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Summary

The Receptor for Advanced Glycation End Products (RAGE) is a 

transmembrane receptor of the immunoglobulin superfamily. While vascular 

RAGE expression is associated with kidney and liver fibrosis, under 

physiological conditions high expression level of RAGE is found in the lung. 

In this work, RAGE expression in idiopathic pulmonary fibrosis (IPF) was 

assessed, and the relation of the receptor to functional changes of epithelial 

cells and pulmonary fibroblasts in the pathogenesis of the disease was 

investigated. Significant downregulation of RAGE was observed in lung 

homogenate and alveolar epithelial cells (AEC) type II from IPF patients as 

well as in bleomycin-treated mice, demonstrated by RT-PCR, western 

blotting and immunohistochemistry. RAGE downregulation was provoked by 

stimulation of primary human lung fibroblasts and A549 epithelial cells with 

the pro-inflammatory cytokines, transforming growth factor-�1 or tumor 

necrosis factor-� in vitro. Blockade of RAGE resulted in impaired cell 

adhesion, and siRNA induced knock down of RAGE increased cell 

proliferation and migration of A549 cells and human primary fibroblasts in

vitro. These results indicate that RAGE serves a protective role in the lung 

and that loss of the receptor is related with functional changes of pulmonary 

cell types with the consequences of fibrotic disease. The study provides 

evidence that the expression and regulation of RAGE in the pulmonary 

system differs from that in the vascular system. Here, a possible functional 

mechanism of RAGE in pulmonary fibrosis is described for the first time. 



Zusammenfassung

VIII

Zusammenfassung

Der Rezeptor für “Advanced glycation end products” (RAGE) ist ein 

Transmembranrezeptor aus der Superfamilie der Immunglobuline. Die 

vaskuläre RAGE Expression ist mit Nieren- und Leberfibrose assoziert, 

während eine hohe Expression von RAGE in der Lunge unter normalen 

physiologischen Bedingungen gefunden wurde. In dieser Studie wurde die 

Expression von RAGE in Patienten der idiopathischen Lungenfibrose (IPF) 

gemessen, und die Beziehung zwischen RAGE und die funktionellen 

Änderungen von Epithelzellen und pulmonalen Fibroblasten wurde 

untersucht. Signifikante Absenkung der Expression von RAGE wurde in 

Lungenhomogenaten und isolierten alveolaren Epithelzellen type II von IPF 

Patienten sowie auch in Bleomycin-behandelten Mäusen, nachgewiesen 

mittels RT-PCR, Western-blot und Immohistochemie. In vitro wurde die 

Repression von RAGE durch die pro-inflammatorischen Zytokine TGF-� und 

TNF-� in primären Fibroblasten und A549 Epithelzellen erreicht. Desweiteren 

führte die Blockade von RAGE mittels anti-RAGE Antikörpern zu reduzierter 

Zelladhäsion. siRNA-induzierte Inhibierung der Expression von RAGE in 

A549 und Fibroblasten führte zur vermehrten Zellproliferation und -Migration 

in vitro. 

Diese Ergebnisse deuten auf eine Schutzfunktion der RAGE Expression in 

der Lunge hin, hingegen trägt der Verlust an RAGE zu zellulären Änderungen 

und fibrotischen Erkrankungen bei. Diese Studie deckt molekulare 

Zusammenhänge auf, die zur Erklärung der Unterschiede in der Expression 

und Regulation von RAGE zwischen dem pulmonalen und vaskulären 

System führen können. Ein möglicher, funktioneller Mechanismus von RAGE 

in der pulmonalen Fibrose wurde hier zum ersten Mal beschrieben. 
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1. Introduction 

1.1 The receptor for advanced glycation end products (RAGE) 
The receptor for advanced glycation end products (RAGE) is a type I 

transmembrane receptor of the immunoglobulin superfamily composed of 

three extracellular immunoglobulin-like domains V, C1, C2, a transmembrane 

helix and a short, highly negatively charged, cytoplasmatic tail with no known 

binding motif at the intracellular C-terminus. 

Several shorter isoforms exist beside the RAGE full-length receptor. An N-

truncated receptor lacking the V-domain and two soluble RAGE isoforms 

composed of the extracellular domains which can be derived by alternative 

splicing, called endogenous soluble RAGE (esRAGE) or which arise from 

cleavage by the matrix metallo-proteases ADAM10 or MMP-9, called soluble 

RAGE (sRAGE) (Raucci, Cugusi et al. 2008; Zhang, Bukulin et al. 2008). It 

was shown that calcium is a critical regulator of the intramembrane-

proteolysis of RAGE, catalyzed by ADAM10 and the �-secretase (Galichet, 

Weibel et al. 2008). The function and possible benefit of the processing of 

RAGE is broadly unknown and not well understood. However, it is widely 

accepted that the soluble isoforms of RAGE can intercept and prevent certain 

ligand interactions with RAGE. 

The human gene for RAGE, ager (advanced glycation end products receptor), 

is localized on chromosome 6 in the histocompatibility complex between 

class II and class III. The ager gene is composed of 10 introns and 11 exons 

which can undergo alternative splicing to derive splice variants. The RAGE-

promoter contains nuclear factor (NF)-�B sites, interferon-� response element 

and an interleukin-6 (IL-6) DNA binding motif, whereby the NF-�B sites 

control the expression and connect the expression to inflammation (Bierhaus, 

Humpert et al. 2005) 

 

1.2 Ligands of the recetor for advanced glycation end products (RAGE) 

RAGE was originally identified as a binding receptor for advanced glycation 

end products (AGE) by Neeper et al. (Neeper, Schmidt et al. 1992). 
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Nowadays, it is known that RAGE is a multi-ligand receptor, interacting with a 

wide variety of different molecules such as AGE, �-amyloid peptide, high 

mobility group binding-protein B1 (HMGB1), S100/Calgranulins and the 

leukocyte adhesion molecule Mac-1 (CD11b/CD18) (Chavakis, Bierhaus et al. 

2003). 

 

 
Figure 1: RAGE isoforms and signaling cascade 
There are multiple isoforms of the RAGE receptor. The major isoforms are known as full-
length RAGE, N-truncated RAGE and soluble RAGE (sRAGE) or endogenous soluble RAGE 
(esRAGE), The (e)sRAGE receptor is released from the cell and allowed to interact with 
RAGE ligands prior to their interacting at the plasma membrane. The N-truncated RAGE 
lacks the intracellular signaling domain, and therefore binds RAGE ligands without directly 
transducing a signal. 
 

1.2.1 Advanced glycation end products (AGE) 

AGE are glycated proteins derived by a non-enzymatic reaction, called 

Maillard-reaction, between a primary amine (preferably lysine and arginine) 

and a reducing sugar or an aldehyde, leading to the formation of an initial 

Schiff-base association product, followed by oxidation, reduction and cross-

linking with other amines to Amadori products finally leading to the formation 
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of carboxymethyllysine (CML), pentosidine or arginine-pyramidine. These 

AGE are highly heterogenous in their degree of modification and their 

structural/functional characteristics. Despite this diversity, AGE binds only to 

the V-domain of RAGE. The binding affinity of AGE to RAGE depends on the 

degree of glycation of the ligand (10 �M – 100 nM) (Dattilo, Fritz et al. 2007), 

and the AGE-RAGE interaction can activate p21(ras), MAP Kinase (ERK1/2), 

MAPK p38 or cdc 42 (Rac) and NF-�B action (Yeh, Sturgis et al. 2001). In 

addition, AGE can induce NADPH activation and ROS production via RAGE 

(Yan, Schmidt et al. 1994; Wautier, Chappey et al. 2001). 

1.2.2 Amyloid �-peptides

Deposition of amyloid �-peptides (A�) occurs during aging and Alzheimer 

disease in the brain and the cerebral blood vessels. RAGE plays a pro-

inflammatory role in neurovascular disorders, by binding soluble amyloid �-

peptides and transporting them across the blood-brain barrier via 

transcystosis (Yan, Chen et al. 1996; Arancio, Zhang et al. 2004; Deane, Wu 

et al. 2004). 

 

1.2.3 High mobility group box-protein B1 (HMGB1) 

The high mobility group box-protein B1 (HMGB1), also known as amphoterin, 

is a nuclear protein which binds with low affinity to DNA and histones, 

affecting the chromatin-structure and regulating the binding of steroid 

hormone receptors, NF-�B and p53 transcription factors (Lotze and Tracey 

2005). Despite the intracellular functions, HMGB1 can be released by 

necrotic cells or secreted by inflammatory cells such as macrophages and 

monocytes (Rouhiainen, Kuja-Panula et al. 2004; Kokkola, Andersson et al. 

2005). Thus, HMGB1 appears to function as an inflammatory mediator and 

danger signal. Extracellular HMGB1 binds to the V-domain of RAGE with 

high affinity (� 7 fold higher than AGE), whereby glycosylation at the V-

domain increases the binding affinity of HMGB1 (Srikrishna, Huttunen et al. 

2002). 
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1.2.4 S100/Calgranulins 

S100/Calgranulins are calcium binding proteins characterized by two calcium 

binding elongation factor (EF)-motifs, found in granulocytes, monocytes, 

macrophages well as induced in epithelial cells under inflammatory 

conditions. S100/Granulin proteins have a broad spectrum of intracellular 

functions in cell homeostasis but under cell damage, infection or 

inflammatory conditions, they convert into cytokine-like mediators which are 

secreted in a non-classical, Golgi-independent manner, and function as 

danger signals after release in the extracellular space similar to HMGB1. It 

was shown that some of S100/Calgranulin proteins such as S100A6 

(calcyclin), and S100A12 (EN-RAGE) bind specifically to all three 

extracellular domains of RAGE (Hofmann, Drury et al. 1999; Xie, Burz et al. 

2007). 

 

1.2.5 Mac-1 (CD11b/CD18) 

Mac-1 (CD11b/CD18) is a member of the �2-integrin family which is 

exclusively expressed on the surface of leukocytes. Under inflammatory 

conditions and in concert with �1-integrins, �2-integrins recognize their 

counterligands such as ICAM-1, VCAM-1 or surface associated fibrinogen 

(FBG) on the endothelium, required for integrin-mediated adhesion and 

diapedesis of activated leukocytes into the inflamed tissue. Recent studies 

have shown that RAGE mediates leukocyte recruitment in vivo based on the 

RAGE-Mac-1 interaction (Chavakis, Bierhaus et al. 2003) . For the first time, 

these results shed light on the cell-adhesive functions of RAGE.  

The reason for the different binding abilities to interact with such a diversity of 

ligands may be explained with the concept that RAGE is a pattern recognition 

receptor (PRP) which recognizes a conserved molecular structure such as 

the �-sheet fibrilliar structure on diverse ligands. The characteristics of a 

typical PRP are a multidomain structure, consiting of several similar structural 

subunits; recognition of diverse types of ligands is brought about by their 

comman recognition motifs (Gordon 2002). Although RAGE has no similar 

structural subunits, it clearly fulfills characteristics of a PRP. 
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1.3 Physiological function of RAGE 

RAGE displays high expression during embryogenesis and organ 

development in the nervous system and the lung (Hori, Brett et al. 1995; 

Reynolds, Kasteler et al. 2008). After birth, RAGE is downregulated in almost 

all organs which indicates RAGE’s physiological function of RAGE in 

developmental processes. However, the RAGE-/- mice develops normal with 

no obvious pathological phenotype (Liliensiek, Weigand et al. 2004). Further 

studies in neuronal cells showed that activation of RAGE by HMGB1 or 

S100B can facilitate cell survival by increased expression of the anti-

apoptotic protein Bcl-2 (Huttunen, Kuja-Panula et al. 2000). However, the 

RAGE-/- mice demonstrated neither neuronal deficits nor behavior 

abnormalities (Wendt, Tanji et al. 2003; Bierhaus, Haslbeck et al. 2004). 

