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1 General Introduction 

The responsibility of humans to protect the lives and well-being of animals is a 

fundamental concern and is proclaimed in the first article of the German Animal Welfare 

Act. Additionally, products from food-producing animals are one cornerstone of human 

nutrition and the basis of livelihood to many farmers worldwide. The dairy industry, next 

to swine and poultry industry, is the biggest animal agriculture sector in Germany. 

From aspects of animal welfare, agricultural economics, and consumer acceptance rearing 

of vital and healthy calves is one of the main objectives of modern agriculture and may 

improve longevity and lifetime productivity in dairy cattle (Shamay et al., 2005; Drackley, 

2008; Soberon et al., 2012). 

The World Organisation for Animal Health (OIE) defines animal welfare in the Terrestrial 

Animal Health Code as a state where the animal is healthy, comfortable, well-nourished, 

safe, able to express natural behavior, and is not suffering from pain, fear, and distress, etc. 

(OIE, 2017). Three of these six principles might not be accomplished by conventional calf 

feeding methods. Feeding calves limited amounts of liquid feed (i.e., 4 – 6 L/d) during the 

first weeks of life results in a lack of expression in natural suckling behavior (Miller-

Cushon and DeVries, 2015), followed by hunger (Hammon et al., 2002; De Paula Vieira et 

al., 2008; Borderas et al., 2009), and stress for the calves. To further improve the 

development of the calves, especially in artificial rearing systems, feed additives like 

organic acids (e.g., butyric acid) were studied (Guilloteau et al., 2010a). 

The aim of this thesis was to investigate the influence of ad libitum milk and milk replacer 

(MR) feeding and the supplementation of butyrate on growth performance, metabolism, 

and maturation of the somatotropic axis in dairy calves. Thus, performance data, blood and 

liver samples were collected to analyze and examine the treatment effects. 

In the first chapter, current scientific knowledge on calf feeding and its impact on growth 

and development during the preweaning period, as well as aspects of butyrate 

supplementation, are summarized. 

The two following chapters contain the peer-reviewed publications for this doctoral thesis. 

The first publication intended to reveal the influence of ad libitum MR feeding and 

butyrate supplementation on growth performance and energy metabolism, and the second 

publication investigated effects on vital parts of the somatotropic axis. 

Finally, the main results from the performed study will be discussed and compared to the 

literature research. A summary at the end provides a general overview of this thesis. 
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2 Literature Overview 

 

2.1 Preweaning calf management 

To establish a good and reliable calf management is the key factor for successful calf-

rearing. Calf mortality during the rearing period is a fundamental welfare and economical 

problem for farmers, as the animal was bred and raised, but never reached a productive 

stage (i.e., fattening performance or lactation). 

The incidence risk for perinatal mortality, defined as the duration from birth to 48 h after 

calving, ranges in dairy herds worldwide between 3 to 9 % (Compton et al., 2017). 

Furthermore, Compton et al. (2017) evaluated 5 to 11 % to be the postnatal (24 h to 

weaning) mortality incidence risk for dairy calves. In Germany, perinatal mortality rates 

(including stillbirth) of 14.4 % (Fröhner and Reiter, 2005) and postnatal rates of approx. 

6 % (Sanftleben, 2009; Tautenhahn, 2017) were reported. These national and international 

rates are high compared to relatively low mortality risks of about 3 to 4 % in other 

countries (Svensson et al., 2006; Gulliksen et al., 2009) and feasibly lower incidence rates 

under good calf management (Torsein et al., 2014; Windeyer et al., 2014). Hence, 

Mee (2013) raised the question “Why do so many calves die on modern dairy farms and 

what can we do about calf welfare in the future?”. 

 

2.1.1 Colostrum intake 

Perinatal mortality is associated with insufficient hygiene at birth, newborn calf care, and 

deficient calf nutrition (Fröhner and Reiter, 2005). Later calf care with good colostrum 

management cannot prevent the calf from diseases if the newborn is exposed to an 

unhygienic environment (Weaver et al., 2000). The first colostrum intake is the most 

important event for agammaglobulinemic born calves to absorb maternal immunoglobulins 

(Ig) and build up a passive immune system (Godden, 2008). Feeding calves colostrum in 

low amounts, poor quality or not within the first hours of life results in reduction or failure 

of passive transfer (FPT). In this case, calf immunity through passive immunization is low, 

while morbidity and mortality rates increase (Donovan et al., 1998; Quigley et al., 2013). 

Colostrum quality can be measured indirectly with on-farm tools using a colostrometer or 

Brix refractometer (Weaver et al., 2000; Quigley et al., 2013; Bartier et al., 2015). 
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Bartier et al. (2015) found high correlations between direct measurement of IgG content 

and the afore-mentioned on-farm tools. 

Besides the passive immunization, colostrum supplies essential nutrients and energy, e.g., 

four-fold and approx. twofold greater protein and fat content than in whole milk, 

respectively, and provides further bioactive substances for growth and development to the 

newborn calf (Blum and Hammon, 2000; Godden, 2008). With respect to the importance 

of colostrum feeding, high morbidity and mortality rates are further associated with low 

nutrient intake (Khan et al., 2011). Improved nutrient and energy intake can only be 

achieved via enhanced supply of liquid feeds for the newborn calves. 

 

2.1.2 Feeding practices 

For decades in the last century, since animal production became more intensive and 

economical, rearing calves differed basically from rearing by their dams. Conventional 

feeding practice relies on early cow-calf separation and restrictive milk or MR feeding. 

Reduction in milk supply to calves became common practice to ensure early solid feed 

intake to fasten forestomach development. This feeding method is associated with early 

calf-weaning and facilitates management and costs of feedstuff. However, the intake and 

digestion of solid feed in the underdeveloped rumen is insufficient to meet the energy 

requirements during the first weeks of life (Khan et al., 2016). Moreover, the conventional 

feeding practice is considered non-natural, as calves, like all mammals, naturally consume 

milk ad libitum from their mothers. In semi-wild cattle breeds calves suckle about 8 times 

per day at their dam (Reinhardt and Reinhardt, 1981) and dairy calves have approx. 5 to 7 

rewarded visits (with milk intake) in automatic feeders when fed ad libitum (De Paula 

Vieira et al., 2008; Miller-Cushon et al., 2013). Earlier (Hammon et al., 2002) and recent 

(Liang et al., 2016) studies declared that newborn dairy calves are able to absorb and digest 

high amounts of liquid feed in the first week of life. In a study from Maccari et al. (2015) 

ad libitum fed Holstein calves had mean intakes of 3.8 L of first colostrum. Considering 

the preweaning feeding period, ad libitum milk feeding studies confirmed that voluntary 

whole milk intake averages 10 L/d (Appleby, 2001; Jasper and Weary, 2002; Maccari et al., 

2015) and voluntary MR intake was reported slightly higher with about 13.5 L/d (Borderas 

et al., 2009; Miller-Cushon et al., 2013). Hence, self-determined liquid feed intake is much 

greater than in conventional practices with about 6 L/d. Feeding these amounts is still 

common practice, whereas several studies indicated malnutrition and hunger are present in 

limited-fed calves (Khan et al., 2011; Miller-Cushon and DeVries, 2015; Rosenberger et 
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al., 2017). The failure of satiety could be seen in the high frequency of unrewarded visits to 

automatic feeders compared to ad libitum fed calves (Hammon et al., 2002; De Paula 

Vieira et al., 2008; Korst et al., 2017). Furthermore, ongoing studies indicate possible long-

term effects. Bar-Peled et al. (1997) investigated an earlier calving age and a tendency for 

greater milk production, and Soberon et al. (2012) found greater milk yield during the first 

lactation, when calves had higher preweaning average daily gain (ADG). A meta-analysis 

published by Soberon and Van Amburgh (2013) acknowledged effects of elevated milk or 

MR intake and preweaning growth rate on first lactation milk yield. On the basis of 

previous studies the latter authors calculated a greater milk production of 1,550 kg in the 

first lactation for every kg of preweaning ADG and the effect was two times more likely to 

occur when calves fed intensive diets before weaning. 

Another aspect of supplying the calves with milk or MR is the feeding method, either 

manual milk feeding with, e.g., teat buckets, or through automatic feeding systems. Bucket 

feeding usually takes place twice a day, whereas calves fed limited amounts of milk will 

rapidly consume their portions (Miller-Cushon and DeVries, 2015). With automatic 

feeders the meal size and duration of pauses can be set and calves can express a more 

natural behavior with more self-determined milk intake throughout the day. Jorgensen et 

al. (2017) also revealed the ability to predict upcoming health problems through data from 

milk feeders. 

To prevent neonatal animals from health maladies, good hygiene in feeding practice is 

vital. A successful hygiene practice can be achieved when in bucket feeding, buckets and 

teats are cleaned after every meal, just one marked bucket per calf is used and a new 

cleaned and disinfected bucket is provided to each newborn calf. In automatic feeding 

systems, the programmed cleaning routine can be used and additionally regular cleaning of 

nipple-feeding stations and feeding devices is strongly recommended, but need further 

analysis (Jorgensen et al., 2017). 

Focusing on supply sufficient amounts of digestible feed to young calves includes early 

offering of solid feed and transition from liquid to solid diets (weaning) later on. The 

process of weaning marks another important event in calf life, whereby the pseudo-

monogastric animal matures to a functional ruminant. During weaning, the increasing solid 

feed intake increases the development of rumen volume and papilla size, which provide 

more volume for solid feed intake and absorptive capacity (Baldwin et al., 2004; Khan et 

al., 2016). As the process involves a complexity of cell differentiation and maturation and 

a completely new adjustment to another feedstuff, allowing more developmental time for 
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these critical changes should be provided to the calf (Huber, 2017). Weaning can take 

place when the ruminating system is mature to digest solid feeds and therefore able to 

maintain growth and well-being of the calves (OIE, 2017). Different weaning systems were 

studied (Khan et al., 2007; Eckert et al., 2015; de Passillé and Rushen, 2016) and a better 

transition than with conventional weaning was seen with step-down (feeding calves at high 

plane and step-down to medium plane before weaning), concentrate-dependent (weaning 

starts after calves consume a certain amount of solid feed), and ‘late-weaned’ systems 

(e.g., weaned at 8 vs. 6 wk of age). These weaning methods contribute to improved 

nutrient intake and growth rates, and stress-reduced transition to solid feed for the calves. 

 

 

2.2 Butyrate as a feed additive 

Feedstuff supplementation ranges from organic acids, minerals, pre- and probiotics, and 

enzymes to plant and herb extracts with the intended purposes of providing essential 

nutrients, accelerated animal health, increased feed intake and growth performance (Wenk, 

2000; Jouany and Morgavi, 2007). This applies especially to food producing animals as 

consumers expect food from farm animals to be non-hazardous to health. Furthermore, the 

agriculture and environment sectors benefit from intended optimized productivity and 

nutrient utilization (Wenk, 2000). 

Butyrate, widely known as a growth promoter, became an object of research interest when 

the European Union passed the regulation (Regulation (EC) No 1831/2003) and finally 

banned the use of antibiotics as promoters of growth in 2006 (Biagi et al., 2007; Jouany 

and Morgavi, 2007). However, the use of butyrate in MR for calves is rare (Hill et al., 

2016) and generally MR have a deficiency in short-chain fatty acids (SCFA; Esselburn et 

al., 2013; Hill et al., 2016), which are naturally provided to newborn calves when fed 

colostrum (Contarini et al., 2014) and milk (Harper et al., 1961; Parodi, 1997). The 

supplementation of fatty acids (e.g., butyrate, medium-chain fatty acids, and linolenic acid) 

in MR improved the ADG and feed efficiency, and reduced medical treatment in 

preweaned calves, and effects partly persisted postweaning (Esselburn et al., 2013). 

  

https://www.dict.cc/englisch-deutsch/non-hazardous.html
https://www.dict.cc/englisch-deutsch/to.html
https://www.dict.cc/englisch-deutsch/health.html
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2.2.1 Characteristics of butyrate 

Butyrate, besides acetate and propionate, is one of the predominant forms of SCFA. It is 

the end-product of microbial fermentation of dietary fibers, and is naturally present in the 

forestomach of ruminants and in the colon of monogastrics (Guilloteau et al., 2010a). 

Furthermore, butyric acid is contained in milk with 3 to 4 % of milk fat (Alais, 1984) and 

provided by utilization of milk lipids in the gastrointestinal tract (GIT; Guilloteau et al., 

2010a). 

 

Figure 2.1. Biochemical formula of butyric acid, butyrate, sodium (Na-) butyrate, and 

calcium (Ca-) butyrate. 

 

In Figure 2.1 the basic substances, and butyric acids sodium (Na) and calcium (Ca) salts 

can be seen. Butyric acid is associated with a penetrating smell, while salts are less 

odorous and the complex is more stable (Guilloteau et al., 2009). In our trial we used a 

mixture of Ca-/Na-butyrate that was supplemented with 0.33 % to the commercial MR 

product by the MR company. Deducting all minerals and additives the MR, as fed to the 

calves, contained 0.24 % butyrate on dry matter (DM) basis. The study design was in 

accordance with works of Guilloteau et al. (2009) and Górka et al. (2011) who also added 

butyrate salts in comparable concentrations to MR. 

 

2.2.2 Biological effects in animals 

In general, butyrate affects the postnatal development of the GIT as an energy supplier for 

the enterocytes and by increasing the epithelial cell proliferation, differentiation, and 

maturation rates (Guilloteau et al., 2010a). Butyric acid stimulates rumen papilla growth 

through an increase in mitotic index and compared to other SCFA, the apoptosis rate is 

much lower (Mentschel, 2001; Khan et al., 2011). In a study from Górka et al. (2014) 
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similar results of accelerated mitotic index and reduced apoptotic index were found, when 

sodium butyrate was supplemented to MR or starter feed. 

Unlike the direct effects of butyrate as a stimulator of rumen papilla growth and in general, 

rumen epithelium development, there were no local effects on rumen maturation expected 

in this study because butyrate, when used as a feed additive in MR, bypasses the rumen 

and enters the abomasum directly through the esophageal groove. Evidence suggests that 

added butyrate is metabolized rapidly in the GIT as it was not found in the blood 

circulation (Guilloteau et al., 2010a). 

Supplementation of 0.3 % Na-butyrate in MR enhances growth performance (Górka et al., 

2011) and feed efficiency in calves (Guilloteau et al., 2004). The feed efficiency is 

presumably higher because of improved nutrient digestibility. Guilloteau et al. (2004) 

found an increase in daily pancreatic juice secretion and trypsin activity, whereas 

Guilloteau et al. (2010b) revealed in another study enhanced daily production for 

chymotrypsin and lipase (increased by 52 % and 40 % relative to body weight (BW), 

respectively). Similar to effects in rumen, butyrate fed in MR partly stimulated the 

proliferation, differentiation, and maturation in small intestine enterocytes (Górka et al., 

2014). Guilloteau et al. (2010a) reviewed a delayed gastric emptying in animals that might 

contribute to an improved gastric digestion. Additionally, Bach et al. (2013) reported a 

decreased insulin sensitivity when milk feeding is unphysiologically applied in larger 

amounts only twice daily. The prolonged gastric phase reduces digesta flow and butyrate 

could indirectly affect plasma glucose and insulin levels. Oral administration of butyrate 

suppressed postprandial glucose and insulin concentrations resulting in an improved 

insulin sensitivity (Kato et al., 2011). 

Through structural changes in intestinal tissue, butyrate improves the mucosal defense and 

immune system in animals (Guilloteau et al., 2009; Ma et al., 2012; Jiang et al., 2015) and 

humans (Pouillart, 1998; Kovarik et al., 2013). Recent studies revealed the ability of 

butyrate to promote health in growing animals by improving the GIT defense system 

(Guilloteau et al., 2009) and reducing the incidence of diarrhea in calves (Górka et al., 

2009, 2011) and piglets (Huang et al., 2015). Ma et al. (2012) studied butyrate treatment in 

porcine epithelial cells in vitro and evaluated higher mRNA expression of intestinal tight 

junction proteins. In addition to the impact of butyrate in the mammalian intestine, Jiang et 

al. (2015) added butyrate to the diet and found partly improved effects of intestinal 

inflammatory response after challenging broiler chickens with Escherichia coli 

lipopolysaccharide. 



LITERATURE OVERVIEW 

8 

Butyrate might also be involved in the regulation of the somatotropic axis which will be 

discussed in Chapter 2.3.3. 

Because of the improvements in development and function of the GIT, nutrient 

digestibility, glucose metabolism, and immune status, this conditions led to an enhanced 

growth performance when butyrate was used as a feed additive (Górka et al., 2009, 2011). 

In fact, stimulation of postnatal growth was mainly seen in studies with early postnatal 

administration of butyrate (Niwińska et al., 2017). 

 

 

2.3 Postnatal maturation of calves 

Phenotypical development of neonatal calves consists of skeletal and muscle growth. 

Maturation can be determined noninvasively by regular weighing, and wither or hip 

heights measurements of the growing animal (Kertz and Chester-Jones, 2004). Data from 

blood and liver samples reveal further insights to intermediary metabolism and growth 

regulation. 

 

2.3.1 Development of the gastrointestinal tract 

Short- and long-term productivity of farm animals, like calves, depend on energy and 

nutrient intake, but also on maturation of GIT with increasing digestion and absorptive 

capacity (Baldwin et al., 2004; Huber, 2017). 

Calves are born with an anatomically present, but physiological non-functional four-

chambered stomach (reticulum, rumen, omasum, and abomasum; Figure 2.2). 

 

 

Figure 2.2. The ruminant forestomachs and abomasum in different stages of development. 

Modified from Heinrichs and Jones (2003).  
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The postnatal digestive system of ruminants is called pseudo-monogastric, because the 

only functioning stomach to digest milk is the abomasum, which is functionally 

comparable to the stomach of monogastric mammals. Milk enters the abomasum by 

bypassing the proximal forestomach through the esophageal groove.  

Young calves digest feedstuff, almost exclusively liquid feed, in the abomasum and small 

intestine. With age and increasing intake of solid feed, digestion gradually and then 

completely shifts to digestion of solid feed in the forestomach, primarily in the rumen of 

the calf. Hence, the rumen must be mature enough to absorb and metabolize nutrients and 

maintain energy supply for growth (Suarez-Mena et al., 2017). Development of the rumen 

includes two major aspects: rumen papilla growth and muscular extension. Rumen volume 

and muscular growth is stimulated by increasing rumen filling (Tamate et al., 1962). 

Rumen epithelium development is mainly triggered by SCFA (Mentschel et al., 2001), but 

like other organs, rumen growth profits from accelerated nutrient and energy intake 

through liquid feed (Khan et al., 2016). As schematically demonstrated in Figure 2.2, the 

rumen proportion on the four-chambered stomach increases from 30 to 70 % during 

weaning (Baldwin et al., 2004). 

Meale et al. (2017) reviewed earlier adaptation and maturation processes in the calf´s 

rumen when enzyme activities of ruminal microbiota found in 4 d old calves and overall 

microbial populations were detected within 20 minutes postnatum. 

The development of the rumen (Shen et al., 2004) and small intestine (Blättler et al., 2001) 

depends on nutrient and energy intake from liquid feed during the first weeks of life, and is 

stimulated by insulin-like growth factor (IGF)-I (Sparks et al., 2003). Primary stimulation 

of intestinal development results from colostrum intake (Hammon et al., 2013). 

