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Abstract

Survey data are potentially affected by cheating interviewers. Even a small
number of fabricated interviews might seriously impair the results of further
empirical analysis. Besides reinterviews some statistical approaches have been
proposed for identifying fabrication of interviews. As a novel tool in this context,
cluster and discriminant analysis are used. Several indicators are combined to
classify ‘at risk’ interviewers based solely on the collected data. An application
to a dataset with known cases of cheating interviewers demonstrates that the
methods are able to identify the cheating interviewers with a high probability.
The multivariate classification is superior to the application of a single indicator
such as Benford’s law.

Keywords: Cheating interviewers; Benford’s law; cluster analysis; data fabri-
cation
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1 Introduction

Whenever data collection is based on interviews, one has to be concerned about
data quality. Data quality can be affected by false or imprecise answers of the
respondent or by a poorly designed questionnaire, but it can be affected as well
by the interviewer, when he deviates from the prescribed interviewing procedure.
If he does so consciously, this is referred to as interviewer falsification (Schreiner
et al., 1988) or cheating (Schrépler and Wagner, 2003).

Interviewer cheating can occur in many ways. Rather subtle forms consist in
surveying another household member than intended, or in conducting the survey
per telephone when face-to-face interviews are required. The most severe form
of cheating is the fabrication of entire interviews without ever contacting the
respective household.! In our analysis we deal with the latter case.

Fabricated interviews can have serious consequences for statistics based on
the survey data. Schnell (1991) and Schrépler and Wagner (2003) provide evi-
dence that the effect on univariate statistics might be less severe, provided the
share of cheaters remains sufficiently small and the ‘quality’ of the fabricated
data is high. But even a small proportion of fabricated interviews can be suf-
ficient to cause heavy biases in multivariate statistics. Schrapler and Wagner
(2003) find that the inclusion of fabricated GSOEP data in a multivariate re-
gression reduces the effect of training on log gross wages by approximately 80
per cent, although the share of fabricated interviews is less than 2.5 per cent.
This indicates the importance of eliminating these interviews from the dataset.

The most common way to identify cheating interviewers is the reinterview
(Biemer and Stokes, 1989). Here, a supervisor contacts some households which
should have been surveyed to check whether they were actually visited by the
interviewer. However, for reasons of expense, it is impossible to reinterview all
households participating in a survey. So the question arises, how the reinter-
view sample can be optimized to best detect cheating interviewers. Generally,
it seems useful to select households for the reinterview, which have been sur-
veyed by an interviewer, who is - due to personal characteristics, or character-
istics linked to the answers in his questionnaires - more likely than others to
be cheating. In this context, Hood and Bushery (1997) use the term ‘at risk’
interviewer. In other cases like street surveys, in which the respondent’s name is
not recorded, the reinterview is not practicable at all. Hence, the identification
of ‘at risk’ interviewers based on the above mentioned characteristics becomes
even more important.

In our analysis we try to detect cheaters by a purely statistical approach
relying on the data produced by the interviewers. This is not a new idea,
literature provides several examples for this kind of approach (Hood and Bush-
ery, 1997; Diekmann, 2002; Schrapler and Wagner, 2003; Swanson et al., 2003;
Schifer et al., 2005). However, the tests conducted in these studies rely on the
examination of only one indicator derived from the interviewer’s data to detect
cheaters. We combine several of those indicators in cluster analyses, allowing

IThe act of fabricating entire interviews is called ‘curbstoning’ by the US Bureau of the
Census (Swanson et al., 2003)



for a better classification of the interviewers compared to previous approaches.
To the best of our knowledge, this procedure is an innovation in the context of
identifying cheating interviewers.

We have survey data available (see subsection 3.1 for a further description
of our dataset) which was partly fabricated by cheaters. We know which data
was collected by honest interviewers? and which data was fabricated. This
knowledge allows us to evaluate our approach. However, this a priori knowledge
is no prerequisite to employ the method.

