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Zusammenfassung

Die Hadronenspektroskopie und -struktur sind derzeit sehr aktive Forschungsgebiete, um das nicht-perturbative
Regime der Quantenchronodynamik zu untersuchen. Erstere untersucht die komplexe Struktur angeregter Ha-
dronen, indem es ihre Zerfallsprodukte betrachtet, während letztere die Leptonstreuung an Nukleonen nutzt.
Beide Methoden erfordern Rekonstruktionsalgorithmen mit hoher Effizienz, guter Teilchenidentifikation und
Untergrundunterdrückung. Ziel dieser Arbeit ist es, diese bereitzustellen, indem entweder die bestehenden Me-
thoden verbessert oder neue entwickelt werden.
Der erste Teil der Arbeit präsentiert eine Machbarkeitsstudie eines vorhergesagten hybriden Charmoniumzu-
stands für das PANDA-Experiment. Gitter-QCD-Berechnungen sagen voraus, dass das hybride Charmonium
im Grundzustand spin exotisch mit Quantenzahlen von JPC = 1−+ bei einer Masse von etwa 4,3 GeV und einer
Breite von etwa 20 MeV ist. Ein auf maschinellem lernen basierendes Datenanalyseschema wird vorgeschlagen,
um die Signaleffizienz und die Untergrundunterdrückung weiter zu verbessern, zusammen mit Verbesserungen
der Analysesoftware (PandaRoot), welche für diese Studie von entscheidender Bedeutung sind. Zu diesen Ver-
besserungen gehören ein überarbeiteter Clustering-Algorithmus für das elektromagnetische Kalorimeter (EMC)
und ein optimiertes Monte-Carlo-Matching für neutrale Teilchen.
Im zweiten Teil dieser Arbeit geht es um die Untersuchung der Protonenstruktur. Eine mehrdimensionale
Messung des Strukturfunktionsverhältnisses F

sin(ϕ)
LU /FUU wurde für K± basierend auf der Messung von Strahl-

Spin-Asymmetrien durchgeführt. Es verwendet Daten mit hoher Statistik, die mit dem CLAS12-Spektrometer
am Jefferson Laboratory aufgezeichnet wurden. Fsin(ϕ)

LU ist eine twist-3 Größe, die Auskunft über die Quark-
Gluon-Korrelationen im Proton gibt. Diese Arbeit wird zum ersten Mal eine gleichzeitige Analyse von zwei
Kaonkanälen über einen großen kinematischen Bereich in z, xB , PT und Q2 mit Virtualitäten Q2 von 1 GeV2

bis zu 8 GeV2 präsentieren wobei von Techniken des maschinellen lernens zur verbesserten Teilchenidentifizierung
genutzt werden.



Abstract

The hadron spectroscopy and structure are currently very active fields of research to study the non-perturbative
regime of quantum chronodynamics. The first one studies the complex structure of excited hadrons by looking at
their decay products, while the latter uses lepton scattering on nucleons. Both methods require reconstruction
algorithms with great efficiency and good particle identification and background rejection rates. This work aims
to provide these by either improving the existing methods or developing new ones.
The first part of this document presents a feasibility study of a predicted hybrid charmonium state for the
PANDA experiment. Lattice QCD calculations predict the ground state hybrid charmonium to be a spin exotic
with quantum numbers of JPC = 1−+ at a mass of around 4.3 GeV with a width to be around 20 MeV.
A machine learning based data analysis scheme is proposed to further improve the signal efficiency and the
background reduction, alongside with improvements of the analysis software (PandaRoot), that are vital for
this study. These improvements include a reworked clustering algorithm for the electromagnetic calorimeter
(EMC) and an optimized monte carlo matching for neutral particles.
The second part of this document is about studying the proton structure. A multidimensional study of the
structure function ratio F

sin(ϕ)
LU /FUU has been performed for K±, based on the measurement of beam-spin

asymmetries. It uses the high statistics data recorded with the CLAS12 spectrometer at Jefferson Laboratory.
F
sin(ϕ)
LU is a twist-3 quantity that provides information about the quark gluon correlations in the proton. This

document will present for the first time a simultaneous analysis of two kaon channels over a large kinematic
range of z, xB , PT and Q2 with virtualities Q2 ranging from 1 GeV2 up to 8 GeV2 using machine learning
techniques for improved particle identification.
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Chapter 1

Introduction

1.1 Hadron structure and the standard model
The standard model of particle physics describes the known fundamental forces, except gravity and classifies all
known elementary particles, although it does not explain the existence of neutrino masses, which are necessary
to explain the observed neutrino oscillations, and it also does not explain the matter-antimatter asymmetry in
the observable universe. It is a quantum field theory with the most general renormalizable Lagrangian that con-
tains all the particle fields and that observes the global Poincaré symmetry and the local SU(3)×SU(2)×U(1)
symmetry. It contains the Higgs sector with a complex scalar of group SU(2)L, the Yukawa sector coupling the
Dirac fields (quarks and leptons) to the Higgs via Yukawa coupling, the electroweak sector, which is a Yang-Mills
gauge theory with the symmetry group U(1)×SU(2)L and the quantum chronodynamics (QCD) sector, which
is a Yang-Mills gauge theory with the symmetry group SU(3).
QCD describes the interactions between quarks and gluons. Quarks are spinors in nf flavors in the fundamental
representation (triplet) of the SU(3) color gauge group, while gluons are vectors in the adjoint representation
(octet) of the SU(3). As the gluons themselves carry color charge, they interact with each other, thus constrain-
ing color fields to flux tubes between two color charges. This means that while separating two color charges, at
some point it becomes energetically more favorable for a new quark-antiquark pair to appear. In other words,
free color charged particles can not be observed in normal conditions, only confined within colorless hadrons.
The confining phase can be defined by the behavior of the action of the Wilson loop, which is simply the path
in spacetime traced out by a quark-antiquark pair created at one point and annihilated at another point. The
confinement scale (ΛQCD) is the scale at which the running strong coupling constant (αs(q

2)) diverges. In terms
of the momentum transfer (q), it can be written at one-loop accuracy as the following:

αs(q
2) =

12π

(33− 2nf ) ln
q2

ΛQCD

(1.1)

This separates the energy scale into two regions. At high energies, where the QCD can be solved perturbatively,
with methods used for quantum electrodynamics (QED) calculations, the quarks and the gluons are the relevant
degrees of freedom. At low energies, in the non-perturbative regime, the hadrons become the relevant degrees
of freedom. The transition between the two regimes is a very interesting topic and is currently an active field
of research. [1, 2]
One of the non-perturbative approaches is the lattice QCD. In this case, calculations are performed on a lattice,
which is a discrete set of spacetime points, thus naturally regularizing the theory by introducing a momentum
cutoff through a finite grid size. The results are then extrapolated towards the continuum limit to extract
physical values. Some of these models predict special complex systems and excitations like glueballs (systems of
bound gluons), hybrids (mesons with valence gluons) and multiquark systems. To study such complex hadronic
systems and excitations, accelerators with a high luminosity and excellent beam quality are needed to get a
sufficient production yield. In addition a fast, efficient and precise detector system, consisting of several sub-
detectors is needed to detect all decay products of these systems. The future PANDA (AntiProton ANihilation
at DArmstadt) experiment at the future FAIR (Facility for Antiproton and Ion Research) in Germany will meet
these requirements and will be able to confirm or falsify these predictions. [3, 4]
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Another possibility in the non-perturbative regime is to use effective theories. They keep the relevant symmetries
of the original QCD and use the relevant degrees of freedom to describe a given problem (ie. certain range of
energies, reactions, spectra, etc.). For example in case of heavy quarkonium, the system can be described by a
non-relativistic potential to a certain extent as the charm and the bottom masses are large compared to ΛQCD

(pNRQCD). [3]
The proton spin puzzle also demonstrates the difficulties theoreticians experience due to the non-perturbative
nature of QCD. As the EMC collaboration measured [5] only a fraction of the proton spin is carried by the
constituent quarks and some of the missing spin is produced by the orbital angular momentum of the quarks
[6]. Recent advances in theoretical models have led to a rigorous framework where information on the confined
motion of the partons inside a fast moving nucleon is matched to transverse momentum dependent parton
distribution functions (TMDs). [7, 8] To be able to further constrain these calculations, high precision fully
multidimensional measurements of the 3D structure of the proton are needed. For this purpose beams and targets
with high average polarization and detector systems with high acceptance are needed to provide high statistics
over a wide range of kinematics. The CLAS12 (CEBAF Large Acceptance Spectrometer for experiments at 12
GeV) at Jefferson Lab satisfies these requirements.
With the help of these measurements, the partons motion and its spatial distribution in the transverse plane,
perpendicular to the momentum of the parent hadron can be studied. To describe these distributions, two
sets of non-perturbative functions have been introduced. On the one side, Transverse-momentum-dependent
parton distributions (TMDs) are used to describe the longitudinal and transverse momentum distributions.
On the other side, Generalized Parton Distributions (GPDs) are used to describe the longitudinal momentum
distributions in correlation with the transverse positions of the partons. Both TMDs and GPDs can be derived
from the most general objects describing the nucleon structure, called Wigner functions. It’s Fourier-transform
is called the Generalized Transverse Momentum Distribution (GTMD). By taking the forward limit in hadron
momentum, one gets the TMDs, while by integrating over the transverse momentum, one gets the GPDs. If one
integrates the GPDs over Bjorken x, then one ends up with the fragmentation functions (FFs). By studying the
behavior of all of these functions in terms of fractional energy, Bjorken x, transverse momentum and photon
virtualities Q2 in electron scattering experiments, a better picture of the 3D structure of the proton can be
achieved.

1.2 Machine learning methods in hadron physics
In both the PANDA and the CLAS experiments there are a lot of optimization problems. They appear during
reconstruction and data analysis, where the goal is to achieve the best possible efficiency, resolution, particle
identification and background rejection rate. As stated above this is very important to be able to measure
exotic states with PANDA and to achieve a clean sample with high statistics to better measure the observables
sensitive to the structure of the proton with CLAS. Due to the recent trends in computational science and due
to the rapid increase of the computers computational capability the toolkit applicable for optimization problems
is broadened with new machine learning tools. The neural networks can now incorporate more hidden layers
and the fitting methods used during their training and also for fitting other machine learning methods, like
boosted decision trees or genetic algorithms for example, becoming more efficient. This enables these methods
to be used for more complex problems and to achieve better results. As most of the problems presented in this
work are classification problems in which these machine learning methods excel, methods implementing these
tools were developed beside traditional ones.
This work will compare the results achieved by traditional and AI methods developed for data analysis in
experimental hadron physics. The first part will present the developments implemented in the analysis software
of the PANDA experiment. The improvements mostly focus on the reconstruction and simulation of the neutral
particles. The impact of the improvements will be demonstrated through a feasibility study of the predicted
lowest lying hybrid charmonium state. The second part will present a multidimensional study of charged kaon
semi-inclusive deep inelastic scattering beam spin asymmetry over a wide range of kinematics with CLAS. This
enables a better measurement of the observables sensitive to the structure of the proton. As a clean particle
identification and a good reconstruction efficiency is a very important aspect of this analysis, the main focus of
this part will be the kaon-pion identification and the estimation of the pion contamination in the kaon sample.
Throughout the whole work the c = 1 (speed of light in vacuum) convention is used for simplicity. Also the
angles are measured in radians, except stated otherwise.
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Chapter 2

Feasibility study of the lowest lying
hybrid charmonium state for PANDA

2.1 Introduction and charmonium hybrid states
This chapter presents a feasibility study of a predicted hybrid charmonium state for the PANDA experiment.
It also presents a proposed machine learning based data analysis scheme to further improve the signal efficiency
and the background reduction, alongside with improvements of the analysis software (PandaRoot), that are
vital for this study.
One of the main goals of PANDA [9] is the detailed investigation of the spectrum of charmonia and charmonium
like hybrids [10]. The main observables are the masses, widths, quantum numbers and decay properties. Com-
pared to the light meson spectrum, the charmonium spectrum is well separated (shown in Figure 2.1), providing
a clean environment to search for non-conventional states. By using proton-antiproton collisions all non-exotic
quantum numbers can be accessed in formation reactions, unlike using electrons and positrons. States with
exotic JPC can be made in associated formation processes: pp̄→ mh, where m is a light meson (π, η) and h is
a charmonium hybrid.[11]

Figure 2.1: Charmonium spectrum from lattice QCD based on [3]. [9]
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Lattice QCD calculations predict the ground state hybrid charmonium to be a spin exotic with quantum numbers
of JPC = 1−+ at a mass of around 4.3 GeV (∼4.15-4.43 GeV) [3,12–14]. Its Breit-Wigner width (Γ) is expected
to be small (around 20 MeV/c2) due to the dynamical suppression of its decay into open charm [3,15,16]. In the
following this state will be called η̃c1. Since it has a low production cross section and most of its decay channels
contain many neutral particles in the final state, its feasibility study provides a great study case for testing
machine learning techniques for optimizing the physics analysis procedure. It can also serve as a benchmark for
improving the reconstruction and simulation software package of the PANDA experiment.
Based on flux-tube models, the lowest excited gluonic field with angular momentum L=1 and negative CP
couples to the heavy charm spins. This gives eight different hybrid states. Out of these states the JPC = 1−+

has the lowest mass. [3] For this study, the mass of the charmonium hybrid was chosen to be 4.29 GeV, the
average of the smallest and largest predictions with relatively small uncertainties.
Table 2.1 shows the possible decay channels of η̃c1 predicted by [17]. In the flux-tube model a symmetry
argument gives the selection rule that the η̃c1 cannot decay into two states with the same non-relativistic
structure and zero internal angular momentum. This gives the D̄0

1D
0 as the first open charm channel with a

threshold at 4286 MeV. In this case the width and the decay modes of the hybrid depends sensitively on the
mass. For a low mass hybrid the width could be as narrow as 20 MeV. [15]
With open charm decay forbidden or at least suppressed a slow decay into hidden charm is most probable.
Assuming a non-relativistic decay (i.e. conservation of the heavy quark spin and angular momentum) the
daughter charmonium has quantum numbers JPC = 1++, corresponding to the χc1. This state is reached by
emission of light hadrons where scalars are preferred to isoscalars. The lightest scalar alternative is a two pion
state in a relative s-wave. The χc1 can then decay electromagnetically to a J/Ψ and a photon. Then finally the
J/Ψ decays into a lepton pair. [15] The decay channel was studied with this lepton pair being an electron or a
muon pair. As the reconstruction efficiency was found to be better for the muon case, this was used for further
studies. Beside this decay channel, 3 other possible decay channels were investigated: η̃c1 → χc1η, η̃c1 → J/ΨΦ
and η̃c1 → J/Ψω. The complete decay trees are shown if Figures 2.2 and 2.3.

Open charm Hidden charm Light hadrons
D∗D χc{1,2,3}(ππ)S a{0,1,2}a{0,1,2}
D∗D∗ ηc{f{1,2}, η(

′)} f{0,1,2}f{0,1,2}
χc{1,2}η {ρ, γ}{ρ, b1}
{hc, J/Ψ}}{ω, h1,Φ, γ} {ω, h1,Φ, γ}{ω, h1,Φ, γ}

Table 2.1: Predicted decay channels of η̃c1 [17]

p̄p

η
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γ γ
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p̄p

η

γ γ

η̃c1

η

γ γ

χc1

γ J/Ψ

µ+ µ−

Figure 2.2: Possible decay channels of η̃c1 by decaying to χc1 and 2 π0 (left) or η (right) investigated in this
study
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p̄p

η

γ γ

η̃c1

ω
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γ γ
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Figure 2.3: Possible decay channels of η̃c1 by decaying to J/Ψ and Φ or ω investigated in this study

In proton-antiproton annihilations all non-exotic quantum numbers are directly accessed whereas spin-exotics
can be produced only in association with other particles. The future PANDA experiment at GSI-FAIR will
let an antiproton beam (plab =1.5-15 GeV) impinge on a dense proton target. The η̃c1 could at plab =15 GeV
be produced in association with a π0 or an η, as pp̄ is a superposition of I=0 and I=1, thus both isospins are
allowed. [15] Previous studies [11,15] showed that both cases are very similar in terms of expected cross-section
and reconstruction efficiency. Since the reconstruction efficiency of the channels with η were slightly better,
these channels were used during the studies.
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2.2 The PANDA setup
The PANDA (Anti-Proton Annihilations at Darmstadt) experiment will be a part of the future FAIR (Facility
for Anti-Proton and Ion Research), an extension of the existing GSI (Gesellschaft für Schwerionenforschung)
Helmholtz Centre for Heavy Ion Research at Darmstadt, Germany. The layout of the existing GSI and of the
planned FAIR facilities are shown in Figure 2.4.

2.2.1 The FAIR accelerator facility
Protons will be accelerated to 70 MeV using a new linear accelerator and will be injected into the currently
existing SIS18 synchrotron, which will accelerate them to 2 GeV. The SIS100 synchrotron will then accelerate
the protons to 29 GeV. The beam will then be directed into a nickel antiproton production target. The
antiprotons created here will be collected and pre-cooled in the Collector Ring (CR). Finally the antiprotons
will be transferred to the High Energy Storage Ring (HESR) through the RESR accumulator ring. The HESR
is dedicated to supply PANDA with high quality antiproton beams over a wide momentum range of 1.5-15 GeV.
Two different operation modes are planned: the high resolution (HR) and high luminosity (HL) modes. These
modes are detailed in Table 2.2. [18]

Figure 2.4: Layout of the existing GSI (blue) and of the planned FAIR (red) facilities. Some of the planned
experiments are also sown in green. The PANDA experiment and the HESR are highlighted. [18]

Operation mode High resoultion (HR) High luminosity (HL)

Peak luminosity 2 · 1031 1
cm2s for 1010 p̄ 2 · 1032 1

cm2s for 1011 p̄

RMS momentum spread σp/p ≤ 4 · 10−5 σp/p ∼ 10−4

Momentum range 1.5− 9 GeV 1.5− 15 GeV

Table 2.2: Operation modes of the High Energy Storage Ring (HESR)
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2.2.2 The PANDA Detector
The main objectives of the design of the PANDA experiment are to achieve 4π acceptance, high resolution
for tracking, particle identification and calorimetry, high rate capabilities and a versatile readout and event
selection. To obtain a good momentum resolution the detector will be composed of two magnetic spectrometers:
the Target Spectrometer (TS), based on a superconducting solenoid magnet surrounding the interaction point,
which will be used to measure at large angles and the Forward Spectrometer (FS), based on a dipole magnet,
for small angle tracks. A silicon vertex detector will surround the interaction point. In both spectrometer parts,
tracking, charged particle identification, electromagnetic calorimetry and muon identification will be available
to allow to detect the complete spectrum of final states relevant for the PANDA physics objectives. [18]

The Target Spectrometer

The Target Spectrometer is shown in Figure 2.5. It will surround the interaction point and measure charged
tracks in a solenoidal field of 2T. It will contain detectors in an onion shell configuration, arranged in 3 parts.
The barrel covering angles between 22◦and 140◦, the forward end cap extending the angles down to 5◦and 10◦in
the vertical and horizontal planes, respectively, and the backward end cap covering the region between about
145◦and 170◦. [18]
3 different target types are foreseen for PANDA: pellet target, cluster jet target and fixed nuclear targets. The
first 2 complementary methods are capable of providing sufficient densities with hydrogen or heavier gases at
the interaction point. For non-gaseous targets the whole upstream end cap geometry will be modified. [18]
The Micro-Vertex Detector (MVD), the closest to the interaction point, will be used to measure secondary
vertices and to improve the transverse momentum resolution of the particles measured by the Central Tracker,
which is planned to be a Straw Tube Tracker (STT). These detectors can handle high particle fluxes and have
a very good momentum resolution ( δpp ∼ 1%). In the forward angles 3 Gas Electron Multiplier (GEM) planes
will be placed to cover the angles not covered by the STT. The charged particle identification will be done with
the aid of the Detection of Internally Reflected Cherenkov light (DIRC) and Time-Of-Flight (TOF) system.
[19] The Electromagnetic Calorimeter (EMC) will consist of 11360 (Barrel), 3600 (Forward End Cap) and 562
(Backward End Cap) crystals. The material of the crystals was chosen to be lead tungsten (PbWO4), which is
a high density inorganic scintillator with a good energy and time resolution. The crystals will be 20 cm long,
which corresponds to approximately to 22 radiation length, which limits the longitudinal leakage. The energy
resolution at 1 GeV will be below 2%. To increase the light yield the crystals will be cooled down to -25◦C. The
outermost detectors are the Muon Filters. [18]

The Forward Spectrometer

The Forward Spectrometer is shown in Figure 2.6. It will measure charged particle tracks in a dipole magnetic
field and it will cover vertical angles below 5◦and horizontal angles below 10◦. [18]
The Forward Tracker (FT) will consist of three pairs of planar tracking stations. In contrast to the EMC, the
Forward Electromagnetic Calorimeter is planned to be a Shashlyk-type sampling calorimeter (Shashlyk). These
detectors will be accompanied by a Ring Imaging Cherenkov Detector (RICH), a Time-Of-Flight Wall (TOF
Wall) and the Forward Muon Detector. The detector at the lowest angle will be the Luminosity Monitor, which
will measure the luminosity by detecting elastically scattered antiprotons at very low angles. [18]

Data acquisition

Every sub-detector system is a self-triggering entity. Signals are detected autonomously by the sub-systems
and are preprocessed. Only the physically relevant information is extracted and transmitted. This requires
hit-detection, noise-suppression and cluster finding at the readout level. The data related to a particle hit,
with a substantially reduced rate in the preprocessing step, is marked by a precise time stamp and buffered
for further processing. The trigger selection finally occurs in computing nodes which access the buffers via a
high-bandwidth network fabric. The new concept provides a high degree of flexibility in the choice of trigger
algorithms. It makes trigger conditions available which are outside the capabilities of the standard approach.
[18]
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Figure 2.5: Schematic side view of the Target Spectrometer of PANDA [20]

Figure 2.6: Schematic side view of the Forward Spectrometer of PANDA [20]
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2.3 The PandaRoot Framework
PandaRoot [21] is the official software framework of the PANDA experiment written mostly in C++. It is
based on FairRoot, which is the common software framework for all future FAIR experiments (PANDA, R3B,
CBM, ...). It is based on CERN’s ROOT and the Virtual MonteCarlo interface for Geant3 and Geant4. The
structure of the framework is shown in Figure 2.7. Several event generators are integrated into the PandaRoot
framework: EvtGen, DPM, UrQMD, Pythia, Fluka, .... It is used to simulate detector performances, to check
the efficiencies of different reconstruction algorithms and to study the feasibility of different physics processes.
It contains accurate geometry descriptions of the PANDA detector’s different configurations. It has different
reconstruction algorithms for tracking and particle identification. In the central tracker a first track fit is
performed using a conformal map transformation based on a helix assumption, then the track is used as input
for a Kalman Filter (package genfit), using GEANE as track follower. The track is then correlated to the
pid detectors to evaluate a global particle identification probability, using a Bayesian approach or multivariate
methods. Further implemented packages in PandaRoot are: the analysis tools framework Rho, the kinematic
fitter package for vertex and mass constraint fits, and a fast simulation code based upon parameterized detector
responses. [21]

Figure 2.7: Structure of the software framework. At the top level stay ROOT and the Virtual Montecarlo. On
a step below, the FairRoot framework manages the general infrastructure with simulation and tasks. Detector
specifics and reconstruction stay at the bottom level. [21]

PandaRoot also contains a large collection of macros for various purposes. The most important ones are
the macro containing the event generation (with or without an event-filter), the particle transport and the
digitization, the macro responsible for the tracking and particle identification and an example skeleton macro
for the analysis. These macros also have a version written to be used on the Virgo cluster at GSI. The Virgo
cluster is build with the incentive to align its software stack with the cluster computing infrastructure build by a
majority of scientific research institutions. The hosting infrastructure is build of components supported by the
OpenHPC Community. As operating system CentOS is used. Slurm is used as workload management system
and supports the allocation of Linux Containers. All containerized applications use Singularity as container
run-time engine. [23]

2.3.1 Hit production, digitization and reconstruction for the EMC in PandaRoot
As explained above, PandaRoot uses CERN’s ROOT for creating the geometry of the detectors, for the particle
transport and for data storage and access trough interfaces implemented in the FairRoot framework. The hit
production, digitization and reconstruction for each detector is implemented in PandaRoot. As the main focus
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of this work is the EMC, these processes are described in the following in more details for this case, which is
very similar for most of the detectors.
When running a simulation, during the particle transport, the individual energy depositions inside the EMC’s
active volume can be accessed from PandaRoot as points. These points are then grouped together by the hit
producer to create hits. These hits represent energy deposition inside a single crystal. The hits are then digitized
during the digitization process. This is either done directly by using smearing functions for a fast simulation or
through wave-functions for a realistic digitization. The second method simulates the processes in a calorimeter
instead of using simple smearing functions. The created digis have exactly the same data-structure and are fed
to exactly the same reconstruction algorithms as the real measured data will. The only exemption is that they
also contain the Monte Carlo information. They represent the energy deposition measured in a crystal with a
realistic energy and time resolution.
During the reconstruction, the digis are processed by a cluster finding algorithm to create clusters, as usually
the showers created by the primary particles span across multiple crystals. The clusters are then split into
two or more bumps if they satisfy certain criteria. This procedure is implemented to identify particles with
overlapping showers, for example two photons from a decay of a high energetic π0. These two algorithms are
described in much more details in section 2.4.1.
The clusters and bumps are then used as input for the global tracking and PID algorithms. If they can be
associated to any charged track, they are assigned to them. From all the remaining ones, the neutral particles
are created.
Everything else happens during the analysis, which is managed by an analysis class, also providing a user
interface for the analyzer. It creates the list of particles with a given mass hypotheses and according to the
requested PID probability per event. It also does the MC matching in case of simulated data. For charged
particles the information from the tracking detectors is used. For neutral particles it is based only on the
clusters, disregarding the bumps. This is described in more details in section 2.4.2. [22]

2.3.2 Description of the most important Rho classes used for the data analysis
The lists of reconstructed particles created by the analysis class are part of the Rho framework, which is a
collection of data containers representing different sets of reconstructed particles and of analysis tools which can
be used to manipulate these containers. The basis is the rho candidate, providing data access to all analysis
relevant information, including basic properties like PID, mass, charge, etc. and detector information, like
Zernike moments of the assigned reconstructed shower in the calorimeter. A collection of these candidates is
the rho candidate list. These lists can be filtered based on certain kinematic criteria, like a given mass or energy
range or based on PID probabilities, if it is available. The framework also deals with the combinatorics and
overlaps when reconstructing decay trees. This is done through a bit marker concept: a unique bit set is created
for every reconstructed particle and composite particles get the logical or of all of their daughters. This way it
is easy to identify overlapping composite candidates. The MC matching of composite particles is also done at
this stage. This is described in more details in section 2.4.2.
Another major part of this framework is the kinematic fitting, which can be used to improve the quality of the
reconstructed objects and to reject background. Most of the commonly used fitters are implemented, like mass,
vertex and four constraint fits, using a common interface. These fitters fit the reconstructed four momenta of
the final state particles so that the masses of narrow resonances or the initial four momenta of the initial p̄p
system is set to their known value or that two charged tracks originate from the same vertex. [22]
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2.4 Improvements of PandaRoot
Since the accurate estimation of the photon detection efficiency is a very crucial part of this analysis, the photon
reconstruction and the MonteCarlo matching of PandaRoot were investigated in details and a few improvements
were implemented. The clustering algorithm of the EMC was reworked. As a result, the combinatorial back-
ground coming from secondary clusters was highly reduced and the energy of the reconstructed photons is
closer to the simulated energies. Another important improvement was the improvement of the Monte Carlo
matching. For beam-time estimations it is essential to accurately estimate the efficiency by correctly matching
the simulated and the reconstructed particles.

2.4.1 Reworked Clustering Algorithm of the EMC
When reconstructing electromagnetic showers, there are some cases, when a secondary maximum is created
a few crystals away from the impinging point of the primary photon. These secondaries are called split-offs.
Due to the wrong reconstruction, the combinatorial background is high. This complicates the reconstruction
of events, especially those which consist of many low energy photons. To improve the reconstruction, 3 new
clustering algorithms were developed and tested. The first algorithm is based on the island clustering method,
while the second is a cellular automaton. The third algorithm, which is based on the algorithm currently in
use, merges low energetic clusters fulfilling certain criteria.
The default algorithm loops over all the digis and if one of its neighbors is in a cluster, it puts it into the cluster.
If not, then a new cluster is created. If a digi belongs to two cluster, then those clusters are merged. Only
digis above a certain energy threshold are considered. This threshold can be set for the different parts of the
calorimeter individually. This threshold is currently 3 MeV for the barrel and 8 MeV for the shashlyk. If the
reconstruction is running time-based (i.e. similar to the planned real data scenario, since no trigger will be
used), then each cluster has a limited lifetime and only non-expired clusters are considered during the cluster
finding. The lifetime of the clusters is set to 20 ns by default. After the clusters are created, they are split by the
bump splitter algorithm. If there are multiple local maxima inside a cluster and these maxima have an energy
higher then a given threshold (20 MeV) and the ratio of their energy and the total energy of their neighbors is
higher than an other threshold, which is also defined in the parameter database: 2.5 +Number of neigbours/2.
The newly implemented merging merges clusters to the closest ones if they will not be removed by the bump
splitter, i.e. the energy of their highest energetic digi is less than 20 MeV. More than 90% of these clusters were
actually split offs based on the MC information, in the studied cases. As these clusters could also be hadrons
or other neutrals of interest with low energy deposition in the calorimeter, this merging can be easily turned off
by the analyzer. After the merging, clusters with a total energy under 30 MeV are removed, as they are also
split-offs in most cases and they cannot be assigned to any other cluster reliably.
The island algorithm start with a search of seed digis. The seeds are local maxima with an energy higher
than the maximum energy threshold of the bump splitter (20 MeV). The algorithm then continues to add all
neighboring digis to the seeds, until a 5% increase in energy or another seed is found by scanning in ϕ and θ.
The scan is started with the highest energetic seed and then it is performed for all the other seeds ordered by
decreasing energy. The scan is performed in the following pattern for each seed: increasing in ϕ, decreasing
in ϕ, increasing in θ and decreasing in θ. For every θ step, a complete ϕ scan is done. As these ϕ scans are
completely independent in every θ steps, they run fully parallelized, making this algorithm the fastest one. The
remaining unassigned digis are then merged to the closest clusters at the end of the algorithm.
As the island algorithm can introduce an anisotropy due to the scan pattern, the cellular automaton algorithm
was developed. It finds the same seeds as the island algorithm and it assigns a cluster ID to each of them. The
cellular automaton then loops through all digis randomly and in every iteration each digi "infects" its neighbors
with their cluster ID, if it does not have one already. If there aren’t any changes during an iteration, then the
algorithm stops and the remaining digis are assigned to the closest clusters. As this algorithm requires the most
iterations and data access, it is the slowest of them.
Figure 2.8 demonstrates the differences between the algorithms. They show the resulting clusters in different
colors in case of an example set of digis. The digis that are above the 1 crystal energy threshold are represented
as squares. The ones marked with stars satisfy the bump splitting criteria and also the criteria to be considered
as seeds for the island and cellular automaton algorithms. The colors (green and yellow) represent the clusters
after the cluster finding. The different assignation of the digis in the middle row illustrates the shortcomings
of the algorithms: the anisotropy of the island algorithm, the random assignation of the digis on the borders of
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two clusters and the not optimal application of the criteria in case og the merging algorithm. In this example
the merged split off is not assigned to the closest cluster, as it is done before the bump splitting. All of these
issues remedied by the OnMer algorithm, which will be described later.

Merging algorithm after bump splitting Island algorithm Cellular automaton

Figure 2.8: Comparison of the 3 new algorithms in case of an example set of digis. The digis that are above the
one crystal energy threshold are represented as squares. The ones marked with stars satisfy the bump splitting
criteria and also the criteria to be considered as seeds for the island and cellular automaton algorithms. The
colors (green and yellow) represent the reconstructed clusters after the cluster finding.

New measures were defined, which give detailed insight into the capabilities of the algorithms by using the
MonteCarlo information. In case of an ideal clustering algorithm if a track created a digi (measured energy
deposition in a crystal), then all digis created by this track or its daughter tracks should be in one cluster and
that cluster should contain no other digis. By assigning the track ID of the primary track that contributed the
most (it and all of its xth granddaughters have the highest number of energy depositions in the given digi) to
the digi. A primary track is defined as a track that deposited energy in the calorimeter but none of it’s xth
grandmothers did. After assigning an ID to every digi, an ID can also be assigned to a cluster by finding the
most frequent digi ID in a given cluster. By using the digi and cluster IDs 4 different measures were defined. The
first one is the difference between the number of reconstructed clusters and the number of generated photons in
a given event. The second is the purity which is the number of digis with other IDs in a given cluster. The sum
of the individual cluster purities describe the overall impurity in a given event. The third is the completeness
which is the number of digis with the same ID but assigned to any other cluster. The sum of the individual
cluster completenesses describe the overall incompleteness in a given event. The last one is the uniqueness which
is the number of clusters which have the same ID. Figure 2.9 compares the 3 newly developed methods with the
old method using these measures. These studies clearly showed that all 3 new algorithms perform better than
the old one. The cellular algorithm performs the best at low energies, but it is the worst at higher ones and it
is very slow. The island algorithm, although the fastest one, seems to perform the worst at lower energies and
only slightly better than the cellular automaton at high energies. This is due to the fact that it privileges high
energetic seeds. Since the performance of the merging algorithm doesn’t depend on the photon energy as much
as the other algorithms and it is fast, it was chosen to be used as a basis for further improvements.

1 GeV beam energy 5 GeV beam energy 15 GeV beam energy

Figure 2.9: Comparison of the 3 new algorithms with the previous one using the 4 measures defined above
(smaller is better). The data was obtained from simulations using a photon gun with different energies.

