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1 Introduction

Parallel computational models are appealing and widely used in order to de-
scribe, understand, and manage parallel processes occurring in real life. One
principal task in order to employ a parallel computational model in an opti-
mal way is to understand how cooperation of several processors is organized
optimally. To this end, it is essential to know which communication and which
amount of communication must or should take place between several processors.
From the viewpoint of energy and the costs of communication links, it would be
desirable to communicate a minimal number of times with a minimum amount
of information transmitted. On the other hand, it would be interesting to know
how much communication is necessary in a certain parallel model to accomplish
a certain task.

In this paper, we study the parallel computational model of cellular au-
tomata which are linear arrays of identical copies of deterministic finite au-
tomata, where the single nodes, which are called cells, are homogeneously con-
nected to their both immediate neighbors. They work synchronously at discrete
time steps. In the general case, in every time step the state of each cell is com-
municated to its neighbors. That is, on one hand the state is sent regardless of
whether it is really required, and on the other hand, the number of bits sent is
determined by the number of states. The latter question has been dealt with
in [8, 9, 16–18, 22] where the bandwidth of the inter-cell links is bounded by
some constant being independent of the number of states. The former question
concerns the amount of communication necessary for a computation. In [19,
20] two-way cellular automata are considered where the number of proper state
changes is bounded. There are strong relations to inter-cell communication.
Roughly speaking, a cell can remember the states received from its neighbors.
As long as these do not change, no communication is necessary. Here we inves-
tigate cellular automata where the communication is quantitatively measured
by the number of uses of the links between cells. Bounds on the sum of all
communications of a computation as well as bounds on the maximal number of
communications that may appear between each two cells are considered.

In the next section we present some basic notions and definitions, and in-
troduce the classes of communication bounded cellular automata. Examples of
constructions for important types of languages are presented. Then, in Section 3
some computational capacity aspects are investigated, where an infinite strict
hierarchy depending on the bound on the total number of communications dur-
ing an computation is shown. Since the proof methods used in connection with
the number of state changes in [19, 20] apply also for the devices in question we
adapt and summarize some of the known results.

Section 4 is devoted to decidability problems. We consider the weakest non-
trivial device in question, that is, one-way cellular automata where each two
neighboring cells may communicate constantly often only, and show by reduc-
tion of Hilbert’s tenth problem undecidability of several problems. It turns out
that also the question whether or not a given real-time one-way cellular automa-
ton belongs to the weakest class of cellular automata with sparse communication
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is undecidable. This result can be adapted to answer an open question posed
in [21].

2 Definitions and Preliminaries

We denote the positive integers and zero {0, 1, 2, ...} by N. The empty word
is denoted by λ, the reversal of a word w by wR, and for the length of w
we write |w|. For the number of occurrences of a subword x in w we use the
notation |w|x, and for a set of words X, we define |w|X =

∑

x∈X |w|x. We use ⊆
for inclusions and ⊂ for strict inclusions. For a function f : N → N we denote
its i-fold composition by f [i], i ∈ N, where f [0] denotes the identity.

A cellular automaton is a linear array of identical deterministic finite state
machines, sometimes called cells. Except for the leftmost cell and rightmost cell
each one is connected to its both nearest neighbors. We identify the cells by
positive integers. The state transition depends on the current state of each cell
and on the information which is currently sent by its neighbors. The informa-
tion sent by a cell depends on its current state and is determined by so-called
communication functions. The two outermost cells receive a boundary symbol
on their free input lines once during the first time step from the outside world.
Subsequently, these input lines are never used again. A formal definition is:

Definition 1. A cellular automaton (CA) is a system 〈S, F, A, B, #, bl, br, δ〉,
where S is the finite, nonempty set of cell states, F ⊆ S is the set of ac-
cepting states, A ⊆ S is the nonempty set of input symbols, B is the set

of communication symbols, # /∈ B is the boundary symbol, bl, br : S →
B ∪ {⊥} are communication functions which determine the information to
be sent to the left and right neighbors, where ⊥ means nothing to send, and

δ : (B ∪ {#,⊥}) × S × (B ∪ {#,⊥}) → S is the local transition function.

A configuration of a cellular automaton 〈S, F, A, B, #, bl, br, δ〉 at time t ≥ 0
is a description of its global state, which is actually a mapping ct : [1, . . . , n] →
S, for n ≥ 1. The operation starts at time 0 in a so-called initial configura-

tion. For a given input w = a1 · · · an ∈ A+ we set c0,w(i) = ai, for 1 ≤ i ≤ n.
During its course of computation a CA steps through a sequence of configura-
tions, whereby successor configurations are computed according to the global
transition function ∆: Let ct, t ≥ 0, be a configuration. Then its succes-
sor configuration ct+1 = ∆(ct) is as follows. For 2 ≤ i ≤ n − 1, ct+1(i) =
δ(br(ct(i − 1)), ct(i), bl(ct(i + 1))), and for the leftmost and rightmost cell we
set c1(1) = δ(#, c0(1), bl(c0(2))), ct+1(1) = δ(⊥, ct(1), bl(ct(2))), for t ≥ 1, and
c1(n) = δ(br(c0(n − 1)), c0(n), #), ct+1(n) = δ(br(ct(n − 1)), ct(n),⊥), for t ≥ 1.
Thus, the global transition function ∆ is induced by δ.

