cross sec-
tions have been calculated with the CAPTURE code [55] with added density effect as
described in [77].

5.1.2 Discussion

In figure 5.1 the experimental capture cross sections are compared with theoretical
calculations. For the carbon and nitrogen targets the REC process is the dominant
channel. For the heavier targets the NRC becomes the dominant channel. We have
very good agreement between theory and experiment in the case of carbon and nitro-
gen. As mentioned in chapter 2 the REC process is directly coupled to the time-inverse
photoelectric effect, hence can be calculated very precisely. At higher Z2 we observe
large disagreements between theory and experiment which is likely caused by the the-
oretical NRC contribution which is, as previously mentioned, difficult to calculate,



5.1. NICKEL DATA 53

5 10 15 20 25
10-24

10-23

10-22

10-21

 Exp. Data (Solid)
 Exp. Data (Gas)
 Theory (Solid)
 Theory (Gas)
 Theory (NRC)
 Theory (REC)

 

 

c [c
m

2 ]

Z
2

REC

NRC

Figure 5.1: Experimental capture cross sections σc for Ni27+ impinging on different
target materials at 200 MeV/u compared with theoretical calculations. The open
symbols represent the theoretical calculations [73, 77]. The dashed and dotted lines
represent the contributions from the NRC [77] and REC [73] processes, respectively.

nonetheless the disagreement motivates for further refinement and improvement of the
theory. The results and calculations do not exhibit a gas-solid difference this is due
to the large mean free path length of Ni28+ for the probability of electron capture (see
Appendix A.3 and A.4). Hence, a gas-solid difference cannot be present for Ni ions at
these projectile energies. This conclusion is supported by previous investigations [77]
as mentioned earlier.

In chapter 2 it was mentioned that the ionization cross section scales with (Z2
2 +Z2)

within the first-order Born approximation. We have in figure 5.2 divided the ionization
cross sections for the monoatomic materials with this factor and it is observed that
the reduced cross sections are divided into two groups. The reduced ionization cross
sections are now independent of Z2. The solids lie approximately 40 % above the gases
which demonstrates the presence of a gas-solid effect in ionization. The theoretical
calculations also predicts a gas-solid difference. Very good agreement is achieved for
the gases (within 3 %). This good agreement illustrates the fact that for the gas targets
more than 99 % of the hydrogen-like Ni ions are occurring, due to the large mean free
path length, in the ground 1s state [1]. The situation is quite different for the solid
targets (Z2 = 6, 10 and 22) which have much higher atom densities compared to the
gas targets. The higher atom densities result in a 6-11 % population of the excited
ion states and, hence, cause an increase of the ionization cross sections. The deviation
between theory and experiment in the case of carbon is currently not understood. The
theory does predict a gas-solid difference as we have observed in the experiment. This
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Figure 5.2: Normalized ionization cross sections σl for Ni27+ impinging on different
target materials at 200 MeV/u. The data are compared with theoretical calculations.

is our main conclusion.

The presence of a gas-solid difference in the ionization cross sections both in the
monoatomic matarials and the compounds is a proof of the Bohr-Lindhard model [61].
The large density of the solids compared to the gases increases the number of excited
electrons in the projectile and the shorter path length in the solids between two sub-
sequent collisions prevent de-excitation of the electrons. Hence, the ionization cross
section when passing through the solid is enhanced. The experimental conditions ex-
clude any Auger de-excitation after penetration of the solids thereby the Betz-Grodzin
model [62] cannot be applied to this situation.

So far the discussion has avoided comparing our experimental cross sections for the
compound materials with theory. This has been intentional since calculation in molec-
ular targets is much more complicated than for elements mainly due to the increased
complexity of the target wave function. Currently only a few codes can calculate
relativistic wave functions but these codes are developed for chemical problems and
therefore cannot be applied to our situation. A simple approximation could be used
by assuming that the superposition principle is valid, i.e. the cross section for ethylene
for example is the sum of 2 carbons and 4 hydrogens. At this point it is to risky to
use this assumption since theory and experiment for carbon do not agree. Therefore,
the experimental cross sections for ethylene, polyethylene and ethylene are presented
without comparison with theory. The conclusion we can draw from our measurements
is that there is a gas-solid difference in ionization of roughly 30 % between ethylene and
the solid polymers. The chemical difference between the polymers plays no significant
role in ionization or in capture.
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5.2 Uranium Data

GLOBAL [70] takes into account up to 28 charge states. The capture and ionization
cross sections are calculated as described in chapter 2. Solving the rate equation for
the charge-state distribution is done by the Runge-Kutta method. The ETACHA code
[78] can also calculate charge-statr distributions of ions up to 28 electrons distributed
over the n = 1, 2, and 3 principal shells. Determination of the cross sections is done in
a similar manner as in GLOBAL. The main difference between the two codes is that
ETACHA takes the excitation into higher states into account (even for n ≥ 3) and the
decay rates of these states are also included. This feature is important to model the
gas-solid effect.

