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ABSTRACT Ridge regression with heteroscedastic marker variances provides an alternative to Bayesian
genome-wide prediction methods. Our objectives were to suggest new methods to determine marker-
specific shrinkage factors for heteroscedastic ridge regression and to investigate their properties with
respect to computational efficiency and accuracy of estimated effects. We analyzed published data sets of
maize, wheat, and sugar beet as well as simulated data with the new methods. Ridge regression with
shrinkage factors that were proportional to single-marker analysis of variance estimates of variance
components (i.e., RRWA) was the fastest method. It required computation times of less than 1 sec for
medium-sized data sets, which have dimensions that are common in plant breeding. A modification of
the expectation-maximization algorithm that yields heteroscedastic marker variances (i.e., RMLV) resulted in
the most accurate marker effect estimates. It outperformed the homoscedastic ridge regression approach
for best linear unbiased prediction in particular for situations with high marker density and strong linkage
disequilibrium along the chromosomes, a situation that occurs often in plant breeding populations. We
conclude that the RRWA and RMLV approaches provide alternatives to the commonly used Bayesian
methods, in particular for applications in which computational feasibility or accuracy of effect estimates
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are important, such as detection or functional analysis of genes or planning crosses.

Best linear unbiased prediction (BLUP) and Bayesian approaches were
suggested by Meuwissen et al. (2001) for predicting genotypic val-
ues with DNA markers. These genome-wide prediction (GWP) ap-
proaches have proven to be useful in plant breeding populations (cf.
Crossa et al. 2010; Albrecht et al. 2011; Hotheinz et al. 2012). To
overcome the problem of overparameterization triggered by more
available marker data (p) than number of observations (n), shrinkage
factors (ridge regression; BLUP) or variable selection (Bayesian ap-
proaches) can be used. Shrinkage factors can be constant for all
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markers or marker-specific with the use of homo- or heteroscedastic
genetic variances.

Homoscedastic genetic variances at all markers in the linear model
are regarded as a major shortcoming of the BLUP approach because
many traits are assumed to be controlled by only a subset of the genes
of an individual, not by all of them. This shortcoming motivated the
development of Bayesian approaches that allow for heteroscedastic
marker variances but at the expense of being computationally
demanding (cf. Meuwissen et al. 2001, Shepherd et al. 2010, Kérkkiinen
and Sillanpad 2012). To avoid the computational demands of
Bayesian approaches, a linear model approach that uses heteroscedas-
tic marker variances for data sets with more genotypes than markers
was proposed by Piepho (2009). The generalized ridge regression
(heteroscedastic effects model, or HEM) of Shen et al. (2013) also
allows marker-specific shrinkage for overparameterized situations.
These authors emphasized the need for computationally efficient
GWP approaches with heteroscedastic marker variances.

The accuracy of the predicted genotypic values for GWP ap-
proaches with homoscedastic and heteroscedastic marker variances
was compared, e.g., for fruit traits in apple (Kumar et al 2012),
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Fusarium head blight resistance in barley (Lorenz et al. 2012), 13 traits
important in wheat breeding (Heffner et al. 2011), and for eight data
sets in wheat, barley, Arabidopsis, and maize data sets (Heslot et al.
2012). The common conclusion was that in most instances the accu-
racy of predicting genotypic values was comparable for the investi-
gated approaches. In particular, (1) none of the approaches was clearly
superior under a broad range of applications; and (2) the BLUP
approaches proved to provide good prediction accuracies, even for
traits that are not supposed to follow closely the infinitesimal model
of quantitative genetics, such as resistances. This finding was con-
firmed in a simulation study by Wimmer et al. (2013), who recom-
mend the use of BLUP in plant breeding populations with large
linkage disequilibrium (LD) extent, small sample sizes, and medium
trait heritabilities.