Further experiments have to be performed to challenge RAGE-/- mice with 

various stimuli to explore the contribution of RAGE in diverse functions of the 

organism. 

 

1.4 RAGE expression and its involvement in pathogeneses 

The expression pattern of RAGE and its splice-isoforms is tissue- and cell-

type specific. Basically, under physiological conditions, the RAGE expression 

is on a low level and appears to be upregulated under inflammatory 

conditions via the activation of the NF-�B-promoter or direct ligand-RAGE 

interaction leads to an amplification of RAGE expression in different cell 

types (Bierhaus, Humpert et al. 2005). 

 

1.4.1 RAGE in vascular and renal complications of diabetes mellitus 

Diabetes mellitus (type I and II) is a multi-phenotypic disease which is 

characterized by hyperglycemia with subsequent macro- and microvascular 

late complications, in particular increased atherosclerosis, retinopathy, 

nephropathy and retinopathy. Under hyperglycemic conditions, the 

progressive formation of modified proteins, termed advanced glycation end 

products (AGE), is associated with vascular complications and cellular 

senescence in diabetic patientens (Brownlee 1995; Hammes, Alt et al. 1999). 
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Hyperglycemia has direct effects on the vessel wall by promoting glycation 

and cross-linking of long-living extracellular matrix proteins such as collagen, 

laminin and vitronectin, involving basement membrane thickening, decrease 

in proteoglycans density, charge and permeability changes (Hammes, Weiss 

et al. 1996). Finally, formed AGE induce production of reactive oxygen 

species (ROS) by activation of NADPH oxidase at least partly through the 

inflammatory RAGE-signaling in the endothelium as well as in macrophages 

(Wautier, Chappey et al. 2001; Ding, Kantarci et al. 2007; Gao, Zhang et al. 

2008). The AGE-RAGE interaction results in amplification of inflammatory 

responses by activation of NF-�B (Bierhaus, Schiekofer et al. 2001), 

production of cytokines such as monocyte chemotactic protein-1 (MCP-1), 

tumor-necrosis factor-� (TNF-�) (Csiszar and Ungvari 2008), tumor growth 

factor-� (TGF-�) (Li, Huang et al. 2004) interleukin-1� (IL-1�), tissue factor, 

endothelin-1 and furthermore to the upregulation of RAGE, the vascular cell 

adhesion molecules-1 (VCAM-1) and the inter-cellular adhesion molecule-1 

(ICAM-1) (Boulanger, Wautier et al. 2002). Under inflammatory conditions, 

high expression level of endothelial RAGE provides the molecular basis for 

elevated leukocyte infiltration where leukocyte MAC-1 interacts with its 

counter-receptor RAGE and facilitates leukocyte recruitment (Chavakis, 

Bierhaus et al. 2003). In summary, the anti-coagulant endothelium turns into 

a pro-coagulant cellular surface required for inflammatory signaling. 

 
Figure 2: Endothelial dysfunction by AGE-RAGE interaction 
AGE-RAGE interaction on endothelial cells induces expression of tissue factor (TF), 
upregulation of adhesion molecules such as ICAM and VCAM and cytokine release such as 
MCP-1 and IL-6, followed by leukocyte recruitment and increased permeability of the 
endothelial monolayer (Wautier and Schmidt 2004). 
 



Introduction

7

Diabetic retinopathy and renal fibrosis demonstrates another example where 

RAGE acts as a pathogenic factor. Despite the fact that AGE and RAGE are 

co-localized in diabetic kidney (Abel, Ritthaler et al. 1995; Heidland, 

Sebekova et al. 2001; Hou, Ren et al. 2004), Yamamoto et al. demonstrated 

in a transgeneic model that diabetic mice over-expressing RAGE developed 

characteristics of diabetic nephropathy such as kidney enlargement, 

albuminurea, glomerulosclerosis and tubulointerstitial fibrosis (Yamamoto, 

Kato et al. 2001). Based on the inflammatory response of RAGE signaling, 

namely the induction of the main fibrotic cytokine TGF-� as well as 

inflammatory cell recruitment, several studies indicated a pro-fibrotic role for 

RAGE due to its involvement in kidney and liver fibrosis (Oldfield, Bach et al. 

2001; Forbes, Thallas et al. 2003; Hyogo and Yamagishi 2008). 

 

1.4.2 RAGE in tumor progression and metastasis 

Tumor tissue (malignant neoplasm) is characterized by transformed cells 

which display uncontrolled cell proliferation and impaired cell apoptosis 

caused by changes on the genetic and epigenetic level. Beside the 

uncontrolled growth, malignant neoplasm exhibits cellular invasion and often 

metastasis. Interestingly, HMGB1 is expressed in a wide range of 

transformed cells indicating a general role of HMGB1 in cell motility and 

invasive migration of tumor cells. Invasion comprises spatial and temporal 

coordination. Motility included regulated adhesion to the extracellular matrix 

and degradation of matrix proteins, resulting in the migration of the cell 

through the matrix. Receptor-ligand and proteolysis-antiproteolysis reactions 

regulate the sensing and traction of the moving cell. Here, HMGB1 can 

function as a generation site for the proteolytic enzyme plasmin. The complex 

activates pro-matrixmetalloproteases (MMP), resulting in the degradation of 

extracellular matrix. Forthermore, HMGB1-RAGE interaction leads to 

proliferation and migration of cells (Taguchi, Blood et al. 2000). The mitogen-

activated protein kinase (MAPK) signals p42/p44, p38 and the c-Jun-N-

terminal kinase (JNK) are involved in this signal transduction between cell 

membrane, cytoskeleton and nucleus. The MAPK can be directly activated or 

indirectly by the GTPases Ras, Rac, Cdc42 and Rho. Activated MAPK 
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induces gene transcription of adhesion molecules and growth factors as well 

as modification of myosin and actin filaments of the cytoskeleton. Activation 

of the master-switch MAPK explains both, the induction of two different cell 

motions, proliferation and migration. 

 
Figure 3: RAGE dependent regulation of cellular invasion. 
Invasion can be viewed as cellular motility coupled to regulated adhesion and detachment 
from the extracellular matrix and proteolysis of extracellular matrix molecules. The advance 
of pseudopods of the cell — driven by the formation of actin polymers may require the action 
of cell-surface protein-degrading enzymes, as well as other enzymes, receptors and 
activators. Extracellular matrix degradation must be balanced by antiproteolysis to allow for 
adhesive traction. Signal-transduction pathways allow the individual cell to move between 
phases of pseudopod protrusion, extracellular matrix degradation, antiproteolysis, adhesion 
and detachment. These pathways split at the level of the mitogen-activating protein kinases 
JNK, p38 and p42/p44. Blocking the interaction between amphoterin and RAGE suppresses 
these pathways (Liotta and Clair 2000). 

1.4.3 RAGE in innate and adapted immunity 

The ability to activate NF-�B and to induce NF-�B regulated adhesion 

molecules makes RAGE a potent candidate for the regulation of the 

inflammatory innate immune response upon bacterial infection. Indeed, 

recent studies showed that RAGE modulates inflammatory responses by 
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induction of the expression of adhesion molecules such as ICAM-1 and 

VCAM-1 which enhances the recruitment of inflammatory cells (Fiuza, Bustin 

et al. 2003; Treutiger, Mullins et al. 2003). Furthermore, RAGE itself functions 

as a counter-receptor for leukocyte by binding to the �2-integrin Mac-1 and 

amplifying the leukocyte infiltration. Induced systemic inflammation in the 

RAGE-/- demonstrated decreased inflammatory cell recruitment (Chavakis, 

Bierhaus et al. 2003). 

In addition, it was shown that RAGE signaling can interact with the toll-like 

receptor 9 (TLR-9)-pathway, to detect invading pathogens and to 

distinguished infection-mediated from tissue damage by normal cell necrosis 

(Tian, Avalos et al. 2007). Under non-infectious cell death, the necrotic cells 

release HMGB1 which binds to RAGE on plasmacytoid dendritic cells (pDC) 

or B-cells with no further cell activation. However, under infectious cell death, 

HMGB1 forms a complex with CpG-containing pathogen DNA, whereby 

activated RAGE and pathogenic DNA co-interact with TLR9 resulting in 

interferon-� (IFN-�) secretion or B-cell proliferation. Besides IFN-� 

production, maturing DC secrete HMGB1 in an autocrine/paracrine manner, 

leading to RAGE activation and migration of the DC to the draininig lymph 

nodes, they interact with naive T-cells to establish the T-cell dependent 

immune-response, indicating that RAGE is involved in DC homing to lymph 

nodes as well (Dumitriu, Baruah et al. 2005). 

 

1.5 Physiology and pathophysiology of the lung 

Oxygen is essential for multicellular aerobic organisms, cellular respiration 

and ATP synthesis serves as electron acceptor in the respiratory chain. The 

main function of the lungs is to provide continuous gas exchange between 

inhaled air and the blood in the pulmonary circulation, supplying oxygen to 

the organism and removing carbon dioxide, which is then removed from the 

lungs by expiration. Survival is dependent upon this physiological process 

being sustained and efficient, whereby this system responses to pathological 

challenged in different ways to maintain optimal gas exchange. 
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Figure 4: Schematic diagram of lung anatomy 
a) Anatomy and localisation of the respiratory tract including Larynx, Trachea and Bronchus. 
b) cross-section of a bronchus with lining ciliated epithelium and mucin-secreting goblet cells, 
surrounded by cartilage and smooth muscle cells. c) cross-section of an aloveolar duct at the 
end of the respiratory bronchiole. The alveolar duct is characterized by an interrupted wall 
with smooth muscle knobs. d) cross-section of the terminal part of the airway, the alveolus, 
composed of alveolar epithelia cells capillaries. The outer side is outlined with a surfactant 
layer (Effros 2006). 
 
1.5.1 Anatomy of the pulmonary system 

The respiratory tract extends from the mouth and nose cavities through the 

bronchial tract down to the distant alveoli. The upper airway serves to filter 

airborne particles, humidify and warm the inspired gases. The air is passing 

the larynx, trachea, bronchi, bronchioles (terminal bronchiole) and alveolar 

duct before reaching the alveolus where the gas exchange takes place 

between the red blood cells (RBC) in the pulmonary capillaries and the 

alveolar septae. In the septae three layers (endothelial cells, basallamina and 

epithelial cells) function as the so called “air-blood barrier” which is very thin 

(0.1-1.5 �m) and facilitates the diffusion of the gas. The air-blood barrier 

functions as a barrier which enables the selective exchange between 

molecules. 
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Figure 5: Air-blood barrier 
The lung is a gas-exchanging organ for the provision of O2 to the blood and removel of CO2 
from the blood. Alveolar capillaries are closely apposed to the alveolar lumen. Gas exchange 
by passive diffusion occurs across the air blood barrier consisting of type I alveolar cells, 
dual basal lamina, endothelial cells and the plasma membrane of red blood cells. Type II 
alveolar cells contribute indirectly to the gas-exchange process by secreting surfactant, a 
lipid-protein complex that reduces the surface tension of the alveolus and prevents alveolar 
collapsing (Kierszenbaum 2007). 
 