An input w is accepted by a CA M if at some time i during its course of
computation the leftmost cell enters an accepting state. The language accepted

· · ·# a1 a2 a3 an #

Fig. 1. A two-way cellular automaton.

3



by M is denoted by L(M). Let t : N → N, t(n) ≥ n, be a mapping. If all
w ∈ L(M) are accepted with at most t(|w|) time steps, then M is said to be
of time complexity t.

An important subclass of cellular automata are so-called one-way cellular

automata (OCA), where the flow of information is restricted to one way from
right to left. For a formal definition it suffices to require that br maps all states
to ⊥, and that the leftmost cell does not receive the boundary symbol during
the first time step.

In the following we study the impact of communication in cellular automata.
The communication is measured by the number of uses of the links between cells.
It is understood that whenever a communication symbol not equal to ⊥ is sent,
a communication takes place. Here we do not distinguish whether either or both
neighboring cells use the link. More precisely, the number of communications
between cell i and cell i + 1 up to time step t is defined by

com(i, t) = |{ j | 0 ≤ j < t and (br(cj(i)) 6= ⊥ or bl(cj(i + 1)) 6= ⊥) }| .

For computations we now distinguish the maximal number of communications
between two cells and the total number of communications. Let c0, c1, . . . , ct(|w|)

be the sequence of configurations computed on input w by some cellular au-
tomaton with time complexity t(n), that is, the computation on w. Then we
define mcom(w) = max{ com(i, t(|w|)) | 1 ≤ i ≤ |w| − 1 } and scom(w) =
∑|w|−1

i=1 com(i, t(|w|)). Let f : N → N be a mapping. If all w ∈ L(M) are ac-
cepted with computations where mcom(w) ≤ f(|w|), then M is said to be max

communication bounded by f . Similarly, if all w ∈ L(M) are accepted with com-
putations where scom(w) ≤ f(|w|), then M is said to be sum communication

bounded by f . In general, it is not expected to have tight bounds on the exact
number of communications but tight bounds on their numbers in the order of
magnitude. For the sake of readability we denote the class of CAs that are max
communication bounded by some function g ∈ O(f) by MC(f)-CA, where it is
understood that f gives the order of magnitude. Corresponding notations are
used for OCAs and sum communication bounded CAs and OCAs. (SC(f)-CA
and SC(f)-OCA).

The family of all languages which are accepted by some device X with time
complexity t is denoted by Lt(X). In the sequel we are particularly interested
in fast computations and call the time complexity t(n) = n real time and write
Lrt(X). To illustrate the definitions we start with an example.

Lemma 2. The language { anbn | n ≥ 1 } belongs to Lrt(MC(1)-OCA).

Proof. The acceptance of the language is governed by two signals. The rightmost
cell is sending a signal B with maximum speed to the left whereas the unique
cell which has an a in its input and has a right neighbor with a b in its input
is sending a signal A with speed 1/2 to the left. When both signals meet in a
cell, an accepting state is assumed. Obviously, { anbn | n ≥ 1 } is accepted and
each cell performs only a finite number of communications. ⊓⊔

By an obvious generalization of the above construction with suitable sig-
nals having a certain speed we obtain that the languages { anbncn | n ≥ 1 },
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{ anbmcndm | n, m ≥ 1 }, and { an
1an

2 · · · an
k | n ≥ 1 }, for k ≥ 1 and differ-

ent symbols a1, a2, . . . , ak, are accepted by real-time MC(1)-OCAs as well. The
languages are non context free.

For the language { anbn1cmbn2 | n, m ≥ 1 ∧ n1, n2 ≥ 0 ∧ n1 + n2 = n }
the above technique of suitable signals having an appropriate speed cannot be
applied, since the block of cs may be arbitrary large. Here, the first idea is to
use two different signals B and ◦. All b-cells send a signal B to the left which is
matched against the a-cells. All c-cells send a signal ◦ to the left which does not
affect the matching of a-cells and B-signals. This approach implies that some
cells may forward an arbitrary number of signals B or ◦ and leads to a real-
time OCA which is not an MC(1)-OCA. But, we can overcome this problem by
applying the following technique. Whenever some cell has sent a signal X to
the left, it sends ⊥ in the next time steps as long as no other signal Y 6= X has
to be sent to the left. The cells which obtain some signal X for the first time
store this in their state. The information ⊥ arriving in the next time steps can
then be interpreted as “nothing has changed,” that is, each ⊥ is interpreted as
a signal X and is suitably processed. It can be observed that in this way each
cell performs only a finite number of communications as long as only a finite
number of blocks of identical signals has to be sent to the left.

Lemma 3. The language { anbn1cmbn2 | n, m ≥ 1 ∧ n1, n2 ≥ 0 ∧ n1 + n2 = n }
belongs to Lrt(MC(1)-OCA).

Proof. All b-cells send a signal B which is forwarded by all b-cells and c-cells
and is matched against the a-cells. That is, when a signal B arrives in an a-cell
it is stopped and the cell is marked as a matched cell. When a signal B arrives
at a marked a-cell, the signal is forwarded to the left as long as it arrives at
an unmarked a-cell where it is stopped and marks the cell as matched. The
c-cells send a signal ◦ which is forwarded by b-cells to the left. All a-cells are
forwarding ◦-signals to the left as long as they are stopped by an a-cell which has
not yet sent a signal B to the left. These ◦-signals do not affect the matching
of a-cells with B-signals, but they carry the information that the first block
of bs has been processed. Initially, in the rightmost cell a signal ⊳ is started
which checks the correct formatting and forces a marked a-cell which has not
been used to forward a B-signal to enter an accepting state. Additionally, the
signal ⊳ is stopped. In this way, a real-time OCA acceptor has been constructed.
By applying the technique described above we obtain a real-time MC(1)-OCA,
since we have one block of signals B followed by one block of signals ◦, which is
followed by another block of signals B. Thus, the assertion follows. An example
schematically accepting a4b2c2b2 is depicted in Figure 2. ⊓⊔

A straightforward generalization yields the next lemma.

