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1. INTRODUCTION 

 

1.1 Endothelial barrier function  

Vascular endothelium lining the intima of blood vessels acts as a gatekeeper and 

actively controls the exchange /trafficking of water, small solutes, ions, blood cells and 

macromolecules across the vessel wall (Michel and curry, 1999; Mehta et al., 2004; 

Rao et al., 2005; Mehta and Malik, 2006). Failure of this endothelial cell (EC) barrier 

function results in an increased EC permeability, leakage of blood components and 

exudation of fluids to interstitium which may finally result in life threatening edema 

formation and may jeopardize survival of the tissue and causes organ dysfunction and 

may also contributes to pathogenesis of chronic cardiovascular diseases such as 

atherosclerosis and diabetes-associated vascular disease (Lum and Malik, 1996; van 

Hinsbergh 1997; Wojciak-Stothard et al., 1998, Libby et al., 2006; Pober and Sessa, 

2007; Stocker and Keaney, 2004; van Hinsbergh and Van Nieuw Amerongen, 2002; 

Mehta and Malik, 2006; Bazzoni, 2006; Yuan et al., 2007; Kumar et al., 2009). 

The maintenance of EC barrier integrity is crucial in maintaining physiological 

functions of different organs and is determined by the precise equilibrium between 

competing EC contractile forces generated by the actomyosin based EC contractile 

machinery and adhesive tethering forces generated by adhesive molecules located at 

endothelial cell-cell junctions and cell-matrix contacts (Garcia et al., 1995; Lum and 

Malik, 1996; Baldwin and Thurston 2001; Dudek and Garcia, 2001; Bogatcheva et al., 

2002; Shen et al., 2009). 

Inflammatory mediators such as thrombin, tumor necrosis factor alpha (TNF-α) and 

histamine disrupt the balance between contractile and adhesive forces, increase EC 

permeability via activation/stimulation  of multiple signaling mechanisms, leading to 

activation of EC contractile machinery, weakening of cell adhesion structures, opening 

of gaps between adjacent cells and hence finally leading to EC barrier dysfunction 

(Schnittler et al., 1990; Garcia et al., 1995; 1996; Rabiet et al., 1996; Wojciak-Stothard 

et al., 1998; Gündüz et al., 2003; Birukova et al., 2004). Thrombin also inhibits the Rho 

GTPase Rac1 activation (Aslam et al., 2012) finally leading to disruption of EC barrier 

integrity, which is followed by slow recovery of the EC barrier function.  
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The mechanisms of EC barrier restoration subsequent to barrier disruption in 

response to the permeability increasing factors are essential for the maintenance of 

basal endothelial monolayer permeability and to prevent edema formation. However 

the precise mechanisms involved in this recovery of EC barrier function still remains 

to be elucidated. Comparatively little is known about the maneuvers that control the 

restoration of compromised EC barrier function.  

Insulin is the principal hormone of metabolic homeostasis. Recent clinical 

findings demonstrate that intensive insulin therapy confers vasoprotective effects 

under inflammatory conditions and reduces diabetes associated major cardiovascular 

complications because of its anti-inflammatory and anti-atherosclerotic effects 

(Dandona et al., 2009; Kim et al., 2006; Nathan et al., 2005; Langouche et al., 2005).  

The aim of the present study was to elucidate the molecular mechanism by 

which insulin may restore the EC barrier function in response to thrombin-induced 

hyperpermeability. Special emphasis was laid on the potential role of Rho GTPase 

Rac1. The study was carried out in a well-established in vitro model of Human 

umbilical vein endothelial cells (HUVECs) and a model of isolated saline perfused rat 

hearts. 

 

1.2 Regulation of endothelial barrier function  

1.2.1   Endothelial cell-cell junctions  

Barrier function of vascular endothelium is mainly regulated by the dynamic 

opening and closure of gaps between intercellular junctions. These inter-endothelial 

junctions mediate cell-cell adhesion and facilitate communication between adjoining 

ECs and dynamically control the permeability of vessel wall endothelial barrier 

(Bazzoni and Dejana, 2004; Dejana, 2004 and 2008). 

In ECs, adherens junctions (AJs) are of fundamental importance in mediating 

endothelial cell-cell adhesion and have a prominent role for regulating normal 

functioning of the endothelial barrier (Bazzoni and Dejana, 2004; Wallez and Huber, 

2008; Dejana and Giampietro, 2012). AJs are predominantly composed of vascular 
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endothelial (VE)-cadherin linked to peripheral actin cytoskeleton present directly under 

the cell membrane. The interaction of AJs with the actin cytoskeleton is important for 

stabilization of junctions. VE-cadherin is present nearly in all vascular beds (Dejana et 

al., 1995; Lampugnani et al., 1995; Gao et al., 2000; Mehta and Malik, 2006; 

Vandenbroucke et al., 2008; Komarova and Malik, 2010; Giannotta et al., 2013). VE-

cadherin is required for the proper assembly of AJs and plays a crucial role in the 

maintenance of normal EC barrier function. VE-cadherin glues the adjacent ECs 

together by homotypic binding with VE-cadherin on the neighboring cell’s plasma 

membrane in calcium (Ca2+)-dependent manner. VE-cadherin has extracellular and 

cytoplasmic domains and is intracellularly linked to the actin cytoskeleton via family of 

catenin (Lampugnani et al., 1995; Iyer et al., 2004; Mehta and Malik, 2006; 

Vandenbroucke et al., 2008; Dejana et al., 2008; Prasain and Stevens, 2009; Shen et 

al., 2009; Komarova and Malik, 2010). Catenins not only serve as a structural linkage 

between VE-cadherin and actin cytoskeleton but also transduce biochemical signals 

for cell-cell communications. AJs disassemble in response to inflammatory mediators 

leading to an increase in EC permeability (Mehta and Malik, 2006). Thrombin-induced 

phosphorylation of p120 catenin may also contribute to AJ disassembly 

(Konstantoulaki et al., 2003). The stability of the VE-cadherin, catenins and actin 

cytoskeleton complex is essential to maintain the AJ integrity and restrictiveness of 

EC barrier (Vincent et al., 2004; Sallee, 2006; Alcaide et al., 2008; Zebda et al., 2013).  

 

1.2.2   Endothelial cell cytoskeleton 

ECs have a functional cytoskeleton which is composed of three primary 

elements: actin filaments, intermediate filaments and microtubules which are in 

constant communication with one another (Dudek and Garcia 2001; Chang and 

Goldman, 2004; Revenu et al., 2004; Prasain and Stevens, 2009; Shen et al., 2009). 

Endothelial cytoskeleton is very important for cell motility, EC shape, endo-or 

exocytosis and cell- cell adhesion. Among these filamentous structures actin filaments 

are best characterized for its role in regulating EC permeability.  

In ECs actin and myosin are major contractile components and together 

comprise of ~16% of total endothelial cellular proteins (Schnittler et al., 1990; Wong 
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and Gotlieb, 1990). Whereas actin alone represents about 5-15% of the total protein 

in ECs (Patterson and Lum, 2001) and exists in two different forms: in a monomeric 

globular form, known as G-actin and in a filamentous form, called F-actin (Tobacman 

and Korn, 1983). In general, the amount of F-actin and G-actin exists in an almost 

equal balance (Stossel et al., 1985).  

Permeability increasing factors such as thrombin increases polymerization of 

actin filaments that leads to actin reshaping to form stress fibers (Goeckeler and 

Wysolmerski, 1995; Ehringer et al., 1999; van Nieuw Amerongen et al., 2000a; 2000b; 

Sandoval et al., 2001; Mehta et al., 2002). Stress fibers are composed of bundles of 

actomyosin that are necessary for inducing cell contraction (Hotulainen and 

Lappalainen, 2006) and consists of relatively short F-actin filaments (Brenner and 

Korn, 1979 and 1980; Cramer et al., 1997; Heimann et al., 1999) whereas cortical 

actin rim is comprised of long F-actin filaments (De Matteis and Morrow, 2000; 

Heimann et al., 1999). Stress fibers extends throughout the cytosol, they generate 

centripetally (inward) directed tension, promotes gaps formation between adjacent 

ECs and may therefore contribute to endothelial hyperpermeability (Vouret-Craviari et 

al., 1998; Dudek and Garcia, 2001; Hotulainen and Lappalainen, 2006).  

  The actin cytoskeleton undergoes depolymerization and polymerization based 

upon cellular demand. Both hyper-polymerization of F-actin by Jasplakinolide and 

depolymerization of F-actin-induced by cytochalasin D interfere with EC barrier 

function (Waschke et al., 2005) suggesting that polymerization state of actin 

cytoskeleton is critical for the maintenance of EC barrier functions. Furthermore, 

inhibition of actin polymerization prevented force generation (Kolodney and 

Wysolmerski, 1992) as well as endothelial monolayer hyperpermeability in response 

to permeability increasing factors (Vouret-Craviari et al., 1998; Mehta et al., 2002;). 

Thus actin cytoskeleton is a key player and an important actuator for the regulation of 

EC barrier function. 

1.3 Endothelial contractile machinery 

Endothelial contractile machinery is another important regulator of EC barrier 

function. It is well documented that mechano-chemical interaction between actin and 

myosin is primarily believed to be involved in driving EC contractile machinery and 
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thereby EC barrier integrity (Schnittler et al., 1990). It is well established that activation 

of the EC contractile machinery leads to an increase in permeability. The activation of 

EC contractile machinery is mainly controlled by the phosphorylation state of the 

regulatory myosin light chain (MLC) (Wysolmerski and Lagunoff, 1991) and the 

balanced activities of MLC kinase (MLCK) (Lazar and Garcia., 1999), and MLC 

phosphatase (MLCP) (Härtel et al., 2007; Knapp et al., 1999; Verin et al., 2000)  

determine the net phosphorylation state of the MLC and actin-myosin contractility 

(Shen et al., 2009 and 2010).The major components of EC contractile machinery are 

MLC, MLCK and MLCP and are discussed below. 

MLC is a small protein of 20 kDa and phosphorylation of MLC induces a 

conformational change in the tertiary protein structure of myosin which increases actin-

myosin interaction, this actin-myosin interaction generates a contractile force that 

retracts adjacent ECs apart from each other, leading to intercellular gap formation and 

finally loss of barrier function, whereas MLC dephosphorylation causes stabilization of 

endothelial barrier (Wysolmerski and Lagunoff, 1990; Sheldon et al., 1993; Garcia et 

al., 1995; Goeckeler and Wysolmerski, 1995; Moy et al., 1996 and 2002; Gündüz et 

al., 2003; Takashima, 2009; Kasseckert et al., 2009).  

MLCK is a Ca2+/calmodulin (CaM)-dependent kinase which phosphorylates 

MLC at Ser-19 and/or Thr-18 (Goeckeler and Wysolmerski, 1995; Kamm and stull 

1986; Moy et al., 1993; Sheldon et al., 1993; Garcia et al., 1995; Amano et al., 1996; 

Hixenbaugh, 1997; Verin et al., 1998; Shen, 2010). It is well-established that MLCK 

becomes activated via Ca2+ dependent mechanisms in response to inflammatory 

mediators like thrombin and histamine which leads to an increase in MLC 

phosphorylation, finally leading to increase in endothelial monolayer permeability and 

leaky barrier (Sheldon et al., 1993; Dudek and Garcia, 2001).  

Initially in bovine pulmonary artery EC monolayers, the involvement of MLCK 

in the regulation of barrier permeability via MLC phosphorylation was discussed by 

Wysolmerski and Lagunoff (1990). Subsequent studies by using both in vivo and in 

vitro approaches/techniques have further elucidated the important role of MLCK in the 

regulation of permeability (Wainwright et al., 2003; Parker et al., 2000; Tinsely et al., 

2000; Yuan et al., 1997; Khimenko et al., 1996; Garcia et al., 1995; Sheldon et al., 

1993). 
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Besides MLCK, MLCP is also involved in controlling the phosphorylation state 

of MLC in ECs. Conversely, MLCP facilitates MLC dephosphorylation thus counteracts 

the MLCK activity, thereby terminating the tension, relaxes the actin cytoskeleton, and 

reduces the EC barrier permeability (Verin et al., 1995; Essler et al., 1998). The 

endothelial MLCP is a holoenzyme complex composed of three subunits, a regulatory 

myosin phosphatase targeting subunit (MYPT1, 130 kDa), a catalytic subunit, protein 

phosphatase 1 (PP1, 37-38 kDa) and a 20 kDa subunit of unknown function (Alessi et 

al., 1992; Shimizu et al., 1994; Shirazi et al., 1994; reviewed by Hartshorne et al., 

1998; Verin et al., 2000; Goeckeler and Wysolmerski, 2005). 

 It is well-established that MLCP activation is regulated through phosphorylation 

of MYPT1 at its two main inhibitory phosphorylation sites, Thr696 and Thr850 (Kimura 

et al., 1996) or through direct inactivation of the catalytic subunit, PP1 by CPI 17 (an 

endogenous inhibitor of PP1). Several kinases have been described to phosphorylate 

MYPT1 at one or both of these sites. The major well-known kinase is RhoA-dependent 

kinase (Rock) that phosphorylates MYPT1 at both sites and inhibits MLCP activity 

(Härtel et al., 2007; Pandey et al., 2006; Goeckeler and Wysolmerski, 2005; 

Hartshorne, 1998; Fukata et al., 2001) thereby promoting MLC phosphorylation, 

actomyosin contraction and finally leading to increased EC permeability (van Nieuw 

Amerongen et al., 1998; Essler et al., 1998; Birukova et al., 2004).  
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Figure 1.1 Regulation of EC barrier function by EC contractile machinery: Actin-

myosin contraction is increased by MLC phosphorylation (MLC~P) and is an important 

step in the regulation of the activation of the EC contractile apparatus. MLC is 

phosphorylated by (Ca2+/CaM)-dependent MLCK while dephosphorylated by MLCP. 