The pulmonary microvascular endothelial cells (PMVEC) form a tight barrier, 

connected by tight-junctions and desmosomal structures between cells. The 

endothelial cells are placed on their basolateral side on the basallamina 

which separates vascular endothelium and pulmonary epithelium. On the 

alveolar side, the epithelia cells form a tight cellular layer, connected by tight-

junctions, facing with their apical side towards the alveolar space. The 

alveolar epithelium is composed of two different types of alveolar epithelial 

cells (AEC), whereby the type I cells represent about 40% of the epithelial 

cells, yet lining 90% of the alveolar surface. Type II cells only cover 10% of 

the alveolar surface but represent 60% of total cells and are primarily located 

at the branching of the alveolar septae. Type II cells produce and secrete 

surfactant (surfactant protein-C positive cells), composed of hydrophobic 

phospholipid-proteins which maintain alveolar expansion by lowering the 

surface tension. As putative progenitors, the type II cells are considered to 

differentiate into type I cells (aquaporin-5 positive cells) (Adamson and 

Bowden 1974). The interstitium contributes tissue fibroblasts between both 

layers of alveolar epithelial cells on the alveolar septum, embeded capillaries, 

and elastic and collagen fibers produced by interstitial fibroblasts. 
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1.5.2 Interstitial lung diseases 

Interstitial lung diseases (ILD), caused by infections or other noxes, is a term 

for over 200 different lung diseases which are characterized by damage to 

the lining of the alveoli, increase of the interstitial and/ or vascular spaces, 

leading to inflammation and fibrosis of the interstitium. A comman symptom in 

ILD is progressive shortness of breath at rest and more dramatically during 

physical exercise. The most common ILD include sarcoidosis and usual 

interstitial pneumonia (UIP). 

 

1.5.3 Idiopathic pulmonary fibrosis 

Idiopathic Pulmonary Fibrosis (IPF) is classified as “a specific form of chronic 

fibrosing interstitial pneumonia of unknown etiology, limited to the lung and 

associated with the histological entity of usual interstitial pneumonia” 

(Demedts and Costabel 2002). IPF is a progressive degenerative disease of 

unknown etiology, for which no effective treatment exists. IPF is 

characterized histologically by unrestricted interstitial fibroblast proliferation 

and excessive deposition of extracellular matrix (Maher, Wells et al. 2007). 

 

1.5.4 Pathogenesis of IPF 

Although the cause of IPF is still elucidate, it is broadly accepted that the 

pathogenesis starts with multiple damages to alveolar epithelial cells, 

resulting in activated epithelial cells which release cellular agonists such as 

TGF-�, TNF-�, platelet derived growth factor (PDGF), tissue factor (TF) and 

plasminogen-activator inhibitor 1 (PAI-1) by activated epithelial cells (Selman, 

King et al. 2001). TGF-� and PDGF induce proliferation and migration of sub-

epithelial fibroblasts as well as differentiation to myofibroblasts (Raghu, 

Masta et al. 1989; Zhang and Phan 1999; Evans, Tian et al. 2003; Khalil, Xu 

et al. 2005). The primary sites of injury become areas of fibroblast 

proliferation, forming fibroblast-foci which are sites of active collagen 

synthesis (Kuhn and McDonald 1991; Tzortzaki, Koutsopoulos et al. 2006). 

Thus, foci formation is a hallmark of fibrosis. At these sites, epithelial cells 

and myofibroblasts are producing gelatinases (MMP 9 and 2) which induce 
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basement membrane disruption to enable the fibroblast/myofibroblast 

migration to the injured surface. Intra- and interstitial fibroblast/myofibroblast 

secrete extracellular matrix proteins, mainly collagen. An imbalance between 

MMP and tissue inhibitors of MMP (TIMP) leads to deposition and 

accumulation of extracellular matrix proteins (Pardo and Selman 2002). The 

release of angiogenic factors from fibroblasts such as fibroblast growth factor 

2 (FGF-2) and vascular endothelia growth factor (VEGF) leading to 

angiogenesis to some extent. In parallel, Myofibroblasts show an increased 

cell survival and delayed apoptosis provoking impaired reepithelialization and 

tissue fibrosis (Zhang and Phan 1999). The whole sequence of events can be 

seen as a process of abnormal wound repair where the response to injury is 

overwhelmed by fibroblasts/myofibroblast proliferation and excessive matrix 

deposition. Several hypotheses aim to provide the basis for the pathogenesis 

(Thannickal, Toews et al. 2004; Maher, Wells et al. 2007). 

1.5.4.2 Chronic injury hypothesis 

Following the original hypothesis, IPF is caused by unknown stimuli which 

lead to chronic inflammation inducing epithelial injury and subsequent fibrosis. 

The inflammation theory might represent a major mechanism of ILD such as 

sarcoidosis or hypersensivity pneumonitis. However, IPF patients display 

mild or non-inflammatory cell recruitment to fibrotic lesions. In addition, anti-

inflammatory drugs such as steroids provide no significant improvement of 

the pathogenesis (Nadrous, Ryu et al. 2004). These observations lead to the 

assumption that inflammation is probably not necessary for the development 

of pulmonary fibrosis (Gross and Hunninghake 2001). 

1.5.4.3 Sequential injury hypothesis 

The sequential injury hypothesis postulates that IPF is derived from 

sequential acute lung injury where the repetitive wound repair results in 

fibrosis by proliferation of fibroblasts, differentiation to myofibroblasts with an 

contractile phenotype by expression of stress fibers such as �-smooth 

muscle actin (�-SMA) and the production of collagen. Factors such as 
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cigarette smoking, viral infection, environmental toxins or genetic background 

can regulate and modify the fibrotic response (Gross and Hunninghake 2001). 

 
Figure 6: Hypothetical scheme of the abnormal wound healing model for idiopathic 
pulmonary fibrosis. 
Multiple damage and activate alveolar epithelial cells, which in turn induce an antifibrinolytic 
environment in the alveolar spaces, enhancing wound clot formation. Alveolar epithelial cells 
secrete growth factors and induce migration and proliferation of fibroblasts and differentiation 
into myofibroblasts. Subepithelial myofibroblasts may increase basement membrane 
disruption and allow fibroblast–myofibroblast migration. Interstitial myofibroblasts secrete 
extracellular matrix proteins, mainly collagens. An imbalance between interstitial 
collagenases and tissue inhibitors of metalloproteinases provokes the progressive deposit of 
extracellular matrix and further impairing reepithelialization (Selman, King et al. 2001).
 

1.5.4.4 Circulating fibrocyte-hypothesis 

Philips and colleges discovered a fibroblast-like cell population, sharing 

leukocyte markers (CD34+ CD45+, CXCR4+, Col I+ and Vimentin+), called 

fibrocytes. Fibrocytes are circulating mesenchymal progenitor cells (CMPC) 

which can differentiate into multiple mesenchymal cell types depending on 

the tissue environment (Phillips, Burdick et al. 2004). Fibrocytes are believed 

to be involved in adipogenesis, pulmonary hypertension with associated 

vascular wall remodeling, wound healing and pulmonary fibrosis. Leukocytes 

and CMPC are generated in the bone marrow and extravasate to specific 

region within tissues by trafficking, involving adhesion molecules, 

chemoattractants and chemoattractant receptors. Lung injury results in high 

level of the chemokine CXCL12, creating a chemokine gradient for CXCR4+ 



Introduction

15

positive fibrocytes to be released from the bone marrow and recruited from 

the circulation to the lung (Strieter, Gomperts et al. 2007). In the lung, 

fibrocytes can proliferate; they differentiate into myofibroblast-like cells with 

the expression of �-SMA+ and the loss of CD45 and CD34 after the 

stimulation with TGF-� or endothelin and synthesis to extracellular matrix and 

thus contribute to pulmonary fibrosis (Gomperts and Strieter 2007; Mehrad, 

Burdick et al. 2007). 

 

1.5.4.5 Epithelial-mesenchymal transition (EMT) hypothesis 

EMT is a well-known process during development where epiblasts undergo a 

cell phenotype changes early in morphogenesis to form primary 

mesenchyme. EMT is defined as a process by which differentiated epithelial 

cells undergo a phenotypic conversion to mesenchymal cells such as 

fibroblasts and myofibroblasts (Petersen, Nielsen et al. 2003; Radisky, Kenny 

et al. 2007). The main aspect of EMT is the ability of epithelial cells to lose 

polarity, disassemble from intracellular arrangements, acquire cell-motility, 

and move from one location to another. So called secondary EMT which 

occurs in fully differentiated epithelial cells is an accepted concept in cancer 

metastasis and kidney fibrosis (Dasari, Gallup et al. 2006; Peinado, Olmeda 

et al. 2007; Wynn 2008).  

The transdifferention of AEC type II to type I cells reflects a normal process of 

re-epithelialisation after epithelial cell injury where the epithelial cells undergo 

apoptosis or necrosis. It was proposed that epithelial cells can alternatively 

undergo transition to a mesenchymal phenotype. This transition is 

characterized by the loss of epithelial cell markers such as E-cadherin and 

zonula occludens-1 (ZO-1) and the expression of fibroblast and myofibroblast 

markers such as fibroblast specific protein (FSP-1), a member of the S100 

family, and �-SMA. Thus, cells which are in the process of EMT, express 

both, epithelial and myofibroblast markers at the same time. Interestingly, the 

fibrotic cytokine TGF-� has the ability to induce EMT by loss of E-cadherin 

via Smad-dependent target genes which are mainly controlled by Smad3 

(Masszi, Di Ciano et al. 2003). In concert with Smad-independent signaling 
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such as Rho kinase, Ras, ERK, p38 MAPK, Notch and Wnt proteins, NF-�B 

or phosphoinositide kinase 3 (PI3K) affect the EMT process as well (Zavadil 

and Bottinger 2005). The EMT hypothesis provides another explanation for 

epithelial cell loss and increasing myofibroblast population with excessive 

extracellular matrix production in pulmonary fibrosis (Willis, duBois et al. 

2006). 

 

 
Figure 7: Alveolar epithelial transdifferentiation pathways. 
AECs demonstrate pluripotency; under normal conditions, alveolar type II (AT2) cells 
transdifferentiate into alveolar type I (AT1) cells. Depending on the cellular environment and 
stimuli, AECs respond to injury by traveling down one of a number of pathways: 
apoptosis/necrosis (1); proliferation, transdifferentiation, and re-epithelialization (2); or EMT 
(3) to amyofibroblast phenotype, resulting in extracellular matrix (ECM) deposition, 
destruction of lung architecture, and fibrosis (Willis, duBois et al. 2006). 
 

1.5.5 Genetic factors 

The dominant prevalence of IPF in some families raised the question 

concerning the genetic background of the disease. Familiar IPF is identified 

when two or more member of the same family are affected. The precise 

prevalence is not known but is estimated to be at 7-11 in 100.000 of the 

population. The familial form of IPF is probably transmitted via an autosomal 

dominant trait with reduced penetrance (Allam and Limper 2006). 

Genetic analysis verified some mutations in the surfactant protein C (SP-C) 

molecule (Nogee, Dunbar et al. 2001). SP-C is probably the most 
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hydrophobic protein in the human body, containing a valine, leucine and 

isoleucine rich domain which forms a stable a-helical structure resulting in 

insoluble random structures in the aqueous environment. SP-C is secreted by 

AEC type II cells and facilitates to multify the surface tension in the alveolar 

space by lining up the alveolar epithelium with a thin lipoproteinlayer. The 

mutation causes a deletion of 37 amino acids, lacking a cystein residue which 

is important for protein-disulphide mediated protein folding. In patients with 

these mutations, the absence of mature SP-C in lung tissue and 

bronchoalveolar lavage fluid (BAL) was observed, indicating that the 

precursor protein has not been processed and secreted normally (Nogee, 

Dunbar et al. 2001). 

Recently, in some cases of familiar IPF, germ-line mutations in the genes 

htert and htr, encoding telomerase reverse transcriptase and telomerase 

RNA, was found in familiar cases of IPF (Armanios, Chen et al. 2007). 

