I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

IMPROVING RASTER IMAGE
RUN-LENGTH ENCODING USING
DATA ORDER

Markus Holzer Martin Kutrib

IFIG RESEARCH REPORT 0105
Jury 2001

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 0105, JuLy 2001

IMPROVING RASTER IMAGE RUN-LENGTH ENCODING
UsING DATA ORDER

Markus Holzer!

Institut fur Informatik, Technische Universitat Miinchen

Arcisstrafle 21, D-80290 Miinchen, Germany

Martin Kutrib?

Institute fur Informatik, Universitat Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. We examine the technique of run-length encoding in combination with
data order, where our attention is focused on good performance of image operations
such as, e.g., rotation, reflection, and zooming. To this end we develop a new type
of data order that supports these operations well and allows to perform them on
a variant of a double-queue automaton directly on the compressed data stream.
Because of its shape we call this data order shamrock or S-order. To confirm our
theoretical results on S-order we have performed some experiments on sample data
using various data orderings that appear in the literature.

CR Subject Classification (1998): E.4, F.1, G.2.1, 1.4.2, 1.5.3

IE-mail: holzer@informatik.tu-muenchen.de
2E-mail: kutrib@informatik.uni-giessen.de

Copyright © 2001 by the authors

1 Introduction

Run-length encoding (RLE) is one of the most simplest lossless type of data
compression schemes and is based on a simple principle of encoding data; see,
e.g., Salomon [9]. This principle is that every partial stream which is formed
of the same data values, i.e., sequence of repeated data values, is replaced by
a single value and a count number—in the terminology of data compression
repeating values are called a run. This intuitive principle works best on certain
data types in which sequences of repeated data values can be noticed. Therefore
RLE is usually applied to files that contain large numbers of consecutive occur-
rences of the same byte pattern. Good examples are text files which contain
multiple spaces for indentation and formatting paragraphs, tables, and charts,
as well as digitized signals as, e.g., monochrome images or sound files. Although
RLE can be easily implemented and quickly executed it cannot achieve great
compression ratios.

Many researchers, including many in the database community, have proposed
clustering data using orderings to improve compression ratios. Since the com-
putation of the stream, which can be compressed using the above described
principle, is the heart of RLE, it is natural to pay special attention to these
data orderings. One of the most common form of grided data representations
as, e.g., raster images, is row order, where cells are traversed in sequence by
row and, within row, by column. That RLE may benefit from using different
data ordering was shown by several authors, especially geographers. One of the
first experiments with data orderings are often credited to Morton [8] in the
mid 1960’s. Later further research into this topic was undertaken by Goodchild
and Grandfield [5]. In this paper four data orders were tested to determine
their compression capability in combination with RLE. Besides the already
mentioned row ordering also row-prime, Morton order, and Hilbert order—see
Figure 1(a)—(d)—were considered. Note that Morton order is also called Z-
order and plays a crucial role in spatial databases to cluster multi-dimensional
data; for further details we refer to Gaede and Gunther [4]. It turned out, that
storage could be reduced up to 60% using Hilbert order, and 25% using Z-order,
as opposed to using row order, for (monochrome) images with high spatial ho-
mogeneity. For images with low spatial homogeneity the tests resulted in a 5%
reduction from Hilbert order and a 5% increase from Z-order, over row order.
Similar results were obtained by a comparative analysis by Abel and Mark [1].
Intuitively, these results tell us that using a Hilbert scan the coherence will be
improved by avoiding the discontinuities found at the end of row order scan
lines; adjacent pixels from a Hilbert scan share the same area because of its
fractal nature, and are thus more likely to be similar than pixels in horizontally
scanned lines. These factors improve the performance of RLE.

Digital image compression deals with the problem of finding such a succinct rep-
resentation for raster images. Over the years quite a few compression techniques
have been developed that aim to eliminate redundancy from raster images; see,
e.g., Kou [7]. Images are preferably maintained in compressed form not only
to save storage space, but also to perform operations faster on the compressed

(a) Row (b) Row-prime (c) Morton

(d) Hilbert (e) Column (f) Column-prime

Figure 1: Some standard data orderings.

image. This is a realistic objective because in compressed form less data has
to be processed. Because it must be expected that different properties of the
various orderings are reflected in differing degrees of suitability for various tasks
we examine the technique of RLE in combination with data order, where our
attention is focused on good performance of image operations such as, e.g.,
rotation, reflection, and zooming.