The problem of identifying ‘at risk’ interviewers has already been addressed
in the 1980s, however, literature on this issue is still scarce. In 1982 the US
Bureau of the Census implemented the Interviewer Falsification Study. Based
on the information collected in the context of this study, Schreiner et al. (1988)
find that interviewers with a shorter length of service are more likely to cheat.
Hood and Bushery (1997) use several indicators to find ‘at risk’ interviewers in
the National Health Interview Survey (NHIS). For example, they calculate the
rate of households which have been labelled ineligible or the rate of households
without telephone number® per interviewer and compare the rates to Census
data from the respective area. When large differences occur, the interviewer
is flagged and a reinterview is conducted. Detection rates among the flagged
interviewers turn out to be higher than those in random reinterview samples.
For the case of computer assisted interviewing, Bushery et al. (1999) propose
the use of date and time stamps - the recording of the time and the duration
of the interview by the computer - to find suspect interviewers. Interviewers
who complete an extremely high number of interviews during one day or spend
very little time to complete the individual interviews are flagged as potential
cheaters. Schifer et al. (2005) assume that cheating interviewers avoid extreme
answers when fabricating data. Using data of the German Socio Economic Panel
(GSOEP) the authors calculate the variance of the answers for every question on
all questionnaires of an interviewer and sum up all variances. Thanks to other
control mechanisms in the GSOEP, cheaters are known and it turns out that
they could be found among the interviewers with the lowest overall variances.

Another means of detecting fabricated data that has gained a lot of popu-
larity in recent years is Benford’s law (Schriapler and Wagner, 2003; Swanson
et al., 2003; Schéfer et al., 2005) which will be discussed in Section 2 along with
its success to detect faked interviews in previous studies. Furthermore, Section
2 describes our statistical approach to identify cheating interviewers. Section 3
presents the data our analysis is based upon as well as our results. The paper
concludes with a discussion of our findings.

20f course one can never be absolutely sure if the assumed honest interviewers were really
honest. However, given the circumstances in which these interviewers collected the data,
makes cheating from their side extremely improbable.

3 As reinterviews are often conducted by telephone, Hood and Bushery assume cheaters to
be less likely to provide the telephone numbers in order to remain undetected.



2 Methods

2.1 Benford’s Law

When the physicist Frank Benford noticed that the pages in logarithmic tables
containing the logarithms of low numbers (1 and 2) were more used than pages
containing logarithms of higher numbers (8 and 9), he started to investigate the
distribution of leading digits in a wide range of different types of numbers like
numbers on the first page of a newspaper, street addresses or Molecular Weights
(Benford, 1938). Benford found that the distribution of the leading non-zero
digits could be described by the following formula which has become known as
‘Benford’s law’:*

1
Prob(leading digit=d) = log;, (1 + E) (1)

Benford also provided distributions for the second, third and higher digits but
this paper deals exclusively with the leading digit distribution for reasons dis-
cussed below.

However, not all series of numbers Benford investigated seemed to conform
to his law. Consequently, the question arose what kind of data can be supposed
to produce first digits in line with the law. Hill (1995, 1999) postulates that
random sampling from randomly selected distributions would create such data.
The idea is that drawing from many different distributions leads to scale and
base neutral numbers, which in turn implicates the applicability of Benford’s
law. Scott and Fasli (2001) find out that producing data by multiplying several
random numbers results in leading digits distributed according to Benford’s
law. This procedure is the same as adding logarithms of random numbers.
According to the central limit theorem this sum tends to a normal distribution
so the data itself will be lognormally distributed. The authors conclude that
data from a sufficiently positively skewed distribution whose modal value is
not zero and whose values are positive can be expected to conform to the law.
According to Nigrini (1996) Benford’s law applies to numbers that describe
similar phenomena like market values of listed enterprises or populations but
have not been assigned like social security numbers.

The basic idea of using Benford’s law to detect fabricated data is that
cheaters are unlikely to know the law or to be able to fabricate data in line
with it.> So a strong deviation of the leading digits in a dataset from Benford’s
distribution indicates that the data might be faked. Of course one has to be

4In fact, Benford was not the first one to describe the law: Simon Newcomb already
mentioned it in 1881 (Newcomb, 1881).

5When Diekmann (2002) asked sociology students to invent regression coefficients in order
to make them ‘fit’ to a given hypothesis, he found that the students were able to produce
coefficients in line with the leading digit distribution (although the students were not familiar
with it) but that the second digit distribution significantly deviated from the distribution
derived by Benford. So Diekmann proposes not to focus on first digits to detect fraudulent
data. However, other studies discussed below find that leading digits seem to be a good
indicator to uncover such data in other contexts.



concerned if the nature of the data is such that it can be supposed to follow
Benford’s law if it is authentic.