5.2.1 Mean Charge

In figure 5.3 our experimental mean charges are compared with calculated mean equilib-
rium charge calculations. The GLOBAL code agrees quite well with our experimental
data for the solids. For the gases the mean charge is strongly overestimated especially
for xenon which seems like an artifact of the code. The mean charges from the ETACHA
code do not agree with the experimental results this behavior has been reported before
for other projectile and target combinations [79]. For both gases and solids it widely
overestimates the mean charge (caused by including excitations to higher levels). But
the calculation does predict a gas-solid difference for the heavier targets though the
magnitude of the effect is somewhat smaller. Both codes approach a constant mean
charge in the solids like the experiment. Also both codes show higher mean charge
for the lighter targets. Part of the disagreement between GLOBAL and experiment
is most likely caused by the fact that GLOBAL is adjusted for energies above 100
MeV/u [70] although the code is still applicable down to 30 MeV/u but the results
will be less accurate. The ETACHA code has been reported to be well applicable at
energies around 10 MeV/u and for light projectiles [79] such as neon ions for example.
The main conclusion at this point is that these codes need further refinement.

5.2.2 Stopping Force

Figure 5.4 shows our measured stopping cross sections compared with the predictions
of the PASS code [4], ATIMA [5] code and the tables of Hubert et al. [6]. The
calculations have been done in the frozen charge state mode with q1 = qmean, where
qmean are the experimental mean charges scaled up to the energy 57.80 MeV/u in
the same manner as explained in the previous chapter. In the case of beryllium the
mean value could not be extracted in the experiment, the standard Thomas-Fermi
mean charge has been used instead in the calculation. Our experimental stopping
cross sections do only exhibit a gas-solid difference for the light materials, carbon
and nitrogen. This is completely opposite to what was observed in figure 5.3. Why
the experimental data have a complete opposite behavior is currently not understood.
From the observed difference in the mean charge a significant difference in energy loss
is expected. At 60.23 MeV/u we are in the Bohr region, κ ∼ 3.91 [31], the impact
parameter for the closest approach b = 2Z1e

2/mv2 ≃ 0.046Å is larger than the L-shell
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Figure 5.3: Experimental mean charges compared for 55.5 MeV/u 238U ions with pre-
dictions from ETACHA [78] and GLOBAL [70] codes. The incident charge (qin) was
86+.

radius aL = a0n
2/Z1 ≃ 0.023Å of the projectile (uranium has its L-shell partially filled

in all target materials). A rough estimate of the screening radius can be derived from
[32]. Setting q1/Z1 to 0.9 one obtains a screening radius asc ≃ 0.012Å. From this one
may conclude that the projectile behaves like a point charge, i.e. the stopping cross
section is proportional to q2

1. Therefore, one would expect a gas-solid effect from 9 to
10 % in the stopping cross section.

The following holds for equilibrium stopping cross sections

Smean =
∑

J

PJS(qJ) 6= S(qmean), (5.11)

but in the region were our measurements took place this difference has previously [80]
been found to be insignificant in the binary theory in the case of uranium ions pen-
etrating carbon. The theoretical predictions from PASS (using Smean = S(qmean)) lie
systematically below the experimental ones this is due to omitting the contribution
from electron capture to the stopping force. This was motivated due to artifacts which
can be ascribed to the model underlying the current implementation of the PASS code.
The beryllium calculation is very low compared to the experimental result which is
mostly likely caused by the Thomas-Fermi mean charge used. The ATIMA [5] calcula-
tions also lie systematically (projectile excitation not included) below the experimental
results. In the ATIMA calculation the mean-charge formula from Pierce and Blann
[81] is used

qmean = Z1

(

1 − e−0.95 v/Z
2/3

1
v0

)

. (5.12)
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Figure 5.4: Experimental stopping cross sections compared with theoretical predictions
from ATIMA and the PASS code. Note that the experimental S(E) values are not
equilibrium values (see Appendix C.2).

Like the Thomas-Fermi mean-charge formula (2.46) it holds no information about the
density of the target and has no Z2-dependence, hence it cannot predict a gas-solid
difference. The Hubert et al. tables agree well with data for the light targets while for
the heavier targets they are too low compared to the experimental data.

The PASS code does predict a gas-solid difference for the heavier targets (above
copper) much like our experimental mean charge data do. But the difference is smaller
than for the mean charge, hence demonstrating that the stopping force is not propor-
tional q2

1 and that argument given above is not completely valid. This has been shown
for different heavy projectiles recently [80] over a wide energy region.
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Appendix A

Nickel Data

A.1 Target List

Material x [mg/cm2] Material x [mg/cm2]
C 4.10±0.04 Ti 0.54±0.01
C 6.31±0.02 Ti 0.83±0.02
C 10.41±0.06 Ti 1.31±0.03
C 13.18±0.30 Ti 2.20±0.05
C 23.54±0.37 Ti 5.23±0.17
C 32.13±0.36 Ti 6.06±0.19
N2 0.06±0.00 Ti 7.43±0.22
N2 0.92±0.00 Ti 8.78±0.14
N2 3.72±0.01 Ti 14.01±0.31
N2 9.87±0.02 Ti 25.86±0.44
N2 19.49±0.04 (C2H4)n 1.24±0.03
N2 29.17±0.06 (C2H4)n 2.47±0.05
N2 38.72±0.08 (C2H4)n 3.71±0.08
N2 67.65±0.15 (C2H4)n 5.94±0.12
Ne 0.06±0.00 (C2H4)n 9.94±0.21
Ne 3.04±0.00 (C2H4)n 12.41±0.26
Ne 5.94±0.01 (C2H4)n 14.64±0.30
Ne 8.83±0.01 (C2H4)n 17.92±0.37
Ne 14.61±0.02 (C2H4)n 20.39±0.42
Ne 29.06±0.04 (C2H4)n 22.85±0.47
Al 4.98±0.10 (C2H4)n 24.09±0.50
Al 8.64±0.20 (C2H4)n 32.79±0.68
Al 13.71±0.30 (C2H4)n 40.77±0.85
Al 22.16±0.46 (C2H4)n 51.70±1.07

Table A.1: List of measured target materials with their thicknesses.