Telomerase reverse transcriptase (hTERT) is a polymerase that conjugates 

telomere repeats (TTAGGG) to the ends of chromosomes during DNA 

replication, whereas the telomerase RNA (hTR) provides the template for 

nucleotide addition. The addition of telomeric repeats to the ends of the 

chromosome partly re-do the shortening that occurs during DNA replication. 

Telomeres shorten with each cell division and ultimately activate a DNA 

damage response that leads to apoptosis. Mutations in htert and htr affect the 

telomerase activity and shorten the telomers. 

The limited number of familiar IPF patients makes it difficult to perform 

genetic studies. However, mutations in familiar IPF could be detected in only 

1-8% cases, indicating that IPF is a multi-cause disease. 

 

1.6 Animal models of pulmonary fibrosis 

Animal models for pulmonary fibrosis are restricted in several ways which 

has to be considered when results from animal studies are transferred into 

patient situation (Moore and Hogaboam 2008). Due to the unknown cause of 

pulmonary fibrosis, several agents are used to induce lung injury with the 

development of a fibrotic response (Gauldie and Kolb 2008). In addition, the 

development of symptomatic in patients occurs between 10-20 years of age 
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(IPF � 6 years) whereas the animal model takes only 21-28 days. The most 

common rodent fibrosis models are here discussed. 

 

1.6.1 Bleomycin model 

The bleomycin model is the most commonly used model for lung fibrosis in 

rodents because of its well characterized feature and the fast development 

(Adamson and Bowden 1974). Bleomycin is a glycopeptide antibiotic with 

anti-tumor activity that causes cytotoxic and mutagenic effects by mediating 

single-strand and double-strand DNA damage in many cell types. Bleomycin 

can be delivered equelly efficiant to the lung intratracheally, intraperitoneally 

or intranasally. Bleomycin causes epithelial cell apoptosis and necrosis, 

followed by an acute inflammation phase (1-7 days) which results in an 

fibrotic response with increased collagen deposition (day 14) and the 

establishment of severe fibrotic leasions (day 21-28). However, in this model, 

fibrosis is self-limiting and starts to resolve after 28 days. Furthermore, this 

model shows fibrosis untytipical acute inflammatory phase between day one 

and seven. In addition, the mouse strain Balb/c is rather insensitive towards 

developing pulmonary fibrosis in this model. 

 

1.6.2 Asbestos, silicia model 

Asbestos and silicia such as siliciumoxide can be used to induce pulmonary 

fibrosis by a persistent fibrotic stimulus which is similary to that observed in 

humans exposed to occupational dusts and particulates (Bozelka, Sestini et 

al. 1983). The prolonged presence of the particles in the lung protract 

cytotoxicity, induce inflammation (to a lower level as compared to the 

bleomycin-model) and induce the release of cytokines and growth factors. 

The asbestos model has clinical relevance due to long term exposure in 

working environment. The clear disadvantage of this fibrosis model takes 12-

16 weeks to develop. 

 

1.6.3 Fluorescein isothiocyanate-model 

The Fluorescein isothiocyanate (FITC)-model demonstrates a fast fibrotic 
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response within 14-28 days which varies considerably depending on the 

amount of FITC (Christensen, Goodman et al. 1999). Although a fast 

response, the fibrotic response persists at least for six months in Balb/c and 

C57Bl/6 mice. The big advantage of this approach is the ability to visualize 

areas of lung injury by the characteristic fluorescence of FITC. However, this 

model is not of clinical relevance. 
 

1.6.4 Irradiation model 

The irradiation model is probably the only model which shows fibrosis 

development without significant inflammation and therefore the closest model 

to IPF with clinical relevance (Franko and Sharplin 1994). However, the 

development of fibrosis takes over 30 weeks and is very cost intensive. 

Therefore, this model is not commonly used. 

 

1.6.5 Transgenic model 

The transgenic model allows studying the effect of a single molecule 

overexpression in a cell-specific manner. Frequently, the gene of interest is 

cloned into an adenoviral vector which is used to infect the animal. The 

adenovirus is transient overexpressing the gene of interest for limited period 

of time (Bonniaud, Margetts et al. 2003). Recently, the use of transgenetic 

mice which contain additional DNA or deleted parts of DNA into the genome 

in every cell, became popular. The gene expression can be controlled by cell-

specific promoters, such as SP-C for specific epithelial cell type II expression. 

However, the amount of expressed protein does not necessarily correspond 

with physiological levels. 

A more accurate way is to control the protein expression by using a 

transcriptionally-regulated promoter using the tetracycline-resistance operon 

(Tet-system). Gene expression from this promoter is tightly controlled by the 

presence or absence of tetracycline or tetracycline derivatives such as 

doxycycline. In the Tet-On system, the Tet-On activator requires doxycycline 

for binding the chimeric transcriptional activator. In contrast, in the Tet-Off 

system doxycycline prevents DNA binding and subsequent gene expression 

(Gossen and Bujard 1992). 
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1.7 Hypothesis 

Due to its involvement in inflammatory reactions, tissue fibrosis, myoblast 

and tumor formation, it was hypothesized that RAGE expression in the lung, 

in contrast to blood vessels, has a protective role in the pulmonary system 

against degenerative processes, such as IPF pathogenesis. 

 

1.8 Aims 

The aim of the study was to investigate the role of RAGE in IPF by 

addressing the following approches: 

First, the expression of RAGE and the cell-specific distribution in lungs from 

IPF patients and donors was characterized by immunohistology, real-time 

PCR and western-blot analysis. Furthermore, the expression level of RAGE 

was investigated in the bleomycin model and compared to the situation in IPF 

patients. 

Second, the regulation of RAGE expression during pulmonary fibrosis 

development, as well as the effect of pro-fibrotic cytokines on RAGE 

expression was demonstrated in alveolar epithelial cells and pulmonary 

fibroblasts. 

Third, since cell-proliferation and –migration are key events in pulmonary 

fibrosis, a potential pathomechanistic role of RAGE was investigated by 

blocking RAGE with anti-RAGE antibody and siRNA-mediated knock down in 

epithelial cells and fibroblast and analyzed for cell-proliferation and –

migration. 
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2. Materials 

2.1. Chemicals 

Acetone Roth, Karlsruhe, Germany
Acrylamide-Bisacrylamide Roth, Karlsruhe, Germany
Ammoniumchlorid Roth, Karlsruhe, Germany
Ammonium persulphate Roth, Karlsruhe, Germany
Bovine serum albumin Fraction V Sigma Aldrich
Bromophenol blue Roth, Karlsruhe, Germany
BCA Protein assay kit Pierce, Rockford, USA
Bleomycin sulphate Almirall Prodesfarma, Barcelona, 

Spain
Calciumchlorid Roth, Karlsruhe, Germany
Chrystal blue violett Roth, Karlsruhe, Germany
citrate monohydrate Roth, Karlsruhe, Germany
(trisodium)-citrate dehydrate Roth, Karlsruhe, Germany
Collagen I BD Biosciences, Franklin Lakes, 

USA
Deoxyribonucleotide triphosphates Finnzymes, Espoo, Finland
Dimethylsulfoxide Roth, Karlsruhe, Germany
DL-Dithiothreitol (DTT) Roth, Karlsruhe, Germany
Dodecyl sodium salt (SDS) Roth, Karlsruhe, Germany
Dynal magnet Dynal Biotech, Oslo, Norway
Enhanced Chemiluminescence (ECL) 
Plus reagents™ 

GE Healthcare (Amersham), 
Buckinghamshire, UK

Ethanol Roth, Karlsruhe, Germany
Eythelene diamino tetra acetic acid 
(EDTA) 

Roth, Karlsruhe, Germany

Formaldehyde alcohol free � 37% Roth, Karlsruhe, Germany
GenElute mammalian total RNA kit Sigma Aldrich,St. Louis, USA
Glycerol Roth, Karlsruhe, Germany
Glycine Roth, Karlsruhe, Germany
Haematoxylin Roth, Karlsruhe, Germany
HBSS Invitrogen (Gibco), Carlsbad, USA
Histostain Plus kit Zymed Laboratories, San Francisco, 
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USA
Hydrochloric acid Roth, Karlsruhe, Germany
Hydrogen peroxide Roth, Karlsruhe, Germany
Isofluorane Forene® Abbott, Wiesbach, Germany
�-mercaptoethanol Sigma Aldrich,St. Louis, USA
Methanol Roth, Karlsruhe, Germany
Non-fat dry milk powder Roth, Karlsruhe, Germany
Mounting medium, Vectashild (with 
dapi) 

Vector Laboratories, Peterborough, 
UK

Paraffin Roth, Karlsruhe, Germany
Paraformaldehyde Roth, Karlsruhe, Germany
Percoll Sigma Aldrich,St. Louis, USA
Protease Inhibitor cocktail complete™ Roche, Mannheim, Germany
Potassium chloride Roth, Karlsruhe, Germany
Potassium dihydrogen phosphate Roth, Karlsruhe, Germany
Rotiphorese® gel 30 Roth, Karlsruhe, Germany
RNasin RNase inhibitor Promega, Madison, USA
Saline solution, physiological Baxter, München, Germany
Sodium Chloride Roth, Karlsruhe, Germany
Sodium dihydrogen phospahate Roth, Karlsruhe, Germany
Sodium hydrogen carbonate Roth, Karlsruhe, Germany
SYBR Green PCR master mix Invitrogen, Carlsbad, USA
N,N,N',N'-Tetramethylethylenediamine 
(TEMED) 

Roth, Karlsruhe, Germany

TransPass R1 transfection Reagent New England Biolabs, Ipswich, USA
tris(hydroxymethyl)aminomethane 
(TRIS) base 

Roth, Karlsruhe, Germany

Triton-X-100 Roth, Karlsruhe, Germany
Tween 20 Roth, Karlsruhe, Germany
Xylol Roth, Karlsruhe, Germany
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2.1.2 Enzymes 

Elastase Worthington Biochemical Corp, 
Lakewood, USA

Dispase BD Biosciences, Franklin Lakes, USA
DNase Fermentas, Ontario, Canada
ImProm-II reverse transcriptase Promega, Madison, USA

2.1.3 Cytokines 

Hepatocyte growth factor (HGF) R&D Systems, Minneapolis, USA
Tumor necrosis factor-�(TNF-�) R&D Systems, Minneapolis, USA
Transforming growth factor-�1 (TGF-
�1) 

R&D Systems, Minneapolis, USA

Interleukin-1� (IL-1�) R&D Systems, Minneapolis, USA
keratinocyte growth factor (KGF) R&D Systems, Minneapolis, USA
High mobility group box (HMGB1) Sigma Aldrich, St. Louis, USA

2.1.4 Antibodies 

anti-RAGE (polyclonal goat) Biologo, Kronshagen, Germany
anti-RAGE (monoclonal mouse) Affinity Bio-Reagents, Golden, USA
anti–�1-integrin P4C10 (monoclonal 
mouse) 

Millipore, Billerica, USA

anti–�-actin AC-74 (monoclonal 
mouse) 

Sigma Aldrich, St. Louis, USA

anti-CD14 magnetic beads 
(monoclonal mouse) 

Miltenyi Biotec, Bergisch Gladbach, 
Germany

anti-vimentin R&D Systems, Minneapolis, USA
Rhodamine-conjugated anti-goat Jackson ImmunoResearch, West 

Grove, USA
HRP-conjugated anti-goat DakoCytomation, Glostrup, Denmark

HRP-conjugated anti-mouse DakoCytomation, Glostrup, Denmark
goat control IgG Millipore, Billerica, USA
mouse control IgG Sigma Aldrich, St. Louis, USA
human control IgG Sigma Aldrich, St. Louis, USA
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2.1.5 DNA-Primers 

