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Abstract

The current limitations in evaluating synovial fluid (SF) components in health and disease

and between species are due in part to the lack of data on normal SF, because of low avail-

ability of SF from healthy articular joints. Our study aimed to quantify species-dependent dif-

ferences in phospholipid (PL) profiles of normal knee SF obtained from equine and human

donors. Knee SF was obtained during autopsy by arthrocentesis from 15 and 13 joint-

healthy human and equine donors, respectively. PL species extracted from SF were quanti-

tated by mass spectrometry whereas ELISA determined apolipoprotein (Apo) B-100. Wil-

coxon’s rank sum test with adjustment of scores for tied values was applied followed by

Holm´s method to account for multiple testing. Six lipid classes with 89 PL species were

quantified, namely phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, phospha-

tidylethanolamine, plasmalogen, and ceramide. Importantly, equine SF contains about half

of the PL content determined in human SF with some characteristic changes in PL composi-

tion. Nutritional habits, decreased apolipoprotein levels and altered enzymatic activities may

have caused the observed different PL profiles. Our study provides comprehensive quanti-

tative data on PL species levels in normal human and equine knee SF so that research in

joint diseases and articular lubrication can be facilitated.

Introduction

The motion of joints requires the lubrication of articulating surfaces with synovial fluid (SF)

that acts as the lubricant occupying the joint cavity and limiting adhesion formation [1, 2].

Amongst its other functions, SF supplies the avascular cartilage with nutrients and oxygen,

provides a medium for waste transport, and mediates cell-cell communication through cyto-

kines and growth factors [3]. The measurement of SF in healthy human knee joints is problem-

atic, only being found in small quantities of approx. 2.5 ml from which about 0.5 ml can be

aspirated. The SF is spread over the internal joint surfaces to produce a film with varying
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thicknesses averaging at 24 μm thick. Large animals like horses may have larger volumes of up

to 25 ml as are found in equine ankle joints, possibly resulting in part from the effect of gravity

on capillary filtration pressure.

The synovial microvasculature is essential for the generation of SF since synovial capillaries

are fenestrated with pores covered by a thin membrane [4, 5]. SF is viewed as a passive ultrafil-

trate of plasma generated across the walls of the synovial lining capillaries, in which fibroblast-

like type B synoviocytes actively secrete additional compounds such as hyaluronan, phospho-

lipids (PLs), and lubricin [3, 6]. The formation of this ultrafiltrate depends on the difference

between the intracapillary and intraarticular hydrostatic pressure as well as between the colloid

osmotic pressures found within the blood vessels and the SF. The fenestrations observed in the

synovial endothelium and the macromolecular hyaluronic acid sieve within the interstitial

matrix limits the diffusion of high-molecular-weight solutes into SF.

Plasma proteins, including apolipoprotein (Apo) A1 and Apo B, as well as triglycerides and

total cholesterol are also found at reduced concentrations in SF, the levels of which are

inversely proportional to their molecular size. For instance, in patients with knee osteoarthritis

(OA) the SF/serum concentration ratios for total protein, Apo A1, Apo B, triglycerides and

total cholesterol lie at 0.57, 0.29, 0.24, 0.17 and 0.35, respectively [7]. As such, the majority of

PLs (with phosphatidylcholine (PC) being the most abundant PL class) appear to derive from

the synovial lining capillaries. In addition, local sources can contribute lipids to the SF as they

are released from damaged cells or are produced and secreted by, e.g., synovial fibroblasts and

chondrocytes [8–10]. Ultrastructural analysis of healthy SF from rat, dog and horse suggest a

complex structure of SF consisting of a network of multilamellar vesicles based on a glycopro-

tein gel and coated with a lipid-based membrane [11]. Finally, SF is cleared by the plexus of

lymphatics located within the sub-synovium in a manner which is assisted by joint movement

[6]. Smaller molecules such as cytokines, lactate and carbon dioxide can also be cleared by

direct diffusion into the synovial capillaries [12].