Activation of the EC contractile machinery leads to EC contraction and barrier 

dysfunction, whereas inactivation leads to relaxation and barrier stabilization. ML-7 is 

a specific inhibitor of MLCK while MLCP can be inactivated by RhoA/Rock. 
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1.4 Rho GTPases 

The members of the Rho-family of monomeric GTPases (RhoA, Rac1 and 

Cdc42) have been well recognized  to play an important role in regulating endothelial 

barrier integrity and have been implicated in controlling the endothelial actomyosin 

contractile machinery, actin cytoskeleton dynamics and integrity of cell adhesion 

structures (Wojciak-Stothard et al., 2001; Fukata and Kaibuchi, 2001; Wojciak-

Stothard and Ridley, 2002). Two Rho GTPases, Rac1 and RhoA, act antagonistically; 

have emerged as key regulators of  EC barrier function  (Essler et al., 1998 and 1999; 

Hall, 1998; Wojciak-Stothard et al., 2001; Ridley, 2001; Braga, 2002; Etienne and Hall, 

2002;  Mehta and Malik, 2006; Vandenbroucke et al., 2008; Dejana et al., 2008; Aslam 

et al., 2011).  

It is well-established that the Rho GTPase RhoA plays a vital role in regulating 

actomyosin contractile machinery in ECs and thereby is the key determinant of EC 

hyperpermeability (Carbajal and Schaeffer, 1999; Holinstat et al., 2003; Mehta et al., 

2001; Van Nieuw Amerongen et al., 1998 and 2000). RhoA, through its specific 

downstream effector kinase, Rock. inactivates MLCP via phosphorylation of MYPT1 

at its inhibitory sites which attenuates the phosphatase activity (Essler et al., 1998 and 

1999; Totsukawa et al., 2000; Verin et al., 2001; Birukova et al., 2004; Vandenbroucke 

et al., 2008; Kumar et al., 2009; Härtel et al., 2007) thereby resulting in net increase in 

phosphorylated regulatory MLC and actomyosin contractility which facilitates 

disruption of the endothelial barrier. RhoA is also known to induce derangement of 

actin cytoskeleton in terms of stress fibers formation and disassembly of endothelial 

AJs in response to thrombin, histamine or bradykinin leading to increased EC 

permeability (Birukova et al., 2004a; Birukova et al., 2004d; Wojciak-Stothard et al., 

2001; Wojciak-Stothard and Ridley, 2002; Essler et al., 1998 and 1999; Van Nieuw 

Amerongen, 2000). 

In contrast to RhoA, Rac1 is required for the stability of VE-cadherin mediated 

endothelial AJs and thus plays a role in the stabilization of the EC barrier function 

(Wojciak-Stothard et al., 2001; Waschke et al., 2004). Rac1 activation reorganizes the 

actin cytoskeleton at the cell periphery and thus strengthens the establishment of 

endothelial AJs (Hall, 1998; Wojciak-Stothard et al., 2001; Wojciak-Stothard and 

Ridley, 2002; Kumar et al., 2009) and also reduces the macromolecule permeability 
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of EC monolayers (Waschke et al., 2006). The activation of Rac1 is regulated by GDP-

GTP cycling, induced by specific guanine nucleotide exchange factors (GEFs), Tiam1 

and TrioN, which control the transition of the inactive GDP-bound conformation to the 

active GTP-bound conformation (Gao et al., 2004). The activation of Rac1 can be 

inhibited by the specific pharmacological inhibitor NSC23766, which specifically 

inhibits Rac1 activity by blocking the binding of the Rac1 specific GEFs Tiam1 and 

TrioN (Gao et al., 2004). Even though, much is still a mystery about the role of Rho 

GTPases in EC permeability, the activation of Rac1 appears to be a suitable approach 

to stabilize or recover EC barrier function in inflammatory situations. 

 

1.5 Endothelial barrier dysfunction: Endothelial hyperpermeability 

Endothelial barrier dysfunction is a significant problem and resulting vascular 

leakage is implicated in the pathogenesis of various diseases including inflammation, 

trauma, sepsis, diabetes associated vascular disease, atherosclerosis and acute lung 

injury. Various inflammatory conditions are associated with the deterioration of EC 

barrier function and pathophysiology is characterized by leakage of fluid, plasma 

proteins or small molecules in the extra vascular space leading to tissue edema which 

finally results into severe, sometimes life threatening organ dysfunction.  

There are three key mechanisms believed to be involved in inflammatory 

conditions that lead to endothelial hyperpermeability. (1) The cytoskeleton 

rearrangement: remodeling of cortical actin and generation of stress fibers, (2) 

activation of EC actomyosin based contractile machinery and (3) disassembly of AJs. 

All these elements together lead to formation of intercellular gaps, which perturb the 

normal EC barrier function (McDonald et al., 1999; Mehta and Malik, 2006).  

Thrombin, a procoagulant serine protease, is a central vascular mediator of 

inflammation and hemostasis, generated in the vessels from pro-thrombin circulating 

in blood. Thrombin induces rise in intracellular Ca2+ levels which phosphorylates MLC 

through activation of MLCK and RhoA/Rock signaling which downstream inhibits the 

MLCP finally leading to strong activation of EC contractile machinery and thereby 

contributes to thrombin-induced loss of EC barrier function (Lum and Malik, 1996; 

Dudek and Garcia, 2001; Coughlin, 2000; Bogatcheva et al., 2002). Thrombin-induced 



Introduction 

10 
 

increased vascular permeability has also been attributed to stress fiber formation. 

Thrombin also inhibits Rho-GTPase Rac1 activation (Aslam et al., 2012) that leads to 

disruption of endothelial AJs and thereby EC barrier integrity.  

Ischemia-reperfusion (I-R) also induces loss of EC barrier function and the 

resulting myocardial edema jeopardizes the functional recovery of vital organs such 

as heart during reperfusion and may inhibit survival of myocardial tissue (Garcia-

Dorado and Oliveras, 1993; Mehlhorn et al., 2001; Carden and Granger, 2000; Schäfer 

et al., 2003; Gündüz et al., 2006). I-R injury refers to edematous swelling of the 

reperfused tissue when the blood supply returns after an ischemic period (Dagenais 

et al., 1997; Eltzschig and Collard, 2004). This restoration of blood supply causes 

tissue inflammation due to neutrophil activation and release of cytokines. Previous 

reports indicate that reperfusion triggers the opening of intercellular gaps between ECs 

and Ca2+ dependent activation of the EC contractile machinery contributes to the 

barrier failure under reperfusion (Schäfer et al., 2003). Previously, in saline-perfused 

hearts, a rapid post ischemic edematous swelling of the myocardium has also been 

observed (Noll et al., 1999; Di Napoli et al., 2001). Better insights into the molecular 

mechanisms related to endothelial hyperpermeability is required for developing 

effective therapeutic strategies. 

 

1.6 Recovery of endothelial barrier function after barrier dysfunction 

The mechanism of recovery of EC barrier function is critical for the maintenance 

of basal permeability and is important to prevent the potentially fatal increase in EC 

permeability. Failure to recover EC barrier function likely underlies the morbidity and 

mortality associated with vascular diseases. In contrast to mechanisms involved in 

regulating barrier disruption, detailed knowledge of the signaling pathways responsible 

for recovery of EC barrier function is, at present, lacking. Permeability increasing 

mediators usually induce a reversible increase in EC permeability (Tiruppathi et al., 

1992; Moy et al., 1996; Mehta et al., 2002).  

The process of barrier recovery requires the reannealing of previously opened 

gaps between the adjacent cells, suppression or inactivation of EC contraction (Garcia 

et al., 1995, Gündüz et al., 2003) and strengthening of cell-cell adhesion structures 
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(Mehta et al., 2002; Quadri et al., 2003; Kouklis, 2004). AJs disassemble in response 

to thrombin, increasing EC permeability; however, AJs also possess the ability to 

reassemble. This reannealing of AJs causes reversal of increase in endothelial 

monolayer permeability and restoration of vascular endothelial barrier integrity (Lum 

and Malik, 1996; Dudek and Garcia, 2001; Lampugnani et al., 1995; Kouklis et al., 

2004; Broman et al., 2007; Dejana et al., 2008).  

Studies have shown the crucial role of Rho GTPases (Rac1 and CDC42) in 

regulating recovery of EC barrier function. Both Rac1 and CDC42-induce 

reorganization of actin cytoskeleton, apposition of AJs at the plasma membrane and 

thus promotes reannealing of AJs (Kaibuchi et al., 1999). Rac1 is reported to be 

involved in actin cytoskeleton remodeling and lamellipodia formation (Hall, 1998 and 

2005; Ehrlich et al., 2002). The mediators like oxidized lipids (Birukov et al., 2004), 

sphingosine 1- phosphate (S1P) (Singleton et al., 2005) ATP (Jacobson et al., 2006) 

and cAMP (Aslam et al., 2014) are known to restore EC barrier function by Rac1 

activation.  

 Several signaling pathways have been shown to contribute in regulating 

recovery of EC barrier function: (a) p120 catenin (Iyer et al., 2004), p120 catenin 

participates in regulating endothelial barrier restoration by controlling the stability of 

VE-cadherin expression and, hence, AJs stability. (b) Activation of focal adhesion 

kinase (FAK) (Holinstat et al., 2006) also plays an important role in regulating barrier 

restoration. FAK suppress RhoA activity via P190RhoGAP activation which in turn 

inhibits EC contraction and thereby induces recovery of EC barrier function (Quadri et 

al., 2003; Holinstat et al., 2006). (c) Angiopoietin 1 activation of Tie2 receptor (Mehta 

and Malik 2006), (d) FoxM1 transcription factor (Zhao et al. 2006), (e) Sphingosine 1- 

phosphate (S1P) (Hla, 2003). S1P, a biologically active lipid secreted by red blood 

cells and activated platelets has also emerged as potent barrier stabilizing factor in 

cultured ECs and in intact microvessels (Mcverry and Garcia, 2004; Peters and 

Alewijnse, 2007). S1P mediated its effects via a number of downstream targets 

including Rac1 mediated cytoskeletal reorganization that promoted AJs assembly and 

EC barrier enhancement (Mehta et al., 2005; Singleton et al., 2005). (f) cAMP signaling 

also contributes to the recovery of EC barrier function after thrombin-induced 

hyperpermeability (Aslam et al., 2014). Evidence indicates that an increase in the 



Introduction 

12 
 

concentration of cAMP can be EC barrier protective. The cAMP downstream activates 

two effector proteins, the protein kinase A (PKA) and Epac (de Rooij et al., 1998; 

Aslam et al., 2010). Both PKA and Epac downstream activates Rac1 (Birukova et al., 

2008 and 2010). Inhibition of these cAMP downstream effectors abrogates Rac1 

activation, re-establishment of AJs and impedes the recovery of EC barrier function 

(Aslam et al., 2014). Better knowledge of the signals responsible for reversing the 

endothelial hyperpermeability may therefore lead to novel anti-inflammatory 

therapeutic targets capable of preventing inflammatory diseases manifested by 

vascular leak. 

 

1.7 Insulin 

Insulin is a key regulator and essential hormone of metabolic homeostasis. 

Based on previous findings there is convincing evidence that in addition to its well-

known metabolic actions insulin also confers protective effects on the cardiovascular 

system and plays an important role in the normal functioning of the vasculature (Verma 

and McNeill, 1999; Mather et al., 2001).  

Insulin biological actions are mediated by specific cell surface receptors. Like 

many other cell types ECs also possess insulin receptors (IR) (~ 40,000 IR per cell) 

(Zeng and Quon, 1996) with intrinsic tyrosine kinase activity. The insulin receptor is a 

heterotetrameric transmembrane glycoprotein composed of two α and β subunits 

(Kahn, 1985; Kahn and Crettaz 1985; Rosen et al., 1987). Insulin initiates its action by 

binding to specific receptors on the surface of the cell. The specific binding of insulin 

to its cell surface receptor leads to autophosphorylation on the IR- β subunit and 

tyrosine phosphorylation of intracellular substrates that include insulin receptor 

substrate (IRS) family members and other signaling molecules such as Shc. IRS is an 

essential component of insulin signaling pathway. Phosphorylated IRS serve as 

docking proteins for several downstream effectors of insulin signaling such as 

phosphatidylinositol 3-kinase (PI3K) and Grb2 (White, 2002; Gual et al., 2005). 

Phosphorylation of IRS proteins on multiple tyrosine residues by the activated IR 

initiates the activation of PI3K (Montagnani et al., 2002). 
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 In response to insulin, two major signaling pathways are activated: the 

PI3K/Akt signaling pathway and mitogen activated protein kinase (MAPK) pathway 

(Myers and White, 2002; Taniguchi et al., 2006). Downstream from PI3K there is also 

an essential component of insulin signaling pathway called 3-phosphoinositide 

dependent protein kinase (PDK)-1. This kinase is crucial for the activation and 

phosphorylation of serine/threonine protein kinase Akt and atypical protein kinase C 

isoforms (Alessi et al., 1997; Vanhaesebroeck and Alessi, 2000). Protein kinase B 

(Akt) directly phosphorylates and activates endothelial NO synthase (eNOS) at Ser 

1177, resulting in enhanced eNOS activity which leads to increased production of Nitric 

oxide (NO) within a matter of minutes (Alessi et al., 1997; Dimmeler et al., 1999; 

Dimmeler and Zeiher, 1999; Vanhaesebroeck and Alessi, 2000; Montagnani et al., 

2001 and 2002; Kuboki et al., 2000; Zeng et al., 1996 and 2000). 