Gene Primer Sequence (5’–3’) 
 Forward Reverse 
RAGE (ager) (Homo 
sapiens) 

caggaccagggaacctacag catgtgttgggggctatctt

RAGE (ager) (Mus 
musculus) 

gggtgctggttcttgctcta tggagaaggaagtgcctcaa

hprt-1 (H. sapiens) aaggaccccacgaagtgttg gctttgtattttgcttttcca
pbgd (Mus musculus) atgtccggtaacggcggc ggtacaaggctttcagcatcgc

2.1.6 Small interfering RNA (siRNA) 

Gene Antisense sequence pool (5’-3’) 
RAGE (ager) 
(Homo sapiens)

1.ttccattcctgttcattgctt 
2.tactgctccaccttctggctt 
3.tgttccttcacagatactctt 
4.tttgaggagagggctgggctt

2.1.7 General consumable 

Eppendorf tubes (0.5 ml, 1.5 ml, 2.0 
ml)

Eppendorf, Hamburg, Germany

Falcon tubes (15 ml, 50 ml) BD Biosciences, Franklin Lakes, USA
Disposable pipettes ( 2 ml, 5 ml, 10 
ml, 25 ml, 50 ml) 

BD Biosciences, Franklin Lakes, USA

3MM Whatman paper GE Healthcare (Amersham), 
Buckinghamshire, UK

Hybond-C polyvinylidene difluoride 
(PDVF) membrane

GE Healthcare (Amersham), 
Buckinghamshire, UK

Pipettes tips (2�l, 20�l, 200 �l, 1000 
�l) 

Gilson, Middelton, USA 
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2.1.8 Cell culture 

A549 cell line (human) ATCC, Manassas, USA
Alveolar epithelial cells type II 
(human) 

primary, isolated

Dulbecco’s modified Eagle medium 
(DMEM) 

Invitrogen (Gibco), Carlsbad, USA

Fetal bovine serum (FBS) Invitrogen (Gibco), Carlsbad, USA
Penicillin Invitrogen (Gibco), Carlsbad, USA
Falcon Petri dishes, cell culture BD Biosciences, Franklin Lakes, USA
Pulmonary fibroblasts (human) primary, isolated
Streptomycin Invitrogen (Gibco), Carlsbad, USA
Trypsin-EDTA Invitrogen (Gibco), Carlsbad, USA

2.1.9 Machines and systems 

Automated microtome RM 2165 Leica Microsystems, Wetzlar, 
Germany

Dynal magnet Dynal Biotech, Oslo, Norway
Eppendorf BioPhotometer Eppendorf, Hamburg, Germany
Eppendorf Centrifuge 5417R Eppendorf, Hamburg, Germany
Eppendorf Thermomixer comfort Eppendorf, Hamburg, Germany
Heraeus Instruments Laborfuge 
400R 

Thermo Scientific, Waltham, USA

Heraeus Centrifuge Mikro20 Thermo Scientific, Waltham, USA
Sequence Detection System 7500 Applied Biosystems
Quantity One software Bio-Rad Laboratories
Leica DMR fluorescent microscope Leica Microsystems, Wetzlar, 

Germany
Methamorph software 7.0 Molecular Devices
CASY Cell Counter System Model 
DT 

Schaerfe Systems
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2.2 Patient Population 

Lung tissue was obtained from six subjects with IPF and six donor lungs 

rejected for transplantation (mean age 45.6 ± 15.7 years; 3 females, 3 males). 

The diagnosis of IPF was made in accordance with American Thoracic 

Society-European Respiratory Society criteria (2002). All patients exhibited 

the typical usual interstitial pneumonia (UIP) pattern (mean age 52.4 ± 11.8 

years; 2 females, 4 males). The study protocol was approved by the Ethics 

Committee of the Justus-Liebig-University School of Medicine (AZ 31/93). 

Informed consent was obtained from each subject for the study protocol. 

 

3 Methods 

3.1 Animal Treatment 

C57BL/6J mice were purchased from the Jackson Laboratory (Bar Habor, 

ME) and used for bleomycin challenge to induce pulmonary fibrosis. 

Bleomycin sulphate (Almirall Prodesfarma, S.A., Barcelona, Spain) was 

dissolved in sterile saline and applied by microspray as a single dose of 0.08 

mg/mouse in a total volume of 200 μl. Control mice received 200 μl of saline. 

Mice were sacrificed at days 7, 14 and 21 after bleomycin exposure. The 

lungs were perfused via vasculature and shock frozen or paraffin-immersed 

for 24 h at room temperature. All experiments were performed in accordance 

with the guidelines of the Ethics Committee of the University of Giessen, 

School of Medicine, and approved by local and national authorities. 

3.2 Isolation and Culture of Human Alveolar Epithelial Cells type II 

Human AEC II cells were isolated, as previously described (Fang X 2006). 

Cells were isolated after the lungs had been preserved for 4–8 h at 4°C. The 

pulmonary artery was perfused with a 37°C PBS solution, and the distal air 

spaces were lavaged with warmed Ca2- and Mg2-free PBS solution (0.5 mM 

EDTA) few times. Afterwards, 13 U/ml elastase in Ca2-and Mg2-free HBSS 

were instilled into the distal air spaces through segmental bronchial intubation. 
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After digestion for 45 min, the lung was minced finely in the presence of fetal 

bovine serum (FBS) and DNase (500 �g/ml). The solution was then layered 

onto a discontinuous Percoll density gradient 1.04 –1.09 g/ml solution and 

centrifuged at 400 g for 20 min. The upper band containing a mixture of type 

II cells and alveolar macrophages was collected and centrifuged at 150 g for 

10 min. The cell pellet was washed and resuspended in Ca2- and Mg2-free 

PBS containing 5% FBS. The cells were then incubated with magnetic beads 

coated with anti-CD-14 antibodies at 4°C for 40 min. Then the beads were 

depleted with a Dynal magnet. The remaining cell suspension was incubated 

in human IgG-coated tissue culture-treated Petri dishes in a humidified 

incubator (5% CO2, 37°C) for 90 min. Unattached cells were collected and 

counted. The purity of isolated human AEC  type II cells was examined by 

Papanicolaou staining. The purity and viability of AEC preparations was 

consistently between 90% and 95%. 

 

3.3 Isolation and Culture of Human Pulmonary Fibroblasts 

Fibroblasts were isolated from human donor lungs, as described previously 

(Wang, Zhang et al. 2006). The lungs were perfused via pulmonary artery 

and lavaged. Lung tissue was dissected from the airways, minced into 2-mm3 

pieces and placed in tissue culture flasks in a humidified incubator at 37�C 

under 5% CO2 atmosphere with a minimal volume of DMEM supplemented 

with 10% FBS, 100 units/ml penicillin, 100 μg/ml streptomycin. An 

appropriate volume of DMEM medium was then added to the cell culture 

dishes and the cells were maintained until fibroblasts began to migrate out 

from the tissue. Identification of fibroblasts was based on the morphology and 

presence of vimentin staining. Passages 2 to 5 were used for experiments. 

 

3.4 Cytokine Stimulation 

Cells were cultured in DMEM containing 0.5% (v/v) FBS for 24 h and 48 h in 

the absence or presence of TNF-� (10 ng/ml) or TGF-�1 (5 ng/ml) in a 

humidified incubator at 37�C under 5% CO2 atmosphere. 
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3.5 Immunohistochemistry 

IPF and donor lung sections were cut in 3-�m thick paraffin sections and 

transferred onto glass slides and incubated overnight at 37°C. Lung sections 

were dewaxed by immersion in xylol (3x 10 min) and dehydrated though a 

series of graded ethanol (2x 100%, 2x 95%, and 2x 70% v/v) 5 min each, 

followed by PBS washing. Then, the sections were cooked for 20 min in 10 

mM citrate buffer (citrate monohydrate and trisodium citrate dehydrate) for 

antigen retrieval. Potential endogenous peroxidase activity was blocked with 

3% (v/v) H2O2 for 20 min. The blocking reagent (donkey serum) was applied 

for 10 min to prevent nonspecific binding. Sections were incubated with the 

primary anti-RAGE antibody overnight at 4°C. On the following day, tissue 

slides were incubated with a biotinylated secondary goat antibody for 10 min, 

followed by streptavidin-conjugated enzyme for another 10 min, and 

chromogen substrate incubation for 10 min. All the steps described were 

intermitted by washing 2x 5 min with PBS. Finally, sections were 

counterstained with haematoxylin for 5 min and washed under running tap 

water for 10 min. Sections were mounted by mounting medium and sealed 

with nail polish. The sections were analyzed under a bright field microscope. 

3.6 Immunofluorescence 

Cells were washed with PBS, fixed with ice-cold methanol for 5 min at -20�C, 

blocked with 5% (v/v) FBS in PBS for 2 h at room temperature and stained 

with goat anti-RAGE antibody over night at 4�C, washed four times with PBS 

and incubated with a rhodamine-conjugated anti-goat secondary antibody in 

2.5% (v/v) FBS in PBS for 1 h at room temperature. After intensive washing 

with PBS (4x 5 min), Sections were mounted by dapi-containing mounting 

medium and sealed nail polish. The sections were analyzed under a 

fluorescence microscope. 

 

3.7 siRNA knock down 

Cells were seeded and cultured in starvation medium (FBS free DMEM) for 4 

h prior to transfection. Cells were transfected using the transfection reagent 
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TransPass R1 with scrambled siRNA from Santa Cruz or siRNA SMARTpool 

with the following antisenses: 5’-ttccattcctgttcattgctt-3’; 5’-

tactgctccaccttctggctt-3’; 5’-tgttccttcacagatactctt-3’ and 5’-

tttgaggagagggctgggctt-3’. Transfection reagent was mixed with DMEM 

without serum, vortexed and incubated for 5 min at room temperature, and 

the siRNA were added, gently mixed and incubated at room temperature for 

20 min. The siRNA-transfection reagent complex was added to the cells. The 

cells were transfected with 150 nM siRNA and incubated for 24 or 48 h. 

Afterwards, the cells were harvested and used for downstream applications. 
 

3.8 Reverse Transcriptase (RT)-PCR 

Total RNA was extracted from lung tissue and cells using the GenElute	 

mammalian total RNA kit, following the manufacturer’s instructions. Briefly, 1x 

106 cells were resuspend in 500 �l lysisbuffer containing �-Mercaptoethanol, 

pipetted the lysed cells into a filtration column and centrifuged for 2 min. the 

eluate was diluted with equal volume of 70% ethanol and mixed thoroughly. 

The mixture was loaded onto a binding column and centrifuged for 15 sec. 

The flow-through liquid was discard and the binding column washed with 

washing solution1 (first column wash), centrifuged and washed with washing 

solution 2 (2x) (second, third column wash). Finally the binding column was 

transferred to a new collection tube and 20 �l of the elution solution was 

pipetted onto the binding tube and centrifuged for one additional minute. The 

RNA concentration of the eluate was determined by measuring the 

absorbance at 260 nm. All described centrifugation steps were carried out at 

14 000 g. 1 μg of total RNA was used for each reverse transcription (RT) 

reaction. ImProm-II reverse transcriptase, random primers, RNasin 

ribonuclease inhibitor and dNTPs were used as recommended by 

manufacture’s instructions. 

3.9 Real-time PCR 

Expression levels of RAGE-mRNA transcripts from human lungs were 

quantified by real-time PCR. cDNAs were mixed with SYBR Green PCR 

master mix and primers, and real-time PCR was performed using the 
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Sequence Detection System 7500. In addition to profiling all samples for the 

target sequence, samples were profiled for hydroxymethylbilane synthase 

(hmbs) expression as reference. For each single well amplification reaction, a 

threshold cycle (CT) was observed in the exponential phase of amplification, 

and the quantification of relative expression levels was achieved using 

standard curves for both the target and endogenous controls. Relative 

transcript abundance of a gene is expressed in 
Ct values (
Ct = Ctreference – 

Cttarget).