The focus of the aforementioned studies was on the prediction
of genotypic values of the individuals of a prediction set, and high
prediction accuracies were observed when the individuals of the
training and the prediction set were related (cf. Hotheinz et al. 2012).
If training and prediction sets are a finite population of related indi-
viduals, then long chromosome stretches are expected to be in LD. In
such populations, it is sufficient for a high prediction accuracy of
genotypic values that the effects of chromosome stretches in LD are
estimated with high accuracy. A high accuracy of estimating the effects
of single markers is not necessary. Even if the estimated effects of
single markers might be different for the different GWP approaches,
the sum of the effects on a chromosome stretch in LD might be of
similar size. This can be regarded as an explanation why different
GWP approaches with homoscedastic and heteroscedastic variances
result in a prediction of gentoypic values of similar accuracy.

The focus of this research lies on the accuracy of GWP approaches
with respect to estimating the effects of single markers. This accuracy
is important for the identification and functional analysis of genes, for
the identification of target genes for marker-assisted gene introgres-
sion programs, and for the prediction of the performance of crosses.
Predicting crosses, i.e., estimating expectation and variance of the
performance of a population derived from a cross of two parental
genotypes, is an application of GWP in which plant breeders have
high expectations, but no reports of successful implementations have
been published. Predicting crosses builds on modeling the breaking up
of existing LD and the recombination of favorable alleles originating
from the two parents of a cross. Both the accurate localization of
markers linked to the investigated trait and the accurate estimation
of the effects via a GWP approach are of central importance for the
success of such a prediction.

Our objectives were (1) to present novel heteroscedastic ridge
regression approaches that improve existing approaches with respect
to computational efficiency or accuracy of effect estimates and (2) to
demonstrate their properties with computer simulations and with data
sets of maize, wheat, and sugar beet.

METHODS

Linear model
For estimating the genetic effects of m biallelic single-nucleotide poly-
morphism (SNP) markers, a linear model, as follows, can be used:

y=18)+Zu+e, (1)

y is the vector of N phenotypic values, B, is a fixed intercept, Z is the
design matrix relating the marker data to genotypes, u is the vector
of genetic effects, and e is the vector of residuals. The elements of Z
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are coded as linear regression on the number of one of the two
alleles, i.e., as 0,1,2. The genetic effects u; (I = 1...m) and the resid-
uals are normally distributed with u; ~ N(0,07) and e ~ N(0, o)
(k = 0...N). Furthermore, cov(u;, u;) = 0 (i # j) and cov(e, e) =
0 (k #1).

In ridge regression, the genetic effects u; are predicted by solving
the following mixed-model equations

(71 z2fe)(%)-(5) @
Z1 ZZ+A*J\u ) \Zy)

where A is a diagonal matrix that defines the amount of shrink-
age. If its elements A; (I = 1...m) are defined as A; = 02/07 and
0'12 = (ri for all [, k € {1...m}, then the predictions u; are the
BLUPs (cf. Piepho 2009). This approach uses typically variance
components (ré and o2 estimated from the data set under
investigation.

In an approximative approach, preliminary rule of thumb estimates
of the heritability &, can be used to define A; = (1/h; — 1)m (ridge
regression employing preliminary estimates of the heritability (RIR),
Hotheinz et al. 2012). In the following, we suggest approaches to
determine marker-specific shrinkage parameters A, for ridge regression.

Shrinkage by single-marker variance

component estimates

A moment estimator of the variance component for each marker can
be obtained from a random single-factor analysis of variance (ANOVA)
as follows:

o MQM—MQE; )

%@FZMW)

MQM, and MQE; are the mean squares due to the marker and the
error in the ANOVA for the I-th marker, N is the total number of
individuals, and n; (i = 1,2,3) are the numbers of individuals in the
three marker classes.

The 67* are not independent and, therefore, they do not sum up to
the genetic variance, which means that they cannot be used directly to
determine the shrinkage factor. However, they can be used to partition
the total genetic variance to the individual markers:

“)

o7 =

Here, the proportion of the genetic variance that is assigned to
a marker [ is proportional to the contribution of the single-marker
ANOVA variance component of marker / to the sum of the single
marker variance components of all markers. This results in shrink-
age factors
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The approach used to determine the shrinkage factors in Equation 5
is abbreviated as RMLA (i.e., estimation of the error and genetic
variance components with restricted maximum likelihood and par-
titioning according to ANOVA varjance components).