59
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Material x [mg/cm2] Material x± [mg/cm2]
(C2H4)n 61.64±1.28 (C3H6)n 30.33±0.63
(C2H4)n 69.62±1.45 (C3H6)n 38.22±0.79
(C3H6)n 0.52±0.01 (C3H6)n 45.34±0.94
(C3H6)n 1.33±0.03 (C3H6)n 49.85±1.04
(C3H6)n 1.85±0.04 C2H4 0.52±0.00
(C3H6)n 2.66±0.05 C2H4 2.10±0.01
(C3H6)n 3.99±0.08 C2H4 5.05±0.02
(C3H6)n 4.51±0.09 C2H4 7.91±0.03
(C3H6)n 5.84±0.12 C2H4 10.64±0.03
(C3H6)n 9.03±0.19 C2H4 17.09±0.06
(C3H6)n 13.54±0.28 C2H4 22.66±0.07
(C3H6)n 16.92±0.35 C2H4 28.31±0.09
(C3H6)n 21.30±0.44 C2H4 35.39±0.12
(C3H6)n 22.63±0.47 C2H4 46.05±0.15

Table A.2: List of measured target materials with their thicknesses.

A.2 Fractions

Material x [mg/cm2] N(Ni27+)/(N(Ni27+) +N(Ni28+))
C 4.10±0.04 0.2641±0.0018
C 6.31±0.02 0.1080±0.0014
C 10.41±0.06 0.0294±0.0004
C 23.54±0.37 0.0020±0.0001
C 32.13±0.36 0.0018±0.0001
N2 0.06±0.00 0.7387±0.0017
N2 0.92±0.00 0.5764±0.0033
N2 3.72±0.01 0.2640±0.0022
N2 9.87±0.02 0.0453±0.0010
N2 19.49±0.04 0.0052±0.0001
N2 29.17±0.06 0.0026±0.0001
N2 38.72±0.08 0.0025±0.0001
N2 67.65±0.15 0.0025±0.0001

Table A.3: Measured charge-state fraction of 200 MeV/u Ni27+ after penetration of
targets with various thicknesses.
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Material x [mg/cm2] N(Ni27+)/(N(Ni27+) +N(Ni28+)) N(Ni27+)/(N(Ni27+) +N(Ni28+))
Ne 0.06±0.00 0.7310±0.0017 -
Ne 3.04±0.00 0.2404±0.0013 -
Ne 5.94±0.01 0.0810±0.0009 -
Ne 8.83±0.01 0.0269±0.0006 -
Ne 14.61±0.02 0.0047±0.0001 -
Ne 29.06±0.04 0.0022±0.0001 -
Al 4.98±0.10 0.0364±0.0005 -
Al 8.64±0.20 0.0046±0.0001 -
Al 13.71±0.30 0.0016±0.0001 -
Al 22.16±0.46 0.0015±0.0001 -
Ti 0.54±0.01 0.5884±0.0015 -
Ti 0.83±0.02 0.4262±0.0016 -
Ti 1.31±0.03 0.2530±0.0011 -
Ti 2.20±0.05 0.0975±0.0008 -
Ti 5.23±0.17 0.0058±0.0001 -
Ti 8.78±0.14 0.0031±0.0001 -
Ti 14.01±0.31 0.0029±0.0001 -

(C2H4)n 1.24±0.03 0.6893±0.0019 0.0007±0.0001
(C2H4)n 2.47±0.05 0.4707±0.0020 0.0012±0.0001
(C2H4)n 3.71±0.08 0.3344±0.0016 0.0015±0.0001
(C2H4)n 5.94±0.12 0.1716±0.0012 0.0018±0.0001
(C2H4)n 9.94±0.21 0.0536±0.0006 0.0022±0.0002
(C2H4)n 12.41±0.26 0.0270±0.0005 0.0020±0.0002
(C2H4)n 14.64±0.30 0.0143±0.0004 0.0022±0.0002
(C2H4)n 17.92±0.37 0.0071±0.0002 0.0022±0.0002
(C2H4)n 20.39±0.42 0.0044±0.0002 0.0023±0.0002
(C2H4)n 22.85±0.47 0.0033±0.0002 0.0020±0.0002
(C2H4)n 24.09±0.50 0.0030±0.0002 0.0021±0.0002
(C2H4)n 32.79±0.68 0.0021±0.0002 0.0025±0.0001
(C2H4)n 40.77±0.85 0.0026±0.0001 0.0027±0.0001
(C2H4)n 51.70±1.07 0.0030±0.0001 0.0022±0.0002