Over the past two decades, important new knowledge has become known about the various

functions of PLs. This has often been related to the boundary lubrication of articular joints as

well as to immunological and inflammatory reactions in studies assessing pro-resolving lipid

mediators and lipid antigens [1, 2, 13–17]. Moreover, the SF profiles of PL species are modified

in human and canine OA knees [18, 19], although disease related changes of PL levels are still

poorly understood. Various species often used as models for musculoskeletal diseases like OA

such as small rodents or even larger animals like sheep, goat, dog or horse may also be used to

study PL functions in OA. However, the anatomy of joints can be quite varied across different

species, e.g. with regard to cartilage thickness, the size of cartilage layers, chondrocyte density,

and the diffusional and nutritional environment [20, 21]. Interestingly, based on these cartilage

parameters, the horse approximates quite closely to man. As two examples, the knee joint car-

tilage thickness varies from 1.5–2.0 mm in horse and 2.2–2.5 mm in human while the cellular-

ity ranges from 20–40 cells/mm3 in horses and 10–30 cells/mm3 in man [20–22].

Although larger animals such as the horse appear to simulate the human situation more

closely as regards anatomy, articular cartilage and joint loading patterns, data on SF from

healthy normal joints is rare from these species. In addition, lubrication in aqueous media

such as SF has attracted the interest of many scientists, even though data regarding the com-

plex lipid composition in normal SF is sparse. The current limitations of comparing SF com-

pounds between diseased groups and species can be traced to the lack of data on normal SF

and the difficulties experienced when collecting it. Importantly, substantial progress in lipido-

mic technology has now enabled the quantification of a large variety of lipids even in small vol-

umes of SF. Scientific progress in the understanding and treatment of OA might result from

studies on human and equine patients that may also benefit from clinical trials performed in
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the other species. The aim of the present study was therefore to evaluate species-dependent dif-

ferences in PL composition of normal SF obtained from the knee joints of equine and human

donors. We hypothesize that our quantitative analysis of a large variety of PLs will reveal an

equine SF lipid profile that closely resembles that of the human lipid profile.

Materials and methods

Chemicals

Sigma (Taufkirchen, Germany) was the supplier of all reagents unless otherwise specified.

Chloroform and methanol, both HPLC-grade, as well as neomycin sulfate and gentamycin sul-

fate were obtained from Merck (Darmstadt, Germany). Avanti Polar Lipids (Alabaster, AL,

USA) was the source for the lipid standards.

Equine synovial fluid

SF was acquired from the knees of 13 horses after medically indicated euthanasia [(7 males, 6

females, median age 14 (11–16) years, median weight 550 (480–578) kg]. Equine SF was only

used from healthy knees or those with a low Collins grade of disease [0.375 (0–0.5), n = 13],

and with no further history of any arthritic disease. Equine SF was collected by the Equine

Clinic (Department of Veterinary Medicine, Justus Liebig University Giessen) and stored at

4˚C until it was extracted as described below within 12 h after aspiration. As the used knee SF

were obtained from horses which were euthanized on humane grounds for reasons unrelated

to the study no ethical approval was necessary according to the German Animal Welfare Act

(Tierschutzgesetz) and no special permission of the Local Ethical Committee of the Justus Lie-

big University Gießen, Germany, was needed.

Human synovial fluid

SF was acquired during autopsy from the knees of 15 post-mortem human donors without any

reported history of arthritic disease [(14 males, 1 female, median age 24.0 (21.0–29.0) years,

median BMI 24.8 (20.8–25.0)], as already described [19, 23]. The 15 donors were examined at

the Institute of Forensic Medicine, Justus Liebig University Giessen. The Ethical Review Com-

mittee of the Faculty of Medicine (Justus Liebig University Giessen, Germany) approved the

present study. The Ethical Review Committee (protocol #62/06) waived the need for consent

to be obtained from relatives of deceased donors, since a judicial order to perform autopsy

existed and any additional emotional draining of the relatives was to be avoided.

Sampling of synovial fluid

Knee SF was obtained by arthrocentesis as described elsewhere [19]. In brief, SF samples that

were contaminated with blood or excessively turbid were excluded by visual inspection.