PI3K/Akt signaling pathway has been termed as “survival pathway”. It has been 

identified to confer protective effect against reperfusion injury of the heart (Hausenloy 

and yellon, 2004). PI3K/Akt is a major component in insulin signaling pathway and 

inhibition of PI3K blocks NO production in response to insulin, demonstrating its 

essential role in insulin stimulated production of NO (Zeng and Quon 1996; Zeng et 

al., 2000; Fisslthaler et al., 2003; Hartell et al., 2005). In vivo administration of insulin 

is also known to attenuate reperfusion-induced cell death through PI3K/Akt and eNOS 

signaling pathway (Gao et al., 2002).  

There is convincing evidence that insulin induces NO production in 

microvascular ECs and inhibition of eNOS not only prevented insulin-induced NO 

production but also in part antagonized insulin mediated  microvascular EC barrier 

stabilization (Gündüz et al., 2010). Insulin also prevents oxidant-induced EC barrier 

dysfunction by inducing the release of NO (Rath et al., 2006). Insulin also acts as a 

vasodilatory hormone that mainly depend on endothelium derived NO (Steinberg et 

al., 1994; Scherrer et al., 1993; Laine et al., 2000; Sundell et al., 2002; Scott et al., 

2002; Sundell and Knuuti, 2003; Vincent et al., 2006).  

It is well known that insulin inhibits thrombin-induced vascular smooth muscle 

cell (VSMC) contraction (begum et al., 2000). Insulin-induces the relaxation of VSMCs 

via activation of myosin-bound phosphatase and inhibition of Rho kinase activity via 

NO/cGMP-dependent pathway (begum et al., 2000, Sandu et al., 2001). In VSMCs 



Introduction 

14 
 

insulin negatively regulates Rho signaling by preventing RhoA activation via the 

NO/cGMP signaling pathway which leads to myosin-bound phosphatase activation, 

disorganization of actin cytoskeleton and vasodilation (begum et al., 2002). 

Previous reports indicate that insulin has profound protective effects in critical 

illness and in acute inflammatory conditions (Melin et al., 2002; Malmberg et al., 1995; 

Kinsley, 2004 Lewis et al., 2004; Furnary et al., 2004 Ritchie et al., 2004). Several 

reports have reported that insulin has direct protective effects on ECs (Aljada et al., 

2000 and 2001; Jeschke et al., 2004; Fischer-Rasokat and Doenst, 2003). 

Several clinical and experimental studies dealing with I-R could show that  

insulin dose at the time of reperfusion protects against the reperfusion-induced 

vascular injury in the heart (Melin et al., 2002; Malmberg et al., 1995; Ma et al., 2006). 

Insulin also protects cardiomyocytes against acute reoxygenation-induced hyper-

contracture via activation of survival pathway consisting of PI3K, eNOS and cGMP-

dependent protein kinase (PKG) (Abdallah et al., 2006).  

Insulin increases myocardial blood flow and reduces coronary vascular 

resistance in a dose dependent manner. Moreover the mortality rate was reduced in 

critically ill patients who were more than 3 days in intensive care unit provided with 

intensive insulin therapy (Van den Berghe et al., 2001; Furnary et al., 2003; Van den 

Berghe, 2004; Lewis et al., 2004; Krinsley, 2004; Jeschke et al., 2004). Several clinical 

reports also show that intensive insulin therapy has vasoprotective effects under 

inflammatory conditions (Van der Berghe, 2001; Melin et al., 2002; Ritchie et al., 2004; 

Langouche et al., 2005; Dandona et al., 2009) and reduces major cardiovascular 

complications in diabetics (Nathan et al., 2005). 

Previous reports indicate that in rat coronary microvascular endothelial 

monolayers, insulin not only stabilizes endothelial barrier under basal conditions but 

also antagonized the hyperpermeability-induced by inflammatory mediator, tumor 

necrosis factor alpha (TNFα) (Gündüz et al., 2010). This barrier stabilizing effect of 

insulin is mediated via PI3K/Akt and NO/cGMP-induced activation of Rac1 (Gündüz 

et al., 2010). However, the detailed mechanism of insulin mediated accelerated 

recovery of disrupted endothelial barrier integrity in response to permeability 

increasing factors is still elusive. 
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1.8 Aims and objectives of the study  

The main aim of the present study was to broaden our knowledge on the 

contribution of insulin-mediated recovery of EC barrier function under patho-

physiological conditions. Thrombin is used as a model inflammatory mediator, to 

activate EC barrier disrupting signaling or to induce EC monolayer hyperpermeability, 

followed by slow recovery of the EC barrier function. The mechanisms of EC barrier 

recovery are critical for the maintenance of basal monolayer permeability. Here the 

hypothesis was tested whether insulin can mediate the fast restoration/recovery of EC 

barrier function in response to thrombin-induced hyperpermeability. Moreover, a 

model of isolated saline perfused rat heart is applied to further prove the protective 

effects of insulin on endothelial barrier integrity in an intact coronary system. 

The following questions were addressed in this thesis. 

 Does PI3K/Akt pathway play a role in insulin-mediated restoration of EC 

barrier function? 

 Does insulin has any effect on inactivation of EC contractile machinery and 

fast re-establishment of AJs in response to thrombin-induced EC barrier 

failure? 

 Does RhoA/Rock signaling pathway play a role in insulin-mediated recovery 

of EC barrier function in response to thrombin challenge? 

 Does eNOS/NO pathway play a role in insulin-mediated EC barrier 

recovery? 

 Does Rho GTPase Rac1 play a role in insulin-mediated restoration of EC 

barrier function? 

 Does insulin protect the heart against reperfusion-induced injury and 

imminent life threatening edema, in the intact isolated saline perfused rat 

heart? 

 

To achieve these objectives a well-established in vitro model of HUVECs and a model 

of isolated saline-perfused rat hearts were used. Inflammatory mediator thrombin was 

present during the whole experimental period in order to imitate/emulate in vivo 

conditions. 
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The following experimental approaches were used to answer these questions. 

 Macromolecule albumin permeability across HUVEC monolayers was used 

as functional assay to assess the impact of insulin on EC barrier restoration. 

 Dynamics of activities of EC contractile machinery i.e. MLC and MYPT1 

phosphorylation was analyzed by Western blot analysis. 

 The effects of insulin on VE-cadherin based AJs were visualized by 

immunofluorescence confocal microscopy. 

 Activation of Rac1 was analyzed by pull down assay. 

 Myocardial water contents were determined by Langendorff perfusion 

system. 
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2. MATERIALS 

 

2.1 Laboratory instruments 

 

Beckman Allegra 64R centrifuge    Beckman Coulter, USA 

Beckman TL 100 ultracentrifuge    Beckman Coulter, USA 

Electroblot chambers     Biotech-Fischer, Reiskirchen,  

       Germany 

Electrophoresis apparatus     Biometra, Goettingen, Germany 

Gel documentation system  

(ChemiSmart 5000)  Peqlab, Erlangen, Germany 

Glas coverslips  Menzel, Braunschweig 

Glass ware       Schott, Mainz, Germany 

Hamilton syringe      Hamilton, Bonaduz, Switzerland 

Incubators       Heraeus, Hanau, Germany 

Laminar flow hood      Heraeus, Hanau, Germany 

LSM-510 Meta confocal microscope   Carl Zeiss, Jena 

Magnet stirrer      Jahnke und Kunkel, Staufen,  

       Germany 

Neubauer chamber      Superior, Marienfeld, Germany 

Phase contrast microscope    Olympus, Japan 

PH-Meter      WTW-Weinheim, Germany 

Photometer      Zeiss, Jena, Germany 

Power supply      Biometra, Goettingen, Germany 

Rocker       Biometra, Goettingen, Germany 

Shaker      Biometra, Goettingen, Germany 

Table top (centrifuge)     Eppendorf, Hamburg, Germany 

Tubes       Eppendorf-Netheler-Hinz, Germany 

Vortexer       Heidolph, Kelheim, Germany 

Water bath       Julabo, Seelbach, Germany 

Water demineralization unit    Millipore, Eschborn, Germany 
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2.2 Chemicals and consumables 

 

Acrylamide/Bisacrylamide (1:19)    SERVA, Heidelberg, Germany  

Solution 40%     

Ammonium persulfate     SERVA, Heidelberg, Germany 

Benzonase®       Merck, Darmstadt, Germany 

Bovine serum albumin     Sigma-Aldrich,Steinheim,Germany 

Bromophenol blue      Sigma-Aldrich, Steinheim,Germany 

Calcium chloride      Merck, Darmstadt, Germany 

Collagenase II      PAA Labs., Pasching, Austria 

Costar Transwell® filter membrane Greiner bio-one, Frickenhausen, 

Germany 

Complete® inhibitor cocktail    Roche, Mannheim, Germany 

Culture dishes      BD, Heidelberg, Germany 

Dimethyl sulfoxide      Sigma-Aldrich, Steinheim, Germany 

Dithiothreitol (DTT)     Amersham Pharmacia, UK 

EDTA        Carl Roth Karlsruhe, Germany 

EC basal medium® kit     PromoCell®, Heidelberg, Germany 

Eppendorf tubes (0.5, 1.5, 2 ml)    Eppendorf, Hamburg, Germany 

Falcon tubes (50 ml, 12 ml)    BD, Heidelberg, Germany 

FCS        PAA, Pasching, Austria 

Filter papers       Biotech-Fischer, Reiskirchen,  

       Germany 

Gentamycin       Gibco BRL, Eggenstein, Germany 

Glass cover slips      Menzel, Braunschweig, Germany 

Glycerol (100%)      Sigma-Aldrich, Steinheim, Germany 

Glycine       Carl Roth, Karlsruhe, Germany 

HBSS       PAA, Pasching, Austria 

HEPES       Sigma-ldrich,Steinheim,Germany 

Insulin (human recombinant)    Sigma-Aldrich, Steinheim 

Magnesium chloride     Fluka, Switzerland 

Magnesium sulfate      Merck, Darmstadt, Germany 

Manganese chloride     Merck, Darmstadt, Germany 

β-mercaptoethanol      Merck, Darmstadt, Germany 
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Methanol       Merck, Darmstadt, Germany 

Millipore water      Millipore, Eschborn, Germany 

Nitrocellulose membrane     Schleicher und Schuell, Dassel,  

       Germany 

Non-fat milk powder     Applichem, Darmstadt, Germany 

Nonidet P-40      Sigma-Aldrich, Steinheim, Germany 

Penicillin/streptomycin     Gibco BRL, Eggenstein, Germany 

Paraformaldehyde      Merck, Darmstadt, Germany 

Pipette tips      Eppendorf, Hamburg, Germany 

Pipettes       Eppendorf, Hamburg, Germany 

PMSF       Sigma-Aldrich, Steinheim, Germany 

Ponceau S solution      SERVA, Heidelberg, Germany 

Potassium chloride      Merck, Darmstadt, Germany 

Potassium dihydrogen phosphate   Merck, Darmstadt, Germany 

Page ruler pre-stained protein ladder  Thermo Scientific, Braunschweig, 

Germany 

Rubber policeman      BD, Heidelberg, Germany 

Scalpal (disposble)      Feather, Osaka, Japan 

Sodium azide      Merck, Darmstadt, Germany 

Sodium bicarbonate     Carl Roth, Karlsruhe, Germany 

Sodium chloride      Carl Roth, Karlsruhe, Germany 

Sodium di-hydrogen phosphate    Carl Roth, Karlsruhe, Germany 

Sodium dodecyl sulfate     SERVA, Heidelberg, Germany 

Sodium fluoride      Sigma-Aldrich, Steinheim, Germany 

Sodium hydroxide      Carl Roth, Karlsruhe, Germany 

Sodium orthovanadate     Sigma-Aldrich, Steinheim, Germany 

Sterile filters (0.22 μm)     Sartorius, Goettingen, Germany 

Sterile pipettes      BD, Heidelberg, Germany 

Super signal-west® (ECL solution)   Fischer scientific, Niederlassung  

Nidderau, Germany 

Syringes (20 ml, 2 ml)     BD, Heidelberg, Germany 

TEMED       Sigma-Aldrich, Steinheim, Germany 

Thrombin       Sigma-Aldrich, Steinheim, Germany 

Tris base       Carl Roth, Karlsruhe, Germany 



Materials 

20 
 

Triton X-100       SERVA, Heidelberg, Germany 

Trypan blue       Sigma-ldrich,Steinheim,Germany 

Trypsin-EDTA solution     Biochrom AG, Berlin 

Tween 20       Amersham Pharmacia, UK 

Whatman® 3 MM filter paper  Millipore, Eschborn, Germany 

 

2.3 Antibodies 

 

Primary antibodies: 

Antibodies       Source 

Anti-phospho Akt (Mouse IgG)   Cell Signaling Technology, USA 

Anti-phospho MLC (Rabbit IgG)   Cell Signaling Technology, USA 

Anti-phospho MYPT1     Merck Millipore, Schwalbach,  

       Germany  

(Thr850) (Rabbit IgG)       

Anti-Rac1-GTP (Rabbit polyclonal)  Cytoskeleton Inc., Denver USA 

Anti-VE-cadherin (Mouse IgG)    Beckman Coulter, Krefeld, Germany 

Anti-GAPDH      Cell Signaling Technology, USA 

 

Secondary antibodies: 

 