The detection of financial fraud is a field in which the application of Benford’s
law has gained much popularity in recent years (Nigrini, 1996, 1999; Saville,
2006). The results of those studies are not relevant in our context. However,
it is interesting to note that there seems to be a consensus in literature that
monetary values are appropriate to be analyzed with Benford’s law. Swanson
et al. (2003) show that the distribution of first digits in the American Consumer
Expenditure Survey is close to Benford’s distribution.

Schrapler and Wagner (2003) and Schéfer et al. (2005) use Benford’s law
to detect cheating interviewers in the German Socio-Economic Panel Study
(SOEP). In both studies all questionnaires delivered by every single interviewer
are combined and it is checked whether the distribution of the first digits in the
respective questionnaires deviates significantly from Benford’s law. This can be
done by calculating the x2-statistic:

9 2
Xg:sz (2)

h
d=1 ba

where n; is the number of leading digits in all questionnaires from interviewer ¢,
ha, is the observed proportion of leading digit d in all leading digits in interviewer
i’s questionnaires and hp, is the proportion of leading digit d in all leading
digits under Benford’s distribution. High y2-values indicate a deviation from
Benford’s distribution and thus indicate ‘at risk’ interviewers. Schrapler and
Wagner (2003) use different kinds of continuous variables, Schéfer et al. (2005)
restrict their analysis to monetary values. Both studies assume the critical y?2-
values to be dependent on the sample size n. Instead of using the x2-value
to detect cheaters, Schrapler and Wagner (2003) construct a goodness of fit
measure, which relates the observed y2-value to the highest possible y2-value,
given the sample size. But this measure seems even more dependent on the
sample size than the x2-value itself. Schifer et al. (2005) use a bootstrap method
to calculate the plausibility of obtaining a larger y?-value than the one observed,
given a certain sample size.

Generally, the results obtained look promising. The goodness of fit measure
in the study of Schrépler and Wagner is rather low for cheaters (which were
already known in advance) compared to those of honest interviewers. Schéfer
et al. find the plausibilities derived from the bootstrap for cheaters to be among
the lowest of all interviewers. Thus it seems appropriate to use Benford’s law
as a means to identify ‘at risk’ interviewers.

To investigate whether there is indeed a relation between the y2-value and
the sample size, we run a Monte Carlo simulation. In this simulation we draw
samples from a Benford distribution with the sizes n = 10,20, 30, ...,1000°
and calculate the resulting y2-values. For each sample size we conduct 10000
repetitions. Thus we obtain for each sample size the critical y2-value for any

6This covers the range of first digit sample sizes for all our interviewers, which goes from
91 to 175.



Figure 1: Relation between sample size and simulated 95%-critical values

20

18 9

16, oo e o e ea o e e . . c e vere

141 R

12 bl

10 9

X2-value

Observed critical values
Ar Tabulated critical value

0 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

Sample Size

significance level by simply ordering the 10000 values. Figure 1 plots the 95%-
critical values against the sample size. Obviously there seems to be no relation.
In fact, all the plotted values are close to the tabulated value for the 95%-
percentile of a y2-distribution with 9 — 1 = 8 degrees of freedom. Based on
this finding, we consider the fit of the leading digit distribution to Benford’s
distribution to be independent from the sample size. Thus we assume that
there is no need to further modify the x2-value.

We use the y2-value on a per interviewer basis as one element in our multi-
variate analyses. Concerning the selection of variables, we stick to the approach
of Schifer et al. (2005) and include only monetary values into the examina-
tion of leading digits. These values refer to household expenditures for different
items like leasing or buying land, seeds, fertilizer or taxes and to household
income from different sources like agricultural or non agricultural self employ-
ment and public or private transfers. Overall we include 26 different monetary
values. The restriction to monetary values constitutes a clear criterion during
the process of selecting data for the examination that ensures that all the data
describe similar phenomena (in our case household income and expenditures) as
proposed by Nigrini (1996). Furthermore, as mentioned above, financial data is
broadly agreed upon to be apt for the analysis with Benford’s law. The fact that
we use different types of expenditure and income raises confidence that overall
the monetary data might be scale and base neutral, a fact which, according
to Hill (1995, 1999), implicates the applicability of Benford’s law. Finally, a
rough graphical appraisal of the different monetary variables reveals that most
of them seem to follow a lognormal-like distribution, with the majority of values



being small compared to some outliers upwards. This is not at all surprising as
income is typically assumed to be lognormally distributed. Following Scott and
Fasli (2001), one can be confident that such data conforms to Benford’s law.