Based on the PhD Thesis of Marcel Tiemens [24] a clustering algorithm developed for online purposes was
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developed for offline use as well (online algorithm). It is very similar to the default algorithm, but it uses a
different loop structure. First it lists all neighboring digis for each digi. Based on that information, it assigns
a pre-cluster number to every digi and then during a second loop it creates the clusters. Due to this double
loop structure, it performs less read operations and comparisons, thus it is faster than the original algorithm.
It also has better results despite using the same criteria for creating clusters, as they are applied in a different
order: the pre-clusters already have to fulfill some criteria, this way less final clusters are created from noise,
split-offs, etc. Adding on top the merging to this algorithm (OnMer algorithm) is a further improvement as
shown in Figure 2.10. This method is now used as a default in PandaRoot and the results shown later were
acquired using this reconstruction algorithm.

Figure 2.10: Comparison of the 3 best algorithms using the 4 measures defined above (smaller is better). It
also compares the reconstructed matched counts in the η̃c1 peak. (higher is better) The data was obtained from
simulations using the decay channel of η̃c1 decaying to χc1 and 2 π0 with 15 GeV beam energy (see Figure 2.2).

Beside these conventional algorithms, machine learning methods were also tested. Pairs of digis were fed to a
deep neural network to decide if they belong to a cluster. The ϕ and θ coordinates and the energies of the two
digis were used as input parameters and the output was high if the digis should belong to one cluster. For the
training different Monte Carlo files were combined using the photon gun with energies between 0.5 GeV and
15 GeV and with 1-5 photons per event with angles covering 4π. To determine if the two digis belong to the
same cluster, the same MC matching method was used as described in the next section, but this time instead
of matching the clusters to the generated tracks, the digis were matched to the tracks.
A fully connected deep neural network was created consisting of 4 hidden layers. The first layer consists of 800
neurons, while the hidden layers consists of 400, except the last one, which have only 200. All neurons have
selu activation function, except the last one, which have a sigmoid one. The weights were were initialized using
the Xavier initialization method. They were optimized using the ADAM optimizer with binary cross-entropy
loss function, with a batch size of 8000 and with a learning rate of 10−5. The input variables were normalized
to 0-1 interval. The training stopped after 1500 steps, where the training and validation errors started to rise.
5% of the input data was used for validation.
The actual clustering algorithm evaluates the neural network for every digi pairs in a given event, orders the
pairs in descending order in respect to the DNN output value and then it loops trough the pairs. If the return
value is bigger than 0.5, then the two digis are put into the same cluster.
As this algorithm doesn’t provide significantly better results than the OnMer algorithm, but it is much slower
and it provides a large overhead the framework, it is not used. Although the fact, that it provides clusters
almost identical to the ones created by the OnMer algorithm, provides additional validation for the chosen
OnMer method.
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2.4.2 Improved Monte Carlo Matching
Matching of composite particles

One of the most crucial points in estimating the beam time is the accurate determination of the reconstruction
efficiency. For this we match the reconstructed particles to the generated ones. This is done in 2 steps in case
of reconstructed composite particles. First the final state particles which were reconstructed by the detectors
are matched. Then based on these matches, the whole decay tree is checked. There are 3 different levels
implemented in PandaRoot. The most basic on is only checking the PID of the final particles, which means
that the second step is completely missing. The next level checks if the daughter-mother relations are the same
in the generated and in the reconstructed trees. In addition to this the third level also checks the PID of all the
intermediate states. In both cases the check is done by starting from the top of the generated decay tree and
then looping through the daughters at the beginning of every event during the event loop.
An alternative fourth method was developed. In this case we start by getting the matches of the final state
particles and then we compare the PIDs of the mothers in both trees. After these checks we check for all sisters
if their mctruth mother is the same object. So, in comparison with the previous methods, the loop is done
from bottom to top and not from top to bottom. This way also those decay trees are matched which contained
additional daughters. In some cases an additional low energetic photon is generated as an additional daughter
in the simulation. Because of this an otherwise correctly reconstructed event was not mcmatched. The effect
of the new reconstruction is demonstrated by Figure 2.11. On the left plot the invariant mass spectrum of all
combined muon pairs are showed in blue. In purple and red the mcmatched J/Ψ are shown with the old and
new matching respectively. We can see that the we would lose approximately 10% using the old matching, while
the by using the new one, the whole peak is matched. Which contains the number of counts which we expect
based on the single muon detection efficiency. On the right, the invariant mass spectrum of the accepted J/Ψ
candidates combined with a photon candidate in blue. In purple and red the non-mcmatched χc1 are shown
with the old and new matching, while in dark green and green the mcmatched χc1 are shown with the old
and new matching respectively. Here we can observe that some signal is left in the background using the old
matching, but this is not the case by using the new one.
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Figure 2.11: On the left, the invariant mass spectrum of all combined muon pairs are showed in blue. In purple
and red the mcmatched J/Ψ are shown with the old and new matching respectively. On the right, the invariant
mass spectrum of the accepted J/Ψ candidates combined with a photon candidate in blue. In purple and red the
non-mcmatched χc1 are shown with the old and new matching, while in dark green and green the mcmatched
χc1 are shown with the old and new matching, respectively.

Matchig of final state neutral particles

The matching of the final state particles is very straightforward in case of charged particles. Since they usually
create just a few hits in the tracking detectors, it is easy to link the reconstructed particles with the generated
tracks. This is not the case when we have neutral particles. They only interact with the calorimeter by creating
electromagnetic showers. This means that in the simulation every neutral track can create thousands of other
tracks, which could all create hits. In some cases these showers overlap and the hits belonging to two or more
different particles are incorrectly put into the same cluster. This usually happens with high energetic pions and
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etas decaying into two photons. The bump-splitter algorithm finds most of these merged clusters and splits
them into bumps, but this technique is not working perfectly as demonstrated in the previous section. Another
challenge for the matching is the pre-shower phenomenon. If the primary particle interacts with the material
before the calorimeter, then one of its daughters creates the first hit in the cluster, but the reconstructed
properties is in most cases are accurate.
The currently default matching loops trough all reconstructed neutral particles, which are basically the bumps
which have no charged tracks associated with them during the reconstruction. Then the matching algorithm
falls back to clusters, which means that in case of overlapping photon pairs, the same generated photon is
assigned to both reconstructed ones incorrectly. Then the track with the smallest trackID which has a non-zero
depleted energy is assigned as the mcmatch. In not completely pure clusters this could also be a problem in
some cases. Then to reconstruct the pre-shower events correctly, the mother of the assigned track is assigned if
the distance between the first interaction point in the calorimeter and the point where the assigned track was
created is smaller than a given distance. Figure 2.12a shows the missing mass spectrum of the χc1 candidates
from the decay tree which contain two η-s in blue, the matched ones in green and the non-matched ones in red
with this reconstruction.
Working together with Manav Bilakhia, a new matching method was developed and tested for neutral particles.
The algorithm starts with the bumps. It loops through all the tracks that contributed to the given bump and
then finds the first mother-track that had an energy deposition in anywhere in the calorimeter. As a next step
the mother-track which was found most frequently is selected as a match, since we expect that the particle
that had the most contribution to a given bump has the largest shower with the most daughters. To consider
pre-showers, then the algorithm loops backwards until the first track generated by the eventgenerator. The
results are shown in Figure 2.12b. It can be observed that an improvement was achieved at the signal peak,
but false matches were also created below it.
This is due to the phenomena that one generated neutral particle sometimes creates multiple bumps. To solve
this, the bump with the highest total energy deposit was chosen as a match for the given neutral particle
and for all other ones the most frequent mother track was assigned as the mcmatch if it was different from
the eventgenerated track. If the latter happened then the track with the smallest track ID in the bump was
assigned. If that was still the same as an already assigned ID, then no mctrack was assigned to this bump.
Figure 2.12c shows that a great reduction was achieved by this method in the number of the the incorrectly
matched neutrals.
We see that a lot of neutrals create more than one bump, so it is a valid question if the assigned bump is a
valid match and the reconstructed properties are close to the generated ones. The difference of the relative
energy and the polar and azimuth angles were checked. Based on these studies we found that if relative energy
difference is small, then the angular differences are also small. The relative energy difference is shown on Figure
2.13 along with a Gaussian fit on the peak around 0. The cut on it was determined to be 3σ = 0.007 GeV. If
the difference is bigger than this, then the same fall-backs to previous methods are done as described above.
According to our findings, most of these events were due to pair-production just before the calorimeter. And
since the energy distribution of the electrons/positrons are asymmetric, using the higher energetic one is actually
a good reconstruction of the original photon. Figure 2.12d shows the spectra of with the final matching. It can
be observed that the false matches below the signal has disappeared and compared to the original version, more
matches are found at the signal peak.
Table 2.3 compares the single photon reconstruction efficiencies obtained at different points in the matching
process. We can see that the photon reconstruction efficiency is considerably lower than expected according to
the default matching. After the first step the efficiency is two high due the double counting, while the second
efficiency also considers photons, which were detected, but due to pre-showers, split-offs or detector inefficiencies
only a fraction of their energy was reconstructed.

Efficiency Efficiency without double counting
Default 63% 61%
New 117% 89%
New, unambiguous 89% 89%
New, correctly reconstructed 76% 74%

Table 2.3: Reconstruction efficiencies of neutral particles according to different mcmatching versions
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(a) Default MC matching (b) New MC matching, looping back to the first track

(c) New MC matching, but unambiguously (d) New MC matching, but only keep good matches

Figure 2.12: The invariant mass spectrum of all χc1 candidates are shown. The matched candidates are shown
in green, while the unmatched candidates are shown in red.

Figure 2.13: Ratio of the difference of the reconstructed and generated and the generated energy of neutral
particles (Erec−Egen

Egen
) and the fitted Gaussian around zero.

19



Additional checks were done with other decay channels to check the new matching and we found that the
performance was better in most cases or the same. To provide an example, Figure 2.14 compares the missing
mass spectra of η → 2γ in a photon rich environment, which causes a high background. We can observe that
some signal remains unmatched by using the old matching method, but with the new one we get a nice and
smooth background.

Default MC New MC matching

Figure 2.14: Invariant mass spectra of η → 2γ in a photon rich simulation. All reconstructed candidates are
showed in blue, the matched ones in green and the non-matched ones in red.
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2.5 Simulation
While all the macros were developed and tested on a local machine, the large scale simulations were performed
on the Virgo Slurm Cluster [25]. All software ran within the Debian 10 Virtual Application Environment. The
latest production versions of Fairsoft and FairRoot were used, versions apr22 and 18.6.8 respectively, which
can be found preinstalled on the cluster. The PandaRoot installation was the latest development version that
contains all the new features described in Section 2.4.

2.5.1 Event generation
All four decay channels shown in Figures 2.2 and 2.3 were simulated using the PandaRoot framework. In all
cases the beam momentum was chosen to be 15 GeV and the EvtGen [26] event generator was used with Photos
on and using the PHSP model for every decay. This means that the final state radiation was included in the
simulation and that every decay was calculated according to the phase-space, so no special model was used.
Table 2.4 summarizes the number of signal events simulated and the different dedicated background channels
for each decay channel. The background channels taken into consideration have a very similar final state and
decay structure compared to the signal channel, but they do not contain the η̃c1. In case of the decay channel
η̃c1 → 2πχc1, 100000 signal events were also generated with the J/Ψ decaying to an electron pair.

Decay channel η̃c1 → 2πχc1 η̃c1 → ηχc1 η̃c1 → ΦJ/Ψ η̃c1 → ωJ/Ψ
Number of signal events 100000 100000 100000 100000
Number of background events
per channel 1000000 500000 1000000 1000000

Dedicated background channels

p̄p→ χc0π
0π0η

p̄p→ χc1π
0π0π0η

p̄p→ χc1π
0ηη

p̄p→ J/Ψπ0π0π0η

p̄p→ χc1ηη
p̄p→ J/ψηηπ0 p̄p→ ηΦJ/Ψ p̄p→ ηωJ/Ψ

Table 2.4: Number of simulated events and dedicated background channels.

To estimate a general background, the DPM generator [27] was used. 250 million events were simulated using
the event filter. Only those events were considered which contained at least 2 charged particles with opposite
charges and their combined invariant mass was between 2.5 and 4 GeV with muon mass hypothesis. If these
criteria were not met at the generator level, then a new event was generated. The ratio of the number of
generated events and the number of events accepted by the filter is 5.1.

2.5.2 Detector geometry and event reconstruction
The default geometry was used during the simulation, which means that all detectors were fully modeled and the
detector responses were simulated as realistically as possible with the current software. The recently updated
GEM geometry was used for the final simulations. This is important, since the older version overestimated the
material budget and thus highly reduced the photon detection efficiency in the kinematic region, where most of
the photons can be found in case of these simulations.
During the event reconstruction all reconstructed neutral particles and all reconstructed charged particles,
reconstructed with muon mass hypothesis, are considered. So no PID cuts are used. It was found that due
to the low reconstruction efficiency and small cross-section of the process combined with the great background
rejection efficiency of the kinematic fits and mass cuts used during the analysis, the highest signal to background
ratio is achieved by not using any PID algorithm for the muons.
The same procedure is used for the study of the J/Ψ → e+e− case. The only difference there is that the the
reconstructed electrons are Bremsstrahlung corrected. [28] Although this correction significantly decreased the
width of the J/Ψ peak and increased the reconstruction efficiency, they are still worse for the e+e− case. This
is illustrated by Figure 2.15. If exactly the same analysis procedure is followed, then the ratio of reconstruction
efficiency for the final charmonium hybrid is: Effe+e−

Effµ+µ−
= 0.091. Based on this result, only the J/Ψ → µ+µ− is

used for any further studies.
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Figure 2.15: Invariant mass distribution of J/Ψ candidates in case of J/Ψ → µ+µ− (left) and J/Ψ → e+e−

(right) of decay channel η̃c1 → 2πχc1 in blue. The ±1σ limits are shown in red for the MC matched J/Ψ → µ+µ−

candidates to highlight the difference in resolution.

By combining all possible charged tracks with opposite charges, with muon mass hypotheses, the J/Ψ candidates
are created. Only those candidates are accepted which have an invariant mass around the nominal J/Ψ mass,
within a window width of 0.27 GeV (Mϵ[MJ/Ψ − 0.27/2 GeV;MJ/Ψ + 0.27/2 GeV]). A vertex fit with a mass
constraint on the J/Ψ mass is then performed on these candidates. To create the η candidates 2 photon
candidates are combined. Only those candidates are kept, which fall within a window width of 63 MeV around
the η mass of 554 MeV. The invariant mass distribution of all combined photon candidates together with the
mass cuts to selected the π0 and the η candidates are shown on Figure 2.16.
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Figure 2.16: Invariant mass distribution of all combined photon candidates in blue and the mass cuts to selected
the π0 and the η candidates in red.
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In the following steps all of the intermediate states are reconstructed:

η̃c1 → 2πχc1

In this case the π0 candidates are created similarly to the η candidates, but the mass cut is placed around
136.9 MeV with a window width of 29 MeV. The J/Ψ candidates are combined with a photon candidate and
these combinations are accepted as χc1 candidates if their invariant mass is around 3.49 GeV with a window
width of 0.45 GeV. The accepted candidates (2πχc1η) are then used to reconstruct the initial p̄p system, which
is accepted if its invariant mass is (5.1±0.6) GeV.

η̃c1 → ηχc1

Since this decay channel is very similar to the previous one, most of the steps are the same. The only difference
is that in this case no π0 candidates are created and the initial p̄p system is reconstructed by using χc12η.

η̃c1 → ΦJ/Ψ

All charged tracks with opposite charges, with kaon mass hypothesis are combined to create the Φ candidates.
They are accepted if their mass is 1.02 GeV±25 MeV. These candidates are then combined with the J/Ψ and
η candidates to reconstruct the p̄p system.

η̃c1 → ωJ/Ψ

In this case the Φ from the previous channel is replaced with an ω. They are created by combining a π0

candidate, which is reconstructed according to the same criteria as in the η̃c1 → 2πχc1 channel, with a positive
and a negative charged track with pion mass hypothesis. The ω candidates are accepted if their mass is (783±50)
MeV.

A 4-constraint fit is then performed on the reconstructed p̄p systems by constraining the 4-momentum of the
system to its known value. During the fit the masses of the daughter particles are fixed. Also a mass constraint
fit is performed on all intermediate states. The cuts applied on the probabilities from the kinematic fits are
described in the next section. After all the cuts applied the η̃c1 candidates are created.

2.5.3 Single particle reconstruction efficiencies and kinematic distributions
Figure 2.17 compares the 2 dimensional distribution of the generated and reconstructed µ+-s, π+-s, K+-s and
γ-s and Figure 2.18 for composite particles. Figure 2.19 shows the reconstruction efficiency as a function of
energy, θ and pT for µ+-s and γ-s. All charged particles and photons for all decay channels have very similar
behavior. In some bins we can see efficiencies higher than 1, which is a result of bin migration. The overall
reconstruction efficiency is very close to 1, except of charged particles at low pT , which is a known shortcoming of
the current tracking algorithms and will be fixed in the near future. [29] We can also observe a drop in efficiency
for neutral particles around θ = 20 and a lot of photons reconstructed at lower energies in this region. This is
caused by the high material budget of the GEM detector. [30] Overall we can conclude that the reconstruction
efficiency for most particles are sufficient and agree with the values from the technical design reports using the
newest version of PandaRoot.
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µ+ from the channel ηχc1 K+ from the channel ΦJ/Ψ

π+ from the channel ωJ/Ψ γ from the channel ηχc1

Figure 2.17: Kinematic distribution of single particles
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J/Ψ from the channel ηχc1 Φ from the channel ΦJ/Ψ

J/Ψ from the channel ΦJ/Ψ ω from the channel ωJ/Ψ

Figure 2.18: Kinematic distribution of reconstructed resonances
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γ from the channel ηχc1 as a function of θ µ+ from the channel ηχc1 as a function of θ

µ+ from the channel ηχc1 as a function of E µ+ from the channel ηχc1 as a function of pT

Figure 2.19: Reconstruction efficiencies of single particles
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2.6 Determining the cuts using genetic algorithm
Finding the optimal set of cuts is not obvious. Genetic algorithm is ideal for this optimization problem. It is
a machine learning algorithm inspired by the process of natural selection. It doesn’t use the gradient of the
function to be optimized, so it is ideal for problems where the gradient is computationally heavy, unknown or
doesn’t exist. And also it has the ability to get out of local minima. Although it usually converges slower than
a neural network, the results and the whole optimization process is transparent and can be easily interpreted.
During the optimization process a set of parameters is called an individual. A given number of individuals is
generated at the beginning of the process with random parameters. As a first step, the fitness of each individual
is calculated, which in our case is the signal to background ratio or the significance. After the initialization,
the iteration steps start. At the beginning of a step, the best individuals are kept and the others are deleted.
In their place new ones are generated by randomly selecting parameters from the individuals kept. Then some
randomly selected parameters of the new individuals are randomly changed by a few percent. As a final step the
worst individuals are deleted and completely new individuals are created in their place with random parameters.
These iterations are running until a certain number is exceeded or there is no significant change in the best
fitness.
This algorithm was implemented as a root macro and run on the GSI Linux farm (Kerberos). To speed up
the iteration, the random parameters were generated within reasonable limits and one of the individuals was
created with parameters optimized by hand. These limits and the parameters of the genetic algorithm are
summarized in tables 2.5 and 2.6. Other parameters like other mass cuts and probabilities of different PID
algorithms were included in the beginning, but they were removed, since didn’t improve the final results, but
significantly increased the optimization time. The mass cut parameters were generated according to a real
uniform distribution within the given limits, while the probability cut parameters were generated according to
an exponential distribution with a rate of λ = 3.5. The percentage of the mutation was determined according
to a gamma distribution (f(x;α, β) = xα−1e−βxβα

Γ(α) , where Γ is the gamma function: Γ(z) =
∫∞
0
tz−1e−t dt) with

α = β = 3. The probability of a positive/negative/no mutation was all 1/3. Based on some initial short runs,
the algorithm converged faster with these settings. Since the goal is to maximize both the efficiency and the
signal to background at the same time, the statistical significance was maximized, which incorporates both and
defined as the following:

Significance =
Number of signal events√

Number of signal events + Number of background events
(2.1)

The optimized parameters are shown in table 2.7. It can be observed, that compared to the reference parameters,
the mass cuts are looser and the probability cuts are tighter. Also the mass cuts are not centered around the
middle of the peaks, but shifted towards higher masses. This is reasonable since high background is expected
under the lower tail, but by extending the cut toward higher masses, the efficiency can be increased without
significantly increasing the background levels. This is demonstrated by Figure 2.20. Figure 2.21 compares the
probability distribution of the 4C fit of the final p̄p system for the signal and one background channel of decay
channel η̃c1 → ΦJ/Ψ. It shows that a considerable background is cut away, while most of the signal is kept.
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Parameter Value
Population size 100
Max number of generations 10000
Newly generated individuals 10
Surviving individuals 10
Tournament population 7
η mass upper border min [GeV] 0.54
η mass upper border max [GeV] 0.61
η mass lower border min [GeV] 0.47
η mass lower border max [GeV] 0.54
χc mass upper border [GeV] 3.5
χc mass upper border max [GeV] 3.7
χc mass lower border min [GeV] 3.3
χc mass lower border max [GeV] 3.5
Φ mass upper border min [GeV] 1.02
Φ mass upper border max [GeV] 1.045
Φ mass lower border min [GeV] 0.995
Φ mass lower border max [GeV] 1.02
ω mass upper border min [GeV] 0.783
ω mass upper border max [GeV] 1.4
ω mass lower border min [GeV] 0.4
ω mass lower border max [GeV] 0.782
Kinematic fit probability cuts min 0
Kinematic fit probability cuts max 1

Table 2.5: Parameters of the genetic algorithm and the limits of the parameters to be optimised. Only the
relevant parameters are used for each channel.

Channel η̃c1 → 2πχc1 η̃c1 → ηχc1 η̃c1 → ΦJ/Ψ η̃c1 → ωJ/Ψ
ηp̄p mass upper border [GeV] 0.565 0.565 0.565 0.565
ηp̄p mass lower border [GeV] 0.53 0.53 0.53 0.53
χc/Φ/ω mass upper border [GeV] 3.53 3.53 1.03 0.87
χc/Φ/ω mass lower border [GeV] 3.49 3.49 1.01 0.7
Kinematic fit probability cuts 0.001 0.001 0.001 0.001

Table 2.6: Cuts determined by hand as a comparison and a starting point for the genetic algorithm for each
channel

Channel η̃c1 → 2πχc1 η̃c1 → ηχc1 η̃c1 → ΦJ/Ψ η̃c1 → ωJ/Ψ
ηp̄p mass upper border [GeV] 0.590273 0.583325 0.609009 0.576469
ηp̄p mass lower border [GeV] 0.528604 0.489714 0.472235 0.516278
χc/Φ/ω mass upper border [GeV] 3.61931 3.64309 1.04494 0.91273
χc/Φ/ω mass lower border [GeV] 3.45014 3.37777 0.995138 0.729029
p̄p 4C fit probability 0.539764 0.604857 0.136921 0.98463
χc/Φ/π0ω mass constraint fit probability 0.427254 0.273101 2.39025e-07 0.001316
ηp̄p/ω mass constraint fit probability 0.06143 0.0140402 - 8.12132e-9
π0Eh/ηχc/ηp̄p mass constraint fit probability 0.0394484 0.000147619 9.30564e-16 1.8756e-05
π0El mass constraint fit probability 0.0223424 - - -

Table 2.7: Cuts optimized by the genetic algorithm for each channel
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Figure 2.20: Invariant mass spectrum (blue) of Φ during the reconstruction of the decay channel η̃c1 → ΦJ/Ψ.
The MC matched Φ are shown in red.
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Figure 2.21: Probability distribution of the 4C fit of the final p̄p system for the signal (left) and one background
channel (right) of decay channel η̃c1 → ΦJ/Ψ in blue. The cut placed on the probability is shown in red.

Figure 2.22 shows the best and the average fitness per generation during the optimization of the cuts of the
decay channel η̃c1 → ωJ/Ψ. Since the random introduction of individuals with low fitness causes spikes, the
average fitness of 33 generations was also plotted for better visualization. It can be observed that the average
fitness is increasing slowly during the whole process and the best fitness saturates after the 500th generation.
This means that the maximum number of generations is enough to find the optimal set of cuts.
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Figure 2.22: The best and the average fitness per generation during the optimisation of the cuts of the decay
channel η̃c1 → ωJ/Ψ.
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2.7 The reconstructed exotic charmonium

2.7.1 Reconstructed signal
After all the cuts applied the η̃c1 candidates are created. The reconstructed mass distributions, shown in Figure
2.23, are fitted with a Voigt profile, the convolution of a Lorentz and a Gaussian distribution:

V (x;σ,Γ, x0) ≡
∫ ∞

−∞

e−x′2/(2σ2)

σ
√
2π

Γ

π((x− x′ − x0)2 + Γ2)
dx′ (2.2)

Here Γ is the extracted Breit-Wigner width, σ is the resolution and x0 is the extracted mass. Due to the use
of kinematic fits during the reconstruction, the resolutions are much smaller than the detector resolutions and
they are non-physical. Table 2.8 shows the extracted results and compares them with the ones injected into the
simulation. As the values show, the mass can be very well extracted during the analysis, but not the width.
This is the result of fitting Γ and σ together. In case of real data, the resolution should be determined by a fit
on a neighboring state with known width and it should be a fixed parameter in the final fit. But since there
was no other resonance in the simulated data, both parameters were fit simultaneously.
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Figure 2.23: Mass distribution of the final reconstructed exotic charmonium for all 4 decay channels in blue and
the Voigt fit in red.
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2πχc1 ηχc1 ΦJ/Ψ ωJ/Ψ Input
Constant 46±1 61±1 180±2 74±1 -
Mass [MeV] 4296±1 4289±1 4297.7±0.6 4290±1 4290
σ [MeV] 99±4 55±3 60±7 80±4 -
Γ [MeV] 12±6 37±5 18±9 32±2 20

Table 2.8: Extracted parameters

2.7.2 Reconstruction efficiency and background rejection
Figure 2.24 compares the final reconstructed signal with all the background channels combined and with the
Monte Carlo matched reconstructed signal events. We can observe that most of the reconstructed signal events
are Monte Carlo matched, which means that the cuts successfully remove most of the combinatorial background.
These plots also demonstrate that the signal is clearly visible on top of the background, even assuming that the
cross section of the dedicated background channels are at least 10 times bigger than of the signal channels. The
background reduction is the best for the 2πχc1, since it has the most complex decay tree. It also contains the
highest number of neutral final state particles, thus it has the lowest reconstruction efficiency and the highest
ratio of non-matched signal events. The ΦJ/Ψ channel is exactly the opposite as it only contains one η. In case
of the ηχc1 there are 2 peaks reconstructed. This is due to the 2 η-s in the decay tree at different positions.
In every event 2 charmonium candidates are reconstructed with different masses. The relative position of the
2 peaks are determined by the ratio of the beam energy and the mass of the charmonium. This means that in
case of real data, the correct peak can be selected by measuring other decay channels or by varying the beam
energy. Table 2.9 shows the background rejection rates and reconstruction efficiencies for each decay channels.

2πχc1 ηχc1 ΦJ/Ψ ωJ/Ψ
Signal 3.5% 18.9% 15% 5.3%
MC Signal 1.6% 4.3% 14.2% 2.2%
Background 1 0.37% 18.4% 16.6% 5.3%
Background 2 0.03% 1.2% - -
Background 3 0.1% - - -
Background 4 0.38% - - -
DPM Background 1.4·10−5% < 10−6% < 10−6% < 10−6%

Table 2.9: Survival rates for the signal and background channels numbered according to their position in Table
2.4 using the genetic algorithm optimized cuts. The details of the general DPM backgound can be found in
Section 2.5.1.

Figure 2.25 compares the individual contribution of the dedicated decay channels. For the ηχc1 channel, most
of the background is coming from the p̄p → χc1ηη channel, since it contains all the intermediate resonances
as the signal, except the exotic charmonium and so it can not be removed by the applied cuts. But it gives
an almost constant background in the region of interest and it is possible to spot the signal on top of it. In
case of the other background channel and all the background channels of the other signal channels at least one
intermediate state is missing or it is replaced with an other one with a different mass. In these cases the cuts
work very well.
All the four channels together with their dedicated background channels were also analyzed using the cuts
optimized by hand and listed in Table 2.6 to show the improvement achieved by the genetic algorithm. The
achieved significances are compared in Table 2.10.

2.7.3 Comparison with previous studies
Two previous feasibility studies were performed for this state in PANDA, both only considering the decay
channel 2πχc1. The first one [15] was before the start of the development of PandaRoot. Thus it only has
a rough estimate of the PANDA detectors resolution and efficiency. It also doesn’t contain any background
estimation, but has a good MC matching. They used a few loose cuts and achieved 7.5% reconstruction efficiency.
If no cuts are used in our analysis, then the reconstruction efficiency is 6%, which is very close to their value.
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Figure 2.24: Mass distribution of the final reconstructed exotic charmonium for all 4 decay channels in blue,
the Monte Carlo matched signal in red and all the background channels combined in green.
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Figure 2.25: Mass distribution of the final reconstructed exotic charmonium in blue, the Monte Carlo matched
signal in red and the individual contribution of the dedicated background channels in green, purple, black and
yellow. The order of the colors are respective to the order of the channels listed in Table 2.4.
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Genetic Cuts Conventional Cuts
2πχc1 18.6 7.1
ηχc1 17.6 8.6
ΦJ/Ψ 288 209.5
ωJ/Ψ 120.6 109.1

Table 2.10: Comparison of the achieved significance for each decay channel using genetic and conventional cuts.

Their MC matched signal to all reconstructed signal ratio was around 0.694, which is very close to this ratio
in our study, which was found to be 0.7. They estimated the number of reconstructed events per day to be 7.5
without any cuts, which becomes 0.75 if we assume that 10% of the signal remains after applying stricter cuts.
The other study [9] included the same background channels and use the same cuts and reconstruction process
as described in Section 2.5.2 and Table 2.6. They obtained a Breait-Wigner width of Γ = 15 GeV, which is very
close to the value reconstructed from our analysis, which is Γ = (12 ± 6) GeV. They defined a mass range of
interest (4.24 GeV-4.33 GeV), where they determined the signal reconstruction efficiencies and the background
rejection rates. Their values were reconstructed using the same cuts and are shown in Table 2.11 alongside with
other values. The only exception is the signal reconstruction efficiency, which differs by a factor of 10. Most
probably this is a typo from their side. They estimate 0.16 as a number of reconstructed events per day, which
is very close to our estimate of 0.22.

This study Pre-PandaRoot study [15] Early PandaRoot study [9]
MC signal reconstruction eff. 6% 7.5% -
MC-all signal ratio 0.7 0.694 -
Signal reconstruction eff. 0.68% - 6.83%
Background 1 rejection eff. 0.017% - 0.02%
Background 2 rejection eff. 0.002% - 0.001%
Background 3 rejection eff. 0.004% - 0.004%
Background 4 rejection eff. 0.012% - 0.01%
Breit-Wigner Γ [MeV] 12±6 - 15
Number of reconstructed events per day 0.22 ∼0.75 0.16

Table 2.11: Comparison of the applicable results with 2 previous studies. The applied cuts were reproduced
as good as possible. The red lines represent a significant change in the applied cuts and analysis method, so
results should not be compared across those lines. The first set doesn’t use any cuts, i.e. it is pure detector
acceptance and performance. The second set uses the reconstruction procedure described in [9]. The last one
combines the cross-section and the reconstruction efficiency estimation in the given analysis.

Figure 2.26 compares the reconstructed exotic charmonium mass spectra for the decay channel 2πχc1. In case
of the pre-PandaRoot study only the spectrum for the pp̄ → π0η̃c1 case was plotted. They claimed that the
pp̄ → ηη̃c1 spectrum was almost identical, except that it didn’t have the 2 peak structure coming from the
interchange of the π0-s, which is similar to the ηχc1 channel in our case.
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Figure 2.26: Mass distribution of the final reconstructed exotic charmonium for the decay channel 2πχc1 in blue,
the Monte Carlo matched signal in red and all the background channels combined in green for this analysis.
For the other 2 cases, the reconstructed signal is plotted and the MC matched ones are shown in black.
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2.8 Beamtime estimation and conclusion
The cross section of the process pp̄→ ηη̃c1 is currently unknown. The only measured cross section until now of
this type (pp̄→ mΨ, where m is a light meson and Ψ is a charmonium state) is pp̄→ π0J/Ψ. It was measured
by E760 to be (130±25) pb at

√
s = 3.5 − 3.6 GeV. [31] A method to estimate cross sections of this type was

suggested in [11]. They estimate the production cross section σpp̄→mΨ from measured charmonium partial width
into a three-body state, ΓΨ→mpp̄, assuming a constant decay amplitude. They used results from BESII [32] and
CLEO-c [33] from J/Ψ and Ψ′ initial states at e+e− colliders. The process with a known partial width most
similar to our process of interest is the Ψ′ → ηpp̄: ΓBES = (16.3 ± 3.8) eV and ΓCLEO = (22 ± 12) eV. Based
on this, the cross section σpp̄→ηΨ′ is estimated to be (33± 8) pb at ECM = 5.38 GeV. Based on these values an
optimistic 100 pb was used for the estimation of the beam time in this work. If we multiply this by PANDAs
design luminosity of L = 2 · 1032 1

cm2s in high luminosity mode, then we get 1728 charmonium hybrid produced
per day.
Table 2.12 summarizes the branching ratios of the involved processes in the decay trees based on the PDG
database [34] and the total branching ratio of the decay trees assuming 100% branching ratio for the given η̃c1
decay. If we put this together with the reconstruction efficiency and the number of hybrids produced per day,
the number of events reconstructed per day can be calculated.

Process Branching ratio
π0 → γγ 98.82%
η → γγ 39.41%
χc1 → γJ/Ψ 34.3%
J/Ψ → µ+µ− 6%
Φ → K+K− 48.9%
ω → π+π−π0 89.2%

Decay tree Branching
ratio

MC truth
reconstructed
per day

Total signal
reconstructed
per day

2πχc1 0.8% 0.22 0.48
ηχc1 0.3% 0.22 0.49
ΦJ/Ψ 0.4% 0.98 1.04
ωJ/Ψ 0.7% 0.27 0.64

Table 2.12: Branching ratios of the involved processes in the decay trees based on the PDG database [34] on
the left and the total branching ratio of the decay trees assuming 100% branching ratio for the given η̃c1 decay
on the right. The number of MC and total signal events reconstructed per day with the optimized cuts is also
shown on the right.