Table A.4: Measured charge-state fraction of Ni27+ after penetration of targets with
various thicknesses with an incident 200 MeV/u Ni27+ beam (third column) and an
incident 200 MeV/u Ni28+ beam (fourth column), respectively.
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Material x [mg/cm2] N(Ni27+)/(N(Ni27+) +N(Ni28+)) N(Ni27+)/(N(Ni27+) +N(Ni28+))
(C2H4)n 61.64±1.28 0.0030±0.0002 0.0027±0.0002
(C2H4)n 69.62±1.45 0.0030±0.0002 0.0023±0.0002
(C3H6)n 0.52±0.01 0.8734±0.0009 0.0004±0.0001
(C3H6)n 1.33±0.03 0.6912±0.0017 0.0008±0.0001
(C3H6)n 1.85±0.04 0.6013±0.0021 0.0010±0.0001
(C3H6)n 2.66±0.05 0.4773±0.0023 0.0013±0.0001
(C3H6)n 3.99±0.08 0.3242±0.0023 0.0016±0.0001
(C3H6)n 4.51±0.09 0.2833±0.0021 0.0017±0.0001
(C3H6)n 5.84±0.12 0.1987±0.0023 0.0019±0.0001
(C3H6)n 9.03±0.19 0.0835±0.0012 0.0019±0.0001
(C3H6)n 13.54±0.28 0.0192±0.0004 0.0022±0.0001
(C3H6)n 16.92±0.35 0.0081±0.0002 0.0025±0.0001
(C3H6)n 21.30±0.44 0.0039±0.0002 0.0021±0.0001
(C3H6)n 22.63±0.47 0.0033±0.0002 0.0023±0.0001
(C3H6)n 30.33±0.63 0.0023±0.0001 0.0023±0.0001
(C3H6)n 38.22±0.79 0.0022±0.0001 0.0023±0.0002
(C3H6)n 45.34±0.94 0.0021±0.0001 0.0026±0.0002
(C3H6)n 49.85±1.04 0.0023±0.0001 0.0025±0.0002
C2H4 0.52±0.00 0.8811±0.0009 0.0005±0.0000
C2H4 2.10±0.01 0.6216±0.0008 0.0012±0.0001
C2H4 5.05±0.02 0.3256±0.0006 0.0019±0.0001
C2H4 7.91±0.03 0.1663±0.0005 0.0025±0.0001
C2H4 10.64±0.03 0.0883±0.0004 0.0028±0.0001
C2H4 17.09±0.06 0.0206±0.0002 0.0027±0.0001
C2H4 22.66±0.07 0.0080±0.0001 0.0030±0.0001
C2H4 28.31±0.09 0.0041±0.0001 0.0031±0.0001
C2H4 35.39±0.12 0.0032±0.0001 0.0030±0.0001
C2H4 46.05±0.15 0.0029±0.0001 0.0030±0.0001

Table A.5: Measured charge-state fraction of Ni27+ after penetration of targets with
various thicknesses with an incident 200 MeV/u Ni27+ beam (third column) and an
incident 200 MeV/u Ni28+ beam (fourth column), respectively.
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A.3 Capture Cross Sections

Material Incident Charge σc [cm2]
C 27+ 1.21 · 10−23 ± 0.03 · 10−23

N2 27+ 1.63 · 10−23 ± 0.05 · 10−23

Ne 27+ 2.71 · 10−23 ± 0.10 · 10−23

Al 27+ 4.49 · 10−23 ± 0.15 · 10−23

Ti 27+ 2.45 · 10−22 ± 0.55 · 10−23

Ti∗ 27+ 2.39 · 10−22 ± 1.03 · 10−23

Ti∗ 28+ 2.55 · 10−22 ± 1.59 · 10−23

(C2H4)n 27+ 2.87 · 10−23 ± 0.08 · 10−23

(C2H4)n 28+ 2.95 · 10−23 ± 0.21 · 10−23

(C3H6)
∗
n 27+ 4.48 · 10−23 ± 0.14 · 10−23

(C3H6)
∗
n 28+ 4.66 · 10−23 ± 0.20 · 10−23

C2H4 27+ 2.89 · 10−23 ± 0.05 · 10−23

C2H4 28+ 3.21 · 10−23 ± 0.23 · 10−23

Table A.6: List of experimental capture cross sections for nickel ions at 200 MeV/u.
The experimental errors correspond to one standard deviation. The marked data (*)
are remeasured a year after the first experiment.
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A.4 Ionization Cross Sections and Mean Free Path

Length

Material Incident Charge σl [cm2]
C 27+ 6.87 · 10−21 ± 0.03 · 10−21

N2 27+ 6.56 · 10−21 ± 0.03 · 10−21

Ne 27+ 1.27 · 10−20 ± 0.01 · 10−20

Al 27+ 3.01 · 10−20 ± 0.05 · 10−20

Ti 27+ 8.32 · 10−20 ± 0.08 · 10−20

Ti∗ 27+ 8.68 · 10−20 ± 0.09 · 10−20

Ti∗ 28+ 9.10 · 10−20 ± 0.67 · 10−20

(C2H4)n 27+ 1.39 · 10−20 ± 0.01 · 10−20

(C2H4)n 28+ 1.28 · 10−20 ± 0.11 · 10−20

(C3H6)
∗
n 27+ 2.06 · 10−20 ± 0.01 · 10−20

(C3H6)
∗
n 28+ 2.03 · 10−20 ± 0.10 · 10−20

C2H4 27+ 1.07 · 10−20 ± 0.01 · 10−21

C2H4 28+ 1.08 · 10−20 ± 0.09 · 10−20

Table A.7: List of experimental capture cross sections for nickel ions at 200 MeV/u.
The experimental errors correspond to one standard deviation. The marked data (*)
are remeasured a year after the first experiment.
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Material x [mg/cm2] ρ [mg/cm3] N [atoms/cm3] λ27+→28+ [mg/cm2] λ28+→27+ [mg/cm2] λ1s→2s+2p [mg/cm2]