About 30 % of the total energy use and protein synthesis is needed for utilization in the 

GIT (Baldwin et al., 2004). Greater development of the GIT with enhanced absorptive 

capacity would improve the glucose uptake and therefore the glucose status of the young 

calf (Hammon and Blum, 1997a; Steinhoff-Wagner et al., 2011). Providing more energy 

and nutrients to preweaned calves contribute to their health status and survival rate, as over 

50 % of calf mortality is caused by enteric diseases (Lorenz et al., 2011; Hulbert and 

Moisá, 2016). Hence, an early maturation of the GIT is important to manifest a barrier and 

prevent calves from pathogen-induced scours. 
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2.3.2 Systemic and hepatic metabolism 

Birth represents the environmental transition from intrauterine to extrauterine life, 

including major metabolic and hormonal adaptations. While the fetus is nourished through 

continuous transplacental supply, the neonate must adapt to discontinuous nutritional and 

energy supply under different environmental conditions. Unlike other mammals (e.g., 

piglets, foals, lambs) and in contrast to suckling calves (Schiessler et al., 2002), artificial 

calf rearing management further limits the nutritional supply offered to the calf, when 

feeding restricted liquid diets during the first weeks after birth. 

The concentrations of several blood plasma parameters change with birth and during the 

first weeks of life. β-Hydroxybutyrate (BHB) correlates with starter intake and is an 

accepted marker for rumen development (Kristensen et al., 2007). Hence, postnatal BHB 

levels are low and increase with increasing consumption of solid feed and development of 

the forestomach. Greater BHB concentrations before significant starter intake indicate 

hepatic ketogenesis due to an energy deficit (Sallmann and Fuhrmann, 2005). Plasma 

lactate, an important glucose precursor for preruminants, is high at birth and decreases 

during the first week of life (Blum and Hammon, 1999). Cortisol, similar to lactate, has 

elevated levels at birth and decreases thereafter, especially in unlimited-fed calves 

(Hammon et al., 2002). In metabolic profiles of fat metabolism, triglycerides increase due 

to high fat absorption from colostrum feeding, while non-esterified fatty acids (NEFA) 

decreases with sufficient energy supply and remain stable for the following week (Egli and 

Blum, 1998; Kühne et al., 2000; Hammon et al., 2002). 

In general, a calf´s energy supply changes from a fetal, mainly carbohydrate-based diet to a 

neonatal diet with relatively high fat and protein content in colostrum (Hammon et al., 

2000). Therefore, the intermediary metabolism, with the liver as the central metabolic 

organ (Sallmann and Fuhrmann, 2005), must adapt to the new environment. Adaptation to 

extrauterine life starts intrauterine and is among other things responsible for maintaining 

blood glucose levels under higher metabolic rates after birth (Morton and Brodsky, 2016). 

Glucocorticoids, especially cortisol, play a vital role in fetal maturation in relation to the 

upcoming delivery (Hillman et al., 2012). Cortisol concentration increases during late 

gestation in cows (Breier et al., 2000), and other mammals (Morton and Brodsky, 2016) 

and account for maturation of hepatic gluconeogenic enzymes. Furthermore, high levels of 

catecholamines are present at birth in ruminants (Richet et al., 1985) and humans (Morton 

and Brodsky, 2016) and lead to increased postnatal glucose and free fatty acids levels. 
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At birth, calves have reduced plasma glucose levels and the intake of lactose via colostrum, 

and later milk or MR, enhance glucose concentrations but often fail to meet the permanent 

glucose requirements. Hence, the neonatal calf has to establish an autonomous glucose 

production, i.e., endogenous glucose production (eGP) by gluconeogenesis (Hammon et 

al., 2013), since the hepatic glycogen storage is limited to an instant energy supply and 

decreases after birth (Haga et al., 2008). Glucose is essential to all mammals as the main 

energy source for the brain and renal medulla cells, and erythrocytes (Nelson and Cox, 

2001). 

 

Figure 2.3. Overview of glucose metabolism in the liver. Abbreviations: G6Pase, glucose-

6-phosphatase; GCK, glucokinase; GS, glycogen synthase; GP, glycogen phosphorylase; 

FBPase, fructose-1,6-bisphosphatase; PFK1, phosphofructokinase; PEPCK, 

phosphoenolpyruvate carboxykinase (c, cytosolic; m, mitochondrial); PC, pyruvate 

carboxylase; PK, pyruvate kinase. Modified from Jiang and Zhang (2003). 

 

In Figure 2.3 the hepatic glucose metabolism is illustrated. The processes of 

gluconeogenesis (GNG) and glycogenolysis result in the intermediate glucose-6-phosphate 

that is hydrolyzed by glucose-6-phosphatase (G6Pase) to glucose (Van Schaftingen and 

Gerin, 2002). The gene glucose-6-phosphatase (G6PC) encodes the membranous enzyme 

G6Pase. The pathway of GNG in preruminating calves begins with pyruvate that originates 

from different precursors (i.e., lactate and glucogenic amino acids; Hammon et al., 2013) 
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and is converted to oxaloacetate by pyruvate carboxylase (PC) in mitochondria. PC is 

expressed by the eponymic gene pyruvate carboxylase. Inside the mitochondrion 

oxaloacetate can be converted by the mitochondrial phosphoenolpyruvate carboxykinase 

(PEPCKm) to phosphoenolpyruvate (PEP), or after intermediate steps, in the cytosol by 

PEPCKc (cytosolic). This process depends on the above mentioned precursors. 

Mitochondrial PEPCK catalyzes PEP mainly from pyruvate coming from lactate, while 

catalyzing with cytosolic PEPCK dominates when glucogenic amino acids (e.g., alanine) 

are the precursors of pyruvate (Aschenbach et al., 2010). The genes encoding for PEPCKc 

and PEPCKm are identically named and abbreviated with PCK1 and PCK2, respectively. 

After the following steps (summarized in Figure 2.3) G6Pase, which is increased after birth 

and during malnutrition, catalyzes glucose that can enter the circulation. Therefore, G6Pase 

contributes to the eGP and is partly responsible for glucose homeostasis (Van Schaftingen 

and Gerin, 2002; Hammon et al., 2013). The blood glucose level is further regulated by 

intestinal glucose absorption, whereby colostrum intake enhances absorption rates through 

increasing small intestinal surface and tended to enhance lactase activities (Steinhoff-

Wagner et al., 2014). In the work from Steinhoff-Wagner et al. (2011) no treatment effects 

on eGP were seen when calves fed milk-formula instead of colostrum, but mRNA 

abundance and enzyme activity of gluconeogenic enzyme, i.e., PC, were higher in formula-

fed calves. 

With development of the functional rumen, the favored gluconeogenic substrate shifts from 

lactate to propionate in ruminating calves (Donkin and Armentano, 1995). Propionate 

originates from microbial fermentation in the rumen. Propionyl-CoA carboxylase α 

(PCCA) carboxylates the pathway from propionyl-CoA to methylmalonyl-CoA and 

conversion leads to succinyl-CoA. Succinyl-CoA enters the citric acid cycle or is 

converted to pyruvate and hence, a substrate for GNG (Nelson and Cox, 2001). 

Intensive milk feeding results in greater plasma glucose and insulin concentrations 

compared to limited-fed calves (Schäff et al., 2016). A higher insulin:glucagon ratio is 

characteristic for anabolic metabolism (Hammon et al., 2012). Glucagon as the antagonist 

of insulin contributes to glucose homeostasis. During states of low blood glucose, glucagon 

promotes glycogenolysis and GNG in the liver (Jiang and Zhang, 2003). 

Previously high glucose and insulin levels through intensive milk feeding did not lead to 

differences in pancreatic insulin response compared to limited-fed calves when tested via 

intravenous glucose tolerance test after weaning. Hence, an impaired glucose homeostasis 

was not seen in weaned dairy calves (Maccari et al., 2015). 
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2.3.3 Regulation of body growth 

Postnatal growth is mainly regulated by the somatotropic axis. Parameters of the 

somatotropic axis can be measured postnatum (Cordano et al., 2000; Ontsouka et al., 

2004), but subsequently significant changes occur (Hammon et al., 2012). Thus, Blum and 

Hammon (2000) stated the principal function, but questioned its maturation in neonates. 

The somatotropic axis is a neuroendocrine system which is affected by the supply of 

nutritional (Savage, 2013) and non-nutritional components (Cordano et al., 2000; Hammon 

et al., 2012). Colostrum compared to transition or mature milk contains the highest amount 

of bioactive components, such as growth factors, insulin, and glucagon (Blum, 2006). 

Interestingly and similar to colostral insulin, there is no evidence of significant absorption 

of bioactive factors (Hammon et al., 2013), but recent studies in neonatal calves indicated a 

significant absorption of colostral adiponectin, an adipocytokine with an insulin-sensitizing 

effect (Kesser et al., 2015). 

The understanding of the scope and function of the somatotropic axis changed during the 

years from a more or less linear endocrine system (original somatomedin hypothesis, 

1950s) to a complex system (somatomedin hypothesis, 2000) with endocrine, paracrine, 

and autocrine effects of different parameters synthesized in several tissues (Le Roith et al., 

2001). The current understanding of the somatotropic axis is shown in a simplified scheme 

in Figure 2.4. Parallel research and increasing knowledge led to a variable terminology for 

parameters of the somatotropic axis. For simplicity the first mentioned terms will be used 

further on, while synonyms are shown in parentheses. 

Signaling starts in the hypothalamus with releasing of growth hormone (GH)-releasing 

hormone (GHRH; GH releasing factor) or GH-inhibiting hormone (GHIH; somatostatin) 

to stimulate or suppress the episodic release of GH (somatotropin) from the anterior 

pituitary gland, respectively. In blood, GH binds to GH-binding proteins (GHBP) or 

circulates unattached (Veldhuis et al., 1993) to target tissues and promotes effects through 

binding to a hormone-receptor complex with two GH receptors (GHR; Clark, 1997; Breier 

et al., 2000). The pathway matures when the low pre- and perinatal abundance of GHR 

mRNA increases with age (Breier et al., 1988; Sauter et al., 2003). In response to GH 

binding at the liver-specific GHR1A, secretion of insulin-like growth factor–I (IGF-I; 

somatomedin C) increases. The IGF ligands are carried via IGF binding proteins (IGFBP) 

to the specific target tissue and bind to IGF receptors (IGFR) with distinct affinities 

(McGuire et al., 1992). Likewise, to the complex of GH-GHBP the half-life of IGF is 

prolonged when bound to IGFBP (Duan, 2002).  
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Figure 2.4. Simplified scheme of the somatotropic axis. Solid arrows illustrate secretion of 

GH and IGF. Direct effects of GH, IGF-I, and IGFBP on target cells are shown by dashed 

arrows, and dotted arrows indicate regulatory effects of IGF-I and IGFBP. Abbreviations: 

GH (growth hormone), GHR (growth hormone receptor), IGF (insulin-like growth factor), 

IGFBP (IGF binding proteins), IGFR (IGF receptor). Modified from Akers (2006). 

 

These endocrine actions of the somatotropic axis are completed by paracrine and autocrine 

effects (Breier et al., 2000). IGF-I is regulated by GH through the stimulation of synthesis 

and release from the liver (Le Roith et al., 2001), but later on the local synthesis and GH-

independent effects of IGF-I were evaluated. Furthermore, GH itself has direct effects on 

tissues but is mediated via locally synthesized IGF-I (Breier et al., 2000). Suppressing GH 

release is also initiated by SCFA which forms another feedback loop as GH enhances 

lipolysis (Le Roith et al., 2001). 

A delay in postnatal response is reported by Hammon et al. (2003) where plasma IGF-I and 

IGFBP-3 concentrations increase after 2 wk of life. As IGF-I is mainly produced in the 

liver, a greater plasma IGF-I concentration results from an enhanced hepatic IGF-I 

expression (Jones and Clemmons, 1995; Cordano et al., 2000). IGF-II seems to regulate 

mainly prenatal growth where it is highly expressed and decreases after birth (Breier et al., 

2000). 

Colostrum intake soon after birth stimulates plasma IGF-I concentrations (Hammon and 

Blum, 1997b; Hammon et al., 2000), while plasma and hepatic levels of IGFBP-1 and 

IGFBP-2 were reduced after colostrum feeding (Sauter et al., 2003). Further maturation of 
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the somatotropic axis is supposed to be enhanced by glucocorticoids (Hammon et al., 

2003), whereby decreased GH levels, but increased expression and function of the GHR 

after postnatal glucocorticoid treatment indicate elevated maturation of the somatotropic 

axis (Sauter et al., 2003). In fact, the frequently-used term ‘maturation of the somatotropic 

axis’ refers to the afore-mentioned changes, especially of GH and IGF with conversely 

high levels of GH perinatal and IGF-I postnatal, and the decline of high fetal IGF-II plasma 

concentrations after birth (Breier et al., 2000). 

In vitro studies (Brameld et al., 1999) tested the effect of glucose deficiency through direct 

removal of glucose in pig hepatocytes resulting in depressed expression of GHR. The 

physiological state of the somatotropic axis in well-nourished animals indicate high levels 

of IGF-I, whereas GH concentration decreases through negative feedback of circulating 

IGF-I (Le Roith et al., 2001). States of negative energy balance in adult cattle (Butler et al., 

2003; Gross et al., 2011) result in the uncoupling of the GH-IGF axis with low IGF-I 

concentrations, while GH levels are high. 

In growing animals, plasma IGF-I and IGFBP-3, and hepatic GHR and IGF-I gene 

expressions are enhanced, while IGFBP-1 and -2 had lower plasma levels (Cordano et al., 

2000; Hammon et al., 2003; Sauter et al., 2003). During times where the organism is 

exposed to mal- or undernutrition IGF-I and IGFBP-3 levels are decreased while 

concentrations of IGFBP-1 and IGFBP-2 increase (Clark, 1997). Therefore, Clark (1997) 

presumed nutritional stress due to the lack of nutrient supply to be a responsible factor, as 

stress stimulates glucocorticoid synthesis leading to GH resistance with decreased IGF-I 

and IGFBP-3 concentrations. In fasted rats the IGF-I mRNA expression was reduced in 

many tissues, except from the brain and heart. This indicates that the most vital organs are 

protected during catabolic metabolism (Breier et al., 2000). Higher nutrient supply resulted 

in elevated IGF-I levels in ad libitum fed calves (Maccari et al., 2015; Schäff et al., 2016). 

Besides the growth promoting role, Clark (1997) revealed the positive effect of the 

somatotropic axis on the development and function of the GIT and presumed a protective 

role of somatogenic hormones in states of extreme stress and immunodepression. 

Furthermore, the supplementation of butyrate was reported to affect parameters of the 

somatotropic axis. In groups without butyrate supplement GHIH peaked postprandial, but 

not in Na-butyrate fed calves (Guilloteau et al., 2009) and in the same study increased 

expression of IGF-I receptors in the jejunum were evaluated. Tsubaki et al. (2001) reported 

in vitro effects of Na-butyrate with stimulated expression of IGFBP in human mammary 

cells. 
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2.4 Objectives 

For this doctoral thesis, a trial with 64 dairy calves fed liquid feed for the first 8 wk either 

ad libitum or restrictively, with or without butyrate supplementation, was conducted. 

Calves were examined immediately from birth until the relatively long-lasting intensive 

feeding period including a two wk step-down phase, and for one wk thereafter. 

Comprehensive care and data collection revealed a general view of postnatal development 

and intermediary metabolism of the experimental calves.  

 

The aim of the study was to test the following hypothesis: 

1. Ad libitum feeding of liquid diets to calves enhances their growth performance, 

anabolic metabolism, and maturation of the somatotropic axis 

2. Butyrate supplementation in MR improves postnatal development and feed efficiency 

in calves 

3. The combination of ad libitum feeding and butyrate supplementation accelerates calf 

development and energy metabolism in a synergistic manner 

 

How ad libitum MR feeding and butyrate supplementation affected the calves will be 

revealed in the first and second publication (chapter 3 and 4, respectively). The overall 

context of the research and literature findings will be discussed in chapter 5. 
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3.1 Abstract 

The enhanced growth performance of calves fed a higher plane of nutrition pre-weaning is 

well documented, and the effect of butyrate on the development of the gastrointestinal tract 

in calves has been evaluated. The aim of this study was to examine the synergistic effects 

of ad libitum milk replacer (MR) feeding and butyrate supplementation on growth 

performance and energy metabolism in calves. Sixty-four (32 male, 32 female) Holstein 

calves were examined from birth until wk 11 of life. Calves received MR either ad libitum 

(Adl) or restrictively (Res) with (AdlB+, ResB+) or without (AdlB-, ResB-) 0.24 % 

butyrate supplementation. Colostrum and transition milk were fed in predefined amounts 

(Res or Adl) for the first 3 d postpartum. Ad libitum and restrictive MR feeding with or 

without butyrate was performed from d 4 until wk 8 of age. From wk 9 to 10, all calves 

were gradually weaned and were fed 2 L/d until the end of the trial. Concentrate (CON), 

hay, and water were freely available. Intakes of MR and CON were measured daily. Calves 

were weighed at birth and weekly thereafter. Blood was drawn on d 1 before the first 

colostrum intake; on d 2, 4, and 7; and weekly thereafter until the end of the study to 

measure plasma concentrations of metabolites and hormones. Liver samples were taken at 

d 50 and at the end of the study to determine gene expression related to glucose 

metabolism. Milk, MR, and total nutrient intake were greater, but CON intake was lower in 

Adl than in Res calves, resulting in a greater body weight, but partially lower gain to feed 

ratio in Adl than in Res. Plasma concentrations of glucose and insulin were higher during 

the ad libitum milk-feeding period, whereas plasma β-hydroxybutyrate was lower in Adl 

than in Res. Plasma concentrations of non-esterified fatty acids, lactate, total bilirubin, and 

cortisol were lower, but triglyceride and cholesterol concentrations were higher in Adl than 

in Res at specific time points. Feed intake, growth performance, and metabolic and 

endocrine changes were insignificantly affected by butyrate, and hepatic gene expression 

of enzymes related to endogenous glucose production was barely influenced by ad libitum 

MR feeding and butyrate supplementation. Intensive MR feeding indicated greater 

stimulation of growth and anabolic metabolism, but butyrate supplementation did not 

further improve postnatal growth and anabolic processes either in intensive or restrictive 

MR-fed calves. 

 

Key words: preruminant, ad libitum feeding, butyrate, glucose 
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3.2 Introduction 

Several studies in pre-weaning calves have indicated improved development and body 

growth with the application of intensive milk feeding programs (Hammon et al., 2002; 

Schäff et al., 2016; Korst et al., 2017). This improved growth and development might have 

long-lasting consequences on individual dairy performance (Bar-Peled et al., 1997; Bach, 

2012; Van Amburgh and Soberon, 2013); however, the discussion on the extent of the milk 

feeding level is still ongoing, and restricted milk feeding to less than 6 L/d is still common 

(Hill et al., 2016). Growing evidence suggests that insufficient liquid supply during the 

first weeks of postnatal life, fed either as milk or milk replacer (MR), compromises 

postnatal maturation and the health of calves and deviates significantly from the natural 

situation, as observed in beef calves (Schiessler et al., 2002; Khan et al., 2011, 2016). 

Intensive milk or MR feeding programs resulted in elevated DM and energy intake and 

body growth (Hammon et al., 2002; Jasper and Weary, 2002) and accelerated organ 

development (Daniels et al., 2009; Geiger et al., 2016) during the pre-weaning period. 

Metabolic and endocrine changes in blood plasma pointed toward enhanced anabolic 

metabolism (Bartlett et al., 2006; Maccari et al., 2015; Schäff et al., 2016). In addition, it 

has been suggested that calves with elevated milk or MR intake during the pre-weaning 

period are less susceptible to illness (Ollivett et al., 2012; de Passillé et al., 2016). 