To estimate the DPM background, the total pp̄ cross section was estimated to be 50 mb at 15 GeV beam energy
based on data from the PDG database [34] shown in Figure 2.27. This means that 127.5 s of beamtime was
simulated with the DPM background if we also take the rejection rate of the event filter into consideration.
As only 3 events were reconstructed in the mass region of interest and only 1 of them is directly under the
charmonium peak, this translates to 667-2000 reconstructed background events per day, even if all 4 channels
are combined.

Figure 2.27: Total and elastic cross sections for pp̄ collisions as a function of beam momentum [34]
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Using equation 2.1 the number of days of measurement required to reach 1 σ significance can be calculated
with different assumptions. The results are shown in Table 2.13. This translates to approximately 4 years of
beamtime to reach 5 σ, with the worst case scenario being 9.7 years and the best case scenario being 1.3 years.
This means that according to this study, the measurement of this hybrid charmonium state will be feasible with
PANDA.

MCM All
3 DPM 700 days 285 days
1 DPM 300 days 95 days

Table 2.13: Beamtime required to reach 1 σ significance combining all 4 decay channels, assuming 1 or 3 DPM
background events and calculating with MC matched signal events or all reconstructed signal events.

As a comparison, the same calculation was performed, but using the hand optimized cuts and the old PandaRoot
version using the old MC matching, the old cluster finding algorithm and other not mentioned, small bugs in
the code discovered while studying these channels. The result was, that at least 83 years were needed to
achieve 1 σ significance, meaning that the measurement is not possible with PANDA. This striking difference
shows the importance of the software improvements and the efficiency of the neural network optimized cuts.
As all methods are implemented in the newest software version, future feasibility studies can make use of the
improvements of the simulation and neutral particles will be reconstructed with a much better efficiency during
the reconstruction of measured data.
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Chapter 3

A multidimensional study of charged kaon
SIDIS beam spin asymmetry over a wide
range of kinematics

3.1 Introduction and physics motivation

The moment Asinϕ
LU and the directly related ratio of the structure functions F sinϕ

LU /FUU have been extracted
from the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering for the reactions
eK+X and eK−X. A multidimensional analysis in Q2, xB , z and PT has been performed. This document
will present the obtained results and discuss the systematic uncertainties of the measurement. The following
sections will closely follow the analysis on single π+ SIDIS [35], since the physics and the analysis methods are
very similar to what is presented there.

3.1.1 Definition of kinematic variables
In the single kaon SIDIS process, the information about the four-vectors of the incoming and outgoing electron
(l, l′) with the energies (E and E′) the four-vector of the target proton P and the four-vector of the produced
kaon PK are known and/or measured. Based on these properties, the required kinematic variables can be
defined as:

• Q2 = −q2 with q = l − l′ lepton momentum transfer squared

• xB = Q2

2Pq fraction of the proton momentum that is carried by the struck quark

• ν = E − E′ energy of the virtual photon

• W 2 = m2
p + 2mpν −Q2 center-of-mass energy squared

• y = Pq
Pl energy fraction of the incoming lepton carried by the virtual photon

• z = PPK

Pq energy fraction of the virtual photon carried by the outgoing hadron

• PT transverse momentum of the final state hadron

• ϵ =
1−y− 1

4γ
2y2

1−y+ 1
2y

2+ 1
4γ2y

2 with γ =
2mpxB√

Q2
ratio of the longitudinal and transverse photon flux

• ϕ angle between the lepton scattering plane and the meson production plane, according to the "Trento-
convention" [45]
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3.1.2 Deeply inelastic scattering, structure functions and the parton model
The electron-proton scattering experiment by Hofstadter and McAllister [36] showed that there is a large
contribution from inelastic scattering and that the cross section of this process is therefore inconsistent with a
point-like proton, meaning that the nucleons have internal structure. Based on the theoretical works of Gell-
Mann [37] and Zweig [38], the hadrons can be described as different combinations of quarks.
By increasing the energy of the scattered electron the wavelength of the virtual photon becomes smaller. If
it interacts with a constituent quark causing the proton to break up, the scattering process is called deeply
inelastic scattering (DIS). The most commonly used kinematic variables are defined in section 3.1.1. The cross
section in the unpolarized case can be described using QED in terms of 2 structure functions (F1,2(x,Q

2)):

dσ

dxdQ2
=

4πα2

Q4

[(
1− y −

m2
py

2

Q2

)
F2(x,Q

2)

x
+ y2F1(x,Q

2)

]
(3.1)

where xB is the fraction of the protons momentum carried by the struck quark, y is the energy fraction of the
incoming lepton carried by the virtual photon, Q2 is the virtuality of the collision, mp is the mass of the proton
and α is the fine-structure constant. Measurements at Stanford [39] showed that these structure functions are
approximately independent of Q2, this behavior is called Bjorken-scaling, and that they are related through the
Callan-Gross relation:

F2(x) = 2xF1(x) (3.2)

These behaviors are well described by the parton model proposed by Feynman et al. [40]. The idea is that since
the electron-proton collisions occur on a very short timescale, the process can be described as an electromagnetic
interaction of the electron and a single quark in the proton and with a parton distribution function (PDF) qi(x),
which describes the probability of finding a quark of flavor i carrying a momentum fraction of x of the hadron:

dσ

dxdQ2
=

4πα2

Q4

(
1− y +

y2

2

)∑
i

e2i q
p
i (x) (3.3)

But measurements of the H1 and ZEUS experiments at HERA showed that the results actually have a weak
Q2-dependence. This feature can be explained with the fact that more than half of the proton momentum is
carried by the sea quarks and not by just the valence quarks. This can be calculated by the DGLAP (Dokshizer
Gribov Lipatov Altarelli Parisi) equations. When the cross section is calculated, the integral is regularized
by factorizing the protons non-perturbative dynamics from the perturbative hard cross section. The choice of
this factorization scale is arbitrary between 1 GeV2 and Q2. By varying it, one can get renormalization group
equations for the PDFs. These are the DGLAP equations. They are the following in leading order:

Q2 ∂

∂Q2

qi(x,Q2)
q̄i(x,Q

2)
g(x,Q2)

 =
αs(Q

2)

2π

∑
j

∫ 1

x

dξ

ξ

Pqiqj (x/ξ) 0 Pqig(x/ξ)
0 Pq̄iq̄j (x/ξ) Pq̄ig(x/ξ)

Pgqj (x/ξ) Pgq̄j (x/ξ) Pgg(x/ξ)

qj(ξ,Q2)
q̄j(ξ,Q

2)
g(ξ,Q2)

 (3.4)

where P are called splitting functions and for example Pqg describes the process where a gluon (g) radiates a
quark (q) and αs(Q

2) is the strong coupling constant.

3.1.3 Semi-inclusive deeply inelastic scattering and transverse momentum depen-
dent functions

To obtain a deeper understanding of the origin of the proton spin, the focus of the hadron physics community
has moved beyond the collinear PDFs towards the study of the partons motion and its spatial distribution in the
transverse plane, perpendicular to the momentum of the parent hadron. To describe these distributions, two
sets of non-perturbative functions have been introduced. On the one side, Transverse-momentum-dependent
parton distributions (TMDs) are used to describe the longitudinal and transverse momentum distributions.
On the other side, Generalized Parton Distributions (GPDs) are used to describe the longitudinal momentum
distributions and the transverse positions of the partons.
Both TMDs and GPDs can be derived from the most general objects describing the nucleon structure, called
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Wigner functions [41]. It was first introduced to study quantum corrections to classical statistical mechanics by
linking the wavefunction to a probability distribution in phase space. Later it was recognized as the quantum
moment-generating functional encoding all quantum expectation values. [42] It’s Fourier-transform is called the
Generalized Transverse Momentum Distribution (GTMD). All other distributions can be derived from these
ones by different combinations of the following operations: taking the forward limit in hadron momentum
(∆ = 0), integrating over x and integrating over kT . This is illustrated by the so-called GTMD cube on Figure
3.1.

Figure 3.1: GTMD cube illustrating the relations between different distribution and fragmentation functions
[43]

The main goal of this thesis is to provide means to better constrain the TMDs, so they will be discussed in more
details. Table 3.1 lists the TMDs for leading and sub-leading twist. The twist is 2 plus the power of M/Q. For the
twist-3 terms it is impossible to define a quark polarization because each term also contain a gluon in addition
to the quark. In case of an unpolarized nucleon, the only twist-2 terms are f1 which describes the unpolarized
quarks in an unpolarized nucleon and the Boer-Mulders function (h⊥1 ) which describes the transversely polarized
quarks inside an unpolarized proton. While these terms describe parton densities (< q̄q >), the twist-3 terms
are correlations of quark and gluon fields (< q̄gq >). In case of an unpolarized nucleon, only 4 of them can be
measured. They include the twist-3 T-odd TMD g⊥, which is the higher-twist analog to the Sievers function
and the chiral-odd TMD e. Its x2 moment describes the transverse force acting on transversely polarized quarks
in the unpolarized proton. [43]

twist-2 twist-3
N \ q U L T
U f1 h⊥1 f⊥, g⊥, h, e
L g1L h⊥1L f⊥L , g⊥L , hL, eL
T f⊥1T g1T h1, h⊥1T fT , f⊥T , gT , g⊥T , h⊥, h⊥T , eT , e⊥T

Table 3.1: TMDs for leading and sub-leading twist. The labels in the top row denote the polarization of the
quark and the labels in the first column denote the polarization of the nucleon.
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By detecting a final state hadron in DIS, information about the quark momenta in the plane transverse to
the hard scattering direction can be obtained. This process is called semi-inclusive deeply inelastic scattering
(SIDIS). The diagram in Fig. 3.2 shows the SIDIS scattering process including the involved transverse momen-
tum dependent parton distribution (TMD PDF) and fragmentation function (FF). In a single photon exchange
model, the differential cross section of this process can be written as a product of leptonic (Lµν) and hadronic
(2MWµν) tensors [44]:

dσ

dxdQ2dzdpT
=
πα2yz

2Q4
Lµν2MWµν (3.5)

where z is the energy fraction of the virtual photon carried by the outgoing hadron and PT is the transverse
momentum of the final state hadron. The leptonic tensor describes the emission of the virtual photon and can
be solved exactly [43]:

Lµν = Tr

(
γµ(/k

′
+m)γν(/k +m)

1± γ5/s

2

)
(3.6)

The hadronic tensor in the Bjorken limit in factorization approach can be expressed as a convolution of the
correlator describing the quarks inside the proton (Φ(x, pT )) and the correlator describing the fragmentation
process or in other words the final state (∆(z, kT )) [43]:

2MWµν = 2z

∫
d2pT d

2kT δ
(2)

(
pT − kT − Ph⊥

z

)
Tr(Φ(x, pT )γµ∆(z, kT )γν) (3.7)

The correlators are the following [43]:

Φ(x, pT ) =

∫
dξ−d2ξT
(2π)3

eipξ ⟨P | Ψ̄j(0)U
n−
(0,inf)U

n−
(inf,ξ)Ψi(ξ) |P ⟩ |ξ+=0 (3.8)

∆(z, kT ) =
1

2z

∑
X

∫
dξ−d2ξT
(2π)3

eikξ ⟨0|Un+

(inf,ξ)Ψi(ξ) |Ph, X⟩ ⟨Ph, X| Ψ̄j(0)U
n+

(0,inf) |0⟩ |ξ−=0 (3.9)

Here the Un are the Wilson-lines. They allow the comparison of two quark fields at different space-time points.
This is analogous to the parallel transport in general relativity which compares tangent vectors that live in the
tangent spaces at different points. This way the equations above are guarantied to be gauge invariant. [43]
The correlators can be expressed as functions of TMDs and FFs for the special case of a polarized electron beam
fragmenting an un-polarized target fragmenting into an unpolarized hadron in leading twist (t2) [43]:

Φ±
t2(x, pT ) =

1

2

(
f1(x, pT )/n+ ± ih⊥1 (x, pT )

[pT , /n+]

2M

)
(3.10)

∆t2(z, kT ) =
1

2

(
D1/n− + iH⊥

1

[kT , /n−]

2Mh

)
(3.11)

With /n± = γ0∓γ3

√
2

. Here the TMDs can be interpreted as the probability of measuring a parton with a certain
momentum fraction x, and fragmentation functions give the probability of measuring a hadron with momentum
fraction z in the decay products. The twist-3 (t3) terms are the following [43]:

Φt3(x, pT ) =
M

P+

(
kiT
M
f⊥(x, k2T )−

εijT kTj

M
g⊥(x, k2T )

)
(3.12)

∆t3(z, kT ) =
Mh

2P−
h

(
E +D⊥ /kT

Mh
+ iH

[/n−, /n+]

2
+G⊥γ5

ερσT γρkTσ

Mh

)
(3.13)

Here P+ is the target momentum in the light cone coordinates, defined by: Pµ = P+nµ+ + M2

2P+n
µ
−

In case of a polarized electron beam, interacting with an un-polarized target, the SIDIS cross section is given
by [7]:
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dσ

dxdQ2dzdpT dϕ
= K(x, y,Q2)

[
FUU,T + ϵFUU,L + ϵF cos 2ϕ

UU cos 2ϕ+
√

2ϵ(1 + ϵ)F cosϕ
UU cosϕ+ λe

√
2ϵ(1− ϵ)F sinϕ

LU sinϕ
]

(3.14)
where λe = ±1 is the electron helicity and K(x, y,Q2) is a kinematic factor. The cross-section consists of
several model independent structure functions (F ) and depends on the azimuthal angle ϕ between the electron
scattering plane and the hadron production plane as shown in Fig. 3.2, according to the definition of the
trento convention [45]. The subscripts on the structure functions indicate the beam and target polarization (U:
unpolarized, L: longitudinally polarized).

Figure 3.2: Process (left) and kinematics (right) of single kaon SIDIS [46]

The structure functions can be expressed theoretically as a convolution of TMDs (fa(x, k2T )) and FFs (Da(z, p2T ))
as [7, 47] up to order 1/Q2 based on the equations above:

FUU,T = ζ(f1D1) (3.15)

FUU,L = 0 (3.16)

F cosϕ
UU =

2M

Q
ζ

(
− ĥkT
Mh

(
xhH⊥

1 +
Mh

M
f1
D̃⊥

z

)
− ĥpT

M

(
xf⊥D1 +

Mh

M
h⊥1

H̃

z

))
(3.17)

F cos 2ϕ
UU = ζ

(
−2(ĥkT )(ĥpT )− kT pT

MMh
h⊥1 H

⊥
1

)
(3.18)

F sinϕ
LU =

2M

Q
ζ

(
− ĥkT
Mh

(
xeH⊥

1 +
Mh

M
f1
G̃⊥

z

)
+
ĥpT
M

(
xg⊥D1 +

Mh

M
h⊥1

Ẽ

z

))
(3.19)

Here the convolution ζ(ωfD) is defined as:

ζ(ωfD) = x
∑
a

e2a

∫
d2pT d

2kT δ
(2)

(
pT − kT − Ph⊥

z

)
ω(pT , kT )f

a(x, p2T )D
a(z, k2T ) (3.20)

where ω(pT , kT ) is the kinematic weighting function and ĥ is a unit vector pointing in the direction of the
outgoing hadron.
The Ẽ, G̃⊥, D̃⊥ and H̃ come from the quark-gluon-quark fragmentation correlator and and they are related to
the corresponding FFs and quark-quark correlators as the following [43]:

E

z
=
Ẽ

z
+

m

Mh
D1 (3.21)
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G⊥

z
=
G̃⊥

z
+

m

Mh
H⊥

1 (3.22)

D⊥

z
=
D̃⊥

z
+D1 (3.23)

H

z
=
H̃

z
+

k2T
M2

h

H⊥
1 (3.24)

The fragmentation functions appearing above describe the fragmentation process by containing the information
on how partons produced in hard-scattering processes are turned into an observed colorless hadronic bound
final-state. D1 describes the probability of a (spin-averaged) quark to produce a hadron, G1 and H1 describe
the difference of probabilities that a polarized quark produces a polarized hadron with the same or the opposite
polarization in the longitudinal and transverse case respectively. The FFs with the ⊥-denotement stand for a
transverse parton or hadron polarization, while the hadron or parton is spin-averaged. For example the Collins
function H⊥

1 describes the fragmentation of a transversely polarized quark into an unpolarized hadron. [48]

3.1.4 Beam spin asymmetry and SIDIS structure functions
The main focus of this study will be the structure function F sinϕ

LU , which is related to the quark-gluon correlations
in the proton. The F sinϕ

LU has been studied in several theoretical and phenomenological works. [49–57] To sum
up the previous section: On the TMD side the most important contributors are the Boer-Mulders function
h⊥1 , which is a leading-twist time-reversal-odd TMD [58] as well as the higher twist counter part of the Sivers
function g⊥, a twist-3 time-reversal-odd TMD [53,59] and the chiral-odd twist-3 PDF e(x) which can be related
to the transverse force acting on the transversely polarized quarks in an un-polarized nucleon [60, 61]. In each
term, a TMD is convoluted with a twist-2 or 3 fragmentation function like G̃⊥, Ẽ and the Collins function H⊥

1

[62]. At leading order, each convolution represents a pure twist-3 term.
Previous experiments like CLAS [63] and HERMES [64] showed that kaon signals generally follow the pion
signals, but they have larger values. With these measurements the s-quark can be accessed, but due to the
low statistics the uncertainties are large and the kinematic bins are wide. The high statistics on an extended
kinematic range, which is available with the new CLAS12 data, enables a fully differential analysis for the first
time and therefore provides an excellent basis for the extraction of TMDs and fragmentation functions in global
fits as well as an extended understanding of the effects which take place in the different kinematic regions. To
access the s-quarks, a flavor separation (i.e. measuring and comparing results for both the pions and kaons) is
required. In the valence quark picture the charged pions are composed of ud̄ and dū and the charged kaons are
composed of us̄ and sū. By measuring the SIDIS process for these particles, the TMD of the strange quark can
be accessed.
By introducing the moments Asinϕ

LU , Acosϕ
UU and Acos 2ϕ

UU the cross-section from Eq. 3.14 can be written as:

dσ = dσ0(1 +Acosϕ
UU cosϕ+Acos 2ϕ

UU cos 2ϕ+ λeA
sinϕ
LU sinϕ) (3.25)

Based on this definition, the beam spin asymmetry (BSA) can be written as:

BSA =
σ+ − σ−

σ+ + σ− =
Asinϕ

LU sinϕ

1 +Acosϕ
UU cosϕ+Acos 2ϕ

UU cos 2ϕ
(3.26)

Be defining the total ϕ-integrated cross section FUU = FUU,T + ϵFUU,L, these three moments can be related to
the structure functions:

F sinϕ
LU

FUU
=

Asinϕ
LU√

2ϵ(1− ϵ)
(3.27)

F cosϕ
UU

FUU
=

Acosϕ
UU√

2ϵ(1 + ϵ)
(3.28)
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F cos 2ϕ
UU

FUU
=
Acos 2ϕ

UU

ϵ
(3.29)
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3.2 Experimental setup
The data-set used in this work was taken at Jefferson Laboratory, Newport New, Virginia. The electron beam
was provided by the Continuous Electron Beam Accelerator Facility (CEBAF) [65–67]. The electron helicity
was flipped periodically with a frequency of 33 Hz which provided a practically equal luminosity for both helicity
states. To further minimize systematic effects, a half wave plate was used to switch the definition of positive
and negative helicity periodically for certain run periods. The beam polarization was measured regularly with
a Møller polarimeter in the beam-line upstream of the detector. The measurements were performed with the
upgraded CEBAF Large Acceptance Spectrometer (CLAS12) [67, 68]. The CLAS12 detector setup consists of
a central detector (CD), surrounding the liquid hydrogen target cell and a dedicated forward detector (FD).
The forward detector starts with a high threshold Cherenkov counter (HTCC), which is used as a trigger for
electrons. The tracking is provided by a torus magnet and a drift chamber system (DC) with 3 regions before,
inside and after the magnet coils. The torus coils split the detector in 6 independent sectors. A low threshold
Cherenkov counter (LTCC) available in 2 sectors and a Ring-imaging Cherenkov detector (RICH) available in
1 sector can be used for particle identification in addition to the forward time of flight system (FTOF), which
provides the standard particle ID. Finally an electromagnetic calorimeter (ECAL) is used for the detection and
identification of electrons and photons. The central detector is equipped with a solenoid magnet, a micromegas
(MM) and a barrel silicon tracker (SVT) as well as a central time-of-flight system (CTOF) and a neutron
detector (CND). To extend the detector coverage to small Q2, a forward tagger (FT), consisting of a tracker, a
hodoscope and an electromagnetic calorimeter was installed in the most forward region around the beam-line.
This section will give a detailed overview of the experimental setup.

3.2.1 Accelerators
The CEBAF accelerator at Jefferson Lab is composed of 2 linear accelerators (linac) with 25 cryomodules and
recirculating arcs arranged in a racetrack shape. It provides an extremely high duty factor and an average
beam current of up to 200 µA to the 4 experimental halls. This means that the beam is continuous on the
scale of the integration time of the detectors. This high duty factor is achieved by the use of superconducting
radio-frequency cavities (SRF). The electron beam is a continuous train of short 100 ps pulses recurring at 1497
MHz. The delivery of electron pulses to to the Halls occur at 249.5 MHz during 4 hall operation and 499 MHz
during 3 hall operations. The electrons are created from a GaAs photo-cathode gun which is illuminated with 4
lasers. The 850 nm lasers have a phase difference with respect to each other operating at 250 MHz. This offset
is used to separate the beam delivered to the halls after the acceleration. The electrons, injected to CEBAF,
gain an energy of 1.1 GeV per pass in each linac. The bunches can make up to 5 passes, which means that the
beam energy received by Halls A, B and C can be as high as 11 GeV. The beam energy in Hall D can reach 12
GeV, since the beam makes another half pass to reach that hall. [69] Figure 3.3 shows the schematic overview
of CEBAF.

Figure 3.3: Schematic overview of CEBAF at Jefferson Lab [67]
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3.2.2 The CLAS12 detector
CLAS12 is a fixed target experiment and this is reflected in the detector design shown in Figure 3.4. The RG-A
target system consists of a liquid hydrogen target cell and an associated cryogenic system. The target is located
from -5.5 to -0.5 cm in z-axis of the CLAS12 coordinate system. [70]

Figure 3.4: Schematic overview of the CLAS12 setup [67]

Since this analysis only uses the Forward Detector, the Central Detector and the Forward tagger will not be
discussed in detail. The FD covers the polar angles (θ) from 5◦ to 35◦, except Panel-2 of the FTOF system,
which covers up to 45◦. The detectors are split by the torus magnet to 6 independent sectors, each covering 60◦
azimuth angle (Φ). The numbering of the sectors follow a counterclockwise convention starting with sector 1,
which has its middle at 0◦. The peak magnetic fields in the solenoid and in the torus superconducting magnets
surrounding the detectors for momentum measurement are 5 T and 3.58 T, respectively. The integrated magnetic
field strengths are 7 Tm and 0.54-2.78 Tm. The later values correspond to 40◦ and 5◦ in polar angle. [70]
The HTCC is the detector closest to the target. It’s main purpose is to distinguish electrons and charged pions
below 4.9 GeV and to serve as a trigger for the scattered electrons as part of the standard PID. It can also be
used to separate kaons and pions above ∼4.5 GeV as a supplementary PID method. [71]
The DC system measures the momentum of charged particles in the magnetic field. It consists of 3 regions,
each encompassing 2 superlayers, in every 6 sectors. Each superlayer has 6 layers with 112 wires per layer. The
regions are approximately 2, 3 and 4 m away from the target. The DC has a spacial resolution of 250-350 µm
and a momentum resolution of dp/p> 1%. The angular resolution is 1 mrad in θ and 1 mrad/sin θ in Φ. [71]
The time information of the DC can also be utilized in additional PID refinements, since it has a very good
time resolution of a few ns [72].
The main purpose of the LTCC and of the RICH detectors is to separate kaons and pions above 3 GeV, where
the standard TOF PID is not sufficient. During the runs used in this work, only 2 sectors of the LTCC were
filled with gas and used for data taking. The RICH which is planned to replace the LTCC was installed in one
sector and its reconstruction is limited to a certain kinematic range [73]. The reconstruction is currently only
reliable for forward scattered particles which have polar angles less than 15◦. This is detailed in section 3.4.9.
Although these detectors are not used during this analysis to extract any physics, they are used to validate the
pion contamination in the kaon sample of the Monte Carlo and also to estimate the capability of the machine
learning method which improves the standard PID and is based on TOF information from multiple detectors.
Both detectors have a reliable kaon-pion separation above 3-4 GeV up to 9 GeV for LTCC and 6 GeV for RICH.
The pion/kaon rejection factor of the RICH is claimed to be less than 500. [71]
The FTOF system provides the standard PID for charged pions, kaons and protons. It achieves a 4σ separation
for kaon-pion up to 2.8 GeV and for kaon-proton up to 4.8 GeV. It consists of 3 arrays of counters in each sector.
The first array, panel-1a, is made of 23 counters and has a time resolution of 90-160 ps, while the second one,
panel-1b, is made of 62 counters providing 60-110 ps time resolution. Panel-2, which covers the larger polar
angles, with a time resolution of 140-165 ns consists of 5 counters. [71]
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The outermost detector package is the electromagnetic calorimeter, located approximately 7 m from the target.
It consists of the legacy ECAL of CLAS6, which has 2 layers (ECin and ECout), complemented with the pre-
shower calorimeter (PCAL). Its main purpose is to identify electrons, photons, neutral pions and neutrons.
All components are sampling calorimeters consisting of six modules. Each module has a triangular shape and
is made of 54 layers (15/15/24-PCAL/ECin/ECout) of 1 cm thick scintillators segmented into 4.5 cm/10 cm
(PCAL/ECAL) wide strips and sandwiched between 2.2 mm thick lead sheets. This gives a total thickness
of around 20.5 radiation lengths. The scintillator layers are grouped into 3 readout views (u,v,w) with 5/5/8
(PCAL/ECin/ECout) layers per view. The whole system gives an energy resolution of 10%/

√
E, a position

resolution of 0.5 cm and a time resolution of 500 ps.

3.2.3 Data acquisition
The CLAS12 Data Acquisition system (DAQ) collects the data from all of the CLAS12 detector components.
This network-based system collects data from more than 100 front-end components including the trigger system
signals, assembles them into events, monitors the data quality and records the data to tapes. The typical
data rates are 15-30 kHz and 500-1000 MByte/s with a livetime above 90%. The CLAS12 DAQ software is a
modular and multi-threaded C/C++ library based on the CEBAF Online Data Acquisition (CODA) system.
The front-end components, also known as Readout Controllers (ROC), are commercial VME/VXS crates with
Intel-based controllers and custom boards, commercial Linux servers and JLab-designed VXS Trigger Processor
(VTP) boards. All of these components are connected via TCP sockets over Ethernet to the Event Builder
(EB) component. The events built are then transferred through the Event Transfer (ET) system to the Event
Recorder (ER). The CLAS12 Event Display (ced) is also part of the DAQ system. It is a ROOT [74] based
customizable GUI, that allows online data monitoring during the data taking. [75]
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3.3 Preparation of the data set
This section summarizes the treatment of the data-set used during this analysis. The analysis is based on the
common analysis procedure of the CLAS12 Collaboration [76].

3.3.1 Analyzed data-set
The data-sets used in this work was taken using a polarized electron beam, interacting with an un-polarized
liquid hydrogen target during the RG-A run period in fall 2018 and in spring 2019. 3 different data-sets were
analyzed. The first contains 174 runs from the run range between 5032-5419. It had an in-bending torus field
with 100% field strength. The beam current varied between 40 nA and 55 nA. The beam energy was 10.6041
GeV. The second data-set contains 176 runs from the run range between 5422-5666. It had an out-bending torus
field with 100% field strength and the beam energy was also 10.6041 GeV. The beam current varied between
40 nA and 59 nA. The third data-set contains 121 runs from the run range between 6616-6783. It had an
in-bending torus field with 100% field strength and the beam energy was 10.1998 GeV. The beam current varied
between 40 nA and 50 nA.

3.3.2 Quality checks and cuts
A series of quality checks have been applied to the data set on a file by file basis, following the common quality
criteria. The common QA is primarily based on the FC-charge normalized electron yield (N/F), but also
considers sector losses as well as irregularities of the live time and miscellaneous defects.
First a trigger electron is identified with a |χ2

PID| < 3 per event. The number of trigger electrons N is expected
to scale proportionally with F, the accumulated FC charge. Normalizing N by F accounts for fluctuations in
beam conditions, allowing N/F to be a metric for detecting changes in the data acquisition conditions. For
each file the difference between the minimum and maximum accumulated FC charge gated by the DAQ is taken
as F. For every sector and epoch (time period of runs where N/F was relatively constant) the Interquartile
Range (IQR), which is the difference between the 75th and 25th percentiles, is calculated. Files are identified
as outliers if their N/F falls outside the 75th or the 25th percentiles by more than 4 IQR. This identification is
enhanced by considering the statistical uncertainty of N/F, by assuming a Poisson distribution of both F and
N. If a certain N/F is outside of the above described cut within its uncertainty, then it is marked as a marginal
outlier, instead of a total outlier. If N/F is a total outlier, but it is the first or last file of a run, then it is
instead marked as a terminal outlier, because this behavior is caused by the DAQ. If there is a sudden, visible
and consecutive drop in the N/F in one or more sectors, then the files are marked as sector loss.
The setting "OkForAsymmetry" combines multiple criteria to remove files which could influence the asymmetry
extraction: Total outliers represent an issue effecting all sectors, like an empty target test, and thus they are
removed. Although terminal outliers should have no impact on the extracted symmetries, they are still removed
for safety. Also marginal outliers are rejected for the same reason. As sector losses can introduce azimuthal
modulations they are removed as well. Also any additional files were removed if they were marked during the
data taking as having special issues, such as a DAQ test, high beam trip rate, empty target, no helicity info or
anything similar.
To apply the data quality cut, the setting "OkForAsymmetry" has been selected from the common quality
database. Since the quality assessment checks the data quality on a file by file basis, in most cases no complete
runs are rejected; only single files which did not pass the defined quality criteria were rejected from the analysis.
[76]

3.3.3 Fiducial cuts
To ensure that charged particles and photons are only detected in regions of the fiducial volume in which their
momentum, energy and angular information can be reconstructed in a reliable way, a series of fiducial cuts has
been applied. This way the particles reconstructed by unreliable parts (usually the edges) of the detectors are
removed. An example would be the uncertain energy reconstruction in the periphery of the calorimeter due to
shower leakage or the inaccurate drift-time reconstruction in the edge of the drift chamber due to the irregular
electric field.
For electrons, a homogeneous, loose PCAL fiducial cut is used, requiring that v and w are larger than 9 cm.
The effect of the PCAL fiducial cuts on the hit distribution of electrons in the PCAL is shown in Fig. 3.5. For
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electrons and hadrons, drift chamber fiducial cuts on the 3 regions are used. The effect of the DC fiducial cuts
on the hit distribution in the single DC regions is shown in Fig. 3.6 for electrons, in Fig. 3.7 for positive kaons
and in Fig. 3.8 for negative kaons for the inbending case.

Figure 3.5: Hit distributions of electrons in the PCAL, the distribution without the PCAL fiducial cut is shown
as black points, while the distribution after the cut is overlaid as colored points

Figure 3.6: Hit distributions of electrons in the 3 regions of the drift chambers with inbending setting (region
1: left, region 2: center, region 3: right), the distribution without the DC fiducial cut is shown as black points,
while the distribution after the cut is overlaid as colored points

Figure 3.7: Hit distributions of positive kaons in the 3 regions of the drift chambers with inbending setting
(region 1: left, region 2: center, region 3: right), the distribution without the DC fiducial cut is shown as black
points, while the distribution after the cut is overlaid as colored points

The CLAS12 common analysis procedure defines only the inbending fiducial cuts. [76] The outbending fiducial
cuts were determined for electrons and hadrons with exactly the same method used for inbending electrons: In
bins of x and y the average tracking χ2/NDF is calculated. The x distributions of averaged χ2/NDF in slices
of y are analyzed. 15 slices are created between 25.7 cm and 151.2 cm, 28.8 cm and 262.8 cm and 31.8 cm and
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Figure 3.8: Hit distributions of negative kaons in the 3 regions of the drift chambers with inbending setting
(region 1: left, region 2: center, region 3: right), the distribution without the DC fiducial cut is shown as black
points, while the distribution after the cut is overlaid as colored points

355.8 cm in region 1, 2, and 3, respectively. An example for the resulting distributions can be seen in Fig. 3.9.
The center of the distributions are fitted with a constant around x = 0 cm. Then the x values are determined
where a 20% increase or a 50% decrease in the averaged χ2/NDF level is reached compared to the fitted value,
whichever occurs first. Similar to the inbending case, in case of electrons in region 1 a 5% increase or a 10%
decrease determines the x values.
After the removal of outliers the points are fitted with x = a+ b ∗ y. An example can be seen in Fig. 3.10.
Fig. 3.11 shows the resulting cuts in x−y coordinates in region 3 for all sectors. The cuts are sector independent,
which is illustrated by Fig. 3.12.
The result of the cuts for electrons can be seen in Fig. 3.13, for positive kaons in Fig. 3.14 and for negative
kaons in Fig. 3.15. The black points are the hits without the fiducial cuts and the colored ones are those that
remained after applying the cuts. The survival rates can be found in Table 3.2.
In case of inbending hadrons, the local Φ and θ was used instead of X and Y. 15 slices are created between
5.2◦and 30.4◦in θ. To the θ-Φ values obtained this way an additional fix point is added at θ = 40◦and Φ = ±
27.5◦to reduce the influence of the fluctuations present at high θ values to the asymptotic behavior of the fit
function, which was chosen to be Φ = a+ b · log θ+ c · θ+ d · θ2. This method allowed a much better description
of the observed borders of the distributions, but it was not stable enough to be used for the other cases. The
method is illustrated on figure 3.16.
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Figure 3.9: Tracking χ2/NDF distributions as a function of local X in Y bins in region 1 sector 1 for outbending
electrons

Figure 3.10: An example for the fitting of the cut boundary in region 3 sector 3 for outbending electrons
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Figure 3.11: Average tracking χ2/NDF distributions in local X-Y bins and the fiducial cuts sector by sector in
region 3 for outbending electrons

Figure 3.12: Sector comparison of fiducial cuts in region 1 (left), 2 (middle) and 3 (right) for outbending
electrons

Electron π+ π− K+ K−

Region 1 87.6 % 97.4 % 96.8 % 96.3 % 93.7 %
Region 2 87.4 % 95.9 % 95.9 % 95.9 % 96.0 %
Region 3 96.4 % 97.4 % 98.6 % 96.3 % 97.6 %

Table 3.2: Survival rates of the outbending DC fiducial cuts
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Figure 3.13: Hit distributions of electrons in the 3 regions of the drift chambers with outbending setting (region
1: left, region 2: center, region 3: right). The distribution without the DC fiducial cut is shown as black points,
while the distribution after the cut is overlaid as colored points.