Thickness Density Loss Capture Excitation
C 4.10–32.13 2.27 · 103 1.14 · 1023 2.90 1.65 · 103 6.78
N2 0.06 1.79 · 10−3 7.70 · 1016 3.55 1.43 · 103 6.29
N2 0.92 2.96 · 10−2 1.27 · 1018 3.55 1.43 · 103 6.29
N2 3.72 1.19 · 10−1 5.13 · 1018 3.55 1.43 · 103 6.29
N2 9.87 3.16 · 10−1 1.36 · 1019 3.55 1.43 · 103 6.29
N2 19.49 6.25 · 10−1 2.69 · 1019 3.55 1.43 · 103 6.29
N2 29.17 9.35 · 10−1 4.02 · 1019 3.55 1.43 · 103 6.29
N2 38.72 1.24 5.34 · 1019 3.55 1.43 · 103 6.29
N2 67.65 2.17 9.32 · 1019 3.55 1.43 · 103 6.29
Ne 0.06 2.06 · 10−3 6.16 · 1016 2.64 1.23 · 103 4.80
Ne 3.04 9.75 · 10−2 2.91 · 1018 2.64 1.23 · 103 4.80
Ne 5.94 1.90 · 10−1 5.68 · 1018 2.64 1.23 · 103 4.80
Ne 8.83 2.83 · 10−1 8.44 · 1018 2.64 1.23 · 103 4.80
Ne 14.61 4.68 · 10−1 1.40 · 1019 2.64 1.23 · 103 4.80
Ne 29.06 9.31 · 10−1 2.78 · 1019 2.64 1.23 · 103 4.80
Al 4.98–22.16 2.70 · 103 6.02 · 1022 1.49 9.97 · 102 4.45
Ti 0.54–25.86 4.51 · 103 5.67 · 1022 0.96 3.24 · 102 2.74

(C2H4)n 1.24–69.62 9.20 · 102 1.97 · 1022 3.34 1.63 · 103 -
(C3H6)n 0.54–49.85 9.10 · 102 1.30 · 1022 3.39 1.56 · 103 -
C2H4 0.52 1.67 · 10−2 3.59 · 1017 4.35 1.61 · 103 -
C2H4 2.09 6.73 · 10−2 1.44 · 1018 4.35 1.61 · 103 -
C2H4 5.04 1.62 · 10−1 3.47 · 1018 4.35 1.61 · 103 -
C2H4 7.91 2.54 · 10−1 5.45 · 1018 4.35 1.61 · 103 -
C2H4 10.64 3.41 · 10−1 7.32 · 1018 4.35 1.61 · 103 -
C2H4 17.09 5.48 · 10−1 1.18 · 1019 4.35 1.61 · 103 -
C2H4 22.66 7.26 · 10−1 1.56 · 1019 4.35 1.61 · 103 -
C2H4 28.31 9.07 · 10−1 1.95 · 1019 4.35 1.61 · 103 -
C2H4 35.39 1.13 2.44 · 1019 4.35 1.61 · 103 -
C2H4 46.05 1.48 3.17 · 1019 4.35 1.61 · 103 -

Table A.8: List of free mean path lengths λi for ionization (column 5), capture (column 6) and excitation (column 7), calculated with
equation (5.1) and the tables presented in Appendix A.1, A.2 and D compared with the target thicknesses used in the experiment.
The length of the gas call was 31.2 cm.
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Appendix B

Uranium Data (Mean Charge)

B.1 Mean Charges of Uranium at (60.23 & 85.00)

MeV/u

Material x [mg/cm2] qmean Material x [mg/cm2] qmean

C 6.31±0.02 87.30±0.01 Ar 5.30±0.01 81.12±0.38
C 8.20±0.10 87.39±0.03 Ar 15.41±0.02 80.77±0.41
C 16.49±0.26 87.70±0.03 Ar 35.62±0.04 80.08±0.46
N2 5.53±0.01 86.06±0.07 Ar 50.78±0.06 79.49±0.51
N2 15.43±0.03 85.71±0.09 Ti 5.23±0.17 84.13±0.01
N2 25.00±0.05 86.27±0.06 Ti 8.78±0.14 84.03±0.01
N2 42.72±0.09 84.80±0.13 Ti 14.01±0.31 83.90±0.01
Ne 1.41±0.00 85.29±0.11 Ti 25.86±0.44 83.66±0.01
Ne 15.40±0.02 83.53±0.21 Ti 45.22±0.78 83.31±0.02
Ne 28.13±0.04 82.83±0.26 Cu 10.89±0.23 84.04±0.01
Ne 43.22±0.06 81.82±0.33 Cu 17.07±0.35 83.87±0.01
Al 4.98±0.10 85.75±0.01 Cu 30.34±0.63 83.54±0.02
Al 8.64±0.20 85.57±0.01 Cu 43.82±0.90 83.16±0.02
Al 22.16±0.46 85.07±0.02 Kr 8.00±0.00 80.47±0.43
Al 37.44±1.00 84.44±0.04 Kr 11.22±0.00 80.46±0.43

Table B.1: Measured mean charge states for incident 60.23 MeV/u U86+ ions in different
target thicknesses.
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Material x [mg/cm2] qmean Material x [mg/cm2] qmean

Kr 32.47±0.01 79.94±0.48 Xe 17.64±0.01 79.67±0.50
Kr 53.83±0.01 79.33±0.62 Xe 67.54±0.04 77.36±0.71
Ag 11.03±0.29 83.69±0.01 Au 13.69±0.28 82.90±0.01
Ag 17.59±0.43 83.53±0.01 Au 22.13±0.46 82.70±0.01
Ag 35.80±0.74 83.07±0.02 Au 39.67±0.82 82.42±0.02
Ag 52.88±1.42 82.63±0.04 Au 65.01±1.34 81.74±0.03
Xe 9.38±0.01 79.81±0.50

Table B.2: Measured mean charge states for incident 60.23 MeV/u U86+ ions in different
target thicknesses.