Antibody       Source 

Anti-Mouse IgG HRP-conjugated Amersham Biosciences, Heidelberg, 

Germany 

Anti-Rabbit IgG HRP-conjugated Amersham Biosciences, Heidelberg, 

Germany 

Anti-mouse IgG Alexa-Flour 488-conjugated Invitrogen, Karlsruhe, Germany 

 

2.4 Kits  

 

Rac1-Activation-Assay Kit      Cytoskeleton Inc., USA 

 

2.5 Inhibitors  

 

S961       Sigma, Steinheim, Germany 
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Wortmannin      Calbiochem, Darmstadt, Germany

  

L-NAME (Nω-Nitro-L-arginine methyl ester  Sigma, Steinheim, Germany 

Hydrochloride) 

ML-7 Hydrochloride     Enzo, Lörrach Germany  

Y27632       Calbiochem,Darmstadt, Germany 

NSC23766 (N-[N-(3, 5-difluorophenacetyl- 

L-alanyl)]-S-phenylglycine t-butyl ester (DAPT)) Calbiochem, Darmstadt, Germany 

 

2.6 Buffers 

 

2x-SDS sample buffer 

Tris-HCl (pH 6.8)     250 mM 

Glycerol      20 % 

SDS       4 % (wt/vol) 

DTT       1 mM (wt/vol) 

-mercaptoethanol     5% (vol/vol) 

Bromophenol Blue     0.001% (wt/vol) 

NaF       20 mM 

Na-orthovanadate     1.5 mM 

 

10x TBS (pH 7.4) 

Tris-HCl       100 mM 

NaCl        1.6 M 

TBS Tween (TBST) 

1x TBS       1000 ml 

Tween 20       1 ml (0.1%, vol/vol) 

 

10X PBS (pH 7.4) 

NaCl        1.37 M 

KCl        27 mM 

Na2HPO4       0.1 M 

KH2PO4       17 mM 
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Rac1 pull down assay  

Lysis buffer 

HEPES      25 mM 

NaCl        150 mM 

EDTA        1 mM 

MgCl2        5 mM 

Na-orthovanadate      2 mM 

DTT        5 mM 

NaF        10 mM 

Triton-X-100       0.5% 

PMSF       0.5 mM 

Glycerol       2% 

Supplemented with complete® protease inhibitor cocktail 

 

Wash buffer 

Tris-HCl (pH 7.4)      25 mM 

NaCl        150 mM 

MgCl2        10 mm 

Triton X-100       1% 

PMSF       0.5 mM 

Supplemented with complete® protease inhibitor cocktail 

 

2.7 Softwares 

 

Microsoft Word 2007 Microsoft Corp., USA 

Microsoft Excel 2007 Microsoft Corp., USA 

Microsoft Power Point 2007 Microsoft Corp., USA 

Microsoft Windows XP Professional  Microsoft Corp., USA 

Quantity one analysis software Bio Rad, Hercules, USA 

LSM 510 Carl-Zeiss, Jena, Germany  
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3. METHODS 

 

3.1 Cell culture 

Preparation of human umbilical vein endothelial cells (HUVECs) 

Media, sera, buffers and growth supplements 

 

Collagenase solution: 

HBSS (Hank´s balanced salt solution)    x ml 

Collagenase II, 293 IU/mg (wt/vol)     0.025% 

CaCl2         1.5 mM 

MgCl2          0.5 mM 

 

Endothelial cell culture medium  

EC basal medium (PromoCell®) supplemented with 

Fetal calf serum (FCS; vol/vol)      10% 

EC growth supplement/Heparin (wt/vol)     0.4% 

Hydrocortisone (wt/vol)       0.1% 

Basic fibroblast factor (wt/vol)     1 ng/ml  

Epidermal growth factor (wt/vol)     0.1 ng/ml  

Penicillin/streptomycin (vol/vol)      2% 

Trypsin/EDTA       0.05% 
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Procedure: Human umbilical cords were obtained from University Hospital Giessen 

after approval from hospital ethics committee. HUVECs were prepared from freshly 

collected umbilical cords according to Jaffe et al., 1973, with some changes. After 

cleaning, the umbilical vein was cannulated and rinsed with HBSS to clear away the 

traces of blood. To detach the HUVECs from the vessel wall the lumen of the vein was 

filled with collagenase solution and incubated for 30 min at 37°C.  After incubation the 

collagenase solution containing the primary HUVECs, was gently flushed from the vein 

by perfusion with 30 ml of HBSS containing 3% (vol/vol) FCS, to inactivate the 

collagenase activity. The effluent was collected in a 50 ml tube and centrifuged at 250 

× g for 5 min at room temperature. The supernatant was discarded and the cell pellet 

was resuspended in EC culture medium containing 0.1% (vol/vol) gentamycin. 

Thereafter, the cell suspension in EC culture medium was seeded in 1-3, 10 cm cell 

culture dishes and incubated at 37°C with 5% CO2 for 3 hrs. Afterwards, cells were 

washed with HBSS to clear away the cell debris, non-adherent and non-ECs and were 

incubated with EC culture medium supplemented with 0.1% (vol/vol) gentamycin with 

5% CO2 at 37°C. After 24 hours the EC culture medium was replaced with fresh EC 

culture medium and HUVECs were grown to confluence. 

 

3.2 Sub- culturing of HUVECs 

After reaching confluency, primary HUVECs were trypsinized in phosphate-

buffered saline (PBS) [composition: 137 mM NaCl, 2.7 mM KCl, 1.7 mM KH2PO4, and 

10 mM Na2HPO4; pH 7.4, supplemented with 0.05% (wt/vol) trypsin, and 0.02% 

(wt/vol) EDTA] for approximately 1-5 min. at 37°C to allow the majority of the cells to 

detach from the cell culture dish and the digestion was stopped by adding FCS. 

Trypsinated cells were centrifuged at 250 × g for 10 min and resuspended into EC 

culture medium and seeded at a density of 2×105 cells/cm2 on Transwell® filters (for 

permeability) or on 35 mm or 60 mm dishes (for Western blot analysis and pull down 

assay). For immunostaining and Confocal microscopy HUVECs were seeded on 25 

mm glass coverslips. The experiments were performed with confluent HUVEC 

monolayers of passage 1-2. 
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3.3 General experimental protocol 

 The basal medium used to perform experiments was HBSS supplemented 

freshly with 1.2 mM MgCl2 and 1.3 mM CaCl2. After an initial equilibration period of 30 

min on heating plates at 37°C prior to addition of drugs, agents were added as 

indicated. Stock solutions of insulin, thrombin, S961, ML-7, Y27632, L-NAME and 

wortmannin were prepared immediately before use. Stock solution of insulin was in 25 

mM HEPES and stock solutions of L-NAME, thrombin, S961 and Y27632 were 

prepared with basal medium. Stock solutions of wortmannin and ML-7 were prepared 

with dimethyl sulfoxide (DMSO). HUVECs were incubated with appropriate volumes 

of these solutions yielding final solvent concentrations < 0.1% (vol/vol). The same final 

concentrations of basal medium, DMSO or HEPES were also added in all respective 

control experiments. In those experiments where pharmacological inhibitors were 

used, the cells were preincubated with inhibitors for 30 min before addition of insulin 

as mentioned in figure legends. In a set of pilot experiments, the optimal effective 

concentration of the drugs used in this study were determined. The agents were used 

in their optimal effective concentrations as follows: insulin 1 IU/ml, thrombin (0.2 - 0.3 

IU/ml), S961 (1 M), wortmannin (0.01 M), ML-7 (10 M), Y27632 (1 M), L-NAME 

(100 M) and NSC23766 (50 M.) 

 

3.4  Protein analysis 

 

3.4.1 Preparation of protein samples 

 HUVECs were lysed in 150 l 2x SDS sample buffer [Buffer composition: 250 

mM Tris/HCl; pH 6.8, 4% (wt/vol) SDS, 20% (vol/vol) glycerol, 20 mM NaF, Na-

orthovanadate 1.5 mM, 0.001% (wt/vol) bromophenol blue, and 10 mM DTT (added 

freshly before use)]. Afterwards, 50 IU/ml Benzonase® and 2 mM MgCl2 was added 

freshly before use and lysate was collected in a 1.5 ml Eppendorf tube by scraping 

with the help of a rubber policeman. Samples were denatured at 95°C for 3 min and 

used immediately for electrophoresis or stored at -20°C for future use. 
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3.4.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Resolving gel buffer:   Tris/HCl; pH 8.8  120 mM 

Stacking gel buffer:   Tris/HCl; pH 6.8 120 mM 

 

10x Gel running buffer 

Tris   250 mM 

Glycine   2.0 M 

SDS (wt/vol)   10% 
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SDS gels 

The composition of gels of different percentages is given below: 

Gels  Resolving Gels 

(For 2 gels) 

 

Stacking 

Gels 

Solutions 5 % 10% 12.5% 6% 

Acrylamide/Bisacrylamide 

(1:19)  40% (wt./vol) 

2.25 ml 4.50 ml 5.63 ml 0.75 ml 

 

Resolving gel buffer 6.75 ml 6.75 ml 6.75 ml ----- 

Stacking gel buffer ----- ----- ----- 0.75 ml 

Millipore water 8.70 ml 6.45 5.33 ml 4.43 ml 

SDS 10%  (wt./vol) 180 µl 180 µl 180 µl 60 µl 

APS 10%  (wt./vol) 150 µl 150 µl 150 µl 37.5 µl 

TEMED 15 µl 15 µl 15 µl 7.5 µl 

 



Methods 

28 
 

Procedure:  Glass plates, spacers and combs were cleaned with water and ethanol, 

then gel apparatus was assembled and the resolving gel solution was poured and 

layered with ethanol or water. The gel was left to polymerize for 1 hour at room 

temperature. Once the gel was polymerized the top of the gel was completely rinsed 

with water. The layer of water was removed. The stacking gel solution was prepared 

immediately before use and was poured on top of the resolving gel cautiously so that 

there was no bubble. The comb was inserted and the stacking gel was left to 

polymerize at room temperature for 30 min. After removing the comb carefully (not to 

damage the wells) 1x running gel buffer was added to the chamber and the sample 

wells were cleaned to remove the unpolymerized acrylamide with the same buffer 

using a syringe. Protein samples were loaded into the wells and the gel was run at 

120 volts for 3 hrs. The run was stopped when bromophenol blue had passed through 

the gel. The molecular weight of proteins was determined by comparison with 

PageRuler TM  prestained protein ladder. 

 

3.5 Western blot analysis 

 Proteins separated by SDS-PAGE were transferred onto a nitrocellulose 

membrane by semi-dry blotting method. Later on specific proteins were 

immunodetected by using specific antibodies. 

 

Materials and solutions 

 Blotting chamber 

 Nitrocellulose membrane,  

 Whatman® 3 MM filter paper, 

 Blotting buffer 150 mM Glycine; 25 mM Tris/HCl, pH 8.3 and 10% (vol/vol) 

methanol 

  Millipore water 
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Procedure: Nitrocellulose transfer membrane and six pieces of Whatman® 3 MM 

filter papers, cut to the same size and dimensions as the gel. The graphite blotting 

chamber was set up as follows: Three sheets of filter paper (Whatman® 3 MM) 

soaked in blotting buffer, were placed in the center of the graphite anode of the 

blotting chamber. Nitrocellulose membrane equilibrated in blotting buffer for 10-15 

min placed on top of these sheets of filter paper. After briefly equilibrating with 

blotting buffer, the SDS-gel (only resolving gel) was layered on top of the 

nitrocellulose membrane, carefully avoiding air bubbles. Three sheets of filter 

paper, presoaked in blotting buffer, were placed on top of the gel followed by the 

graphite cathode of the blotting chamber. Transfer was achieved by application of 

0.8 mA/cm2 current for approximately 1 hour. 

 

3.5.1 Ponceau staining of transferred proteins 

After blotting, the membrane was stained with Ponceau-S solution to observe 

the efficiency of protein transfer. This stain is reversible and gives pink bands on a 

light background. The nitrocellulose membrane was washed with Millipore water for 1 

min, incubated in Ponceau-S solution for 2-3 min with constant shaking at room 

temperature. Afterwards the membrane was destained by washing in Millipore water 

to the desired contrast and photographed. To destain completely, the membrane was 

washed with 1x Tris-buffered saline (TBS) plus 0.1% Tween 20 under constant 

shaking at room temperature. 

 

3.5.2 Immunodetection of proteins 

Solutions: 

10x (TBS) 

Tris/HCl (pH 7.4)       100 mM 

NaCl      1.6 M 
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TBS Tween (TBST) 

1x TBS 

0.1% (vol/vol) Tween 20 

 

Blocking-buffer and antibody-dilution buffer 

After a brief washing with Millipore water and 1x TBST and before the 

immunological detection of relevant proteins, the binding sites of unspecific proteins 

were blocked by 5% (wt/vol) non-fat dried milk powder in 1x TBST (Milk) or 5% (wt/vol) 

BSA in 1x TBST for 1 hour at room temperature with constant rocking 

 

Primary Antibodies 

Antibody       Dilution   Dilution buffer 

Anti-phospho Akt (Mouse IgG)       1:1000   3% BSA 

Anti-phospho MLC (Rabbit IgG)      1:1000   3% BSA 

Anti-phospho MYPT1 (Thr850) (Rabbit IgG)  1:1000   3% BSA 

Anti-Rac1 (Rabbit IgG)     1:1000   3% BSA 

Anti-GAPDH      1:2000   3% BSA 

Secondary antibodies, horseradish peroxidase (HRP)-labeled 

Antibody     Dilution   Dilution buffer 

Anti-rabbit IgG     1:1000    5% milk powder 

Anti-mouse IgG     1:1000    5% milk powder 

Anti-mouse IgM     1:2000   5% milk powder 
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Procedure: After blocking, the membrane was incubated overnight with primary 

antibody at 4°C with gentle shaking. The membrane was then washed at room 

temperature with 1x TBST 3-4 times for 5-10 min each with constant rocking and 

incubated with HRP- conjugated secondary antibody for 1 hour at room temperature.  