Figure 3.14: Hit distributions of positive kaons in the 3 regions of the drift chambers with outbending setting
(region 1: left, region 2: center, region 3: right). The distribution without the DC fiducial cut is shown as black
points, while the distribution after the cut is overlaid as colored points.

Figure 3.15: Hit distributions of negative kaons in the 3 regions of the drift chambers with outbending setting
(region 1: left, region 2: center, region 3: right). The distribution without the DC fiducial cut is shown as black
points, while the distribution after the cut is overlaid as colored points.

3.3.4 Event Builder PID
As a basis for the particle identification, the PID information provided by the event-builder (EB) [77] is used.
The EB service is part of the COATJAVA framework written in Java using the CLARA framework [78].
The reconstruction of the particles starts with the track reconstruction in the DC. For each reconstructed track
a charged particle is created. For each track an association with the other non-tracking detectors is performed.
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Figure 3.16: The fixed points determined in black and the fitted cut boundaries in red on the left. An example
for the fitting of the cut boundary in region 3 sector 1 for inbending π+ on the right. The local angles are
defined as polar and azimuth angles of the local X, Y, and Z coordinates.

This association is based on loose geometric matching on the distance of closest approach with fixed windows.
After all charged particles are matched, the neutral candidates are created from the remaining unassociated
calorimeter responses. The event start time is determined from the RF signal and the best detected particle.
This particle must have a track in the DC with an associated FTOF hit in panel 1B or 1A and it must be
identified as an electron or if there is none, then a charged pion. [77]

Electron identification

The electrons are the first particles to be assigned. They must have an associated FTOF hit, create at least 2
photoelectrons in the HTCC, deposit at least 60 MeV energy in the PCAL and the measured sampling fraction
(ratio of the measured momentum and the measured total energy in all calorimeter layers) is consistent with the
parameterized momentum-dependent sampling fraction within 5 sigmas. Both the sampling function and the
resolution is parametrized with the same functional form: SF = p1(p2 + p3/E + p4/E

2). The fitted parameters
are stored in the CLAS Calibration Database (CCDB) and are regularly updated. [77]

Hadron identification

All other charged particles which have an FTOF hit and do not satisfy the conditions for electrons are identified
as a pion, a kaon, a proton or a deuteron. The identification is purely based on the difference between the event
start time and the vertex time of the given particle. Only one FTOF timing response is used with the following
prioritization: 1B, 1A, 2. A PID χ2 value is assigned as the number of sigmas from the expected vertex time
for the best hypothesis (∆t/σ). [77]

3.3.5 PID refinements
Since the EB PID is relatively loose, additional PID refinements have been added to improve the purity of the
SIDIS sample. The refinements are used commonly for most CLAS12 analyses [76]. This section will provide a
short summary.

Electron PID refinement

Since an electron scattering experiment has been performed, the detection of the scattered electron is a key
requirement for this analysis. In addition to the event-builder, the following cuts have been applied:

• PCAL minimum energy deposition cut

• Electromagnetic calorimeter sampling fraction cut

• z-vertex position cut
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PCAL minimum energy deposition cut

The minimal energy deposition of the PCAL, which is set to 0.06 GeV in the event-builder has been tightened
to 0.07 GeV to improve the pion rejection from the electron sample. The cut is shown on figure 3.17. [76]

Figure 3.17: Energy deposition in ECin + ECout vs the energy deposition in the PCAL [76]

Electromagnetic calorimeter sampling fraction cut

A cut on the sampling fraction is important to control the pion contamination in the electron sample. Based on
a fit of the total sampling fraction (EPCAL +Einner +Eouter)/p in momentum slices, a momentum dependent
3.5 σ band cut around the mean value is applied. This cut already helps to reduce the pion contamination.
However detailed contamination studies showed, that above the HTCC threshold at 4.5 GeV a significant pion
contamination is present. Therefore another cut has been placed on the correlation between the sampling
fractions of the inner calorimeter and the PCAL. Detailed studies showed, that a diagonal cut on Einner

p <

0.2− EPCAL

p can remove most of the remaining pion contamination above the HTCC threshold. Therefore this
additional cut has been applied for p > 4.5 GeV. The effect of the cut is illustrated by figure 3.18 [76]

Figure 3.18: Correlation between the sampling fraction of the inner calorimeter and the PCAL before any cut
(left) and after a the 3.5 σ sampling fraction cut and the triangular cut on this correlation for p > 4.5 GeV
(right). [76]
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z-vertex position cut

For the in/outbending data set, only electron candidates which have a z-vertex vz ∈ [-13 cm, +12 cm] or [-
18 cm, +10 cm] are accepted respectively to reject electrons originating from interaction within the beam pipe
or with the exit window of the target cell. The distributions are shown on figure 3.19. [76]

Figure 3.19: Distribution of the z-vertex position for electrons with an inbending torus field (left) and with an
outbending torus field (right) with the cuts shown in red. [76]

Hadron PID refinement

The hadron identification of CLAS is mainly based on the time of flight information from the time of flight
counters (TOF). In the following paragraphs the refinement cuts are shortly summarized. In addition to the
event-builder, the following cuts have been applied:

• A cut on the vertex difference between electrons and hadrons

• |χ2
PID| < 3 from the event-builder

A cut on the vertex difference between electrons and hadrons

To reject hadrons which are produced outside the target region, a cut on the vertex difference between electrons
and hadrons is applied. A cut is placed at |v(electron)z − v

(hadron)
z | < 20 cm. [76]

Figure 3.20: Vertex difference between the positive kaons and the electron. The cut positions are marked as
vertical red lines. [76]
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|χ2
PID| < 3 from the event-builder

As mentioned previously, the event-builder assigns a χ2
PID value as the number of sigmas from the expected

vertex time for the best hypothesis (∆t/σ) to identified hadrons. To reject contamination from other hadrons
a |χ2

PID| < 3 was placed, which is especially important at high momenta. A more detailed description and
analysis can be found in section 3.4.6.

3.3.6 Total survival rates of the fiducial cuts and PID refinements
The total survival rates of the PID refinements and fiducial cuts for the experimental data and the MC simulation
are summarized in Table 3.3 for electrons and in Tables 3.4 and 3.5 for kaons. The output of the event-builder
PID is considered as 100 % since it is used as a basis for the cuts and refinements. A comparison between
experimental data and MC simulation is given.

inbending data inbending MC outbending data outbending MC
PCAL fiducial 89.8% 83.1% 99.9% 99.6%
DC region 1 fiducial 98.3% 85.0% 91.1% 87.4%
DC region 2 fiducial 96.2% 92.9% 93.8% 88.2%
DC region 3 fiducial 99.3% 98.0% 99.3% 97.5%
All applied cuts 79.1% 65.6% 82.8% 76.3%

Table 3.3: Survival rates for electrons. Except for the last row, the survival rates are for the stated cut only.

inbending data inbending MC outbending data outbending MC
DC region 1 fiducial 97.0% 97.5% 96.7% 88.3%
DC region 2 fiducial 99.8% 99.5% 95.5% 97.7%
DC region 3 fiducial 99.8% 98.7% 96.1% 96.7%
All applied cuts 82.0% 83.2% 71.4% 71.2%

Table 3.4: Survival rates for positive kaons. Except for the last row, the survival rates are for the stated cut
only.

inbending data inbending MC outbending data outbending MC
DC region 1 fiducial 94.3% 94.1% 91.3% 91.7%
DC region 2 fiducial 96.5% 97.6% 93.7% 94.4%
DC region 3 fiducial 96.3% 98.1% 94.9% 86.2%
All applied cuts 63.7% 61.0% 79.5% 60.2%

Table 3.5: Survival rates for negative kaons. Except for the last row, the survival rates are for the stated cut
only.
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3.3.7 Selection of the topology
After the fiducial cuts and particle ID refinements are applied, only events are considered which have at least
one good (survived the fiducial and refinement cuts) electron. In addition it is required, that the event contains
at least one good kaon. If an event contains more than one kaon, all of them are used for the extraction of the
BSA. In case of multiple electrons, the one with the highest energy is used in an event.
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3.4 Improving kaon-pion identification with Machine Learning Tech-
niques

Above 3 GeV momentum the kaons in CLAS12 are almost indistinguishable from pions with a pure time of flight
based particle identification as shown in Figure 3.21. Machine learning methods which could complement the
other traditional particle identification methods were investigated. In this section these methods are described
and compared, followed by detailed checks of the best method.
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Figure 3.21: β versus momentum for positively charged particles

3.4.1 Monte Carlo Matching
For the training of the machine learning algorithms, a common CLAS12 large scale MC SIDIS production was
used [79]. The same amount of kaons and pions were used for the training. To match the detected particles
with the generated ones the following procedure was applied:
The first 60 reconstructed particles and the first 60 generated particles of each event were considered during
the matching. Those reconstructed particles which had a momentum of 0 and those generated particles which
had an energy of 0 were removed from the sample. A 60x60 distance matrix was initialized with a very
high value. The distance in 3 momenta was calculated for each generated and reconstructed particle pair:
d =

√
(prx − pgx)2 + (pry − pgy)2 + (prz − pgz)2. Also the ϕ and the θ difference was calculated for each pair. If

the ϕ difference was less than 2◦ and the θ difference was less than 1◦ than the difference in momenta was put
into the distance matrix at the corresponding position. After all pairs were processed the smallest value in the
matrix was found and the corresponding particles were matched. All matrix elements in that row and column
were set to a very high value. This procedure was repeated while the found minimum value was less than
5. Since most of the events usually contain just a few high energetic electrons, kaons or pions, this matching
procedure is reliable and applicable for this sample.

3.4.2 Event selection
Those events were selected where at least one electron with an energy of at least 2 GeV was reconstructed. The
matched positive kaons and pions were used during the training, if they satisfied the following criteria: azimuth
angle is 5◦ < θ < 35◦, 0 < β < 1.1, energy depositions, time information and cluster momenta from the ECal
and the number of photoelectrons in the HTCC are non negative and none of the values are NaN. This way it
is assured that the machine learning algorithms are not mislead by wrongly reconstructed values.
The same number of kaons and pions were selected randomly for training and for validation. All kaons were
used, 150000 for validation and all the rest in the input file for training. By using the same number of signal
and background, the machine learning method will really try to label the input based on correlations in the
input variables and not just label everything with the label that has the majority in the sample.
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3.4.3 Used variables
The following variables were used as input during the training:

• EventBuilder PID

• Momentum and β

• Deposited energies in the 3 calorimeter layers (ECin, ECout, PCAL)

• Calorimeter time information: path/time

• Cluster moments: m2u, m2v, m2w, m3u, m3v, m3w

• HTCC number of photoelectrons and time information: path/time

• Energy depositions and time information (path/time) in the 3 FTOF layers

The simulated and measured distributions of these variables were compared and the only difference found was
a consequent shift in the times.
To check the effect of the variables, the best method (described in section 3.4.5) was trained with removing the
variables one by one. The resulting ROC curves and the obtained contaminations from simulations (described
in section 3.4.6) can be seen in Figure 3.22. The resulting curve is red, when all variables are used during the
training, yellow, when the EventBuilder PID and the χ2

PID is not used, green, when the FTOF is not used, blue,
when the calorimeter is not used, purple, when the HTCC is not used and black, when only the momentum
and β is used. In the contamination plot the results with the EventBuilder PID are plotted in dark blue for
comparison.
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Figure 3.22: Comparison of the effect of the different variables used for training (The resulting curve is red,
when all variables are used during the training, yellow, when the EventBuilder PID and the χ2

PID is not used,
green, when the FTOF is not used, blue, when the calorimeter is not used, purple, when the HTCC is not used
and black, when only the momentum and β is used. In the contamination plot the results with the EventBuilder
PID are plotted in dark blue for comparison.)

Here it can be observed, that the inclusion of the Ecal and the FTOF variables improves the separation above 3
GeV. Below that they have little effect. The HTCC variables decrease the contamination significantly above 4.5
GeV and have absolutely no effect below that momentum, as expected. Using only the momentum and β gives
good results below 4 GeV. Above that the neural network removes all statistic, since it is unable to reliably
distinguish kaons and pions. The inclusion of the EventBuilder PID and χ2

PID doesn’t influence the results, but
they reduce the training speed.
The separation power of the variables measured by TMVA during the training of the best method can be seen
in Table 3.6. The variables with the most separation power are the ones which contain time of flight information
from different sources. Also the energy depositions are important for separation kaons from pions.
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Rank Variable Separation power
1 pid 7.983e-01
2 beta 3.394e-01
3 p 1.364e-01
4 FTOF path layer1/FTOF time layer1 7.478e-02
5 FTOF path/FTOF time 6.414e-02
6 Cal PCAL path/Cal PCAL time 5.105e-02
7 FTOF path layer3/FTOF time layer3 2.984e-02
8 Cal ECin path/Cal ECin time 2.370e-02
9 FTOF energy layer3 2.333e-02
10 Cal energy total 2.147e-02
11 Cal ECout path/Cal ECout time 1.977e-02
12 Cal PCAL energy 1.738e-02
13 FTOF energy 7.069e-03
14 Cal PCAL m2u 4.811e-03
15 Cal PCAL m2w 4.509e-03
16 Cal PCAL m2v 4.103e-03
17 CC HTCC nphe 3.654e-03
18 Cal ECin energy 3.529e-03
19 FTOF energy layer1 2.954e-03
20 Cal ECin m2u 2.505e-03
21 CC HTCC path/CC HTCC time 2.301e-03
22 Cal ECin m2w 1.990e-03
23 Cal ECin m2v 1.922e-03
24 Cal ECout energy 1.869e-03
25 Cal PCAL m3w 1.646e-03
26 Cal PCAL m3u 1.621e-03
27 Cal PCAL m3v 1.582e-03
28 chi2pid 8.683e-04
29 Cal ECout m2u 6.321e-04
30 Cal ECout m2v 4.933e-04
31 Cal ECout m2w 4.594e-04
32 Cal ECout m3v 3.670e-05
33 Cal ECout m3w 3.665e-05
34 Cal ECout m3u 2.952e-05
35 Cal ECin m3w 2.747e-05
36 Cal ECin m3u 2.472e-05

Table 3.6: Separation power of the variables used during the training

3.4.4 Root TMVA
The root TMVA (Toolkit for Multivariate Data Analysis with ROOT [80]) was chosen as a machine learning
environment for building, training and evaluating multivariate classification algorithms. It uses root trees as
input and output format and it is easy to include the application of the methods into a C++ analysis code. For
these reasons TMVA was an ideal choice in our case.

3.4.5 Method selection and description
Many methods available in TMVA were tested. The settings can be found in Table 3.7. The methods were
tested on a smaller dataset. According to Figure 3.23, the best method is the custom built neural network
across the whole momentum range.
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Type Preprocessing Settings

BDT - Boosted Decision Trees

NTrees=200:MinNodeSize=2.5%:MaxDepth=2:
BoostType=AdaBoost:AdaBoostBeta=0.5:
UseBaggedBoost:BaggedSampleFraction=0.5:
SeparationType=GiniIndex:nCuts=20

MLP - Multi-Layer Perceptron Normalization NCycles=100:HiddenLayers=N+5:TestRate=5:
!UseRegulator

Fisher - Fisher determinant Gaussianisation
+Decorrelation

RuleFit
DNN - Deep Neural Network Normalisation Layout=TANH|128,TANH|128,TANH|128

Table 3.7: Machine learning methods tested

Whole momentum range 1 GeV < p < 2 GeV

2 GeV < p < 3 GeV 3 GeV < p < 4 GeV

Figure 3.23: ROC curves comparing different methods and momentum ranges. The detailed description of the
methods can be found above in Table 3.7.

This fully connected neural network consist of 3 hidden layers with 128 neurons per layer. The neurons have
tanh activation function, except the last one, which is linear. The weights were initialized using the Xavier
initialization method. They were optimized using the ADAM optimizer with cross-entropy loss function, with
a batch size of 30 and with a learning rate of 10−5. The input variables were normalized to 0-1 interval. To
prevent over-fitting, the training was stopped after 50 steps, after both the training and the validation error
started to rise (Figure 3.24). The resulting ROC curve can be seen in Figure 3.25 and the DNN response in
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Figure 3.26. To achieve a clean sample, but to still keep reasonable statistic, the optimal cut on the response
was determined to be 0.96. The efficiency and contamination as a function of the DNN response based on MC
for K+ is shown in Figure 3.27.

Training error Validation error

Figure 3.24: Errors during the training

ROC curve for the whole momentum range ROC curves at different momenta ranges

Figure 3.25: ROC curves of the final selected method
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Figure 3.26: DNN response for kaons (red) and for pions (blue)
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Figure 3.27: Efficiency (black) and contamination (red) as a function of the DNN response based on MC for
K+.
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3.4.6 Checks with simulations
The performance of the neural network was tested on another Monte Carlo sample. The newest large scale
SIDIS production was used for this purpose. The same matching and event selection was applied as previously,
described in sections 3.4.1 and 3.4.2. The achieved efficiencies and the contaminations were measured for
different pid criteria and methods:

• EventBuilder PID

• EventBuilder PID with |χ2
PID| < 3

• EventBuilder PID with momentum dependent χ2
PID cut

• EventBuilder PID with |χ2
PID| < 3 and with neural network PID

A momentum dependent structure can be observed in the χ2
PID distribution of the kaons. These χ2

PID values
were determined at different momentum values for both the pion and proton sides of the distribution. These
points were fitted and the resulting functions are the borders of the momentum dependent χ2

PID cut: χ2
PID <

0.122 + 7.1 · e−0.51·p and χ2
PID > −0.35− 10.08 · e−0.65·p. The cut borders can be seen in Figure 3.28.

The reconstruction efficiency is defined as number of reconstructed mc matched kaons / number of generated
kaons, while the contamination is the number of reconstructed mc matched pions reconstructed as kaons /
number of all reconstructed kaons. The measured values are shown in Figure 3.29. The red is the EB PID, the
green is the EB PID with |χ2

PID| < 3, the black is with momentum dependent χ2
PID cut and the blue is the EB

PID with neural network.

χ2
PID distribution for kaons χ2

PID distribution with the cut

Figure 3.28: Momentum dependent χ2
PID cut

The |χ2
PID| < 3 criteria lowers the contamination at low momentum significantly and it only reduces the

efficiency slightly. The momentum dependent |χ2
PID| cut improves things only below 3 GeV and it shouldn’t

be used above that. With the neural network, the contamination can be kept below 20%. The efficiency drops
continuously to 20% at 4 GeV, but it rises above 4.5 thanks to the HTCC. The results are very similar for both
in- and outbending data.
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Figure 3.29: Kaon contamination and efficiency with different PID methods (see the description of the colors
in the text above)

3.4.7 Checks with an exclusive channel
By using exclusive events, the pion rejection efficiency of the neural network can be checked. For that purpose
events where at least one electron and at least one pion and at least one neutron was detected were selected.
The following exclusivity cuts were used:

• 0.8 GeV < Mmissing n0 < 1.2 GeV

• −0.4 GeV 2 < M2
missing π < 0.5 GeV2

• −0.01 GeV 2 < M2
missing tot < 0.005 GeV2

• Emissing < 0.5 GeV

• pT, missing < 0.15 GeV

• cone angle difference < 3◦

The same procedure was repeated with kaons treated as pions. After the tight exclusivity cuts it is very likely
that all these EB kaons were actually misidentified pions. Figure 3.30 shows that the neural network removes
almost all pions that were correctly identified by the EventBuilder and it also removes most of the misidentified
pions as well below 5 GeV momentum. The ratio of the misidentified pions removed by the neural network is
77.7% in the whole momentum range.
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Figure 3.30: Exclusive pions without (blue) and with (red) kaon neural network ID cut

3.4.8 Checks with the LTCC
The LTCC which is installed in sectors 3 and 5 can separate kaons and pions above 3 GeV. The number of
photoelectrons in the LTCC was plotted against the output of the neural network in Figure 3.31. Here we can
observe that above 0.9 return value the number of EB pions that didn’t have an LTCC signal is much lower,
then below 0.9. While in case of the EB kaons some of the particles with a signal remain after a cut at 0.96, a
large portion of them can is correctly removed. Table 3.8 shows the correlation matrix of EB and LTCC PID
(number of photoelectrons > 1) for particles in sectors 3 and 5, with momentum between 3 and 5 GeV with
ML return value > 0.96. These numbers show that the NN effectively removes the LTCC pions regardless of
the EB PID.

0 0.2 0.4 0.6 0.8 1
ml value

0

2

4

6

8

10

12

14

16

18

20

LT
C

C
 p

ho
to

el
ec

tr
on

s

1

10

210

310

410

EB pions

0 0.2 0.4 0.6 0.8 1
ml value

0

2

4

6

8

10

12

14

16

18

20

LT
C

C
 p

ho
to

el
ec

tr
on

s

1

10

210

310

410

510

EB kaons

Figure 3.31: Correlation of the number of LTCC photoelectrons and the neural network output

EB\LTCC pion kaon
pion 92 71
kaon 1 5479

Table 3.8: Correlation matrix of EB and LTCC PID (number of photoelectrons > 1) for particles in sectors 3
and 5, with momentum between 3 and 5 GeV with ML return value > 0.96
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3.4.9 Checks with the RICH
For a more accurate check with the RICH detector, a rudimentary RICH reconstruction algorithm was developed.
Skim files made for the RICH group were used. These files contained events, which had one trigger electron and
exactly one hadron was detected in the RICH. They contain banks with information about the reconstructed
photons in the RICH, besides all the standard banks.
For every EB pions, kaons and protons in sector 4 with θ < 16◦ the cosθC = 1

nβ Cherenkov angle was calculated
for all 3 mass hypothesis with n = 1.05. The number of reconstructed photons with Cherenkov angles within
3σe were counted for all 3 Cherenkov angles. Here σe is the single photon resolution for electrons. The σe value
was calculated based on a fit from the RICH technical design report [81], shown on Figure 3.32.

Figure 3.32: Single photon resolution for electrons from the RICH TDR [81]

The quality of the identification is defined with the ratio of the number of photons for the best and second best
particle hypothesis as QID = 1− N

phot,2nd

Nphot,1st
. If the best hypothesis has at least 4 photons and QID > 0.05, then

the particle is successfully identified.

The momentum distribution of the EB and the RICH identified kaons (Figure 3.33.) look very similar and their
ratio is in good agreement with the contaminations measured in the simulations in section 3.4.6, showing that
this simplified RICH reconstruction works.
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Figure 3.33: Momentum distribution of the EB (red) and the RICH (blue) identified kaons
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Figure 3.34 compares the kaons and pions momentum distribution generated in the simulation and detected in
the RICH, while Figure 3.35. compares the ratios directly. At low θ and high momentum, where the RICH
is more reliable, the distributions and the ratios are very similar to the generated ones. Below 3 GeV the
distributions look different, since the RICH files were skimmed to have exactly one hadron in the RICH per
event. This means that the contamination and efficiency values from the RICH should only be trusted above 4
GeV momentum.
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Figure 3.34: Momentum distribution of pions (blue) and kaons (red)
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Figure 3.35: Ratio of pions and kaons generated in the simulations (red) and measured by the RICH (blue)

The reconstruction efficiency for RICH is defined as the number of reconstructed RICH kaons which were
identified as kaons by the specific PID / number of RICH kaons, while the contamination is the number of
reconstructed RICH pions identified as kaons by the specific PID / number of reconstructed particles identified
as kaons by the specific PID. In Figure 3.36 the contamination and efficiency are compared for different PID
methods using the RICH ID or the Monte Carlo information. The same methods are compared as in section
3.4.6, except the momentum dependent |χ2

PID| cut. As before the red is the EB PID, the green is the EB PID
with |χ2

PID| < 3 and the blue is the EB PID with neural network.
Based on the RICH ID we get slightly higher contamination and better efficiency for all methods. The improve-
ment achieved with machine learning is not as significant according to the RICH ID as with the MC matching,
but it is clearly visible.
Table 3.9 shows the correlation between different PID methods. The ML is usually in agreement with the EB,
but it is much more accurate when compared with the RICH. The contamination of the kaon sample is the
lowest, when the EB and the RICH is used together and the kaon efficiency is just slightly lower than using
only the ML.
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Figure 3.36: Comparison of different PID methods using the RICH ID or MC information (see the description
of the colors in the text above)

EB\RICH pion kaon
pion 104860 2372
kaon 14454 11514

EB\ML pion kaon
pion 106832 441
kaon 19738 6279

RICH\ML pion kaon
pion 118892 2401
kaon 9922 4371

RICH\EB+ML pion kaon
pion 119253 2040
kaon 10001 4292

Table 3.9: Correlation matrices of PID methods

3.4.10 Negative kaons
Since the application of machine learning proved to be useful in separating positive pions and kaons, the
applicability of the same technique for negative particles was investigated. The same procedure was repeated as
described for positive kaons. The output of the neural network can be seen in Figure 3.37. Here the the cut value
was chosen to be 0.95 to match the structure appearing in the distribution and to achieve a good compromise
between efficiency and contamination. They are shown in Figure 3.38. The same studies for negative kaons were
repeated with MC simulations and with RICH (described for positive kaons in sections 3.4.6 and 3.4.9). The
efficiencies and contaminations can be found in Figure 3.39. In case of negative kaons the level of improvement
achieved by the neural network is somewhat lower than for positive kaons. This is due to the lower kaon to pion
ratio for negative particles, shown in Figure 3.40.
The contamination is much lower below 3 GeV momentum and the cut at 0.95 is almost identical to a hard cut
at 3 GeV, so the pion contamination can also be handled as described in section 3.6. This results in a much
lower statistics, than for positive kaons, but the asymmetries can still be extracted reliably.
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Figure 3.37: DNN response for negative kaons (blue) and for pions (red)
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Figure 3.38: Efficiency (black) and contamination (red) as a function of the DNN response based on MC for
K−.
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Figure 3.39: Comparison of different PID methods using the RICH ID or MC information for negative kaons
(see the description of the colors in the text above)

Figure 3.40: Kaon to pion ratio as a function of the particle momentum for positive kaons (left) and negative
kaons (right). The ratio has been estimated from the generated MC events. [76]

3.4.11 Conclusion on the machine learning PID
A new particle identification method was developed using neural networks. Based on multiple independent
tests it can efficiently reduce the pion contamination in the kaon sample in the whole momentum range, by still
keeping the statistics on a reasonable level especially for positive kaons.
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3.5 Analysis of the Beam Spin Asymmetry
The procedure used during the extraction of the Beam Spin Asymmetry and the obtained results are described
in this chapter. Most of the methods and cuts follow the pion SIDIS analysis [35,79] and the common analysis
of the CLAS collaboration.

3.5.1 Kinematic cuts
The following kinematic cuts were applied on the single electrons and kaons in order to get a clean data sample:

• y < 0.75 (this corresponds to a minimal electron momentum of ∼2.65 GeV)

• kaon momentum: 1.25 GeV < pK < 3 or 5 GeV

• kaon polar angle: 5◦ < θK < 35◦

• Electron polar angle: 5◦ < θe < 35◦

To select the deep inelastic scattering region:

• W > 2 GeV

• Q2 > 1 GeV2

To reject the kaons from the fragmentation region a cut is applied on xF Feynman x. A cut is also set on z, if
the data is not binned in z:

• xF > 0

• 0.3 < z

To reduce the contamination from exclusive processes a cut is also applied on the eKX missing mass:

• z < 0.7

• MX > 1.6 GeV

The cut on the missing mass was determined to remove the structures that are clearly visible on the missing
mass distributions shown in Fig. 3.41. To see the effect of this contamination on the results the F sinϕ

LU /FUU was
extracted in bins of the missing mass. The results are shown in Fig. 3.42. At lower missing masses a falling
(K+)/rising (K−) tendency can be observed, compared to the smoother behavior at higher values. There is an
outlier value at 1.8 GeV missing mass, which was not removed, because cutting those events out would remove
too much statistics.

Figure 3.41: Missing mass distribution for e−K+X (left) and e−K−X (right). The cut borders are shown in
red.
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Figure 3.42: F sinϕ
LU /FUU as a function of missing mass for e−K+X (left) and e−K−X (right). The cut borders

are shown in red.

3.5.2 Available statistics
The available statistics after the application of the cuts described above are shown in Table 3.10 for maximal
kaon momentum of 3 GeV and in Table 3.11 using machine learning PID cut in addition and in Table 3.12 for
maximal kaon momentum of 5 GeV and in Table 3.13 using machine learning PID cut in addition.

inbending outbending spring2019 total
eK+X 3188971 3861403 3672641 10723015
eK−X 536002 2748619 631138 3915759

Table 3.10: Available statistics for maximal kaon momentum of 3 GeV

inbending outbending spring2019 total
eK+X 1858933 2289596 1942882 6091411
eK−X 67075 223507 159743 450325

Table 3.11: Available statistics for maximal kaon momentum of 3 GeV using machine learning PID

inbending outbending spring2019 total
eK+X 4775497 5255214 5342699 15373410
eK−X 765874 3761633 862771 5390278

Table 3.12: Available statistics for maximal kaon momentum of 5 GeV

inbending outbending spring2019 total
eK+X 2391101 2932680 2805885 8129666
eK−X 143636 434968 256576 835180

Table 3.13: Available statistics for maximal kaon momentum of 5 GeV using machine learning PID

74



3.5.3 Particle distributions
The momentum, θ and ϕ distribution of electrons and kaons with all the applied cuts are shown in Fig. 3.43
for the e−K+X and in Fig. 3.44 for the e−K−X sample. The angles are in radian.
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Figure 3.43: Particle distributions for the e−K+X sample with different PID (blue: pK < 5 GeV, red: pK < 5
GeV with ml, green: pK < 3 GeV, black: pK < 3 GeV with ml)
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Figure 3.44: Particle distributions for the e−K−X sample with different PID (blue: pK < 5 GeV, red: pK < 5
GeV with ml, green: pK < 3 GeV, black: pK < 3 GeV with ml)

75



3.5.4 Kinematic distributions
The kinematic distributions in Q2, xB , z and PT with all the applied cuts are shown in Fig. 3.45 for the e−K+X
and in Fig. 3.46 for the e−K−X sample. For both samples the dataset covers the Q2 range up to 8 GeV2,
the xB region between 0.1 and 0.6, the z region between 0.2 and 0.8 and the PT region up to 1.2 GeV. The
correlations of Q2-xB and PT -z are shown in Fig. 3.47 and 3.48 for the e−K+X and in Fig. 3.49 and 3.50 for
the e−K−X sample with the loosest and tightest PID cut respectively.
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Figure 3.45: Kinematic distributions for the e−K+X sample with different PID (blue: pK < 5 GeV, red: pK < 5
GeV with ml, green: pK < 3 GeV, black: pK < 3 GeV with ml)
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Figure 3.46: Kinematic distributions for the e−K−X sample with different PID (blue: pK < 5 GeV, red: pK < 5
GeV with ml, green: pK < 3 GeV, black: pK < 3 GeV with ml)
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Figure 3.47: The correlations of Q2-xB (left) and PT -z (right) for the e−K+X sample with pK < 5 GeV cut

Figure 3.48: The correlations of Q2-xB (left) and PT -z (right) for the e−K+X sample with pK < 3 GeV and
ml cut

Figure 3.49: The correlations of Q2-xB (left) and PT -z (right) for the e−K−X sample with pK < 5 GeV cut

Figure 3.50: The correlations of Q2-xB (left) and PT -z (right) for the e−K−X sample with pK < 3 GeV and
ml cut
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Figure 3.51 shows the correlation of missing mass and momentum. Here we can observe that all structures seen
in the missing mass spectra span over the whole momentum range.

Figure 3.51: The correlation of missing mass and momentum for the e−K+X (left) and e−K−X (right) samples

3.5.5 Comparison of the used datasets
Figures 3.52 and 3.53 compare the distributions of the kinematic variables for the in- and the outbending and
the 2019 datasets for the e−K+X and e−K−X samples respectively.
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Figure 3.52: Comparison of the kinematic distributions from different datasets (blue-inbending fall 2018, red-
outbending fall 2018, green-inbending spring 2019) for the e−K+X sample
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Figure 3.53: Comparison of the kinematic distributions from different datasets (blue-inbending fall 2018, red-
outbending fall 2018, green-inbending spring 2019) for the e−K−X sample

Figures 3.54 and 3.55 show the extracted F sinϕ
LU /FUU values from the different datasets. In all cases the loosest

PID setting was used: p < 5 GeV.

Figure 3.54: F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right)

for K+ using different datasets (inbending fall 2018, outbending fall 2018 and inbending spring 2019)
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Figure 3.55: F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right)

for K− using different datasets (inbending fall 2018, outbending fall 2018 and inbending spring 2019)

In most bins the extracted asymmetries are in very good agreement for the different datasets. In some cases the
extracted results are different for outbending dataset and for the other two inbending datasets. This difference
can come from 2 sources. The first one is that in a given kinematic bin the distributions of the other 3 variables
are different for the in- and outbending datasets as the figures below demonstrate. The other one is the fact
that the kaon-pion contamination is different for the in- and for the outbending datasets. This pushes the
dataset with the smaller contamination further away from the pion asymmetries. This is discussed in more
details in section 3.6. Based on these checks, the different datasets can be used combined for the extraction of
the asymmetries. This way the uncertainties of the extraction can be highly reduced.