Intuitively speaking, a data order should possess certain desirable properties:
(1) Pass once through each point in the image, (2) easy description and com-
putation of the order, (3) be stable when the image becomes larger, and (4)
provide variable resolution. For our purpose we have to develop a new sort
of data order which supports these image operations, since non of the existing
orders are useful. Because of its shape we call it shamrock or S-order, for short.
More precisely we will see that the support of the image operations rotation and
reflection clashes with condition (1). Hence, S-order must access certain image
points more than once, which might be some disadvantage compared to Hilbert
order. Nevertheless, our experiments show that S-order is still comparable with
Z-order and mostly dominates it. Moreover, the S-order can be computed by a
recursive algorithm as in the case of the Hilbert order and the order is actually
so simple that the mentioned image operations can be performed by a variant
of a double-queue-automaton.

The paper is organized as follows. In the next section we introduce the nec-
essary notations. Section 3 introduces the new sort of data order under the

light that non of the existing orderings support rotation and reflection well.
Then in Section 4 we briefly describe some algorithms performing raster image
operations on the encoded data in linear time with respect to the input size.
Finally, Section 5 summarizes experiments, which we have performed recently.

2 Definitions

In this section we give the necessary notations on raster images and data order.
Let n be a power of two. An n x n raster image is defined to be a quadratic
array or grid of same size built from regularly sampled values, known as pixels—
picture elements. In a raster image each pixel has a coordinate (i,j), with
1 < 4,5 < n, and a number associated with it, generally specifying a color
which the pixel should be displayed in. The pixels with coordinates (1,1) and
(n,n), respectively, lie in the lower left and upper right corner, respectively.
Throughout the paper we only make use of monochrome raster images, hence
restricting the colors to black and white.

The image operations rotation and reflection are nothing other than certain
permutations of the pixels in the raster image. Let d refer to the 5 rotation
around the center C of the image, and s to the reflection at the vertical line in-
tersecting the center—see Figures 2(a) and (b). Then d and s are permutations
operating on the set of pixel coordinates P, = { (z,7) | 1 < ,j7 < n}, satisfying
d* = id, s> = id, and dsd = s. From these equations one sees that d and s
generate the dihedral group D4 containing

Dy = {id,d,d? d*,s,sd,sd?, sd®}.

Observe, that D4 has order 8. For further information on dihedral groups we
refer to Weinstein [10]. The four axis of symmetry induced by D4 are shown in
Figure 2(c). We say that a raster image is closed under the operations of the
dihedral group Dy if and only if the picture is unchanged by the transformations
in D4.

(a) Rotation d. (b) Reflection s. (c) Axis of symme-
try.

Figure 2: Basics on the dihedral group Dy.

Finally, we make our intuition on data orderings more precise. The definition
of a data order reads as follows. Again, let n be a natural number. A data
order ¢ on an n X n grid is a one-to-one mapping

o:{1,...,n*} = {1,...,n} x {1,...,n}.

A data order ¢ is called continuous if and only if da(p(7), ¢(i+1)) = 1 holds for
all 1 < i < n?, where dy denotes the Euclidean distance do, and a continuous
data order ¢ is cyclic if and only if da(p(1),(n?)) = 1. We associate an
undirected graph D(y) with a data order ¢ in the obvious way, i.e., D(p) =
(V,E), where

V={1,....,n}x{1,....,n}
and
E = {(p(i),p(i +1)) | 1 <i <n®}uU{(p(n®), (1))}

We consider two data orders two be equal if and only if they induce the same
graph. This is particularly useful because, e.g., data order ¢ and the data order
where every image point is moved one step along the underlying graph or in
other words
() = e(i+1) ifl1<i<n?
4 (1) otherwise,

are equivalent. Thus, the starting point of a data order is not important.
Moreover, if ¢ is continuous, then so is ¢’. The some holds in case of cyclic
data orders.

A data order ¢ is closed under the dihedral group D, if and only if the
graph D(y) remains unchanged by the transformations in Dy, i.e., if one applies
the appropriate permutation operation on the edges. Note, that none of the
data orderings shown in Figure 1 are closed under the dihedral group Dy.

Observe, that a continuous data order traverses a grid making unit steps and
turning only at right angles. Sometimes a continuous data order in our sense
is called discrete space-filling curve in the literature. We have already seen the
most typical example of a continuous data ordering, namely Hilbert ordering,
which is based on the equally named space-filling curve [6]. It is created by
starting with an initial shape, looking like a staple, that is copied and rotated
four times with connecting lines inserted to fill a square area. The first few
stages are shown in Figure 3.