 

3.5.3 Enhanced chemiluminescence (ECL) 

After incubation with the secondary antibody, membrane was then washed 2-3 

times as stated before and then incubated with enhanced chemiluminescence (ECL) 

solution (30 seconds to 1 minute). The appearing luminescence was detected and 

recorded with Peqlab, ChemiSmart gel documentation system as per manufacturer´s 

instructions and images were analyzed by using Quantity One software (Bio-Rad). 

 

3.6 Measurement of endothelial monolayer permeability 

 The permeability of trypan blue-labelled albumin across HUVEC monolayer 

was measured as described by Noll et al., 1999, using a two compartment system. 

The system consists of “luminal” (upper) and “abluminal” (lower) compartments. The 

compartments were separated by a filter membrane (with pore size 0.4 μm, 6.5 mm 

diameter).  The cells were cultured in luminal compartment on the membrane of the 

Transwell® filters till confluence. HBSS supplemented with 1.2 mM MgCl2 1.3 mM 

CaCl2 and 2% (vol/vol) FCS used as a basal medium was added in both 

compartments. The luminal compartment containing the HUVEC monolayer had 2.5 

ml volume of this medium while the abluminal compartment contained 6.6 ml of the 

medium. The fluid in the "abluminal" compartment was constantly stirred using 

magnetic stirrers. This system measures transendothelial flux from luminal to 

abluminal compartments in the absence of hydrostatic pressure gradients. In the 

luminal compartment final concentration of 60 µM of the trypan blue-labelled albumin 

was added. The appearance of trypan blue-labelled albumin from the luminal to the 

abluminal compartment was monitored continuously after every 60 seconds by 

pumping the liquid through a spectrophotometer (Specord 10, Zeiss Jena, Germany). 
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To avoid measurement artifacts a two-wavelength measurement mode was used 

(control 700 nm versus trypan blue 600 nm). 

The albumin flux (F, measured in mol/ (sec x cm2) across HUVEC monolayer 

surface area (S) was calculated as the increase in albumin concentration (d[A]2) during 

the time interval (dt) in the lower compartment with the volume (V) as follows: 

 

 

 
The combined permeability coefficient (P [cm/sec]) of both EC monolayer and filter 

membrane was calculated as: 

 

 

Where [A]1 and [A]2 are the albumin concentrations in the luminal and abluminal 

compartments, respectively. 

 

 

Figure 3.1.    Two compartment system of measuring trypan blue- labelled albumin 

permeability across the HUVEC monolayer 

Luminal  

Abluminal 

d [A]2 /  dt x V 
F =  ------------------------ (1) 

S 

F 
P = ------------------------ (2) 

([A]1 – [A]2) 

Twocompartmentsystem 
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3.7 Immunofluorescence microscopy  

Solutions and materials: 

Blocking buffer consists of 5% (vol/vol) FCS and 5% (wt/vol) BSA in 1x PBS 

Primary Antibodies 

Antibody      Dilution   Dilution buffer 

Anti-VE-cadherin (Mouse IgG)   1:100   blocking buffer 

 

Secondary Antibodies 

Antibody      Dilution   Dilution buffer 

Anti-mouse IgG     1:400   PBS 

(Alexa fluor 488) 

 

Protocol: HUVECs were grown on glass cover slips in 35 mm2 culture dishes until 

confluence. After treatments, cells were washed thrice with 1x PBS (pH 7.4) and then 

fixed with 4% paraformaldehyde for 20 min at room temperature or ice cold 100% 

methanol for 20 min at -20°C. Afterwards cells were washed three times for 10 min 

each with 1x PBS and permeabilized with 1x PBS containing 0.2% (vol/vol) Triton X-

100 at 37°C for 20 min. The cells were then washed 2-3 times with 1x PBS. Non-

specific binding was blocked by incubating cells with blocking solution (5% (wt/vol) 

BSA and 5% (vol/vol) FCS in 1x PBS) for 45 min. Cells were incubated with respective 

primary antibody in a dilution of 1:100 in blocking solution overnight at 4°C, washed 

three times with 1x PBS for 10 min each and subsequently incubated with secondary 

antibody tagged with Alexa fluor 488 in a dilution of 1: 400 for 1 hour at room 

temperature followed by 2-3 times gently washed with 1x PBS.  

The coverslips were finally mounted onto glass objective slides with a drop of 

commercial mounting solution. Confocal images were obtained and analyzed by using 

laser scanning microscopy (Carl Zeiss LSM 510, Jena, Germany). Fluorophores were 

excited by using argon (492 nm) and He-Ne (545 nm) lasers. Image acquisition and 

analysis was performed using software provided with the confocal microscope.  
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3.8 Detection of activated Rac1 

Rac1 belongs to Rho family of small GTPases. The activation state of Rac1 

was assessed by pull down assay. The assay is based on the principle that only the 

interaction of active form of the GTPase with its specific downstream effectors. The 

assay was performed according to the manufacturer’s instructions using the Rac1 p21 

binding domain (PBD) of p21-activated protein kinase 1 (PAK1), which leads to its 

activation, therefore, the p21 binding domain (PBD) of PAK 1 can be used as a probe 

to specifically isolate activated GTP-bound Rac1. 

 

Procedure: Confluent HUVEC monolayers were stimulated with insulin and thrombin 

as described in respective figures. Subsequently the cells were washed with ice-cold 

PBS and lysed with 600 l of lysis buffer (composition of the buffer: 25 mM Hepes; pH 

7.4, 150 mM NaCl, 1 mM EDTA, 5 mM MgCl2, 2 mM Na-orthovanadate, 10 mM NaF, 

5 mM DTT, 0.5 mM PMSF, 0.5% (vol/vol) Triton X-100, 2% (vol/vol) glycerol and 

supplemented with Complete® protease inhibitor cocktail) on ice for 10 min. The cells 

were harvested by cell scraper, lysate were transferred to pre-labelled sample tubes 

on ice. The lysate was centrifuged for 1 minute at 14000 x g at 4°C. 600 g of cell 

lysates were incubated with 10 g of GST-PAK beads (Cytoskeleton Inc.) at 4°C for 

40 min.  The beads were washed four times with wash buffer (composition of the wash 

buffer: 25 mM Tris-HCl; pH 7.4, 10 mM MgCl2, 1% (vol/vol) Triton X-100, 0.5 mM 

PMSF, 150 mM NaCl, and Complete® protease inhibitor cocktail), The pellet containing 

the beads with active Rac1 was eluted in 40-50 l of Laemmli sample buffer, boiled at 

95°C for 5 min and loaded on 12.5% SDS gel. Bound Rac1 protein was then detected 

by Western blot using specific polyclonal antibodies against Rac1 (Cytoskeleton Inc; 

Denver). For the cross comparison of Rac1 activation (level of GTP-bound Rac1) the 

total amount of Rac1 in cell lysates was used as a control. 
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3.9 Determination of myocardial water content 

All experiments were performed in accordance with the recommendations in 

the Guide for the Care and Use of Laboratory Animals of the German law of animal 

welfare. Hearts from male Wistar rats with an average weight of 250-g were excised 

rapidly, and were mounted immediately after isolation on a Langendorff perfusion 

system in a temperature-controlled chamber (37°C), as previously described by (Noll 

et al., 1999)  with some modifications. Hearts were then perfused with Krebs-Henseleit 

buffer (composition of the buffer in mM: (NaCl 140, NaHCO3 24.0, MgSO4 1.0, KH2PO4 

0.4, KCl 2.7, CaCl2 1.8 and glucose 5.0) for 30 min (10 ml/min) prior to each 

experiment. The buffer pH was maintained 7.4 by gassing with carbogen (95% O2 and 

5% CO2) and filtrated with 0.45 M diameter membrane filters. Hearts were then 

exposed to one of the following protocols: (a) Normoxic (Nor) conditions for 90 min (b) 

hypoxia for 60 min  followed by 30 min of reperfusion (Rep) (c) hypoxia for 60 min 

followed by 30 min of reperfusion with insulin 0.1 IU/ml, during first 10 minutes of 

reperfusion, (d) 60 min of hypoxia followed by 30 min of reperfusion in which 

NSC23766, a specific Rac1 inhibitor, was added to the perfusion medium during last 

20 min of hypoxia and first 10 min of reperfusion in the presence of insulin (during first 

10 min of reperfusion only).The normoxic perfusion (10 ml/min) was with Krebs-

Henseleit buffer gassed with 95% O2 (vol/vol)/5% CO2 (vol/vol), the thermostatic heart 

chamber was flushed with humidified air, and hypoxic perfusion with Krebs-Henseleit 

buffer with humidified 95% N2 (vol/vol)/5% CO2 (vol/vol). At the end of each 

experiment, wet weight and after 24 hrs. dry weight of the perfused rat hearts were 

measured. Myocardial water content was calculated as follows:  

Myocardial water content =  wet weight- dry weight 

 

Myocardial water content per 100 g heart weight =  

  

Wet weight - dry weight 
× 100 

Dry weight 
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3.10 Statistical analysis 

Data are expressed as means ± SEM of 3-5 experiments from independent cell 

preparations. The comparison of means between groups was performed by one way 

analysis of variance (ANOVA) followed by a Student-Newman-Keuls post-hoc test. 

Changes in parameters within the same group were assessed by multiple ANOVA 

analysis. Probability (P) values of less than 0.05 (P< 0.05) were assumed significant. 
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4. RESULTS 

 

4.1 Insulin enhances the recovery of EC barrier function in response to 

thrombin challenge 

In the first step the effect of insulin on recovery of EC barrier function disrupted 

by inflammatory agent thrombin was analyzed. As shown in Figure 4.1 exposure of 

ECs to thrombin (0.2 IU/ml) caused a robust increase in EC permeability which peaked 

within ~10-15 min in response to thrombin challenge and slowly returned to basal level 

approx. within 2 hrs. In the presence of insulin the thrombin-induced hyperpermeability 

was significantly reduced which was observed at all concentrations of insulin. 

Furthermore insulin-induced a fast restoration of EC barrier function in response to 

thrombin challenge, as was reflected by more rapid decrease in permeability to 

albumin towards basal level, and remained at lower level for the whole period of 

observation. The time required for the 50% recovery of EC monolayer permeability 

from the maximum increase of permeability was significantly less in the presence of 

insulin (~25 min vs. ~ 51 min, for insulin (1 IU/ml) plus thrombin and thrombin alone, 

respectively). Thus insulin accelerated restoration of EC barrier function, as was 

characterized by more rapid recovery of endothelial permeability to the basal level. 

This restoration of EC barrier function by insulin was concentration-dependent and 

was significant already at 0.01 IU/ml concentration of insulin (equivalent to ~ 50nM). 

Furthermore, the maximum reduction in macromolecule permeability was at 1 IU/ml of 

insulin concentration as shown in Figure 4.1. Therefore, this concentration of insulin 

was used for all subsequent experiments. 
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Figure 4.1 Effect of insulin on thrombin-induced hyperpermeability.  

HUVEC monolayers were exposed to thrombin (0.2 IU/ml) in the presence or 

absence of different concentrations of insulin (0.01, 0.1, and 1 IU/ml) or vehicle 

(control) as indicated. Data are mean ± SEM of 5 separate experiments of independent 

cell preparations; *P<0.05 versus control; #P<0.05 versus thrombin alone. 
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4.2 Effect of insulin on VE-cadherin mediated endothelial adherens junctions 

in response to thrombin challenge 

One of the major regulators of EC barrier integrity is the actin cytoskeleton 

anchored AJs consisting of VE-cadherin, which together with associated family of 

catenins seals the adjoining cells together and thereby limits the passage of 

macromolecules across the vessel wall (Dejana et al., 2008; Lampugnani et al., 1995). 

Therefore, the effect of insulin on VE-cadherin dynamics at cell-cell junctions after 

thrombin challenge was analyzed. 

VE-cadherin was decorated at the cell-cell junctions under basal conditions 

(Figure 4.2, 0 min). However, exposure of HUVEC monolayers to thrombin (0.3 IU/ml) 

resulted in drastic disappearance of VE-cadherin from cell borders within 10 min, 

leading to intercellular gap formation and an increase in permeability. Thrombin effect 

was very rapid and is followed by slow reappearance of VE-cadherin at cell-cell 

junctions. This thrombin effect was attenuated in the presence of insulin (1 IU/ml). 

Furthermore in thrombin challenged cells, insulin promoted fast re-appearance of VE-

cadherin at cell-cell junctions within 10 min and was even more pronounced at 30 min, 

showing protective effect of insulin against thrombin-induced loss of AJs, indicating 

that insulin strengthens as well as promotes quick re-establishment of cell-cell 

adhesion structures, thus accelerates recovery of EC barrier function after thrombin-

induced EC barrier breakdown.  
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Figure 4.2   Effect of insulin on thrombin-induced VE-cadherin localization and 

EC monolayer disruption. HUVECs were grown to confluence on glass cover slips 

and were exposed to thrombin (0.3 IU/ml) in the absence or presence of insulin (1 

IU/ml for 10 min) for indicated time periods. Methanol fixed and immunostained for VE-

cadherin. Scale bar 20 µm; shown are representative figures of VE-cadherin 

immunostaining of five separate experiments with independent cell preparations. 