The estimation of the genetic and error variance components from
the data set under consideration can be replaced by using preliminary
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estimates of the heritability hf, as suggested by Hotheinz et al. (2012).
This results in shrinkage factors

'0.2*
A = (1/;1;— 1>m 2;2*1 . 6)
2

We abbreviate this procedure RRWA (i.e., ridge regression with
weighing factors according to ANOVA variance components).

Shrinkage by fixing the residual variance in variance
component estimation

BLUPs of u in a linear model as defined by Equation 1 can be obtained
with an iterative procedure on basis of the expectation-maximization
algorithm (Searle et al. 1992) that consists of solving the mixed-model
equations in Equation 2 for the parameter vector and then solving the
following,

6'§= (Yy-bXy—-wZy)/(N-1) -
(3'12 = (ﬁ'lﬁ] - (rﬁtrCll)/ql
for the variance components until convergence is reached (Misztal
and Schaeffer 1986). Here g; is the number columns of the design
matrix Z that correspond to the variance component o7 and trCy is
the trace of the inverse of the coefficient matrix of Equation 2 that
corresponds to the variance component.

If o =07 (L k € {1...m}) is the constant variance of marker
effects, C; is the complete coefficient matrix, and ¢q; the number of
columns of Z (assuming full column rank), then the procedure can be
used to obtain the variance components that yield the BLUPs.

A modification can be used to determine marker-specific shrink-
age factors for ridge regression. First, 3 is estimated as with BLUP.
Then, the iterative procedure is repeated, but with two modifications:
(1) The residual error o is not updated in each iteration round but
instead the residual variance is held fixed for the value estimated in the
first round. (2) For each marker, a different [712 is estimated. This
results in m values for & and those are used to define the shrinkage
factor for ridge regression as A; = 62/d7. We abbreviate this pro-
cedure RMLYV (i.e., modification of the restricted maximum likelihood
procedure that yields heteroscedastic variances).

Software
We implemented the RIR, RMLA, RRWA, and RMLV approaches in
our software SelectionTools (www.uni-giessen.de/population-genetics/

downloads), which was also used for computer simulations. To per-
form reparametrized BLUP we used the R package rrBlupMethod6
(Piepho et al. 2012). The package BLR (Pérez et al. 2010) was applied
for performing the Bayesian LASSO (BL). We used 1500 iterations
and discarded the first 500 iterations as burn-in. The R package bigRR
(Shen et al. 2013) was used for the HEM approach. A summary of all
approaches used in the present study is given in Table 1. The code for
all calculations is available in the Supporting Information, File S1, File
S2, File S3, and File S4.

Experimental data sets

Three experimental data sets were used to investigate the prediction
accuracy, size of effect estimates, and computing time of GWP ap-
proaches. The first data set consisted of 300 tropical maize lines from
the International Maize and Wheat Improvement Center (CIMMYT),
which were genotyped with 1148 SNP markers (Crossa et al. 2010).
The traits grain yield (GY), female flowering, male flowering, and
anthesis-silking interval were analyzed. Each trait was evaluated under
severe drought stress and well-watered conditions.

The second data set consisted of 306 elite wheat lines from CIMMYT,
which were genotyped with 1717 diversity array technology markers
(Pérez-Rodriguez et al. 2012). The averages of all employed environments
for the traits GY and days to heading were analyzed. The maize and the
wheat data sets are available as an online supplement to the publications.
The third data set consisted of 310 inbred lines from a commercial sugar
beet breeding program, which were genotyped with 300 SNP markers
(Hotheinz et al. 2012). The traits sugar content and molasses loss were
analyzed. Genotypic and phenotypic data for both traits are available in
the File S4.

To assess the accuracy of predicting genotypic values, we used
repeated random subsampling to divide the data for cross validation.
The first subset was used to estimate the marker effects and contained
80% of the data. The second subset contained 20% of the data and was
used to validate the effects. The correlations between observed and
predicted values were averaged over 100 cross validation runs.