Human SF samples were diluted by addition of 2.0 ml 0.9% NaCl. Human and equine SF were

incubated at 37˚C for 15 min before filtering with a 1.2-μm filter. After addition of a 10% (v/v)

cocktail containing proteases and phospholipase inhibitors, cellular particles were eliminated

by centrifugation (16,100 x g, 45 min, RT), and subsequently frozen at -86˚C until further anal-

ysis [19]. For ELISA assays, equine SF samples were incubated with 20 μl hyaluronidase (1U/

μl; STEMCELL Technologies, Cologne, Germany) for 15 min. to reduce their viscosity before

assaying.
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Analysis of apolipoprotein B

The concentrations of human Apo B 100 and horse Apo B were assessed in SF by ELISA

(ApoB100 ELISA Kit from RayBiotech, Norcross, GA, USA for human and the ELISA kit from

Cusabio, Houston, TX, USA for horse Apo B) according to the instructions of the

manufacturers.

Phospholipid extraction and mass spectrometric quantification

PLs were extracted together with non-natural lipid species designated to serve as internal stan-

dards as described previously [19, 24]. PL and sphingolipid (SL) species were analysed quanti-

tatively on a Quattro Ultima™ triple quadrupole mass spectrometer (Micromass, Manchester,

United Kingdom). The analytical procedure including the algorithm used for analysing data

obtained by electrospray ionization tandem mass spectrometry (ESI-MS/MS) is described else-

where [24]. For each lipid class, a self-programmed Microsoft Excel macro was applied for

data analysis and to correct for the isotopic overlap of lipid species [24]. This procedure was

developed for humans, and was applied here for horse analysis without any further

modifications.

The annotation of PL species was performed as described previously for the shorthand

notation of lipid structures obtained by mass spectrometry [25]. Glycerophospholipid species

were annotated based on the presupposition that the fatty acids only have even numbers of car-

bon atoms. Sphingomyelin species were assigned based on the assumption of a sphingoid base

with 2 hydroxyl groups.

Data presentation and statistics

Human and equine lipid concentrations representing at least 1% of their total corresponding

lipid class were selected. Within the text, the values are the medians presented with their quar-

tile ranges in parenthesis. For statistical analyses and graphics, the open source software R

3.6.3 [26] together with its lattice add-on package [27] were used. For graphical exploratory

presentations, parallel (coordinate) plots [28] of data are presented (Figs 1–5). As descriptive

statistics the medians, 1st and 3rd quartiles, and the ratios of human to equine medians are

presented (S1 and S2 Tables in S1 File). Wilcoxon’s rank sum test with adjustment of scores

for tied values from the R-package coin [29] was applied for lipid classes and species to evalu-

ate whether the distributions of lipid concentrations in humans and horses were displaced rel-

ative to each other. To account for multiple testing, we used Holm’s method to adjust the p-

values in families of lipid classes and species. Statistical significance was declared where p-val-

ues were at most 0.05.

Results

Level of apolipoprotein B-100 in knee SF

We determined Apo B-100 levels in human SF of 11.7 (6.8–16.1) mg/dL and in equine SF of

8.0 (5.8–11.7) mg/dL. Human SF contained a 1.5-fold higher amount of Apo B-100 than

equine SF.

The level and composition of PLs in healthy equine and human SF

In total 89 individual lipid species were detected in SF, and 83 different lipid species belonging

to six lipid classes were quantified in both normal equine and human SF (Fig 1, S1 Table in S1

File) with levels above 1% of their corresponding PL class. Of these, 20 or 22 phosphatidylcho-

line (PC) O-ether PC (PC O) species, 6 or 7 lysophosphatidylcholine (LPC) species, 9 or 12
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sphingomyelin species (SM), 16 phosphatidylethanolamine (PE) species, 23 phosphatidyletha-

nolamine-based plasmalogen (PE P) species, and 9 ceramide (Cer) hexosyl ceramide (HexCer)

species were quantified in equine or human SF, respectively, with levels above 1% of the corre-

sponding PL class. The concentrations of lipid species can be found in S2 Table in S1 File,

which displays the medians, 1st and 3rd quartiles, the ratios of human to equine medians and

the results of the statistical analyses.