Lemma 4. Let k ≥ 0 be a constant. Then language Lk = { anw | n ≥ 1 ∧ w ∈
(b∗c∗)kb∗ ∧ |w|b = n } belongs to Lrt(MC(1)-OCA).

Let us finally remark that a helpful tool for later constructions is the closure
under the Boolean operations which can be proven in the same way as for
unrestricted real-time OCAs.
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acc⊥

m⊥ B e⊳

a⊥ mB B e⊳

a⊥ m⊥ B m̂⊥ B e⊳

a⊥ a⊥ mB B m̂⊥ B e⊳

a⊥ a⊥ m̃⊥ ◦ mB B b′⊥ B e⊳

a⊥ a⊥ m̃⊥ ◦ n′⊥ ◦ bB B b′⊥ B e⊳

a⊥ a⊥ m⊥ B n◦ ◦ b′⊥ ◦ bB B c′⊥ B e⊳

a⊥ a⊥ a⊥ mB B b◦ ◦ b′⊥ ◦ cB B c′⊥ B e⊳

a⊥ a⊥ a⊥ m⊥ B b′⊥ B b◦ ◦ c′⊥ ◦ cB B b′⊥ B e⊳

a⊥ a⊥ a⊥ a⊥ bB bB c◦ c◦ bB bB ##

Fig. 2. Schematic computation of an MC(1)-OCA accepting a4b2c2b2 in real time. The left
part of each cell denotes the communication channel to the left neighboring cell. The middle
and right part of each cell depict the current state of each cell whereas in the right part a
B (◦) is stored when a ⊥ arriving in the next time step has to be interpreted as a B-signal
(◦-signal).

Lemma 5. The family Lrt(MC(1)-OCA) is closed under union, intersection,

and complementation.

3 Computational Capacity

In order to identify the computational power of communication bounded real-
time devices we begin by describing the relationship to previous works. In [19,
20] two-way cellular automata are considered where the number of proper state
changes is bounded. Similar as in the present paper the sum of all state changes
or the maximal number of the state changes of single cells are bounded. By ap-
plying the technique of saving communication steps by storing the last signal
received in the state and to interpret an arriving ⊥ suitably, it is not hard
to see, that such a device can be simulated by the corresponding communica-
tion bounded device. Whether or not state change bounded devices are strictly
weaker than communication bounded ones is an open problem. However, the
restrictions introduced in [19, 20] have been investigated with respect to com-
munication in cellular automata, and the proof methods used apply also for the
devices in question. So, we adapt some of the results shown in connection with
state changes in the next theorem.

Theorem 6 ([19, 20]). 1. Lrt(MC(1)-CA) ⊂ Lrt(SC(n)-CA).
2. REG ⊂ Lrt(MC(1)-CA) ⊂ Lrt(MC(

√
n)-CA) ⊂ Lrt(MC(n)-CA).

3. Lrt(MC(1)-CA) ⊂ NL.

Next we turn to show an infinite proper hierarchy of real-time SC(f)-CA
families. We start with the top of the hierarchy.

Theorem 7. Let f : N → N be a function. If f ∈ o(n2/log(n)), then language

L = {wcwR | w ∈ {a, b}+ } is not accepted by any real-time SC(f)-CA.
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Proof. In contrast to the assertion, assume that L is accepted by some real-time
SC(f)-CA M. We consider accepting computations on wcwR.

We claim that for any constant k > 0, there must exist a length nk ≥ 2 such
that for all w ∈ {a, b}2nk there is a cell j(w), where nk + 1 ≤ j(w) ≤ 2nk, such
that the number of communications occurring between cells j(w) and j(w) + 1
is at most k4nk/ log(4nk).

If the claim would be wrong, then there would be a constant k > 0, such that
for all lengths nk there is a word w ∈ {a, b}2nk such that for all nk +1 ≤ j(w) ≤
2nk, the number of communications occurring between cells j(w) and j(w)+1 is
at least k4nk/ log(4nk). Therefore, the total number of communications during
an accepting computation on wcwR is at least k4nk(2nk − nk − 1)/ log(4nk)
which is of order Ω(n2

k/log(nk). Since for all lengths nk there is such a word w,
a contradiction to the assumption f ∈ o(n2/log(n)) follows, and the claim is
shown.