Its simplicity and beauty derive from the fact that it progressively subdivides
a square array down into an array of four sub-squares. The final curve is
created by repeating and rotating the copying infinitely. This is yet another
feature of continuous data orderings since they are usually self-similar, i.e., the
data order or curve can be generated by putting together identical units, only
applying rotation and reflection to these units. Observe, that although Z-order
has a flavour of self-similarity as one can image from Figure 1(c), it is a non-
continuous data order in our sense. In the sequel we are only interested in
continuous data orderings.

Figure 3: First four stages of the Hilbert space-filling curve.

3 Data Order and its Generalization

In this section we examine the question, whether there exists a data order
which is closed under rotation and reflection. Up to now we only have seen
one example with this property, namely the Hilbert order on a 2 x 2 grid—see
Figure 3. It is clear, that Hilbert order on larger grids is not closed under
rotation and reflection from the dihedral group due to the “sticky” ends of
the data order. In general, it is easy to see that non-cyclic continuous data
orderings can not be closed under rotation and reflection. The next theorem
shows, that the situation is even worse, since for large enough grids even no
cyclic data order with the property we are looking for exists.

Theorem 1 Let n be a power of two greater than or equal to four. Then there
is no cyclic data order ¢ : {1,...,n?} — {1,...,n} x {1,...,n} which is closed
under the dihedral group Dy.

Proof. For the sake of a contradiction assume that a cyclic data order ¢ on an
n X n grid which is closed under the dihedral group Dy exists. Divide the n xn

B B

L L

T

r

(a) 1st case. (b) 2nd case.

Figure 4: An assumption on the connectivity of cells is drawn with a solid line,
while connectivity induced by rotation and reflection is drawn with a dashed
line.

grid in four equally sized sub-grids and consider cells A and B with coordinates
(5, 5+1) and (1,7n), respectively, i.e., the lower right and upper left cell, respec-
tively, of the upper left sub-grid. Then we have to consider two cases. First, if A
is connected to one of its neighbouring sub-grids, then we immediately obtain a
contradiction. This is due to the fact that all to cell A corresponding cells—by
rotation and reflection—are connected, and build a cycle without entering all
cells in the grid. This is not possible in a cyclic data order. The situation
described is seen in Figure 4(a).

Next consider the case when A is connected to the interior of the leftmost upper
sub-grid. Then starting the indexing process in cell A leads us to a path p
through that sub-grid eventually entering another sub-grid. Without loss of
generality we may assume that the first step starting in A leads to the west and
that we may enter the leftmost lower sub-grid. This already induces a cyclic
ordering, which must be consistent with ¢. The situation described is depicted
in Figure 4(b). If path p doesn’t include the cells on the diagonal between A
and B-—these cells are shaded in Figure 4(b), then the induced ordering is not
space-filling. Thus a contradiction. On the other hand, if at least one of the
cells on the diagonal between A and B is part of the path p, then we have to
consider six cases how the path goes through this cell. The six possibilities are
shown in Figure 5.

(a) (b) (c) (d) (e)

"

(f)

Figure 5: All possible connections of a gray shaded cell. An assumption on the
connectivity of cells is drawn with a solid line, while connectivity induced by
rotation and reflection is drawn with a dashed line.

Obviously, cases (a) and (f) are not possible since this would contradict our
assumption that p must enter another sub-grid. The remaining four cases (b)—
(e) immediately lead to a contradiction since by rotation and reflection the cell
under consideration gets degree four. Thus, this is also a contradiction, and

therefore shows that no cyclic data order closed under the dihedral group Dy
exists. m

It is worth mentioning that the previous theorem can be strengthened such
that n is any natural number greater than or equal to three. The theorem
above easily generalizes to even numbers, while the missing odd case is seen as
follows: In an n x n grid the interior cell A with coordinates ([§1, [5]) must be
connected to one of its neighbouring cells, and hence by rotation and reflection
to all its four neighbours with Euclidean distance one. But then the cell under
consideration has degree four, which is a contradiction since every point ¢(i)
has degree two in the graph D(y). Thus, we have shown the following corollary.