3.5.6 Binning scheme
In every bin 12 ϕ-bins with a width of 30◦ each are used to extract the ϕ-dependence. Multiple binning schemes
were used during the analysis. They offer small uncertainties, show the different a in the different kinematic
regions or offer a compromise between these two.

One dimensional binning

To obtain a one dimensional binning each variable is binned independently while the dataset is integrated over
the complete distribution of all the other 3 variables, except for z, on which a cut is applied as described in
section 3.5.1. For PT and Q2 10 bins, for z 9 bins and for xB 8 bins are used with equal widths. This width is
0.1 for z. The first bins mean is 0.15 and the last ones is 0.95. For Q2 the width is 0.9 GeV2, with bin means
ranging from 1.45 GeV2 to 9.55 GeV2. For x the width is 0.1, with bin means ranging from 0.05 to 0.75. For
PT the width is 0.08 GeV, with bin means ranging from 0.04 GeV to 0.76 GeV.

Three dimensional binning

In this case a binning is applied to 3 kinematic variables in parallel and the dataset is integrated in the fourth
one. To consider the correlation between Q2 and xB , the first set of bin borders were determined in their 2
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dimensional plane. In case of the e−K+X dataset the results where extracted with 3 and 5 bins on the Q2-xB-
plane. The cut borders can be found in Table 3.14 and they are shown in Fig. 3.56a. For the e−K−X dataset
the same 3 bins were used. They are shown in Fig. 3.56b.

Bin number 3 bins 5 bins
1 x < 0.2 x < 0.15
2 x > 0.2 and Q2 < 3.3 0.15 < x < 0.35 and Q2 < 1.5 + 10(x− 0.15) GeV2

3 x > 0.2 and Q2 > 3.3 0.15 < x < 0.35 and Q2 > 1.5 + 10(x− 0.15) GeV2

4 - x > 0.35 and Q2 < 3.5 + 13.75(x− 0.35) GeV2

5 - x > 0.35 and Q2 > 3.5 + 13.75(x− 0.35) GeV2

Table 3.14: Bin borders and numbering of the bins on the Q2-xB-plane

(a) e−K+X dataset with 3 (left) and 5 (right) bins

(b) e−K−X dataset with 3 bins

Figure 3.56: Bin borders on the Q2-xB-plane
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In a third variable (z or PT ) the same bins are used as in the one dimensional case. The z and PT distributions
in different Q2-xB bins are shown in Fig. 3.57 and 3.58 for the e−K+X dataset and in Fig. 3.59 and 3.60 for
the e−K−X dataset with loosest and strictest PID cut respectively.
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Figure 3.57: PT (left) and z (right) distributions in different Q2-xB bins (red - bin 1, blue - bin 2, purple - bin
3, green - bin 4, black - bin 5) with 3 (top) and 5 bins (bottom) for the e−K+X dataset with pK < 5 GeV cut

Fully multidimensional binning

For a fully multidimensional binning, a binning is applied to all 4 kinematic variables. The same 3 Q2-xB bins
and the same binning in z or PT are used as described in the previous sections. The difference is that the
dataset is not integrated over in the last variable, but binned in it. 3 bins are used for the e−K+X dataset and
2 for the e−K−X. The bin borders can be found in Table 3.15.

Bin number PT bin x bin
1 PT < 0.33 GeV z < 0.34
2 0.33 GeV< PT < 0.66 0.34 < z < 0.52
3 PT > 0.66 GeV z > 0.52

Bin number PT bin x bin
1 PT < 0.5 GeV z < 0.5
2 PT > 0.5 GeV z > 0.5

Table 3.15: The binning of the last remaining kinematic variable for fully multidimensional binning for the
e−K+X dataset (left) and for the e−K−X dataset (right)

3.5.7 Extraction of the BSA
The extraction of the asymmetries is identical to what was used for pions [35, 79]. In each kinematic bin, the
BSA is extracted for each ϕ bin separately. In bin i it is defined as:

Ai =
1

Pe

N+
i −N−

i

N+
i +N−

i

(3.30)
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Figure 3.58: PT (left) and z (right) distributions in different Q2-xB bins (red - bin 1, blue - bin 2, purple - bin
3, green - bin 4, black - bin 5) with 3 (top) and 5 bins (bottom) for the e−K+X dataset with pK < 3 GeV and
ml cut
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Figure 3.59: PT (left) and z (right) distributions in different Q2-xB bins (red - bin 1, blue - bin 2, purple - bin
3) for the e−K−X dataset with pK < 5 GeV cut
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Figure 3.60: PT (left) and z (right) distributions in different Q2-xB bins (red - bin 1, blue - bin 2, purple - bin
3) for the e−K−X dataset with pK < 3 GeV and ml cut
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Here Pe is the average beam polarization measured to be (86.3 ± 3.7)% and N±
i are the number of events in

bin i with ± helicity.
The uncertainty of the measured Ai values comes from 2 sources. One is the statistical uncertainty of the
counts N±

i , the other is the uncertainty of the measurement of Pe. The latter is included in the systematic
uncertainties. So the statistical uncertainty can be given as:

δAi =
2

Pe

√
N+

i N
−
i

(N+
i +N−

i )3
(3.31)

The extracted values are then fitted with the theoretical function Asinϕ
LU sinϕ in ϕ to determine Asinϕ

LU . The effect
of the two additional moments Acosϕ

UU and Acos 2ϕ
UU from Eq. 3.26 on the extraction of Asinϕ

LU was found to be
small and discussed in section 3.7.6 in more details. As a final step, F sinϕ

LU /FUU is calculated according to Eq.
3.27. For this purpose the mean value of ϵ is calculated in each kinematic bin.
All figures in this section will show the "Raw" F sinϕ

LU /FUU values, which are the directly extracted values,
containing also the pion asymmetries due to the contamination. The final extraction method is described in
section 3.6.4 and the final results are presented and discussed in section 3.8.
Figure 3.61 shows the integrated BSA values in bins of Φ together with the fitted sinΦ functions for different
PID methods (turquoise-p<5 GeV, purple-p<3 GeV, blue-p<5 GeV and ml cut, red-p<3 GeV and ml cut,
black-strict(0.99) ml cut, green-RICH). Here we can observe that the amplitude of the extracted asymmetries
increase as the pion contamination decrease, which means that the kaons have a higher asymmetry than the
pions. An other explanation of the variation of the values is that the different methods change the underlying
kinematic distributions. It can also be observed that the positive kaons have a positive asymmetry, while the
negative ones have a slightly negative one, close to zero. A similar behavior was also observed for pions [64,79].

Figure 3.61: Integrated BSA values in bins of Φ together with the fitted sinΦ functions for K+ (left) and K−

(right) using different PID methods: turquoise-p<5 GeV, purple-p<3 GeV, blue-p<5 GeV and ml cut, red-p<3
GeV and ml cut, black-strict(0.99) ml cut, green-RICH (in order of decreasing pion contamination)
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Results of the one dimensional binning

For the one dimensional binning each variable is binned independently while the dataset is integrated over the
complete distribution of all the other 3 variables, except for z, on which a cut is applied, when the binning is
not done in z. The ϕ dependence of the extracted BSA values with the fits can be seen in Fig. 3.62 for positive
kaons using the p < 5 GeV PID in bins of PT . All the fits were inspected visually and if the fit cannot be
done sufficiently, the kinematic bin were removed from the final plots and tables. These fits are replaced or
marked with a red cross. Also some ϕ bins with very high statistical uncertainty were excluded from the fits.
All kinematic bins, which have sufficient statistics, can be very well described with a sinusoidal shape.

Figure 3.62: BSA as a function of Trento ϕ in radians in PT bins in increasing order from top left to bottom
right for the e−K+X dataset with pK < 5 GeV cut

Based on the fits and Eq. 3.27 the F sinϕ
LU /FUU ratios are calculated. The results are shown for positive kaons

in Fig. 3.63. and for negative kaons in Fig. 3.64. These figures compare the results obtained with the different
PIDs. They also contain the ratios obtained from pions with the same binning and same cuts from the same
data-sample. The results obtained with different PIDs follow the same trends and are very close to each other.
These trends are similar to the pions one, but they are clearly different especially for positive kaons. Here we
can also observe that the measured values move away from the pion values when the machine learning PID is
used. These behaviors show that the machine learning works as intended and that the positive kaon sample
doesn’t only consist of misidentified pions. For negative kaons the obtained ratios are in agreement with the
negative pion ratios within errors for most PIDs. But using the strictest PID (p < 3 GeV with ml) the behavior
and magnitude of the ratios start to differ for pions and kaons.
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Figure 3.63: "Raw" F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom

right) for K+ with different PIDs compared with π+ results

Figure 3.64: "Raw" F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom

right) for K− with different PIDs compared with π− results
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Results of the three dimensional binning

In this case a binning is applied to 3 kinematic variables in parallel and the dataset is integrated in the fourth
one. To consider the correlation between Q2 and xB , the first set of bin borders were determined in their 2
dimensional plane. In case of the e−K+X dataset the results where extracted with 3 and 5 bins on the Q2-xB-
plane. For the e−K−X dataset the same 3 bins were used. All the fits were inspected visually in this case as
well and ϕ bins and kinematic bins were removed with the same criteria as in the one dimensional case. Figures
3.65 and 3.66 show the extracted asymmetries with the 3 and 5 bin binning scheme respectively. We can observe
that the asymmetries rise with the increasing Q2 and xB values, but the asymmetries show a similar tendency
in PT and z in all Q2-xB bin.

Figure 3.65: "Raw" F sinϕ
LU /FUU as a function of z (left) and PT (right) for K+ (top) and K− (bottom) in

different Q2-xB bins with p<5 GeV PID

Figure 3.66: "Raw" F sinϕ
LU /FUU as a function of z (left) and PT (right) for K+ in different Q2-xB bins with p<5

GeV PID
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Results of the complete four dimensional binning

In this case a binning is applied to all 4 kinematic variables in parallel. The same procedure is applied as in
the three dimensional binning scheme with 3 Q2-xB , but this time also both 2 remaining dimensions (PT , z)
are binned using 2 (K−) or 3 (K+) bins in one dimension and 10 in the other. Figures 3.67 and 3.68 show the
extracted asymmetries.

Q2-xB bin 1

Q2-xB bin 2

Q2-xB bin 3

Figure 3.67: "Raw" F sinϕ
LU /FUU as a function of z (left) and PT (right) for K+ in different Q2-xB and z or PT

bins with p<5 GeV PID

It can be observed that the overall behavior of the asymmetries are independent of Q2 and xB . In case of K+

the PT -dependence looks the same for all z bins. For K− we can observe a rising and then a falling tendency
in PT for both z bins, although this effect is more prominent at high z values.
If we look at K+-s the z-dependence in different PT bins we can observe a falling trend at low z values and a
rising trend at high z values at low PT . This trend changes to a rising and then falling one at high PT values.
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Q2-xB bin 1

Q2-xB bin 2

Q2-xB bin 3

Figure 3.68: "Raw" F sinϕ
LU /FUU as a function of z (left) and PT (right) for K− in different Q2-xB and z or PT

bins with p<5 GeV PID

For K−, a similar difference can be observed in the z-dependence between the 2 PT bins. It shows a rising trend
at low PT and a falling trend followed by a sharp increase at high PT .

89



3.6 Subtraction of the pion asymmetries
As the pion contamination in the kaon sample is significant, the pion asymmetries have to be subtracted from
the "raw" kaon asymmetries. This is done based on contamination from MC validated by the RICH and by
β-p fits of the data. This section describes the validation of the MC samples and the RICH reconstruction and
then the pion subtraction method in details.

3.6.1 Monte Carlo simulations
The CLASDIS [82] generator, which is based on the PEPSI [83] generator was used for the SIDIS Monte Carlo
production. The parton level interaction is based on the electroweak cross sections, implemented in leading
order for any lepton of arbitrary polarization. First-order QCD matrix elements for the boson-gluon fusion and
the gluon radiation are implemented and higher order QCD radiation is treated using parton showers. The
hadronization process follows the Lund string model, implemented in Pythia (Jetset) [84]. Several parameters
enter in the tuning of the hadronization process, and those have been tuned to reproduce the electron, photon
and pion distributions obtained in the CLAS12 RG-A data for the semi-inclusive regime.
For the present work, the new large scale SIDIS MC production for RG-A from Orlando Soto with the more
accurate kaon-pion ratio has been used which contains approx. 2 billion (109) inbending and 0.7 billion outbend-
ing events and is used within the SIDIS community of the CLAS12 collaboration. [85] The generated particles
were transmitted through the CLAS12 detectors using the Geant4 Monte-Carlo (GEMC) package. [86,87] The
MC has been analyzed exactly the same way as the data and the same cuts are applied, except the quality
assessment (QA) cut which is not relevant for simulations since the MC has no bad files or runs which need to
be rejected due to detector problems. Most cut parameters are identical between MC and simulation, only for
the sampling fraction cut the mean and sigma value have been adjusted to provide a proper 3.5 σ region for the
contamination studies of the electron sample. This is described and discussed in detail in the updated version
of the common analysis note.
To reproduce the realistic resolutions the reconstructed momentum, θ and ϕ were smeared with the following
resolution functions provided by F. X. Girod [88]:

pS1 = 0.0184291− 0.0110083 · θ + 0.00227667 · θ2 − 0.000140152 · θ3 + 3.07424 · 10−6 · θ4

pR = 0.02
√
(pS1 · p)2 + (0.02 · θ)2

θR = 2.5
√
((0.004 · θ + 0.1)(p2 + 0.139572)/(p2))2

ϕS1 = 0.85− 0.015 · θ

ϕS2 = 0.17− 0.003 · θ

ϕR = 3.5

√
(ϕS1

√
p2 + 0.139572/p2)2 + ϕ2S2

ϕnew = ϕ+ ϕR · gRandom− > Gaus(0, 1)

θnew = θ + θR · gRandom− > Gaus(0, 1)

pnew = p+ pR · gRandom− > Gaus(0, 1) · p

All angles are in radians in this section, unless stated otherwise.
The MC very well reproduces the kinematic distributions of the experimental data. Figures 3.69, 3.70, 3.71, 3.72,
3.73, 3.74, 3.75, 3.76 and 3.77 show the comparison of the experimental and simulated kinematic distributions. In
all cases the loosest PID setting was used: p < 5 GeV. This means that the highest possible pion contamination
was present in both the data and mc.
Since the MC reproduces most of the distributions very well, it can be used to validate the extraction method,
to check the acceptances and bin-migration effects and to extract the kaon-pion contamination in kinematic
bins for subtracting the pion asymmetries.
Figure 3.78 compares the missing mass distribution obtained from the simulation with and without the smearing
with the one obtained from data without any scaling. Although the structure seen in the data is not reproduced
completely even with the smearing, by utilizing it the resolutions are better reproduced.
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Figure 3.69: Comparison of the inbending simulated (green) and inbending experimental (blue-2018, red-2019)
distributions for the electron (up) and kaon (down) for the e−K+X sample
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Figure 3.70: Comparison of the inbending simulated (green) and inbending experimental (blue-2018, red-2019)
kinematic distributions of W , Q2, xB , z, PT and ϕ for the e−K+X sample
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Figure 3.71: Comparison of the outbending simulated (green) and outbending experimental (blue) distributions
for the electron (up) and kaon (down) for the e−K+X sample
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Figure 3.72: Comparison of the outbending simulated (green) and outbending experimental (blue) kinematic
distributions of W , Q2, xB , z, PT and ϕ for the e−K+X sample
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Figure 3.73: Comparison of the inbending simulated (green) and inbending experimental (blue-2018, red-2019)
distributions for the electron (up) and kaon (down) for the e−K−X sample
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Figure 3.74: Comparison of the inbending simulated (green) and inbending experimental (blue-2018, red-2019)
kinematic distributions of W , Q2, xB , z, PT and ϕ for the e−K−X sample
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Figure 3.75: Comparison of the outbending simulated (green) and outbending experimental (blue) distributions
for the electron (up) and kaon (down) for the e−K−X sample
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Figure 3.76: Comparison of the outbending simulated (green) and outbending experimental (blue) kinematic
distributions of W , Q2, xB , z, PT and ϕ for the e−K−X sample
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Figure 3.77: Comparison of the simulated (green) and experimental (blue-in- or outbending 2018, red-2019)
missing mass distributions in the in- (left column) and outbending (right column) setting for the e−K+X (upper
row) and e−K−X (lower row) sample
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Figure 3.78: Comparison of the simulated with (green) and without the smearing (red) and experimental (blue)
missing mass distributions in the inbending setting for the e−K+X sample on the whole missing mass range
(left) and near the peak at 1.4 GeV (right)
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3.6.2 Results using a more sophisticated RICH reconstruction
Studies were performed using the currently available files with the official RICH reconstruction (pass 1 version
11) made by Marco Contalbrigo [73, 89, 90]. First the correlation matrix between the RICH and the machine
learning PID was calculated for positive kaons, that have a momentum larger than 3 GeV, are part of the SIDIS
sample and have a RICH PID (Figure 3.79). This figure shows that the machine learning PID removes the
pions from the kaon sample effectively, especially in the interesting kinematic regions.
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Figure 3.79: Correlation matrix between the RICH and the machine learning PID was calculated for positive
kaons, that have a momentum larger than 3 GeV, are part of the SIDIS sample and have a RICH PID

One of the most important part of this analysis is the subtraction of the pion asymmetries. This procedure, which
is described in the following section, highly relies on the kaon-pion contamination determined using the Monte
Carlo sample. To check this estimation, the kaon-pion contamination was compared with the contamination
measured by the RICH. Figure 3.80 shows the MC contamination (blue) and RICH contamination (red) as a
function of momentum using positive Eventbuilder kaons. We can observe that above 3.5 GeV kaon momentum,
where the RICH works reliably, the contaminations are very close.
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Figure 3.80: Comparison of the kaon-pion contamination obtained from MC (blue) and from RICH (red) as a
function of momentum using positive Eventbuilder kaons

Figure 3.81 compares the extracted K+ asymmetries using EB, ML and RICH PIDs to the pion asymmetries.
The RICH results, which have the lowest pion contamination, follow the results obtained with the other PID
methods. Most of the RICH asymmetries are smaller, but this is due to the fact that the RICH sample contains
mostly events with high z, where the asymmetry is smaller than at low z.
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Figure 3.81: "Raw" F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom

right) for K+ with different PIDs compared with π+ results

Based on these studies we can conclude that the current RICH reconstruction is reliable to be used to validate
the contamination estimates of the MC but it is not yet ready to be used to extract physics.
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3.6.3 Pion subtraction
To subtract the pion asymmetries an accurate estimation of the pion contamination is necessary. For this detailed
contamination studies were performed. The reconstructed kaons were matched with the generated kaons and
pions based on there momenta. The same matching method was used as for the machine learning studies. More
details can be found in section 3.4.1. The contamination values determined this way can be seen in Figure 3.82
as a function of momentum for the final selected kaon samples using the loosest PID in the inbending case.
Here we can observe that the contamination steadily rises with the momentum as expected. At low momentum
the contamination is around 10%, which is caused by the long reaching tail of the pions β-distribution. This is
demonstrated on Figure 3.83. The average contamination is around 30% and 40% for positively and negatively
charged kaons, respectively. The contamination from non-matched particles is mainly constant at 10%. These
particles are mainly secondary kaons. This is supported by the fact that the missing mass spectrum of these
non-matched particles is very similar to the matched kaons distribution, which can be seen in Figure 3.84. In
case of positive kaons a proton band with incorrectly reconstructed time information crosses the kaon band on
the β-momentum plane around 2 GeV. This creates a peak in the non-matched contamination there.
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Figure 3.82: Contamination as a function of momentum for the final selected kaon samples using the loosest
PID in the inbending case

In every kinematic bin the pion contamination is calculated with the following formula for the combination of
the 3 datasets:

C =
1

Nrec
in +Nrec

out +Nrec
2019

(
Nmcmπ

inmc

Nrec
inmc

(Nrec
in +Nrec

2019) +
Nmcmπ

outmc

Nrec
outmc

Nrec
out

)
(3.32)

This way the overall contamination in a bin is the combination of the contaminations measured in the inbending
and in the outbending MC samples in the given bins weighted with the ratio of the amount of events coming
from the different settings ((inbending+2019):outbending) in the given bin.
In every kinematic bin the pion asymmetry is extracted with exactly the same cuts and methods used for kaons.
The only exception is that the machine learning cut is not applied and that the highest momentum is fixed at
5 GeV in all cases. The four momenta of the pions were recalculated as they were kaons so that they would fall
into the same bins as the pions in the kaon sample. These measured asymmetries are then subtracted from the
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1.3 GeV < p < 1.4 GeV 1.5 GeV < p < 1.6 GeV

2.0 GeV < p < 2.1 GeV 1.5 GeV < p < 1.6 GeV, |χ2| < 3

Figure 3.83: Beta distributions in momentum bins without |χ2| < 3 (except right bottom) for the final selected
positive kaon (red-generated as pion, green-generated as kaon and black-non-matched) and pion (purple -
generated as pion, dark green-generated as kaon and dark blue-non-matched) sample using the loosest PID in
the inbending case
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Figure 3.84: Missing mass distribution from the inbending simulation in blue for the e−K+X sample. The
misidentified pions are shown in red and the correctly identified kaons are shown green. The non-matched
particles are in black. The data is plotted in purple.

measured kaon asymmetries with the following formula in every bin:

AK
corr =

AK
meas − CAπ

meas

1− C
(3.33)

Here we assumed that the kaon contamination in the pion sample is negligible: Aπ
meas ≈ Aπ

corr. This is indeed
the case according to Figure 3.85. The effect of the bin migration of the pions on the subtraction was also
investigated. Since it was found to be small, it was treated as a systematic uncertainty and described in the
next section.
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Figure 3.85: Contamination as a function of momentum for the final selected pion samples using the loosest
PID in the inbending case

The effect of the subtraction is demonstrated in Figures 3.86 and 3.87 for the different datasets. It can be
observed, that the agreement between them is much better with the correction.

Figure 3.86: F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right)

for K+ using different datasets with subtracted π+ asymmetries

For comparison the asymmetries were also extracted using a machine learning cut of 0.99. This way the statistics
is very limited, but the contamination is estimated to be a few percent. The corrected asymmetries with different
PIDs and the uncorrected asymmetries extracted with the very strict ml cut are compared in Figures 3.88 and
3.89. Here we can observe that the results obtained with an extremely strict PID and the corrected results with
the loosest PID are consistent, which means that the subtraction works as intended.
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Figure 3.87: F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right)

for K− using different datasets with subtracted π− asymmetries

Figure 3.88: F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right)

for K+ using different PID with subtracted π+ asymmetries
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Figure 3.89: F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right)

for K− using different PID with subtracted π− asymmetries

To verify the contamination estimated from the MC, one can look at the contamination determined by the
RICH above 4.5 GeV momentum, where it works reliably. To verify the contamination at low momenta, the
β distributions of EB kaons were fitted in momentum bins. As shown in Figure 3.83, there is significant
background under the kaon peak coming from the the tail of the pion peak. As Figure 3.90 demonstrates, the
β-distribution could be well described with a Gaussian and a second order polynomial background. To estimate
the contamination the integrals of the fitted functions were calculated within 3 sigma.

Figure 3.90: β-distribution of EB kaons fitted with a Gaussian and a polynomial background in one of the
momentum bins

Figure 3.91 compares the pion contamination in the kaon sample determined by different methods. The RICH
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contamination is in good agreement above 4.5 GeV with the MC contamination. That is also in agreement
with the fits made to beta-p slices of data below 2.7 GeV, where the pion and kaon peaks start to overlap and
the distributions are not described well by the fits. We can also observe an increase in the contamination just
below 2 GeV, which is not present in the simulations. This is caused by the crossing bands from other beam
bunches and it is only present in data. Its effect on the final results is evaluated in section 3.7.3. Due to the
limited statistics, there are a lot of outliers in the β-p contaminations, but the tendencies clearly agree with the
contamination determined from the MC. The fluctuation is a result of the uncertainties, which are not shown
on the plots to allow a better visualization for the comparison.
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(a) purple-β-p fits on data, blue-MC, red-RICH
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Figure 3.91: Comparison of contaminations as a function of momentum determined by different methods over
the whole momentum range on the left and at low momentum on the right.

3.6.4 Extraction method of the final results
As Figures 3.88 and 3.89 demonstrate all PID methods combined with the pion subtraction give the same results
within statistical uncertainties. To extract the final results the p < 5 GeV with the standard machine learning
PID was used together with the pions subtraction, since this PID setting requires the lowest correction due to
the pion contamination, while keeping enough statistics to extract reasonable results in all multidimensional
binning schemes. And in addition, this PID provides a smooth distribution in the kinematic variables which
have large bins or are not binned. This way the distributions are well described with the averages and helps
in the future interpretation of the results. The behavior of the variables are shown in Figures 3.57-3.60. The
difference between the results obtained with different methods were assigned as a systematic uncertainty, which
is almost exclusively coming from the uncertainty of the MC contamination as shown in section 3.7.9.
The final detailed results can be seen in Appendices I, II and III.
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3.7 Systematic uncertainties
To determine the statistical uncertainty the following sources were considered in this analysis:

• Uncertainty of the beam polarization

• Effect of the fiducial cuts

• Contamination of the electron and kaon samples

• Contamination of the SIDIS sample

• Acceptance effects

• Effect of the extraction method and higher order moments

• Bin migration and resolution effects

• Radiative effects

• Effects of the pion subtraction

In the one dimensional binning case the systematic uncertainties are usually in the order of the statistical
uncertainty. This means that the extraction of these uncertainties is possible without problems for most of
the bins. The few problematic bins were not used for the final result anyway due to improper fits caused by
the low statistics. For the multidimensional binning the systematic uncertainty is dominated by the statistical
uncertainty. To overcome this problem an averaging was introduced in the last dimension, where the binning
is the finest. The value of the systematic uncertainty in a given bin was averaged with its direct neighbors to
reduce the impact of the bin to bin fluctuations. This procedure could be performed since we expect a smooth
behavior of the systematic uncertainty from bin to bin.
Most of the studies presented in this section follows the precedent set by the pion SIDIS analysis [35,79].

3.7.1 Uncertainty of the beam polarization
The beam polarization was measured upstream of CLAS12 several times during the run periods with a Møller
polarimeter. The results of these Møller measurements are shown in Fig. 3.92 for the fall 2018 and spring 2019
data taking periods.
Th average beam polarizations for the 3 different run ranges are the following:

• Run 5032-5328 - (85.92±1.29)%

• Run 5331-5666 - (89.22±2.51)%

• Run 6616-6783 - (84.53±1.47)%

The average beam polarization for the combined dataset was calculated as a weighted average of the 3 values.
The weights were determined as the proportion of the electron-kaon pairs in the given run range. The weights
are the following for the e−K+X dataset:

• Run 5032-5328 - 22.5%

• Run 5331-5666 - 51.2%

• Run 6616-6783 - 26.3%

And for the e−K−X dataset:

• Run 5032-5328 - 9.5%

• Run 5331-5666 - 76.8%

• Run 6616-6783 - 13.7%
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Figure 3.92: Møller measurements during the fall 2018 run period (left) and spring 2019 (right). The beam
polarization was changed after October 28, 2018 and so two separate polarizations were considered for the fall
data set. [91]

With the calibration uncertainty of the Møller polarimeter estimated to be 2%, this gives an average polarization
(P ) of (87.24±1.37±2)%=(87.24±2.42)% for positive and (88.26±1.94±2)%=(88.26±2.79)% for negative kaons.
The sum of the statistical and systematic uncertainty of the beam polarization is considered to contribute to
the systematic uncertainty of the BSA measurement:

δF sinϕ
LU /FUU

F sinϕ
LU /FUU

=
δAsinϕ

LU

Asinϕ
LU

=
δBSA

BSA
=
δP

P
=

{
2.8%, for K+

3.2%, for K− (3.34)
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3.7.2 Effect of the fiducial cuts
Since the same fiducial cuts have been applied to both helicity states, the systematic effect on the beam-spin
asymmetry due to fiducial cuts is expected to be small, especially in a multidimensional binning. Nevertheless,
to study the effect of the fiducial cuts on the result, the data was extracted with 3 different combinations of
the DC and PCAL fiducial cuts. The DC fiducial cuts were loosened and tightened with 10% and the PCAL
fiducial cuts were changed from normal to tight setting. Figures 3.93 and 3.94 show the absolute uncertainties
in case of the one-dimensional binning. While Figure 3.95 shows the absolute and relative uncertainties in the
fully multidimensional case.
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Figure 3.93: Absolute uncertainty of F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left)

and PT (bottom right) for K+

In bins with sufficient statistics, the relative uncertainty is below 10% for K+ and below 30% for K−. The
higher value in case of K− is due to the fact that the asymmetries are very close to 0.
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Figure 3.94: Absolute uncertainty of F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left)

and PT (bottom right) for K−
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Figure 3.95: Absolute (left) and relative (right) uncertainty of F sinϕ
LU /FUU as a function of the fully multidi-

mensional bin number for K+ (top) and K− (bottom)
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3.7.3 Contamination of the electron and kaon samples
A very good single particle identification is essential for a SIDIS analysis, since no exclusivity cuts are applied
in addition. Therefore many possible sources of contaminations were thoroughly investigated.

Contamination of the kaon sample with pions

Since the contamination of the kaon sample with π is very high, around 50% in some kinematic bins, it cannot
be treated as a systematic uncertainty. Instead the pion asymmetries were subtracted bin by bin. See section
3.6 for more details.
The effect of the bin migration of the pions on the subtraction introduces a systematic uncertainty in the cor-
rected asymmetries. This uncertainty is very small in most cases, but can be significant when the extracted
asymmetries differ significantly in two neighboring bins. To estimate this the measured values were also cor-
rected with contamination values determined with the consideration of bin migration. The bin purity and the
migration rates for the neighboring 3 bins were determined using the MC sample with the same method used
for kaons (section 3.7.7). The contamination was calculated in each bin according to Equation 3.32. Using these
contamination values the corrected kaon asymmetry can be calculated with the following formula:

Ai
corr = (Ai

K−Ci(pi ·Ai
π+r

i
+1 ·Ai+1

π +ri+2 ·Ai
π+r

i
+3 ·Ai+3

π +ri−1 ·Ai−1
π +ri−2 ·Ai−2

π +ri−3 ·Ai−3
π ))/(1−Ci) (3.35)

,where Ci is the contamination from Equation 3.32, pi is the bin purity and ri±1,2,3 is the ±1, 2, 3 migration rate
in the ith bin.
The difference between the corrected asymmetries with and without considering the pions bin migration can
be treated as a systematic uncertainty. Figures 3.96 and 3.97 shows these absolute uncertainties in the 1
dimensional binning case. The relative uncertainties are typically around a few percent for K+ and below 20%
for K−.
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Figure 3.96: Relative uncertainty of F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left)

and PT (bottom right) for K+

In the multidimensional cases the bin migration was only considered in the last binning dimension, similar to
the kaon bin migration studies.
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Figure 3.97: Relative uncertainty of F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left)

and PT (bottom right) for K−

Contamination of the electron sample with π−

To suppress the contamination of the electron sample by π− different cuts on the energy deposition and sam-
pling fraction of the different calorimeter components were used. Simulations showed that with these cuts the
contamination above the HTCC threshold of 4.5 GeV is at a level of 2%, as stated previously. To estimate the
effect of this contamination the cut on the sampling fraction was changed from 3.5σ to 3σ. This change was
included in the investigations of the effects of the PCAL fiducial cuts (section 3.7.2).

Contamination of the kaon sample with accidentals from other beam bunches

The accidentals from the previous or from the following beam bunches appear as shifted bands with reduced
intensity in the β-p-plane. For the kaon samples these shifted bands can introduce contamination if they cross
the kaon band in the relevant momentum range. But as Figure 3.98 shows only the proton band crosses the
main kaon band slightly below 1.25 GeV, which is below the lowest used momentum. So there is no systematic
uncertainty caused by this effect.
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Figure 3.98: β versus momentum for hadrons in run 5197

Contamination of the kaon sample with accidentals from the same beam bunch

The other source of possible accidentals are the secondary interactions within the same beam bunch: secondary
electro-production for which the electron is not detected and photo-productions. The rate of these accidentals
can be estimated from the pion accidentals from the neighboring beam bunch. It is assumed that this rate is
the same for pions and kaons. The ratio (f) of the pions in the band at β ≈ 1.1 and in the main band at β ≈ 1
was determined in momentum bins and shown in Figure 3.99.
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Figure 3.99: Fraction of accidentals as a function of momentum

It can be seen that the ratio is decreasing with the momentum and in the following we will estimate it to be
1%. Since the accidental kaons are not correlated with the electron, it can be assumed that the asymmetry of
these events is 0. Thus the systematic uncertainty coming from this effect is the following:

∆A

A
=

f

1− f
= 0.01 (3.36)
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3.7.4 Contamination of the SIDIS sample
In the following, the sources of the contamination of the selected e−K±X samples besides the contamination
of the single particle species are discussed.