However, intensive milk feeding programs often last for only a few weeks after birth, 

supply milk or MR only twice daily (Bartlett et al., 2006; Daniels et al., 2008; Davis 

Rincker et al., 2011), and do not correspond to the ad libitum milk intake observed in beef 

calves (Egli and Blum, 1998; Schiessler et al., 2002). 

 

Butyrate is known as a natural growth-stimulating substrate that enhances growth 

performance in young mammals (Guilloteau et al., 2010). In pre-weaning calves, butyrate 

supplementation in MR increases BW, structural growth, and health and affects insulin-

dependent glucose metabolism (Górka et al., 2011; Kato et al., 2011). Butyrate deploys its 

stimulating effects on postnatal growth in young calves by accelerating postnatal 

maturation of the gastrointestinal tract and improving gut function (Guilloteau et al., 2009; 

Górka et al., 2014). The aim of the current study was to investigate feed intake, growth 

performance, and metabolic and endocrine changes in calves fed MR ad libitum 

supplemented with butyrate for 8 wk. We intended to combine the positive effects of 

intensive MR feeding and MR butyrate supplementation to test the hypothesis that both 

treatments stimulate postnatal growth and affect energy metabolism in calves related to 
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anabolic processes in an additive manner. The dose for butyrate supplementation in MR 

was adapted from the work of Guilloteau et al. (2009) and Górka et al. (2011). 

 

 

3.3 Materials and Methods 

The animal experiment was conducted from June 2014 to June 2015 at the Educational and 

Research Centre for Animal Husbandry, Hofgut Neumuehle, Germany. The experimental 

procedures in this study were performed in strict accordance with the German Animal 

Welfare Act and were approved by the relevant Department for Animal Welfare Affairs 

(Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany; registration no. 23 177-

07/G 13-20-069). 

 

3.3.1 Animals and husbandry 

Sixty-four German Holstein calves [n = 32 each for intact male (not castrated) and female] 

were used from birth until 80 ± 2 (mean ± SD) days of life. We used a birth monitoring 

system (iVET, Papenburg, Germany) to observe calving and to ensure that first blood 

sampling occurred prior to initial colostrum intake. The calves selected for this study met 

the following criteria: birth without assistance or with minor assistance (eutocia), 

pedigreed singletons, birth weight between 35 to 55 kg, and physiological health and vigor. 

After colostrum intake, all calves received 10 mL of an iron paste (115 mg Fe3+/mL and 

108 mg dextran/mL, Sinta GmbH, Schwarzenborn, Germany) and were treated for navel 

disinfection with an iodine solution (Albrecht GmbH, Aulendorf, Germany). Within 2 to 

3 h after birth, the calves were brought to individual straw-bedded calf hutches. This 

husbandry lasted for 10 ± 3 d (mean ± SD) before the calves were finally housed in an 

open straw-bedded stable. Calves that received no butyrate (ResB-, AdlB-) or butyrate 

supplementation (ResB+, AdlB+) were housed in opposite group pens and fed from two 

different automatic feeders. In each pen, two different feeding stations per feeder were 

available for calves younger than 3 wk of age and calves 4 wk of age and older. The health 

of the calves was evaluated by daily rectal temperature measurement and navel and feces 

examination until wk 3 of age. Health maladies such as diarrhea, pneumonia and navel ill 

were documented and treated by a veterinarian according to diagnosis. Clinical data from 

this portion of the study will be presented in a companion paper. 
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3.3.2 Feeding and diets 

Within 2 h after birth, all calves received 2.5 ± 0.09 kg (mean ± SD) of colostrum from 

their dams via bottle. Because colostrum from their dams was not available, five calves 

received the same amount of colostrum from a high-quality colostrum reserve stored 

at -20°C, and quality was measured by specific gravity and optical Brix refractometers 

(Gross et al., 2016). Subsequently, the calves were allocated to one of the four feeding 

groups with respect to their sex, birth weight, and cow parity to create equal groups. For 

the following five meals (until d 3 of life), calves were fed acidified transition milk (2 mL 

acidifier/L milk, H. W. Schaumann GmbH, Pinneberg, Germany) from their dams with teat 

buckets either in amounts of 3 L per meal (Res; n = 32) or ad libitum (Adl; n = 32). 

 

Table 3.1. Nutrient and chemical composition of the milk replacer (MR) and concentrate (CON) 

Item, % of DM unless noted otherwise MR1 CON2 

DM, g/kg 

CP 

Crude fat 

Crude fiber 

ADFOM
3 

aNDFOM
3 

Ash 

NFE4 

Total sugar 

ME, 5 MJ/kg of DM 

Ca 

P 

Na 

K 

Lysine 

Methionine 

968 

  21.7 

  18.6 

    0.2 

ND6 

ND 

    7.3 

  52.1 

  44.9 

  18.34 

    1.17 

    0.65 

    0.47 

    1.43 

    1.8 

    0.48 

866 

  21.0 

    4.2 

    5.9 

    8.1 

  16.5 

    7.0 

  61.9 

ND 

  13.15 

    1.22 

    0.66 

    0.29 

    1.21 

ND 

ND 

1Ingredients of MR: 50 % skim milk powder, 25 % whey powder, 16.5 % vegetable oil, 3 % wheat 

powder; MR fed to butyrate-supplemented restrictive (ResB+) and ad libitum (AdlB+) treatments 

contained 0.24 % butyrate of DM. 
2Ingredients of CON: 35.0 % corn, 23.0 % soybean meal, 13.0 % beet pulp dried with molasses, 

7.5 % wheat, 6.0 % barley, 3.2 % rapeseed meal, 3.0 % linseed meal, 3.0 % beet pulp, 2.0 % wheat 

bran, 0.09 % calcium carbonate, 0.05 % mono-calcium phosphate. 
3Acid detergent fiber (ADF) and neutral detergent fiber (NDF) are expressed exclusive of residual 

ash. The NDF was assayed with a heat-stable amylase (Korst et al., 2017). 
4Nitrogen-free extract (NFE), calculated as NFE = 100 - (CP + crude fat + crude fiber + ash). 
5ME calculated using the equation: ME, MJ/kg of DM = (24.2 × CP + 36.6 × fat + 17.0 × total 

sugar)/100 × 0.97 × 0.96. 
6ND = not determined. 
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From d 4 on, all calves were fed MR (12.5 % solids; Trouw Nutrition Deutschland GmbH, 

Burgheim, Germany) without supplementation or supplemented with calcium-sodium 

butyrate (0.24 % butyrate as fed; Benelux GmbH, Amel, Belgium) in amounts of either 

6 L/d (ResB-; ResB+; n = 16, respectively) or ad libitum (maximum 25 L/d; AdlB-; 

AdlB+; n = 16, respectively). The ingredients and the chemical composition of the MR are 

given in Table 3.1. 

The MR was stepped down linearly from d 57 to d 70 in all groups and was fed in amounts 

of 2 L/d until the end of the trial. During the first days of life, the feeding took place twice 

per day at 0700 and 1700 h in the hutches. Between feeding times, buckets for Adl calves 

were maintained with the calves and were refilled at noon if necessary. Teat buckets were 

covered with a lid to ensure that no rain or dirt contaminated the milk. In the stable, 

feeding was conducted using automatic feeding systems for MR and concentrate (Förster-

Technik GmbH, Engen, Germany). Milk replacer was fed in small portions of a maximum 

of 2 L per meal for Res calves and a maximum of 5 L per meal for Adl calves, followed by 

an off time of 2 h for Res calves and 30 min for Adl calves after the end of the meal. Water 

and hay were freely available, and concentrate (pelleted starter; Raiffeisen Waren-Zentrale 

Rhein-Main eG, Köln, Germany; Table 3.1) was offered ad libitum in the stable. 

 

3.3.3 Measurement of feed intake, feed analyses, and body weight 

During the period in the calf hutches, the daily milk and MR intakes were documented by 

weighing residues with an electronic scale (Sartorius AG, Göttingen, Germany). When 

calves were fed with the automatic feeding system, data for MR and concentrate intake 

were sent automatically to the connected PC program (Förster-Technik GmbH). 

 

The nutrient compositions of the MR and concentrate were analyzed by an accredited 

external laboratory (Landwirtschaftliche Untersuchungs- und Forschungsanstalt, Speyer, 

Germany) according to the Weender standard procedure (Naumann and Bassler, 2004). 

Analyses of feedstuff were used to determine the ME content of concentrate according to 

GfE (2009). The composition of DM and energy from individual colostrum milkings were 

calculated using measurements from Kühne et al. (2000). The energy content of MR was 

calculated as gross energy on energy equivalents of 24.2, 36.6, and 17.0 MJ/kg DM for CP, 

crude fat, and total sugar, respectively. Gross energy for colostrum and MR was 

transformed into ME by ME = 0.97 × 0.96 × gross energy (NRC, 2001). 
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The birth weight was measured after the first colostrum intake. The exact amount of 

ingested colostrum was subtracted from the initial weight. Body weight was recorded 

weekly until the end of the trial using a mobile scale (Tru-Test Ltd., Auckland, New 

Zealand). The ADG was calculated from BW with the precise number of days between 

weighing. 

 

3.3.4 Blood and liver sampling and analyses 

Blood samples were collected from a jugular vein before first colostrum intake (d 1), 24 h 

after colostrum intake (d 2), before first MR intake (d 4), and subsequently on d 7, 14, 21, 

28, 35, 42, 49, 56, 63, 70, and 77. Ad libitum milk-fed calves were fasted for at least 1 h 

before blood sampling. Blood from Res calves was drawn before the morning feeding in 

the calf hutches or after 1 h fasting in group pens. After shaving and disinfecting the skin, 

the vein was punctured and blood was collected in evacuated tubes (Greiner Bio-One 

GmbH, Frickenhausen, Germany) containing potassium-EDTA (1.8 mg/mL) and tubes 

containing sodium fluoride (2-4 mg/mL) and potassium oxalate (1-3 mg/mL). Blood 

samples were held on ice until centrifugation at 3,500 × g for 10 min. The supernatants 

from plasma were pipetted into aliquots and stored at –20°C until analyzed. 

 

Analyses of metabolites [glucose, BHB, lactate, urea, non-esterified fatty acids (NEFA), 

triglyceride, cholesterol, and total bilirubin] were performed from sodium 

fluoride/potassium oxalate plasma. Insulin, glucagon, and cortisol concentrations were 

determined from EDTA plasma. All metabolites were analyzed spectrophotometrically 

(HORIBA ABX SAS Montpellier, France). The following kits were used: glucose 

(#A11A01667), lactate (#A11A01721), and triglyceride (#A11A01640; Axon Lab AG, 

Baden, Switzerland); BHB (#RB1008), urea (#LT-UR 0010), and total bilirubin (#LT-BR 

0500; LABOR + TECHNIK Eberhard Lehmann GmbH, Berlin, Germany); NEFA (#434-

91795, Wako Chemicals GmbH, Neuss, Germany); and cholesterol (#553-127, mti 

diagnostics GmbH, Idstein, Germany). Butyrate analysis in blood plasma was performed as 

recently described (Laeger et al., 2012). 

 

Plasma concentrations of insulin (#RIA-1257) and glucagon (#RIA-1258) were determined 

by RIA using kits from DRG Instruments GmbH (Marburg, Germany), which were 

adapted to bovine subjects (Hammon et al., 2009). Intra- and interassay coefficients of 

variation were 3.7 and 5.5 % for insulin and 3.4 and 22.5 % for glucagon, respectively. 
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The plasma cortisol concentration was analyzed in duplicate after extraction with 

diethylether using a commercially available ELISA kit (#EIA1887, DRG Instruments 

GmbH; Gruse et al., 2016). The assay was validated for the use with bovine plasma. The 

test sensitivity was 3.4 μg/L, and the intra- and interassay coefficients of variation were 

5.3 and 12.1 %, respectively. 

 

On d 50 ± 2 and d 80 ± 2 (mean ± SD; d 80 females only), approximately 80 to 100 mg of 

liver tissue was collected from each calf by biopsy (modified from Swanson et al., 2000) 

with a Bard Magnum biopsy instrument and Bard Magnum core tissue biopsy needle 

(C.R. Bard Inc., Covington, GA). Liver samples of male calves on d 80 ± 2 (mean ± SD) 

were collected after calves were harvested at the end of the study. Liver samples were 

flushed in ice-cold 0.9 % NaCl and frozen in liquid nitrogen. For further analysis, the liver 

tissue was pulverized in liquid nitrogen. Glycogen content was determined with the use of 

a commercial kit based on amyloglucosidase-catalyzed glucose release (no. 10207748035; 

Roche Diagnostics GmbH, Mannheim, Germany). The relative mRNA abundance of genes 

related to glucose metabolism was quantified as previously described (Saremi et al., 2012; 

Schäff et al., 2016). Primer sequences and PCR conditions for reference genes 

[hippocalcin-like 1 (HPCAL1), low-density lipoprotein 10 (LRP10), and RNA polymerase 

II (POLR2A)] and target genes [glycogen phosphorylase (PYGL), glucose-6-phosphatase 

(G6PC); phosphoenolpyruvate carboxykinase (cytosolic: PCK1; mitochondrial: PCK2), 

pyruvate carboxylase (PC), and propionyl-CoA carboxylase α (PCCA)] were recently 

published (Saremi et al., 2012; Gruse et al., 2015; Schäff et al., 2016). The primer products 

were verified by sequencing applied with the BigDye Terminator v1.1 Cycle Sequencing 

kit and an ABI 3130 Genetic Analyzer (Thermo Fisher Scientific Inc., Waltham, MA). 

Real-time PCR was performed with the use of a LightCycler (F. Hoffman-La Roche AG, 

Basel, Switzerland). The fluorescent dye used was SYBR Green I. Melting curve analysis 

and agarose gel electrophoresis were used to confirm the specificity of the PCR products. 

Quantification cycle values and amplification efficiencies obtained with the use of 

LinRegPCR version 2013.0 (Ruijter et al., 2013) were imported into qBASE+ version 

2.6.1 (Biogazelle NV, Zwijnaarde, Belgium) for all subsequent calculations and quality 

controls (Gruse et al., 2015; Schäff et al., 2016). The geometric mean of the reference gene 

abundances was applied for normalization. The data are presented as the ratio of the copy 

number of the respective gene of interest to the geometric mean of the reference gene 

abundance. 
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3.3.5 Statistical analyses 

Data were evaluated by repeated-measures ANOVA using PROC MIXED in SAS for 

Windows (release 9.4, SAS Institute Inc., Cary, NC). The ANOVA model contained the 

fixed effects of feeding regimen (Res vs. Adl), butyrate supplementation, time, sex, and 

respective interactions. Repeated measures on each calf were considered using the repeated 

statement of the MIXED procedure using an unstructured type of block diagonal residual 

covariance matrix structure (SAS Institute Inc.). Least squares means (LSM) and their 

standard errors (SE) were computed for each fixed effect in the models, and all pair-wise 

differences of LSM were tested with the Tukey-Kramer procedure. The SLICE statement 

of the MIXED procedure was used to conduct partitioned analyses of the LSM for 

interactions. Differences in data with P-values < 0.05 were defined as significant, and 

P-values < 0.1 were considered as trends. Values are presented as LSM ± SE if not 

declared otherwise in the text. 

 

 

3.4 Results 

 

3.4.1 Feed intake and growth performance 

Intake of first colostrum (first milking) was similar for all calves (2.5 ± 0.01 L, 

LSM ± SE). However, during the subsequent five meals, Adl calves consumed 25.4 % 

more transition milk than Res calves. Sum of first colostrum and transition milk intakes for 

all 3 d were 19.8 ± 0.5 L for Adl and 14.8 ± 0.5 L for Res. Furthermore, MR intake and 

hence ME, CP, and fat intake were higher (P < 0.01) from wk 1 to 10 in Adl than in 

limited milk-fed calves (Figure 3.1A; Table 3.2). The DMI of milk powder reached the 

highest amount of 1.7 kg/d in wk 5 for AdlB- and in wk 8 for AdlB+. These amounts were 

2.3 times greater than the intake of the respective Res groups. Butyrate supplementation 

did not affect MR intake in a significant manner throughout the study, but butyrate-fed 

calves showed a trend (P = 0.09) of lower MR intake in wk 1. The concentrate intake, as 

shown in Figure 3.1B, was negligible for all calves in the first 3 wk of life. The concentrate 

intake increased, as did ME, CP, and fat intake of the concentrate, at the age of 4 wk in the 

Res groups, and the increase occurred earlier than for the Adl groups, resulting in a greater 

(P < 0.01) concentrate intake in Res than in Adl calves from wk 4 on throughout the study. 

In wk 5, concentrate intake was higher (P = 0.03) for butyrate-fed groups, but no other 

effects of butyrate supplement on concentrate intake were observed. The total DMI and 
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ME, CP, and fat intake were greater (P < 0.01) in Adl than in Res calves (Table 3.2). The 

ME intake by MR compared with concentrate was greater until wk 8 of age for Res groups 

and until wk 10 of age for Adl groups. At wk 11, 89, 85, 88, and 86 % of ME came from 

concentrate intake for ResB-, AdlB-, ResB+, and AdlB+, respectively. 

 

 

Figure 3.1. Milk and milk replacer (MR; A) and concentrate (B) intake in calves fed milk and MR 

either ad libitum or restrictively and supplemented MR without ( AdlB-;  ResB-) or with 

0.24 % butyrate ( AdlB+;  ResB+). Arrow marks the start of weaning. Data are presented as 

weekly LSM ± SE; * indicates the effect of feeding regimen (P < 0.05); § indicates the effect of 

butyrate supplementation (P < 0.05). 

 

Birth weights ranged from 36.5 to 53.5 kg. For our groupings, the mean birth weight 

(43.6 ± 0.6 kg) did not differ among the groups. The BW was greater (P < 0.01) in Adl 

than in Res groups for the entire trial (Figure 3.2A). Butyrate supplement resulted in a trend 

of lower BW in wk 5 (P = 0.11) and 6 (P = 0.1) and from wk 9 until the end of the study 

(P < 0.1). The ADG was approximately 1.8 times greater (P < 0.01) in Adl than in Res 

groups until wk 6 of age, greatest in wk 9 (P < 0.01) in AdlB-, but greater (P < 0.01) in wk 

10 and 11 in Res than in Adl calves (Figure 3.2B). The ADG over the total experimental 

period was greater (P < 0.01) in Adl than in Res calves (980 ± 22 and 795 ± 22 g/d for Adl 

and Res calves, respectively). The gain to feed ratio changed with time and was higher in 

wk 1 (P = 0.01) but lower (P < 0.01) in wk 5, 7, 8, and 10 in Adl than in Res calves and 

was reduced (P < 0.01) by butyrate in wk 9 (Figure 3.2C). 