Corollary 2 Let n > 3. Then there is no cyclic data order ¢ on an n X n grid
which is closed under the dihedral group Dy. O

The main argument in the previous proofs was that the closure under rotation
and reflection implies that a grid graph must have vertices with degree four.
Since this is not possible with an ordinary data order, we have obtained our
contradiction. On the other hand this also shows that we must allow multiple
access to grid point since a degree four vertex is traced twice. This immediately
leads to generalized data orderings, which are defined as follows.

Let m and n be natural numbers. A generalized data order 1 on an n x n grid
is a onto mapping

i {l,...,n*+m} = {1,...,n} x {1,...,n}.

As in case of ordinary data orderings we can associate a graph D(t) with 1.
A generalized data order 9 is called continuous if and only if (1) da(%(i), (2 +
1)) =1forall 1 < i< n?+m, and (2) the associated graph D(v)) can be drawn
in one stroke without hitting an edge twice. A continuous generalized data
order ¢ is cyclic if and only if d2(¢(1), (n?)) = 1. By definition an ordinary
(cyclic, continuous, respectively) data order is a (cyclic, continuous, respective-
ly) generalized data order, but not necessarily vice versa. The next lemma shows
that the graph D(v) of a generalized data order fulfills the necessary condition
to be closed under the dihedral group D4. We omit the straight-forward proof
of this lemma.

Lemma 3 Let 9 be a generalized data order. Then every vertex in the graph
D(v) has even degree. O

At this point it is still not clear whether a generalized data order satisfying
our requirements exists. In the sequel we answer this question positively by
constructing such a data order, which we call Shamrock order or for short S-
order, due to its shape. Analogously to Hilbert order we obtain in an inductive
manner a generalized data order for n x n grids, where n is a power of two.
However, there is a slight decisive difference. Whereas in Hilbert order the
basic building blocks are squares (cf. Figure 3), the construction of the S-order
is easier to describe using triangles to which only rotation is applied.

f —

(a) Axiom (b)
Rule

Figure 6: Axiom and rule of the OL type grammar to construct the S-order.

We visualize the construction by means of an OL type grammar, hence forcing
the rewriting to take place simultaneously at every nonterminal. A similar
approach to describe the construction of space-filling curves was undertaken by
Asano et al. [2]. A nonterminal in the grammar represents an upper triangle
of an n X n grid together with a line segment. The start and endpoints of a
line segment are marked by a dot to control the rule application and for better
orientation. Hence to obtain the entire area of an n X n grid one has to put
two triangles in an up-side down manner together. The axiom is depicted in
Figure 6(a). The rewriting process goes through a number of iteration, where
each iteration rewrites all non-overlapping triangles according to an application
of a rule in our grammar as shown in Figure 6(b). Observe, that the OL type
grammar is allowed to rotate triangles. Figure 7 displays the first few iterations
of the S-order starting with a single triangle instead of a whole square; the
drawings are properly scaled such that each has same size. Moreover, in the
first and second iteration we have indicated how to draw the line in one stroke
without hitting an edge twice.

Hence we have shown the following theorem.

Theorem 4 Let n be a power of two. Then there is a cyclic generalized data
order 9 : {1,...,n> + m} — {1,...,n} x {1,...,n} which is closed under the
dihedral group Dy. O

It remains to compute the number m for S-order since this is the important
parameter that will influence the compression ratio of RLE. Let n be a power
of two for some constant £ > 1. Then let Ej denote the number of degree-two
points that hit the diagonal of a triangle that fits on an n x n grid and I be
the number of intersecting points in a triangle that fits on an n x n grid. From
Figure 7 one obtains that the first few values of (Ey, Iy) are (0,0), (2,1), (6,7),
etc. In general 2 - I}, + Fj, which equals the number of intersecting points of
the whole grid of appropriate size, obeys the recurrence

2-I1+E, =0,

and

6 710 11

RRsaEy

L
\T

Figure 7: The upper left triangle part of the first three stages of the S-order
and its final shape.

2. Iy +E, =8-I) 1+4-E, 1+14
=4-(2 - Iy-1+ Ep1) +4,

for £ > 2, which has the solution

4k — 4

2-Ip, +F, = 3

Comparing this number with the overall number of pixels on the corresponding
n X n grid results in an surplus of

visited points. Thus, roughly a third of the points is used to obtain our closure
under the dihedral group Djy.