3.10 Western Blot 

Protein extraction from lung tissue samples was performed with minor 

changes as described before (Xu, Mora et al. 2006). Frozen lung tissue was 

homogenized under liquid nitrogen with a mortal and suspended in lysis-

buffer (50 mM HEPES pH 7.0, 250 mM, NaCl, 5 mM EDTA, 1 mM DTT, and 

0.1 % triton-x100). The protein concentration was determined by the BCA 

Protein Assay Reagent Kit. For western blotting, 20 μg of total lysate was 

resuspended in Laemmli sample buffer [10% (w/v) SDS, 10 mM �-

mercaptoethanol, 20% (v/v) glycerol, 200 mM TRIS-HCl pH 6.8, 0.05% (w/v) 

bromephenol blue] and resolved on a 10% SDS-PAGE gel for 1.5 h with 80 V 

and blotted onto a PVDF membrane in a tank blotting system containing 

transfer buffer [24 mM Tris base, 193 mM glycine, 10% (v/v) methanol] for 1 

h and 100 V at 4°C. Afterwards, the membrane was blocked in blocking 

solution [5% dry-milk (m/v), 1x TBS, 0.01% tween-20 (v/v)] for 2h at room 

temperature. The membrane was incubated overnight with a primary anti-

RAGE antibody in blocking solution at 4°C. Next, the membrane was washed 

with TBST for 4 x 15 min. A HRP-conjugated secondary antibody was 

incubated for 1 h in blocking solution at room temperature and washed again 

4 x 15 min in TBST afterwards. The membrane was incubated for 5 min with 

ECL detection reagent to detect the RAGE antibody. Finally, the membrane 

was stripped with stripping buffer (0.1 M glycine, pH 2.9) washed, blocked 

and reprobed with an anti-�-actin antibody for loading control. 
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3.11 Extracellular Matrix Preparation 

Adherent fibroblast cells were washed 3x with PBS containing 2% (m/v) BSA 

and 0.1 mM CaCl2, followed by incubation with 0.5% (v/v) Triton-X-100 in 

PBS for 15 min at 37�C. Plates were then washed with PBS containing 0.1 M 

NH4Cl to remove the cells. Cell-free extracellular matrix (ECM) was blocked 

with PBS containing 3% (m/v) BSA for 30 min at room temperature. 

 
3.12 Adhesion Assay 

Cell adhesion to ECM, collagen (2 �g/ml) or BSA (as control) was tested, as 

described previously (Chavakis, Kanse et al. 2000). Multiwell plates were 

coated with collagen (2 �g/ml) or BSA (as control) dissolved in 

bicarbonatebuffer, (pH 9.6), respectively, and blocked with 3% (w/v) BSA. 1 

x104 cells were plated onto precoated wells as described above in the 

absence or presence of an anti-RAGE antibody (5 μg/ml), control IgG, anti-

�1-integrin antibody (10 μg/ml) or sRAGE (10 μg/ml). After 30 min of 

incubation in serum-free DMEM, the wells were washed with PBS and 

Adherent cells were fixed with methanol/acetone (1:1) and stained with 

crystal violet blue and quantified by absorbance at 590 nm. 

3.13 Proliferation Assay 

Cell proliferation was determined by cell counting using the CASY Cell 

Counter System. Cells were transfected with 150 nM siRNA under starvation 

conditions for 4 h and cultured for further 48 h prior to assess proliferation. 

KGF (10 ng/ml) and TGF-�1 (10 ng/ml) were used as positive controls for 

A549 and fibroblast cell proliferation, respectively. 

 

3.14 Migration (chemotaxis) Assay 

The migration of cells was analyzed using a Boyden chamber as previously 

described. Cells were allowed to migrate towards different chemotactic 

stimuli, including HGF (10 ng/ml) and TGF-�1 (10 ng/ml) or 5% FBS, and the 

extent of migration was measured by densitometric image analysis with 

Quantity One software (Bio-Rad Laboratories) and expressed as optical 
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density/mm². 

 

3.15 Wound Healing Assay 

Wound healing assay was performed as previously described (Katsuhiko 

Asanuma and Mundel 2006). Briefly, cells were seeded overnight in Lab-Tek  

chamber wells and transfected 48 h prior to scratch. Each coverslip was then 

scratched with a sterile 200 μl pipette tip, washed with PBS and placed into 

fresh medium with 5% FBS. After 24 h, cells were fixed with 4% 

paraformaldehyde and cell nuclei were stained with DAPI. Pictures were 

captured by fluorescent microscopy under a ×10 objective on a Leica DMR 

microscope at 0 and 24 h after scratching, and the number of cells that had 

migrated into the same-sized square fields (marked in fig. 7) were counted 

with Methamorph software 7.0 (Molecular Devices). 

3.16 Basolateral membrane isolation 

The basolateral membrane can be easily isolated from a total membrane 

fraction using a percoll gradient. The used method is based on Hammond et 

al. (Hammond, Verroust et al. 1994). First, the cell pellets were homogenized 

in 0.5 ml homogenization buffer (300 mM Mannitol in12 mM Hepes, pH: 7.4 

with a pestle device 2x 1 min. the homogenate was centrifuged in a 1.5 ml 

tube at 2000 g for 8 min to obtain the nuclear pellet. Afterwards, the pellet 

was rehomogenized in 0.5 ml of homogenization buffer and centrifuged as 

indicated above. The supernatants were transferred in a prechilled 

ultracentrifuge tube (polycarbonate 11 x 34 mm) and centrifuged at 14 0000 g 

for 20 min to obtain a mitochondrial pellet. The supernatant was recovered to 

another prechilled ultracentrifuge tube and centrifuged at 48.000 g for 30 min 

in a TLA 100.2 rotor. Next, the pellet was resuspended in 0.3 ml of 

homogenization buffer, first with the pipette and second with the 

homogeneizer for 30 seconds. The volume was adjusted to 1 ml with 

homogenization buffer and 0.2 ml of percoll (16 % gradient) was added and 

mixed by pipetting. Finally, the samples were centrifuged at 48.000 g for 30 

min in a TLS 55 rotor. The basolateral membrane fraction (blurry phase) was 
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recovered and the quantity of proteins was measured by BCA assay. All 

steps were performed on ice or 4°C. 

4. Statistics 

All data were expressed as mean � SD (n � 3) unless otherwise indicated. 

Experimental conditions were compared by using Student’s t-test for single 

measurments or containing multiple comparisons were analyzed using 

analysis of variance (ANOVA). Differences were considered significant at 

p<0.05. All 
Ct values obtained from qRT-PCR were analyzed for normal 

distribution using the Shapiro-Wilk-test. Data were assumed to be normally 

distributed, when p > 0.05.  
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5. Results 

5.1 Differential expression of RAGE in mouse tissue 

The expression and distribution of RAGE was analyzed in different mouse 

organs. RAGE was abundantly expressed in the lung, in comparison to other 

organs, such as the brain or heart, where substantially lower levels of the 

protein were detected (Fig. 8). The anti-RAGE antibody detected multiple 

bands of different molecular mass in the lung, which resulted from post-

translational modifications of RAGE (Hanford, Enghild et al. 2004). 

Figure 8: Abundant RAGE expression in the lung.
RAGE expression was appreciably high in the lung and localized to the epithelium.  Mouse 
organ homogenates were prepared and analyzed by western-blot analysis. RAGE exhibited 
a tissue-specific expression pattern, and was highly expressed in the lung. Three variants 
were detected (55 kDa, 50 kDa and 45 kDa). 

5.2 Distribution of RAGE in donor and IPF lung tissue 

In donor lung tissue, RAGE was localized to bronchial epithelial cells, 

alveolar epithelial cells and pulmonary fibroblasts. In IPF lung sections, 

RAGE staining was clearly weaker in the bronchial- and alveolar epithelium, 

as well as in pulmonary fibroblasts (Fig. 9). 



Results

35

Figure 9: RAGE distribution in IPF and donor lungs. 
Human lung sections were stained for RAGE (red) and counterstained with H&E (blue). 
RAGE was localized to the alveolar and bronchial epithelium as well as to fibroblasts. In 
comparison to donor lungs, IPF lungs exhibited a weak RAGE staining in alveolar epithelium 
as well in fibroblasts. Magnification: top panel 20x, middle 40x and bottom 63x. 

5.3 RAGE expression in donor, IPF lungs, alveolar type II cells and 

fibroblasts 

RAGE expression at the mRNA and protein level was investigated in IPF 

(n=6) and donor lung samples (n=6). While the quantitative PCR amplified 

RAGE transcript in a high amount in all donor samples, it was highly 

downregulated in the IPF lung homogenates (Fig. 10A). Furthermore, 

downregulation of RAGE was detected at the protein level in IPF lung  
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Figure 10: RAGE downregulation in IPF lung homogenate. 
(RAGE down-regulation in IPF. (A) RAGE expression was analyzed by real-time PCR in 
human donor (n 5 6) and IPF (n 5 6) lung homogenates. The RAGE transcript was largely 
down-regulated in IPF lung homogenates. (B) Proteins from lung homogenates were 
resolved by SDS-PAGE and analyzed by Western blotting for RAGE detection. RAGE was 
hardly discernable in all samples from patients with IPF. Two bands of 55 and 45 kD were 
detected in donor lung homogenates. (C) RAGE expression was evaluated in isolated ATII 
cells derived from donor and IPF lungs. RAGE mRNA expression was significantly 
decreased in IPF isolated ATII cells. (D) RAGE expression in isolated pulmonary fibroblasts 
from donor and IPF lungs did not show any significant differences. Data represent mean 6 
SD from at least three separate experiments; *P < 0.01. 
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homogenates as shown by western blotting. Two major isoforms (55 kDa and 

45 kDa) were identified in donor lung homogenates. In contrast, little RAGE 

was discernable in IPF lung extracts (Fig. 10B). Moreover, there was a 

significant downregulation of RAGE mRNA levels in IPF derived ATII cells 

(n=4) as compared to donor ATII cells (n=2) (Fig. 10C). No significant 

changes were observed between IPF (n=3) and donor (n=3) isolated 

fibroblasts (Fig. 10D). 

 

 

Figure 11 RAGE downregulation in the bleomycin model. 
Lung homogenates from saline- and bleomycin-treated mice were analyzed for RAGE 
expression at the mRNA and protein levels. (A) RNA samples from saline- and bleomycin-
treated mice (n 5 3) were subjected to RT-PCR. The RAGE mRNA was amplified in all 
samples, independent of the time period of bleomycin exposure. No significant changes at 
the mRNA level were observed after bleomycin treatment. (B) RAGE was significantly down-
regulated at the protein level in the bleomycin-treated mice (n 5 3) in comparison with saline-
treated mice, as demonstrated by Western blotting. 
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5.4 RAGE Expression in the bleomycin mouse model of lung fibrosis 

To study possible mechanistic relationships between pulmonary fibrosis and 

the downregulation or loss of RAGE, an established mouse model was 

employed in which pulmonary fibrosis was provoked by bleomycin inhalation. 

In bleomycin-treated mice, no significant decrease in RAGE expression was 

noted at the mRNA level (Fig. 11A). In contrast, at the protein level, RAGE 

was significantly downregulated in bleomycin treated mice, exemplified by the 

appearance of very weak protein bands upon western blotting (Fig. 11B). 

These data are consistent with the observations made on RAGE protein 

expression in IPF patient lungs. In contrast to the human studies, an 

additional 50 kDa RAGE variant was detected. 