Our examination is restricted to the leading digit. We have also experi-
mented with the second digit, but the results were unusable. The reason is that
many of the monetary values are rounded, which has led to an extremely high
portion of zeros and fives among second digits. At this point it must be stated
that it is not clear in which way the rounding of the second digits influences the
leading digit distribution.

2.2 Multivariate Analyses

Our idea is to combine several indicators, which we derive directly from the
questionnaires of each interviewer and which we suppose to be different for
cheaters and non-cheaters. We do this by means of cluster and discriminant
analysis.

The cluster analysis constitutes the real ‘at risk interviewer identifying’ ap-
proach. The interviewers are clustered in two groups with the intention of
obtaining one group that contains the cheaters and another that contains the
honest interviewers. This approach requires no a priori information on who is
cheating and who is not. In fact this is what it is supposed to reveal. As we
know from the outset which interviewer belongs to which group, we can dis-
cover whether the cluster analysis identifies the ‘true’ cheaters to be ‘at risk’.
In contrast, the discriminant analysis requires knowledge on the cheater respec-
tively non cheater status of each interviewer before it can be conducted. We use
the discriminant analysis to verify our hypotheses on the behaviour of cheaters,
which will be discussed below, and to evaluate how well the employed indicators
can separate the two groups.

One of the indicators we use is the y?-value calculated by comparing the dis-
tribution of first digits in the questionnaires of each interviewer with the Benford
distribution as described in the previous subsection. Furthermore, we derive
three other indicators from hypotheses concerning the behaviour of cheaters
when fabricating data. Schéfer et al. (2005) assume that cheaters have a ten-
dency to answer every question, thus producing less missing values. Further-
more, they expect cheaters to choose less extreme answers to ordinal questions.
Hood and Bushery (1997) hypothesize that cheaters will “try to keep it simple
and fabricate a minimum of falsified data” (Hood and Bushery, 1997, p. 820).

Based on these assumptions, we calculate three rations, which along with
the y2-value, serve as indicator variables in the multivariate analyses. All ratios
are like the y2?-value on the interviewer-level. This means that we pool all
questionnaires for every single interviewer.

e The ‘non-response-ratio’ is the proportion of questions which remain unan-
swered in all questions. We expect this ratio to be lower for cheaters than
for honest interviewers.



e The ‘extreme-answers-ratio’ refers to answers which are measured in or-
dinal scales. The ratio indicates the share of extreme answers (the lowest
or highest category on the scale) in all ordinal answers. According to the
above-mentioned assumptions, this ratio should also be lower for cheaters.

e The ‘others-ratio’ refers to questions which, besides several framed re-
sponses offer the item ‘others’ as a possible answer. The choice of this
‘others’-item requires the explicit declaration of an alternative. If cheaters
tend to keep it simple, we can expect them to prefer the framed responses
to the declaration of an alternative. Thus, this ratio too (calculated as
the proportion of ‘others’ answers in all answers where the item ‘others’
is selectable) should be lower for cheaters.

Of course the list of indicator variables, which might be included in the
cluster analysis, can be extended. Generally, it is possible to derive many more
of those variables from hypotheses on the behaviour of cheating interviewers, or
to use those which have already been proposed in the literature, albeit not in the
context of cluster analysis. For example, based on the assumption that cheaters
try to fabricate a minimum of falsified data, Hood and Bushery (1997) expect
cheaters to disproportionately often select the answer ‘No’ to questions, which
either lead to a set of new questions or avoid it (assuming that ‘No’ is generally
the answer that avoids further questions). So one could calculate the ratio of
‘No’ answers to such questions and use this ratio as a variable in the cluster
analysis.” Furthermore, when computer assisted interviewing allows the use of
date and time stamps as discussed by Bushery et al. (1999), the average time
needed to conduct an interview, or the highest number of interviews conducted
in one day might serve as variables.

3 Results

3.1 Data Sources

The data used in this study are derived from household surveys from November
2007 and February 2008 in one non-OECD country. The target group of the
surveys were rural households in different villages which were selected by ran-
dom sample. The questionnaire was composed of different sections with regard
to household characteristics, resource endowment as well as income and expen-
ditures. Most of the questions were closed questions. Only a few questions
included a scale. Metric variables were collected for income and expenditure
categories.

The first survey in November 2007 resulted in faked interviews. Five inter-
viewers, most of them well-known, filled in 50 questionnaires within one village.