Contamination by hadrons from photo-production

Electron-produced decays of photo-produced hadrons, low-Q2 electro-production, when the original DIS elec-
tron goes down the beam pipe, and pair production are important sources of non-DIS contamination of the
trigger electron sample. The fraction of these electrons can be estimated from measurements of positrons, since
most of them are produced with a corresponding positron. Given that the inbending electrons show similar
acceptance characteristics as outbending positrons and vice versa, the background contribution and asymmetry
was estimated by analyzing the e+K±X (skim6) samples. It has been checked that the kaon acceptance has
no significant impact on the obtained results. The in- and outbending skim6 dataset was analyzed with the
same methods and cuts used for the main analysis with the only difference that the electrons were replaced with
positrons.
Figures 3.100 and 3.101 show the distributions of these skim6 inbending e+K+X and outbending e+K−X
events respectively. Here we can observe that the background is focused on the upper Q2 border of the low xB

region.
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Figure 3.100: The correlations of Q2-xB (left) and PT -z (right) for the e+K+X inbending sample

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

0

2

4

6

8

10

12]2
 [G

eV
2

Q

hist_x_vs_Q2
Entries  12035
Mean x  0.1752
Mean y   2.605
Std Dev x  0.07428
Std Dev y    1.09

0

2

4

6

8

10

12

14

16

hist_x_vs_Q2
Entries  12035
Mean x  0.1752
Mean y   2.605
Std Dev x  0.07428
Std Dev y    1.09

Figure 3.101: The correlations of Q2-xB (left) and PT -z (right) for the e+K−X outbending sample

To calculate the contamination fraction (c), the corresponding electron and positron datasets have been normal-
ized based on the region of the electron/positron angle θ between 15◦ and 25◦, in which both show a comparable
acceptance. Figure 3.102 shows the contamination as a function of θ and y. The contamination is below 0.5%
if we are below 0.7 in y, which is why this cut was applied.
The measured asymmetry can be expressed as:

FM = (1− c)FT + cFC (3.37)

, where FT is the true asymmetry and FC is the asymmetry of the charge symmetric background, which is
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Figure 3.102: Charge-symmetric background contamination as a function of θ (left) and y (right).
Turquoise - inbending K+, Red - outbending K+, Blue - inbending K−, Purple - outbending K−

assumed to be 0, like for pions [35]. This assumption could not be verified since the ϕ distribution cannot
be fitted due to very low statistics. Then the relative systematic uncertainty of F sinϕ

LU /FUU due to the charge
symmetric background is the following:

∆F

FM
=
FT − FM

FM
=

c

1− c
(3.38)

Figures 3.103 and 3.104 show the relative systematic uncertainty in case of the 1 dimensional binning. For K+

it is below 0.5% and for K− below 2%.
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Figure 3.103: Relative systematic uncertainty of F sinϕ
LU /FUU due to the charge symmetric background as a

function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right) for K+

The statistics of the skim6 datasets were not enough to repeat the studies for the multidimensional case, so
the uncertainties were taken from the 1-dimensional bin corresponding to the bin of the last-dimension in the
multidimensional cases. This is reasonable, since the uncertainty values show a very smooth behavior in all
variables and the x-Q2 and primary pT /z bins are very wide.

112



	0

	0.01

	0.02

	0.03

	0.04

	0.05

	1 	2 	3 	4 	5 	6 	7 	8 	9 	10

ΔF
LU

sin
(Φ
) /F

UU

Q2	[GeV2]
	0

	0.01

	0.02

	0.03

	0.04

	0.05

	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

ΔF
LU

sin
(Φ
) /F

UU

x

	0

	0.01

	0.02

	0.03

	0.04

	0.05

	0 	0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

ΔF
LU

sin
(Φ
) /F

UU

z

Figure 3.104: Relative systematic uncertainty of F sinϕ
LU /FUU due to the charge symmetric background as a

function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right) for K−

Contamination by exclusive processes

An other possible source of contamination of the SIDIS sample are the events from exclusive processes. Most of
these events were removed by the cut on the missing mass at 1.6 GeV. The leakage of these events into the SIDIS
samples via radiative effects are evaluated in the radiative effects section later. There is a peaks in the missing
mass spectra, which is not completely removed by this cut for K+ at ∼2 GeV. But since this peak has almost
no effect on the extracted asymmetries according to Figure 3.42, the related uncertainty can be neglected. The
leakage of these events via radiative effects are evaluated in section 3.7.8.

Contributions from baryonic resonances

Factorization of the cross section into distribution and current fragmentation functions does not apply to to
particles coming from the target fragmentation region. Any event corresponding to the production and decay
from a baryon resonance is not part of SIDIS in the current fragmentation region and if incorrectly included
in the event sample will alter the true asymmetry. The PYTHIA MC, optimized for CLAS12 was used to
estimate the contamination coming from the decay of baryonic resonances. Figure 3.105 shows the PID of
the mothers of all generated positive (blue) and negative (red) kaons. All kaons above 2000 are coming from
baryonic resonances.
The reconstructed and generated kaons were matched using the method describes in section 3.4.1. After placing
the kinematic cuts on the reconstructed particles described in section 3.5.1, all events above 2000 disappear for
K− and only a few survives for K+. In the second case they are 0.06% of all events. This shows that these cuts
are working very well and the uncertainty coming from the baryonic resonances are negligible compared to the
other sources.
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Figure 3.105: PID of the mothers of all generated psoitive (blue) and negative (red) kaons from the PYTHIA
MC, optimized for CLAS12
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3.7.5 Acceptance effects
Although the contribution of this source is expected to be small, since helicity independent acceptance terms
cancel out in the cancellation of the BSA, it was investigated using the large scale MC sample. After matching
the reconstructed and generated particles with the same method used previously (section 3.4.1), all kinematic
variables are calculated for the reconstructed and for the generated particles. Using the generated values a
weight is calculated according to the following:

asymm = PeAinj sinϕgen (3.39)

weight =

{
1+asymm
1−asymm , if helicity = +1

1, if helicity = −1
(3.40)

, where Pe is the beam polarization, Ainj is the injected asymmetry and helicity is the helicity state which is
randomly assigned to MC events. Different cases of Ainj have been investigated for the one dimensional binning:

Ainj =


0.031

0.025 + 0.012 · z for K+

0.015 + 0.04 · pT
(3.41)

Ainj =

{
−0.013

0.04− 0.28 · z + 0.35 · z2 for K− (3.42)

A few examples of the comparison of the injected and extracted asymmetries are shown in Figure 3.106.
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Figure 3.106: Injected and extracted Asinϕ
LU using realistic z- (bottom left) and realistic PT -dependence (bottom

right) for K+ and using constant (bottom left) and realistic z-dependence (bottom right) for K−

The difference between the injected and extracted asymmetry is assigned as a systematic uncertainty bin by
bin. Figures 3.107 and 3.108 show the relative uncertainties for the 1 dimensional case.
For the multidimensional binning cases the same study was performed, but only using the constant asymmetry.
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Figure 3.107: Relative systematic uncertainty of F sinϕ
LU /FUU due to acceptance effects as a function of Q2 (top

left), xB (top right), z (bottom left) and PT (bottom right) for K+

Figure 3.108: Relative systematic uncertainty of F sinϕ
LU /FUU due to acceptance effects as a function of Q2 (top

left), xB (top right), z (bottom left) and PT (bottom right) for K−
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3.7.6 Effect of the extraction method and higher order moments
Due to the reduced statistics, the BSA values were fit with the following function:

BSA = Asinϕ
LU sinϕ (3.43)

This assumes that the correlation is low between the sinϕ moment and the other moments of the BSA. To check
the validity and the effect of this assumption on the extracted moments, the fits were also done with the full
dependence:

BSA =
Asinϕ

LU sinϕ

1 +Acosϕ
UU cosϕ+Acos 2ϕ

UU cos 2ϕ
(3.44)

Since the fits could not be performed reliably due to the limited statistics, the cosϕ and cos 2ϕ moments were
limited. The limits are based on the values obtained from fitting the integrated BSA and from fits of one
dimensional bins with sufficient statistics. In these cases the limits had a small effect on the results. The limits
are the following:

|Acosϕ
UU | <

{
0.2 or 0.5, for K+

1, for K− (3.45)

|Acos 2ϕ
UU | <

{
0.05 or 0.3, for K+

0.05, for K− (3.46)

To get a reliable result, in case of K− the sinϕ term also had to be limited:

|Asinϕ
LU | < 0.5 (3.47)

To check to validity of the limits, the K+ sample was fit with 2 different limits and without a limit as well in
the 1 dimensional case. The fits are reasonable in most bins. The extracted moments shown in Figures 3.109,
3.110 and 3.111 are in agreement within uncertainties in bins with sufficient statistics.
The difference of the obtained results with the two different fit functions is assigned as a systematic uncertainty.
Figures 3.112 and 3.113 show the absolute uncertainties in case of the one-dimensional binning. While Figure
3.114 shows the absolute and relative uncertainties in the fully multidimensional case.
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Figure 3.109: Extracted F sinϕ
LU /FUU with different limits and fit functions as a function of Q2 (top left), xB

(top right), z (bottom left) and PT (bottom right) for K+

Figure 3.110: Extracted F cosϕ
UU /FUU with different limits and fit functions as a function of Q2 (top left), xB

(top right), z (bottom left) and PT (bottom right) for K+

118



Figure 3.111: Extracted F cos 2ϕ
UU /FUU with different limits and fit functions as a function of Q2 (top left), xB

(top right), z (bottom left) and PT (bottom right) for K+
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Figure 3.112: Absolute uncertainty of F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left)

and PT (bottom right) for K+
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Figure 3.113: Absolute uncertainty of F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z (bottom left)

and PT (bottom right) for K−
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Figure 3.114: Absolute (left) and relative (right) uncertainty of F sinϕ
LU /FUU as a function of the fully multidi-
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3.7.7 Bin-migration effects
Due to the finite resolution of the measured kinematic variables, the reconstructed values used to study the
beam spin asymmetry could be assigned to a different bin than they should be assigned to. This source of
uncertainty is small if the measured asymmetries in neighboring bins are only slightly different, which is the
case for the majority of the bins.
The large scale MC production was used to study this systematic effect. The reconstructed and generated
particles were matched with the same method used previously (section 3.4.1) and the realistic resolution function
was used from section 3.6.1. For each event and each kinematic variable, the bin in which the kinematic variable
was generated and the bin in which it was reconstructed have been determined. Based on these values the bin
purities and the contamination rates due to bin migration have been calculated. The result is shown in Fig.
3.115 for the one dimensional binning in case of positive kaons.
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Figure 3.115: Bin purity and bin migration rates for K+ in case of the 1 dimensional binning in bins of Q2 (top
left), xB (top right), z (bottom left) and PT (bottom right)

To estimate the effect of the bin migration on the result, the contamination rate has been separated based
on the generated bin where it originates from. It has been found that the major effect originates from the 3
neighboring bins in each direction. For larger distances the rate can be neglected. The absolute systematic
uncertainty due to the bin migration in bin i can be calculated with the following formula:

∆Ai =

3∑
n=1

fi−nAi−n

3∑
n=1

fi+nAi+n −

(
3∑

n=1

fi+n +

3∑
n=1

fi−n

)
Ai (3.48)

,where Ai is the asymmetry measured in bin i and fi+n is the contamination from bin i+n to bin i. The
systematic uncertainties estimated this way in the 1 dimensional binning case are shown in Figures 3.116 and
3.117. It can be observed that the effect stays below a few percents, since the asymmetry shows a very smooth
behavior and the kinematic bins are significantly larger than the resolution.
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Figure 3.116: Relative uncertainty of the asymmetry due to bin migration for K+ in case of the 1 dimensional
binning

Figure 3.117: Relative uncertainty of the asymmetry due to bin migration for K− in case of the 1 dimensional
binning
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In the multidimensional binning cases it is expected that most of the bin migration happens in the last binning
dimension, where the bins are much smaller than in the other dimensions, so for the uncertainty estimation
the bin migration in the first few dimensions were neglected. To check this assumption the bin purities and
migration rates were determined in the first few dimensions. The lowest bin purity values were measured in
case of the 5 x-Q2 bins, but they were also above 93%. Figure 3.118 shows the bin purities and migration rates
in that case.
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Figure 3.118: Bin purity and bin migration rates for K+ in case of the multidimensional binning in the x-Q2

binning plane

ϕ can also show bin migration, influencing the extracted asymmetry. To investigate this effect, the asymmetry
in ϕ was calculated based on an ideal sin curve with a given asymmetry. Then the asymmetry in each bin was
calculated with the effect of the bin migration taken into consideration. As a final step these points were fitted
with a sin function. The results are shown in Fig 3.119. The effect is found to be in the order of one percent.
This was added as an additional systematic uncertainty for each bin.
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Figure 3.119: Injected (blue) and obtained (red) asymmetries
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3.7.8 Radiative effects
Radiative photons emitted in the scattering process modify the reconstructed virtual photon’s 4-momentum.
This introduces a bias in the SIDIS event kinematics that needs to be corrected. These radiative corrections
on the measured asymmetries are expected to be small for SIDIS beam spin asymmetries, because of the
requirement of at least one hadron in the final state. This limits the radiative corrections to those for the
inelastic part of the cross-section, unlike for inclusive deep inelastic scattering. In addition to this argument, we
can also have a direct look on the BSA, if we would consider acceptance (A±) and radiative (R±) corrections
for both helicity states (±). In this case, the BSA can be expressed as:

BSA′ =
N ′+ −N ′−

N ′+ +N ′− =
N+

A+R+ − N−

A−R−

N+

A+R+ + N−

A−R−

(3.49)

In the performed multidimensional analysis, the bin sizes are small. Therefore it can be assumed that the
acceptance as well as the radiative corrections are approximately the same for both helicity states (A+ ≈ A− ≈ A
and R+ ≈ R− ≈ R). This leads to

BSA′ ≈
N+

AR − N−

AR
N+

AR + N−

AR

=
N+ −N−

N+ +N− (3.50)

, which shows that the effect of radiative corrections on the BSA is expected to be small. Nevertheless,
the radiative effects have been evaluated by means of Monte Carlo simulations using the dedicated software
(RADGEN) in combination with LEPTO. The estimated radiative corrections do not exceed a few percent
of the value of the beam spin asymmetries. The radiative corrections have not been applied to the measured
asymmetries, but they are included in the systematic uncertainties. [35]
To study the radiative effects and to estimate their contribution to the systematic uncertainties, RADGEN and
LEPTO was used to simulate the distribution shown on Figure 3.120. The full analysis was then repeated, but
instead of a fixed beam energy, the energy was chosen according to this distribution.
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Figure 3.120: Distribution of the relative beam energy if radiative effects are considered, based on a "radgen"
simulation

The resulting missing mass distributions are shown in Figure 3.121. The distributions calculated with a fixed
beam energy are shown in blue and the ones with the simulated beam energy are shown in red. A negative
shift of the missing mass spectra due to the lower overall beam momentum can be observed. In addition, the
statistics is reduced, since the applied cuts are rejecting radiated events. These radiative effects can limit the
effect of the missing mass cut placed at 1.6 GeV, since radiated events can be reconstructed at a higher missing
mass than they should be. This way exclusive channels can contaminate the SIDIS sample. As Figure 3.42, the
effect on the BSA of these channels are expected to be small.
By using the samples obtained with a fixed beam energy and with the beam energy chosen according to the
distribution, the contribution of events below the missing mass cut was simulated on an event-by-event basis.
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Figure 3.121: Missing mass of e−K+X (top) and e−K−X (bottom) and without (blue) and with (red) simulated
radiative effect with inbending (left) and with outbending (right) setting.

For each kinematic bin the proportion of the events that should not be part of the SIDIS sample because they
actually came from below the missing mass cut and are only accepted in the SIDIS sample due to radiative
effects was determined:
f=Number of events in bin i (determined with recalculated variables) with standard cuts on both normal and
recalculated variables, except the cut on recalculated MX is reversed/Number of events in bin i (determined
with normal variables) with standard cuts on normal variables.
The measured asymmetry can then be expressed as:

FM = (1− f)FT + fFγ (3.51)

, where FT is the true asymmetry and Fγ is the asymmetry with the MX < 1.6 GeV cut. The Fγ values
were extracted for each kinematic bin. The values are slightly higher than the FM values and are shown in
Figures 3.122 and 3.123. The difference between the true and the measured value is assigned as the systematic
uncertainty.
The resulting relative systematic uncertainties are shown in Figures 3.124 and 3.125. It can be observed that
the relative uncertainties stay below 5% within the whole kinematic range. Since also within the higher missing
mass region and within other kinematic variables, bin migrations can be introduced by radiative effects, which
are not considered by this study, the final systematic uncertainty due to radiative effects has been set to 5% for
all bins in all binning schemes.
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Figure 3.122: Comparison of the extracted F sinϕ
LUM/FUU and F sinϕ

LUγ /FUU as a function of Q2 (top left), xB (top
right), z (bottom left) and PT (bottom right) for K+

Figure 3.123: Comparison of the extracted F sinϕ
LUM/FUU and F sinϕ

LUγ /FUU as a function of Q2 (top left), xB (top
right), z (bottom left) and PT (bottom right) for K−
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Figure 3.124: Relative uncertainty of the extracted F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z

(bottom left) and PT (bottom right) for K+ due to radiative uncertainties

Figure 3.125: Relative uncertainty of the extracted F sinϕ
LU /FUU as a function of Q2 (top left), xB (top right), z

(bottom left) and PT (bottom right) for K− due to radiative uncertainties
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3.7.9 Effect of the pion subtraction and uncertainty of the contamination
Using different PID methods together with the pion subtraction give very similar final results. The small
differences between the results can be used to estimate the systematic uncertainties introduced by these methods.
Since a certain amount of the difference of the extracted value with different methods in a given bin can also
be caused by the slightly different distributions of the other kinematic variables, the standard deviation of all
of the differences was assigned as a systematic uncertainty. Figures 3.126 and 3.127 show the relative difference
of the extracted asymmetries between p <5 GeV with ML PID and other PIDs after the pion subtraction.

Figure 3.126: Relative difference of the extracted F sinϕ
LU /FUU values between p <5 GeV with ML PID and other

PIDs as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right) for K+
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Figure 3.127: Relative difference of the extracted F sinϕ
LU /FUU values between p <5 GeV with ML PID and other

PIDs as a function of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right) for K−

To check that this uncertainty is mostly coming from the uncertainty of the contamination, further studies were
performed. First the uncertainty of the contamination was estimated by calculating the average contamination
between 1.2 and 2.9 GeV momentum obtained by different methods. The data-points used are shown on Figure
3.91b. The determined average contaminations are the following:

• β-p fits from data - 35.07%

• β-p fits from MC - 36.99%

• MC-matching from MC - 35.1%

The contamination value around 4 GeV is 53% by MC-matching and 56% by the RICH. Based on these values,
the uncertainty of the contamination from MC can be estimated to be 10% across the whole momentum range.
The uncertainty of the corrected asymmetries coming from the uncertainty of the contamination was calculated
in every bin with the following formula:

∆AK
corr =

AK
meas +Aπ

meas

(1− C)2
∆C (3.52)

These estimated uncertainties are plotted together with the difference of the corrected values extracted with
different PID for K+ in the one dimensional kinematic bins in Figure 3.128. The plots show that the uncertainty
coming from the contamination is slightly smaller than the one determined from the differences of the different
PID methods.
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Figure 3.128: Uncertainty of the extracted F sinϕ
LU /FUU values using p <5 GeV with ML PID coming from the

uncertainty of the contamination and relative difference of the extracted F sinϕ
LU /FUU values between p <5 GeV

with ML PID and other PIDs in bins of Q2 (top left), xB (top right), z (bottom left) and PT (bottom right)
for K+

It was also checked that the results with different PID methods are only different because the distribution of the
other kinematic variables are different. The raw asymmetries were extracted using different PID and a z > 0.55
cut, to achieve a similar underlying kinematic distribution for K+ in 3 one dimensional bins. The values are
shown in Figure 3.129. As a cross check the pion asymmetries were also extracted using only the EB PID and
also requiring both EB and RICH pion PID to show that they agree. The EB values are approximately 10%
closer to the kaon values, showing that there is a non-negligible kaon contamination in the pion sample in the
high z region, which corresponds to high momenta. The next group of PIDs is the kaon EB PID and the kaon
EB PID combined with a RICH PID which is either pion or kaon. The fact that these values coincide shows
that that the kinematic region of RICH availability doesn’t add any other bias to the asymmetries. Since these
points have a high contamination, we expect these to be between the pion values and the "zero" contamination
kaon values, which is the case in all bins. The "zero" contamination PIDs are the EB and RICH kaon PID and
the EB and strict ML PID, which means that the cut on the DNN response is increased to 0.99, as before. In
the last case we expect that the contamination is just a few percent based on the MC. Since the strict ML PID
is in good agreement with the RICH and it is also in good agreement with the corrected asymmetries using the
other 4 PIDs, we can conclude that the contamination estimates are accurate within 10% uncertainty and that
the different PID methods do not have any effect on the extraction of the asymmetries.
Since z is highly correlated with momentum, the contamination can be estimated around 1.8 GeV (z = 0.17)
and 4.2´ GeV (z = 0.83) momenta using the following formula:

C =
FK
meas − FK

MC/RICH

Fπ
meas − FK

MC/RICH
(3.53)

Here we assumed that the contamination is zero using the strict ML at low momenta and using the RICH PID
at high momenta, so FK

MC/RICH = FK
real. The contamination determined this way around 4 GeV is 0.58, which

is very close to the values from MC (C = 0.53) and RICH (C = 0.56). The low z contamination is 0.16, which
is also within 10% difference from the MC contamination using the |χ2

PID| < 3 cut (C = 0.18). The agreement
is illustrated by Figure 3.130.
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Figure 3.129: Comparison of the "raw" extracted F sinϕ
LU /FUU values using different PIDs in bins of Q2 (top

left), xB (top right), z (bottom left) and PT (bottom right) for K+ and π+
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Figure 3.130: Contamination as a function of momentum from the MC in blue and contamination calculated
from the difference of the extracted asymmetries using different PID (purple stars).
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3.7.10 Total systematic uncertainty
To estimate the total systematic uncertainty the different contributions are calculated for each bin and they
are added quadratically. Figures 3.131 and 3.132 show the contributions from different sources to the total
uncertainty in each bins in the one dimensional binning case for positive and negative kaons respectively.

Figure 3.131: Contributions from different sources to the total relative uncertainty in bins of Q2 (top left), xB
(top right), z (bottom left) and PT (bottom right) for K+

We can observe that the total systematic uncertainty is at the same level as the statistical uncertainty. The
acceptance effects and the uncertainty of the pion value subtraction have the most dominant contribution in
most bins. The uncertainty from radiative effects also have a significant contribution in most kinematic bins,
especially at high PT .
Table 3.16 shows the relative uncertainty from the different sources averaged over all bins of the fully mul-
tidimensional binning. Here we can observe that the pion contamination causes the most uncertainty in the
multidimensional binning as well. The average systematic uncertainty is below the average statistical uncer-
tainty. The absolute uncertainties are slightly bigger for K− than for K+, while the relative uncertainties are
much higher. This is due to the fact that the asymmetries for K− are very close to 0. The uncertainties are
shown in every bin in the fully multidimensional case on Figure 3.133.
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Figure 3.132: Contributions from different sources to the total relative uncertainty in bins of Q2 (top left), xB
(top right), z (bottom left) and PT (bottom right) for K−

Relative uncertainty Absolute uncertainty
Source K+ K− K+ K−

Statistical uncertainty 28.8% 123.7% 0.012 0.023
Pion contamination 11.5% 79.9% 0.005 0.015
Beam polarization 2.8% 3.2% 0.001 0.001
Fiducial cuts 8.5% 29.3% 0.003 0.006
Pion bin migration 5.3% 50.3% 0.002 0.009
Radiative effects 5% 5% 0.002 0.0005
Acceptance 3.5% 31.4% 0.001 0.006
Cos terms 5.4% 32% 0.002 0.006
Bin migration 1.8% 3.2% 0.001 0.001
Phi bin migration 1% 1% 0.0004 0.0001
Charge-symmetric background 0.2% 0.5% 0.0001 0.0002
Accidentals 1% 1% 0.0004 0.0001
Total systematic uncertainty 21.6% 89.9% 0.009 0.017

Table 3.16: Relative and absolute uncertainty from the different sources averaged over all bins of the fully
multidimensional binning
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Figure 3.133: Contributions from different sources to the total relative uncertainty in the fully multidimensional
binning for K+ (top) and for K− (bottom)
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3.8 Final results and discussion
The F sinϕ

LU /FUU values extracted using the p < 5 GeV cut and the machine learning PID, together with the mean
values of the most important kinematic variables can be found in appendices I to III for all binning schemes
described in section 3.5.6. Figures 3.134 and 3.135 show the final values together with the systematic and
statistical uncertainties in every kinematic bin and compare it with previously measured values, when available.
The comparison is made using results obtained by CLAS6 [63] and HERMES [64]. The new results are in good
agreement with the previous measurements. They have smaller uncertainties and much narrower kinematic
bins due to the much higher statistics. The average Q2 for CLAS6 is much lower than in case of this study,
where the F sinϕ

LU /FUU values are lower. This results in a lower asymmetry in every other kinematic bin. The
HERMES dataset is mostly concentrated at low xB values, but since the F sinϕ

LU /FUU is flat as a function of xB
in comparison with the uncertainty of the HERMES asymmetries, so this does not affect the bins in the other
kinematic variables significantly.

Figure 3.134: Final results after subtracting the pion asymmetries compared with previous results in bins of Q2

(top left), xB (top right), z (bottom left) and PT (bottom right) for K+. The results are integrated over all the
other kinematic variables. (⟨xB⟩ = 0.226, ⟨Q2⟩ = 2.477 GeV2, ⟨z⟩ = 0.433, ⟨PT ⟩ = 0.419 GeV)
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Figure 3.135: Final results after subtracting the pion asymmetries compared with previous results in bins of Q2

(top left), xB (top right), z (bottom left) and PT (bottom right) for K−. The results are integrated over all the
other kinematic variables. (⟨xB⟩ = 0.201, ⟨Q2⟩ = 2.349 GeV2, ⟨z⟩ = 0.466, ⟨PT ⟩ = 0.446 GeV)

Figures 3.136 to 3.149 show the final values together with the systematic and statistical uncertainties in every
kinematic bin and compare it with the pion values extracted from the same dataset with the same binning. The
binning in the xB −Q2-plane is shown in Figures 3.137 and 3.146.
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Here only the statistical uncertainty is shown for pions, but according to [35] the systematic uncertainties are
usually significantly smaller than the statistical ones and thus can be neglected compared to the much higher
ones in the kaon case. Especially that the 2 highest sources of the pion systematic uncertainties are the bin
migration and the radiative effects. Since much wider kinematic bins are used in our case we expect much lower
bin migration and most of the kinematic bins, in which the radiative uncertainties are the highest for pions
(high xB , PT and z and low Q2), were removed from the kaon analysis due to insufficient statistics.
It can be observed that the overall behavior of the asymmetries are almost independent of Q2 and xB . In case
of K+ the PT -dependence looks the same for all z bins. For K− we can observe a rising and then a falling
tendency in PT for both z bins, although this effect is more prominent at high z values.
If we look at K+, the z-dependence in different PT bins shows a falling trend at low z values and a rising trend
at high z values at low PT . This trend changes to a rising and then falling one at high PT values. For K−, a
similar difference can be observed in the z-dependence between the two PT bins. It shows a rising trend at low
PT and a falling trend followed by a sharp increase at high PT .
In case of a few kinematic bins the asymmetry could not have been extracted with the stricter PID methods,
due to the limited statistics. This results in a systematic uncertainty that is much higher in that bin, than in
the surrounding ones, since the uncertainty of the pion asymmetry subtraction is higher.
Comparing the kaon and pion asymmetries could reveal the differences in the contributing TMDs and FFs of
the sea s quarks. The valence quark content of the charged pseudoscalar mesons is shown in Table 3.17. This
comparison of the quark content shows, that the substitution of d quarks by s quarks can cause a difference
in the observed asymmetries for pions and kaons. The details on the theoretical interpretation are still under
discussion, but a few ideas will be discussed in the following.

Meson π+ π− K+ K−

Quark content ud̄ dū us̄ sū

Table 3.17: Valence quark content of the charged pseudoscalar mesons
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3.8.1 Positive Kaons
The fact that every other data point follow the pion values, but have higher absolute values, show that at least
one of the 4 contributions to F sin Φ

LU

FUU
is different for the sea s̄-quarks than for the sea d̄-quarks in the proton. As

these mesons valence quark content only differs in these quarks. The following terms contribute to F sin Φ
LU

FUU
:

F sinΦ
LU

FUU
≈ ζ(eH⊥

1 + f1G̃⊥ + g⊥D1 + h⊥1 Ẽ)

ζ(f1D1)
(3.54)

In [35], the π+ asymmetries are compared to theoretical models from [92] and [93]. Both of these models describe
the proton as an active quark and spectator scalar and axial-vector diquarks. Both models include the eH⊥

1

and the g⊥D1 terms as the other terms are assumed to be small. The first model uses a complicated propagator
for the axial-vector diquarks and a ratio for axial-vector and scalar strengths fitted to data. In contrast to
this, the second model uses a simple propagator for the axial-vector diquarks and the ratio of axial-vector and
scalar is fixed by SU(4) spin-flavor symmetry. The FFs used in both models are described in [94]. These models
are also compared to a third model [95], which only includes the eH⊥

1 , with an e(x) based on a chiral quark
soliton model. In this case the PT dependence of the TMD is narrow, thus that the FF’s transverse momentum
dependence is more important than that of the target TMD when describing BSA. They found that model 2
describes best the π+ datapoints, which also provides very similar eH⊥

1 terms to model 3. This also provides
additional support to this model. Based on the comparison with model 2, they found that the eH⊥

1 is dominant
at small Q2 and xB , but the g⊥D1 term, describing quark-gluon correlations, become increasingly important
at larger Q2 and xB .
As the kaon asymmetries are closer to the pion ones at high Q2 and xB , than at lower values, one could assume
that this shows that the quark-gluon correlations pay a bigger role for the sea s̄ than for d̄ quarks at small Q2

and xB . But the difference could also come from the other unknown terms f1G̃⊥ and h⊥1 Ẽ.

Figure 3.136: Final results after subtracting the pion asymmetries compared with pions in bins of Q2 (top left),
xB (top right), z (bottom left) and PT (bottom right) for K+. The results are integrated over all the other
kinematic variables. (⟨xB⟩ = 0.226, ⟨Q2⟩ = 2.477 GeV2, ⟨z⟩ = 0.433, ⟨PT ⟩ = 0.419 GeV)

138



Figure 3.137: Bin borders on the Q2-xB-plane for the e−K+X dataset with 3 (left) and 5 (right) bins

⟨PT ⟩ = 0.469 GeV

0.146

⟨z⟩ = 0.429

1.683 GeV2

⟨PT ⟩ = 0.378 GeV

0.256⟨xB⟩

⟨z⟩ = 0.449

2.517 GeV2 ⟨Q2⟩

⟨PT ⟩ = 0.367 GeV

0.367

⟨z⟩ = 0.414

4.355 GeV2

Figure 3.138: Final results after subtracting the pion asymmetries in bins of z (left) and PT (right) for low xB
and low Q2 (top), high xB and low Q2 (middle) and high xB and high Q2 (bottom) for K+ (xB-Q2-binning:
Figure 3.137). The results are integrated over all the last kinematic variable (z or PT ).
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⟨PT ⟩ = 0.503 GeV

0.120

⟨z⟩ = 0.423

1.439 GeV2

⟨PT ⟩ = 0.370 GeV

0.238

⟨z⟩ = 0.475

2.031 GeV2

⟨PT ⟩ = 0.424 GeV
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⟨z⟩ = 0.417

2.747 GeV2 ⟨Q2⟩

⟨PT ⟩ = 0.294 GeV

0.419

⟨z⟩ = 0.437

3.848 GeV2

⟨PT ⟩ = 0.358 GeV

0.421

⟨z⟩ = 0.413

5.248 GeV2

Figure 3.139: Final results after subtracting the pion asymmetries in bins of z (left) and PT (right) for low xB
and low Q2 (top), medium xB and low Q2 (upper middle), medium xB and high Q2 (middle), high xB and low
Q2 (lower middle) and high xB and low Q2 (bottom) for K+ (xB-Q2-binning: Figure 3.137). The results are
integrated over all the last kinematic variable (z or PT ).
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⟨PT ⟩ = 0.482 GeV

⟨Q2⟩ = 1.658 GeV2
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⟨xB⟩ = 0.252

⟨PT ⟩ = 0.772 GeV

⟨Q2⟩ = 2.623 GeV2

⟨xB⟩ = 0.238
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⟨PT ⟩ = 0.767 GeV

⟨Q2⟩ = 4.144 GeV2

⟨xB⟩ = 0.324

Figure 3.140: Final results after subtracting the pion asymmetries in bins of z for low xB and low Q2 (top),
high xB and low Q2 (middle) and high xB and high Q2 (bottom) for low (left), medium (middle) and high
(right) PT for K+ (xB-Q2-binning: Figure 3.137)
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⟨z⟩ = 0.287

⟨Q2⟩ = 1.793 GeV2
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⟨Q2⟩ = 1.665 GeV2
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⟨z⟩ = 0.605
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⟨z⟩ = 0.598
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⟨z⟩ = 0.291
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⟨Q2⟩ = 4.235 GeV2

⟨xB⟩ = 0.358

Figure 3.141: Final results after subtracting the pion asymmetries in bins of PT for low xB and low Q2 (top),
high xB and low Q2 (middle) and high xB and high Q2 (bottom) for low (left), medium (middle) and high
(right) z for K+ (xB-Q2-binning: Figure 3.137)
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3.8.2 Investigation of the falling behavior at high z

The sudden drop at high z, present in all kinematic bins for K+ could be the result of exclusive reactions in the
SIDIS sample, although we expect the exact opposite, a sharp rise, as high z should correspond to low MX . To
demonstrate this, the missing mass is plotted against z, alongside the missing mass spectrum on Figure 3.142
for the K+ SIDIS sample using the loosest PID (p < 5 GeV) without a cut on MX or z. We can observe 6
peaks, which are marked on the figure. Four of them can be identified as different Λ resonances and with the
exception of the one with the highest mass, they are all removed from the final sample. A small Σ peak is also
present, besides a neutron peak. The latter one is coming from the pion contamination, which is extremely high
at high z. The missing mass spectrum is also shown using the tight ML and the RICH PID. In these cases we
can observe that they span the whole missing mass range and only small amount of them contains the Λ(1890),
thus a valid comparison can be made and the effects of the pion contamination can be estimated.
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Figure 3.142: z as a function of missing mass for the K+ SIDIS sample using the loosest PID (p < 5 GeV)
without a cut on MX or z on the left. The missing mass spectrum is shown for the K+ SIDIS sample using the
loosest PID (p < 5 GeV) without a cut on MX in blue, with the cut on MX using the loosest PID in black,
using the strict ML PID in green and using the RICH PID in red in the right. The peaks are marked with the
possible resonances they are corresponding to, and the bin borders in MX used for the study described in this
section are marked with vertical red lines.