Simulations

Computer simulations were used to investigate prediction accuracy of
GWP approaches with respect to map position and effect size. To
investigate the effect of high and low LD, we simulated random
intermating of a large F1 population for either three or 19 generations
(ngen = 3, 19). From the last intermating generation, 600 random
doubled haploid lines were developed. We simulated 10 chromosomes,
each of 1.6 M length, which were evenly covered with markers. To

Table 1 Summary of GWP approaches organized by the assumption of marker variances in the present study

Marker Variances

Approach Homoscedastic Heteroscedastic Reference/R Package
BLUP X Meuwissen et al. (2001)
rrBlupMé X Piepho et al. (2012)
RIR X Hofheinz et al. (2012)
BL X Pérez et al. (2010)
HEM X Shen et al. (2013)
RMLA X New approach
RMLV X New approach
RRWA X New approach

GWP, genome-wide prediction; BLUP, best linear unbiased prediction; RIR, ridge regression employing preliminary estimates of the
heritability; BL, Bayesian LASSO ; HEM, heteroscedastic effects model; RMLA, estimation of the error and genetic variance components with
restricted maximum likelihood and partitioning according to analysis of variance components; RMLV, modification of the restricted maximum
likelihood procedure that yields heteroscedastic variances; RRWA, ridge regression with weighing factors according to analysis of variance

components.
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Table 2 Computing time (sec) required for the estimation of marker effects with different GWP approaches

Homoscedastic Marker Variances Heteroscedastic Marker Variances

RIR BLUP rrBLUPMé6 RMLV RRWA RMLA BL HEM

Simulated data, 500 individuals

330 markers 0.03 0.16 0.91 5.07 0.05 0.16 5.14 39.92

810 markers 0.05 3.18 1.55 50.30 0.13 3.38 799 4956

1610 markers 0.23 32.11 1.68 330.60 0.30 28.22 11.77 63.65
Crossa et al. (2010), 264 maize lines

1135 SNP markers 0.10 9.08 0.37 118.20 0.14 9.17 11.10 8.79
Pérez-Rodriguez et al. (2012), 306 wheat lines

1717 DArT markers 0.23 61.8 0.62 405.60 0.37 60.60 8.96 12.49
Hofheinz et al. (2012), 310 sugar beet lines

300 SNP markers 0.01 0.12 0.35 3.72 0.04 0.1 5.51 3.69

For the maize data set, the trait GY-WW was investigated, for the wheat data set the trait GY, and for the sugar beet data set the trait SC. GWP, genome-wide
prediction; RIR, ridge regression employing preliminary estimates of the heritability; BLUP, best linear unbiased prediction; RMLV, modification of the restricted maximum
likelihood procedure that yields heteroscedastic variances; RRWA, ridge regression with weighing factors according to analysis of variance components; RMLA, estimation of
the error and genetic variance components with restricted maximum likelihood and partitioning according to analysis of variance components; BL, Bayesian LASSO; HEM,

heteroscedastic effects model; SNP, single-nucleotide polymorphism; DAIT, diversity array technology; GY, grain yield; WW, well-watered; SC, sugar content.

investigate the effect of high, medium, and low marker density, we
considered distances between two adjacent markers of 1 ¢M, 2 cM, or
5cM (md = 1, 2, 5). Two genes affected the trait on each chromosome;
they were 0.401 M and 1.201 M distant from the telomere. Each had
a positive effect of 2.5 on the trait. Both favorable alleles originated from
the same parental line of the F1 population. To obtain phenotypic values,
for each of the 600 doubled haploid lines, a random normally distributed
residual was added to the genotypic value. The residual effect was chosen
such that the heritability of the trait was 4? = 0.5 or h* = 0.8. Estimation
of marker effects in the simulated data set was replicated 50 times for
each GWP approach and the estimated effects sizes for each marker were
averaged over the replications.