Now we turn to derive an upper bound on the number of possibilities for
some r communications between two cells in real-time computations. To this
end, we have to consider the information to be communicated as well as the
time steps at which the communications take place. There are

(
n
r

)
possibilities

to choose time steps, and (|B| + 1)2 − 1 possibilities to use a link, where both
cells must not send ⊥ simultaneously in order to have a communication at all.
So, there are at most

(
n

r

)

((|B| + 1)2 − 1)r ≤ nr

(r/2)r/2
2log(|B|+1)2r ≤ nr2r/2

rr/2
2log(|B|+1)2r

≤ 2log(n)r+r/2+log(|B|+1)2r−log(r)r/2

≤ 2k0 log(n)r, for some constant k0 ≥ 1,

possibilities. Next we choose k < 1/(16k0) and apply the claim shown above.
So, there is an nk ≥ 2 such that for all w ∈ {a, b}2nk there is a cell j(w),
where nk +1 ≤ j(w) ≤ 2nk, such that the number of communications occurring
between cells j(w) and j(w) + 1 is at most r = k4nk/ log(4nk). For these
communications there are at most

2k0 log(4nk+1)r ≤ 2
k02 log(4nk)k

4nk
log(4nk) ≤ 2

k02 log(4nk) 1
16k0

4nk
log(4nk) ≤ 2

nk
2

possibilities. Since there are 2nk words of length nk, there must exist two words

w1 = u1u2 · · ·unk
unk+1 · · ·uj(w1)uj(w1)+1 · · ·u2nk

and

w2 = v1v2 · · · vnk
vnk+1 · · · vj(w2)vj(w2)+1 · · · v2nk

with accepting computations on w1cw
R
1 and w2cw

R
2 that differ in their first nk

symbols, and that imply exactly the same communications between cells j(w1)
and j(w1) + 1 on one hand and between cells j(w2) and j(w2) + 1 on the other
hand. Therefore, also the input u1u2 · · ·unk

unk+1 · · ·uj(w1)vj(w2)+1 · · · v2nk
cwR

2

is accepted, which is a contradiction since it does not belong to L. ⊓⊔
In order to define witness languages that separate the levels of the hierarchy,

for all i ≥ 1, the functions ϕi : N → N are defined by ϕ1(n) = 2n, and ϕi(n) =
2ϕi−1(n), for i ≥ 2, and we set Li = {w$

ϕi(|w|)−2|w|wR | w ∈ {a, b}+ }.
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Lemma 8. Let i ≥ 1 be an integer and f : N → N be a function. If f ∈
o((n log[i](n))/log[i+1](n)), then language Li is not accepted by any real-time

SC(f)-CA.

Proof. First we note that a cell that carries initially a $ cannot usefully com-
municate until it can receive information for the first time from one of the cells
not carrying initially a $. Up to that time its state is the same as the states of
its neighbors. For example, some cell j with n/2 ≤ j ≤ n − |w| cannot usefully
communicate before time step n − |w| − j. On the other hand, its last (useful)
communication that may influence the overall computation result must appear
at time n− j + 1. So, there are at most |w|+ 1 time steps for useful communi-
cations. Now we can continue as in the proof of Theorem 7 to show that for all
cells n/2 ≤ j ≤ n − |w| the number of communications occurring in accepting
computations between cells j and j + 1 is of order Ω(|w|/ log(|w|)).

So, in total we have at least Ω((|w|/ log(|w|))(n/2 − |w|)) communications.
Since n = ϕi(|w|), we substitute |w| by ϕ−1

i (n) = log[i](n) and obtain

Ω

(

log[i](n)

log[i+1](n)

(n

2
− log[i](n)

)
)

= Ω

(

n log[i](n)

log[i+1](n)

)

which concludes the proof. ⊓⊔

Lemma 9. Let i ≥ 1 be an integer. Then language Li is accepted by some

real-time SC(n log[i](n))-CA.

Proof. We sketch the construction of a real-time SC(n log[i](n))-CA M that
accepts Li. Basically, M has to perform two tasks. One is to match the input
prefix w with the suffix wR, the other one is to verify the number of $s.

The first task is realized as follows. The prefix w is shifted successively to
the right and the suffix wR is shifted successively to the left. When the words
arrive in the middle of the array, the symbols are matched one by one. Since
initially, a cell carrying not a $ cannot know whether it belongs to the prefix
or suffix, the symbols are shifted to the left as well as to the right on different
tracks. The shifting to the ‘wrong’ directions do not affect the computation.
Altogether, the first task requires communication for every shifted symbol. To
shift the prefix w and the suffix wR to the center, to match them, and to send
the result back to the leftmost cell not more than O(|w|n) = O(n log[i](n))
communications are necessary.

The second task combines known methods to simulate a stack and to con-
struct the function ϕi in time in order to verify the number of $s. One subtask
is to simulate a pushdown store without any loss of time, where the top of
the stack is simulated by the leftmost cell. Details of the construction can be
found in [1, 4, 6]. Initially, the unique cell carrying not a $ with a right neighbor
carrying a $ sends a signal to the left. The leftmost cell pushes tokens onto
the stack until it receives the signal. So, it can push |w| tokens. Also at initial
time a time constructor for the function ϕi is started, that is, a subtask that
distinguishes exactly the time steps ϕi(j), for j ≥ 1, at the leftmost cell. At any
time step ϕi(j) a symbol is popped from the stack. If in addition a signal that

8
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Fig. 3. Space-time diagram showing the time constructor for the function 2n.

is initially started in the rightmost cell arrives in the leftmost cell exactly at a
time step that is distinguished by the time constructor and at which the last
symbol is popped from the stack, then the total length of the input is verified
to be ϕi(|w|).