"We do not use this ratio, as two slightly different versions of the questionnaire were used
in our empirical sample. There are only a small number of questions which lead to new
questions or avoid them depending on the answer, which are identical in both versions of the
questionnaire.



Table 1: Number of questionnaires per interviewer.

Interviewer Cl C2 (C3 C4 H1l H2 H3
Number of 10 12 10 10 22 23 23
questionnaires

Interviewer H4 H5 H6 H7 H8 H9
Number of 24 23 23 23 23 24
questionnaires

The results of one interviewer have been removed from this study as he filled
in only 3 questionnaires, which is too little for statistical analysis. Two of the
interviewers had been involved in developing the questionnaire as well as in
selecting the villages and getting in contact with the administration before sur-
veying. After we selected the target households, the interviews were conducted
by the five interviewers without supervision. As most surveyed households do
not own a telephone, no check calls were possible and scheduled. After receiving
the filled-in questionnaires we became suspicious due to the neat and seemingly
unused papers as well as due to some given answers. As no check calls were
possible the targeted households were re-interviewed face to face and the fabri-
cation of all interviews could be detected. As mentioned earlier, this method of
re-interviewing is very reliable. However, generally it is not practicable due to
high costs (Biemer and Stokes, 1989). The larger the sample group, the higher
are the time and effort which are necessary to implement this method.

A second survey in different villages with different interviewers was con-
ducted in February 2008. Besides some minor changes, the questionnaire re-
mained the same. As before, the target households were selected by random
sample based on household lists provided by the local administration. This
time the survey was arranged with supervision on the spot. Nine interviewers
conducted the interviews. No interview faking could be observed this time, so
we presume that none of these questionnaires were faked.

In total we use 250 household interviews by 13 interviewers, thereof 4 cheaters
who definitely faked the results, referred to as C1-C4, as well as 9 presumed hon-
est interviewers who probably did not fake questionnaires, labeled H1-H9. Table
1 provides an overview of the number of questionnaires per interviewer, which
were included in the analysis.

3.2 Cluster analysis

In this subsection we present the results of the cluster analysis. Based on the
results we evaluate the success of our procedure in identifying cheating inter-
viewers. As already mentioned, we use four indicator variables in the cluster
analysis: the non-response ratio, the proportion of ‘extreme’ ordinally scaled
answers in all ordinally scaled answers referred to as extreme ratio, the propor-
tion of answers where the item ‘others’ including an alternative was selected in



Table 2: Values of the variables included in the cluster analysis for each inter-
viewer (all values in per cent)

Interviewer Non- Others Extreme y2Z-value
response
C1 1.36 0.00 28.33 15.40
C2 0.71 0.65 40.85 38.62
C3 0.68 2.33 56.90 15.49
C4 0.51 0.00 58.62 37.26
H1 3.85 18.01 65.12 28.86
H2 1.99 2.40 59.42 10.38
H3 3.10 9.47 70.07 17.89
H4 4.52 13.04 56.43 21.85
H5 1.18 4.48 70.07 19.04
H6 3.46 1.37 50.75 24.94
H7 2.51 12.72 45.65 14.15
HS8 1.77 10.95 69.85 11.06
H9 0.14 1.61 69.44 6.69

all answers which offered this item (referred to as others ratio) and the y2-value
stemming from the comparison of the leading digit distribution in all question-
naires of an interviewer with Benford’s distribution.

Table 2 provides the values of the four indicator variables included in the
cluster analysis for all 13 interviewers. The ratios are expressed in per cent.
The table shows that the non-response ratio and the others ratio are clearly
lower for the four cheaters than for the honest interviewers. C1 and C4 have
not chosen the ‘others’ item at all. For the extreme ratio, things seem to be less
clear. All the values range between 40% and 70% except the value of interviewer
C1, which is clearly lower. The x2-values seem to be quite high for the group
of cheaters but the same is true for the group of non-cheaters. The tabulated
95%-critical value of the y2-distribution with 8 degrees of freedom is 15.507 and
is surpassed by two of the four cheaters (the other two stay only slightly below
this threshold) but also by five out of the nine honest interviewers. This implies
that an analysis restricted to the examination of the leading digit distribution
would not have been very effective in our case.