In order to elucidate the extent to which mammalian species-dependent differences exist

between both SF lipidomes, we compared the PL profile in 13 equine SF samples with those of

15 human donors. Equine and human SF were obtained from knee joints without any

Fig 1. Superposed parallel plots for normal human and equine SF levels of phospholipid classes. SF from human (n = 15) and equine

(n = 13) healthy knees were analysed by mass spectrometry. Univariate scatterplots of individual data (human: Grey open squares; equine:

Light blue filled circles) of all variables are juxtaposed parallel to each other, here on a log10-transformed scale. Values from the same

individual are linked by a polyline (colour-coded according to human or equine group membership) thus forming a ‘profile’ for each

individual. Median values of the variables across individuals in each group are presented as superposed, thicker profiles (human: Black;

equine: Dark blue). PC (O)-phosphatidylcholine + ether phosphatidylcholine, LPC-lysophosphatidylcholine, SM-sphingomyelin, PE-

phosphatidylethanolamine, PE P-phosphatidylethanolamine-based plasmalogen, Cer-ceramide, HexCer-hexosyl ceramide.

https://doi.org/10.1371/journal.pone.0250146.g001
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documented history of joint disorder. In general, we found that the levels of total lipid species

in equine SF [116.1 (86.3–141.8) nmol/ml] were approximately half (0.44-fold, P<0.001) those

of human SF [265.3 (195.7–354.1) nmol/ml], and that the lipid composition was comparable

with PC (O), SM, PE, LPC, PE P and Cer representing the main PL classes.

Even though the level of total PL and the concentrations of the dominant PL class PC were

already significantly higher in human SF, the levels of the other PL classes such as SM, PC (O),

PE P, LPC, and Cer were further markedly increased in human SF when compared to equine

SF (Fig 1). Specifically, we found that the respective median levels of the PC, PC O, LPC, PE,

PE P-16, and PE P-18 classes were 1.68-fold (P = 0.019), 2.26-fold (P<0.001), 43.1-fold

(P<0.001), 3.31-fold (P<0.001), 2.32-fold (P = 0.001), and 3.75-fold (P<0.001) higher in

human than in equine SF (Fig 1, S1 Table in S1 File). Similarly, the respective levels of the SM,

Cer, and HexCer classes were markedly elevated in human SF by 3.23-fold (P<0.001),

6.94-fold (P<0.001), and 4.53-fold (P<0.001) compared with equine SF (Fig 1, S1 Table in S1

File).

In addition, most of the PLs were found at lower levels in equine SF compared with human

SF, thus reflecting the data obtained for the corresponding class. Interestingly, levels of those

lipid species with more than two double bonds were often lower in equine than in human SF.

Particularly pertinent were the markedly decreased levels in equine SF for some PC (O) and

SM lipid species as well as all LPC species. As one example, PC (O) species with highly polyun-

saturated long-chained fatty acids such as PC 36:4, PC O-36:4, PC O-36:5, PC 38:4, PC 38:5,

PC 38:6, and PC 40:6 were present at markedly lower levels in equine SF compared to human

SF and compared to other PC species (Fig 2, S2 Table in S1 File).

Similarly, our data on PE species with highly polyunsaturated fatty acids such as PE 38:3,

PE 36:4, PE 38:4, PE 38:6 and PE 40:6 but not PE 42:7 revealed much higher levels in human

compared to equine SF. Fig 3 also demonstrates that all LPC species were markedly elevated in

human SF compared to equine SF (S2 Table in S1 File).

Similarly, the concentrations of SM species with more than one double bond, particularly

SM 34:2, SM 36:2, SM 38:2, SM 40:2, and SM 42:3, were significantly lower or even below 1%

of the total SM class in equine SF when compared to human SF (Fig 4, S2 Table in S1 File). Cer

or HexCer species were on average 6.94-fold or 4.53-fold higher in human SF when compared

with normal equine SF and all individual species followed this pattern (Fig 4, S1 Table in S1

File).