So, it remains to be shown how to set up the time constructor and to analyze
the number of communications. For more details on time-constructible function
see [1, 2, 7, 13]. The time constructor is inductively constructed as follows. For
ϕ1(n) = 2n (cf. [3]), at initial time the leftmost cell emits a signal which moves
with speed 1/3 to the right. In addition, another signal is emitted which moves
with maximal speed and bounces between the slow signal and the leftmost cell.
It is easy to see that the signal passes through the leftmost cell exactly at the
time steps 2j , j ≥ 1 (see Figure 3).

Now assume that there is a time constructor for ϕi. Then another one for the
function 2n is implemented on a different track. Both are working together as
follows. Basically, the time constructor for 2n is idle until the cells receive from
the left the fast signal from the time constructor for ϕi, that is, after the signal
has distinguished the leftmost cell. This signal causes the cells to perform one
transition of the time constructor for 2n cell by cell from left to right. We omit
minor details of the construction. Altogether, when the delayed time constructor
for 2n distinguishes the leftmost cell for the jth time, it has received 2j signals
from time constructor for ϕi, that is, at time ϕi(2

j) = ϕi+1(j).
For the number of communications of the second task we have the communi-

cations within the leftmost |w| cells for the simulation of the stack. These are at
most O(|w|n) = O(n log[i](n)). In addition, we have i time constructors working
together. Each consists basically of two signals. So, not more than i2n ∈ O(n)
communications are necessary. ⊓⊔

Now we are prepared to derive the infinite hierarchy.

Theorem 10. Let i ≥ 0 be an integer. Then Lrt(SC(n log[i+1](n))-CA) is prop-

erly included in Lrt(SC(n log[i](n))-CA).

Proof. The inclusion is trivial. For i = 0, consider the linear context-free lan-
guage L = {wcwR | w ∈ {a, b}+ }. In [15] it is shown that any linear context-
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free language is accepted by some real-time CA. So, obviously it is accepted
by a real-time SC(n2)-CA. Since n log(n) ∈ o(n2/log(n)), language L does not
belong to Lrt(SC(n log(n))-CA) by Theorem 7.

For i ≥ 1, a witness for the properness of the inclusion is language Li. By
Lemma 9 it belongs to Lrt(SC(n log[i](n))-CA).

Since n log[i+1](n) = n(log[i+1](n))2

log[i+1](n)
and

lim
n→∞

n(log[i+1](n))2

log[i+1](n)

n log[i](n)

log[i+1](n)

= lim
n→∞

n(log[i+1](n))2

n log[i](n)
= lim

n→∞

(log[i+1](n))2

2log[i+1](n)
= 0

we have n log[i+1](n) ∈ o((n log[i](n))/log[i+1](n)). Therefore, by Lemma 8 lan-
guage Li does not belong to Lrt(SC(n log[i+1](n))-CA). ⊓⊔

4 Decidability Questions

This section is devoted to decidability problems. In fact, the results show un-
decidability of various questions, even for the weakest non-trivial device under
consideration, that is, for real-time MC(1)-OCAs. Needless to say, the undecid-
ability carries over to all the other (stronger) devices considered.

Two of the common techniques to show undecidability results are reduc-
tions of Post’s Correspondence Problem or reductions of the emptiness and
finiteness problem on Turing machines using the set of valid computations.
Both techniques have been used successfully to obtain results for variants of
cellular automata [10–12, 14]. Taking a closer look at these known techniques,
it is not clear yet whether they can be applied to MC(1)-OCAs. Here, we first
show that emptiness is undecidable for real-time MC(1)-OCAs by reduction
of Hilbert’s tenth problem which is known to be undecidable. The problem
is to decide whether a given polynomial p(x1, . . . , xn) with integer coefficients
has an integral root. That is, to decide whether there are integers α1, . . . , αn

such that p(α1, . . . , αn) = 0. In [5] Hilbert’s tenth problem has been used
to show that emptiness is undecidable for certain multi-counter machines. As
is remarked in [5], it is sufficient to restrict the variables x1, . . . , xn to take
non-negative integers only. If p(x1, . . . , xn) contains a constant summand, then
we may assume that it has a negative sign. Otherwise, p(x1, . . . , xn) is multi-
plied with −1. Such a polynomial then has the following form: p(x1, . . . , xn) =
t1(x1, . . . , xn) + . . . + tr(x1, . . . , xn), where each tj(x1, . . . , xn) (1 ≤ j ≤ r) is

a term of the form tj(x1, . . . , xn) = sjx
ij,1

1 . . . x
ij,n
n with sj ∈ {+1,−1} and

ij,1, . . . , ij,n ≥ 0. Additionally, we may assume that the summands are ordered
according to their sign, i.e., there exists 1 ≤ q ≤ r such that s1 = . . . = sq = 1
and sq+1 = . . . = sr = −1. Moreover, constant terms are occurring only at the
end of the sum. I.e., tr = . . . = tr−c+1 = −1, if p contains c > 0 constant terms.
Finally, let ij =

∑n
t=1 ij,t.