Several different clustering procedures have been employed in order to check
the robustness of the results. In all cases the interviewers have been clustered
in two groups with the intention to obtain one ‘cheater’ and one ‘non-cheater
group’. The advantage of this approach is that a clear classification is obtained.
In contrast, when one of the indicator variables is examined separately, it is not
clear where to ‘draw the line’ separating cheaters and non-cheaters. Further-
more, we have standardized all variables on a mean of zero and on a variance
of unity.

The procedures employed include hierarchical clustering and the K-means



Table 3: Results of the hierarchical clustering with linkage between groups and
squared Euclidian distances

Interviewer | C1 C2 (C3 C4 H1 H2 H3
Cluster 1 1 2 1 2 2 2
Interviewer | H4 H5 H6 H7 H8 H9
Cluster 2 2 2 2 2 2

Table 4: Indicator variable means by cluster for cluster composition displayed
in Table 3

Variable || Non-Response | Others | Extreme | x2-value

Cluster 1 2 1 2 1 2 1 2
Mean 0.86 2.32 0.22 7.64 | 42.60 61.37 | 30.42 17.04

approach. Hierarchical clustering merges clusters step by step, combining the
two closest clusters. Consequently two elements will definitely stay in the same
cluster once they are merged together. K-means clustering is an iterative process
aiming at reducing the distance between the elements and the respective cluster
center. Starting from arbitrarily defined cluster centers, each element is assigned
to the cluster to whose center the distance is the shortest. Subsequently new
centers are calculated and the process is repeated until the cluster composition
does not change any more. Both procedures use - in the case of hierarchical
clustering depending on the exact specification - a certain distance measure to
determine the next step. However, the procedures do not necessarily lead to
a global optimum which minimizes or maximizes this measure. In our case
the relatively low number of interviewers allows us to try all possible cluster
compositions and select the best one with regard to a certain distance measure.
This approach is the most computationally intensive one and delivers exact
results.

In our hierarchical cluster analyses the distance between two clusters is mea-
sured as the average squared Euclidian distance between all possible pairs of
elements with the first element of the pair coming from one cluster and the sec-
ond element from the other cluster. Alternatively, it is measured as the average
squared Euclidian distance between all possible pairs of elements in the two
clusters, including pairs with both elements from the same cluster. The first
procedure is referred to as linkage between groups, the latter as linkage within
groups.

Table 3 reveals the result of the hierarchical analysis with linkage between
groups. The three cheaters C1, C2 and C4 form cluster 1, cheater C3 and all
honest interviewers form cluster 2. Thus, we are able to identify both groups
of interviewers, except one cheater. However, without knowing from the outset
which interviewers cheated and which were honest, one would have to decide
which of the two clusters contains the ‘at risk’ interviewers. This can be done

10



Table 5: Results of the K-Means clustering

Interviewer | C1 C2 (C3 C4 H1 H2 H3
Cluster 1 1 1 1 2 1 2
Interviewer | H4 H5 H6 H7 H8 H9
Cluster 2 1 1 2 2 1

Table 6: Indicator variable means by cluster for cluster composition displayed
in Table 5

Variable || Non-Response | Others | Extreme | x2-value

Cluster 1 2 1 2 1 2 1 2
Mean 1.25 3.15 1.61 12.84 | 54.30 61.42 | 20.98 18.76

by comparing the means of the indicator variables for each cluster displayed
in Table 4. Means of the non-response ratio and the others ratio are clearly
lower in cluster 1. The same is true for the mean of the extreme ratio, albeit
the difference between the two clusters is less striking. Finally, a higher mean
of the y2-value can be observed for cluster 1. Given these results, one would
- according to the above mentioned hypotheses on the behaviour of cheaters -
correctly identify cluster 1 to be the cluster containing the ‘at risk’ interviewers.

The use of linkage within groups leads to a slightly different result. In-
terviewer C1 changes the cluster, so one cluster contains the two cheaters C2
and C4, the other cluster contains the rest of the interviewers. This can be
interpreted as a worsening of the result, as the separation between cheaters and
non-cheaters becomes less clear-cut.

K-means clustering leads to the cluster composition shown in table 5. All
cheating interviewers can be found in cluster 1, but four honest interviewers
are assigned to this cluster as well. Table 6 indicates that one would correctly
identify cluster 1 to be the ‘at risk’ interviewer cluster given the means of the
variables: the means of all three ratios are lower, the mean for the y2-value
is slightly higher compared to cluster 2. Thus, in our case K-means clustering
leads to a relatively high number of ‘false alarms’.