At this point the question arises, whether the constructed order is best possible
with respect to m, i.e., the number of points visited more than once. In fact,
for generalized data orderings constructed in a recursive manner by an 0L type
grammar with nonterminals in triangle form, we can show that one cannot do
better than m = "23’ 4 This is seen as follows. Consider the triangle of a right-
hand side of a rule. Partition this triangle counter clock-wise into a smaller
triangle, a square, and a smaller triangle again. These three substructures have
to be connected by edges in order to obtain a generalized data order. Moreover,
the endpoint of these edges under consideration have degree four by Lemma 3.
Degree two is not possible, because the drawing in the square area without out-
side connecting edges must be already closed under the dihedral group D4 and

10

thus has no vertices with degree one. Then the recurrence that determines m
reads as
2+ By =4 (2T 1+ Ep1) +c

for £ > 2 and some constant c¢. Here ¢ is the overall number of vertices that are
visited twice in a complete square built by two right-hand sides of the rule under
consideration. By our argumentation above, ¢ must be at least four, because
one may place the connecting edges of the substructures near the midpoint of
the hypotenuse, which results in four additional points (instead of eight). This
shows that the S-order is best possible with respect to m.

4 Image Operations and S-Order

We discuss how to implement certain image operations under the assumption
that RLE in combination with S-order is used to store raster images. It is
seen that a certain variant of a double-queue automaton is already suitable to
perform rotation, reflection, zooming, and inversion on the raster image only
using its encoded form. Due to the lack of space we only briefly describe how
to perform rotation and reflection.

First consider a 4 x 4 grid as shown in Figure 7. Then one easily observes that
a rotation by 7 changes the numbering of the appropriate S-order equal to the

permutation
d— 12...1516 ... 20
S \67...201 ... 5

on 20 points. This nicely generalizes to

1 2 n?—1n? ... o=
ao(, 1,2 miolmt. e
welpqoiclyg, w24 g o

3 3 3

for n x n grids, which can be verified by induction on n. Analogously, we find
that the reflection s on n X n grids is mimicked by the permutation

(1 2 wtetel =t)
n?n?-1...1 % on?+1
;From the formal language point of view, the rotation corresponds in a certain
sense to an operation that maps a word uv to a word vu, while a reflection
maps uv to ufv®, where wf denotes the mirror image of w. Based on this
easy observations we develop a pseudo code for a variant of a double-queue

automaton that operates on the RLE of the raster image. To this end we have
to make some assumptions on the RLE.

Without loss of generality we assume that the encoded data consist of a head
and a body section, where the head contains information on the raster image
size and the body the actual RLE of the image using S-order. The body is
a sequence of tuples of the form (M : ¢) or (O : i) indicating that a data
stream with ¢ repeated values of B or [, respectively, was seen during the

11

S-order like traverse of the raster image. Consider the raster image shown in
Figure 8(a). A S-order traverse, partially depicted in the second drawing of
Figure 7, reads out the pixel colors and results in the 20 element color sequence
EEEEEEEEROECOOOC0OEO, which is simply encoded as (B : 9)(O :
3)(M:1)(0:5)(M:1)(0:1). The RLE of the rotated raster image as shown
in Figure 8(b) equals the tuple sequence (W :4)(CJ: 3)(W: 1)(0:5)(M: 1)(O:
1)(M:5).

(a) Original. (b) Rotated.

Figure 8: An example of a 4 x 4 monochrome raster image.

Now we are ready to give the pseudo code for a one-way double-queue au-
tomaton with additional registers to perform simple arithmetic tasks such as
addition and multiplication of integers. The double-queue is manipulated by
the functions first, rest, last, least, prefix, and postfix, which have the intuitive
meanings. The isempty function checks whether the double-queue is empty or
not—for further information on these operations we refer to Bauer and Goos [3].
Operation next acts on the input. It gives back a tuple of the form (M : ¢) or
(O :) and moves the input head to the right. The below given pseudo-code al-
gorithm for the raster image rotation is based on our previous observations and
uses the implicitly defined self-explaining and pre-initialized variables dqueue
and input. It reads as follows:

1 initialization and simple calculations
2 position := 0; surplus := 0;

8 cutpoint 1= #;

5 search for the cut-point %
6 while position < cutpoint do

7 element := next(input);

8 dqueue := postfix(dqueue, element);

9 position := position + element.number od;
11 remove last stored item

~
S}

dqueue := least(dqueue);
store remaining part

~
S

15 surplus := position — cutpoint;
16 dqueue := postfix(dqueue,
18 (element.color : element.number — surplus));