Now, we consider a polynomial p(x1, . . . , xn) with integer coefficients that
has the above form. We first look at the positive terms tj of p(x1, . . . , xn) with
1 ≤ j ≤ q and define languages L(tj) as follows.
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L(tj) = {bα1
1 . . . bα1

ij,1
bα2
ij,1+1 . . . bα2

ij,1+ij,2
. . . bαn

ij,1+...+ij,n−1+1 . . . bαn

ij
·

fj(α1, . . . , α1
︸ ︷︷ ︸

ij,1

, . . . , αn, . . . , αn
︸ ︷︷ ︸

ij,n

)¢ | α1, . . . , αn ≥ 0}

where fj : N
ij → {$1, $2, . . . , $ij}∗ is inductively defined by the following rules

with 1 ≤ i ≤ ij − 1.

fj(α1, . . . , αij ) =
(

f
(ij−1)
j (α1, . . . , αij−1)$ij

)αij

f
(i)
j (α1, . . . , αi) =

(

f
(i−1)
j (α1, . . . , αi−1)$i

)αi−1
f

(i−1)
j (α1, . . . , αi−1)

f
(0)
j = λ

For the negative, non-constant terms tj with q + 1 ≤ j ≤ r the definition of
L(tj) is identical except for the fact that each symbol $k is replaced by some
symbol dk. For each negative, constant term tj , we define L(tj) = {d1}.

Lemma 11. For 1 ≤ j ≤ r, |fj(α1, . . . , αij )| = α1 · α2 · . . . · αij .

Proof. It can be shown by induction that for 1 ≤ i ≤ ij − 1, |f (i)
j (α1, . . . , αi)| =

α1 ·α2 · . . . ·αi − 1. Then, |fj(α1, . . . , αij )| = (|f (ij−1)
j (α1, . . . , αij−1)|+1) ·αij =

(α1 · α2 · . . . · αij−1 − 1 + 1) · αij = α1 · α2 · . . . · αij . ⊓⊔

Thus, if w ∈ L(tj) and w contains ℓ symbols $ or d, respectively, then there
exist non-negative integers α1, . . . , αn such that tj(α1, . . . , αn) = sj · ℓ. In other
words, the number of symbols $ or d occurring in L(tj) denote all evaluations
of tj on non-negative integers. Furthermore, symbols $ or d denote evaluations
with positive or negative sign, respectively.

Example 12. Let tj(x1, x2, x3, x4) = x2
1x2x4. Then, ij,1 = 2, ij,2 = 1, ij,3 = 0,

ij,4 = 1, and ij = 4. Then,

L(tj) = {bα1
1 bα1

2 bα2
3 bα4

4 fj(α1, α1, α2, α4)¢ | α1, α2, α4 ≥ 0}

with

f
(1)
j (α1) = $

α1−1
1

f
(2)
j (α1, α1) =

(

$
α1−1
1 $2

)α1−1
$

α1−1
1

f
(3)
j (α1, α1, α2) =

((

$
α1−1
1 $2

)α1−1
$

α1−1
1 $3

)α2−1 (

$
α1−1
1 $2

)α1−1
$

α1−1
1

fj(α1, α1, α2, α4) =

(((

$
α1−1
1 $2

)α1−1
$

α1−1
1 $3

)α2−1 (

$
α1−1
1 $2

)α1−1
$

α1−1
1 $4

)α4

For example, to evaluate tj(2, 3, x3, 2) = 22 · 3 · 2 = 24 we consider the word

b2
1b

2
2b

3
3b

2
4$1$2$1$3$1$2$1$3$1$2$1$4$1$2$1$3$1$2$1$3$1$2$1$4¢ ∈ L(tj)
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and to evaluate tj(2, 1, x3, 2) = 22 · 1 · 2 = 8 we consider the word

b2
1b

2
2b3b

2
4$1$2$1$4$1$2$1$4¢ ∈ L(tj).

Lemma 13. For 1 ≤ j ≤ r, let tj be a non-constant term. Then language

L(tj)
R belongs to Lrt(MC(1)-OCA).

Proof. For the sake of simplicity we describe a real-time MC(1)-OCA which
has information flow from left to right and accepts in the rightmost cell. Ob-
viously, considering the reversal of the input, an equivalent MC(1)-OCA with
information flow from right to left and acceptance in the leftmost cell can be
constructed. We next sketch the construction of a real-time MC(1)-OCA ac-
cepting L(tj) where tj is a positive term. The construction for negative terms
is identical except for changing symbols $k with symbols dk. An MC(1)-OCA
accepting L(tj) has to compute two main tasks.

First, the same number of symbols bij,1+...+ij,k−1+1, . . . , bij,1+...+ij,k
for 1 ≤

k ≤ n has to be checked. This can be realized with an obvious generalization
of the construction given in the proof of Lemma 2. Thus, this task can be done
by some MC(1)-OCA.

The second task is to compute fj with variables α1, . . . , αij which are given
in the first part of the input. Here, the task to be done can be described as
follows. If k = ij , then the number of symbols bk has to be checked against the
number of symbols $k. If 1 ≤ k < ij , we consider blocks of maximum length
of the input which start with the symbol $k, end with the symbol $k+1, and
contain exactly one symbol $k+1. Now, the number of symbols bk has to be
checked against the number of symbols $k and $k+1 within each block.

Let us first assume that αk ≥ 2 for 1 ≤ k ≤ ij . The main idea of the
construction is that each bk-cell sends some signal bk with maximum speed to
the right. If k = ij , each $k is matched against some signal bk and the signal is
stopped. If 1 ≤ k < ij , then each $k is matched against some signal bk and the
signal is changed to some signal b′k which is forwarded with maximum speed
to the right, but does not check any matchings between bk and $k. Whenever
a signal b′k arrives at some $k+1-cell, i.e., at the end of a block, the signal is
reset to the signal bk and the next block is checked. If the signal bk arrives at
some $k+1-cell, the cell is marked as matched and the signal bk is forwarded
to the right to check the next block. It can be observed that each $k-cell is
marked as matched by all signals bm with 1 ≤ m ≤ k, if the input belongs to
L(tj). Otherwise, some $k-cell is not suitably marked as matched. Thus, in the
leftmost cell a signal is started which checks the correct format of the input as
well as the correct markings in the $k-cells and enables the ¢-cell to enter an
accepting state.