 

 

2
7
 

 

 

 

Table 3.2. Dry matter, ME, CP, and fat intake of liquid, concentrate, and total feed (liquid and concentrate) intake of calves fed milk and milk replacer 

(MR) either ad libitum or restrictively and supplemented MR without (ResB-; AdlB-) or with 0.24 % butyrate (ResB+; AdlB+) 

 Dietary treatment Fixed effect, P-value 

Item1 ResB- AdlB- ResB+ AdlB+ SEM Milk Butyrate Time Sex 

Liquid intake          

DM, kg/d 0.63 1.30 0.63 1.26 0.03 < 0.001 0.6 < 0.001 0.7 

ME, MJ/d 11.0 22.4 11.1 22.0 0.54 < 0.001 0.6 < 0.001 0.7 

CP, g/d 136 282 138 274 6.73 < 0.001 0.6 < 0.001 0.7 

Crude fat, g/d 117 242 118 235 5.77 < 0.001 0.6 < 0.001 0.7 

Concentrate intake          

DM, kg/d 0.67 0.30 0.67 0.35 0.05 < 0.001 0.6 < 0.001 0.4 

ME, MJ/d 8.78 3.89 8.84 4.55 0.65 < 0.001 0.6 < 0.001 0.3 

CP, g/d 140.2 62.1 141.0 72.6 10.39 < 0.001 0.6 < 0.001 0.3 

Crude fat, g/d 28.0 12.4 28.2 14.5 2.08 < 0.001 0.6 < 0.001 0.3 

Total feed intake          

DM, kg/d 1.24 1.57 1.25 1.58 0.06 < 0.001 0.9 < 0.001 0.5 

ME, MJ/d 19.0 26.2 19.2 26.2 0.81 < 0.001 1.0 < 0.001 0.6 

CP, g/d 264 338 266 340 11.72 < 0.001 0.9 < 0.001 0.5 

Crude fat, g/d 142 253 144 248 6.14 < 0.001 0.8 < 0.001 0.7 

1Values are presented as LSM for the whole experimental period. 
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Figure 3.2. Body weight (A), ADG (B), and gain to feed ratio (C) in calves fed milk and milk 

replacer (MR) either ad libitum or restrictively and supplemented MR without ( AdlB-;  ResB-) 

or with 0.24 % butyrate ( AdlB+;  ResB+). Arrow marks the start of weaning. Data are 

presented as LSM ± SE; * indicates the effect of feeding regimen (P < 0.05); § indicates the effect 

of butyrate supplementation (P < 0.05).  
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3.4.2 Metabolic profiles 

The results of selected metabolites that reflect carbohydrate metabolism and urea are 

presented in Figure 3.3. The concentration of butyrate in blood plasma was below the 

detection limit in all calves (data not shown). The glucose concentration in blood plasma 

increased (P < 0.01) in all groups after first feed intake and was higher (P < 0.01) until 

d 56 but lower (P < 0.01) on d 70 and 77 in Adl than in Res calves (Figure 3.3A). Butyrate 

supplementation decreased plasma glucose on d 14, 21, and 42 (P < 0.05). Plasma glucose 

tended to be greater (P < 0.06) in female than in male calves (data not shown). 

 

 

Figure 3.3. Blood plasma concentrations of glucose (A), BHB (B), lactate (C), and urea (D) in 

calves fed milk and milk replacer (MR) either ad libitum or restrictively and supplemented MR 

without ( AdlB-;  ResB-) or with 0.24 % butyrate ( AdlB+;  ResB+). Arrow marks the start 

of weaning. Data are presented as LSM ± SE; * indicates the effect of feeding regimen (P < 0.05); 

§ indicates the effect of butyrate supplementation (P < 0.05). 

 

Plasma BHB concentration was lower (P < 0.05) on d 4 but was higher (P < 0.01) on d 7 in 

Res than in Adl calves (Figure 3.3B). The plasma concentration of BHB increased from 

d 35 on in Res calves and was higher (P < 0.01) from d 35 to 70 in Res than in Adl calves. 

In Adl calves, the increase in plasma BHB concentration was delayed starting on d 70. 

Plasma lactate concentration decreased (P < 0.01) from birth to the end of the first month 
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of age in all groups and was higher (P < 0.01) on d 4, 7, and 70 but lower (P < 0.05) on 

d 28 in Res than in Adl calves (Figure 3.3C). Plasma urea concentration increased 

(P < 0.01) from d 2 to 4 in Adl calves but showed the lowest concentration in all groups on 

d 7 (Figure 3.3D). Urea concentration was higher (P < 0.01) on d 4 but lower (P = 0.01) on 

d 28 in Adl than in Res calves. 

 

 

Figure 3.4. Blood plasma concentrations of non-esterified fatty acids (NEFA; A), triglycerides (B), 

cholesterol (C), and total bilirubin (D) in calves fed milk and milk replacer (MR) either ad libitum 

or restrictively and supplemented MR without ( AdlB-;  ResB-) or with 0.24 % butyrate 

( AdlB+;  ResB+). Arrow marks the start of weaning. Data are presented as LSM ± SE; 

* indicates the effect of feeding regimen (P < 0.05); § indicates the effect of butyrate 

supplementation (P < 0.05). 

 

Figure 3.4 presents data from fat metabolism. Plasma NEFA concentration decreased 

(P < 0.01) with time during the first 2 wk and was lower (P < 0.01) on d 4 and 21 but 

higher (P < 0.01) on d 70 in Adl than in Res calves (Figure 3.4A). Plasma triglyceride 

concentration increased (P < 0.01) in all groups from d 1 to 4 and increased (P < 0.01) 

again in Adl calves on d 21 (Figure 3.4B). Triglyceride concentration was higher on d 21 

but lower on d 70 in Adl than in Res calves. The triglyceride concentration before first 

colostrum intake was higher in calves that were later supplemented with butyrate. Plasma 

cholesterol concentration increased (P < 0.01) up to wk 4 of life in all groups 
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(Figure 3.4C), remained constant for 5 wk in Res and for 6 wk in Adl calves, and 

subsequently decreased to the end of the study in all groups. The Adl calves had a higher 

cholesterol concentration (P < 0.05) than Res calves on d 28, 70 and 77. Plasma total 

bilirubin concentration increased in all calves after colostrum intake on d 2 and decreased 

until the end of the trial (P < 0.01; Figure 3.4D). The Res calves showed a slower decrease 

than Adl calves from d 2 to 14 (P < 0.01), and ResB+ calves had the highest concentrations 

on d 1, 4, 7, and 21, resulting in milk feeding effects on these days (P < 0.01) and a 

butyrate effect (P < 0.05) on d 4. Total bilirubin concentration was higher (P < 0.01) on d 

70 in Adl than in Res calves. 

 

3.4.3 Hormone profiles 

The plasma insulin concentration was higher (P < 0.05 or less) from d 4 to 63 but lower 

(P < 0.01) on d 70 in Adl than in Res calves and was higher (P < 0.05) on d 28 in calves 

that were fed butyrate (Figure 3.5A). 

 

 

Figure 3.5. Blood plasma concentrations of insulin (A), glucagon (B), and cortisol (C) in calves fed 

milk and milk replacer (MR) either ad libitum or restrictively and supplemented MR without 

( AdlB-;  ResB-) or with 0.24 % butyrate ( AdlB+;  ResB+). Arrow marks the start of 

weaning. Data are presented as LSM ± SE; * indicates the effect of feeding regimen (P < 0.05); 

§ indicates the effect of butyrate supplementation (P < 0.05). 
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Plasma glucagon concentration increased (P < 0.01) after first colostrum intake in all 

groups, remained high in Adl calves, and decreased (P < 0.01) in Res calves on d 4 and 

decreased (P < 0.01) in all groups to d 7 (Figure 3.5B). Glucagon concentration was higher 

(P < 0.01) on d 4 in Adl than in Res calves. A trend of higher glucagon concentration in 

Res than in Adl calves (P < 0.1) was observed on d 28, 35, and 49. Plasma concentrations 

of insulin and glucagon were greater (P < 0.01) in female than in male calves (data not 

shown). The plasma cortisol concentration decreased from birth until d 14 of life in all 

groups and remained stable thereafter (Figure 3.5C). The plasma cortisol concentration 

was lower (P < 0.01) in Adl than in Res calves from d 4 to 21 and on d 63 and 70 and was 

highest on d 77 in ResB+. 

 

3.4.4 Hepatic glycogen concentration and gene expression related to glucose 

metabolism 

The hepatic glycogen concentration decreased (P < 0.01) in all groups from d 50 to 80 and 

was greater (P < 0.01) in Adl than in Res calves, especially when butyrate was 

supplemented (Table 3.3). The glycogen concentration was greater (P < 0.05) in female 

than in male calves (data not shown). The mRNA abundance of PYGL and G6PC 

increased (P < 0.01) with time and was greater (P < 0.05) in male than in female calves 

(data not shown). The mRNA abundance of PCK1 and PCK2 increased (P < 0.01) with 

time, and for PCK1, mRNA abundance on d 50 tended to be greater but on d 80 tended to 

be lower in B- than B+ calves (time × butyrate, P = 0.06). The mRNA abundance of PC on 

d 80 tended to be greater (P = 0.1) in B+ than in B- calves. The mRNA abundance of 

PCCA increased with time (P < 0.001), tended to be slightly lower (P < 0.1) in B+ than in 

B- calves on d 50, and tended to be greater (P < 0.1) in Adl than in Res calves on d 80. 

  



PUBLICATION 1 

33 

Table 3.3. Hepatic glycogen concentration and relative mRNA expression (log2) of gluconeogenic enzymes 

on d 50 and 80 in calves fed milk and milk replacer (MR) either ad libitum or restrictively and 

supplemented MR without (ResB-; AdlB-) or with 0.24 % butyrate (ResB+; AdlB+) 

a,bDifferent letters within the same row indicate significant differences (P  0.05). 
1Values are presented as LSM. 
2PYGL = glycogen phosphorylase; G6PC = glucose-6-phosphatase; PCK1 = phosphoenolpyruvate 

carboxykinase (cytosolic); PCK2 = phosphoenolpyruvate carboxykinase (mitochondrial); PC = pyruvate 

carboxylase; PCCA = propionyl-CoA carboxylase α. 

   

 Dietary treatment  Fixed effect, P-value 

Item1,2 ResB- AdlB- ResB+ AdlB+ SEM Milk Butyrate Time Sex 

Glycogen, mg/100 mg wet weight 

d 50 2.25ab 2.86ab 2.03b 3.03a 0.28 < 0.01 0.6 < 0.001  0.05 

d 80 1.53ab 1.53ab 1.07b 1.65a 0.18     

Relative mRNA expression related to reference genes 

PYGL          

d 50 4.57 4.68 3.91 4.47 0.40 0.2 0.5 < 0.001  0.05 

d 80 5.62 5.91 5.46 6.04 0.40     

G6PC           

d 50 6.69 7.29 6.47 6.06 1.21 0.6 0.7 < 0.001  0.05 

d 80 15.2 11.6 14.4 15.4 1.96     

PCK1          

d 50 8.90 10.3 6.72 6.41 1.58 0.7 1.0 < 0.001 0.4 

d 80 12.4 12.3 16.6 14.1 1.59     

PCK2          

d 50 3.84 3.41 3.84 3.32 0.33 0.5 1.0 < 0.001 0.3 

d 80 4.91 5.31 5.28 5.04 0.39     

PC          

d 50 5.27 5.80 5.74 5.29 0.66 0.9 0.11 0.3 0.5 

d 80 5.24 5.82 7.60 6.55 0.93     

PCCA          

d 50 2.28 2.48 2.23 2.06 0.20 0.15 0.07 < 0.001 0.3 

d 80 3.04 3.66 2.78 3.12 0.27     
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3.5 Discussion 

 

3.5.1 Effects of milk feeding intensity and butyrate supplementation on feed 

intake and growth performance 

Allowing calves to drink unlimited amounts of milk and MR during the pre-weaning 

period more than doubles liquid feed intake in Adl calves compared with that in Res 

calves, which supports previous findings (Hammon et al., 2002; Maccari et al., 2015; 

Schäff et al., 2016). The MR intake in ad libitum fed calves was greater than in common 

intensive milk-feeding programs for pre-weaning calves (Bartlett et al., 2006; Davis 

Rincker et al., 2011). However, the greater CP and fat content of the MR used in previous 

studies than that used in the present study might partially account for the higher protein 

and ME intake in intensive MR-feeding programs than that in the ad libitum MR feeding 

of the current study (Brown et al., 2005; Daniels et al., 2008; Geiger et al., 2016). 

 

The overall concentrate intake was much lower in Adl than in Res calves. Even at the end 

of the study, Adl calves did not reach the concentrate intake measured in Res calves, 

although the increase in concentrate intake at the end of the study (i.e., when MR intake 

was reduced in all calves to 2 L) was greater in Adl calves. This finding was a consequence 

of the long-lasting ad libitum MR feeding period in the current study. The Adl calves 

received unlimited amounts of MR up to wk 9 of age because the feeding program began 

reduction of MR intake from 25 L/d in wk 8. The MR reduction in wk 8 had no 

consequences for MR intake in most of the Adl calves because maximal MR intake was 

mostly 14-15 L/d. However, certain calves reached a milk intake of 25 L/d for several 

days. Time for reduction of MR feeding in Adl calves was probably too short in our study. 

It is well know that too abrupt decrease of milk feeding in intensive milk-fed calves leads 

to depression of feed intake and growth during weaning (Khan et al., 2011). Previous 

studies with a shorter ad libitum milk-feeding period indicated no negative effect or even a 

greater concentrate intake after the ad libitum milk-feeding period in pre-weaning calves 

(Khan et al., 2011; Schäff et al., 2016; Korst et al., 2017). In calves fed milk at 20 % of 

BW for the first 25 d of life, concentrate intake was greater after the intensive milk-feeding 

period than in calves fed milk at 10 % of BW (Khan et al., 2007). Nevertheless, reduced 

solid feed intake during ad libitum or intensive milk feeding is a common phenomenon, 

illustrating the preference for milk or MR instead of concentrate in pre-weaning calves 

(Jasper and Weary, 2002; Davis Rincker et al., 2011; Miller-Cushon et al., 2013). 
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However, at the end of the study, when MR intake was reduced to 2 L for all calves, the 

portion of ME intake delivered by the concentrate was comparable among all calves. This 

observation shows that Adl calves immediately switch to concentrate intake when MR is 

reduced. In addition, plasma concentration of BHB, which is a result of concentrate 

digestion in the rumen, did not differ between Adl and Res calves at the end of the study. 

 

Overall, total nutrient intake was much greater in Adl than in Res calves, and the nutrient 

intake was determined by the elevated MR intake in Adl calves, which supports previous 

studies (Khan et al., 2011, 2016). Total ME intake was 27 % less and total CP and fat 

intake were 22 and 43 % less in Res than in Adl calves, showing that the greater 

concentrate intake in Res calves could not compensate for the lower MR intake in these 

calves. The greater nutrient intake in Adl calves caused improved body growth and 

resulted in Adl calves that were 14 kg heavier at the end of the study. The ADG per week 

was greater until wk 6 of age but was lower at the end of the study (especially in wk 10) in 

Adl calves. Therefore, the elevated concentrate intake in Res calves led to comparable 

weekly ADG with age but could not compensate for the impaired body growth during the 

first weeks of age, which is consistent with previous studies (Khan et al., 2011, 2016; 

Schäff et al., 2016). The reduced ADG in wk 10 mirrored the lower feed intake in Adl 

calves during weaning because the reduction of MR intake during wk 10 was not 

compensated by the concentrate intake. A more gentle MR reduction in Adl calves could 

probably avoid such a drop in ADG in Adl calves. However, our findings indicate the 

greatest potential for stimulation of body growth via ad libitum milk feeding during the 

first 6 wk of age, which supports previous findings (Korst et al., 2017). Subsequently, an 

impaired gain to feed ratio in ad libitum milk-fed calves became obvious. This observation 

contrasts with previous studies in which intensive milk/MR feeding improved the feed 

efficiency in pre-weaning calves (Barlett et al., 2006; Khan et al., 2007; Davis Rincker et 

al., 2011), but a reduced feed efficiency was recently also found in calves fed MR ad 

libitum for the first 5 wk of age (Schäff et al., 2016). Obviously, the prolonged ad libitum 

milk feeding period in the current study compromises feed efficiency, but the calculated 

feed efficiency does not validate organ maturation and organ development, such as 

mammary gland development, in pre-weaning heifer calves (Geiger et al., 2016). In 

addition, the enhanced gain to feed ratio in Res calves from wk 7 of age on might partly be 

a result of greater solid feed intake in Res calves leading to enhanced gut filling. 
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Butyrate supplementation of MR insignificantly affected feed intake and growth 

performance in the current study. At wk 5 of age, concentrate intake was slightly greater in 

calves fed butyrate, and a trend of slightly reduced growth was noted in both butyrate-fed 

groups. In addition, the gain to feed ratio was reduced by butyrate supplementation in wk 9 

of age. These findings of the effect of butyrate supplementation in MR on feed intake and 

growth performance were not expected because, in previous studies, butyrate 

supplementation in MR with a comparable dose led to improved growth performance 

(Górka et al., 2011) and feed efficiency (Guilloteau et al., 2009, 2010). Reasons for these 

different findings are presently not obvious because butyrate dose in MR and MR feeding 

intensity were comparable among studies (Guilloteau et al., 2009, 2010; Górka et al., 

2014), but butyrate content was lower than in cow’s milk (Chilliard et al., 2009). There 

might be differences in MR origin and calf management between the studies that lead to 

the divergent results. Butyrate fed to pre-weaning pigs stimulated growth and maturation 

of the small intestine enterocytes, which was barely observed in calves fed MR with 

butyrate (Guilloteau et al., 2010; Górka et al., 2014). Intestinal mucosa growth was 

stimulated by butyrate supplementation in the male calves of the current study [C. Gerbert, 

D. Frieten, C. Koch, G. Dusel, R. Zitnan (Research Centre Nitra, Kosice, Slovakia), H. M. 

Hammon, unpublished observation]. Surprisingly, the elevated mucosa growth owing to 

butyrate treatment did not cause enhanced body growth or did not improve the gain to feed 

ratio. 

 

Feed intake and growth performance was not affected by sex, although birth weight was 

numerically greater in male than female calves (data not shown). These findings are 

unexpected because birth weight and growth rates are typically greater in male than in 

female calves (Kerr et al., 1991; Kertz et al., 1997; Egli and Blum, 1998), but not all 

studies indicate sex differences in birth weight and growth performance in calves during 

the milk-fed period (Govoni et al., 2004; Schäff et al., 2016). 

 

3.5.2 Effects of milk feeding intensity and butyrate supplementation on 

systemic and hepatic metabolic changes 

In the current study, ad libitum MR feeding primarily affected glucose metabolism. Plasma 

glucose usually decreases with age and increasing ruminant function (Quigley et al., 

1991a, b; Hugi and Blum, 1997; Daniels et al., 2008). The decrease in plasma glucose with 

age was delayed in Adl calves compared with that of Res calves, and Adl calves showed a 
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greater plasma glucose concentration during the intensive milk feeding period, which 

supports previous findings (Maccari et al., 2015; Schäff et al., 2016; Kesser et al., 2017). 

Elevated plasma glucose in Adl calves most likely resulted from increased glucose intake 

because no differences were observed in gene expression of gluconeogenic enzymes with 

respect to intensive MR feeding on d 50 of age. However, gene expression of 

gluconeogenic enzymes increased (with the exception of PC) with age in all calves, which 

fits the elevated ruminant function after increasing concentrate intake and elevated 

substrate supply for gluconeogenesis (Quigley et al., 1991b; Hammon et al., 2005; Kesser 

et al., 2017). However, the time pattern of gluconeogenic gene expression in growing 

calves is more variable and depends on the age of weaning and nutrient intake (Hammon et 

al., 2005; Haga et al., 2008). The increased gene expression of gluconeogenic enzymes 

observed on d 80 was necessary to increase endogenous glucose production to maintain 

glucose homeostasis when oral glucose supply diminished. Indeed, hepatic glycogen 

concentration, which was elevated because of intensive MR feeding on d 50 of age, 

decreased in all calves on d 80. Hepatic gluconeogenic capacity was probably reduced in 

Adl calves at the end of the study because plasma glucose concentration was lower in Adl 

than in Res calves. The lower concentrate intake in Adl calves at the end of the study likely 

created less substrate for gluconeogenesis (Zhang et al., 2016). 