Material x [mg/cm2] qmean Material x [mg/cm2] qmean

(C3H6)n 0.52±0.01 86.10±0.00 C2H4 3.71±0.01 86.18±0.07
(C3H6)n 4.51±0.09 86.75±0.00 C2H4 10.82±0.04 86.36±0.06
(C3H6)n 16.92±0.35 87.28±0.01 C2H4 25.06±0.08 86.78±0.04
(C3H6)n 21.30±0.44 87.22±0.01 C2H4 35.79±0.12 87.06±0.03
(C3H6)n 38.22±0.79 87.53±0.03 C2H4 39.42±0.13 87.83±0.01
C2H4 0.45±0.00 85.92±0.08

Table B.3: Measured mean charge states for incident 60.23 MeV/u U86+ ions in different
target thicknesses.

Material x [mg/cm2] qmean Material x [mg/cm2] qmean

Be 4.50±0.07 82.81±0.05 Be 36.66±0.74 88.46±0.11
Be 9.32±0.15 85.08±0.07 C 7.54±0.12 85.94±0.05
Be 13.61±0.22 86.23±0.04 C 8.20±0.10 86.28±0.05
Be 17.68±0.28 86.93±0.05 C 16.49±0.26 88.06±0.06

Table B.4: Measured mean charge states for incident 85.00 MeV/u U73+ ions in different
target thicknesses.



Appendix C

Uranium Data (Energy Loss)

C.1 Energy Losses of Uranium

Material x [mg/cm2] Ein [MeV/u] ∆E [MeV]
Be 6.98±0.14 60.23 416.50±11.30
Be 11.48±0.38 60.23 704.48±24.96
Be 22.19±0.45 60.23 1366.12±28.88
Be 36.66±0.74 60.23 2291.94±46.82
Be 4.50±0.07 85.00 208.85±3.36
Be 9.32±0.15 85.00 416.02±8.85
Be 13.61±0.22 85.00 624.75±11.26
Be 17.68±0.28 85.00 796.51±14.43
Be 22.19±0.45 85.00 1024.19±21.07
Be 36.66±0.74 85.00 1723.12±34.79
C 6.31±0.02 60.23 441.09±7.60
C 8.20±0.10 60.23 562.87±9.07
C 16.49±0.26 60.23 1117.01±18.47
C 7.54±0.12 85.00 352.24±7.62
C 8.20±0.10 85.00 407.77±6.31
C 13.18±0.30 85.00 621.18±16.70
C 16.49±0.26 85.00 832.21±14.48
C 23.32±0.38 85.00 1218.56±21.00
C 23.54±0.37 85.00 1225.70±22.32
C 32.13±0.36 85.00 1718.36±20.13

Table C.1: Experimental energy loss data (∆E) for uranium ions penetrating various
gases and solids. The target thicknesses are given in column 2 and the incident energy
in column 3.
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Material x [mg/cm2] Ein [MeV/u] ∆E [MeV]
N2 5.53±0.01 60.23 360.17±17.07
N2 15.43±0.03 60.23 1018.64±17.19
N2 25.00±0.05 60.23 1393.09±17.35
N2 42.72±0.09 60.23 2660.05±17.75
Ne 1.41±0.00 60.23 84.89±31.49
Ne 15.40±0.02 60.23 899.64±31.68
Ne 28.13±0.04 60.23 1660.65±31.73
Ne 43.22±0.06 60.23 2600.15±31.74
Ne 2.75±0.00 199.99 28.56±25.80
Ne 7.85±0.01 199.99 138.04±25.85
Ne 12.95±0.02 199.99 326.06±25.78
Ne 20.59±0.03 199.99 511.70±25.92
Al 4.98±0.10 60.23 289.89±9.62
Al 8.64±0.20 60.23 496.23±13.76
Al 22.16±0.46 60.23 1263.19±28.10
Al 37.44±1.00 60.23 2218.16±59.45
Al 4.98±0.10 199.99 188.02±13.27
Al 8.64±0.20 199.99 292.74±13.49
Al 13.71±0.30 199.99 426.02±14.55
Ar 5.30±0.01 60.23 259.90±17.18
Ar 15.41±0.02 60.23 732.25±17.09
Ar 35.62±0.04 60.23 1715.50±17.06
Ar 50.78±0.06 60.23 2480.91±17.12
Ar 2.93±0.00 199.99 19.04±25.80
Ar 7.98±0.01 199.99 111.86±25.83
Ar 13.03±0.02 199.99 283.22±25.81
Ar 20.59±0.03 199.99 454.58±25.83