The z dependence of the asymmetries was extracted in bins of missing mass. The MX bin borders are shown
as red vertical lines in Figure 3.142. As the averages of the other kinematic variables change significantly
using different MX cuts in a given z bins, the extracted values are not directly comparable, instead one should
concentrate on the tendencies. Figure 3.143a compares the asymmetries extracted in MX bins with the pion
and with the kaon asymmetries. As expected, the asymmetry is higher when exclusive channels are included.
But in all bins we can observe a falling trend at high z. By comparing the yellow and the orange points, one
can conclude that the effect of the Λ(1890) on the asymmetries is negligible. The falling trend becomes much
more prominent after subtracting the pion asymmetries or by using a very strict PID, like the strict ML or
the RICH, as both the pion asymmetries and the contamination increase with z. This comparison is shown in
Figure 3.143b. By using these strict PIDs we can also exclude the possibility, that this behavior is an artifact
of the pion subtraction.
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Figure 3.143: "Raw" F sinϕ
LU /FUU values as a function of z in bins of MX for K+ using p <5 GeV compared with

pions and kaons. The kaon asymmetries used for comparison are extracted with the p <5 GeV condition using
the MX >1.6 GeV cut using different PIDs.

This study shows, that the falling trend in z is not coming from exclusive reactions and it is a new behavior not
predicted by theoretical calculations so far. As Figure 3.134 shows, this trend was also present in the results of
the previous measurements, but it was not unequivocal due to the high statistical uncertainties.
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3.8.3 Negative Kaons
The K− shows exactly the same behavior, that was described in [46] for π−: It is close to zero for the electronic
variables, but it shows sign changes in z and PT . Since they suspected that the sign change comes from π−-s
produced in meson or baryon decays, so they investigated if the behavior is changed as a result of increasing
the missing mass cut. Interestingly they found that while the z and PT behavior does not change, the xB and
Q2 values do change sign. This study was repeated for negative kaons and pions and shown in Figure 3.145.
The asymmetries were extracted in 3 different missing mass ranges: 1.6 GeV< MX < 2.3 GeV, MX > 1.6 GeV
and MX > 2.3 GeV. For π− the above described behavior was reproduced, while for kaons we don’t see any
MX dependence, except at small Q2 and xB . But if we also consider the systematic uncertainty of the pion
contamination, which is not shown on the figures and higher than the statistical one in those bins, then there
is no difference in those datapoints. With the higher missing mass cut, the π− values have the same behavior
as K− in all kinematic variables, except z. If we compare the kaons to the pions with high missing mass cut,
then we can observe the same things as in case of the K+ and draw the same conclusion about the sea s-quarks,
although the tendency here is not conspicuous due to the higher uncertainties. The only difference from pions
seems to be the z dependence. As we can observe a sign change and an overall rising trend for the pions, the
kaon values remain negative and they even fall with increasing z, just like for the positive kaons. This is much
more prominent at high PT and seems to be independent of xB and Q2. To understand the underlying physics,
further studies are needed.
In the negative case, the comparison of the pion and kaon asymmetries are more complicated, since the d quark
can originate from a sea or a valence quark of the proton, but the s quark of the kaon always originates from
a sea quark. One of the possible explanations of the missing mass dependence of the π− asymmetry is that
different quarks are involved in the process. As the kaons don’t have this behavior and they behave throughout
the whole missing mass range as the pions at high missing mass, could support this idea, but much more
detailed studies are needed to have a conclusion. But nonetheless this is a good example that the high precision
multidimensional binning can shed light on new previously unseen phenomena.

Figure 3.144: Final results after subtracting the pion asymmetries compared with pions in bins of Q2 (top left),
xB (top right), z (bottom left) and PT (bottom right) for K−. The results are integrated over all the other
kinematic variables. (⟨xB⟩ = 0.201, ⟨Q2⟩ = 2.349 GeV2, ⟨z⟩ = 0.466, ⟨PT ⟩ = 0.446 GeV)
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Figure 3.145: Final results after subtracting the pion asymmetries for K− (left) compared with pions (right) in
bins of Q2 (top), xB (upper middle), z (lower middle) and PT (bottom) using different missing mass ranges.
The results are integrated over all the other kinematic variables.
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Figure 3.146: Bin borders on the Q2-xB-plane for the e−K−X dataset
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Figure 3.147: Final results after subtracting the pion asymmetries in bins of z (left) and PT (right) for low xB
and low Q2 (top), high xB and low Q2 (middle) and high xB and high Q2 (bottom) for K− (xB-Q2-binning:
Figure 3.146). The results are integrated over all the last kinematic variable (z or PT ).
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Figure 3.148: Final results after subtracting the pion asymmetries in bins of z for low xB and low Q2 (top),
high xB and low Q2 (middle) and high xB and high Q2 (bottom) for low (left) and high (right) PT for K−

(xB-Q2-binning: Figure 3.146)
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Figure 3.149: Final results after subtracting the pion asymmetries in bins of PT for low xB and low Q2 (top),
high xB and low Q2 (middle) and high xB and high Q2 (bottom) for low (left) and high (right) z for K−

(xB-Q2-binning: Figure 3.146)

The data presented in this work will help to further constrain the TMDs and FFs in global fits. They will
serve as a valuable input, as they have much finer binning and smaller uncertainties compared to previous
measurements and also this is the first fully multidimensional analysis for kaons.
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Chapter 4

Conclusion and summary

The cluster finding algorithm for the PANDAs EMC was reworked and the Monte Carlo matching for resonances
and neutral final states in PandaRoot was optimized. The effect of these improvements was demonstrated by
performing a feasibility study for a predicted hybrid charmonium state. The possibility to utilize natural
algorithms for optimizing the cuts during the analysis to increase the statistical significance was also explored.
The conclusion of these studies was that with all of these improvements it will be possible to discover this exotic
state once the PANDA experiment will be fully operational. In the best case scenario, the discovery will be
possible within one year of data taking and if that happens it will be a forerunner of exploring a new exotic
type of hadronic states.
A multidimensional study of charged kaon SIDIS beam spin asymmetry over a wide range of kinematics with
CLAS12 was also presented. The main challenge of this analysis was to achieve a clean kaon sample, as the
pion contamination was high, while still keeping the statistics as high as possible. This goal was reached by
improving the PID with machine learning techniques and by performing a bin by bin defolding of the pion
asymmetries. With the presented methods, the analysis has a much finer binning and smaller uncertainties
compared to previous measurements and also it is the first fully multidimensional analysis for kaons. It can be
used to further constrain the TMDs and FFs in global fits and thus provide a better understanding of the 3D
structure of the proton.
As demonstrated by this work, the use of machine learning can be a very useful tool when doing data analysis
in the field of hadron physics. By utilizing traditional approaches in parallel one can test the efficiency of the
ML method from the one side. From the other side it also gives a better understanding of the data and of
the way of thinking required to solve the given problem. This way, it makes the selection and construction of
the input variables more efficient and also helps to find the ideal ML method or the ideal DNN layout. ML
techniques were applied for three different problems in this work. The first one was the optimization of the
cluster finding algorithm of the PANDAs EMC by developing a DNN to pair digis to be put into the same
cluster. In this case traditional algorithms proved to be more effective. The second case was the optimization
of the set of cuts used to increase the statistical significance of the signal. In some cases the improvement was
more than a factor of two. The last case was a use of another DNN to differentiate charged kaons and pions
by using all available detector information and thus achieving a better separation than achievable with just a
single subsystem, according to the design parameters. Although the improvement in this case was significant
(the average contamination was reduced from ∼50% to ∼15%, by keeping 58% of the statistics), it was not
enough per se. But it provided an excellent tool to estimate the uncertainty of the pion subtraction based on
MC data and to help verify this procedure, thus making the analysis possible.
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Appendix

I Results of the 1 dimensional binning

i K+

<xB> <Q2>
[GeV2]

<z>
<PT>
[GeV]

<W>
[GeV]

<y>
<MX>
[GeV]

<ε> F sinϕ
LU /FUU

Stat.
unc.

Sys.
unc.

z binning:
0.170 2.352 0.150 0.220 3.512 0.705 2.953 0.527 0.0379 0.0167 0.0071
0.206 2.578 0.250 0.350 3.301 0.644 2.629 0.607 0.0511 0.0033 0.0065
0.229 2.590 0.350 0.414 3.111 0.585 2.332 0.677 0.0575 0.0030 0.0040
0.236 2.481 0.450 0.438 2.990 0.542 2.100 0.724 0.0585 0.0033 0.0031
0.227 2.348 0.550 0.442 2.974 0.529 1.945 0.739 0.0508 0.0037 0.0053
0.209 2.256 0.650 0.437 3.059 0.549 1.833 0.721 0.0182 0.0047 0.0083
0.183 2.035 0.750 0.386 3.142 0.561 1.715 0.717 0.0126 0.0120 1.2612
Q2 binning:
0.147 1.450 0.461 0.476 3.128 0.532 2.168 0.740 0.0514 0.0029 0.0037
0.222 2.350 0.452 0.419 3.043 0.549 2.137 0.718 0.0559 0.0032 0.0046
0.293 3.250 0.445 0.398 2.965 0.570 2.091 0.691 0.0583 0.0040 0.0047
0.356 4.150 0.439 0.383 2.904 0.597 2.053 0.657 0.0553 0.0052 0.0033
0.414 5.050 0.433 0.370 2.840 0.623 2.011 0.620 0.0483 0.0072 0.0066
0.469 5.950 0.428 0.356 2.762 0.645 1.959 0.587 0.0524 0.0110 0.0110
0.522 6.850 0.421 0.340 2.672 0.665 1.899 0.556 0.0700 0.0166 0.0194
0.572 7.750 0.413 0.319 2.577 0.683 1.838 0.525 0.0052 0.0299 0.0075
0.620 8.650 0.401 0.292 2.474 0.701 1.776 0.494 0.0034 0.0597 0.0534
0.664 9.550 0.384 0.263 2.376 0.718 1.722 0.464 -0.1929 0.1471 0.5152
Pt binning:
0.284 2.927 0.461 0.040 2.869 0.530 2.109 0.734 0.0050 0.0091 0.0049
0.276 2.839 0.453 0.120 2.883 0.529 2.124 0.735 0.0224 0.0048 0.0033
0.266 2.740 0.450 0.200 2.894 0.527 2.122 0.738 0.0365 0.0042 0.0021
0.253 2.626 0.449 0.280 2.929 0.531 2.127 0.735 0.0446 0.0039 0.0036
0.238 2.515 0.447 0.360 2.986 0.542 2.146 0.724 0.0447 0.0039 0.0036
0.225 2.426 0.446 0.440 3.039 0.553 2.152 0.713 0.0552 0.0043 0.0049
0.214 2.352 0.448 0.520 3.087 0.563 2.144 0.703 0.0565 0.0045 0.0055
0.203 2.288 0.452 0.600 3.138 0.575 2.128 0.691 0.0582 0.0050 0.0060
0.193 2.226 0.458 0.680 3.189 0.588 2.105 0.677 0.0625 0.0059 0.0087
0.183 2.168 0.466 0.760 3.243 0.602 2.076 0.662 0.0526 0.0068 0.0240
xB binning:
0.050 1.150 0.438 0.606 3.562 0.654 2.475 0.606 0.0490 0.0063 0.0066
0.150 1.708 0.454 0.476 3.214 0.570 2.243 0.698 0.0524 0.0029 0.0024
0.250 2.565 0.457 0.404 2.954 0.533 2.068 0.734 0.0579 0.0033 0.0047
0.350 3.575 0.448 0.362 2.771 0.531 1.951 0.730 0.0568 0.0041 0.0056
0.450 4.784 0.434 0.328 2.630 0.553 1.865 0.701 0.0532 0.0061 0.0071
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0.550 6.212 0.415 0.294 2.493 0.589 1.785 0.654 0.0398 0.0108 0.0162
0.650 7.836 0.390 0.247 2.349 0.635 1.705 0.588 -0.0076 0.0346 0.0701
0.750 9.483 0.358 0.188 2.206 0.696 1.637 0.494 -0.1621 0.4177 0.4385

Table 1: Final result of the one-dimensional study with z, Q2, PT or xB as the main bin variable for K+. The
columns <xB>, <Q2> , <z>, <PT>, <W>, <y>, <MX> and <ε> provide the mean value of the stated
variable or the bin middle if it is the main bin variable. The columns Stat. and Sys. provide the statistical and
systematic uncertainty of F sinϕ

LU /FUU
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ii K−

<xB> <Q2>
[GeV2]

<z>
<PT>
[GeV]

<W>
[GeV]

<y>
<MX>
[GeV]

<ε> F sinϕ
LU /FUU

Stat.
unc.

Sys.
unc.

z binning:
0.136 1.888 0.150 0.243 3.587 0.701 3.016 0.535 -0.0253 0.0558 0.0330
0.185 2.334 0.250 0.379 3.352 0.648 2.662 0.603 -0.0129 0.0088 0.0234
0.216 2.400 0.350 0.434 3.110 0.575 2.323 0.690 -0.0164 0.0080 0.0140
0.215 2.405 0.450 0.474 3.124 0.582 2.180 0.675 -0.0193 0.0091 0.0126
0.198 2.411 0.550 0.489 3.272 0.627 2.117 0.625 -0.0319 0.0088 0.0213
0.190 2.292 0.650 0.456 3.267 0.616 1.941 0.646 -0.0044 0.0116 0.0302
0.170 1.910 0.750 0.344 3.190 0.568 1.740 0.712 0.0470 0.0258 0.5937
0.196 1.853 0.850 0.741 2.972 0.502 1.624 0.778 0.4813 0.3511 2.6385
Q2 binning:
0.129 1.450 0.490 0.475 3.308 0.587 2.238 0.678 -0.0103 0.0065 0.0104
0.205 2.350 0.482 0.472 3.180 0.594 2.154 0.667 -0.0123 0.0083 0.0089
0.276 3.250 0.481 0.449 3.076 0.605 2.084 0.650 -0.0127 0.0120 0.0132
0.340 4.150 0.483 0.432 2.998 0.626 2.028 0.620 -0.0320 0.0180 0.0103
0.399 5.050 0.484 0.413 2.916 0.646 1.971 0.590 0.0024 0.0277 0.0261
0.455 5.950 0.484 0.398 2.828 0.664 1.910 0.561 -0.0192 0.0467 0.0218
0.509 6.850 0.479 0.371 2.727 0.680 1.850 0.534 -0.0320 0.0801 0.0319
0.563 7.750 0.469 0.346 2.619 0.695 1.791 0.509 0.1487 0.1580 0.7558
0.611 8.650 0.459 0.322 2.513 0.711 1.737 0.479 0.0142 0.0293 0.0630
PT binning:
0.236 2.504 0.501 0.040 3.002 0.545 2.130 0.721 0.0052 0.0369 0.0039
0.237 2.524 0.498 0.120 3.011 0.550 2.132 0.715 0.0333 0.0222 0.0190
0.233 2.526 0.489 0.200 3.043 0.560 2.155 0.703 0.0281 0.0174 0.0094
0.223 2.464 0.480 0.280 3.092 0.573 2.187 0.689 0.0311 0.0144 0.0133
0.214 2.407 0.475 0.360 3.138 0.584 2.202 0.677 0.0184 0.0128 0.0125
0.208 2.385 0.474 0.440 3.172 0.594 2.196 0.666 -0.0061 0.0120 0.0096
0.201 2.364 0.476 0.520 3.212 0.605 2.185 0.653 -0.0109 0.0123 0.0135
0.194 2.335 0.482 0.600 3.256 0.618 2.165 0.640 -0.0417 0.0134 0.0229
0.187 2.306 0.489 0.680 3.300 0.630 2.139 0.625 -0.0270 0.0146 0.0219
0.180 2.269 0.500 0.760 3.349 0.644 2.105 0.609 -0.0496 0.0178 0.0300
xB binning:
0.050 1.158 0.513 0.509 3.609 0.670 2.408 0.583 0.0111 0.0132 0.0318
0.150 1.763 0.489 0.493 3.316 0.606 2.238 0.656 -0.0149 0.0061 0.0092
0.250 2.744 0.480 0.446 3.053 0.574 2.075 0.686 -0.0212 0.0093 0.0058
0.350 3.812 0.473 0.396 2.854 0.569 1.952 0.686 -0.0058 0.0143 0.0143
0.450 5.017 0.463 0.353 2.687 0.582 1.852 0.664 0.0021 0.0286 0.0010
0.550 6.375 0.443 0.304 2.524 0.607 1.765 0.629 0.0261 0.0747 0.0896
0.650 7.891 0.414 0.252 2.366 0.644 1.692 0.575 0.3609 0.2991 0.3579

Table 2: Final result of the one-dimensional study with z, Q2, PT or xB as the main bin variable for K−. The
columns <xB>, <Q2> , <z>, <PT>, <W>, <y>, <MX> and <ε> provide the mean value of the stated
variable or the bin middle if it is the main bin variable. The columns Stat. and Sys. provide the statistical and
systematic uncertainty of F sinϕ
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II Results of the 3 dimensional binning

i K+ with 3 bins in xB −Q2

<xB> <Q2>
[GeV2]

<z>
<PT>
[GeV]

<W>
[GeV]

<y>
<MX>
[GeV]

<ε> F sinϕ
LU /FUU

Stat.
unc.

Sys.
unc.

x−Q2 bin 1:
z binning:
0.141 1.945 0.150 0.237 3.576 0.706 3.009 0.527 0.0422 0.0191 0.0085
0.142 1.818 0.250 0.391 3.455 0.656 2.756 0.597 0.0497 0.0040 0.0067
0.145 1.726 0.350 0.480 3.332 0.609 2.501 0.654 0.0594 0.0037 0.0044
0.148 1.644 0.450 0.530 3.221 0.569 2.255 0.700 0.0556 0.0040 0.0039
0.150 1.594 0.550 0.551 3.161 0.547 2.048 0.724 0.0430 0.0045 0.0045
0.148 1.603 0.650 0.551 3.181 0.553 1.885 0.720 0.0223 0.0059 0.0102
PT binning:
0.167 1.878 0.460 0.040 3.207 0.579 2.370 0.687 -0.0129 0.0217 0.0150
0.163 1.808 0.451 0.120 3.185 0.569 2.363 0.697 0.0238 0.0094 0.0062
0.161 1.734 0.452 0.200 3.152 0.554 2.322 0.714 0.0285 0.0066 0.0028
0.156 1.681 0.450 0.280 3.159 0.552 2.308 0.718 0.0392 0.0057 0.0038
0.150 1.654 0.446 0.360 3.199 0.562 2.320 0.707 0.0342 0.0051 0.0028
0.147 1.638 0.445 0.440 3.231 0.571 2.310 0.697 0.0440 0.0052 0.0040
0.145 1.631 0.447 0.520 3.251 0.577 2.281 0.691 0.0531 0.0054 0.0057
0.143 1.630 0.451 0.600 3.274 0.584 2.244 0.684 0.0490 0.0055 0.0053
0.141 1.634 0.456 0.680 3.299 0.592 2.202 0.675 0.0572 0.0065 0.0080
0.139 1.642 0.464 0.760 3.333 0.604 2.156 0.663 0.0443 0.0071 0.0202
x−Q2 bin 2:
z binning:
0.220 2.974 0.150 0.190 3.383 0.691 2.840 0.542 0.0303 0.0481 0.0048
0.237 2.770 0.250 0.319 3.141 0.602 2.498 0.660 0.0530 0.0062 0.0060
0.255 2.593 0.350 0.387 2.924 0.527 2.188 0.743 0.0562 0.0042 0.0039
0.263 2.468 0.450 0.419 2.805 0.485 1.976 0.785 0.0627 0.0044 0.0032
0.258 2.419 0.550 0.429 2.801 0.481 1.850 0.791 0.0604 0.0054 0.0065
0.247 2.473 0.650 0.429 2.902 0.512 1.766 0.762 0.0194 0.0078 0.0089
PT binning:
0.271 2.485 0.476 0.040 2.767 0.476 2.015 0.793 -0.0032 0.0140 0.0032
0.269 2.473 0.464 0.120 2.770 0.476 2.026 0.793 0.0151 0.0075 0.0022
0.267 2.459 0.459 0.200 2.774 0.476 2.021 0.793 0.0441 0.0061 0.0029
0.265 2.461 0.458 0.280 2.789 0.480 2.010 0.790 0.0513 0.0056 0.0039
0.261 2.472 0.456 0.360 2.816 0.488 2.002 0.782 0.0539 0.0058 0.0038
0.256 2.485 0.453 0.440 2.852 0.499 1.993 0.773 0.0677 0.0066 0.0056
0.251 2.508 0.454 0.520 2.897 0.513 1.981 0.759 0.0556 0.0069 0.0053
0.246 2.541 0.459 0.600 2.948 0.529 1.963 0.743 0.0696 0.0086 0.0072
0.241 2.584 0.465 0.680 3.005 0.548 1.942 0.724 0.0676 0.0113 0.0094
0.237 2.633 0.474 0.760 3.063 0.568 1.912 0.702 0.0690 0.0151 0.0315
x−Q2 bin 3:
z binning:
0.289 4.012 0.150 0.166 3.282 0.708 2.749 0.511 0.0090 0.0415 0.0017
0.343 4.386 0.250 0.300 3.051 0.656 2.422 0.581 0.0572 0.0061 0.0067
0.372 4.415 0.350 0.374 2.899 0.612 2.170 0.635 0.0588 0.0050 0.0040
0.378 4.347 0.450 0.412 2.842 0.592 2.002 0.660 0.0584 0.0055 0.0030
0.368 4.277 0.550 0.434 2.876 0.597 1.888 0.655 0.0525 0.0076 0.0058
0.346 4.208 0.650 0.443 2.976 0.622 1.794 0.626 0.0055 0.0128 0.0025
PT binning:
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0.395 4.433 0.439 0.040 2.778 0.579 2.062 0.674 0.0315 0.0170 0.0300
0.393 4.429 0.435 0.120 2.789 0.582 2.068 0.671 0.0317 0.0091 0.0047
0.390 4.423 0.432 0.200 2.800 0.584 2.064 0.669 0.0357 0.0075 0.0020
0.385 4.404 0.432 0.280 2.822 0.589 2.057 0.663 0.0451 0.0072 0.0034
0.378 4.383 0.433 0.360 2.854 0.597 2.051 0.654 0.0496 0.0074 0.0034
0.368 4.349 0.433 0.440 2.894 0.606 2.042 0.643 0.0615 0.0082 0.0049
0.358 4.308 0.437 0.520 2.937 0.616 2.025 0.632 0.0695 0.0099 0.0066
0.347 4.264 0.443 0.600 2.987 0.629 2.006 0.617 0.0713 0.0121 0.0073
0.336 4.212 0.452 0.680 3.038 0.641 1.978 0.602 0.0764 0.0151 0.0108
0.325 4.159 0.462 0.760 3.088 0.653 1.940 0.587 0.0775 0.0207 0.0354

Table 3: Final result of the 3-dimensional study with z or PT as the main bin variable with 3 xB − Q2 bins
for K+. The columns <xB>, <Q2> , <z>, <PT>, <W>, <y>, <MX> and <ε> provide the mean value of
the stated variable or the bin middle if it is the main bin variable. The columns Stat. and Sys. provide the
statistical and systematic uncertainty of F sinϕ
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ii K+ with 5 bins in xB −Q2

<xB> <Q2>
[GeV2]

<z>
<PT>
[GeV]

<W>
[GeV]

<y>
<MX>
[GeV]

<ε> F sinϕ
LU /FUU

Stat.
unc.

Sys.
unc.

x−Q2 bin 1:
z binning:
0.121 1.679 0.150 0.249 3.622 0.709 3.049 0.524 0.0538 0.0249 0.0151
0.118 1.541 0.250 0.416 3.526 0.665 2.810 0.586 0.0505 0.0050 0.0091
0.119 1.464 0.350 0.512 3.421 0.625 2.563 0.637 0.0614 0.0047 0.0045
0.121 1.407 0.450 0.568 3.335 0.593 2.326 0.676 0.0501 0.0052 0.0031
0.122 1.374 0.550 0.595 3.286 0.575 2.116 0.696 0.0372 0.0058 0.0044
0.122 1.367 0.650 0.596 3.278 0.571 1.925 0.702 0.0257 0.0082 0.0118
PT binning:
0.134 1.657 0.442 0.040 3.402 0.632 2.542 0.630 0.0409 0.0433 0.0741
0.132 1.595 0.436 0.120 3.376 0.621 2.532 0.638 0.0163 0.0187 0.0089
0.121 1.407 0.441 0.440 3.338 0.594 2.402 0.674 0.0394 0.0070 0.0036
0.120 1.400 0.443 0.520 3.350 0.597 2.367 0.670 0.0453 0.0064 0.0048
0.119 1.396 0.447 0.600 3.361 0.600 2.322 0.667 0.0481 0.0068 0.0051
0.118 1.397 0.453 0.680 3.376 0.605 2.271 0.662 0.0529 0.0078 0.0074
0.117 1.404 0.460 0.760 3.399 0.613 2.218 0.653 0.0392 0.0083 0.0179
x−Q2 bin 2:
z binning:
0.236 2.203 0.250 0.285 2.826 0.476 2.217 0.807 0.0443 0.0144 0.0052
0.243 2.123 0.350 0.372 2.740 0.446 2.034 0.831 0.0638 0.0059 0.0049
0.242 2.030 0.450 0.413 2.687 0.426 1.887 0.847 0.0686 0.0052 0.0051
0.235 1.981 0.550 0.418 2.696 0.426 1.786 0.848 0.0499 0.0055 0.0054
0.223 1.960 0.650 0.396 2.762 0.442 1.706 0.836 0.0188 0.0089 0.0087
PT binning:
0.257 2.152 0.501 0.040 2.659 0.426 1.903 0.846 -0.0151 0.0197 0.0151
0.252 2.105 0.484 0.120 2.663 0.424 1.920 0.847 0.0191 0.0097 0.0031
0.247 2.059 0.476 0.200 2.670 0.424 1.921 0.848 0.0425 0.0074 0.0031
0.243 2.033 0.475 0.280 2.678 0.424 1.905 0.848 0.0580 0.0068 0.0047
0.240 2.021 0.472 0.360 2.692 0.427 1.887 0.846 0.0494 0.0068 0.0049
0.236 2.017 0.468 0.440 2.714 0.432 1.867 0.843 0.0683 0.0078 0.0080
0.231 2.010 0.469 0.520 2.744 0.440 1.842 0.837 0.0609 0.0082 0.0082
0.225 2.000 0.474 0.600 2.778 0.449 1.809 0.831 0.0633 0.0104 0.0086
0.218 1.980 0.479 0.680 2.817 0.459 1.774 0.823 0.0881 0.0148 0.0124
0.209 1.939 0.483 0.760 2.860 0.469 1.736 0.815 0.1078 0.0235 0.0492
x−Q2 bin 3:
z binning:
0.208 2.853 0.150 0.200 3.429 0.701 2.880 0.530 0.0221 0.0221 0.0037
0.222 2.822 0.250 0.340 3.278 0.648 2.618 0.602 0.0539 0.0042 0.0065
0.226 2.766 0.350 0.430 3.214 0.624 2.423 0.635 0.0572 0.0038 0.0039
0.228 2.729 0.450 0.487 3.181 0.611 2.240 0.652 0.0588 0.0044 0.0030
0.228 2.710 0.550 0.519 3.169 0.605 2.061 0.659 0.0690 0.0058 0.0077
0.226 2.693 0.650 0.520 3.173 0.606 1.883 0.659 0.0160 0.0070 0.0073
PT binning:
0.236 2.825 0.441 0.040 3.161 0.611 2.358 0.651 -0.0008 0.0149 0.0008
0.236 2.813 0.435 0.120 3.159 0.609 2.359 0.653 0.0258 0.0079 0.0039
0.235 2.795 0.434 0.200 3.159 0.608 2.347 0.655 0.0394 0.0063 0.0024
0.232 2.772 0.435 0.280 3.171 0.610 2.334 0.653 0.0447 0.0055 0.0036
0.228 2.748 0.435 0.360 3.185 0.613 2.318 0.649 0.0471 0.0055 0.0033
0.227 2.733 0.436 0.440 3.191 0.614 2.286 0.648 0.0587 0.0059 0.0046
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0.225 2.718 0.440 0.520 3.196 0.615 2.241 0.647 0.0634 0.0065 0.0061
0.224 2.707 0.446 0.600 3.203 0.616 2.187 0.645 0.0621 0.0068 0.0066
0.221 2.693 0.455 0.680 3.212 0.618 2.125 0.642 0.0599 0.0082 0.0084
0.219 2.677 0.467 0.760 3.226 0.622 2.058 0.638 0.0538 0.0099 0.0246
x−Q2 bin 4:
z binning:
0.436 4.295 0.250 0.211 2.523 0.500 1.960 0.770 0.0900 0.0239 0.0110
0.430 3.977 0.350 0.299 2.465 0.468 1.822 0.800 0.0550 0.0085 0.0047
0.418 3.780 0.450 0.320 2.464 0.457 1.747 0.810 0.0623 0.0086 0.0037
0.405 3.734 0.550 0.316 2.512 0.467 1.692 0.803 0.0345 0.0127 0.0044
0.389 3.747 0.650 0.285 2.595 0.488 1.645 0.785 0.0479 0.0392 0.0278
PT binning:
0.429 3.859 0.447 0.040 2.435 0.454 1.790 0.812 0.0350 0.0252 0.0361
0.427 3.842 0.444 0.120 2.438 0.454 1.787 0.812 0.0264 0.0146 0.0041
0.425 3.840 0.439 0.200 2.447 0.457 1.781 0.810 0.0386 0.0116 0.0022
0.421 3.833 0.435 0.280 2.461 0.460 1.768 0.808 0.0582 0.0116 0.0044
0.417 3.832 0.433 0.360 2.484 0.465 1.752 0.804 0.0602 0.0132 0.0043
0.410 3.845 0.433 0.440 2.519 0.474 1.735 0.796 0.0598 0.0159 0.0068
0.403 3.852 0.435 0.520 2.557 0.484 1.712 0.788 0.0793 0.0228 0.0108
0.394 3.842 0.439 0.600 2.597 0.494 1.682 0.779 0.0935 0.0398 0.0168
0.384 3.805 0.440 0.680 2.640 0.504 1.651 0.771 0.0718 0.0794 0.0266
0.371 3.722 0.433 0.760 2.681 0.511 1.625 0.765 0.0894 0.3322 0.0420
x−Q2 bin 5:
z binning:
0.382 5.313 0.150 0.124 3.077 0.708 2.561 0.503 -0.0123 0.1249 0.0031
0.419 5.373 0.250 0.274 2.879 0.653 2.272 0.581 0.0518 0.0101 0.0100
0.426 5.321 0.350 0.366 2.827 0.634 2.110 0.606 0.0602 0.0080 0.0042
0.424 5.217 0.450 0.414 2.812 0.624 1.974 0.620 0.0609 0.0093 0.0044
0.416 5.114 0.550 0.428 2.826 0.623 1.852 0.622 0.0442 0.0134 0.0047
0.404 5.013 0.650 0.402 2.865 0.629 1.738 0.615 -0.0019 0.0254 0.0009
PT binning:
0.431 5.302 0.438 0.040 2.794 0.625 2.072 0.619 0.0283 0.0336 0.0282
0.430 5.299 0.433 0.120 2.797 0.625 2.074 0.618 0.0266 0.0173 0.0042
0.429 5.288 0.431 0.200 2.801 0.626 2.063 0.618 0.0304 0.0136 0.0018
0.428 5.278 0.432 0.280 2.805 0.626 2.041 0.617 0.0389 0.0132 0.0031
0.426 5.262 0.433 0.360 2.814 0.627 2.014 0.616 0.0544 0.0128 0.0044
0.422 5.221 0.434 0.440 2.824 0.628 1.981 0.615 0.0662 0.0137 0.0055
0.417 5.167 0.436 0.520 2.838 0.629 1.941 0.614 0.0632 0.0162 0.0067
0.410 5.113 0.443 0.600 2.861 0.633 1.896 0.609 0.0726 0.0210 0.0080
0.403 5.068 0.453 0.680 2.885 0.637 1.843 0.603 0.0996 0.0272 0.0144
0.396 5.044 0.460 0.760 2.920 0.646 1.795 0.592 0.0959 0.0429 0.0439

Table 4: Final result of the 3-dimensional study with z or PT as the main bin variable with 5 xB − Q2 bins
for K+. The columns <xB>, <Q2> , <z>, <PT>, <W>, <y>, <MX> and <ε> provide the mean value of
the stated variable or the bin middle if it is the main bin variable. The columns Stat. and Sys. provide the
statistical and systematic uncertainty of F sinϕ
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iii K−

<xB> <Q2>
[GeV2]

<z>
<PT>
[GeV]

<W>
[GeV]

<y>
<MX>
[GeV]

<ε> F sinϕ
LU /FUU

Stat.
unc.