RESULTS

Computational efficiency
The computing time required to estimate marker effects with the
simulated and experimental data sets was compared with a Linux

Table 3 Correlation between observed and predicted phenotypic

maize, wheat, and sugar beet data sets

workstation with 8 GB RAM and an Intel Core Quad 2.80 GHz
processor. Among the approaches with homoscedastic marker variances,
RIR was the fastest, and among those with heteroscedastic marker
variances, RRWA was the fastest (Table 2). With both approaches,
marker effect estimation took less than a second for all investigated data
sets. RMLV was the slowest approach; in particular, for large data sets, the
required computing time was considerable greater than that required for
the other approaches.

Prediction accuracy of GWP approaches

For the approaches BLUP, RRWA, RMLA, BL, and HEM, the
correlation between predicted and observed phenotypic values ranged
between 0.31 for flowering time in the maize data set and 0.86 for
molasses loss in the sugar beet data set (Table 3). The differences in
prediction accuracy between the data sets were pronounced; however,
a clear trend with respect to differences between the GWP approaches
was not observable. Prediction accuracies were nearly identical for the
approaches BLUP, RIR, and RRBlupMé6; therefore, only the results for

values determined with cross validation for different traits in the

Heteroscedastic Marker Variances

Trait-Environment BLUP RMLV RRWA (h2) RMLA BL HEM
Crossa et al. (2010), 284 maize lines (264 lines, GY)
MFL-WW 0.36 0.28 0.35(0.8) 0.38 0.36 0.35
MFL-SS 0.45 0.28 0.38 (0.8) 0.39 0.45 0.44
FFL-WW 0.31 0.27 0.32 (0.8) 0.31 0.31 0.32
FFL-SS 0.51 0.35 0.46 (0.8) 0.47 0.48 0.50
ASI-WW 0.51 0.35 0.50 (0.8) 0.52 0.51 0.47
ASI-SS 0.51 0.35 0.44 (0.8) 0.46 0.50 0.45
GY-WW 0.54 0.36 0.46 (0.9) 0.50 0.54 0.52
GY-SS 0.43 0.19 0.34 (0.9) 0.37 0.43 0.35
Pérez-Rodriguez et al. (2012), 306 wheat lines
GY-average 0.65 0.54 0.66 (0.8) 0.66 0.63 0.63
DTH-average 0.59 0.41 0.57 (0.9) 0.60 0.58 0.55
Hofheinz et al. (2012), 310 sugar beet lines
SC 0.83 0.78 0.80 (0.9) 0.80 0.83 0.82
ML 0.85 0.82 0.84 (0.4) 0.86 0.86 0.85

For the RRWA approach, the preliminary heritability estimates hf, are given in brackets. BLUP, best linear unbiased prediction; RMLV, modification of the restricted
maximum likelihood procedure that yields heteroscedastic variances; RRWA, ridge regression with weighing factors according to analysis of variance components;
RMLA, estimation of the error and genetic variance components with restricted maximum likelihood and partitioning according to analysis of variance components;
BL, Bayesian LASSO; HEM, heteroscedastic effects model; GY, grain yield; MFL, male flowering; WW, well-watered; SS, severe drought stress; FFL, female flowering;
ASI, anthesis-silking interval; DTH, days to heading; SC, sugar content; ML, molasses loss.
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BLUP are presented. The RMLV approach showed considerable lower
prediction accuracies than the other approaches, ranging from r =
0.19 to 0.82. Similar trends were observed with the simulated data
(data not shown).

Size of effect estimates in the wheat data set

In the wheat data set for the trait GY, markers for which the effects
estimated with the BLUP approach were high had even greater effects
with the RMLA approach (Figure 1). With RMLYV, the differences in
size between small and large effects were even greater. Most marker
effects were shrunken to zero, and only a subset of markers had re-
markably high effect estimates. The approaches RRWA and RMLA
estimated marker effects of identical effect sizes. HEM and RRWA
estimated marker effects of comparable magnitude. Both shrank many
marker effects toward zero and estimated greater effects for the
remaining markers. However, the marker effects shrunken near zero
were not the same for both approaches.