12

21 write overhanging pixels
22 write (element.color : surplus);

24 write remaining input
25 while —iseof(input) do

26 write next(input) od;

28 write previously stored part
29 while —isempty(dqueue) do

30 write first(dqueue) od;

The reader may have notice, that the algorithm is not optimal, since it doesn’t
verify whether it is possible to glue tuples with same color together after the
cutting and recombination. For instance, rotating the raster image shown in
Figure 8 twice, should result in the RLE (0 : 3)(W: 1)(O0: 5)(M: 1)(0: 1)(M :
9)(O : 1) but our algorithm applied twice to the RLE of the original raster image
produces the sequence (O : 3)(M : 1)(00 : 5)(M: 1)(0: 1)(M:5)(M: 4)(0: 1)
instead. This is not a serious problem and can be fixed with slight changes to
the above given pseudo code.

Similar algorithms can be given for the other raster image operations mentioned
at the beginning of this section. Only in case of zooming a slight enhancement
of the double-queue automaton is necessary in order to be able to construct
the S-order for larger or smaller sized images. We have to omit the details and
refer to a longer version of this paper. In all cases the running times of the
algorithms are linear in the input size.

5 Experiments

We have conducted experiments with data order, especially S-order, on mono-
chrome raster images. First of all to experimentally verify that S-order can
compete against already existing data orderings and secondly to implement
image operations as discussed in the previous sections. A screenshot of the
Java 1.3 program used to perform our test runs on Intel Celeron 400 MHz and
AMD Athlon 1 GHz machines and some sample input is shown in Figure 9—
unfortunately, the buttons on the screenshot are labelled in German. Both
machines use Windows 98 as an operating system and have 256 MB RAM. The
input to our program are files in bmp-format.

As test data sets we have chosen a wide range of images from standard examples
like text fragments and artificial images as, e.g., chess boards and fractals, up
to non-common ones as, e.g., silhouettes of islands inspired by some of our
geographical references, and modern paintings. We compare the various data
orderings paying special attention to S-order by their compression ratio, which
is the size of the output data divided by the size of the input data. The results
are summarized in Figures 10 and 11 and can be interpreted as follows.

Figure 10(a) shows the results for Hilbert order compared to the traditional
row order and column order. As expected Hilbert order is slightly better than
the others, since most of the dots are above the diagonal that splits the first

13

o applet Frame []
A Bild: Dateiname:

windbmp

“leer: Kantenldnge:

e
Pinelgréife: |1 Erzeuge

BEMP zeichnen 43 Drehen 907 Spiegeln /

Drehen 180° Spiegeln —
Drehen 270° Splegeln
Spiegeln |

Anzeige |dschan 23
BMP invertieren 1
schliefen

w=shift. [

standard—Kurve — Anzahl 8308 y=shift: | Veraréfern

Kurye einzeichnen ‘shift verkleinern |
BMP codieren output: |fout.txt
Kurve decodieren T nur LF (kein CR)

Figure 9: Screenshot of the Java 1.3 program written to perform some experi-
ments and a sample image—“Wind and Weather” (1910) of G. Miinter.

quadrant into half. The results for Z-order are nearly completely the other way
around as shown in Figure 10(b). There, maybe due to the non-local nature
of Z-order, most of the dots are below the diagonal. Hence row and column
order mostly supersedes Z-order. Finally in Figure 10(c) the results for S-order
are shown. Surprisingly S-order is weaker than the traditional orderings, which
comes from the surplus of roughly a third of pixels points. The gray shaded
area in Figure 10(c) indicates the region of compression ratio induced by these
additional points. Taking a closer look, one observes, that the dots cover nearly
the same region as in case of Z-order and in fact the overall impression is like in
the Hilbert order case, only slightly shifted to the lower end in the gray shaded
region. The outliers at the left hand sides of the diagrams are generated by
chessboard-like images.

Nevertheless, the dominance of the space-filling Hilbert order and Z-order is not
as significant as one might have expected from previous results in the literature.
To confirm this intuition, we have to continue our experiments to clear this up.

Finally in Figures 11(a)-11(c) row order, column order, and S-order are com-
pared to Hilbert order and Z-order. For the former two figures we come to
the same conclusion as for Figures 10(a) and 10(b), respectively. It remains to
consider Figure 11(c) with the results for S-order. As in Figure 10(c) the gray
shaded region is induced by the additional points of the S-order traverse. One
observes, that S-order is roughly comparable to Z-order, which nicely fits to the
interpretation of Figure 10(b). Interestingly, most of the dots for the Hilbert
order lie exactly on the lower end of the gray shaded region, which shows that
Hilbert order and S-order are similar with respect to their compression ability
and the difference in compression ratio is determined by the surplus of pix-
els, only. This is exactly the result which one can await from the theoretical
investigations in Section 3.