Again, we detected markedly elevated levels for nearly every PE P species in human SF

compared to equine SF. Remarkably, the PE P species with highly polyunsaturated fatty acids

such as PE P-16:0/20:5, PE P-16:0/22:4, PE P-16:0/22:6, PE P 18:0/20:5, PE P-18:0/22:6, and PE

P-18:1/22:6 were strongly elevated in human SF (Fig 5, S2 Table in S1 File). Even though 29

out of 30 PE P species were detected at markedly decreased levels in equine SF compared to

human SF, only the PE P-16:0/18:2 was found at an almost equivalent concentration in equine

SF (1.0-fold, P = 0.751).

Discussion

Articular knee joints of horses are similar to those of humans with regard to their anatomy,

thickness and zonal structure of articular cartilage, and loading patterns. However, data on the

composition of lipids of SF from healthy normal joints is rare mainly because of the limited

availability. Major progress in lipidomic technology has now allowed us to quantify a large

variety of PL species within a small SF volume. We found six major PL classes in equine knee

SF, namely PC/PC O, LPC, SM, PE, PE P, and Cer, albeit in differing proportions. Here, we

report for the first time that compared to healthy human knee SF, equine SF contains only half
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of the total PL content, and that all PL classes together with most of their species were present

at markedly reduced levels.

The diminished total PL content in equine SF compared to human SF is accompanied by a

lower level of apolipoproteins (Apo) in equine SF, as indicated by our finding that levels of

Apo B-100 are only 40% relative to human SF. Apo function as structural components in lipid

transport. Apo A1 was reported to be the major protein in plasma HDL particles and Apo B-

100 is the structural protein found in LDL, IDL and VLDL particles both in humans and

horses [30–35]. Apo are mainly produced in the liver and their synthesis is controlled primar-

ily by dietary factors and hormones such as insulin and thyroxin [30–32]. The levels of Apo as

well as of triacylglycerols and total cholesterol in SF from OA patients are markedly reduced to

Fig 2. Superposed parallel plots for normal human and equine SF levels of PC (O) species. The univariate scatterplots of PC (O) species

concentrations in SF (human: Grey open squares; equine: Light blue filled circles) are juxtaposed parallel to each other, here on a log10-

transformed scale. Lipid concentration values from the same individual are linked by a polyline (colour-coded according to human or

equine group membership) thus forming a ‘profile’ for each individual. Some lipid concentration values are missing due to their levels

being below 1% of the total PC (O) class, which interrupt the profile. Median values of lipid species concentrations in SF across individuals

in each group are presented as superposed, thicker profiles (human: Black; equine: Dark blue) resulting in group-specific ‘median profiles’.

https://doi.org/10.1371/journal.pone.0250146.g002
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one third of those found in serum, indicating a low permeability for larger molecules of the

fenestrated synovial endothelium and the interstitial tissue between the blood vessel and syno-

vium [7, 36]. As such, the low levels of Apo in equine SF appear to be at least partly responsible

for the low levels of PLs relative to human SF.

Using 31P-NMR and MALDI-TOF-MS, Fuchs et al. [37] already reported the relative con-

tent of nine selected PLs in the SF of patients with rheumatoid arthritis (RA) and of nine

healthy or OA horses. Interestingly, they found only traces or no polyunsaturated PC species

like PC 36:4, PC 38:4 and PC 38:5 in horse SF whereas traces or moderate levels of these PC

species were reported in SF from RA patients. Our quantitative study supports these data since

all nine polyunsaturated PC species with 4, 5 or 6 double bonds were determined at low levels

compared with either normal human SF or PC species having fewer double bonds.

Fig 3. Superposed parallel plots for normal human and equine SF levels of PE and LPC species. For further details, see the caption of

Fig 2, which is fully analogous, but here for PE and LPC species.

https://doi.org/10.1371/journal.pone.0250146.g003
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It has previously been reported that the lubricating properties of PC species depend on

their fatty acid chain lengths and the number of double bonds [38, 39]. As such, lipids with

longer fatty acid chains and higher levels of unsaturation might have better lubricating abili-

ties. Horses, in contrast to humans, stand most of the day so that their joints are often exposed

to constant loads. We speculate that SF containing fewer PC species with long fatty acid chains

and more than three double bonds might be regarded as sufficient for providing lubrication to

equine articular joints.