Simulation study on accuracy of marker effect estimates

For all combinations of marker distance (md = 1, 2, 5) and LD
(ngen = 3, 19) the BLUP approach estimated the true marker effects
with the least accuracy and the RMLV approach with the greatest
accuracy (Figure 2). The BL, HEM, and RMLA approaches reached

greater accuracies than the BLUP approach but still were outper-
formed considerably by the RMLV approach.

The accuracy of the BLUP approach was in particular low for the
combination of small marker distances (md = 1) and high LD (ngen =
3). Here only RMLV resulted in usable effect estimates. With
decreasing marker distances and decreasing LD the accuracy of the
effect estimates obtained by the BLUP approach increased. However,
the other approaches still provided effect estimates with considerable
greater accuracy.

The greatest accuracy of effect estimates was achieved for large
marker distances (md = 5) and low LD (ngen = 19), but still the BLUP
showed a considerable underestimation of the true effects.

In addition to the simulations with a heritability of 4> = 0.8 (Figure
2), we performed the same set of simulations with a heritability of h* =
0.5. The accuracy of effect estimates was lower but showed the same
trends as with h? = 0.8 (File S5).

DISCUSSION

Heteroscedastic marker variances

For highly polygenic traits that follow closely the infinitesimal model
of quantitative genetics, like yield, GWP approaches assuming
homoscedastic marker variances are expected to be efficient for
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predicting genotypic values. However, GWP approaches with hetero-
scedastic marker variances model better the genetic basis of traits
when the number of markers is substantially greater than number of
genes underlying the trait. This is the case for SNP maps with high
marker densities or for traits that are controlled by only a few genes.
Bayesian models were the first heteroscedastic GWP approaches.
Their two main drawbacks are that choosing a suitable prior is
required and that they are computationally very demanding. Dense
marker maps have become state of the art and aggravate the problem
of high computing times required for Bayesian approaches. Hence,
fast and efficient heteroscedastic GWP approaches are necessary (cf.
Shen et al. 2013).

Our RMLA approach, as well as the HEM approach of Shen et al.
(2013), provides computational efficient alternatives to Bayesian
approaches. The core of both approaches is to determine an individual
shrinkage factor for each marker and then apply these shrinkage
factors in ridge regression. The shrinkage factors for HEM are de-
termined on basis of a BLUP estimate of the marker effects u;, whereas
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RMLA uses a single-marker ANOVA. From a computational point of
view, obtaining the BLUP estimates requires iterative procedures,
whereas RMLA requires only the calculation of sums of squares.
Consequently, determining shrinkage factors for RMLA is simpler
and faster than for HEM. A second property that distinguishes RMLA
from HEM is that the shrinkage factors for HEM are based on a first
approximation, which uses homoscedastic marker variances; in con-
trast, the shrinkage factors for RMLA are based on a first approxima-
tion using heteroscedastic marker variances.

The computational efficiency of HEM was similar to that of RMLA
for the data set of Crossa et al. (2010), but HEM was faster than
RMLA for the data set of Pérez-Rodriguez et al. (2012) (Table 2).
This advantage can be attributed to the optimized fitting algorithm
of HEM, which makes its running time proportional to the number of
individuals and not to the number of markers, as is the case for
RMLA. Adopting a similar approach for RMLA might provide increased
performance for dense marker maps. We chose to implement a different
strategy for obtaining better performance. Approximating RMLA
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with RRWA uses preliminary estimates of the heritability instead
of estimating the genetic and the residual variance from the data set
under investigation. This results in a heteroscedastic ridge regres-
sion approach that does not need iterative procedures at all. RMLA
and its approximation RRWA yielded the same effect estimates
(Figure 1), and estimating the marker effects with RRWA took less
than 1 sec for medium-sized data sets (Table 2). RRWA outper-
formed the other investigated approaches by factors between 10
and 100.