 

The elevated plasma glucose concentration in ad libitum milk-fed calves caused an 

increase in plasma insulin during intensive milk feeding, as also indicated in previous 

studies (Daniels et al., 2008; Maccari et al., 2015; Schäff et al., 2016). Elevated insulin 

concentration in Adl calves was not a result of impaired insulin function (MacPherson et 

al., 2016; Kesser et al., 2017). The rise in plasma insulin might stimulate anabolic 

processes in muscle and fat tissue, leading to enhanced tissue growth in intensive milk-fed 

calves (Schäff et al., 2016). In contrast, plasma glucagon and cortisol decreased after the 

first week of life in all calves. The slower decrease of plasma cortisol during the first 

month of age in Res calves might indicate certain catabolic processes in these calves that 

were also observed in calves with impaired colostrum supply (Hammon and Blum, 1998; 

Kühne et al., 2000), and this observation fits with partly greater plasma NEFA and lactate 

concentrations in Res calves. The reasons for the higher plasma cortisol concentration at 

the end of the study in Res calves are currently not known and are inconsistent with the 

lower NEFA concentration in these calves. However, the cortisol concentration is low in 

general, and cortisol might be less metabolically effective during this time period. The rise 
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in plasma glucagon during the first 24 h of age in all calves and the elevated glucagon 

concentration in Adl calves on d 4 mirror the high protein intake with colostrum feeding on 

d 1 and the elevated protein intake owing to transition milk until d 4 in Adl calves 

(Hammon and Blum, 1998; Kühne et al., 2000). The elevated protein intake during the first 

days of age in Adl calves might also explain the increase in plasma urea concentration on 

d 4 of age (Rauprich et al., 2000). In addition, glucagon sensitivity decreases with age and 

rumen development (Donkin and Armentano, 1995; Baldwin et al., 2004), and the low 

plasma glucagon concentration after 3 wk of age might be a component of the reduced 

glucagon action. 

 

Owing to greater concentrate intake and rumen function, the increase in BHB plasma 

concentration occurred much earlier in Res than in Adl calves (Quigley et al., 1991b). 

Therefore, the BHB time pattern in blood plasma followed the concentrate intake, and in 

Adl calves, the increase in plasma BHB occurred only after the reduction of MR feeding 

and the increase in concentrate intake at the end of the study, which led to a comparable 

plasma BHB concentration between Adl and Res calves in wk 11 of age. This finding 

indicates that rumen functioning is quickly enhanced when MR intake decreases and 

concentrate intake increases. Supporting this assessment, papilla growth of the ruminal 

mucosa was measured in the male calves of this study and was not different between Res 

and Adl calves at d 80 of age [C. Gerbert, D. Frieten, C. Koch, G. Dusel, R. Zitnan 

(Research Centre Nitra, Kosice, Slovakia), and H. M. Hammon, unpublished observation]. 

 

Plasma triglycerides were enhanced only at d 21 during intensive milk feeding in Adl 

calves. This observation was in contrast to previous findings in which plasma triglycerides 

were elevated during the entire intensive milk-feeding period (Schäff et al., 2016). In wk 

10, the reduced concentrate intake led to a lower plasma triglyceride concentration in Adl 

than in Res calves. The plasma cholesterol concentration increased with age, consistent 

with previous studies (Hammon et al., 2002; Maccari et al., 2015; Schäff et al., 2016), 

indicating an elevated concentration at certain time points because of intensive milk 

feeding, but was greater in Adl than in Res at the end of the study, when MR was low in all 

calves and concentrate intake was higher in Res calves. It is likely that the greater 

concentrate intake reduced cholesterol synthesis in the rumen epithelium and led to lower 

plasma cholesterol in Res calves (Steele et al., 2011). Plasma concentration of total 

bilirubin increases after birth in neonates as a consequence of destruction of fetal 
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hemoglobin in the liver and spleen (Egli and Blum, 1998; Chowdhury and Chowdhury, 

2009). The elevated plasma total bilirubin during the first week of age in Res calves might 

be a consequence of increased plasma NEFA in these calves. Plasma NEFA likely 

competes with plasma albumin binding and might affect hepatic bilirubin metabolism 

(Hadorn et al., 1997; Chowdhury and Chowdhury, 2009). 

 

Overall, butyrate insignificantly affected metabolic and endocrine changes in calves in the 

current study. As mentioned previously, butyrate was not detected in blood plasma of 

calves fed MR with butyrate, which was also the case in previous studies (Guilloteau et al., 

2010). An elevated plasma glucose concentration owing to butyrate feeding by MR (as 

reported by Górka et al., 2011) or enhanced insulin sensitivity (as stated by Kato et al., 

2011) could not be supported herein. The opposite was the case because plasma glucose 

was lower at certain time points in calves fed MR with butyrate. Minor effects of oral 

butyrate supplementation were noted in the liver on gene expression of PC and PCCA. 

However, these data are difficult to interpret because hepatic PCCA mRNA was reduced 

and PC mRNA was slightly increased by butyrate treatment, but no differences in feed 

intake were observed because of butyrate supplementation, assuming the same 

gluconeogenic substrate supply in calves fed butyrate or not. Therefore, depressed plasma 

glucose because of butyrate feeding might result from impaired glucose uptake, but less is 

known as to whether butyrate affects lactose digestion and glucose absorption in 

pre-weaning calves. 

 

Although growth performance was not affected by sex, female calves indicated greater 

plasma glucose, insulin, and glucagon concentrations and had a greater hepatic glycogen 

concentration than male calves. Sex effects on glucose metabolism in neonatal calves were 

also reported in previous studies (Sasaki et al., 2002; Schäff et al., 2016; Kesser et al., 

2017). Interestingly, gene expression of PYGL and G6PC were greater in male than female 

calves. Obviously, greater endocrine glucose production occurs in male than in female 

calves, which compensates for the lower glucose status in male calves. However, further 

studies are needed to comprehend the sex differences in glucose metabolism in 

pre-weaning calves. 
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3.6 Conclusions 

Ad libitum MR feeding for 8 wk resulted in elevated nutrient intake and accelerated 

growth but did not improve the feed conversion ratio. The metabolic and endocrine status 

mirrored the stimulation of anabolic processes to support body growth. Surprisingly and 

contrary to our hypothesis, the combination of an intensive milk-feeding program and 

allocation of butyrate with the MR did not result in an improvement in body growth 

beyond the growth stimulation owing to ad libitum MR feeding. In our study, butyrate was 

not able to provide additional stimulation on body growth, either in the ad libitum or in the 

restrictive MR feeding groups. 
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4.1 Abstract 

Ad libitum milk-feeding and butyrate (B) supplementation have the potential to stimulate 

postnatal growth and development in calves. The somatotropic axis is the main endocrine 

regulator of postnatal growth and may be affected by both ad libitum milk replacer (MR) 

feeding and B supplementation in calves. We hypothesized that ad libitum MR feeding and 

B supplementation stimulate systemic and hepatic insulin-like growth factor (IGF)-I and 

IGF binding proteins (IGFBP) in preweaning calves. Sixty-four (32 male, 32 female) 

Holstein calves were examined from birth until wk 11 of life. Calves received MR either 

ad libitum (Adl) or restrictively (6 L/d; Res). In each feeding group half of the calves 

received a MR with 0.24 % butyrate and the other half received same MR without 

butyrate. Ad libitum MR feeding was performed from d 4 until wk 8 of age. From 

wk 9 to 10, Adl and Res calves were gradually weaned and were fed 2 L/d until the end of 

the trial. Concentrate, hay, and water were freely available. Feed intake was measured 

daily and body weight weekly. Blood samples for analyzing plasma concentrations of 

glucose, insulin, IGF-I, and IGFBP-2, -3, and -4 were taken on d 1, 2, 4, and 7, then 

weekly or every other week (IGFBP) until wk 11 of life. Liver samples were taken on d 50 

and at the end of the study (d 80) to measure gene expression of the growth hormone 

receptor 1A (GHR1A), IGF1, IGFBP1 to 4, and of the IGF Type 1 and insulin receptor in 

the liver. Intake of MR and body weight were greater, but concentrate intake was lower in 

Adl than in Res. Plasma concentrations of IGF-I and IGFBP-3 were greater and plasma 

concentration of IGFBP-2 was lower in Adl than in Res during the ad libitum milk feeding 

period. After reduction of MR in both groups to 2 L/d plasma concentrations of IGF-I and 

IGFBP-4 were lower and plasma concentration of IGFBP-2 was higher in Adl than in Res. 

Supplementation of B depressed plasma IGF-I from wk 1 to 4 and in wk 9. On d 50, 

mRNA abundance of the GHR1A and IGF1 was greater and of IGFBP2 mRNA was lower 

in Adl than in Res. At d 80, IGFBP2 mRNA was greater in Adl than in Res and IGFBP2 

mRNA increased with B supplementation. Ad libitum MR feeding stimulated the systemic 

and hepatic IGF system and mirrored the greater growth rate during the ad libitum MR 

feeding, whereas butyrate supplementation partly reduced the systemic and hepatic IGF 

system. 

 

Key words: calves, ad libitum feeding, butyrate, somatotropic axis 
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4.2 Introduction 

Intensive milk or milk replacer (MR) feeding programs could improve energy and nutrient 

intake, body growth (Hammon et al., 2002; Jasper and Weary, 2002; Bartlett et al., 2006), 

and organ development in calves (Geiger et al., 2016; Schäff et al., 2016; Soberon and Van 

Amburgh, 2017). A greater growth and development early in life could potentially affect 

the lifetime performance of dairy cows (Bar-Peled et al., 1997; Bach, 2012; Van Amburgh 

and Soberon, 2013); in addition, these feeding programs might promote robustness during 

the critical time period before weaning (Ollivett et al., 2012; de Passillé et al., 2016; Khan 

et al., 2016). Intensive or ad libitum milk feeding, starting in the colostral period, may 

enhances the synthesis and release of IGF-I; IGF-I belongs to the somatotropic axis and is 

an important factor stimulating postnatal growth (Breier et al., 2000; Khan et al., 2011; 

Hammon et al., 2012). The postnatal interaction of growth hormone (GH) and IGF-I, 

together with its binding proteins (IGFBP), affect body growth and organ development in 

mammals (Etherton and Bauman, 1998; Breier et al., 2000), including the development of 

the mammary gland (Akers, 2006; Weaver and Hernandez, 2016) and immune function 

(Clark, 1997). Because the plasma concentrations of IGF-I and IGFBP depend on nutrient 

intake (Thissen et al., 1994; Savage, 2013), the increased protein and energy intake from 

elevated milk or MR feeding might affect the blood and tissue level of IGF-I and its 

binding proteins (Bartlett et al., 2006; Maccari et al., 2015; Schäff et al., 2016). Therefore, 

changes of the components of the somatotropic axis due to an intensive MR feeding 

program may at least partly explain the accelerated mammary gland development in 

preweaning calves (Geiger et al., 2016; Soberon and Van Amburgh, 2017). 

 

Butyrate is known as a natural growth-stimulating substrate that enhances growth 

performance in young mammals and that has the potential to interfere with parameters of 

the somatotropic axis (e.g., by stimulation of GH and IGFBP release; Tsubaki et al., 2001; 

Guilloteau et al., 2010; Miletta et al., 2014). In preweaning calves, butyrate 

supplementation in MR increases BW, structural growth, and health and affects insulin-

dependent glucose metabolism (Guilloteau et al., 2010; Górka et al., 2011; Kato et al., 

2011). Recent findings in preweaning calves indicate that ad libitum MR feeding 

stimulates body growth and anabolic metabolism, but butyrate supplementation did not 

further improve postnatal growth either in ad libitum or restrictive MR-fed calves (Frieten 

et al., 2017). The objective of the present study was to verify the previously published 

effects on body growth due to ad libitum MR feeding and butyrate supplementation by 
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investigating the systemic and hepatic IGF-I system including IGFBP as main regulators of 

postnatal body growth in calves. 

 

 

4.3 Materials and Methods 

 

4.3.1 Animals, feeding, and diets 

The animal experiment at the Educational and Research Centre for Animal Husbandry, 

Hofgut Neumuehle, Germany, was recently described in a companion paper (Frieten et al., 

2017). The experimental procedures were performed in accordance with the German 

Animal Welfare Act (Federal Republic of Germany, 2014) and were approved by the 

relevant Department for Animal Welfare Affairs [Landesuntersuchungsamt Rheinland-

Pfalz, Koblenz, Germany (23 177-07/G 13-20-069)]. 

 

Briefly, 64 Holstein calves (n = 32 each for male and female) were used from birth until 

80 ± 2 (mean ± SD) days of life. After birth, the calves were brought to individual 

straw-bedded calf hutches. This husbandry lasted for 10 ± 3 d (mean ± SD) before the 

calves were finally housed in an open, straw-bedded stable. In each pen, young calves were 

separated from the older group for 2 to 3 wk, with an own self-feeding station and separate 

access to concentrate, hay, and water. The health of the calves was evaluated by daily 

rectal temperature measurement and navel and feces examination until 3 wk of age. Health 

maladies, such as diarrhea, pneumonia, and navel ill were documented and treated by a 

veterinarian. Clinical data from this study will be presented in a companion paper. 

 

During the first 2 h after birth, all calves received 2.5 ± 0.09 kg (mean ± SD) of colostrum 

via bottle. Subsequently, the calves were allocated to one of the four feeding groups 

regarding their sex, birth weight, and cow parity to create equal groups. For the following 

five meals (until d 3 of life), calves were fed acidified transition milk (2 mL of 

acidifier/L milk, H. W. Schaumann GmbH, Pinneberg, Germany) with teat buckets either 

in amounts of 3 L per meal (Res; n = 32) or ad libitum (Adl; n = 32). From d 4 on, all 

calves were fed MR (12.5 % solids; 21.9 % CP, 18.6 % crude fat; Trouw Nutrition 

Deutschland GmbH, Burgheim, Germany) either without (B-) or with (B+) 

supplementation of calcium-sodium butyrate (0.24 % as fixed to the MR powder; Benelux 

GmbH, Amel, Belgium) in amounts of either 6 L/d (ResB-; ResB+; n = 16, respectively) or 
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ad libitum (maximum 25 L/d; AdlB-; AdlB+; n = 16, respectively). The ingredients and the 

chemical composition of the MR were presented in the companion paper (Frieten et al., 

2017) and are given in the Table 3.1. The dose for butyrate supplementation in MR was 

adapted from the work of Górka et al. (2011) and the butyrate intake in ResB+ and AdlB+ 

is presented in the Results section. The MR allowance to all calves was reduced linearly 

between d 57 and 70, and thereafter calves continue to receive 2 L of MR/d until the end of 

the trial. In the calf hutches, feeding took place twice a day at 0700 and 1700 h. To 

guarantee ad libitum feed intake, buckets for Adl calves were maintained and calves had 

the chance to drink MR all the time. Buckets were refilled at noon, if necessary. Teat 

buckets were covered with a lid to ensure that no rain or dirt contaminated the milk. In the 

stable, feeding was conducted using automatic feeding systems for MR and concentrate 

(Förster-Technik GmbH, Engen, Germany). Milk replacer was fed in small portions, with a 

maximum of 2 L per meal for Res calves and 5 L per meal for Adl calves, followed by an 

off time of 2 h for Res calves and 30 min for Adl calves after the end of the meal. Water 

and hay were freely available, and concentrate as pelleted starter (Raiffeisen Waren-

Zentrale Rhein-Main eG, Köln, Germany; Table 3.1) was offered ad libitum in the stable. 

 

4.3.2 Measurement of performance data 

During the period in the calf hutches, the daily milk and MR intake was documented by 

weighting residues with an electronic scale (Sartorius AG, Göttingen, Germany). In the 

stable, data of MR and concentrate intake were sent automatically from the automatic 

feeding system to the connected computer program (Förster-Technik GmbH). The nutrient 

compositions of MR and concentrate were analyzed by an accredited external laboratory 

(Landwirtschaftliche Untersuchungs- und Forschungsanstalt, Speyer, Germany) according 

to the Weender standard procedure (Naumann and Bassler, 2004). 

 

The birth weight was measured on a platform scale after the first colostrum intake. The 

exact amount of ingested colostrum was subtracted from the initial weight. The BW in 

wk 7 and 11 was recorded using a mobile scale (Tru-Test Ltd., Auckland, New Zealand). 

The ADG was calculated from BW with the precise number of days between weekly 

weight measurements. 
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4.3.3 Blood and liver sampling and analyses 

Blood samples were taken from the jugular vein before first colostrum intake (d 1), 24 h 

after colostrum intake (d 2), before first MR intake (d 4), and then weekly from d 7 to 77, 

or once every other week from d 21 for IGFBP. All calves were fasted for at least 1 h 

before blood sampling. The blood was collected in evacuated tubes (Greiner Bio-One 

GmbH, Frickenhausen, Germany) containing potassium-EDTA (1.8 mg/mL) to determine 

plasma concentrations of insulin (on d 49 and 77), IGF-I, and IGFBP-2, -3, and -4; and 

tubes containing sodium fluoride (2-4 mg/mL) and potassium oxalate (1-3 mg/mL) to 

determine plasma glucose concentration on d 49 and 77. Blood samples were cooled in ice 

water until centrifugation at 3,500 × g for 10 min at room temperature. The supernatants 

from plasma were pipetted into aliquots and stored at –20°C until analyzed. 

 

The glucose concentration in blood plasma was analyzed spectrophotometrically 

(HORIBA ABX SAS, Montpellier, France) using the kit #A11A01667 (Axon Lab AG, 

Baden, Switzerland). Plasma concentration of insulin (#RIA-1257) was determined by RIA 

using kits from DRG Instruments GmbH (Marburg, Germany), which were adapted to 

bovine (Hammon et al., 2009). Intra- and interassay coefficients of variation for insulin 

were 3.7 and 5.5 %, respectively. Plasma concentration of IGF-I was measured by ELISA 

adapted from Daxenberger et al. (1998) using an anti-human IGF-I polyclonal antiserum 

(GroPep, Adelaide, Australia) that showed 100 % cross-reactivity to bovine IGF-I. For 

standard preparation recombinant human IGF-I (receptor grade, GroPep) was used and 

IGFBP were blocked with excess of human IGF-II (GroPep). Biotinyl human IGF-I was 

obtained from Ibt GmbH (Binzwangen, Germany). Intra- and interassay coefficients of 

variation were 6.4 and 9.1 %, respectively. Recoveries of three IGF-I concentrations added 

to different samples were 93.4 % ± 1.7, 90.8 % ± 1.8 and 90.8 % ± 2.7. The IGFBP-2, -3, 

and -4 were analyzed in plasma using quantitative Western ligand blot analysis, as 

previously described (Laeger et al., 2014; Schäff et al., 2016). 

 

On d 50 ± 2 and 80 ± 2 (mean ± SD; d 80 females only), about 80 to 100 mg of liver tissue 

was collected from each calf by biopsy (modified from Swanson et al., 2000) with a Bard 

Magnum biopsy instrument and Bard Magnum core tissue biopsy needle (C.R. Bard Inc.; 

Covington, GA). The sample notch of a 12-gauge biopsy needle contained about 20 to 

30 mg of liver tissue. To collect several biopsies while avoiding additional stress and 

abdominal pain for the calves, we used a Bard TruGuide coaxial biopsy needle that 

remained in the abdomen for the duration of biopsy. Liver samples of male calves on 
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d 80 ± 2 (mean ± SD) were collected after calves were harvested at the end of the study. 