If αk = 1 for some 1 ≤ k ≤ ij , then the above-mentioned blocks consist
of exactly one symbol $k+1, if αk+1 ≥ 2. In general, we observe that αk = 1
implies that the corresponding block consists of exactly one symbol $t, where
t = min{s | (k + 1 ≤ s ≤ ij − 1 ∧ αs > 1) ∨ s = ij}. For example, if all αk = 1,
then each block consists of $ij only. It is straightforward to adapt the above
construction to work also for these special cases.

12



If αk = 0 for some 1 ≤ k ≤ ij , i.e., there is no symbol bk in the input. Then,
tj is equal to zero and the input must not contain any input symbols $m with
1 ≤ m ≤ ij . But this case concerns the correct format and can be checked with
the signal starting in the leftmost cell.

Let us finally prove that each cell does not perform more than a constant
number of communication steps. We use the same technique as in the proof of
Lemma 3 to forward blocks of identical signals. We first consider the bk-cells
with 1 ≤ k ≤ ij . Through each such cell pass at most ij many different bk-signals
and the final checking signal. Additionally, due to the structure of the input
the bk-signals are arriving in blocks. Thus, the number of communication steps
is bounded by some constant. For the $k-cells with 1 ≤ k ≤ ij , we can observe
that at most 2ij many different signals bk or b′k and the final checking signal
pass through each such cell. Additionally, the signals bk and b′k are arriving in
blocks and, moreover, a cell which has changed from forwarding signals b′k to
signals bk for some fixed k will never forward again signals b′k, since a changing
from b′k to bk results from a correct matching of symbol and signal and marked
cells cannot emit signals b′k (see Figure 4). Thus, within each block of bk- and
b′k-signals passing through one cell there are at most two changes from bk to
b′k to bk. Altogether, the number of communication steps is bounded by some
constant. Obviously, the ¢-cell never communicates and therefore we obtain
that also the second task can be done by an MC(1)-OCA. ⊓⊔

We next consider the following regular languages Rk depending on the sign
of tk. We set Rk = b∗1 . . . b∗ik,1

. . . b∗ik,1+...+ik,n−1+1 . . . b∗ik{$1, . . . , $ik}∗¢ if sk = 1,

Rk = b∗1 . . . b∗ik,1
. . . b∗ik,1+...+ik,n−1+1 . . . b∗ik{d1, . . . ,dik}∗¢ if sk = −1 and tk is

non-constant, and Rk = d∗
1¢ otherwise. Then, we define

L̃(tj) = {aα1
1 . . . aαn

n w1 . . . wj−1b
α1
1 . . . bα1

ij,1
. . . bαn

ij,1+...+ij,n−1+1 . . . bαn

ij
·

fj(α1, . . . , α1
︸ ︷︷ ︸

ij,1

, . . . , αn, . . . , αn
︸ ︷︷ ︸

ij,n

)¢wj+1 . . . wr | α1, . . . , αn ≥ 0 and wi ∈ Ri}

and consider L̃(p) =
⋂r

i=1 L̃(tj)
R.

Lemma 14. The language L̃(p) belongs to Lrt(MC(1)-OCA).

Proof. Since Lrt(MC(1)-OCA) is closed under intersection, we have to show
that each L̃(tj)

R belongs to Lrt(MC(1)-OCA). If tj is a constant term, then
L̃(tj)

R is a regular language and therefore is in Lrt(MC(1)-OCA). Now, let tj
be a non-constant term. As in the proof of Lemma 13 we describe a real-
time MC(1)-OCA accepting L̃(tj) which has information flow from left to right
and accepts in the rightmost cell. Then, L̃(tj)

R belongs to Lrt(MC(1)-OCA).
Due to Lemma 13 we know that an MC(1)-OCA accepting L(tj) can be con-
structed. We generalize this construction by concatenating the regular languages
a∗1 . . . a∗nR1 . . . Rj−1 and Rj+1 . . . Rr to L(tj) from right and left, respectively.
It can be observed that this can be done by an MC(1)-OCA. It remains to be
shown that for 1 ≤ k ≤ n the number of symbols ak is equal to each the number
of symbols bij,1+...+ij,k−1+1, . . . , bij,1+...+ij,k

. This can be achieved by an obvious
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# acc #

# #

# #

# #

# #

# #

# #

# #

# #

# #
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# #

# #

# #

# #

# #

# b1 b1 b2 b2 b3 b4 b4 $1 $2 $1 $4 $1 $2 $1 $4 ¢ #

Fig. 4. Schematic computation of an MC(1)-OCA which accepts the input word
b2
1b

2
2b3b

2
4$1$2$1$4$1$2$1$4¢ ∈ L(tj) with tj(x1, x2, x3, x4) = x2

1x2x4 in real time. The sig-
nals bk are depicted as large arrows whereas the signals b′k are depicted as small arrows. The
final signal which checks the correct format and the correct matchings is depicted as a dashed
arrow. A correct matching of signal b4 is depicted as an upper left box in the correspond-
ing cell. The remaining matchings of signals b3, b2, and b1 are depicted as upper right box,
lower left box, and lower right box, respectively. Then, the final signal can check the correct
matchings in each $k-cell with the help of the original input and the marked boxes.