 
4.3   Role of insulin receptors in insulin-mediated endothelial barrier recovery 

Like many other cell types ECs also express insulin receptors (Zeng et al., 

2000; Nitert et al., 2005). Therefore in the next step the involvement of insulin 

receptors in the EC barrier restoration effects of insulin was analyzed. In these 

experiments S961, a highly specific insulin receptor antagonist (Schaffer et al., 2008) 

was applied to block insulin receptors. Preincubation of ECs for 30 min with S961 (1 

µM) abolished the barrier recovery effect of insulin in response to thrombin-induced 

hyperpermeability as shown in Figure 4.3, indicating a receptor-mediated effect. 
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Figure 4.3 Role of insulin receptors on insulin-mediated endothelial barrier 

recovery. HUVEC monolayers were exposed to thrombin (0.2 IU/ml) in the presence 

or absence of insulin (1 IU/ml) or vehicle (control) as indicated. In a set of experiments 

ECs were exposed to thrombin in the presence of S961 (1 µM) plus insulin. Data are 

mean ± SEM of five separate experiments of independent cell preparations; *P<0.05 

versus control; #P<0.05 versus thrombin alone; n.s.: not significantly different from 

thrombin alone. 
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4.4  Role of PI3K/Akt pathway in insulin-mediated barrier recovery in HUVECs. 

There is convincing evidence that in ECs insulin mediates most of its effects via 

activation of PI3K/Akt pathway (Zeng et al., 2000; Hermann et al., 2000). Protein 

kinase B (Akt) is a downstream effector of PI3K, therefore, the effect of insulin on Akt 

activation (phosphorylation) was analyzed by Western blot analysis using a 

phospho-specific antibody against Akt. Insulin-induced a rapid increase in Akt 

phosphorylation in HUVECs as shown in Figure 4.4A. Phosphorylation of Akt reached 

its maximal within 5 min and sustained over the maximum indicated periods of 

observation as shown in Figure 4.4A 

In order to determine the contribution of PI3K in insulin-mediated EC barrier 

recovery in response to thrombin-induced hyperpermeability, the effect of specific 

PI3K inhibitor wortmannin was investigated. ECs were pre-incubated with specific 

PI3K inhibitor wortmannin (Wort: 0.1 µM) for 30 min. As shown in Figure 4.4B inhibition 

of PI3K with wortmannin completely abolished the insulin-mediated restoration of EC 

barrier function. 
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Figure 4.4   Role of PI3K/Akt pathway in insulin-mediated EC barrier restoration 

Effect of Insulin on Akt phosphorylation (pAkt). (A) Representative Western blots of 

Akt phosphorylation. HUVECs were incubated with insulin (1 IU/ml) for different time 

intervals (min) as indicated. Western blotting was performed with an anti phospho-Akt 

antibody. The same membranes were reprobed with anti-GAPDH antibody as loading 

control. The Western blots are representative of 3 different experiments using 

independent cell preparations. 

(B) HUVEC monolayers were challenged with thrombin (0.2 IU/ml) in the absence or 

presence of insulin (1 IU/ml) or preincubated with PI3K inhibitor wortmannin (Wort; 0.1 

M) for 30 min plus insulin plus thrombin or vehicle (control) as indicated. Data are 

mean ± SEM of five separate experiments of independent cell preparations. *P<0.05 

versus control; #P<0.05 versus thrombin alone; n.s.: not significantly different from 

thrombin alone. 

 

 

4.5  The effect of eNOS inhibition on insulin-mediated EC barrier restoration  

 Insulin activates EC nitric oxide synthase (eNOS) and hence induces NO 

production (Zeng et al., 2000; Montagnani et al., 2001 and 2002) and thereby may 

stabilize microvascular EC barrier function (Gündüz et al., 2010). Therefore, the 

involvement of eNOS in insulin-mediated recovery of EC barrier function in response 

to thrombin-induced hyperpermeability was analyzed by using a specific well-

established eNOS inhibitor L-NAME. In these experiments endothelial monolayers 

were preincubated with L-NAME (100 M) for 30 minutes. As shown in Fig. 4.5, 

inhibition of eNOS had no significant effect on insulin-mediated EC barrier restoration. 

 

 



Results 

45 
 

 

 

Figure 4.5 Effect of eNOS inhibition on insulin-mediated restoration of EC 

barrier function in response to thrombin-induced hyperpermeability.  HUVEC 

monolayers were exposed to thrombin (0.2 IU/ml) in the presence or absence of insulin 

(1 IU/ml) or in the presence of specific eNOS inhibitor L-NAME (100 M) plus insulin 

or vehicle (control) as indicated. Data are mean ± SEM of 5 separate experiments of 

independent cell preparations. P<0.05 versus control; #P<0.05 versus thrombin alone; 

n.s.: not significantly different from insulin plus thrombin. 

  



Results 

46 
 

4.6 Effect of MLCK inhibition on insulin-mediated EC barrier restoration 

It is well established that EC barrier function is regulated by balanced activity 

of two important enzymes, MLCK and MLCP. Previously, the involvement of both 

MLCK activation and RhoA/Rock-mediated MLCP inhibition in thrombin-induced EC 

barrier dysfunction has been demonstrated (Garcia et al., 1996; Dudek and Garcia, 

2001; Velasco et al., 2002). In order to understand which of these two plays role in 

insulin-mediated EC barrier restoration in response to thrombin challenge, the activity 

of these enzymes was inhibited by using specific pharmacological inhibitor. Therefore 

in the next step the role of MLCK on insulin-mediated recovery of EC barrier function 

after thrombin challenge was assessed. (ML-7 is a specific pharmacological inhibitor 

of MLCK added at optimum concentration to block MLCK activity). MLCK is a Ca2+ 

/calmodulin (CaM)-dependent kinase that functions principally to phosphorylate 

regulatory MLC at Ser19 and subsequently at Thr18 (Shen, 2010; Garcia et al., 1995; 

Goeckeler and Wysolmerski, 1995, Hixenbaugh et al., 1997; Moy et al., 2002; Verin 

et al., 1998). It is well established that inflammatory agents like thrombin causes 

activation of MLCK which leads to EC retraction and results in barrier disruption 

(Sheldon et al., 1993; Dudek and Garcia, 2001).To elucidate the role of this kinase on 

macromolecular permeability, HUVECs were exposed to thrombin (0.2 IU/ml) in the 

presence or absence of insulin (1 IU/ml) or in the presence of pharmacological inhibitor 

ML-7 (10 µM) or ML-7 plus insulin.  

As shown in Figure 4.6 pharmacological inhibition of MLCK with ML-7 could 

neither significantly attenuate the thrombin-induced hyperpermeability nor had 

significant additive effect on insulin-mediated accelerated reduction of EC barrier 

permeability, suggesting that MLCK does not play any significant role in insulin-

mediated recovery of EC barrier function. 
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Figure 4.6 Effect of inhibition of MLCK on insulin-mediated EC barrier 

restoration 

 HUVEC monolayers were exposed to thrombin (0.2 IU/ml) in the presence or 

absence of insulin (1 IU/ml) or in the presence of specific MLCK inhibitor ML-7 (10 

µM), or ML-7 plus insulin, or vehicle (control) as indicated. Data are mean ± SEM of 5 

separate experiments of independent cell preparations.*P< 0.05 versus control; #P< 

0.05 versus thrombin alone; n.s.: not significantly different from insulin plus thrombin. 
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4.7   Effect of insulin on EC contractile machinery and dynamics of RhoA/Rock 

activity 

Endothelial actin-myosin based contractile machinery is an important regulator 

of EC barrier function (Garcia et al., 1995). Since, phosphorylation state of the 

regulatory MLC precisely controls the activation of EC contractile machinery, changes 

in this biochemical parameter of endothelial contractile activation was examined. ECs 

were exposed to thrombin (0.2 IU/ml) for different time points (min) in the presence or 

absence of insulin (1 IU/ml) as indicated. MLC phosphorylation was analyzed by 

Western blot using a phospho-specific antibody directed against Ser-19/Thr-18 of 

MLC. As shown in Figure 4.7A exposure of ECs to thrombin caused a rapid rise in 

MLC phosphorylation within 2 min, reaching maximum in 5 min and remained highly 

phosphorylated for 20 min followed by a gradual decline towards baseline. In the 

presence of insulin, the thrombin-induced effect on MLC phosphorylation was 

attenuated and dephosphorylation of MLC was faster in insulin treated ECs suggesting 

that insulin is capable to antagonize thrombin-induced activation of EC contractile 

machinery. 

Since phosphorylation of MLC is also known to be mediated via RhoA/Rock 

signalling pathway in ECs (Feng et al., 1999; Velasco et al., 2002), therefore, 

activation of RhoA/Rock signalling pathway was analyzed by measuring the 

phosphorylation state of MYPT1 at Threonine 850 (Thr-850) which is directly 

phosphorylated by Rock. ECs were stimulated with thrombin (0.2 IU/ml) for indicated 

time periods in the presence or absence of insulin (1 IU/ml) and MYPT1 

phosphorylation was analyzed by Western blot. 

As shown in Figure 4.7A thrombin caused a robust increase in MYPT1 

phosphorylation as early as 2 min and remained phosphorylated on nearly same level 

until 20 min followed by gradual declined towards the base line which was evident at 

60 minutes of thrombin stimulation, however even at 60 minutes, MYPT1 

phosphorylation level remained elevated in thrombin challenged cells as compared to 

unstimulated control ECs. Insulin effect on thrombin-induced MYPT1 phosphorylation 

was rather delayed as compared to its effect on MLC phosphorylation and a significant 

effect was seen only after 30 min. 
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Figure 4.7A Effect of insulin on thrombin-induced MLC and MYPT1 

phosphorylation in HUVECs. Representative Western blots of MYPT1 and MLC 

phosphorylation. Confluent HUVEC monolayers were exposed to thrombin (0.2 IU/ml) 

in the presence or absence of insulin (Ins, 1 IU/ml) for different time periods (min) or 

insulin alone or vehicle (C, control) as indicated. MYPT1 phosphorylation at Thr850 

and MLC phosphorylation at Ser19/Thr18 was analyzed by using phospho-specific 

antibodies. GAPDH was used as loading control. Western blots are representative of 

3 different experiments of independent cell preparations. 
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In the next step the role of Rho effector, Rock; in insulin-mediated recovery of 

EC barrier function in response to thrombin challenge was examined, by measuring 

the flux of trypan blue-labelled albumin across HUVEC monolayers. ECs were 

exposed to thrombin (0.2 IU/ml) in the presence or absence of insulin (1 IU/ml) or 

preincubated (30 min) with the low concentration of Rock inhibitor Y27632 (1 µM) in 

the presence or absence of insulin. As shown in Figure 4.7B preincubation of ECs with 

Y27632 (1 µM) significantly reduced thrombin-induced hyperpermeability both in the 

presence or absence of insulin. However in the presence of insulin the additive effect 

on EC barrier recovery was observed. Interestingly the time required for the 50% 

recovery of EC permeability from the maximum increase of permeability was less in 

the presence of Rock inhibitor Y27632 (~ 25 min vs. ~ 20 min for insulin plus thrombin 

and insulin plus thrombin in the presence of Y27632, respectively). These data 

indicate that inhibition of Rock has additive effect on insulin-mediated recovery of 

failed barrier. 
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Figure 4.7B Effect of Rho kinase inhibition on insulin-mediated EC barrier 

restoration. HUVEC monolayers were exposed to thrombin (0.2 IU/ml) in the absence 

or presence of insulin (1 IU/ml) or preincubated with specific Rock inhibitor Y27632 (1 

µM) for 30 min or Y27632 plus insulin or vehicle (control) as indicated and albumin 

flux (permeability) across HUVEC monolayer was measured. Data are mean ± SEM 

of 5 separate experiments using independent cell preparations.*P< 0.05 versus 

control; #P<0.05 versus thrombin alone; §P<0.05 versus insulin plus thrombin 
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4.8   Effect of insulin on Rho GTPase Rac1 activation and its role in insulin-

mediated EC barrier restoration. 

Rho GTPase Rac1 is a well characterized regulator of peripheral actin 

dynamics and is required for the stability of endothelial AJs and thus stabilizes EC 

barrier integrity (Hall, 1998; Wojciak-stothard et al., 2001; Waschke et al., 2004 and 

2006). In the next step, the involvement of Rac1 in insulin-mediated restoration of EC 

barrier function was examined. 

The effect of insulin on Rac1 activity was measured by pull down assay and the 

pull downs were analyzed for the presence of activated Rac1 (Rac1-GTP) by Western 

blotting. HUVECs were exposed to thrombin (0.2 IU/ml) in the presence or absence of 

insulin (1 IU/ml) and a change in Rac1 activity was analyzed for different time periods 

(min) as indicted. As shown in Figure 4.8A exposure of ECs to thrombin resulted in a 

significant reduction in Rac1 activity. In the absence of insulin delayed activation of 

Rac1 was observed and a significant effect was seen only after 30 min. On the other 

hand, in the presence of insulin a robust activation of Rac1 within first 15 min was 

observed suggesting the potential role of insulin in Rac1 activation. 
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Figure 4.8A   Effect of insulin on Rac1 activation. Representative Western blots of 

Rac1-GTP for different time points (min) and Rac1-total as indicated. HUVEC 

monolayers were treated with thrombin (0.2 IU/ml) in the presence or absence of 

insulin (1 IU/ml) for different time periods or vehicle (control: C) as indicated. The active 

Rac1 (Rac1-GTP) was analyzed by pull down assay. Whole cell lysate was used to 

demonstrate equal loading. Data are mean ± SEM of 5 separate experiments of 

independent cell preparations. 