Liver samples were flushed in ice-cold 0.9 % NaCl and frozen in liquid nitrogen. For 

further analysis, the liver tissue was pulverized in liquid nitrogen. The relative mRNA 

abundance of genes related to the IGF system was quantified as previously described 

(Saremi et al., 2012; Schäff et al., 2016). Primer sequences and PCR conditions for 

reference genes [hippocalcin-like 1 (HPCAL1), low-density lipoprotein 10 (LRP10), and 

RNA polymerase II (POLR2A)] and target genes [growth hormone receptor 1A (GHR1A), 

IGF-I (IGF1), IGFBP-1 (IGFBP1), -2 (IGFBP2), -3 (IGFBP3), and -4 (IGFBP4), IGF 

Type 1 receptor (IGF1R), and insulin receptor (INSR)] were recently published (Kendall et 

al., 2003; Saremi et al., 2012; Schäff et al., 2016). The primer products were verified by 

sequencing applied with the BigDye Terminator v1.1 Cycle Sequencing kit and an ABI 

3130 Genetic Analyzer (Thermo Fisher Scientific Inc., Waltham, MA). Real-time PCR 

was performed with the use of a LightCycler (F. Hoffman-La Roche AG, Basel, 

Switzerland); SYBR Green I (F. Hoffman-La Roche AG) was used as the fluorescent dye. 

Melting curve analysis and agarose gel electrophoresis were used to confirm the specificity 

of the PCR products. Quantification cycle values and amplification efficiencies obtained 

with the use of LinRegPCR version 2013.0 (Ruijter et al., 2013) were imported into 

qBASE+ version 2.6.1 (Biogazelle, Zwijnaarde, Belgium) for all subsequent calculations 

and quality controls (Schäff et al., 2016). The geometric mean of the reference gene 

abundances was applied for normalization. The data are presented as the ratio of the copy 

number of the respective gene of interest to the geometric mean of the reference gene 

abundance. 

 

4.3.4 Statistical analyses 

Data were evaluated by repeated-measures ANOVA using PROC MIXED in SAS for 

Windows (release 9.4; SAS Institute Inc., Cary, NC). The ANOVA model contained the 

fixed effects of feeding regimen (milk; Res vs. Adl), butyrate supplementation, time 

(wk 1-7 and 8-11 for performance data; d 49 and 77 for BW and for plasma glucose and 

insulin; d 50 and 80 for tissue data; time of frequent blood samples for plasma IGF-I and 

IGFBP), sex, and respective interactions. Repeated measures on each calf were considered 

using the repeated statement of the MIXED procedure with an unstructured type of the 

block diagonal residual covariance matrix structure (plasma IGF-I and IGFBP) or with an 

autoregressive residual covariance structure (performance data, plasma glucose and 

insulin, gene expression data; SAS Institute Inc.). Least squares means (LSM) and their 
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standard errors (SE) were computed for each fixed effect, and all pair-wise differences of 

LSM were tested with the Tukey-Kramer procedure. The SLICE statement of the MIXED 

procedure was used to conduct partitioned analyses of the LSM for interactions. 

Differences in data with P values < 0.05 were defined as significant, and P values < 0.1 

were considered as trends. Values are presented as LSM ± SE if not declared otherwise in 

the text. 

 

 

4.4 Results 

 

4.4.1 Feed intake and growth performance 

Data for feed intake and growth performance are presented in Table 4.1 and focused on the 

time periods of wk 1 to 7 (before MR reduction) and 8 to 11 (MR reduction), respectively. 

In both time periods, milk intake was greater in Adl than in Res calves (P < 0.001). On the 

contrary, concentrate intake in wk 8 to 11 was greater in Res than in Adl calves 

(P < 0.001). Total DMI in wk 1 to 7 was greater (P < 0.001) in Adl than in Res calves. The 

DMI was not affected by butyrate supplementation and by sex. In B-supplemented groups, 

B intake was greater (P < 0.001) in AdlB+ than in ResB+. Butyrate intake was 3.3 ± 

0.1 g/d for wk 1 to 7 and 2.6 ± 0.09 g/d for wk 8 to 11 in AdlB+, and was 1.7 ± 0.1 g/d for 

wk 1 to 7 and 1.1 ± 0.09 g/d for wk 8 to 11 in ResB+. 

The BW was greater (P < 0.001) at the end of wk 7 (d 49) and at the end of wk 11 (d 77) in 

Adl than in Res (Table 4.1). The ADG was higher from wk 1 to 7 (P < 0.001) but lower 

from wk 8 to 11 in Adl than Res groups (P < 0.001). Body weight (P < 0.06) and ADG 

(P = 0.1) at wk 11 tended to be higher in B- than B+ calves (Table 4.1). 
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Table 4.1. Dry matter intake of liquid and concentrate feed, BW, and ADG of calves fed milk and milk 

replacer (MR) either ad libitum or restrictively and supplemented MR without (ResB-; AdlB-) or with 

0.24 % butyrate (ResB+; AdlB+)1 

 Dietary treatment  Fixed effect, P-value3 

Item2 ResB- AdlB- ResB+ AdlB+ SEM 

Milk 

Milk × 
time 

Butyrate 

Milk × 
butyrate 

Time 

Butyrate 
× time 

Sex 

 

Liquid intake, kg         

wk 1 – 7 34.5b 68.8a 34.9b 65.8a 1.36 < 0.001 0.7 < 0.001 0.8 

wk 8 – 11 12.9b 29.9a 13.1b 30.2a  < 0.001 0.5 0.2  

Concentrate intake, kg         

wk 1 – 7 6.85 1.89 8.93 3.11 2.07 < 0.001 0.6 < 0.001 0.4 

wk 8 – 11 39.7a 18.6b 38.1a 20.9b  < 0.001 0.7 0.6  

Total DMI, kg         

wk 1 – 7 41.4b 70.6a 43.8b 68.9a 2.44 < 0.001 0.8 < 0.001 0.4 

wk 8 – 11 52.6 48.5 51.2 51.0  < 0.001 1.0 0.9  

BW, kg          

d 49 72.7b 92.5a 70.9b 88.9a 2.30 < 0.001 0.11 < 0.001 0.12 

d 77 106.2b 120.6a 102.0b 115.7a  < 0.001 0.8 0.12  

ADG, g          

wk 1 – 7 572.6b 1015.1a 591.9b 941.8a 37.0 < 0.01 0.2 < 0.001 0.2 

wk 8 – 11 1212.1a 997.6b 1121.0ab 966.4b  < 0.001 0.8 0.4  

a,bDifferent letters within the same row indicate significant differences (P ≤ 0.05). 
1Modified from Frieten et al., 2017. 
2Values are presented as LSM.  
3Main fixed effects are presented in two rows: first row indicates P-values for milk (ad libitum versus 

restrictive), butyrate supplementation, time, and sex; second row indicates P-values for interaction 

milk × time, milk × butyrate, and butyrate × time. 

 

4.4.2 Plasma concentrations of glucose, insulin, IGF-I, and IGF binding 

proteins 

The results of glucose and insulin concentrations in blood plasma are presented in detail in 

the companion paper (Frieten et al., 2017). Plasma glucose and insulin concentrations 

decreased in Adl calves but increased in Res calves from d 49 to 77 (P < 0.001; Table 4.2). 

Plasma glucose concentration was higher on d 49 (P < 0.001) in Adl than in Res calves, 

but was lower on d 77 (P < 0.05) in Adl calves than in ResB-. Plasma insulin concentration 

was much higher in Adl than in Res calves at d 49 (P < 0.001), but did not differ between 

Adl and Res calves on d 77 of age. 

 

The plasma concentration of IGF-I slightly increased (P < 0.05) from d 1 to 2 and 

decreased (P < 0.001) from d 4 to 14 of age in all groups. Plasma IGF-I increased 

(P < 0.001) in Adl groups from wk 3 on, but in Res calves increased from wk 7 on 

(P < 0.001; Figure 4.1A). We noted a distinct decrease of plasma IGF-I in Adl calves from 

wk 9 to 10 (P < 0.001). 
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Table 4.2. Blood plasma concentrations of glucose and insulin in calves fed milk and milk replacer 

(MR) either ad libitum or restrictively and supplemented MR without (ResB-; AdlB-) or with 

0.24 % butyrate (ResB+; AdlB+)1 

 Dietary treatment  Fixed effect, P-value3 

Item2 ResB- AdlB- ResB+ AdlB+ SEM 

Milk 

Milk × 
time 

Butyrate 

Milk × 
butyrate 

Time 

Butyrate 
× time 

Sex 

 

Glucose, mmol/L         

d 49 5.07b 5.79a 4.99b 6.13a 0.18 0.3 0.8 0.01 0.7 

d 77 5.66a 4.84b 5.39ab 4.97b 0.18 < 0.001 0.14 0.3  

Insulin, µg/L         

d 49 0.34b 1.24a 0.28b 1.19a 0.17 < 0.01 0.8 0.03 0.3 

d 77 0.58 0.39 0.54 0.41 0.17 < 0.001 0.9 0.8  

abDifferent letters within the same row indicate significant differences (P ≤ 0.05). 
1Modified from Frieten et al., 2017. 
2Values are presented as LSM. 
3Main fixed effects are presented in two rows: first row indicates P-values for milk (ad libitum 

versus restrictive), butyrate supplementation, time, and sex; second row indicates P-values for 

interaction milk × time, milk × butyrate, and butyrate × time. 

 

Plasma IGF-I was higher from wk 1 to 9 (P < 0.01), but was lower (P = 0.02) at wk 11 in 

Adl than in Res calves. Butyrate feeding depressed plasma IGF-I from wk 1 to 4 and at 

wk 9 (P < 0.05). Plasma IGFBP-2 concentration decreased (P < 0.001) during first week of 

age and then increased (P < 0.01) until wk 2 in all groups (Figure 4.1B). Thereafter, 

plasma IGFBP-2 remained high in Res calves, but decreased (P < 0.1) and remained low 

until wk 9 in Adl calves. Plasma IGFBP-2 concentration significantly differed from wk 3 

until the end of the trial, with higher concentrations in Res calves up to wk 9. At wk 11, 

plasma IGFBP-2 decreased (P < 0.1) in Res calves and increased (P < 0.001) in Adl 

calves, indicating higher concentrations in Adl than Res calves at wk 11 (P < 0.01). 

Plasma IGFBP-3 concentration decreased (P < 0.001) during first week of age in all 

groups, and was greater (P < 0.01) in Adl than in Res calves from wk 3 to 9 (Figure 4.1C). 

We observed a trend for a greater IGFBP-3 plasma concentration at wk 11 in Adl than Res 

calves (P = 0.07). Calves fed butyrate had a lower IGFBP-3 plasma concentration on d 1 

and 7 of age (P  0.05). Plasma IGFBP-4 concentration increased (P < 0.001) after birth, 

but decreased (P < 0.001) from d 4 to 21 in all groups (Figure 4.1D) and was greater 

(P < 0.05) in Res than in Adl calves on d 1, 63, and 77 of age. 
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Figure 4.1. Blood plasma concentrations of IGF-I (A), IGF binding protein (IGFBP)-2 (B), 

IGFBP-3 (C), and IGFBP-4 (D) in calves fed milk and milk replacer (MR) either ad libitum or 

restrictively and supplemented MR without ( AdlB-;  ResB-) or with 0.24 % butyrate 

( AdlB+;  ResB+). Arrows mark the start of weaning. Data are presented as LSM ± SEM; 
* indicates the effect of feeding regimen (P < 0.05); § indicates the effect of butyrate supplementation 

(P < 0.05). 

 

4.4.3 Hepatic gene expression related to the IGF system 

The hepatic gene expression of GHR1A, IGF1, IGFBP1, -2, -3, and -4, IGF1R, and INSR 

are presented in Table 4.3. The mRNA abundance of GHR1A and IGF-I on d 50 was 

greater (P < 0.02) in Adl than in Res calves, with highest abundance for IGF1 in AdlB-, 

but did not differ on d 80. The abundance of IGF1 mRNA was greater (P = 0.03) in male 

than in female calves. Male calves had a greater (P < 0.001) IGFBP1 mRNA abundance 

and tended to have a greater (P = 0.07) IGFBP3 mRNA abundance than female calves. The 

mRNA encoding for IGFBP2 changed with time (P = 0.02), and was greater (P < 0.001) 

on d 50 but was lower (P = 0.01) on d 80 in Res than in Adl calves. On d 50, IGFBP2 

mRNA was greatest (P < 0.05) in ResB+ and on d 80 butyrate supplementation affected 

IGFBP2 mRNA, with greatest expression in AdlB+. The abundance of IGFBP4 mRNA 

increased with time (P < 0.01) in all feeding groups. The mRNA abundance of IGF1R 

tended (P = 0.07) to be greater in Res than in Adl calves on d 50, and the mRNA 

abundance of INSR showed a tendency (P = 0.06) for the butyrate × time interaction with 

an increasing abundance from d 50 to 80 in butyrate-fed calves. 



 

 

Table 4.3. Relative mRNA expression (log2) of liver samples in calves fed milk and milk replacer (MR) either ad libitum or 

restrictively and supplemented MR without (ResB-; AdlB-) or with 0.24 % butyrate (ResB+; AdlB+) 

 Dietary treatment  Fixed effect, P-value3 

Relative mRNA 
expression related to 
reference genes 1,2 

ResB- AdlB- ResB+ AdlB+ SEM 

Milk 

Milk × 
time 

Butyrate 

Milk × 
butyrate 

Time 

Butyrate 
× time 

Sex 

 

GHR1A          

d 50 0.55 0.69 0.57 0.73 0.06 0.03 0.4 0.9 0.3 

d 80 0.59 0.63 0.63 0.68 0.06 0.2 0.9 0.8  

IGF1          

d 50 15.3b 24.9a 16.3b 21.0ab 2.22 0.15 0.6 0.2 0.03 

d 80 24.6 18.3 20.5 21.6 2.20 < 0.01 0.7 0.7  

IGFBP1          

d 50 228 239 342 372 157 0.3 0.2 0.2 < 0.001 

d 80 361 389 331 655 125 0.5 0.4 1.0  

IGFBP2          

d 50 7.07ab 4.25b 7.86a 4.21b 0.90 0.7 0.09 0.02 0.7 

d 80 4.98b 7.02ab 6.78ab 9.92a 1.00 < 0.001 0.9 0.07  

IGFBP3          

d 50 3.65 3.92 4.22 4.06 0.46 0.5 0.4 0.2 0.07 

d 80 3.19 3.91 3.73 3.95 0.34 0.3 0.5 0.9  

IGFBP4          

d 50 2.71 2.81 2.69 2.71 0.22 0.5 0.9 < 0.01 0.6 

d 80 2.90 3.15 3.03 3.20 0.26 0.6 0.9 0.6  

IGF1R          

d 50 2.74 2.69 4.09 2.54 0.43 0.2 0.2 0.5 0.6 

d 80 3.08 2.98 3.43 3.17 0.42 0.2 0.2 0.5  

INSR          

d 50 6.43 6.53 5.56 5.50 0.61 0.7 0.5 0.3 0.9 

d 80 6.50 5.91 6.62 6.41 0.58 0.5 0.9 0.06  

a,bDifferent letters within the same row indicate significant differences (P ≤ 0.05). 
1Values are presented as LSM. 
2GHR1A = growth hormone receptor 1A; IGFBP1 – 4 = IGF binding protein-1 to -4; IGFR1 = IGF-I receptor; INSR = insulin receptor. 
3Main fixed effects are presented in two rows: first row indicates P-values for milk (ad libitum versus restrictive), butyrate supplementation, 

time, and sex; second row indicates P-values for interaction milk × time, milk × butyrate, and butyrate × time. 
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4.5 Discussion 

Calves with unlimited milk and MR intake for 8 wk postnatal more or less doubled their 

MR intake compared with Res calves fed 6 L of MR/d. Such a great liquid feed intake was 

previously reported in other studies with dairy calves that were allowed to drink milk or 

MR ad libitum for a distinct time period after calving (Hepola et al., 2008; Maccari et al., 

2015; Korst et al., 2017). On the other hand, concentrate intake was lower in Adl than in 

Res calves and the increase in concentrate intake was delayed in Adl calves (Frieten et al., 

2017). An impaired concentrate intake in calves due to unrestricted milk feeding 

(Jasper and Weary, 2002) or enhanced MR feeding (Kristensen et al., 2007; Davis Rincker 

et al., 2011) was previously observed in some, but not in all studies (Maccari et al., 2015; 

Schäff et al., 2016; Korst et al., 2017). In addition, calves receiving elevated amounts of 

milk, but no ad libitum milk feeding, during the first weeks of life had a greater 

concentrate intake after the intensive milk feeding period and after weaning (Khan et al., 

2007). Therefore, the management of the intensive milk feeding period might have an 

important effect on the concentrate intake in preruminant calves. In any case, ad libitum 

milk feeding (Maccari et al., 2015; Schäff et al., 2016; Korst et al., 2017) or enhanced milk 

feeding programs using MR with a greater CP content (Diaz et al., 2001; Bartlett et al., 

2006; Khan et al., 2011) resulted in an elevated body growth during the preweaning period 

in calves. On the other hand, the supplementation of butyrate with the MR did not affect 

MR or concentrate intake in a consistent manner (Frieten et al., 2017). 

 

The enhanced growth in Adl calves during the ad libitum milk feeding period coincided 

with elevated plasma concentrations of insulin, IGF-I, and IGFBP-3 and reduced plasma 

concentrations of IGFBP-2 during this time period. The stimulation of the postnatal 

somatotropic axis depends on the nutrient supply, starting in the neonatal period (Breier et 

al., 2000; Hammon et al., 2012; Savage, 2013), and reflects the glucose and insulin status 

of the animal (Breier et al., 1988; Thissen et al., 1994; Brameld et al., 1999). The nutrient 

intake was much greater in Adl than in Res calves during the ad libitum milk feeding 

period. Elevated nutrient intake affects the plasma IGF-I concentration in mammalian 

(Thissen et al., 1994; Savage, 2013), including the preweaning calf (Smith et al., 2002; 

Daniels et al., 2008) and ad libitum milk feeding (Maccari et al., 2015; Schäff et al., 2016). 

The stimulating effect of elevated nutrient supply by milk or MR intake on the IGF-I 

plasma concentration starts postnatum (Hammon and Blum, 1997; Hammon et al., 2000; 
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Sauter et al., 2003) and is related to the greater nutrient availability due to milk feeding 

(Breier et al., 1988). 

 

The stimulation of the somatotropic axis due to ad libitum milk feeding in the present 

study was supported by the elevated hepatic gene expression of the liver-specific GHR1A 

and IGF1. Both were higher expressed in liver of Adl than Res calves at d 50 of age. The 

IGF-I originating from the liver contributes in a significant manner to the IGF-I in the 

blood plasma (Le Roith et al., 2001; Savage, 2013), hepatic IGF1 gene expression 

correlated with IGF-I in blood plasma of calves (Cordano et al., 2000), and its gene 

expression depends on the GH action in the liver (Le Roith et al., 2001; Renaville et al., 

2002; Savage, 2013). The elevated glucose and insulin status at the time of ad libitum milk 

feeding may have stimulated GHR1A gene expression in the liver of Adl calves, as insulin 

treatment promotes hepatic GHR1A mRNA abundance in dairy cows (Butler et al., 2003; 

Weber et al., 2017). 