Prediction of genotypic values and size of

estimated effects

The accuracy of predicting genotypic values was comparable for
homo- and heteroscedastic genetic GWP approaches (cf. Heffner et al.
2011). Our results confirm that in general no advantage of a particular
approach can be observed with respect to predicting genotypic values
(Table 3). The size of effect estimates, however, was clearly different in
the wheat data set of Pérez-Rodriguez et al. (2012) for the five in-
vestigated GWP approaches (Figure 1). The estimated effects for grain
yield were greater for RMLA and HEM than for BLUP. RMLV
resulted in the greatest effects and the most effects shrunken near
zero. Hence, the similarity of GWP approaches with respect to pre-
dicting genotypic values is not caused by similar estimated marker
effects.

We conclude that a high accuracy of estimated marker effects is
not a prerequisite for high prediction accuracies of genotypic values,
as long as marker alleles that were in positive LD in the estimation set
are still to a large extent in positive LD in the individuals for which the
genetic values were predicted. However, because there are consider-
able differences in the estimated marker effects between the GWP
approaches, the choice of the GWP approach is expected to have an
impact on the success of such applications of GWP that rely on the
accuracy of estimates of single marker effects.

Importance of accurate effect estimates

Identification of known candidate genes in Arabidopsis (Shen et al.
2013) and apple (Kumar et al. 2012) was possible with effect estimates
obtained by heteroscedastic GWP approaches. In contrast, no success-
ful identification of genes was reported with results from homosce-
dastic BLUP estimates. This can be regarded as an indication that the
greater effects obtained by the heteroscedastic approaches (Figure 1) are
modeling the genetic basis of traits controlled by few genes better than
homoscedastic BLUP and that accurate marker effect estimates are a pre-
requisite for the identification and fine mapping of functional genes.

An application of GWP that is most anticipated by plant breeders
is planning crosses. In planning crosses, the probability distribution of
the genotypic values of a population is investigated, which was derived
from the cross of two parents with known phenotype and marker
genotype. This distribution depends on the recombination between
loci in the two parents of the cross, which breaks up the LD present in
the parents. Here, it is not sufficient that the sum of genotypic values
on a chromosome stretch in LD is correctly estimated. Instead, the
effect of each single marker needs to be estimated with high accuracy.
These two applications demonstrate that there is a need for GWP that
provide accurate effect estimates for single markers.

With experimental data sets, the differences between GWP
approaches with respect to effects sizes can be investigated (Figure
1), but it is not possible to evaluate which of the different effects at
a marker is in fact the better estimate of the true (but unknown) effect.
The importance of the two aforementioned applications and the fact
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that with experimental data the true effects are unknown motivated
our simulation study.

Accuracy of effect estimates depending on the
GWP approach
In breeding populations of crop species, the level of LD is typically high.
Li et al. (2011) observed 20.6 cM for sugar type inbreds of sugar beet, and
Stich et al. (2005) found an average LD length of 33 ¢M in European elite
maize germplasm. The simulations with high marker density (md = 1)
and high LD (ngen = 3) represent such a genetic situation (Figure 2).
Here BLUP estimates of the genetic effects of traits controlled by two
genes are underestimated. The underestimation is so severe that a useful
application of the BLUP effect estimates seems unrealistic. Although there
is still a considerable underestimation of RMLV in this scenario, this
approach was the only that provided an effect estimate useful for appli-
cations like prediction of crosses and identification of functional genes.
In conclusion, our results confirm the results of previous studies
that the BLUP can provide accurate predictions of genotypic values.
However, for dense markers and strong LD, the effect estimates of
BLUP are very imprecise. For applications of GWP that rely on
accurate effect estimations, heteroscedastic approaches are superior. In
particular, the RMLV approach is a promising approach for providing
accurate GWP effect estimates.

LITERATURE CITED

Albrecht, T., V. Wimmer, H. J. Auinger, M. Erbe, C. Knaak et al.,

2011 Genome-based prediction of testcross values in maize. Theor.
Appl. Genet. 123: 339-350.

Crossa, J., G. de los Campos, P. Pérez, D. Gianola, J. Burgueio et al,

2010 Prediction of genetic values of quantitative traits in plant breeding
using pedigree and molecular markers. Genetics 186: 713-724.