 

 

In the next step the role of Rac1 activation in insulin-mediated EC barrier 

restoration after thrombin-induced hyperpermeability was further confirmed by using 

the specific pharmacological Rac1 inhibitor NSC23766 (50 µM) (Gao et al., 2004). ECs 

were exposed to thrombin (0.2 IU/ml) in the presence or absence of insulin (1 IU/ml) 

or preincubated with NSC23766 for 30 min in the presence of insulin and albumin flux 

across HUVEC monolayer was analyzed. As shown in Figure 4.8B pre-incubation of 

HUVECs with NSC23766 completely abolished the recovery effect of insulin on EC 

barrier permeability further indicating that insulin-mediated restoration of EC barrier 

function is via Rac1-dependent manner. 
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Figure 4.8B Effect of Rac1 inhibition on insulin-mediated EC barrier restoration. 

HUVEC monolayers were exposed to thrombin (0.2 IU/ml) in the presence or absence 

of insulin (1 IU/ml), or specific Rac1 inhibitor NSC23766 (50 µM) plus insulin, or vehicle 

(control) as indicated and albumin flux (permeability) across HUVEC monolayer was 

measured. Data are mean ± SEM of five separate experiments of independent cell 

preparations. *P< 0.05 versus control; #P< 0.05 versus thrombin alone; §P< 0.05 

versus insulin plus thrombin. 
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4.9 Effect of insulin on ischemia-reperfusion-induced myocardial water 

contents 

Finally a series of experiments were performed in a well-established isolated 

saline perfused rat heart model (Noll et al., 1999), to further verify the EC barrier 

recovery effects of insulin in an intact coronary system. Myocardial water content was 

defined as an index for capillary leakage and tissue edema formation. To analyze this, 

isolated perfused rat hearts were exposed to ischemia for one hour followed by 30 min 

of reperfusion (Rep) and myocardial water content was determined as described in 

methods section. Under control normoxic conditions (Nor), the mean myocardial water 

content of the normoxic perfused rat hearts was 455 mL/100g dry weight after 90 min 

as shown in Figure 4.9. 

Exposure of the isolated perfused rat hearts to ischemia followed by reperfusion 

caused a significant increase in myocardial water content to 554 mL/100 g dry weight. 

To analyze whether insulin can abolish ischemia-reperfusion-induced increase in 

myocardial water contents, reperfusion medium was supplemented with 0.1 IU/ml 

insulin (a concentration only one-tenth of that used in cell culture model), during the 

first 10 min of reperfusion markedly reduced the reperfusion-induced increase in 

myocardial water content. In one set of experiments hearts were perfused with insulin 

in the presence of specific Rac1 inhibitor NSC23766 (50 µM), added 20 min before 

the start of reperfusion and during the first 10 min of reperfusion. This manoeuvre 

abolished the protective effect of insulin on reperfusion-induced increase in myocardial 

water content clearly indicating that insulin-induced barrier recovery is via Rac1 

dependent pathway. 
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Figure 4.9 Effect of insulin on myocardial water content of the isolated saline 

perfused rat hearts after ischemia-reperfusion. Hearts were exposed for 60 min to 

ischemia followed by 30 min of reperfusion (Rep) or 90 min of normoxia (Nor). Insulin 

(Ins; 0.1 IU/ml) was added at the start of reperfusion during the first 10 min. In one set 

of experiments hearts were perfused in the presence of insulin and Rac1 inhibitor 

NSC23766 (50 µM), which was added 20 min before the start of reperfusion and during 

the first 10 min of reperfusion. Data are mean ± SEM of 5 separate experiments with 

independent organ preparations. *P<0.05 versus Nor; #P<0.05 versus Rep.  
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5. DISCUSSION 

 

5.1   Main Findings 

The precise regulation of semi-permeable barrier function of vascular 

endothelium lining intima of blood vessels is very important for the exchange of water, 

small solutes, ions and macromolecules (Michel and curry, 1999; Mehta and Malik, 

2006). Disruption of this EC barrier function is often the underlying cause of vascular 

leakage and life threatening edema formation during pathophysiological conditions like 

inflammation and ischemia-reperfusion injury (Bazzoni, 2006; Yuan et al., 2007; 

Kumar et al., 2009). 

 It is well-established that disruption of endothelial AJs and activation of the EC 

contractile machinery are the key steps towards opening of intercellular gaps and 

finally leading to EC barrier failure under conditions of hyperpermeability which is a 

characteristic response to inflammatory agents such as thrombin (Gündüz et al., 2003; 

Birukova et al., 2004; Aslam et al., 2012 and 2014). Inflammatory agent thrombin 

disrupts EC barrier integrity, followed by a slow recovery of the EC barrier function 

within 2 hrs. 

The mechanisms regulating recovery of EC barrier function are essential to 

regain vascular integrity and successful resolution of edema. However; the precise 

molecular mechanisms involved in this recovery/restoration of EC barrier function 

subsequent to EC barrier disruption have not yet been well understood. Comparatively 

little is known about the maneuvers that can enhance/facilitate the restoration of 

compromised EC barrier function. 

It is well known that intensive insulin therapy confers vasoprotective effects and 

reduces major cardiovascular complications in diabetics, because of its anti-

inflammatory and anti-atherosclerotic effects (Nathan et al., 2005; Langouche et al., 

2005; Kim et al., 2006; Dandona et al., 2009). Hyperpermeability of vasculature is the 

hallmark of aforementioned disease states.  

 



Discussion 

58 
 

The present study was carried out to address the potential role of insulin in the 

recovery of EC barrier function in response to thrombin-induced hyperpermeability. 

Special focus was laid on the dynamics of endothelial contractile activation, 

disassembly and re-assembly of AJs and dynamic activities and involvement of Rac1. 

Our data demonstrate that insulin accelerates recovery of EC barrier function in 

response to thrombin challenge in a well-established in vitro model of HUVECs. 

Moreover, it also abolished the ischemia-reperfusion-induced vascular leakage and 

edema formation in the intact isolated-perfused rat hearts. 

 

The main and novel findings of the present study are as follows  

1. Insulin enhances the recovery of EC barrier function in response to thrombin-

induced EC hyperpermeability in a receptor-dependent manner. 

2. Insulin fastens re-establishment of VE-cadherin dependent AJs after thrombin 

challenge. 

3. Insulin-induced recovery of EC barrier function is via PI3K/Akt-dependent 

pathway. 

4. eNOS/NO signaling plays no role in insulin-mediated recovery of EC barrier 

function. 

5. Inhibition of MLCK does not play any role in insulin-mediated restoration of EC 

barrier function. 

6. Insulin partly antagonized thrombin-induced increase in MLC and MYPT1 

phosphorylation. 

7. Insulin-mediated restoration of EC barrier function is via Rho GTPase Rac1 

activation. 

8. Insulin abolished the ischemia-reperfusion-induced increase in myocardial 

water content via Rac1 activation. 
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5.2 Insulin accelerates the recovery of EC barrier function in response to 

thrombin-induced hyperpermeability in a receptor-dependent manner 

Consistent with previous studies the data of the present study show that 

inflammatory mediator thrombin disrupted the permeability of HUVEC monolayer 

followed by slow recovery towards basal permeability level. Treatment with insulin 

significantly abolishes thrombin effects from permeability-increasing to a barrier-

recovery response in ECs under study. Remarkably, the time required for the half 

maximal recovery of monolayer permeability was significantly less in the presence of 

insulin suggesting that insulin accelerated EC barrier restoration. Like other many cell 

types ECs also express insulin receptors (Zeng et al., 2000; Nitert et al., 2005). 

Inhibition of insulin receptors abolished the EC barrier recovery effect of insulin which 

demonstrating barrier restoration effect of insulin is receptor-mediated which is in line 

with our previous report (Gündüz et al., 2010) showing that insulin stabilized 

microvascular EC barrier function in a receptor-dependent manner. 

 

5.3   Insulin induces fast reassembly of AJs after thrombin challenge. 

Endothelial actin cytoskeleton anchored AJs composed of VE-cadherin are one 

of the key regulators of EC barrier function. Reassembly of AJs precedes the recovery 

of vascular endothelial barrier integrity and is integral for the maintenance of normal 

state of EC barrier function (Bazzoni and Dejana, 2004; Wallez and Huber, 2008). 

Thrombin induces EC hyperpermeability via disassembly of AJs (Garcia et al., 1986) 

leading to drastic disappearance of VE-cadherin from cell-cell junctions, and 

intercellular gap formation. This is followed by slow reappearance of VE-cadherin at 

cell-cell junctions. The changes in VE-cadherin localization at cell-cell junctions are 

well coordinated with the dynamics of increase and decrease in albumin permeability. 

Insulin attenuated this thrombin effect on endothelial AJs and promoted fast re-

appearance of VE-cadherin at cell-cell junctions thereby strengthened AJs. Insulin-

induced fast re-establishment of AJs is mediated via translocation of VE-cadherin to 

cell-cell junctions.  
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5.4 Insulin-induced EC barrier restoration is via PI3K/Akt-dependent pathway 

A classical signaling pathway activated by insulin is PI3K/Akt signaling which 

mediates most of insulin effects in variety of cell types including ECs (Gündüz et al., 

2010; Lee and Ragolia, 2006; Zeng et al., 2000; Hermann et al., 2000). The current 

study further establishes that the insulin-dependent activation of the PI3K/Akt signaling 

pathway is required for insulin-mediated EC barrier restoration process. The activation 

of the PI3K/Akt signaling pathway by insulin in ECs under study is demonstrated by 

Akt phosphorylation. Insulin-induced a robust increase in Akt phosphorylation and Akt 

phosphorylation is sustained over the maximum indicated periods of time. Accordingly, 

inhibition of PI3K completely abolished the insulin-mediated recovery of EC barrier 

function in response to thrombin-induced EC hyperpermeability, further supporting 

that insulin-mediated recovery of EC barrier function is via activation of PI3K/Akt 

pathway. 

 

5.5 Effect of eNOS inhibition on insulin-mediated EC barrier recovery 

In ECs insulin induces NO production via PI3K/Akt-dependent activation of 

eNOS (Zeng et al., 2000; Federici et al., 2002; Montagnani et al., 2001 and 2002 ;) 

which has been shown to stabilize in part microvascular EC barrier function (Gündüz 

et al., 2010). Therefore, the effect of L-NAME mediated eNOS inhibition on the EC 

barrier recovery effect of insulin in response to thrombin challenge was investigated.  

In contrast to our previous report (Gündüz et al., 2010) on rat coronary 

microvascular ECs, inhibition of eNOS in HUVECs was unable to abrogate EC barrier 

stabilizing effects of insulin. This difference may be due to different vascular beds 

investigated in these studies or even may be due to species differences. 
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5.6 Role of endothelial contractile machinery. 

Actin-myosin based EC contractile machinery is one of the important 

determinants of EC barrier function (Garcia et al., 1995). MLC is a regulatory 

component of the EC contractile machinery and its phosphorylation plays a pivotal role 

in controlling the activation of EC contractile machinery, this parameter of contractile 

activation was also explored in this study 

MLC phosphorylation is regulated by antagonistic but balanced activities of 

MLCP (Härtel et al., 2007; Knapp et al., 1999; Verin et al., 1995 and 2000) and MLCK 

(Verin et al., 1998; Lazar and Garcia., 1999). It is well established that thrombin causes 

inhibition of MLCP which results in EC contraction and finally leading to EC barrier 

disruption (Sheldon et al., 1993; Hixenbaugh et al., 1997; Verin et al., 1998; Goeckeler 

and Wysolmerski, 2005). The results of the present study demonstrate that thrombin 

caused a rapid rise in MLC phosphorylation. Insulin effectively attenuated this effect 

of thrombin in ECs under study and MLC dephosphorylation was faster in the presence 

of insulin, suggesting that insulin is capable to antagonize thrombin-induced activation 

of EC contractile machinery and may accelerate restoration of thrombin-induced failed 

barrier.  

Inhibition of MLCK with ML-7 (a specific inhibitor of MLCK) could neither 

significantly attenuate the thrombin-induced EC hyperpermeability nor have any 

additive effect on insulin mediated recovery of EC barrier function suggesting that 

MLCK does not play role in insulin-mediated EC barrier restoration process. A similar 

report recently in ECs showed that, ML-7 could neither attenuate the thrombin-induced 

EC hyperpermeability nor augment the EC barrier recovery (Aslam et al., 2014). Even 

though previous reports indicate that ML-7 antagonized hypoxia/reoxygenation 

induced EC hyperpermeability (Aslam et al., 2013). 

However, in contrast to the present study, Moy et al. showed that ML-7 blocked 

thrombin-induced hyperpermeability in HUVECs (Moy et al., 2002). The discordance 

between Moy group and present study is possibly due to high concentrations of drugs 

used by them. They used thrombin at a very high concentration (7 IU/ml) which is 35-

fold higher compared to use in the present study and ML-7 was used at concentration 

of 100 µM (10-fold higher used in the present study). At high concentration ML-7 may 
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also block PKC (Odani et al., 2003) and these inhibitory effects presented by Moy 

group are perhaps due to inhibition of PKC and not due to MLCK. 

It is well-demonstrated that RhoA/Rock signaling pathway plays an important 

role in regulating EC barrier function and pharmacological inhibition of Rock with 

specific cell permeant inhibitor (Y27632, 10 µM) not only antagonized thrombin-

induced contractile activation (Aslam et al., 2010) but also reduced thrombin-induced 

hyperpermeability (Aslam et al., 2014). Therefore, in the context of the study in the 

next step the effect of inhibition of RhoA/Rock signaling in insulin mediated EC barrier 

restoration was observed. Indeed, inhibition of Rock with 10 fold low concentration of 

Y27632 (1 µM) restores HUVEC monolayer permeability in both insulin and thrombin 

stimulated conditions. However, inhibition of the RhoA/Rock pathway in the presence 

of insulin has additive effect on recovery of failed barrier. This suggests the existence 

of Rock-independent pathway mediating EC barrier restoration. 