5.5 Influence of Cytokines on RAGE Expression 

Since RAGE expression is controlled by cytokines (Tanaka, Yonekura et al. 

2000), the influence of TNF-� and TGF-�1 at RAGE mRNA and protein levels 

was tested in an alveolar epithelial cell line, A549, and primary human 

pulmonary fibroblasts after 24 and 48 hours stimulation. RAGE expression 

was significantly altered at the mRNA and protein level by both TNF-� and 

TGF-�1 in A549 cells after 48 hours as analyzed by quantitative PCR and 

western blotting (Fig. 12A, B). 

In pulmonary fibroblasts, RAGE downregulation at the mRNA level was 

provoked by TNF-�, and to a lesser extent by TGF-�1 after 24 hour 

stimulation (Fig. 13A, B). RAGE expression was decreased at the protein 

level after 48 hours by both cytokines full length RAGE was mainly affected. 
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Figure 12: Cytokine-dependent RAGE downregulation in A549 Cells. 
The influence of cytokines on RAGE expression was tested in the alveolar epithelial cell line 
A549 as well as in primary human fibroblasts. RAGE expression was analyzed by 
immunofluorescence and western-blot analysis after 24 h and 48 h stimulation with different 
cytokines. Cytokine-treated A549 cells exhibited no changes after treatment with TGF-�1 or 
TNF-� after 48 h. 
 

5.6 Relation between RAGE and Cell Adhesion, Migration and 

Proliferation

To further elucidate the mechanism by which a decrease or loss of RAGE 

would affect cellular functions, cell adhesion, migration and proliferation of 

A549 cells as well as pulmonary fibroblasts were studied. To examine the 

role of RAGE-collagen interaction, an adhesion assay with collagen was 

performed. Blockade of RAGE inhibited cell adhesion on collagen (Fig. 14A) 

and on intact extracellular matrix (Fig. 14B), suggesting a potential role of 

RAGE in cell-matrix adhesion. The inhibitory effect of anti-RAGE antibody 

was diminished by pre-incubation with soluble RAGE (sRAGE). 
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Figure 13:Cytokine-dependent RAGE downregulation in pulmonary fibroblasts. 
The influence of cytokines on RAGE expression was tested in primary human fibroblasts. 
RAGE expression was analyzed by immunofluorescence and western-blot analysis after 24 
h and 48 h stimulation with different cytokines. Cytokine-treated fibroblasts were analyzed 
after 24 h. After stimulation with TNF-� and TGF-�1, the expression of RAGE was decreased. 
TGF-�1 and TNF-� exposure significantly decreased RAGE expression after 48h. Data 
represent mean ± SD. from at least three separate experiments. * p
 0.05.
 

In contrast, control IgG and sRAGE had no influence on cell adhesion, 

indicating that the full length RAGE is essential for its adhesive function. In 

addition, knock down of RAGE by specific siRNA led to increased 

proliferation of epithelial cells (A549) and fibroblasts as demonstrated by cell 

counting (Fig. 15 B,C). 

Keratinocyte growth factor (KGF) and TGF-�1 served as positive controls for 

cell proliferation of A549 and pulmonary fibroblasts, respectively. RAGE 

knock down resulted in increased migration of fibroblasts and epithelial cells 

(A549) as shown by chemotaxis migration assay (Fig. 15 D). Hepatocyte 

growth factor (for epithelial cells) and TGF-�1 (for fibroblast) served as 

positive controls. Undirected chemokinesis was tested by a scratch wound 

healing assay with siRNA transfected A549 cells and pulmonary fibroblasts. 

Cells transfected with RAGE specific siRNA migrated faster inducing closure 

of the scratch, in comparison to scrambled siRNA transfected cells after 24 

hours (Fig. 16). siRNA knock down of RAGE in A549 cells affected mainly 
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cell proliferation, while RAGE knock down in pulmonary fibroblasts resulted in 

elevated both cell migration and proliferation, but the latter to a lesser extent. 

RAGE is associated with the cytoskeleton and might regulate proliferation 

and migration via cytoskeleton re-arrangement (Fig. 17). These data indicate 

that RAGE is an important component, related to cell adhesion, migration and 

proliferation of alveolar epithelial cells and pulmonary fibroblasts.

 

Figure 14: Impairement of cell adhesion on collagen and extracellular matrix by 
blocking of RAGE. 
A549 epithelial cells and primary fibroblasts were incubated with a blocking anti-RAGE 
antibody and assessed for adhesion to different adhesive substrates. (A, B) The adhesion 
assay was performed on collagen and extracellular matrix (ECM)-coated plates. Cells treated 
with the anti-RAGE antibody exhibited significantly decreased adhesion in comparison to 
control cells. Control IgG and sRAGE had no significant influence on the adhesion. Impaired 
adhesion was restored by neutralisation of anti-RAGE by sRAGE. As negative control, cells 
were plated on BSA-coated plates. Data represent mean ± SD. from at least three separate 
experiments. * p
 0.05. Filled bars: A549; open bars: fibroblasts. 



Results

42

Figure 15: Increased cell proliferation and migration due to siRNA-mediated RAGE 
knockdown. A549 cells and primary human pulmonary fibroblasts were transfected with 
specific RAGE siRNA and assessed for cell proliferation and migration. (A) Western blot 
analysis demonstrated RAGE siRNA knockdown on the protein level in A549 cells and 
pulmonary fibroblasts. (B) A549 cells transfected with RAGE siRNA exhibited an increased 
proliferation rate in comparison with scrambled control siRNA. KGF was used as a positive 
control. (C) Pulmonary fibroblasts transfected with RAGE siRNA exhibited an increased 
proliferation rate in comparison with scrambled control siRNA. TGF-b1 was used as a 
positive control. (D) Transfected A549 cells and pulmonary fibroblasts were assessed for 
chemotactic migration. In more detail, RAGE knockdown with specific siRNA induced a 
migratory effect as compared with scrambled siRNA in both A549 cells and pulmonary 
fibroblasts. Data represent means 6 SD from at least three separate experiments; *P < 0.05; 
filled bars, A549; open bars, fibroblasts. 
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Figure 16: Increased cell migration due to siRNA-mediated RAGE knock down. 
A549 cells and primary human pulmonary fibroblasts were transfected with specific RAGE 
siRNA and assessed for cell migration. (A) A549 cells transfected with RAGE siRNA 
exhibited an increased migration rate, in comparison to scrambled control siRNA in a Boyden 
chamber. (B,C) RAGE knockdown induced wound closure. A549 cells and primary human 
pulmonary fibroblasts were transfected with RAGE-specific siRNA and assessed for wound 
healing assay. (B) A549 cells transfected with RAGE siRNA exhibited increased migration 
and wound closure in comparison with scrambled siRNA-transfected cells. (C) Pulmonary 
fibroblasts exhibited increased migration and wound closure in comparison with scrambled 
siRNA-transfected cells. Data represent means 6 SD from at least three separate 
experiments. Scale bar 5 100 mm; *P < 0.05. 
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Figure 17: RAGE is associated with the cytoskeleton. 
A549 cells were separated by subcellular fractionation and analyzed by western-blot analysis. 
RAGE was detected in the cytoplasm, the membrane/organelle and predominantly in the 
cytoskeleton fraction. 
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6. Discussion 

The physiological and pathophysiological role of RAGE in the pulmonary 

system remains elusive. The following section will reflect the results of the 

current thesis and will discuss them in the context with the existing literature. 

 

6.1 The role of RAGE in pulmonary fibrosis 

In the present work, the relation between RAGE downregulation in fibrotic 

lungs and the loss of control of cell adhesion, migration and proliferation, 

alterations believed to be involved in fibrosis development, was described. 

These data provide new mechanistic insight into the regulatory role of RAGE 

in cell communication in the lung and are supported by recent findings of 

other investigators (Hanford LE 2003; Englert, Hanford et al. 2008). 

Decreased RAGE expression in lungs of IPF patients and in aveolar type II 

cells (AT II) in vitro are in accordance with the observed alterations in the 

animal model of bleomycin-induced lung fibrosis (Hanford LE 2003). 

As demonstrated in this study, downregulation and/or loss of RAGE 

expression by TNF-� and TGF-�1 in primary human pulmonary fibroblasts 

and A549 cells as well as its involvement in cell adhesion appear to be 

processes linked to the onset and/or progression of fibrosis pathogenesis. 

Here, the profibrotic cytokine TNF-� plays a critical role, possibly driving the 

inflammatory phase into fibrosis (Miyazaki, Araki et al. 1995; Oikonomou N 

2006). Another hallmark of the pathogenesis of pulmonary fibrosis are the 

alterations in cellular phenotype and functions, accompanied by changes in 

cell adhesion and communication of lung epithelial cells. The results 

demonstrate RAGE protein localization mainly on AT I cells, but also on AT II 

cells, which contain high amounts of RAGE mRNA. It remains to be further 

established whether RAGE is a specific marker for AT I or AT II epithelial 

cells (Katsuoka F 1997; Fehrenbach H 1998). Whether these differences are 

related in any way to the transition from AT II to AT I cells remains to be 

elucidated. However, it was recently shown the RAGE is upregulated during 

the transition from AT I to AT II cells (Wang, Edeen et al. 2007). Based on the 
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these findings, the following function is proposed for RAGE in alveolar 

epithelial cells. 

Under normal physiological conditions AT II cells contain low level of RAGE 

protein, although there is appreciable RAGE mRNA detactable, allowing the 

cells to proliferate, and to reepithelialzate. However, during 

transdifferentiation of AT II cells to AT I cellls, there is increase on RAGE 

protein levels (Dobbs ref.), which by utelizing with collagen in the ECM, 

immobilieses AT I cells and thus contributing to there non-proliferative 

phenotype. RAGE knock down in AT II-like A549 cells as well as pulmonary 

fibroblasts resulted in elevated proliferative responsiveness to serum and 

increased cellular motility. Interestingly, RAGE knock down had a more 

proliferative effect on A549 cells and a higher migratory effect on pulmonary 

fibroblasts, indicative for a cell type-specific role of RAGE as well. Moreover, 

the cell phenotype changes provoked by RAGE downregulation in lung 

fibroblasts are reminiscent of morphological alterations of these cells in IPF, 

demonstrating increased proliferation and migration in comparison to 

fibroblasts derived from donors (Suganuma, Sato et al. 1995; Ramos, 

Montano et al. 2001; Moodley, Scaffidi et al. 2003). Together, RAGE 

downregulation appears to be associated with both, cytokine and adhesion-

related cellular changes and may thus be mechanistically linked to the switch 

of chronic inflammation to fibrosis in fibrotic lung disease.  

The adhesive properties of RAGE in mediating cell-matrix contacts described 

here and in previous reports (Fehrenbach H 1998; Demling N 2006) appear 

to be similar and comparable to integrin-mediated adhesion of lung epithelial 

cells, and loss of RAGE is associated with disturbed cellular contacts. 

Moreover, preliminary data from our laboratory indicate a tight linkage of 

RAGE to cytoskeletal elements in lung epithelial cells, suggesting that RAGE 

provides a regulatory adhesion function linked to cytoskeleton-related 

signaling systems, also characteristic for integrin functions. It may thus be 

hypothesized that signaling pathways that would lead to inside-out signaling 

to affect RAGE function may not be unlikely. Since RAGE was described by 

our group as the major inflammation-related counter-receptor on endothelial 

cells for recognition of ß2-integrins on leukocytes (Chavakis, Bierhaus et al. 
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2003), it remains to be investigated whether loss of RAGE in the aleolar 

epithelium may lead to disturbances in inflammatory cell interactions in the 

lung as well. Although the clarification of the cell-stabilizing role of RAGE in 

the lung requires further work, RAGE appears to serve an "opposite" role in 

the vasculature, where it becomes upregulated upon inflammatory processes 

and promotes e.g. leukocyte recruitment into diseased tissue (Chavakis, 

Bierhaus et al. 2003). 