Our study shows that PL composition of SF can markedly differ between these two mam-

malian species, a profile that has also been shown for plasma [40, 41]. Differing PL profiles

among vertebrates were also described for erythrocyte membranes and tissues such as the eye,

heart and brain, all of which also depend on health status and differences in enzymatic activity

[18, 40–46].

Fig 4. Superposed parallel plots for normal human and equine SF levels of SM and Cer species. For further details, see the caption of Fig

2, which is fully analogous, but here for SM and Cer species.

https://doi.org/10.1371/journal.pone.0250146.g004
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One potential reason underlying the species-dependent lipid profiles in our study may have

been differences in dietary habits [47]. Humans are in general omnivores while horses are

mere herbivores. A slightly increased or decreased serum level of Apo A1 together with an

unaltered Apo B level was observed in human dietary groups comparing vegetarians and veg-

ans with omnivores [31, 48]. However, the dietary consumption of animal products correlates

positively with the quantity of polyunsaturated long-chained omega-3 (n-3) fatty acids in the

lipid profile [49, 50]. Thus, the levels of n-3 polyunsaturated long-chain fatty acids such as

eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6) are lower in the plasma of

this group than they are in omnivores [49–51]. In addition, the content of cholesterol and satu-

rated fatty acids in vegetarian diets are typically lower than in omnivorous diets. This also con-

tributes to the differences in plasma lipid profiles observed in 3 large human cohort studies

comparing omnivores with vegetarians [52]. However, the definitive effect of diets on the PL

profile in plasma or SF is not completely known. Studies on dietary supplementation with n-3

Fig 5. Superposed parallel plots for normal human and equine SF levels of PE P-16 and PE P-18 species. For further details, see the

caption of Fig 2, which is fully analogous, but here for PE-P-16 and PE P18 species.

https://doi.org/10.1371/journal.pone.0250146.g005
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long-chain polyunsaturated fatty acids in horses have already shown that this diet is unable to

modify experimentally induced synovitis as determined by the synovial fluid level of prosta-

glandin E2 [53].

The mass spectrometric method used in the present study was established for PL analysis in

human samples and was applied here also for equine SF without any further modifications. In

addition, several concentrations of PE, PE P, LPC and Cer lay below 0.1 nmol/ml in equine SF

and were therefore only detected with a low precision. Due to ethical considerations, normal

SF was only obtained postmortem. However, we already reported that our preliminary experi-

ments revealed no relevant changes in the concentration of PL classes and species when plotted

against the postmortem sampling time of maximal 3 days [19]. Another limitation of our

study was the limited number of donors due to the considerable low availability of SF from

normal knee joints.

Fuchs et al. [37] reported no LPC and only a low level of SM in horse SF whereas human SF

from RA patients showed low LPC and the highest SM levels. Our data confirm at least in part

these semi-quantitative results, since we were only able to quantify six LPC species at low levels

and eight SM species at levels that were always below those of normal human SF. The low level

of LPC in equine SF appears to be related to a decreased activity of phospholipase A2 (PLA2).

This enzyme cleaves the sn-2 fatty acid from the glycerol backbone of PC to generate LPC [54].

Frequently, arachidonic acid is released from polyunsaturated species which is further pro-

cessed by cyclooxygenases and lipoxygenases to produce eicosanoids such as the pro-inflam-

matory prostaglandins and leukotrienes [55]. As such, the diminished levels of LPC species are

indicative of a reduced PLA2 activity and of a low prostaglandin production thus reflecting a

non-inflamed equine synovium.

Conclusion

Taken together, our study demonstrates quantitative levels of a wide variety of PL species in

knee SF of healthy humans and horses. Importantly, our comparison shows that the PL profiles

of normal articular knee SF in both species are more or less similar, but that the median levels

of PLs in equine SF are markedly lower than those of humans, while there are also some char-

acteristic species-specific differences in PL composition. Our study provides comprehensive

quantitative data on PL species found in normal SF. This should facilitate the quest to optimize

joint lubrication during tissue regeneration and OA, to identify novel biomarkers, and to assist

evaluation of lipid data derived from equine and human patients.
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