In our case, the fact that the number of interviewers is not large allows
us to determine the best cluster composition given a certain distance measure
by simply comparing all possible cluster compositions.® The advantage of this
procedure is that it definitely leads to the composition minimizing or maximiz-
ing the measure and it is not necessary to select a specific clustering method.
However, as the number of interviewers increases, this procedure becomes com-
putationally too intensive. In this case heuristic optimization methods could be

8With 13 interviewers the number of possible compositions of cluster 1 and cluster 2 is
simply 213 = 8192. As it does not matter if all elements from cluster 1 are put in cluster 2
and at the same time all elements from cluster 2 in cluster 1, there are in fact only 213 /2 = 4096
different compositions.

11



Table 7: Cluster composition that maximizes distance between clusters divided
by distance within clusters

Interviewer | C1 C2 (C3 C4 H1 H2 H3
Cluster 2 1 2 1 2 2 2
Interviewer | H4 H5 H6 H7 H8 H9
Cluster 2 2 2 2 2 2

Table 8: Indicator variable means by cluster for cluster composition displayed
in Table 7

Variable || Non-Response | Others | Extreme | x2-value

Cluster 1 2 1 2 1 2 1 2
Mean 0.61 2.23 0.33 6.94 | 49.74 5837 | 37.94 16.89

an alternative.

The first distance measure we use in this context combines the ideas that
a large distance between the two cluster centers is eligible as well as a small
distance between the elements of a cluster and the cluster center. We look for
the cluster composition which maximizes the following expression:

Yoy (dyi — dai)®
ro— = 13 1 =
Zj:l Zi:l(dij —dii)® + Zj:n1+1 Zizl(dij — dy;)?

(3)

The index i represents the four different indicator variables, dy; with a = 1,2 is
the mean of variable 7 in cluster a, j symbolizes the different elements (inter-
viewers) in cluster 1 and cluster 2, d;; is the value of variable ¢ for element j,
and ny is the number of elements in cluster 1. The values of the four variables
are again standardized. Thus the enumerator measures the distance between
the two clusters, the denominator the distance within clusters and distance is
measured in squared Euclidian form. The cluster composition that maximizes
Equation (3) is shown in Table 7. The result is identical to the one obtained
using linkage within groups as clustering method. The mean variable values
correctly indicate that cluster 1 contains the ‘at risk’ interviewers, as can be
seen from Table 8

Equation (3) takes into account the distances between the elements and the
cluster centers, as well as the distance between the cluster centers. It could be
interesting to see what optimal cluster composition results if instead of maxi-
mizing Equation (3) the average squared Euclidian distance between all possible
pairs of elements within one cluster is minimized. In fact, this idea is very sim-
ilar to the relevant target function in the hierarchical cluster procedures we
presented before. Our second distance measure, which this time is to be mini-
mized, is calculated as follows:
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Table 9: Cluster composition that minimizes distance within clusters

Interviewer | C1 C2 (C3 C4 H1 H2 H3
Cluster 1 1 1 1 2 2 2
Interviewer | H4 H5 H6 H7 H8 H9
Cluster 2 2 2 2 2 1

Table 10: Indicator variable means by cluster for cluster composition displayed
in Table 9

Variable || Non-Response | Others | Extreme | x2-value

Cluster 1 2 1 2 1 2 1 2
Mean 0.68 2.80 0.92 9.06 | 50.83 60.92 | 22.96 18.52

n1—1 —ny 13—1 13—1
Zj:l k=j+1 SEDjk + Zj:nl-i—l k=j+1 SEDjk

(il — 1)72 5 (13— n)((13 1 — 1))/2 )
SEDjy is the squared Euclidian distance between elements j and k, calcu-
lated as SEDj, = Z?ﬂ(dij — dix)?. The enumerator is the sum of distances
between all possible pairs of elements which are in the same cluster. By dividing
this sum by the number of possible pairs one obtains the average within cluster
distance. The cluster composition minimizing this function is displayed in Ta-
ble 9. Cluster 1 contains all cheaters and one non-cheater and the means of the
indicator variables again clearly indicate cluster 1 to be the cluster containing
the ‘at risk’ interviewers as shown by Table 10. This is a very satisfying result,
all cheaters are identified and only one ‘false alarm’ is produced.

