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1 Planar dynamics in the attractor

Consider the equation
&' (t) = —pa(t) + f(a(t — 1)) (1)

with g > 0 and with a C'-function f : R — IR satisfying f(0) = 0 and
zf(z) < 0 for all z # 0. Equation (1.1) is the simplest differential equation
for a system governed by delayed negative feedback, with friction present in
case u > 0.

Solutions are either differentiable functions z : R — IR which satisfy
eq. (1) everywhere, or continuous real functions ¢ which are defined on some
interval of the form [to — 1,00) and which are differentiable and satisfy eq.
(1) for ¢ > to. Every continuous ”initial function” ¢ : [-1,0] — IR defines
a unique solution z = 2% on [~1, c0) with z|[—1,0] = ¢. The relations

F(t,¢) =&, T= $¢a

zi(s)==xz(t+s) for t>0 and —-1<s<0

define a continuous semiflow F on the phase space C = C([-1,0],R)
equipped with the supremum-norm.

An important class of solutions are those which have all consecutive
zeros spaced at distances greater than the delay (> 1). They are called
slowly oscillating. For example, every ¢ € C with at most one zero defines
a solution which is slowly oscillating on [0, 00). This is closely related to the
fact that the set S of nonzero initial functions with at most one change of
sign is positively invariant under the semiflow.



For proofs of these elementary properties, and of others mentioned below,
see [7] and the references quoted therein.

Suppose from now on that f is also bounded from below, or from above.
This holds true in most applications. Then one can show that the semiflow
F has a global attractor A = A(y, f) in the sense of [2], i.e. a compact set
which is invariant (in the sense of [2]), contains all compact invariant sets,
and attracts all bounded sets. In particular, w-limit sets of single solutions
are contained in A. The attractor can be characterized as the set of segments
@; of solutions which are defined on IR and bounded — compare e.g. [5].

The restriction of F' to A may be complicated. It is likely, but has not
yet been proved, that there exist non—monotone nonlinearities f for which
the attractor contains chaotic motion. In the present note we are interested
in more regular behaviour, which occurs for monotone f. We assume, in
addition to the preceding hypotheses, that

fl(z)<0 forall z€eR

and that the stationary point ¢ = 0 is linearly unstable, i.e. that the

characteristic equation
A ptae=0

for the linearization
z'(t) = —pa(t) —az(t - 1), a:=-f'(0) (2)

has solutions with positive real part.

Then there exist a complex conjugate pair A = u + v, > 0, and X of
solutions with maximal real part v > 0; this leading pair is also the pair
with smallest imaginary part v. We have v € (0,7) so that all solutions of
eq. (2) of the form

z(t) = €“*(a cos(vt) + bsin(vt)) (3)

(except the zero solution) are slowly oscillating. The twodimensional space
L C C given by the segments z; of solutions of the form (3) is invariant
under the Co—semigroup of operators ‘

T, = DyF(t,0), ¢>0,

or, the restriction of the semiflow of eq. (2) to the space L is a complete
flow given by a linear planar vectorfield of spiral source type.



There exists a complementary closed subspace @ C C,
C=1LoQ,

which is positively invariant under the semigroup. This decomposition serves
as a coordinate system for a result on the nonlinear equation (1).
In [7] we showed that there exists a Lipschitz continuous map

W:Ly — Q, L, anopensubsetof L with 0€ Ly

so that W is of class C* on L,, and satisfies wW(0) = 0, Dw(0) = 0, and the
graph

W= {x+o(x) : x € L}
has the following properties:
A. For every ¢ € W \ {0} there exists a slowly oscillating solution
y:IR— Rofeq. (1) withy; e WiorallteR,y; — 0ast — —o0
and y; — W \ W as t — cc.
B. The boundary W \ W of the graph W is the orbit in C of a slowly
oscillating periodic solution z : R — IR of eq. (1).

Note that W is tangent to L at ¢ = 0. In general, W is a proper subset of
the unstable set W*(0) formed by the segments y; of solutions y : R — R
of eq. (1) such that y; — 0 as t — —oo. If all solutions z ¢ {\, A} of the
characteristic equation satisfy £z < 0 then

W = W(0).

The restriction of F' to W is a complete flow on a set- homeomorphic to

a closed disk in the plane.
We have
WcA

since W consists of segments of bounded solutions defined on IR. In general,
W is a proper subset of A. The purpose of the present note is to provide
examples where equality holds.

2 An example

Let a Cl—function f: IR — IR be given which is odd,

f(z)=—f(-z) foral ze€eRR,
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and bounded, and which has the following properties:

fl(z)<0 forall z€R,

f(0) < —=/2 (4)
-2< f(0) (5)
f is strictly increasing on [0, 00) (6)

Consider the equation

'(t) = f(=(t - 1)) (M)
which is a special case of eq. (1) with 4 = 0. Property (4) implies that the
stationary point ¢ = 0 is linearly unstable. According to [7] there exists a

graph W as described in Section 1. A first consequence of property (5) is
that all solutions z ¢ {A,A} of the characteristic equation satisfy £z < 0 so

that
W = W*(0).