 

The reduced insulin and IGF-I concentrations in blood plasma after the MR reduction 

period reflected the lower concentrate intake in Adl calves (Frieten et al., 2017). The gene 

expression of IGF1 as well as GHR1A in liver was not affected by the nutrient intake on 

d 80 of age in a significant manner. The increase in hepatic IGF1 mRNA from d 50 to 80 

in Res, but not in Adl calves, indicated that Res calves gained on nutrient intake with time 

due to elevated concentrate intake; Adl calves reached an elevated IGF1 gene expression 

level on d 50 of age and did not further increase IGF1 mRNA abundance in liver on 

d 80 of age. The differences in concentrate intake at the end of the study between groups 

(Frieten et al., 2017) were, however, not large enough to cause changes in hepatic GHR1A 

and IGF1 mRNA abundances between groups, but the greater concentrate intake in 

Res calves at the end of the study resulted in a greater plasma IGF-I concentration. 

Therefore, tissues other than liver that synthesize IGF-I (e.g., muscle tissue) may 

contribute to the elevated plasma IGF-I concentrations in Res calves on d 80 of age 

(Le Roith et al., 2001). 

 

The IGFBP-3, which is part of the 150-kDa complex and binds most of the IGF-I in blood 

plasma (Jones and Clemmons, 1995; Murphy, 1998), did not show an association between 

hepatic gene expression and plasma concentration at d 50 and 80 of age. In general, IGFBP 

are important regulators of the IGF-I action, and inhibitory and stimulating effects of 

IGFBP have been reported (Jones and Clemmons, 1995; Le Roith et al., 2001; 
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Savage, 2013). After a decrease during the first week of postnatal life, the plasma IGFBP-3 

concentration increased with age during the MR feeding period (Skaar et al., 1994; 

Hammon et al., 2003; Schäff et al., 2016). The increase of plasma IGFBP-3 was more 

dominant in Adl than in Res calves, and the dynamics of plasma IGFBP-3 concentration 

were similar to those of plasma IGF-I during the ad libitum milk feeding period. Although 

plasma GH was not measured in our study, it is well known that the IGFBP-3 status 

depends on GH action (Jones and Clemmons, 1995; Murphy, 1998; Savage, 2013). 

Obviously, GH does not directly stimulate IGFBP3 gene expression, because IGFBP3 

gene expression is located in non-parenchymal hepatic cells, but not in hepatocytes, and 

these cells do not express GH receptors (Murphy, 1998; Le Roith et al., 2001). However, 

both GH and IGFBP-3 are stimulated by enhanced nutrient intake in calves and growing 

ruminants (Renaville et al., 2002; Daniels et al., 2008). The fact that IGFBP3 gene 

expression in liver did not correspond to IGFBP-3 plasma concentration is probably due to 

IGFBP-3 synthesis in other tissues than the liver (e.g., fibroblast, endothelial cells, bone; 

Jones and Clemmons, 1995), and possibly due to the low number of cells in the liver (non-

parenchymal cell) with IGFBP3 gene expression (Murphy, 1998; Le Roith et al., 2001). In 

addition, the IGFBP-3 plasma concentration depends on the proteolytic cleavage activity in 

the blood plasma and is probably less regulated at the transcriptional level (Jones and 

Clemmons, 1995). Overall, the greater plasma IGFBP-3 concentration in Adl calves 

corresponded to the elevated IGF-I concentration in these calves and mirrored their greater 

nutrient intake, but was not related to the hepatic IGFBP3 gene expression. 

 

The IGFBP-2 status in the calves indicated corresponding changes of plasma concentration 

and hepatic gene expression with respect to nutrient intake. The concentration of IGFBP-2 

in blood plasma and liver was lower in the Adl than in the Res calves during the ad libitum 

milk feeding period, but increased to a higher level in Adl calves at the end of the study 

when concentrate intake was greater in Res than Adl calves. The plasma IGFBP-2 

concentration indicated an inverse relationship with respect to the insulin and IGF-I status 

in calves (Hammon and Blum, 1997; Hammon et al., 2000; Daniels et al., 2008) and dairy 

cows (McGuire et al., 1995), and IGFBP-2 is elevated during the catabolic state (Thissen et 

al., 1994; Breier et al., 2000; Renaville et al., 2002). Therefore, elevated plasma IGFBP-2 

concentration may reflect the inadequate nutrient supply in Res calves during the 

ad libitum MR feeding period and the impaired nutrient status in Adl calves after the MR 

step-down period, which corresponds to findings in humans (Savage, 2013). Surprisingly, 

hepatic IGFBP1 gene expression did not behave in the same way as hepatic IGFBP2 gene 
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expression, but elevated IGFBP-1 status during impaired nutrient supply was shown in 

human patients (Thissen et al., 1994; Savage, 2013) and in neonatal calves (Sauter et al., 

2003). 

 

Plasma concentration of IGFBP-4 increased from d 1 to 2 of life, as recently reported in 

calves (Schäff et al., 2016), but decreased thereafter and remained more or less constant in 

all calves until d 63 of age, indicating no effect of ad libitum MR feeding on plasma 

IGFBP-4; this was in contrast to previous findings (Schäff et al., 2016), but in agreement 

with findings of Daniels et al. (2008) in calves. In addition, ad libitum MR feeding did not 

affect hepatic IGFBP4 gene expression, but IGFBP4 gene expression increased from d 50 

to 80 of age in all calves. A corresponding increase of plasma IGFBP-4 during the last 

weeks of the study was only seen in Res calves. The IGFBP-4 is one of the smaller IGFBP, 

with a significant plasma concentration that is decreased by IGF-I and inhibits IGF-I action 

(Clemmons, 1997; Duan, 2002; Firth and Baxter, 2002). Therefore, the simultaneous 

increase of IGFBP-4 and IGF-I in blood plasma at the end of the study in Res calves may 

indicate a modulation of the IGF-I activity by IGFBP-4. In addition, the MR feeding levels 

did not affect hepatic gene expression of IGF1R and INSR in the current trial. 

 

Ad libitum MR-fed calves supplemented with butyrate partly indicated a lower plasma 

IGF-I concentration. The body growth was not stimulated by butyrate, in contrast to the 

finding of Górka et al. (2011), who reported greater BW in calves fed MR supplemented 

with butyrate. A recent review of studies with butyrate treatment in preweaning calves 

indicated inconsistent effects on body growth when butyrate was supplied by MR 

(Niwińska et al., 2017). Reasons for these different findings are not obvious, but the age of 

the calf when starting the butyrate supplementation could be of importance (Niwińska et 

al., 2017). Hepatic gene expression of GHR1A and IGF1 did not respond to butyrate 

supplementation in a consistent manner, but IGFBP2 gene expression was elevated and 

INSR gene expression increased considerably in butyrate-treated groups at the end of the 

study. These changes on the parameters of the somatotropic axis due to butyrate 

supplementation may suggest that nutrient supply in butyrate-treated calves was impaired 

(Thissen et al., 1994; Breier et al., 2000; Renaville et al., 2002). Reasons for these findings 

are rather speculative; because butyrate treatment did not result in elevated plasma butyrate 

concentration in these calves (Frieten et al., 2017), a direct effect of butyrate on 

the GH-IGF-axis is not likely, as described in previous studies (Tsubaki et al., 2001; 

Miletta et al., 2014). Studies in calves and heifers could not find a stimulating effect of 
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butyrate on plasma GH and IGF-I concentrations (Nosbush et al., 1996; Kato et al., 2011). 

In agreement with the findings on the somatotropic axis, the results on growth performance 

in the current study do not support data from literature that propose an improved growth 

rate in calves after butyrate feeding (Guilloteau et al., 2010), but do support previous 

findings on the lack of a growth promoting effect due to butyrate feeding in calves (Kato et 

al., 2011). However, intestinal mucosa growth was stimulated by butyrate supplementation 

in the male calves of the current study (Gerbert et al., 2017). Interestingly, this local 

growth-promoting effect in the small intestine did not cause an enhanced body growth in 

the calves of the present study. 

 

We found no sex effects on DMI in these calves, and sex effects on growth performance 

were of minor importance. The lack of sex effects on plasma IGF-I concentration fits into 

this context. The lack of gender effects on growth performance and plasma IGF-I was 

recently described in another study of our laboratory (Schäff et al., 2016), but disagrees 

with earlier findings of sex effects on growth and plasma IGF-I in calves (Kerr et al., 1991; 

Kertz et al., 1997; Egli and Blum, 1998). However, main sex effects on growth and plasma 

IGF-I as well as plasma IGFBP-3 may occur when calves are older than 12 wk (Govoni et 

al., 2003). In this context, it was surprising to find a greater hepatic gene expression of 

IGF1, IGFBP1, and IGFBP3 in male than female calves, which corresponds to the overall 

picture of a greater somatotropic activity in males than in females (Gatford et al., 1998). 

Female gonadal steroids, such as estrogen, inhibit gene expression of IGF1 and IGFBP in 

liver (Leung et al., 2004) and may explain the lower hepatic gene expression of IGF1 and 

IGFBP1 and IGFBP3 in female calves; however, the interaction of gonadal sex steroids 

and the somatotropic axis might become more clear in older calves. 
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4.6 Conclusions 

Feeding milk and MR ad libitum for the first 8 wk of life affected IGF-I and IGFBP 

plasma concentration and hepatic gene expression. These changes mirrored the greater 

growth rate in Adl calves during the ad libitum MR feeding. At the end of the study, the 

greater IGF-I and lower IGFBP-2 in blood plasma in Res calves corresponded with the 

greater ADG in these calves. Butyrate supplementation did not stimulate growth 

performance but partly depressed the IGF-I status in the calves. As a consequence, the 

combination of an ad libitum milk-feeding program and allocation of butyrate with the MR 

did not result in an additional stimulation of IGF-I and IGFBP in calves. 
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5 General Discussion 

The advantages of enhanced growth performance and on metabolism, further the 

contributions to well-being, development, and long-lasting productivity, became clear in 

intensive milk or MR fed calves (Kertz et al., 2017). The feed additive butyrate 

demonstrated an improved development in growing animals when it was used in artificial 

systems with MR feeding. In several studies butyrate additionally enhanced the 

development, integrity, and efficiency of the GIT, and achieved an improved growth rate 

(Guilloteau et al., 2009; Kato et al., 2011; Górka et al., 2014). 

The effects of the main objectives in the presented thesis (i.e., ad libitum feeding and 

butyrate supplementation) were evaluated, while the used calves were generally healthy 

and vital throughout the study (Gerbert, Frieten, and Hammon, unpublished data). 

Calves have the greatest chances of survival if they are born in eutocia without assistance 

in a clean environment and are provided high-quality colostrum as soon as possible. We 

used a birth monitoring system to observe every calving process of which 25 % occurred at 

night (i.e., between 2000 to 0400 h). Through applying this method in practice a sufficient 

colostrum feeding, which relies on three major aspects: time, quantity and quality 

(McGuirk and Collins, 2004), could be ensured for the tested calves. All calves received 

sufficient amounts of Ig and no cases of FPT were observed (Gerbert, Stefaniak, and 

Hammon, unpublished observations). In addition and as stated above, colostrum also 

provides high amounts of nutrients and non-nutrient, biologically active factors (Blum and 

Hammon, 2000; Blum, 2006; Ontsouka et al., 2016). Subsequent colostrum milkings, after 

the first milking also referred to as transition milk, were offered for the first 3 d after birth. 

In a trial from Hammon and Blum (1998) calves fed six times colostrum instead of one 

colostrum meal or no colostrum had significant improved anabolic parameters. 

 

Improved energy and nutritional supply in terms of intensive or ad libitum milk or MR 

feeding enhances growth performance, anabolic metabolism and development in calves. In 

our study Adl calves were provided with milk or MR up to 25 L/d. This was the highest 

adjustable amount for the automatic feeder. Although two calves were limited onetime by 

this volume when they reached 25 L intake per day, for all the other days and calves this 

method can be referenced as an authentic ad libitum feeding. With MR intakes of 13 L/d 

during wk 4 to 9 of life, our calves consumed almost 30 % of their birth BW, which is 

three times more than in conventional feeding recommendations (FAWC, 2015). 
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In practice, some general concerns in addition to incremental effort and expense, question 

the benefit of ad libitum feeding of calves. For example, intensive liquid feeding leads to 

diarrhea. In some trials a softer fecal consistency without impact on medical treatment 

were seen (Raeth-Knight et al., 2009; Davis Rincker et al., 2011; Liang et al., 2016). 

Hence, this is more likely a result of the enhanced fluid intake and probably lower fiber 

consumption than of pathogenic infections. Another concern is that greater liquid meals 

could exceed the volume of the abomasum and reflow into the rumen (Schwarz, 2011). 

Typical symptoms (e.g., depression, anorexia, abdominal pain, etc.) may occur similar to 

the ruminal drinking syndrome, due to rumen acidosis and dyskeratosis (Dirksen, 2002). 

None of this was seen in our trial or in the study of Ellingsen et al. (2016), whereas milk 

meals up to 6.8 L did not enter the rumen or indicate medical conditions which is the result 

of a greater distension of the abomasum. Moreover, MacPherson et al. (2016) found that an 

elevated MR intake resulted in slower abomasal emptying, and therefore an adapted 

nutrient supply to the small intestine. 

As the voluntary liquid feed intake doubles compared to restrictive feedings, our results are 

in accordance with earlier ad libitum studies (Borderas et al., 2009; Miller-Cushon et al., 

2013; Maccari et al., 2015). The use of automatic feeders where fresh meals are supplied in 

small amounts throughout the day could be a reason for the reported higher MR intake 

(Borderas et al., 2009; Miller-Cushon et al., 2013) compared to ad libitum milk intake by 

teat feeding (Appleby, 2001; Jasper and Weary, 2002). Furthermore, a longer ad libitum 

feeding period in the latter studies (i.e., 7 vs. 4 wk) may contribute to higher intakes, as 

Adl calves in our study reached their highest MR intake in wk 8 and 9 of life. A 

significantly greater milk intake began in the first week of age. Calves fed intensive diets 

beginning after 1 wk postnatum (Rosenberger et al., 2017) had lower milk intakes than 

milk allowances (9.4 vs. 12.0 L/d, respectively). Conclusively, calves fed intensive or ad 

libitum diets from birth appear better adapted to high quantities and may consume more 

milk or MR and have lesser feed refusals overall. 

Planes of MR diets are often presented as kg/d, which is required to determine the nutrient 

and energy intake. In consideration of calf welfare by expressing their natural behavior it is 

equally important to prospectively determine the total amount of liquid feed so calves can 

satisfy their suckling need. To enable natural feeding and suckling behavior, best practice 

would be to feed the calves ad libitum milk or MR during the first weeks of life (Miller-

Cushon and DeVries, 2015). And as we saw a steadily increasing MR intake up to wk 9 
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of life, duration of the intensive feeding period should be prolonged. In accordance with 

our results, Meale et al. (2017) proclaimed that the calf´s rumen is not mature enough for 

sole nutrient digestion before 8 wk of age. Nevertheless, the extended milk feeding period 

would continue to be an artificial feeding practice, as natural weaning occur around 

10 month of age (Reinhardt and Reinhardt, 1981; Hulbert and Moisá, 2016). 

New recommendations for feeding practices start to include intensive feeding at least, e.g., 

20 % of BW for the first 28 days of life (Dairy Farmers of Canada, 2009). This new dietary 

recommendations become incorporated into practice. A recent Canadian survey (Medrano-

Galarza et al., 2017) evaluated the offered plane of liquid feed averaged 10 L/d in 

automated milk fed calves. Interestingly, this amount was 2 L/d higher than in manual milk 

feeding systems. From personal experience, the amount of work involved in manual ad 

libitum feeding compared to restrictive feeding is equally achievable in the first days after 

birth. The prolonged ad libitum feeding was realized with automatic feeding systems that 

eased the effort of manpower. Hence, the use of technical improvements in calf feeding 

can be recommended for intensive MR feeding. 

 

Hulbert and Moisá (2016) reviewed circumstances of very low body weight gain in the 

first two wk of age. When calves are fed limited amounts of milk or MR they often cannot 

maintain the energy requirements for thermogenesis (Hammon et al., 2012), maintenance 

and growth (Drackley, 2008), hence they lose or gain just little weight (Geiger et al., 

2016). Negative ADG in the first week of life was shown when dairy calves fed restricted 

quantities of MR (Liang et al., 2016). In our study (1327.8 vs. 597.3 g/d ADG for Adl vs. 

Res in wk 1, respectively) and in studies from Maccari et al. (2015) and Schäff et al. 

(2016) distinct and significant weight gains were possible in the first weeks of life. 

Therefore, calves can metabolize high quantities of liquid feed and gain weight soon after 

birth when fed ad libitum or an enhanced plane of liquid feed compared to strongly 

limited-fed calves. 

Adl compared to Res calves had a much higher body growth rate. The accelerated growth 

performance appeared with completely voluntary, and not forced, MR intake about twice 

as much in Adl than in Res, respectively. Our data match results from Davis Rincker et al. 

(2011) where calves fed with intensified MR rates (2.1 % of BW on DM basis) revealed 

significantly higher BW during wk 1 to 8 of life. Hence, the energy for growth and 

development after birth is mainly supported from liquid feed intake. 
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With the loss of maternal glucose supply, calves had low postnatal glucose levels. After 

colostrum intake, glucose concentrations increased for all calves with insignificant 

differences between groups. Significant differences, with higher glucose levels at d 7, and 

from wk 3 to 8, were seen in Adl groups as a result of elevated nutrient intake. Plasma 

insulin concentration followed the same metabolic pattern, with low levels in neonatal 

calves and greater levels (P < 0.05) from d 4 until wk 9 of age. Higher glucose and insulin 

blood concentrations might be considered physiological in growing animals and do not 

account for pathological states, as hyperglycemia and hyperinsulinemia. Although, Bach et 

al. (2013) investigated a decrease of insulin sensitivity in calves fed higher planes of MR 

(4 L/meal) twice daily. We observed insulin concentrations adapted to the glucose intake, 

but in accordance with MacPherson et al. (2016) we assume no decrease in insulin 

sensitivity. 

Glucagon levels increased after colostrum intake as reported previously (Hammon et al., 

2002, 2012). Interestingly, without evidence of insufficient glucose supply plasma 

glucagon concentrations peaked at d 4 in Adl, but decreased in Res. Hammon et al. (2013) 

assumed higher protein intakes accountable for increased glucagon levels. Plasma BHB 

concentrations were greater for Res compared to Adl (P < 0.001) indicating an accelerated 

rumen maturation. However, before significant CON intake Res calves had higher BHB 

levels on d 7 (P < 0.01) and d 21 (P = 0.08). This indicates hepatic ketogenesis due to 

malnutrition in these calves. During the first week postnatum and at specific time points 

throughout the trial, lactate and cortisol concentrations were greater in Res groups, 

respectively. Lactate serves as a substrate for GNG and hepatic uptake is stimulated by 

insulin (Donkin and Armentano, 1995), whereby cortisol levels stimulate GNG and might 

reflect lower feed intake (Hammon et al., 2002). Intensive feeding with higher fat intake is 

reflected by enhanced plasma triglycerides (Kühne et al., 2000). Greater triglyceride 

concentrations were seen on d 21 (P = 0.01) and d 28 (P = 0.06) in Adl groups. In addition, 

Res groups had greater NEFA levels on d 4 and d 21, indicating catabolic states with 

enhanced fat mobilization. Furthermore, it is worth mentioning that the specific peak in 

plasma NEFA immediately after birth, also affected the total bilirubin concentration in 

ResB- during the first week postnatum. This correlation was described by Hadorn et al. 

(1997) as a competition in substrate-binding to plasma albumin and conjugation of 

bilirubin in the liver which leads to elevated plasma bilirubin concentrations. 
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Surprisingly, no significant dietary treatment effects of the hepatic genes coding for the 

gluconeogenic enzymes were observed is this trial. Expression of G6Pase is described to 

be directly affected by increasing glucose concentrations (Van Schaftingen and Gerin, 

2002). However, we only investigated time effects with greater expressions for every gene 

at the end of the trial, except from PC. The elevated abundance of genes related to the 

glucose metabolism from d 50 to 80 of life reveals the increasing impact of GNG on eGP. 