A second mechanism of MLC phosphorylation is via activation of RhoA/Rock 

signaling pathway. The endothelial MLCP holoenzyme is a heterotrimeric enzyme 

composed of a regulatory subunit, (MYPT1; an endogenous direct substrate of Rock) 

(Aslam et al., 2010) and a catalytic subunit (PP1). RhoA/Rock signaling pathway is 

one of the most important intracellular phosphorylation trigger of MYPT1 at its 

inhibitory sites (Kimura et al., 1996). MYPT1 phosphorylation at Thr-850 led to 

inhibition of MLCP, activation of EC contractile machinery and thereby barrier 

malfunction (Feng et al., 1999; Velasco et al., 2002; Birukova et al., 2004). Therefore, 

in the context of the study the question was examined whether insulin can counteract 

thrombin-induced MYPT1 phosphorylation. The data of the present study demonstrate 

that thrombin caused a robust increase in MYPT1 phosphorylation which is in 

consistent with the assumption that thrombin-induced activation of contractile 

machinery is dependent on inhibition of MLCP. Insulin decreases thrombin-induced 

MYPT1 phosphorylation. Insulin effect on MYPT1 dephosphorylation is rather delayed 

as compared to its effect on MLC dephosphorylation. The fast dephosphorylation of 

MLC but delayed dephosphorylation of MYPT1 in the presence of insulin suggesting 

that in addition to MLCP activation, other signaling mechanisms are involved in the 

control of contractile inactivation and EC barrier restoration and needs further 

investigations. 
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5.7 Effect of Insulin on Rho GTPase, Rac1 activity and its role in insulin-

mediated EC barrier recovery. 

Rac1, a member of Rho family of GTPases, have been well recognized as an 

important regulators of endothelial actin cytoskeleton dynamics and stimulates the 

formation of AJs and that it plays a critical role for the maintenance of EC barrier 

integrity (Wojciak-stothard et al., 2001 and 2006; Waschke et al., 2004 and 2006; 

Vandenbroucke et al., 2008; Gündüz et al., 2010; Aslam et al., 2011, 2013 and 2014; 

Schnittler et al., 2014). Therefore in the next step the dynamics of changes in the Rac1 

activation were analyzed. 

The results of the present study clearly show that insulin activates Rac1 in ECs 

under study and protects against thrombin-induced Rac1 inactivation. Even though 

the precise mechanism of Rac1 activation is beyond the scope of this study. Rac1 

activation could be mediated via activation of the Rac1-specific guanine nucleotide 

exchange factors (GEFs) Tiam1 and TrioN, Insulin can activate TrioN and Tiam1, the 

GEFs of Rac1, because pharmacological inhibition of these Rac1-GEFs with the 

specific inhibitor, NSC23766, abolished the EC barrier recovery effect of insulin on 

macromolecular permeability, indicating an essential role of Rac1 in insulin-mediated 

restoration of EC barrier function. Nevertheless, these findings strongly emphasize the 

important and decisive role of Rac1 in insulin-mediated recovery of EC barrier function. 

 

5.8 Insulin reduces ischemia-reperfusion-induced increased myocardial 

water content via Rac1. 

Ischemia-reperfusion disrupts the barrier function of vascular endothelium, 

leading to myocardial edema formation which jeopardizes the functional recovery of 

the heart during reperfusion (Garcia and Oliveras, 1993; Rubboli et al., 1994; Mehlhorn 

et al., 2001; Dongaonka et al., 2012). The barrier recovery effect of insulin against 

ischemia-reperfusion-induced endothelial barrier failure was also further supported by 

our data obtained in the intact coronary system of the isolated saline perfused rat heat 

model (Noll et .al., 1999). Insulin, when applied at the onset of reperfusion for only a 

short period of time strongly reduced the reperfusion-induced increase in myocardial 

water content. These data depict that insulin plays a beneficial role in the stabilization 
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of vascular barrier permeability in the intact coronary system, indicating that insulin 

application during the reperfusion can protect the heart against reperfusion-induced 

injury and an imminent life threatening edema. However in the intact coronary system 

this protective effect of insulin was abolished if the heart was perfused in the presence 

of insulin with specific Rac1 inhibitor NSC23766, clearly indicating that insulin-

mediated EC barrier protection/restoration is via Rac1 dependent. 

 

5.9 Conclusion  

Collectively, the results of the present study conclude that insulin accelerates 

restoration of EC barrier function in response to thrombin-induced hyperpermeability 

of HUVEC monolayers via enhancement of cell-cell adhesions and inactivation of the 

EC contractile machinery. Moreover, insulin also abolished reperfusion-induced 

vascular leakage in isolated-saline perfused rat hearts. These EC barrier restoration 

effects of insulin are mediated via PI3K/Akt and Rho GTPase, Rac1 activation which 

plays a decisive role in insulin-mediated EC barrier restoration in cultured EC 

monolayers as well as in intact coronary system of isolated-saline perfused rat heart. 

Furthermore thrombin-induced activation of RhoA/Rock is an important trigger in 

inducing EC barrier disruption, inhibition of RhoA/Rock signaling enhances the rate of 

endothelial barrier recovery in the presence of insulin. Importantly, inhibition of eNOS 

and MLCK do not play any role in insulin-mediated endothelial barrier recovery. Taken 

together, these findings may warrant further evaluation of the therapeutic potential of 

insulin on accelerated recovery of failed EC barrier function and reduction of vascular 

leakage under inflammatory situations and beyond. 
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7. SUMMARY 

 

The vascular endothelium forms a semi-permeable barrier between blood and 

interstitium controlling the exchange of water, small solutes, ions, macromolecules and 

blood cells across the vessel wall. Loss of EC barrier function results in leakage of 

blood components to interstitium and finally life threatening edema formation during 

pathophysiological conditions like inflammation and ischemia-reperfusion. Thus, 

restoration of EC barrier function is important to regain vascular barrier integrity and 

to prevent edema formation. However, little is known about the mediators and 

mechanisms involved in the recovery of compromised EC barrier function. 

The maintenance of EC barrier integrity is highly dependent on the VE-

cadherin-based AJs and actomyosin-based EC contractile machinery. It is now well-

established that the disruption of endothelial AJs and activation of EC contractile 

machinery are the key steps leading towards EC barrier failure under hyper-permeable 

conditions, a typical EC response to inflammatory mediators such as thrombin. 

Insulin is an essential hormone and a key regulator of metabolism. Additionally, 

it also confers protective effects on the cardiovascular system. Inflammatory mediators 

like thrombin disrupts EC barrier function, which is recovered slowly. Here, the 

hypothesis was addressed whether insulin can mediate a faster restoration of EC 

barrier function and the underlying signaling mechanism by which insulin recovers the 

EC barrier function was elucidated.  

 Our data demonstrate that thrombin-induced hyperpermeability of HUVEC 

monolayers has accelerated recovery in the presence of insulin in a concentration-

dependent manner with maximal effect at 1 IU/ml of insulin concentration. This barrier 

restoration effect of insulin in response to thrombin-induced hyperpermeability was 

blocked by a specific insulin receptor antagonist. Insulin also abolished reperfusion-

induced vascular leakage in isolated-saline perfused rat hearts. Insulin-induced a rapid 

increase in Akt phosphorylation in HUVECs. Accordingly, inhibition of PI3K with 

wortmannin completely abolished the insulin-mediated EC barrier restoration, further 

supporting that the EC barrier recovery function of Insulin is via activation of PI3K/Akt 

pathway. However, MLCK and eNOS/NO signaling pathways are not involved in 
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insulin-mediated recovery of EC barrier function. Insulin attenuated thrombin-induced 

increase in MLC and MYPT1 phosphorylation and also fastens the re-establishment 

of VE-cadherin dependent endothelial AJs in response to thrombin challenge 

indicating a contractile inactivation and stabilization of cell-cell adhesion structures. 

Remarkably, inhibition of Rock has additive effect on insulin-mediated accelerated 

restoration of failed barrier. Insulin activated Rho GTPase Rac1 and pharmacological 

inhibition of Rac1 activity by using a specific inhibitor (NSC23766) abrogated the EC 

barrier recovery effect of insulin on  cultured EC monolayers, as well as on reperfusion-

induced vascular leakage in intact  isolated-saline perfused rat heart, suggesting a 

Rac1-dependent phenomenon. 

In conclusion, insulin accelerates restoration of EC barrier function in response 

to thrombin-induced EC barrier disruption via enhancement of cell-cell adhesion 

structures and inactivation of the EC contractile machinery. Insulin also abolished 

reperfusion-induced vascular leakage in isolated saline perfused rat hearts. These EC 

barrier restoration effects of insulin are mediated via PI3K/Akt and Rho GTPase-Rac1 

activation which plays a decisive role in insulin-mediated recovery of EC barrier 

function both in HUVEC monolayers and in isolated perfused rat hearts. 
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8. ZUSAMMENFASSUNG  

 

 Das vaskuläre Endothel stellt eine semipermeable Barriere zwischen Blut und 

Interstitium dar. Es kontrolliert den Austausch von Wasser, gelösten Substanzen, 

Ionen, Makromolekülen und Blutzellen durch die Gefäßwand. Unter verschiedenen 

pathophysiologischen Bedingungen, beispielsweise bei Entzündung und Ischämie-

Reperfusion, kann der Verlust dieser Schrankenfunktion zu einer Leckage der 

Blutkomponenten ins Interstitium und damit zu einem lebensbedrohlichen Ödem 

führen. Die Wiederherstellung der endothelialen Schrankenfunktion ist wichtig, um die 

vaskuläre Integrität zu erhalten und die Entwicklung von Ödemen zu verhindern. 

Allerdings ist bisher wenig über Mediatoren und Mechanismen bekannt, welche in die 

Erholung der Barrierenfunktion involviert sind. Der Erhalt der endothelialen 

Barrierenintegrität hängt einerseits von interzellulären Adhäsionsstrukturen (AJ) ab, 

die auf VE-Cadherin basieren, andererseits vom endothelialen kontraktilen Apparat, 

der auf Actin-Myosin basiert. Es ist bekannt, dass eine Zerstörung der endothelialen 

AJs und eine Aktivierung der endothelialen kontraktilen Elemente die 

Schlüsselschritte sind, die zum Verlust der Schrankenfunktion führen.  

Das essentielle Hormon Insulin ist ein wichtiger Stoffwechselregulator und hat 

zudem protektive Effekte im kardiovaskulären System. Entzündungsmediatoren wie 

Thrombin stören die endotheliale Schrankenfunktion, die sich dann nur langsam 

erholt. In dieser Studie wurde die Hypothese geprüft, ob Insulin eine beschleunigte 

Regeneration der endothelialen Barrierefunktion vermitteln kann und welche 

insulinvermittelten Signalwege hier zugrunde liegen. 

Unsere Ergebnisse zeigen, dass sich in Anwesenheit von Insulin die Thrombin-

induzierte Hyperpermeabilität von HUVEC-Monolayern schneller regeneriert. Dieser 

Effekt ist konzentrationsabhängig. Die durch Insulin induzierte Erholung kann durch 

den spezifischen Insulinrezeptor-Inhibitor S961 blockiert werden. Des Weiteren kann 

durch Insulin die Reperfusions-induzierte vaskuläre Leckage in isolierten, salin 

perfundierten Rattenherzen aufgehoben werden. Insulin löst einen schnellen Anstieg 

der Akt-Phosphorylierung in HUVEC aus. Die Wiederherstellung der endothelialen 

Barrierefunktion ist hierbei abhängig vom PI3K/Akt-Signalweg. MLCK- und eNOS/NO-
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Signalwege sind nicht involviert. Insulin hemmt den Thrombin-induzierten Anstieg von 

MLC- und MYPT1-Phosporylierung und beschleunigt die Wiederherstellung der VE-

Cadherin-abhängigen endothelialen AJs. Dies weist auf eine Inaktivierung des 

kontraktilen Apparates und auf eine Stabilisierung von Zell-Zell-Adhäsionsstrukturen 

hin. Eine ROCK-Hemmung hat einen additiven protektiven Effekt. Insulin aktiviert die 

Rho GTPase Rac1. Die pharmakologische Hemmung von Rac1 mithilfe spezifischer 

Inhibitoren (NSC23766) hebt bei Reperfusions-induzierter vaskulärer Leckage die 

Erholung der endothelialen Schrankenfunktion in isolierten EC Monoschichten von 

isolierten, salin perfundierten Rattenherzen durch Insulin auf. Dieser Effekt ist ein 

Hinweis für einen Rac-1 abhängigen Mechanismus. 

Schlussfolgernd ist zu konstatieren, dass Insulin die Erholung der EC 

Schrankenfunktion nach Thrombin-induziertem Schaden durch eine Verstärkung der 

Zell-Zell-Adhäsion und eine Inaktivierung des kontraktilen Apparates beschleunigt. 

Insulin hemmt zudem die vaskuläre Leckage von isolierten, salin perfundierten 

Rattenherzen. Diese protektiven Effekte werden über einen PI3K/Akt- und Rho 

GTPase-Rac1 Signalweg vermittelt und spielen eine entscheidende Rolle bei der 

insulinvermittelten Erholung der endothelialen Schrankenfunktion sowohl in HUVEC 

als auch in isolierten, salin perfundierten Rattenherzen. 
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