3.3 Discriminant Analysis

Finally, we turn to the discriminant analysis to check whether the hypotheses on
cheater behaviour our cluster analysis is based upon are valid. In a discriminant
analysis the coefficients by and b; of the discriminant function D = b0+2?:1 bix;
are determined in such a way that they maximize a function that increases with
the difference of the mean D-values of the two different groups and at the same
time decreases with the differences of the D-values of elements within the groups.
In our case the x; are our four indicator variables and we obtain two groups by
separating cheaters and honest interviewers. In this case we have to rely on a
priori information of the category.

Table 11 shows the results. Obviously the four variables allow a clear sep-
aration of the cheaters and the honest interviewers, as the group membership
is correctly predicted in all cases. Given the fact that negative values of the
discriminant function are associated with the cheater group, Table 12 indicates
that three of the four coefficients’ signs are in line with the expected cheater

13



Table 11: Results of the discriminant analysis by interviewer

Interviewer | Predicted Actual Discriminant
group group function
C1 1 1 -2.501
C2 1 1 -4.135
C3 1 1 -0.824
C4 1 1 -2.744
Hi1 2 2 0.468
H2 2 2 1.604
H3 2 2 1.079
H4 2 2 2.309
H5 2 2 2.173
H6 2 2 0.409
H7 2 2 0.494
HS 2 2 0.052
H9 2 2 1.616

Table 12: Standardized and non-standardized estimated coefficients (discrimi-
nant analysis)

Variable Coefficient Coefficient
(non-standardized) (standardized)
Non-Response 0.952 1.138
Others -0.006 -0.030
Extreme 0.082 0.894
x2-value -0.088 -0.809
Constant -4.789 -

behaviour. Higher non-response and extreme rations lead to a higher probabil-
ity to observe an honest interviewer as does a lower y2-value. The estimated
coefficient for the others ratio is negative. Thus an increase in the others ratio
raises, ceteris paribus, the probability that an interviewer has cheated. This is
a contradiction to our above mentioned hypotheses. One possible explanation
might be that the effect of the others ratio is already captured by the non-
response ratio. The correlation coefficient between both variables is quite high
with a value of 0.71 and the value of the coefficient related to the other ratio is
very close to zero.

4 Conclusion

Survey data are potentially affected by cheating interviewers. Interviewer cheat-
ing is a non-negligible problem as it can cause severe biases. Even a small num-
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ber of fabricated interviews might seriously impair the results of further empir-
ical analysis. Many of the existing methods dealing with the identification of
fabricated interviews are derived from the survey design - like reinterviews - or
are based on the application of one single indicator such as Benford’s law.

We extend previous approaches by combining several indicators derived di-
rectly from the survey data by means of cluster analysis and discriminant anal-
ysis. The former serves as the ‘at risk’ interviewer identifying tool as it neces-
sitates no a priori information on which interviewers cheated and which were
honest. The latter requires this information and is used to validate our as-
sumptions on interviewer cheating and to reveal how well the two groups of
interviewers can be separated by the indicator variables employed in the clus-
ter analysis. The four indicator variables we use are the non response ratio,
the proportion of ‘extreme’ ordinally scaled answers, the proportion of answers
where the item ‘others’ including an alternative was selected and the y2-value
obtained by comparing the leading digit distribution of the data produced by an
interviewer with Benford’s distribution. We find the y2-value to be independent
from sample size.

To check the success of our approach in identifying ‘at risk’ interviewers we
apply it to a dataset which was partly fabricated by cheating interviewers. The
fact that we know the cheaters from the outset allows us to evaluate the re-
sults of the cluster analysis and to conduct the discriminant analysis. Different
types of cluster analyses are conducted. All of them lead to the identification
of a ‘cheater’ cluster, with the non-response ratio and the others ratio being the
clearest indicators. We are not able to identify cheaters perfectly. However, in
all cases the ‘cheater cluster’ contains a much higher share of cheaters than the
second cluster. The advantage of clustering is that one obtains a clear classi-
fication of interviewers who are ‘at risk’ and the other interviewers, something
that is not the case when indicators like the y2-value are examined separately.

The discriminant analysis reveals that our indicator variables allow for a
very precise separation of the cheater group and the honest interviewer group.
Three coefficients are in line with the hypotheses on interviewer cheating. The
coefficient associated with the others ratio has an unexpected sign, which is
possibly caused by the high correlation between this indicator and the non-
response ratio.

To further explore the usefulness of our approach it would be interesting to
observe its performance when applied to larger datasets. Additionally, larger
datasets might allow the construction of additional indicators for the cluster
analysis. We also intend to pursue the analysis in an experiment setting.
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