Table C.2: Experimental energy loss data (∆E) for uranium ions penetrating various
gases and solids. The target thicknesses are given in column 2 and the incident energy
in column 3.
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Material x [mg/cm2] Ein [MeV/u] ∆E [MeV]
Ti 5.23±0.17 60.23 258.23±11.29
Ti 8.78±0.14 60.23 442.02±10.13
Ti 14.01±0.31 60.23 707.65±17.33
Ti 25.86±0.44 60.23 1295.91±23.39
Ti 45.22±0.78 60.23 2281.23±40.12
Ti 0.54±0.01 199.99 59.50±12.14
Ti 1.31±0.03 199.99 71.40±12.14
Ti 2.20±0.05 199.99 88.06±12.16
Ti 5.23±0.17 199.99 185.64±13.82
Cu 10.89±0.23 60.23 535.50±12.54
Cu 17.07±0.35 60.23 821.89±18.04
Cu 30.34±0.63 60.23 1453.39±30.59
Cu 43.82±0.90 60.23 2104.71±43.56
Kr 8.00±0.00 60.23 318.92±17.06
Kr 11.22±0.00 60.23 446.85±17.07
Kr 32.47±0.01 60.23 1299.48±16.96
Kr 53.83±0.01 60.23 2383.17±16.83
Ag 11.03±0.29 60.23 456.36±14.87
Ag 17.59±0.43 60.23 737.21±20.16
Ag 35.80±0.74 60.23 1480.36±33.35
Ag 52.88±1.42 60.23 2305.63±62.69

Table C.3: Experimental energy loss data (∆E) for uranium ions penetrating various
gases and solids. The target thicknesses are given in column 2 and the incident energy
in column 3.
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Material x [mg/cm2] Ein [MeV/u] ∆E [MeV]
Xe 9.38±0.01 60.23 333.20±17.08
Xe 17.64±0.01 60.23 624.75±17.04
Xe 42.60±0.03 60.23 1532.72±16.93
Xe 52.92±0.03 60.23 2153.90±17.08
Xe 67.54±0.04 60.23 2740.97±16.90
Au 13.69±0.28 60.23 471.84±11.84
Au 22.13±0.46 60.23 750.89±17.21
Au 39.67±0.82 60.23 1339.94±29.35
Au 65.01±1.34 60.23 2263.38±47.24

(C3H6)n 0.52±0.01 60.23 35.7±7.76
(C3H6)n 1.33±0.03 60.23 138.04±7.81
(C3H6)n 2.66±0.05 60.23 207.06±8.49
(C3H6)n 4.51±0.09 60.23 349.38±9.62
(C3H6)n 9.03±0.19 60.23 749.70±16.20
(C3H6)n 16.92±0.35 60.23 1330.90±28.23
(C3H6)n 21.30±0.44 60.23 1692.97±34.87
(C3H6)n 38.22±0.79 60.23 2949.61±61.72
(C3H6)n 0.52±0.01 199.99 41.65±11.41
(C3H6)n 1.33±0.03 199.99 69.02±12.24
(C3H6)n 1.85±0.04 199.99 102.34±12.46
(C3H6)n 2.66±0.05 199.99 118.41±12.62
(C3H6)n 3.99±0.09 199.99 166.60±13.11
(C3H6)n 5.84±0.12 199.99 222.93±13.74
(C3H6)n 9.03±0.19 199.99 342.72±14.40
(C3H6)n 16.92±0.35 199.99 597.38±17.97
(C3H6)n 30.33±0.63 199.99 1130.50±25.56

Table C.4: Experimental energy loss data (∆E) for uranium ions penetrating various
gases and solids. The target thicknesses are given in column 2 and the incident energy
in column 3.
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Material x [mg/cm2] Ein [MeV/u] ∆E [MeV]
C2H4 0.45±0.00 60.23 49.39±17.25
C2H4 3.71±0.01 60.23 298.10±17.04
C2H4 10.82±0.04 60.23 869.59±17.19
C2H4 25.06±0.08 60.23 1775.88±17.78
C2H4 35.79±0.12 60.23 2474.81±18.55
C2H4 39.42±0.13 60.23 2591.82±18.78
C2H4 2.17±0.01 199.99 11.90±26.00
C2H4 4.3±0.01 199.99 864.26±26.16
C2H4 6.56±0.02 199.99 145.97±26.58
C2H4 9.03±0.03 199.99 226.10±25.86
C2H4 13.86±0.05 199.99 383.18±26.26
C2H4 18.77±0.06 199.99 591.43±26.44
C2H4 23.61±0.08 199.99 768.74±25.95
C2H4 28.47±0.09 199.99 947.24±26.48

Table C.5: Experimental energy loss data (∆E) for uranium ions penetrating various
gases and solids. The target thicknesses are given in column 2 and the incident energy
in column 3.
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C.2 Stopping Forces of Uranium Ions at

60.23 MeV/u

Material E [MeV/u] xmin –xmax [mg/cm2] −dE/dx [MeV/(mg/cm2)]
Be 57.72 6.98±0.14 – 36.66±0.74 63.07±0.35
C 58.74 6.31±0.02 – 16.49±0.26 66.50±1.37
N2 57.38 5.53±0.01 – 42.72±0.09 60.79±1.93
Ne 57.48 1.41±0.00 – 43.22±0.06 59.89±0.34
Al 57.99 4.98±0.10 – 37.44±1.00 59.08±0.46
Ar 57.59 5.30±0.01 – 50.78±0.06 48.87±0.18
Ti 58.14 5.23±0.17 – 45.22±0.78 50.52±0.09
Cu 57.37 10.89±0.23 – 43.82±0.90 47.69±0.16
Kr 58.36 8.00±0.00 – 53.83±0.01 44.24±0.74
Ag 57.61 11.03±0.29 – 52.88±1.42 43.86±0.48
Xe 57.13 9.38±0.01 – 67.54±0.04 41.34±0.77
Au 57.70 13.69±0.28 – 65.01±1.34 34.85±0.25

(C3H6)n 58.27 0.52±0.01 – 38.22±0.79 77.65±0.54
C2H4 57.76 0.45±0.00 – 39.42±0.13 66.40±0.97

Table C.6: Experimental stopping forces (dE/dx) for incident U86+ ions at 60.23
MeV/u with the target thickness ranges (column 3) covered in the experiment. These
data are shown in figure 4.8 and compared to theory in figure 5.4.