Theorem. W = A(0, f)

The proof combines several nontrivial results on the dynamics of eq.
(7) which we first collect. According to the uniqueness theorem of R.D.
Nussbaum [6], eq. (7) has exactly one slowly oscillating periodic solution
z:IR — IR so that

(U) there are zeros zgp = —1,21 > 0, z2 > 21 + 1; the solution is positive on
(-1, 2), negative on (21, 22), and has period 23 — 2.

J.A. Kaplan and J.A. Yorke [3] proved that (for more general monotone
f) there exist two slowly oscillating periodic solutions p and 7, both with
property (U), so that the simple closed curves in IR?2

Pit—s (p(t),-p(t=1)), R:it— (r(t),—r(t— 1))
contain the origin in their interior, and
P(R) C int(R) U R(IR);
~ furthermore, for every slowly oscillating solution y of eq. (7) the curve

Y it — (y(t),—y(t—1))



converges in IR? to the closed annulus
(P(IR) Uext(P)) N (R(IR) Uint(R))

between the traces of P and R, as ¢ — oo. For the situation considered
here we conclude that p = r = z;
for every slowly oscillating solution y of eq. (7) we have

dist(Y(¢), X(R)) — 0 as t— o0 (8)
where X (t) = (2(t), —z(t — 1)). Set
= {z::t € R}

Proposition 1. For every slowly oscillating solution y of eq. (7),
dist(y, £) — 0 as t — 0.

Proof. (Compare [3]) The segments y; converge to the w-limit set w(y)
as t — oco. Consider a point ¢ € w(y). There is a solution w : R — IR of
eq. (7) so that wg = ¢ and w; € w(y) for all ¢t € R. Using (8) we infer that
(w(t), —w(t—1)) € X(IR) for all t € R. By 0 ¢ X(IR), w; # 0 for all ¢ € R.
Note that w(y) C S since all y; belong to S. From 0 # w; € § forall t € R
we conclude, using elementary arguments as in [7], that all zeros of w are
simple and spaced at distances greater than 1. Lemma 3.2 from [3] implies
that there exists ¢ € IR such that w = z(- + ¢). In particular, ¢ = wp € &.
We have shown w(y) C £, which yields the assertion. QED.

According to [3] the trace X (IR) is also orbitally stable with respect to

curves Y given by slowly oscillating solutions. This carries over to a stability

- property of the orbit £ in C'. We prefer to quote a stronger result from [1]

which guarantees that the periodic orbit £ is stable and locally exponentially
attractive for the full semiflow F on C. In particular,

(S) given € > 0 there exists § > 0 such that dist(¢,£) < § implies
dist(F(t,¢),£) < e for all ¢ > 0.

Proposition 2. A bounded solution  : R — IR of eq. (7) is either
slowly oscillating or identically zero.

Proof. Let a bounded solution = : R — IR be given which is not slowly
oscillating. It follows that there exists o € IR such that for every ¢ < to,



the interval [t — 1,t] contains at least two different zeros of z. Set a :=
sup{|z(t)| : t < to — 1}. Assume a > 0. There exists € > 0 such that

|f(z)| £ (2=¢)|z| forall zelR.

Choose § € (0, a) so small that

and pick a point m < to — 1 so that
a—6 < |z(m)|.
Eq. (7) yields |2'(t)| £ (2 = €)a for t < %o. In case z(m) > 0, we find that
z(t) > z(m)+ (2—€a(t—m)>a—6+(2—-€a(t—m) for t<m,
z(t) > z(m)—(2-€a(t—m)>a—-6—(2—¢€a(t—m) for m <t <.

In particular, .
1
z(t) >0 for m—g<t<m+g,

which is a contradiction to the property of ¢g stated above. The case z(m) <
0 is analogous. QED.

Proof of the Theorem. We have to show A C W. Let ¢ € A be given.
There is a solution y : IR — IR of eq. (7) with yo = ¢ and y; € A for all
t € R; y is bounded. Its a-limit set consists of segments w; of bounded
solutions w : R — R of eq. (7).
Case 1: o(y) = {0}. Then ¢ € W*(0) = W.
Case 2: o(y) # {0}. Proposition 2 implies that there exists a slowly oscil-
lating solution w : R — IR with w; € a(y) for all ¢ € IR. By Proposition
1, wy — £ as t — oo. We find a sequence ¢, — —oco such that y;,, — &
as n — co. From this we infer, using (S), that y; € £ for all ¢t € IR.
Proposition 1 and Nussbaum’s uniqueness result imply that up to trans-
lations in time, there is no other slowly oscillating periodic solution than z,

so that we have
£ =T\ W.

Hence ¢ =y € £ C W. QED.
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