Sys.
unc.

x−Q2 bin 1
z binning:
0.118 1.637 0.150 0.252 3.625 0.701 3.050 0.536 -0.0419 0.0588 0.0554
0.133 1.714 0.250 0.401 3.475 0.656 2.770 0.597 -0.0219 0.0109 0.0397
0.141 1.637 0.350 0.476 3.298 0.594 2.475 0.674 -0.0202 0.0101 0.0172
0.140 1.658 0.450 0.539 3.340 0.610 2.331 0.647 -0.0151 0.0115 0.0099
0.134 1.684 0.550 0.558 3.440 0.643 2.222 0.610 -0.0182 0.0108 0.0433
0.135 1.644 0.650 0.540 3.391 0.622 2.007 0.643 -0.0153 0.0143 0.1038
0.137 1.537 0.750 0.432 3.247 0.567 1.759 0.716 0.0325 0.0282 0.4107
0.129 1.347 0.850 0.503 3.178 0.534 1.624 0.753 0.0885 0.3263 0.4851
PT binning:
0.141 1.571 0.504 0.040 3.232 0.564 2.291 0.708 -0.0302 0.0477 0.0312
0.139 1.554 0.509 0.120 3.255 0.572 2.292 0.697 0.0248 0.0314 0.0141
0.139 1.580 0.500 0.200 3.280 0.583 2.313 0.684 0.0391 0.0243 0.0121
0.139 1.614 0.490 0.280 3.314 0.597 2.338 0.668 0.0320 0.0191 0.0126
0.138 1.633 0.486 0.360 3.341 0.607 2.340 0.655 0.0346 0.0175 0.0233
0.138 1.645 0.484 0.440 3.352 0.612 2.321 0.650 0.0154 0.0159 0.0244
0.138 1.668 0.483 0.520 3.370 0.620 2.299 0.641 -0.0070 0.0151 0.0086
0.138 1.687 0.486 0.600 3.390 0.627 2.266 0.632 -0.0301 0.0158 0.0167
0.137 1.701 0.490 0.680 3.413 0.636 2.228 0.622 -0.0299 0.0176 0.0242
0.135 1.715 0.501 0.760 3.445 0.647 2.182 0.608 -0.0559 0.0210 0.0339
x−Q2 bin 2
z binning:
0.219 2.969 0.150 0.208 3.384 0.686 2.833 0.550 0.0030 0.0019 0.0039
0.235 2.779 0.250 0.366 3.159 0.609 2.492 0.651 0.0008 0.0205 0.0016
0.254 2.576 0.350 0.419 2.916 0.525 2.169 0.746 -0.0115 0.0158 0.0326
0.259 2.492 0.450 0.451 2.847 0.502 1.993 0.764 -0.0217 0.0186 0.0146
0.245 2.624 0.550 0.488 3.007 0.555 1.959 0.707 -0.0801 0.0213 0.0337
0.239 2.700 0.650 0.483 3.082 0.579 1.842 0.689 -0.0120 0.0254 0.0818
0.236 2.621 0.750 0.401 3.057 0.564 1.696 0.712 0.1263 0.0611 1.5947
PT binning:
0.268 2.484 0.498 0.040 2.783 0.480 1.983 0.789 0.0384 0.0799 0.0292
0.266 2.498 0.488 0.120 2.799 0.486 2.001 0.784 0.0232 0.0440 0.0191
0.263 2.514 0.476 0.200 2.831 0.497 2.024 0.772 0.0133 0.0349 0.0059
0.259 2.528 0.465 0.280 2.864 0.508 2.043 0.761 0.0335 0.0295 0.0157
0.255 2.542 0.457 0.360 2.893 0.517 2.044 0.752 0.0075 0.0282 0.1824
0.250 2.565 0.456 0.440 2.935 0.530 2.042 0.738 -0.0469 0.0265 0.0740
0.246 2.603 0.460 0.520 2.987 0.547 2.031 0.721 -0.0227 0.0266 0.0280
0.241 2.647 0.469 0.600 3.044 0.567 2.014 0.700 -0.0600 0.0309 0.0326
0.235 2.690 0.481 0.680 3.104 0.587 1.990 0.677 -0.0374 0.0344 0.0302
0.232 2.742 0.496 0.760 3.160 0.607 1.956 0.654 -0.0514 0.0448 0.0310
x−Q2 bin 3
z binning:
0.281 3.944 0.150 0.180 3.309 0.707 2.770 0.513 -0.0002 0.0020 0.0003
0.337 4.312 0.250 0.343 3.068 0.658 2.417 0.578 0.0018 0.0228 0.0034
0.371 4.314 0.350 0.413 2.877 0.603 2.134 0.647 -0.0094 0.0199 0.0082
0.361 4.389 0.450 0.479 2.954 0.630 2.052 0.611 -0.0371 0.0243 0.0247
0.347 4.436 0.550 0.500 3.041 0.655 1.965 0.581 -0.0341 0.0237 0.0301
0.339 4.262 0.650 0.466 3.031 0.641 1.819 0.603 0.0575 0.0396 0.3918
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0.327 3.880 0.750 0.387 2.980 0.605 1.677 0.656 -0.0624 0.1403 1.0079
PT binning:
0.391 4.486 0.498 0.040 2.816 0.591 1.992 0.660 0.0439 0.0943 0.0371
0.387 4.461 0.493 0.120 2.830 0.595 2.001 0.656 0.0637 0.0521 0.0365
0.379 4.448 0.486 0.200 2.867 0.605 2.024 0.643 0.0195 0.0425 0.0092
0.372 4.416 0.478 0.280 2.897 0.613 2.038 0.634 0.0309 0.0366 0.0124
0.365 4.391 0.471 0.360 2.929 0.621 2.044 0.625 -0.0033 0.0350 0.0023
0.356 4.371 0.471 0.440 2.967 0.631 2.039 0.612 -0.0094 0.0323 0.0149
0.347 4.325 0.472 0.520 3.011 0.641 2.029 0.600 -0.0090 0.0330 0.0113
0.338 4.307 0.482 0.600 3.051 0.652 2.000 0.587 -0.0654 0.0364 0.0361
0.328 4.259 0.493 0.680 3.098 0.664 1.969 0.572 -0.0004 0.0414 0.0003
0.318 4.203 0.503 0.760 3.145 0.675 1.935 0.557 -0.0294 0.0519 0.0178

Table 5: Final result of the 3-dimensional study with z or PT as the main bin variable with 3 xB − Q2 bins
for K−. The columns <xB>, <Q2> , <z>, <PT>, <W>, <y>, <MX> and <ε> provide the mean value of
the stated variable or the bin middle if it is the main bin variable. The columns Stat. and Sys. provide the
statistical and systematic uncertainty of F sinϕ

LU /FUU
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III Results of the 4 dimensional binning

i K+

<xB> <Q2>
[GeV2]

<z>
<PT>
[GeV]

<W>
[GeV]

<y>
<MX>
[GeV]

<ε> F sinϕ
LU /FUU

Stat.
unc.

Sys.
unc.

x−Q2 bin 1
PT bin 1
0.144 1.983 0.150 0.215 3.561 0.703 3.006 0.531 0.0504 0.0203 0.0087
0.152 1.920 0.250 0.238 3.413 0.649 2.805 0.606 0.0460 0.0057 0.0052
0.156 1.824 0.350 0.254 3.277 0.598 2.573 0.667 0.0397 0.0052 0.0039
0.160 1.710 0.450 0.273 3.143 0.549 2.320 0.720 0.0272 0.0064 0.0024
0.161 1.613 0.550 0.290 3.044 0.512 2.083 0.758 0.0238 0.0087 0.0028
0.160 1.599 0.650 0.303 3.046 0.511 1.901 0.763 0.0154 0.0117 0.0079
0.155 1.626 0.750 0.310 3.119 0.532 1.739 0.750 0.0056 0.0242 0.5570
PT bin 2
0.121 1.725 0.150 0.364 3.661 0.721 3.025 0.506 -0.0242 0.0515 0.0091
0.137 1.767 0.250 0.464 3.471 0.658 2.734 0.595 0.0542 0.0051 0.0113
0.143 1.697 0.350 0.499 3.328 0.606 2.503 0.659 0.0644 0.0045 0.0045
0.147 1.621 0.450 0.519 3.213 0.565 2.275 0.705 0.0552 0.0049 0.0031
0.149 1.573 0.550 0.536 3.150 0.542 2.067 0.730 0.0427 0.0056 0.0045
0.147 1.585 0.650 0.549 3.173 0.549 1.898 0.725 0.0157 0.0078 0.0074
PT bin 3
0.120 1.652 0.250 0.707 3.606 0.696 2.647 0.543 0.0453 0.0201 0.0094
0.134 1.679 0.350 0.768 3.435 0.640 2.376 0.619 0.0798 0.0083 0.0055
0.139 1.635 0.450 0.814 3.320 0.599 2.138 0.668 0.0828 0.0077 0.0052
0.140 1.623 0.550 0.833 3.297 0.591 1.973 0.678 0.0580 0.0083 0.0071
0.138 1.650 0.650 0.840 3.352 0.610 1.837 0.657 0.0481 0.0119 0.0232
x−Q2 bin 2
PT bin 1
0.220 2.972 0.150 0.186 3.380 0.691 2.840 0.544 0.0283 0.0489 0.0049
0.241 2.755 0.250 0.222 3.103 0.590 2.518 0.674 0.0472 0.0077 0.0057
0.262 2.581 0.350 0.234 2.872 0.511 2.226 0.759 0.0455 0.0053 0.0034
0.273 2.442 0.450 0.246 2.731 0.464 2.002 0.805 0.0471 0.0057 0.0025
0.268 2.371 0.550 0.258 2.718 0.455 1.864 0.815 0.0444 0.0073 0.0049
0.254 2.407 0.650 0.269 2.819 0.484 1.773 0.790 -0.0023 0.0111 0.0011
PT bin 2
0.212 3.053 0.150 0.345 3.495 0.729 2.871 0.486 -0.0038 0.0012 0.0025
0.232 2.785 0.250 0.437 3.185 0.616 2.474 0.643 0.0633 0.0092 0.7893
0.251 2.587 0.350 0.476 2.941 0.531 2.164 0.739 0.0680 0.0058 0.0055
0.259 2.464 0.450 0.495 2.825 0.490 1.967 0.781 0.0730 0.0059 0.0043
0.255 2.428 0.550 0.509 2.828 0.488 1.846 0.785 0.0651 0.0071 0.0068
0.243 2.497 0.650 0.522 2.939 0.524 1.764 0.751 0.0373 0.0110 0.0170
0.232 2.632 0.750 0.521 3.092 0.576 1.682 0.698 0.0182 0.0350 1.8164
PT bin 3
0.216 2.982 0.250 0.689 3.421 0.701 2.476 0.529 0.0039 0.0876 0.0014
0.240 2.604 0.450 0.779 3.025 0.555 1.904 0.716 0.0889 0.0126 0.0447
0.236 2.597 0.550 0.798 3.044 0.560 1.807 0.711 0.1182 0.0170 0.1468
0.230 2.713 0.650 0.812 3.160 0.602 1.739 0.662 0.0402 0.0277 0.0222
x−Q2 bin 3
PT bin 1
0.289 4.016 0.150 0.165 3.280 0.708 2.748 0.511 0.0128 0.0418 0.0024
0.357 4.478 0.250 0.214 2.998 0.645 2.421 0.594 0.0485 0.0071 0.0056
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0.388 4.485 0.350 0.227 2.831 0.597 2.189 0.653 0.0541 0.0064 0.0350
0.396 4.404 0.450 0.237 2.764 0.573 2.023 0.681 0.0380 0.0069 0.0143
0.386 4.322 0.550 0.249 2.790 0.575 1.903 0.681 0.0283 0.0105 0.0031
0.362 4.262 0.650 0.262 2.898 0.602 1.808 0.652 -0.0037 0.0184 0.0017
0.329 3.919 0.750 0.267 2.977 0.606 1.687 0.654 0.0030 0.0638 0.3020
PT bin 2
0.245 3.596 0.150 0.343 3.454 0.736 2.832 0.471 -0.0023 0.0009 0.0013
0.363 4.379 0.350 0.474 2.936 0.621 2.158 0.626 0.0601 0.0068 0.0229
0.372 4.331 0.450 0.493 2.870 0.598 1.999 0.653 0.0807 0.0079 0.0061
0.362 4.269 0.550 0.509 2.902 0.604 1.889 0.648 0.0651 0.0106 0.0074
0.340 4.202 0.650 0.524 3.004 0.630 1.792 0.618 0.0275 0.0193 0.0126
0.312 3.833 0.750 0.508 3.054 0.625 1.671 0.630 0.0135 0.0772 1.3421
PT bin 3
0.264 3.769 0.250 0.687 3.372 0.721 2.427 0.493 0.0836 0.1075 0.0104
0.317 4.153 0.350 0.740 3.136 0.668 2.105 0.567 0.0981 0.0196 0.0077
0.332 4.177 0.450 0.784 3.050 0.643 1.919 0.601 0.0591 0.0167 0.0059
0.323 4.139 0.550 0.808 3.092 0.653 1.829 0.587 0.1023 0.0235 0.0108
0.305 4.023 0.650 0.817 3.169 0.671 1.741 0.564 -0.0507 0.0415 0.6202
x−Q2 bin 1
z bin 1
0.159 1.937 0.320 0.120 3.341 0.627 2.695 0.634 0.0301 0.0185 0.0042
0.158 1.892 0.320 0.200 3.320 0.617 2.660 0.645 0.0371 0.0154 0.0026
0.152 1.804 0.320 0.280 3.304 0.605 2.622 0.660 0.0421 0.0119 0.0128
0.146 1.756 0.320 0.360 3.336 0.612 2.618 0.652 0.0522 0.0115 0.0065
0.143 1.723 0.320 0.440 3.355 0.616 2.593 0.646 0.0467 0.0101 0.0041
0.140 1.706 0.320 0.520 3.372 0.621 2.558 0.642 0.0662 0.0115 0.0070
0.138 1.702 0.321 0.600 3.402 0.630 2.527 0.631 0.0375 0.0122 0.0067
0.134 1.700 0.321 0.680 3.444 0.644 2.499 0.615 0.0733 0.0157 0.5309
0.130 1.707 0.322 0.760 3.508 0.665 2.484 0.586 0.0240 0.0213 0.0181
z bin 2
0.166 1.926 0.422 0.040 3.255 0.597 2.473 0.670 0.0029 0.0265 0.0030
0.163 1.843 0.419 0.120 3.217 0.581 2.442 0.684 0.0220 0.0124 0.0486
0.161 1.755 0.421 0.200 3.168 0.560 2.388 0.707 0.0286 0.0082 0.0127
0.156 1.693 0.422 0.280 3.167 0.555 2.365 0.715 0.0372 0.0071 0.0035
0.151 1.661 0.421 0.360 3.204 0.564 2.368 0.705 0.0371 0.0066 0.0037
0.147 1.643 0.421 0.440 3.234 0.573 2.358 0.695 0.0464 0.0064 0.0045
0.145 1.635 0.421 0.520 3.252 0.578 2.330 0.690 0.0536 0.0066 0.0056
0.143 1.632 0.423 0.600 3.272 0.584 2.295 0.684 0.0583 0.0068 0.0065
0.141 1.634 0.425 0.680 3.294 0.591 2.253 0.677 0.0638 0.0082 0.0112
0.139 1.640 0.427 0.760 3.325 0.601 2.212 0.666 0.0499 0.0092 0.0231
z bin 3
0.170 1.733 0.600 0.040 3.057 0.524 2.017 0.745 -0.0198 0.0506 0.0185
0.166 1.655 0.598 0.120 3.023 0.509 1.993 0.762 0.0203 0.0208 0.0633
0.162 1.598 0.595 0.200 3.021 0.504 1.985 0.768 0.0221 0.0137 0.0061
0.157 1.579 0.593 0.280 3.054 0.512 1.992 0.760 0.0431 0.0120 0.0033
0.153 1.569 0.592 0.360 3.096 0.525 1.999 0.748 0.0200 0.0095 0.0129
0.149 1.569 0.591 0.440 3.138 0.538 1.999 0.735 0.0367 0.0100 0.0029
0.145 1.587 0.590 0.600 3.206 0.560 1.970 0.713 0.0328 0.0099 0.3517
0.143 1.604 0.590 0.680 3.245 0.573 1.950 0.699 0.0390 0.0107 0.0057
0.141 1.625 0.590 0.760 3.289 0.588 1.928 0.682 0.0436 0.0129 0.0201
x−Q2 bin 2
z bin 1
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0.256 2.689 0.321 0.040 2.966 0.546 2.378 0.724 -0.0094 0.0391 0.0108
0.256 2.640 0.321 0.120 2.940 0.535 2.347 0.735 0.0044 0.0197 0.0010
0.256 2.627 0.321 0.200 2.933 0.532 2.321 0.739 0.0507 0.0155 0.0056
0.254 2.636 0.321 0.280 2.950 0.536 2.308 0.734 0.0542 0.0143 0.0049
0.247 2.622 0.321 0.440 2.988 0.547 2.255 0.724 0.0622 0.0153 0.0213
0.234 2.724 0.322 0.600 3.135 0.596 2.271 0.670 0.0888 0.0231 0.0091
0.227 2.808 0.323 0.680 3.233 0.630 2.292 0.627 0.0787 0.0367 0.0113
0.221 2.897 0.325 0.760 3.334 0.668 2.311 0.576 -0.0417 0.0606 0.0191
z bin 2
0.276 2.525 0.434 0.040 2.760 0.477 2.074 0.791 -0.0089 0.0187 0.0082
0.273 2.489 0.430 0.120 2.756 0.474 2.067 0.795 0.0169 0.0092 0.0027
0.271 2.463 0.429 0.200 2.756 0.472 2.052 0.797 0.0479 0.0076 0.0061
0.268 2.463 0.429 0.280 2.768 0.475 2.037 0.794 0.0502 0.0065 0.0039
0.264 2.470 0.428 0.360 2.795 0.483 2.027 0.787 0.0577 0.0071 0.0039
0.259 2.479 0.427 0.440 2.830 0.493 2.016 0.778 0.0692 0.0078 0.0058
0.254 2.498 0.427 0.520 2.872 0.505 2.001 0.767 0.0609 0.0084 0.0062
0.249 2.530 0.429 0.600 2.924 0.522 1.986 0.751 0.0698 0.0106 0.0087
0.243 2.572 0.432 0.680 2.982 0.541 1.969 0.732 0.0631 0.0125 0.0138
0.239 2.621 0.436 0.760 3.042 0.561 1.946 0.710 0.0749 0.0179 0.0345
z bin 3
0.266 2.364 0.589 0.040 2.724 0.456 1.821 0.815 0.0095 0.0268 0.0090
0.265 2.380 0.588 0.120 2.738 0.460 1.825 0.811 0.0131 0.0152 0.0029
0.262 2.382 0.585 0.200 2.754 0.465 1.826 0.806 0.0321 0.0116 0.0019
0.259 2.385 0.584 0.280 2.774 0.471 1.822 0.802 0.0560 0.0116 0.0042
0.256 2.407 0.583 0.360 2.806 0.481 1.818 0.792 0.0480 0.0109 0.0033
0.252 2.435 0.583 0.440 2.847 0.494 1.814 0.780 0.0682 0.0120 0.0058
0.247 2.469 0.582 0.520 2.896 0.510 1.809 0.765 0.0519 0.0130 0.0051
0.243 2.508 0.582 0.600 2.949 0.527 1.800 0.748 0.0685 0.0153 0.0075
0.238 2.563 0.582 0.680 3.010 0.548 1.792 0.726 0.0779 0.0225 0.0124
0.234 2.627 0.581 0.760 3.075 0.571 1.782 0.700 0.0683 0.0266 0.0314
x−Q2 bin 3
z bin 1
0.385 4.514 0.320 0.040 2.855 0.606 2.277 0.641 0.0561 0.0396 0.0517
0.385 4.527 0.320 0.120 2.856 0.607 2.268 0.641 0.0678 0.0206 0.0536
0.384 4.508 0.320 0.200 2.855 0.605 2.248 0.643 0.0405 0.0163 0.0058
0.380 4.493 0.321 0.280 2.876 0.610 2.237 0.638 0.0442 0.0153 0.0033
0.370 4.452 0.321 0.360 2.916 0.619 2.234 0.627 0.0530 0.0155 0.0035
0.359 4.403 0.321 0.440 2.964 0.630 2.230 0.615 0.0539 0.0184 0.0051
0.344 4.333 0.321 0.520 3.025 0.644 2.230 0.598 0.0669 0.0209 0.0066
0.326 4.251 0.322 0.600 3.107 0.664 2.242 0.573 0.0476 0.0281 0.0050
0.306 4.113 0.323 0.680 3.196 0.684 2.255 0.545 0.0644 0.0458 0.0092
0.285 3.961 0.325 0.760 3.290 0.706 2.267 0.516 0.0811 0.0740 0.0371
z bin 2
0.402 4.456 0.421 0.040 2.752 0.573 2.073 0.681 0.0306 0.0211 0.0280
0.398 4.445 0.420 0.120 2.764 0.576 2.076 0.678 0.0241 0.0114 0.0034
0.395 4.435 0.419 0.200 2.777 0.579 2.071 0.675 0.0356 0.0092 0.0022
0.390 4.411 0.419 0.280 2.799 0.583 2.065 0.670 0.0462 0.0085 0.0037
0.383 4.395 0.419 0.360 2.830 0.591 2.057 0.661 0.0521 0.0090 0.0049
0.374 4.361 0.419 0.440 2.869 0.600 2.048 0.651 0.0638 0.0095 0.0063
0.364 4.327 0.420 0.520 2.909 0.609 2.033 0.640 0.0694 0.0117 0.0070
0.354 4.287 0.421 0.600 2.957 0.621 2.015 0.627 0.0770 0.0146 0.0104
0.342 4.241 0.424 0.680 3.010 0.634 1.995 0.611 0.0776 0.0169 0.0156
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0.330 4.190 0.428 0.760 3.063 0.647 1.966 0.595 0.0797 0.0248 0.0529
z bin 3
0.383 4.297 0.585 0.040 2.799 0.576 1.862 0.681 0.0123 0.0388 0.0113
0.379 4.290 0.585 0.120 2.814 0.580 1.866 0.676 0.0257 0.0238 0.0035
0.377 4.300 0.584 0.200 2.827 0.584 1.863 0.671 0.0323 0.0185 0.0018
0.372 4.294 0.584 0.280 2.852 0.591 1.861 0.664 0.0433 0.0185 0.0038
0.365 4.277 0.584 0.360 2.885 0.599 1.859 0.654 0.0441 0.0182 0.0032
0.357 4.256 0.583 0.440 2.923 0.609 1.854 0.642 0.0666 0.0201 0.0059
0.349 4.226 0.584 0.520 2.964 0.620 1.844 0.630 0.0725 0.0226 0.0172
0.339 4.195 0.583 0.600 3.014 0.632 1.835 0.614 0.0702 0.0261 0.0084
0.329 4.165 0.584 0.680 3.060 0.645 1.817 0.599 0.0793 0.0324 0.0176
0.318 4.117 0.582 0.760 3.112 0.658 1.802 0.581 0.0879 0.0417 0.0410

Table 6: Final result of the 4-dimensional study with z or PT as the main bin variable with 3 xB −Q2 bins and
3 PT or z bins for K+. The columns <xB>, <Q2> , <z>, <PT>, <W>, <y>, <MX> and <ε> provide the
mean value of the stated variable or the bin middle if it is the main bin variable. The columns Stat. and Sys.
provide the statistical and systematic uncertainty of F sinϕ

LU /FUU
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ii K−

<xB> <Q2>
[GeV2]

<z>
<PT>
[GeV]

<W>
[GeV]

<y>
<MX>
[GeV]

<ε> F sinϕ
LU /FUU

Stat.
unc.

Sys.
unc.

x−Q2 bin 1
PT bin 1
0.118 1.637 0.150 0.252 3.625 0.701 3.050 0.536 -0.0418 0.0588 0.0181
0.134 1.704 0.250 0.341 3.460 0.650 2.799 0.605 -0.0152 0.0133 0.0139
0.142 1.599 0.350 0.345 3.255 0.577 2.522 0.695 -0.0083 0.0138 0.0065
0.142 1.603 0.450 0.359 3.270 0.584 2.378 0.677 0.0312 0.0167 0.0062
0.135 1.647 0.550 0.370 3.399 0.627 2.286 0.629 0.0436 0.0162 0.0127
0.135 1.622 0.650 0.376 3.362 0.611 2.059 0.657 0.0522 0.0195 0.0569
0.139 1.535 0.750 0.354 3.228 0.560 1.770 0.723 0.0391 0.0316 0.0323
0.118 1.310 0.850 0.261 3.261 0.557 1.624 0.732 0.1336 0.2852 0.7271
PT bin 2
0.132 1.743 0.250 0.584 3.518 0.675 2.682 0.573 -0.0367 0.0195 0.0242
0.140 1.689 0.350 0.654 3.357 0.617 2.410 0.645 -0.0348 0.0148 0.0270
0.138 1.712 0.450 0.716 3.408 0.636 2.283 0.618 -0.0529 0.0153 0.0080
0.133 1.721 0.550 0.744 3.481 0.659 2.159 0.592 -0.0612 0.0148 0.0192
0.134 1.670 0.650 0.741 3.426 0.636 1.943 0.626 -0.0760 0.0206 0.0828
0.133 1.546 0.750 0.695 3.308 0.587 1.720 0.692 0.0305 0.0573 0.5358
x−Q2 bin 2
PT bin 1
0.219 2.969 0.150 0.208 3.384 0.686 2.833 0.550 0.0033 0.0019 0.0004
0.237 2.765 0.250 0.332 3.138 0.601 2.497 0.661 0.0116 0.0228 0.0943
0.260 2.546 0.350 0.338 2.863 0.508 2.178 0.765 0.0094 0.0193 0.0100
0.267 2.433 0.450 0.337 2.762 0.474 1.994 0.793 -0.0024 0.0242 0.0016
0.251 2.552 0.550 0.350 2.924 0.527 1.971 0.738 -0.0684 0.0289 0.0221
0.243 2.666 0.650 0.362 3.035 0.562 1.863 0.708 0.0306 0.0306 0.0339
0.237 2.613 0.750 0.343 3.049 0.561 1.700 0.716 0.1525 0.0635 0.1160
PT bin 2
0.225 2.861 0.250 0.563 3.282 0.653 2.465 0.596 -0.0619 0.0529 0.1632
0.241 2.651 0.350 0.617 3.044 0.568 2.145 0.701 -0.0549 0.0259 0.0455
0.242 2.611 0.450 0.676 3.016 0.558 1.989 0.707 -0.0489 0.0284 0.0069
0.234 2.743 0.550 0.718 3.146 0.603 1.937 0.657 -0.1019 0.0321 0.0291
0.231 2.760 0.650 0.718 3.172 0.610 1.801 0.653 -0.0800 0.0455 0.0930
0.234 2.669 0.750 0.756 3.106 0.584 1.667 0.686 -0.0907 0.1737 0.0914
x−Q2 bin 3
PT bin 1
0.342 4.351 0.250 0.314 3.047 0.653 2.418 0.584 0.0086 0.0251 0.6247
0.384 4.358 0.350 0.329 2.815 0.587 2.137 0.666 0.0085 0.0265 0.0678
0.377 4.435 0.450 0.344 2.879 0.610 2.072 0.635 -0.0072 0.0323 0.0452
0.360 4.518 0.550 0.353 2.988 0.643 2.000 0.596 0.0270 0.0313 0.0185
0.349 4.323 0.650 0.352 2.989 0.631 1.838 0.616 0.0738 0.0463 0.0817
0.325 3.869 0.750 0.325 2.981 0.604 1.680 0.658 0.0313 0.1492 0.0245
PT bin 2
0.296 4.016 0.250 0.560 3.229 0.693 2.414 0.533 -0.0253 0.0569 0.0189
0.337 4.203 0.350 0.621 3.031 0.643 2.126 0.599 -0.0421 0.0317 0.0318
0.336 4.318 0.450 0.690 3.073 0.660 2.020 0.574 -0.0645 0.0342 0.0225
0.328 4.314 0.550 0.717 3.121 0.673 1.912 0.559 -0.1152 0.0362 0.0354
0.318 4.129 0.650 0.714 3.122 0.662 1.778 0.576 0.0180 0.0709 0.0845
0.336 3.957 0.750 0.837 2.968 0.609 1.647 0.647 -0.1914 0.0741 0.1462
x−Q2 bin 1
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z bin 1
0.142 1.507 0.396 0.120 3.177 0.545 2.446 0.727 0.0207 0.0475 0.0163
0.142 1.539 0.390 0.200 3.208 0.558 2.465 0.713 0.0102 0.0352 0.0032
0.142 1.587 0.390 0.280 3.252 0.576 2.477 0.692 0.0059 0.0266 0.0027
0.142 1.620 0.390 0.360 3.283 0.588 2.472 0.677 -0.0005 0.0225 0.0003
0.142 1.643 0.390 0.440 3.297 0.595 2.448 0.669 0.0030 0.0204 0.0021
0.142 1.665 0.392 0.520 3.323 0.605 2.422 0.657 -0.0116 0.0201 0.0053
0.141 1.686 0.395 0.600 3.350 0.615 2.389 0.646 -0.0423 0.0213 0.0215
0.140 1.701 0.397 0.680 3.378 0.625 2.352 0.634 -0.0435 0.0239 0.0196
0.138 1.731 0.404 0.760 3.420 0.641 2.317 0.615 -0.0285 0.0297 0.0072
z bin 2
0.140 1.612 0.601 0.040 3.289 0.585 2.153 0.685 -0.0432 0.0660 0.0208
0.137 1.592 0.601 0.120 3.318 0.594 2.166 0.673 0.0313 0.0431 0.0185
0.137 1.616 0.599 0.200 3.345 0.606 2.177 0.659 0.0651 0.0359 0.0202
0.136 1.643 0.596 0.280 3.380 0.619 2.191 0.642 0.0689 0.0310 0.0210
0.134 1.647 0.592 0.360 3.405 0.628 2.195 0.631 0.0801 0.0285 0.0624
0.133 1.647 0.593 0.440 3.416 0.632 2.176 0.627 0.0298 0.0253 0.0112
0.134 1.670 0.591 0.520 3.426 0.637 2.154 0.621 -0.0015 0.0240 0.0013
0.134 1.687 0.590 0.600 3.434 0.641 2.126 0.616 -0.0190 0.0255 0.0100
0.134 1.701 0.589 0.680 3.449 0.647 2.096 0.609 -0.0161 0.0284 0.0073
0.133 1.701 0.588 0.760 3.467 0.653 2.061 0.602 -0.0782 0.0332 0.0265
x−Q2 bin 2
z bin 1
0.278 2.450 0.410 0.040 2.704 0.455 2.059 0.813 0.0270 0.1294 0.0127
0.275 2.463 0.404 0.120 2.727 0.463 2.076 0.807 0.0735 0.0615 0.0412
0.271 2.476 0.398 0.200 2.762 0.475 2.093 0.795 0.0248 0.0438 0.0140
0.265 2.487 0.393 0.280 2.801 0.487 2.104 0.782 0.0405 0.0367 0.0132
0.260 2.501 0.391 0.360 2.840 0.500 2.103 0.770 -0.0049 0.0343 0.0069
0.254 2.519 0.391 0.440 2.883 0.513 2.096 0.757 -0.0653 0.0315 0.0300
0.250 2.560 0.392 0.520 2.936 0.530 2.088 0.740 -0.0149 0.0318 0.0111
0.244 2.604 0.395 0.600 2.997 0.551 2.079 0.718 -0.0805 0.0380 0.0519
0.237 2.643 0.401 0.680 3.065 0.574 2.069 0.693 -0.0516 0.0431 0.0419
0.233 2.707 0.412 0.760 3.131 0.597 2.046 0.665 -0.0499 0.0588 0.0273
z bin 2
0.256 2.522 0.595 0.040 2.871 0.507 1.898 0.762 0.0408 0.1054 0.0249
0.255 2.543 0.595 0.120 2.891 0.515 1.905 0.754 -0.0407 0.0691 0.0283
0.251 2.571 0.595 0.200 2.936 0.530 1.920 0.738 -0.0040 0.0583 0.0047
0.247 2.602 0.593 0.280 2.977 0.544 1.935 0.723 0.0295 0.0554 0.0087
0.246 2.624 0.592 0.360 2.999 0.552 1.926 0.715 0.0337 0.0525 0.0181
0.242 2.659 0.589 0.440 3.044 0.567 1.932 0.699 -0.0128 0.0488 0.0142
0.238 2.685 0.589 0.520 3.083 0.580 1.923 0.685 -0.0367 0.0499 0.0168
0.235 2.717 0.589 0.600 3.121 0.593 1.907 0.671 -0.0278 0.0533 0.0257
0.233 2.752 0.588 0.680 3.157 0.606 1.885 0.656 -0.0178 0.0623 0.0078
0.230 2.781 0.587 0.760 3.192 0.618 1.857 0.641 -0.0534 0.0757 0.0713
x−Q2 bin 3
z bin 1
0.412 4.481 0.399 0.040 2.711 0.563 2.062 0.692 0.0772 0.1339 0.0493
0.407 4.459 0.394 0.120 2.726 0.566 2.072 0.688 0.0359 0.0717 0.0425
0.396 4.427 0.392 0.200 2.776 0.580 2.098 0.673 0.0042 0.0572 0.0014
0.384 4.403 0.389 0.280 2.827 0.594 2.117 0.656 0.0006 0.0492 0.0004
0.374 4.373 0.389 0.360 2.873 0.605 2.121 0.643 -0.0060 0.0434 0.0087
0.363 4.341 0.391 0.440 2.925 0.618 2.121 0.627 -0.0293 0.0398 0.1355
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0.352 4.307 0.392 0.520 2.973 0.631 2.111 0.613 -0.0184 0.0438 0.0091
0.343 4.297 0.401 0.600 3.024 0.645 2.090 0.596 -0.0678 0.0448 0.0349
0.331 4.247 0.408 0.680 3.079 0.659 2.070 0.577 -0.0277 0.0528 0.0129
0.322 4.224 0.421 0.760 3.130 0.673 2.033 0.559 -0.0127 0.0678 0.0062
z bin 2
0.370 4.492 0.594 0.040 2.918 0.619 1.924 0.628 0.0231 0.1526 0.0139
0.366 4.463 0.595 0.120 2.936 0.624 1.927 0.623 0.0886 0.0792 0.0649
0.361 4.472 0.592 0.200 2.968 0.634 1.942 0.610 0.0382 0.0707 0.0567
0.356 4.432 0.590 0.280 2.984 0.637 1.938 0.607 0.0683 0.0645 0.0213
0.351 4.416 0.587 0.360 3.007 0.643 1.935 0.598 0.0005 0.0662 0.0007
0.347 4.414 0.585 0.440 3.029 0.649 1.922 0.591 0.0021 0.0640 0.0100
0.339 4.350 0.581 0.520 3.063 0.656 1.916 0.581 0.0019 0.0636 0.0009
0.333 4.319 0.580 0.600 3.085 0.661 1.890 0.576 0.0000 0.0010 0.0000
0.326 4.272 0.579 0.680 3.117 0.669 1.866 0.566 0.0259 0.0798 0.0116

Table 7: Final result of the 4-dimensional study with z or PT as the main bin variable with 3 xB −Q2 bins and
2 PT or z bins for K−. The columns <xB>, <Q2> , <z>, <PT>, <W>, <y>, <MX> and <ε> provide the
mean value of the stated variable or the bin middle if it is the main bin variable. The columns Stat. and Sys.
provide the statistical and systematic uncertainty of F sinϕ

LU /FUU
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