Adult cattle compared to neonates receive 90 % vs. 75 % of their glucose demands from 

GNG, respectively (Nafikov and Beitz, 2007). With decreasing nutrient supply of glucose 

and increasing solid feed intake and fiber carbohydrate digestion in the rumen, the 

enzymatic pathway, regulated by gene expression, accelerates in ruminating calves 

(Aschenbach et al., 2010). 

 

The importance of maturation of the incipiently functioning somatotropic axis at birth has 

been reported (Hammon et al., 2002; Daniels et al., 2008; Brickell et al., 2009). The 

influence of sufficient nutrient and energy supply during the first weeks of age could be 

seen in our trial. Certain parameters like IGF-I and IGFBP-3 were enhanced in blood and 

liver in Adl calves, whereas IGFBP-2 was enhanced in Res groups. In accordance with the 

literature, this reflects the more mature somatotropic axis in Adl compared to Res calves 

and confirms the stimulating effect of intensive feeding (Breier et al., 2000; Renaville et 

al., 2002). Additionally, maturation is regulated due to increasing abundance of GHR 

(Smith et al., 2002; Sauter et al., 2003). We measured the liver-specific GHR1A that was 

enhanced in Adl groups. 

 

Alongside higher quantities of liquid feed preweaning, the transition from liquid to solid 

feed is another important process as proven in many studies (Khan et al., 2011, 2016). The 

goal is to ease the transition from preruminants to functionally ruminants without 

metabolic deficiencies and body weight loss. This transition management might be more 

complex in intensively reared calves but data are inconsistent. Maccari et al. (2015) fed 

milk either ad libitum or restrictively for the first 3 wk of age, used a step-down weaning 

from wk 5 to 10, and reported even greater starter intake preweaning for the Adl group. In 

addition, ad libitum fed calves in the study from Schäff et al. (2016) tended to have greater 

concentrate intakes after MR step-down in wk 8 of age. To smooth the transition, as 

recommended in the review of Khan et al. (2011), we chose a gradual weaning over a two-

week period with daily reduction of MR allowances at 7.2 % for Adl and 5.0 % for Res. 
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In a review from Costa et al. (2016), group-housed calves had increased solid feed intakes 

compared to single-housed calves. This is thought to be a reaction of mimicking feeding 

behavior of other calves. In our study, we group-housed the calves from wk 2 or 3 of age, 

but neither gradual weaning nor group housing could prevent Adl from distinct reduction 

in growth performance with specific declines in ADG, and anabolic metabolism and IGF-I 

axis (i.e., plasma concentrations of glucose, insulin, triglycerides, and IGF-I). While the 

latter parameters were decreased, plasma concentration and hepatic gene expression of 

IGFBP-2 increased in Adl after weaning. Therefore, the weaning period might still have 

been too short for a smooth transition and the group housing possibly was not so effective, 

because calves consumed concentrates from an automatic feeder with only one feeding 

place that was not visible for the other calves. For all mentioned parameters that were 

affected by weaning in Adl, at least a numerical improvement could be seen in wk 11, 

when all calves were fed 2 L MR/d. Overall, the deficiency in Adl occurred for about 2 wk 

when the calves were over 2-month old. This contrasts with Res who showed no 

impairment during weaning, but had deficiencies in anabolic parameters, as well as the 

systemic and hepatic IGF-I and IGFBP status, and body weight gain from wk 1 to 9, and 

wk 1 to 6 of age, respectively. 

A smoother transition approach might not be linked to a specific time but rather to 

individual animal recordings of solid feed intake. Weaning can be realized when calves 

consume > 1 kg of solid feed per day (FAWC, 2015). This recommendation occurred for 

6-wk old calves, whereas Res and Adl groups failed to reach this amount before wk 9 and 

wk 10 to 11 of age, respectively. The successful weaning reported from Maccari et al. 

(2015) is possibly connected to the longer individual housing (3 wk) and an extended 

weaning (6 wk) period in intensively reared calves. Moreover, the relative short ad libitum 

milk feeding period of 3 wk postnatum might be another reason for the elevated starter 

intake. Nevertheless and as stated before, rumen maturation is inadequate before 8 wk of 

age (Meale et al., 2017) and Khan et al. (2016) reviewed negative impacts on rumen health 

and rumination when a high-starch starter was fed to young calves. Additionally, our 

results showed that the ME intake through MR was greater than by concentrate intake for 

Res and Adl calves until wk 8 and 10 of life, respectively. 

If intensive feeding rates along with longer preweaning liquid feeding can be established, 

the enhanced calf growth should be recognized and accompanied with adjustment in calf 

husbandry with respect to dimensions of individual housing systems or group sizes. 
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The application of MR with Ca-/Na-butyrate was unproblematic in practice. The odor 

between the commercial and trial MR was scarcely notable and no differences between 

solubility in manual or automatic feeding were recognized. Guilloteau et al. (2010a) 

reviewed further improvements of butyrate supplementation if it was fed soon after birth, 

and recommended an effective dose between 1 to 4 % of DMI. Interestingly, calves reared 

naturally by their dams would have a fivefold higher butyrate intake, as butyric acid is 

contained in cow´s milk with 3 to 4 % of milk fat (Alais, 1984; Boeckaert et al., 2008; 

Chilliard et al., 2009). The presumed amount of butyric acid in milk vs. the tested volume 

of butyrate in the MR of the study were 12.8 vs. 2.4 g/kg DM, respectively. 

We fed MR with 0.24 % butyrate from d 4 of age, but the effects of butyrate were rare in 

this trial, except from higher concentrate intakes in wk 5 of age. In contrast to previous 

studies in calves (Górka et al., 2009; Guilloteau et al., 2010b) and piglets (Kotunia et al., 

2004), we found no increase in growth performance, instead butyrate tendentially 

decreased body growth (P = 0.1). The lack of significant effects on growth performance 

was also reported in weaned piglets (Biagi et al., 2007), whereas the piglets from that work 

at least had numerically greater BW that we did not observe in our calves. The importance 

of early postnatal supply of butyrate was seen in trails where butyrate was orally 

supplemented after 1 wk of age and no growth-stimulation could be revealed (Niwińska et 

al., 2017). Calves from our trial received butyrate added in MR after 3 d of life, but 

nevertheless were fed milk with the above assumed high amounts of butyric acid prior to 

MR feeding. Hence, a delay in butyrate intake was not assumed. 

Furthermore, parameters of the somatotropic axis, namely IGF-I and IGFBP-3, were 

impaired by butyrate feeding. Both parameters are recognized for stimulating cell 

proliferation and body growth. Although butyrate intake was higher in Adl compared to 

Res and compared to studies with oral butyrate supplementation in restricted diets (Górka 

et al., 2009; Guilloteau et al., 2009), the overall intake was much lower than in milk-fed 

calves as mentioned above. Guilloteau et al. (2010a) assumed negative effects on cell 

proliferation when high amounts of butyrate are absorbed, whereas Niwińska et al. (2017) 

questioned the sufficiency of the butyrate amount (~ 0.3 % of DM) used in calf trails. From 

the literature review no studies with higher percentage of butyrate supplementation in MR 

have been conducted, although Adl calves with higher butyrate intakes in total showed no 

stimulating improvement compared to Res calves in our study. 
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The results from the presented study clearly indicate major benefits of ad libitum MR 

feeding for calves during the first weeks of life. Butyrate supplementation in the MR did 

not lead to improved effects in restricted or ad libitum MR planes and no synergistic 

effects in ad libitum feeding could be seen. However, butyrate slightly suppressed growth 

performance and maturation of the somatotropic axis. According to this, ad libitum 

feeding, but not butyrate supplementation, can be recommended from the outcome of this 

study.  

The feeding management would contribute to animal welfare that is based on the 

“five freedoms”, whereas the freedom from hunger and malnutrition, freedom from 

distress, and freedom to express normal patterns of behavior might be fulfilled in ad 

libitum or at least intensive liquid feeding to calves in an adequate period before weaning 

(FAWC, 2015). 

Furthermore, the overall issue of high mortality rates that continue to pose problems in calf 

rearing and result in poor welfare and economic losses, might be improved by intensive 

feeding and more precise focus on rearing management. Mee (2013) stated that 

international high mortality rates are often not recognized as a primary issue in the dairy 

industry. For example, there are no German national studies on overall calf mortality rates 

which may be contribute to deficient awareness of the problem. On the other hand, studies 

from Germany (Tautenhahn, 2017), Canada (Windeyer et al., 2014), and New Zealand 

(Cuttance et al., 2017) showed that postnatal, but not perinatal mortality rates were 0 % at 

some farms. Hence, Cuttance et al. (2017) assumed a strong potential to achieve greater 

reduction of postnatal mortality rates. 

The presented trial examined 68 calves in total. Four calves had incomplete data sets or 

were excluded from the trial. In particular, one calf could not adjust to the automatic 

feeder, one calf had recurrent abomasal displacements, one calf died postoperative after 

liver biopsy, and one calf died because of various health deficiencies. This particular calf 

was the only one to contribute to postnatal mortality until 11 wk of age. Therefore, the 

postnatal mortality rate for this trial was 1.5 %. No differences of feeding levels or butyrate 

supplementation were seen on the relatively low mortality rate. 

Nevertheless, a critical view on calf management, including calf nutrition, and the 

willingness to improve existing rearing systems, might help to diminish mortality on farms 

and increase welfare for the animal. 
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7 Summary 

Calf-rearing management is a particularly important field in animal production as the calf 

will be the future dairy or beef cattle. Therefore, a healthy, robust, and productive animal 

will ensure successful farming. High morbidity and mortality rates elucidate the need and 

potential for improvements in calf rearing. One of the key factors is the nutrition of the 

calf. Beginning with the essential colostrum feeding to provide the newborn with nutrients, 

immunoglobulins, and additional bioactive factors, the further provision of sufficient 

energy and nutrients will improve the calf´s development in short-term and possible long-

term effects. 

Like all mammals, neonatal calves depend on the supply of liquid feed, i.e., milk or milk 

replacer (MR), before the rumen development is adequate to absorb and digest solid feed 

for maintenance and growth. In conventional feeding regimes calves are fed restricted 

amounts of liquid feed (e.g., 4 – 6 L/d) for a few weeks, whereas ad libitum intake of milk 

or MR is at least twice as high and naturally lasts for several month. Hence, restricted-fed 

calves are not able to express their natural feeding behavior and cannot exploit their full 

growth potential. Furthermore, feed additives might increase the growth performance and 

feed efficiency. The short-chain fatty acid, butyrate, is known as a natural growth promoter 

and affected body growth, development of the gastrointestinal tract, and health in different 

species (i.e., calves, piglets, and chickens). Therefore, in the critical rearing stage where 

young stock is prone to health maladies, feed additives are used to improve health and 

robustness. An improved maturation of the intestinal tissue would contribute to the 

postnatal development of the calves through a greater and more viable absorptive surface. 

In the present study, the effects of ad libitum MR feeding and butyrate supplementation on 

the postnatal development, energy metabolism, and the regulation of growth through the 

somatotropic axis were evaluated. The trial was conducted with 64 Holstein calves (32 

female, 32 male) that were studied from birth until wk 11 of life. All calves received the 

same amount of colostrum (2.5 kg) from their dam within 2 hours postnatum. Subsequent 

meals of transition milk were either offered in restricted amounts of 6 L/d (Res; n = 32) or 

ad libitum (Adl; max. 25 L/d; n = 32) until d 3 of age. From d 4 until d 56, dietary planes 

continued with MR (12.5 % dry matter) feeding, whereby feeding groups were subdivided 

and received MR either without (ResB-; AdlB-) or with 0.24 % butyrate supplementation 

(ResB+; AdlB+). All calves were gradually weaned to 2 L/d from wk 9 to 10, and 2 L 
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MR/d were offered until the end of the trial. Concentrate, hay, and water were freely 

available. 

Performance data were determined by daily feed intake and weekly weighing. On four time 

points in wk 1, then weekly or once every other wk (insulin-like growth factor binding 

protein; IGFBP) until wk 11 of age, blood samples were taken to evaluate plasma 

concentrations of specific metabolites, hormones, and the systemic IGF system. Liver 

samples were collected on d 50 and 80 of age to determine gene expression related to 

glucose metabolism and to the hepatic IGF system. 

Calves fed liquid feed ad libitum had lower concentrate intake but higher milk and MR 

intakes which resulted in elevated metabolic and endocrine plasma levels, e.g., of glucose 

and insulin. The enhanced preweaning nutrient and energy intake positively affected the 

IGF system, especially with higher IGF-I and IGFBP-3 but lower IGFBP-2 concentrations. 

The effect of accelerated anabolic metabolism and stimulation of the somatotropic axis 

reflected the overall greater growth performance in Adl compared to Res calves. The 

supplementation of butyrate in MR had no additional effects on feed intake and body 

growth in the treatment groups. However, butyrate supplementation suppressed glucose 

status and the IGF system at specific time points throughout the study. 

In conclusion, butyrate supplementation had no additional effects, but preweaned calves 

benefit from ad libitum milk or MR feeding that stimulated the intermediary metabolism 

and growth performance. Furthermore, the intensive feeding practice allowed the 

expression of a more natural feeding behavior. 
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8 Zusammenfassung 

Das Management der Kälberaufzucht hat eine große Bedeutung, da das Kalb die 

zukünftige Milchkuh oder das Mastrind darstellt und somit gesunde, robuste und 

produktive Tiere den Erfolg eines landwirtschaftlichen Betriebes sichern. Die hohen 

Krankheits- und Sterblichkeitsraten verdeutlichen die Notwendigkeit und das Potenzial, die 

Kälberaufzucht zu verbessern. Ein Schlüsselfaktor hierfür ist die Kälberfütterung. 

Angefangen mit der essenziellen Kolostrumgabe, um das Neugeborene mit Nährstoffen, 

Immunglobulinen und weiteren bioaktiven Substanzen zu versorgen, verbessert eine 

weitere ausreichende Energie- und Nährstoffversorgung die unmittelbare und 

möglicherweise langfristige Entwicklung der Kälber. 

Neugeborene Kälber sind wie alle Säugetiere auf die Aufnahme von Flüssignahrung in 

Form von Milch oder Milchaustauscher (MAT), angewiesen. Erst wenn der Pansen 

ausreichend entwickelt ist, um Festfutter zu verdauen, kann der Grundumsatz und das 

Wachstum hierüber generiert werden. In konventionellen Fütterungsstrategien werden 

Kälber restriktiv und für wenige Wochen mit Tränke versorgt (z.B. 4 – 6 l/d), wohingegen 

ad libitum getränkte Kälber mind. doppelt so viel Milch oder MAT aufnehmen und in der 

Natur erst nach mehreren Monaten abgetränkt werden. Somit sind restriktiv gefütterte 

Kälber weder in der Lage ihr physiologisches Trinkverhalten auszuleben noch können sie 

ihr Wachstumspotential ausschöpfen. 

Des Weiteren ist es möglich, die Wachstumsleistung und Fütterungseffizienz durch den 

Einsatz von Futterzusatzstoffen zu erhöhen. Die kurzkettige Fettsäure Butyrat ist bekannt 

als natürlicher Wachstumsstimulator und beeinflusst das Körperwachstum, die 

Entwicklung des Magen-Darm-Traktes und die Gesundheit in verschiedenen Tierarten, 

z.B. Kälber, Ferkel, oder Küken. Zusatzstoffe im Futter sollen den Gesundheitsstatus und 

die Robustheit der Jungtiere verbessern, v.a. in der kritischen Aufzuchtphase, wenn sie 

besonders anfällig für Krankheiten sind. Im Allgemeinen führt eine ausgereifte und 

gesunde Darmmukosa zu einer verbesserten postnatalen Entwicklung der Kälber, da es 

eine größere und funktionsfähigere Absorptionsoberfläche bietet. 

In der präsentierten Studie wurden die Effekte einer ad libitum Fütterung von MAT und 

eines Buttersäurezusatzes auf die postnatale Entwicklung, den Energiestoffwechsel und die 

Wachstumsregulation durch die somatotrope Achse untersucht. Der Versuch wurde mit 64 

Kälbern (32 weiblich, 32 männlich) der Rasse Deutsche Holstein von ihrer Geburt bis zur 

11. Lebenswoche durchgeführt. Alle Kälber erhielten die gleiche Menge an Erstkolostrum 
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(2,5 kg) von der Mutter innerhalb von zwei Stunden nach der Geburt. Anschließend wurde 

Transitmilch bis zum 4. Lebenstag entweder restriktiv mit 6 l/d (Res; n = 32), oder ad 

libitum (Adl; max. 25 l/d; n = 32) vertränkt. Ab dem 4. bis zum 56. Lebenstag wurde die 

Tränkeintensität mit einem MAT (12,5 % Trockenmasse) fortgesetzt, wobei die 

Fütterungsgruppen entweder einen MAT ohne Butyrat (ResB-, AdlB-) oder mit 0,24 % 

Butyratzusatz (ResB+, AldB+) erhielten. Alle Kälber wurden in den Lebenswochen 9 bis 

10 linear auf 2 l/d abgetränkt, wobei sie bis zum Versuchsende 2 l/d erhielten. Kraftfutter, 

Heu und Wasser standen zur freien Verfügung. 

Für die Leistungsdaten wurden die täglichen Futteraufnahmen und wöchentlichen 

Gewichte erfasst. Blutproben wurden an vier Zeitpunkten in der ersten Lebenswoche, dann 

wöchentlich oder zweiwöchentlich (insulin-like growth factor binding protein; IGFBP) bis 

zum Versuchsende entnommen. Im Blutplasma wurden spezifische Metaboliten und 

Hormone, sowie Parameter des IGF-Systems analysiert. Am 50. und 80. Lebenstag wurden 

Leberbiopsien durchgeführt, um die Genexpression in Bezug auf den Glukosestoffwechsel 

und das leberspezifische IGF-System zu untersuchen. 

Ad libitum gefütterte Kälber hatten geringere Kraftfutteraufnahmen, aber höhere Milch- 

und MAT-Aufnahmen, was zu erhöhten metabolischen und endokrinen Plasmawerten, z.B. 

von Glukose und Insulin, führte. Die erhöhte Nährstoff- und Energiezufuhr vor dem 

Abtränken zeigte eine positive Beeinflussung des IGF-Systems mit höheren 

Konzentrationen von IGF-I und IGFBP-3, bei gleichzeitig niedrigeren IGFBP-2 Werten. 

Der Effekt des verbesserten anabolen Stoffwechsels und die Stimulation der somatotropen 

Achse spiegelten sich in dem insgesamt höheren Gewichtszuwachs der Adl gegenüber den 

Res Kälbern wider. Der Zusatz von Butyrat im MAT hatte keine zusätzlichen Effekte auf 

die Futteraufnahme und das Wachstum der Kälber. Jedoch minderte der Butyratzusatz den 

Glukosespiegel und das IGF-System zu bestimmten Zeitpunkten während des Versuchs. 

Zusammenfassend zeigt diese Studie, dass der Zusatz von Butyrat keine weiteren, das 

Wachstum oder die Entwicklung stimulierenden Effekte hatte, aber Tränkekälber von der 

ad libitum Milch- oder MAT-Fütterung profitieren, die den Intermediärstoffwechsel und 

das Wachstum stimuliert. Darüber hinaus ermöglicht das intensive Tränkemanagement die 

Ausübung eines natürlicheren Trinkverhaltens der Kälber. 
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