Although the bleomycin model of lung fibrosis used in this study may not 

necessarily reflect all alterations of fibrosis pathogenesis as observed in 

humans, data from this in vivo model are in accordance with our in vitro and 

ex vivo data: A major loss of RAGE expression was seen in these mice that 

is supported by recent findings from Englert et al. (Englert, Hanford et al. 

2008) who indicated that RAGE-/- mice developed more severe asbestos-

induced lung fibrosis than wild-type controls, and underlined our data using a 

different animal model for lung fibrosis. In contrast, He et al. (He, Kubo et al. 

2007) reported that RAGE-/- mice were protected from bleomycin-induced 

lung fibrosis. Furthermore, it has been shown that RAGE levels are 

decreased in the alveolar epithelium after in vitro treatment of rat lung 

sections with CdCl2 and TGF-�1 (Kasper, Seidel et al. 2004).  

Our observations agree with and further complement the findings that RAGE 

is downregulated in non-small cell lung carcinoma, and its expression impairs 

the proliferative stimulus of lung fibroblasts on lung cancer cells (Bartling, 

Hofmann et al. 2005; Bartling, Demling et al. 2006). Thus, loss of RAGE 

leads to increased cellular proliferation and migration of pulmonary cells in 

association with different pathologies, and (therapeutic) prevention of RAGE 

downregulation may serve as a potential antagonizing mechanism in the 

diseased lung 

6.2 RAGE as a biomarker for lung injury 

The finding of biomarkers for certain lung diseases is essential for a 

diagnostic tool and therapy development. Due to its high expression in lung 

homogenate as well as the appearance of its soluble form in bronchial 

alveolar fluid (BAL), RAGE was studied as a marker for acute lung injury 
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(ALI). ALI is often seen as part of a systemic inflammatory process, such as 

sepsis, with lung manifestations such as widespread destruction of the 

capillary endothelium, extravascation of protein rich fluid and interstitial 

edema. Indeed, in an animal model of acute lung injury (ALI), evaluated 

levels of sRAGE were associated with the severity of the experimentally 

induced lung injury (Uchida, Shirasawa et al. 2006). in addition, sRAGE was 

increased in serum samples from patients with acute respiratory distress 

syndrome (ARDS), a more severe form of ALI (Calfee, Ware et al. 2008). The 

underlying mechanism for this phenomenon is not clear. It could be noted 

that under inflammatory conditions metalloproteases such as MMP-9 and 

ADAM10 proteolytically dissociate RAGE from the epithelial membrane or 

that epithelial injury-induced apoptosis or necrosis leads to sRAGE release 

into the alveolar space. The present results show that RAGE is dramatically 

downregulated in lung homogenate and in alveolar type II cells from IPF 

patients as well as in the bleomycin model. Furthermore, sRAGE level in BAL 

from IPF patients is decreased as well (Bargagli, Penza et al. 2008), 

indicating that RAGE expression is different in pulmonary fibrosis than in 

acute lung injury. However, RAGE might not be useful as a biomarker for IPF 

since downregulation of RAGE was observed as well in lung adenocarcinoma 

(Hofmann, Hansen et al. 2004) (Stav, Bar et al. 2007). 

In respect to cell-type specific markers, RAGE was proposed to be an AT I 

marker (Fehrenbach, Kasper et al. 1998; Shirasawa, Fujiwara et al. 2004). 

While it remains to be further established whether RAGE is a specific marker 

for AT I or AT II epithelial cells (Katsuoka F 1997; Fehrenbach H 1998), the 

present results demonstrate RAGE protein localization mainly in AT I cells, 

but also in AT II cells, which contain high amounts of RAGE mRNA. Whether 

these differences are related in any way to the transition from AT II to AT I 

cells remains to be elucidated. 

 

6.3 RAGE-ligand signaling in the lung 

The role of RAGE and its ligands in maintaining and amplifying inflammation 

has been investigated in several tissues. RAGE-mediated tissue damage is 

being involved in chronic inflammatory pathology of multiple organs. In the 
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lung, several RAGE ligands were indentified under inflammatory conditions. 

AGE accumulation was demonstrated in lung tissue after smoke exposure, 

and cigarette smoke extract induced RAGE expression via early growth 

factor-1 (Egr-1) in vitro (Morbini, Villa et al. 2006; Reynolds, Kasteler et al. 

2008). However, the situation in vivo is by far more complex. AGE in the 

alveolar space have to face several surfactant proteins with AGE-binding 

properties such as lysozyme and lactoferrin which both contains AGE-binding 

domains and might contribute to AGE clearence (Li, Tan et al. 1995). In 

addition, high sRAGE levels are present in BAL and might prevent AGE-

RAGE interaction on the alveolar epithelium. 

The situation with the S100 proteins is similar, S100A12 (EN-RAGE) and 

S100B are expressed under inflammatory conditions and in acute lung injury 

(Morbini, Villa et al. 2006; Wittkowski, Sturrock et al. 2007). However, 

whether this association indicates a potential pro-inflammatory signaling 

pathway remain to be unsolved. The most likely interaction could occur 

between epithelial cell-expressed RAGE and HMGB1, which has the highest 

affinity for RAGE. HMGB1 is released from injured and necrotic cells. In 

addition, the concentration of HMGB1 in sepsis, which is associated with 

acute lung injury, as well as in bleomycin-induced pulmonary fibrosis (He, 

Kubo et al. 2007), can reach high levels which are unlikely to be blocked 

completely by endogenous sRAGE. Indeed, applied HMGB1 leads to 

cytokine release and inflammatory cell recruitment to the lung (Abraham, 

Arcaroli et al. 2000). However, since RAGE downregulation is taking place 

early after bleomycin administration as well the fact the RAGE is 

downregulated in IPF patients (present results), it is more likely that the 

observed effects are mediated via TLR2 and TLR4 receptors as described 

before (Tsung, Klune et al. 2007). 

 

6.4 Potential mechanism of RAGE downregulation 

The RAGE promoter which is controlled by three NF-�B binding sites links 

the RAGE expression to inflammation. Thus, it is recognized that RAGE 

controls inflammation in several diseases (Bierhaus, Humpert et al. 2005). 

Surprisingly enough, in IPF patients as well as in the bleomycin mouse model, 
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with its acute inflammatory phase, RAGE is largely downregulated. This 

phenomenon might be explained by non-classical signaling events. 

 

6.4.1 RAGE downregulation by micro-RNA 

In lung homogenate from IPF patients and AT II cells, the RAGE transcripts 

were downregulted. One possible explanation is that micro-RNA (miRNA) 

might interact with RAGE mRNA and could regulate its expression. miRNA 

gene regulation was recently discovered as an additional regulatory 

mechanism caused by endogenous, 21-nucleotide-long derived miRNA. 

Similar to siRNA, miRNA can regulated gene transcription as well as 

translation by degradation or blocking transcripts of translation (Pillai, 

Bhattacharyya et al. 2007; Flynt and Lai 2008). 

The excat pairing between miRNA and target mRNA trigges degradation 

through a mechanism similar to RNA interferance. However, mostly miRNAs 

regulate gene expression by imperfect base pairing to the 3’ UTR of the 

target mRNA, causing translational repression or exonucleolytic degradation 

of target mRNA. The miRNA is incooperated in a ribonucleoprotein complex 

(miRNP) which is composed of Argonaute proteins which exhibit nucleolytic 

activity. The RAGE encoding ager mRNA transcripts from mouse and human 

have several potential binding sites for miRNA, indicating a potential gene 

regulatory mechanism. the functions of these miRNAs are not yet described 

and need to be further analyzed. However, miRNA-mediated mechanisms 

might explain the effect of stable RAGE mRNA expression in mice with 

absence of RAGE on the protein level. 

 

6.4.2 RAGE downregulation by proteases 

RAGE mRNA transcripts are not significantly downregulated regulated in the 

bleomycin model, indicating that other mechanisms are taking place on the 

post-transcriptional level. ADAM10 and MMP9 are known proteases which 

mediate RAGE shedding and production/processing of sRAGE (Raucci, 

Cugusi et al. 2008; Zhang, Bukulin et al. 2008). However, it was recently 

reported though that sRAGE is downregulated as well in BAL from IPF 

patients (Bargagli, Penza et al. 2008). 
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6.4.3 Downregulation of RAGE in relation to caveolae 

Another explanation for RAGE downregulation on the protein level could be 

due to an indirect mechanism where by membrane proteins which are 

associated with RAGE would be targeted by TGF-� or TNF-� leading to their 

downregulation together with RAGE. Indeed, it was reported that RAGE is 

associated with caveolin-rich membrane fractions (Lisanti, Scherer et al. 

1994). Caveolin-1, the main component of caveolae, is a critical regulator of 

lung fibrosis because Caveolin-1 limits TGF-� -induced production of 

extracellular matrix and restores alveolar epithelial-repair processes. 

Caveolin-1 expression was markedly reduced in lung tissue from patients 

with idiopathic pulmonary fibrosis and that this reduction was predominant in 

alveolar epithelial cells. In addition, fibroblasts had low levels of caveolin-1 

expression in patients with idiopathic pulmonary fibrosis (Wang, Zhang et al. 

2006; Le Saux, Teeters et al. 2008). Therefore, further investigations should 

focus on a possible connection between RAGE with caveolae. 

 

6.4 Involvement of RAGE in epithelial-mesenchymal transition 

Beside the involvement of RAGE in cell proliferation, RAGE might be 

involved as well in cell transdifferentiation, especially under conditions of 

epithelial to mesenchymal transition (EMT). It was reported that AGE can 

induce EMT by RAGE activation, inducing TGF-� expression in 

tubulointerstitial fibrosis (Oldfield, Bach et al. 2001). In the lung, induction of 

EMT by HMGB1 via RAGE in pulmonary fibrosis was suggested (He, Kubo et 

al. 2007). However, the early downregulation of RAGE in fibrosis can act, if at 

all, only for a very limited period of time in the onset of the fibrogenesis. 

Another way for RAGE involvement in EMT can be associated with the 

present results, suggesting that beside AT II cells also AT I can undergo EMT. 

Following  TGF-� stimulation this process would lead to RAGE 

downregulation and enables the transformed AT I cells (myofibroblasts) to 

proliferate excessively and contributes to fibrosis. 
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6.5 RAGE as an adhesion molecule 

Chavakis et al. showed a cell-adhesive function for RAGE, based on the 

RAGE-Mac-1 interaction, for the first time (Chavakis, Bierhaus et al. 2003). 

Furthermore, a role for RAGE was proposed in cytoskeleton reorganization 

and involvement in ���3 integrin signaling in osteoclasts (Zhou, Immel et al. 

2006). The present results indicate a direct interaction between RAGE and 

the cytoskeleton. In addition, the results show that RAGE can interact with 

collagen and extracellular matrix. The binding interaction between RAGE and 

collagen suggests that RAGE might fullfill mainly adhesion function in the 

lung. RAGE is localised at the basolateral membrane of type I cells, indicative 

for interaction with collagen of the extracellular membrane (Fehrenbach, 

Kasper et al. 1998). Surprisingly enough, RAGE-/- mice shows accumulation 

of macrophages in the lung as opposed to wild-type mice after injury, 

indicating that RAGE can  influence the circulation and adhesiveness of 

leukocytes (He, Kubo et al. 2007). 

The present results supporting a cell-adhesive function for RAGE and show 

an its physiological relevance in the pulmonary system. 
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