generalization of the construction given in the proof of Lemma 3. All ak-cells
send signals ak to the right. Whenever the (j − 1)st ¢-cell has been passed,
the matching of bij,1+...+ij,k−1+m-cells (1 ≤ m ≤ ij,k) with the signal ak starts.
Due to Lemma 3, this task can be done by some MC(1)-OCA. This implies
L̃(tj)

R ∈ Lrt(MC(1)-OCA) and shows the lemma. ⊓⊔
Finally, let X be the set of all occurring symbols $k and Y be the set of all

occurring symbols dk. Then, we define L(p) = {w ∈ L̃(p) | |w|X = |w|Y }.
Lemma 15. The language L(p) belongs to Lrt(MC(1)-OCA).

Proof. A real-time MC(1)-OCA accepting L(p) has to check whether the input
belongs to L̃(p) as well as to check the equal number of $- and d-symbols. The
first task can be done by an MC(1)-OCA due to Lemma 14. The second task is
a variation of the language presented in Lemma 4. All d-symbols are sending a
signal d to the left which is matched against one $-cell. It can be observed that
the d-signals pass on their way to the left only a finite number of blocks which
contain no $- or d-symbols. According to the discussion before Lemma 3, we
obtain that the second task can be realized by an MC(1)-OCA as well. This
shows the lemma. ⊓⊔
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Theorem 16. Given an arbitrary real-time MC(1)-OCA M, it is undecidable

whether L(M) is empty.

Proof. Due to Lemma 15 we can construct a real-time MC(1)-OCA M accept-
ing L(p). By the construction of L(p), it is not difficult to observe that M
accepts the empty set if and only if p(x1, . . . , xn) has no solution in the non-
negative integers. Since Hilbert’s tenth problem is undecidable, we obtain that
the emptiness problem for real-time MC(1)-OCAs is undecidable. ⊓⊔

Corollary 17. The problems finiteness, infiniteness, universality, equivalence,

inclusion, regularity, and context-freedom are undecidable for arbitrary real-time

MC(1)-OCAs.

Proof. Undecidability of emptiness implies immediately the undecidability of
inclusion and equivalence.

Consider the language L(M){a}∗ for some new alphabet symbol a. Ob-
viously, L(M){a}∗ ∈ Lrt(MC(1)-OCA) and L(M){a}∗ is finite if and only
if L(M) = ∅. Since emptiness is undecidable, finiteness and infiniteness are
undecidable as well.

Lemma 5 shows the closure under complementation. Therefore, universality
is undecidable.

To show the undecidability of regularity we consider the language L′ =
L(M){ anbn | n ≥ 1 } for some new alphabet symbols a, b. A straightforward
adaption of the proof of Lemma 2 shows that L′ belongs to Lrt(MC(1)-OCA).
An obvious application of the pumping lemma for regular languages shows
that the regularity of L′ implies the finiteness of L(M). Thus, regularity is
undecidable. Similarly, the undecidability of context-freedom is shown by using
the language LM{ anbncn | n ≥ 1 } for some new alphabet symbols a, b, c. ⊓⊔

Theorem 18. It is undecidable for an arbitrary real-time OCA M whether M
is a real-time MC(1)-OCA.

Proof. Let M′ be a real-time MC(1)-OCA and consider the language LM′ =
{ a|w|w | w ∈ L(M′) } where a is some new alphabet symbol. A real-time
OCA M accepting LM′ can be described as follows. The correct number of
a- and non-a-symbols can be checked in the same way as it is done for the
language { anbn | n ≥ 1 } (see Lemma 2). The cells initially carrying non-
a symbols are simulating the given real-time MC(1)-OCA M′. Whenever the
leftmost non-a-cell enters an accepting state of M′, which can be detected by its
left neighboring cell, some signal A is sent with maximum speed to the left. This
signal forces all a-cells to communicate in every time step. In the rightmost cell,
some signal is started which checks the correct input and enters an accepting
state in the leftmost cell whenever the format is correct, the number of a-
and non-a-symbols is correct, and the A-signal has reached the leftmost cell.
It can be observed that the number of communication steps in each cell in
the first block of a-cells depends on the length of w, if w ∈ LM′ . Thus, M is
an MC(1)-OCA if and only if LM′ is finite. Since finiteness is undecidable for
MC(1)-OCAs due to Corollary 17, we obtain that the question whether M is
a real-time MC(1)-OCA is undecidable as well. ⊓⊔
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In conclusion we remark that the results can also be adapted to cellular
automata where the number of proper state changes is bounded [19, 20], which
answers an open question posed in [21]. Analyzing the proofs of Lemma 13,
Lemma 14, and Lemma 15 with respect to the number of state changes shows
that the language L(p) is accepted by real-time cellular automata where the
number of state changes of each cell is bounded by a constant. So, from the
above we derive immediately that the problems emptiness, finiteness, infinite-
ness, universality, inclusion, equivalence, regularity, and context-freedom are
undecidable for these automata, as well as that it is undecidable for an arbi-
trary real-time OCA whether its number of state changes of each cell is bounded
by a constant.
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