Heffner, E. L., J.-L. Jannink, and M. E. Sorrells, 2011 Genomic selection
accuracy using multifamily prediction models in a wheat breeding pro-
gram. Plant Genome J. 4: 65-75.

Heslot, N., H.-P. Yang, M. E. Sorrells, and J. L. Jannink, 2012 Genomic
selection in plant breeding: a comparison of models. Crop Sci. 52: 146-160.

Hofheinz, N., D. Borchardt, K. Weissleder, and M. Frisch, 2012 Genome-
based prediction of test cross performance in two subsequent breeding
cycles. Theor. Appl. Genet. 125: 1639-1645.

Karkkiinen, H. P., and M. J. Sillanpéi, 2012 Back to basics for Bayesian
model building in genomic selection. Genetics 191: 969-987.

Kumar, S., D. Chagné, M. C. A. M. Bink, R. K. Volz, C. Withworth et al,
2012 Genomic selection for fruit trait quality in apple (Malus x do-
mestica Borkh.). PLoS ONE 7: e36674.

Li, J., A. K. Liihmann, K. WeifSleder, and B. Stich, 2011 Genome-wide
distribution of genetic diversity and linkage disequilibrium in elite sugar
beet germplasm. BMC Genomics 12: 484.

Lorenz, A. J., K. P. Smith, and J.-L. Jannink, 2012 Potential and optimiza-
tion of genomic selection for fusarium head blight resistance in six-row
barley. Crop Sci. 52: 1609-1621.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of
total genetic value using genome-wide dense marker maps. Genetics 157:
1819-1829.

Misztal, I, and L. R. Schaeffer, 1986 Nonlinear model for describing con-
vergence of iterative methods of variance component estimation. J. Dairy
Sci. 69: 2209-2213.

Pérez, P., G. de los Campos, J. Crossa, and D. Gianola, 2010 Genomic-
enabled prediction based on molecular markers and pedigree using the
Bayesian Linear Regression Package in R. Plant Genome 3: 106-116.

Pérez-Rodriguez, P., D. Gianola, J. M. Gonzalez-Camacho, J. Crossa, Y.
Manés et al., 2012 Comparison between linear and non-parametric
regression models for genome-enabled prediction in wheat. G3 (Be-
thesda) 2: 1595-1605.

Heteroscedastic Ridge Regression Approaches | 545



Piepho, H.-P., 2009 Ridge regression and extensions for genomewide se-
lection in maize. Crop Sci. 49: 1165-1176.

Piepho, H.-P., J. O. Ogutu, T. Schulz-Streeck, B. Estaghvirou, A. Gordillo
et al, 2012 Efficient computation of ridge-regression best linear unbi-
ased prediction in genomic selection in plant breeding. Theor. Appl.
Genet. 52: 1093-1104.

Searle, S. R., G. Casella, and C. E. McCulloch, 1992  Variance Components.

Wiley, New York.
Shen, X., M. Alam, F. Fikse, and L. Ronnegard, 2013 A novel generalized

ridge regression method for quantitative genetics. Genetics 193: 1255—
1268.

546 | N. Hofheinz and M. Frisch

Shepherd, R. K., T. H. E. Meuwissen, and J. A. Wooliams, 2010  Genomic
selection and complex trait prediction using a fast EM algorithm applied
to genome-wide markers. BMC Bioinformatics 11: 529.

Stich, B., A. E. Melchinger, M. Frisch, H. P. Maurer, M. Heckenberger et al.,
2005 Linkage disequilibrium in European elite maize germplasm in-
vestigated with SSRs. Theor. Appl. Genet. 111: 723-730.

Wimmer, V., C. Lehermeier, T. Albrecht, H. J. Auinger, Y. Wang et al,
2013 Genome-wide prediction of traits with different genetic architec-
ture through efficient variable selection. Genetics 195: 573-587.

Communicating editor: D.-]. De Koning

= G3-Genes | Genomes | Genetics