14

1 — ~
0.8 Row order (e) /// Row order (e) ///
' Column order (og.” Column order (0).” ¢
., [4
0.6—* ®,° « “o
» e
0.4 - %98’ e
. // oe 8
0.2+ ,g' ///é °
#*
0 EUSEUNER EUSUSER

0 02 04 06 08 1 0 02 04 06 08 1

(a) Hilbert order. (b) Z-order.
— 1
Row order (e) /// 08
Column order (o) 4 o :
// o
* Ao ° 06
// '
o,o’
//) ® [04:
©
AT e —0.2

0 02 04 06 08 1

(c) S-order.

Figure 10: Compression ratio of Hilbert order, Z-order, and S-order (z-axis)
compared to row and column order (y-axis).

6 Conclusions

The results on the S-order nicely fit to already existing experimental investiga-
tions on data orderings and look very promising. We have seen that S-order is
comparable to Z-order from the compression point of view, although the size
of the domain of S-order is 4”;—*4 instead of n? as in case of traditional data
orderings. Moreover, our experiments suggest that in most cases Hilbert order
is not better than % of S-order, and that in addition S-order has the advan-
tage to support certain image operations like rotation, reflection, and zooming
well, since it was especially designed for this purpose. To overcome the slight
obstacle on compression ratio of S-order one might relax the condition on the

closure under the dihedral group Dy, in order to get rid of twice visited pixel

15

]. % /
0g_| Hilbert order (o) © /// Hilbert order (e)° ///
: Z-order (o) / Z-order (o) e
D/. o /‘
0.6 — R 6, ol
° //' OO///‘
o , o,
0.4 — . ™
. OO /‘ O//.
P (]
0.2] 09,/ % e/
. 8 &, .
0 R S — T T 1
0 0.2 04 06 0.8 1 0 02 04 06 0.8

(a) Row order.

(b) Column order.

— 1
Hilbert order (e) //’/o 08
Z-order (o) e ’
;o e
Ao o 06
[o4
o S
S. —0.4
%
e —0.2
|
IEUSEUSE 0
0 02 04 06 038 1
(c) S-order.

Figure 11: Compression ratio of Row order, Column order, and S-order (z-axis)
compared to Hilbert order and Z-order (y-axis).

16

points, but still supporting image operations well. Future research will reveal
to what applications and to what degree S-order or a relaxed variant can be
advantageous.

7

Acknowledgments

We thank Bjorn Fay who has written the Java 1.3 program and conducted the
experiments on various data orderings for us.

References

[1]

[2]

[3]
[4]
[5]

[6]
[7]
(8]
[9]

D. J. Abel and D. M. Mark. A comparative analysis of some two-dimensional
orderings. International Journal of Geographical Information Systems,
4(1):21-31, 1990.

T. Asano, D. Ranjan, Th. Roos, E. Welzl, and P. Widmayer. Space-filling
curves and their use in the design of geometric data structures. Theoretical
Computer Science, 181(1):3-15, 1997.

F. L. Bauer and G. Goos. Informatik—FEine einfihrende Ubersicht II.
Springer, 1984

V. Gaede and O. Giinther. Multidimensional access methods. ACM Com-
puting Surveys, 30:170-231, Juni 1998.

M. F. Goodchild and A. W. Grandfield. Optimizing raster storage: an
examination of four alternatives. In Proceedings of the 6th International
Symposium on Automated Cartography, pages 400-407, Ottawa, Ontario,
Canada, 1983.

D. Hilbert. Uber die stetige Abbildung einer Linie auf ein Flichenstiick.
Mathematische Annalen, 38:459-460, 1891.

W. Kou. Digital Image Compression: Algorithms and Standards. Kluwer,
1995.

G. M. Morton. A computer oriented geodetic data base, and a new technique
in file squencing. Technical report, IBM, Ottawa, Ontario, Canada, 1966.
D. Salomon. Data Compression. Springer, 1997.

[10] M. Weinstein. Ezamples of groups. Polygonal Publishing House, Passaic,

New Jersey, 1977.

17