C.3. STOPPING FORCES OF URANIUM IONS AT (85.00 & 199.99) MEV/U 75

C.3 Stopping Forces of Uranium Ions at (85.00 &

199.99) MeV/u

Material E [MeV/u] xmin –xmax [mg/cm2] −dE/dx [MeV/(mg/cm2)]
Be 83.34 4.50±0.07 – 36.66±0.74 47.18±0.60
C 83.09 7.54±0.12 – 32.13±0.36 54.75±1.10

Ne 199.46 2.75±0.00 – 20.59±0.03 27.49±1.23
Al 199.36 4.98±0.10 – 13.71±0.30 27.20±0.65
Ar 199.53 2.93±0.00 – 20.59±0.03 25.42±1.77
Ti 199.78 0.54±0.01 – 5.23±0.17 27.75±2.61

(C3H6)n 199.34 0.52±0.01 – 30.33±0.63 36.05±0.44
C2H4 199.10 0.37±0.00 – 28.47±0.09 35.93±0.57

Table C.7: Experimental stopping forces (dE/dx) for incident U73+ ions at 85 MeV/u
(C and Be) and for incident U81+ ions at 200.6 MeV/u with the target thickness ranges
(column 3) covered in the experiment.
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Appendix D

Theoretical Charge-Exchange Cross
Sections

Z2 = 6 Z2 = 7 Z2 = 10 Z2 = 13 Z2 = 22
σexc

1s→2s 3.04 · 10−22 4.02 · 10−22 7.82 · 10−22 1.23 · 10−21 3.44 · 10−21

σexc
1s→2p 3.82 · 10−21 4.80 · 10−21 9.05 · 10−21 1.30 · 10−20 3.76 · 10−20

σion
1s 5.26 · 10−21 6.74 × 10−21 1.28 · 10−20 2.36 · 10−20 6.75 · 10−20

σion
2s 1.66 · 10−20 2.16 · 10−20 3.19 · 10−20 6.62 · 10−20 1.74 · 10−19

σion
2p 1.99 · 10−20 2.59 · 10−20 3.82 · 10−20 7.94 · 10−20 2.07 · 10−19

σl 5.76 · 10−21 6.75 · 10−21 1.28 · 10−20 2.82 · 10−20 8.26 · 10−20

σREC
1s 1.01 · 10−23 1.18 · 10−23 1.67 · 10−23 2.18 · 10−23 3.69 · 10−23

σREC
2s 1.26 · 10−24 1.47 · 10−24 2.21 · 10−24 2.84 · 10−24 4.83 · 10−24

σREC
2p 1.36 · 10−25 1.58 · 10−25 2.31 · 10−25 3.06 · 10−25 5.14 · 10−25

σNRC
1s 1.24 · 10−24 2.58 · 10−24 1.54 · 10−23 6.00 · 10−23 7.06 · 10−22

σNRC
2s 0.98 · 10−25 1.96 · 10−25 1.15 · 10−24 0.44 · 10−23 4.70 · 10−23

σNRC
2p 2.95 · 10−25 5.88 · 10−25 3.46 · 10−24 1.31 · 10−23 1.41 · 10−22

σc 1.28 · 10−23 1.75 · 10−23 4.27 · 10−23 1.16 · 10−22 1.07 · 10−21

Table D.1: Theoretical cross sections in cm2 for excitation, ionization, REC and NRC
of Ni27+ ions at 200 MeV/u calculated from various codes (see chapter 5 for discussion).
The theoretical results are shown in figure 5.1 and 5.2.
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Appendix E

Theoretical Stopping Forces

E.1 Theoretical Stopping Forces of Uranium Ions

Material E [MeV/u] qmean −dE/dx [MeV/(mg/cm2)]
Be 57.72 82.43 (TF) 55.64
C 58.74 87.26 65.69
N2 57.38 86.10 65.30
Ne 57.48 84.35 57.70
Al 57.99 85.57 55.46
Ar 57.59 80.90 47.69
Ti 58.14 84.00 47.94
Cu 57.37 83.96 45.26
Kr 58.36 80.56 39.50
Ag 57.61 83.59 41.39
Xe 57.13 79.54 35.81
Au 57.70 82.83 33.11

(C3H6)n 58.27 86.62 78.60
C2H4 57.76 86.20 78.45

Be 83.34 84.53 45.70
C 83.09 86.52 51.30

Ne 199.46 89.97 (TF) 30.35
Al 199.36 89.97 (TF) 28.94
Ar 199.53 89.97 (TF) 26.55
Ti 199.78 89.97 (TF) 26.06

(C3H6)n 199.34 89.97 (TF) 38.91
C2H4 199.10 89.96 (TF) 38.93

Table E.1: List of theoretical stopping forces calculated with the PASS code. The
experimental mean charge values are used as an input in this code. TF means that eq.
(2.46) was used to calculate the mean charge. These theoretical results are shown in
figure 5.4.
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D. Schardt, K. H. Schmidt, W. Schwab, M. Steiner, T. Stöhlker, K. Sümmerer,
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